第1课时1、1、1集合的概念及表示

合集下载

1.1.1集合的含义与表示_7

1.1.1集合的含义与表示_7

---------------------------------------------------------------最新资料推荐------------------------------------------------------1.1.1集合的含义与表示1. 1. 1 集合的含义与表示第 1 课时集合的含义与表示(一)教学目标 1.知识与技能(1)初步理解集合的含义,知道常用数集及其记法.(2)初步了解属于关系的意义.理解集合相等的含义. (3)初步了解有限集、无限集的意义,并能恰当地应用列举法或描述法表示集合. 2.过程与方法(1)通过实例,初步体会元素与集合的属于关系,从观察分析集合的元素入手,正确地理解集合.(2)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.(3)学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性).(4)通过实例体会有限集与无限集,理解列举法和描述法的含义,学会用恰当的形式表示给定集合掌握集合表示的方法. 3.情感、态度与价值观(1)了解集合的含义,体会元素与集合的属于关系.(2)在学习运用集合语言的过程中,增强学生认识事物的能力.初步培养学生实事求是、扎实严谨的科学态度.(二)教学重点、难点重点是集合的概念及集合的表示.难点是集合的特征性质和概念以及运用特征性质描述法正确地表示一些简单集合. (三)教学方法尝试指导与合作交流相结合.通过提出问题、观察实例,引导学生理解集合的概念,分析、讨论、探究集合中元素表达的基本要求,并能依照要求举出符合条件的例子,1 / 8加深对概用心爱心专心用心爱心专心用心爱心专心用心爱心专心例 1(1)利用列举法表法下列集合:①{15 的正约数} ;②不大于 10 的非负偶数集. (2)用描述法表示下列集合:①正偶数集;②{1, 3, 5, 7,, 39, 41} . 【分析】考查集合的两种表示方法的概念及其应用. 用心爱心专心【解析】(1)①{1, 3, 5,15} ②{0, 2, 4, 6, 8, 10} (2)①{x | x = 2n,nN*} ②{x | x = ( 1) n 1 (2n 1) ,n N*且 n21} . 【评析】(1)题需把集合中的元素一一列举出来,写在大括号内表示集合,多用于集合中的元素有有限个的情况. (2)题是将元素的公共属性描述出来,多用于集合中的元素有无限多个的无限集或元素个数较多的有限集. 例 2 用列举法把下列集合表示出来:(1) A = {xN | (2) B = {9N} ; 9 x9 N | xN } ;9 x (3) C = { y = y = x2 + 6, xN , yN } ;(4)D = {(x, y) | y = x2 +6, xN } ;(5)E = {x | p= x,p + q = 5, pN , qN*} . q 【分析】先看五个集合各自的特点:集合 A 的元素是自然数 x,它必须满足条件是自然数;集合 B 中的元素是自然数 9 也 9 x9,它必须满足条件 x 也是自然数;集合C 中的元 9 x 素是自然数 y,它实际上是二次函数 y= x2 + 6 (xN ) 的函数值;集合 D 中的元素是点,这些点必须---------------------------------------------------------------最新资料推荐------------------------------------------------------在二次函数 y = x2 + 6 (xN ) 的图象上;集合 E 中的元素是x,它必须满足的条件是 x =p,其中 p + q = 5,且 p N, qN*. q 【解析】(1)当 x = 0, 6, 8 这三个自然数时, 9=1, 3, 9 也是自然数. 9 x A = {0, 6, 9} (2)由(1)知, B = {1, 3, 9} . (3)由 y = x2 + 6, xN, yN 知 y6. x= 0, 1, 2 时, y = 6, 5, 2 符合题意. C = {2, 5, 6} . (4)点 {x, y} 满足条件 y = x2 + 6, xN, y N,则有:x 0, x 1, x 2, y 6, y 5, y 2.D = {(0, 6) (1, 5) (2, 2) } (5)依题意知 p + q = 5,p N, q N*,则p 0, p 1, p 2, p 3, p 4, q 5, q 4, q 3, q 2, q 1. Px 要满足条件 x =,q 132E = {0,,,, 4} . 423【评析】用描述法表示的集合,要特别注意这个集合中的元素是什么,它应该符合什么用心爱心专心条件,从而准确理解集合的意义. 例 3 已知 3A = {a 3, 2a 1, a2 + 1} ,求 a 的值及对应的集合 A. 3A,可知 3 是集合的一个元素,则可能 a 3 = 3,或 2a 1 = 3,求出a,再代入 A,求出集合 A. 【解析】由 3A,可知, a 3 = 3 或 2a 1 = 3,当 a 3 = 3,即 a = 0时, A = { 3,1, 1} 当 2a 1 = 3,即 a = 1 时, A = { 4, 3, 2} . 【评析】元素与集合的关系是确定的, 3 A,则必有一个式子的值为 3,以此展开讨论,便可求得 a. 用心爱心专心3 / 8HcQkYs) B5J dSm#u-D 7LfTn$w0E8N h Vp%y2GaOiXr* z3IcQkYt) B5J dSm#u-D7LfTo$w0E9NhVp%y2 GaOjXr *z4IcQ kYt) B5JeSm#u+D7LfTo$w0E9 NhVpy 2GaPjX r*z4IcQkZt) B5KeSm#u+D7Lf Uo$w0F9NhVp y2GaPjXr*A4IcQlZt) B5KeSm #v+D7L gUo$w0 F9NhVqy2GbPjXr*A4IcQlZt ) B6KeSm! v+D7 LgUo$w1F9NhWqy2GbPjXr(A 4IcRlZ t) B6Ke Sm!v+D7MgUo$x1F9NhWqy2H bPjXs( A4IcRl Zt) C6KeSn!v+D7MgUo$x1F9N iWqy3HbPjXs (A4IdRlZt-C6KeSn!v+D8MgU o%x1F9NiWqy 3HbPjYs(A4JdRlZt-C6KeTn! v+E8M gUo%x1F 9OiWqz3HbPjYs(A4JdRlZu- C6KfTn ! v+E8M gUp%x1FaOiWqz3HbPkYs(A5 JdRlZu-C6KfT n!v0E8 MgVp%x1FaOiWq*z3H bQkYs(A 5JdRl #u-C6LfTn!v0E8MgVp%x1GaO iWr*z3HbQkYs (B5JdRm#u-C6LfTn!w0E8MhV p%x1Ga OiWr*z 3HcQkYs) B5JdRm#u-C7LfTn$ w0E8Mh Vp%x2G aOiXr*z3HcQkYs) B5JdSm#u- D7LfTn$w0E8N hVp%y2GaOiXr * z3IcQkYt) B5 JdSm#u -D7LfT o$w0E9NhVp%y 2GaOjXr*z4Ic QkYt) B5JeSm# u+D7LfTo$w0E 9NhVpy2GaPj Xr*z4IcQkZt) B5KeSm#u+D7L f Uo$w0F9NhVp y2GaPjXr*A4 IcQlZt) B5KeSm#v+D7LgUo$w 0F9NhV qy2Gb PjXr*A4IcQlZt) B6KeSm!v+D 7LgUo$w1F9Nh Wqy2GbPjXr(A4IcRlZt) B6K eSm! v+ D7MgUo $x1F9NhWqy2HbPjXs(A4IcR lZt) C6KeSn!v +D7MgUo$x1F9NiWqy3HbPjX s(A4IdRlZt-C6KeSn!v+D8M g Uo%x1F9NiWq y3HbPjY s(A4 IdRlZt-C6KeT n !v+E8MgUo%x 1F9OiWq---------------------------------------------------------------最新资料推荐------------------------------------------------------z3Hb PjYs(A4JdRlZ u -C6KeTn! v+E 8MgUp%x 1FaOi Wqz3HbPkYs( A5JdRlZu-C6K fTn!v0E8MgUp %x1FaOiWq*z3 H bQkYs(A5JdR l#u-C6L fTn!v 0E8MgVp%x1Ga O iWq*z3HbQkY s(B5JdR m#u-C 6LfTn!w0E8Mh V p%x1GaOiWr* z3HcQkY s(B5J dRm#u-C7LfTn $w 0E8MhVp%x2 GaOiXr*z3HcQ kYs) B5JdSm#u - C7LfTn$w0E8 NhVp%y2GaOiX r*z3IcQkYt) B 5JdSm#u-D7Lf To$w0E8NhVp% y2GaOjXr*z4I cQkYt) B5JeSm #u+D7Lf To$w0 E9NhVpy2GaO jXr*z4IcQkZt ) B5KeSm #u+D7 LfUo$w0F9NhV py2GaPjXr*A 4IcQkZt)B5Ke Sm#vRdJ5A(sY k PbH3z qWiOaF1x%pUgM 8E+ v! nTeK6C-uZl Rd J4A(sYjPbH 3zqWiO9F 1x% oUgM8E+v!nTe K6C-tZlRdI4A (sYjPbH3y qW iN9F1x%oUgM8 D+v !nSeK6C-tZlRdI4A(sXjPbH2y qWiN9F1x$oUgM7D+v! nSeK6 C) tZlRcI4A(s XjPbH2yqWhN9F1w$oUgM7D+ v!mSeK6B) tZl RcI4A(rXjPbG 2yqWhN9F1w$ oUgL7D+v#mSe K6B) tZlQcI4 A *rXjPbG2yqV hN9F0w$oUgL7 D+v#mSeK5B)t ZkQcI4A*rXjP aG2y pVhN9F0 w$oUfL7D+u#m SeK5B) tZkQcI 4z*rX jOaG2y pVhN9E0w$oTfL7D+u#mSeJ5B ) tYkQ cI4z*rX jOaG2y%pVhN8E0w$oTfL7D-u #mSdJ 5B) tYkQ cI3z*rXiOaG2y%pVhN8E0w$n TfL7C -u#mSdJ 5B) sYkQcH3z*rXiOaG2x%pVh M8E0w$nTfL7C -u#mRdJ5B(sY kQcH3z*rWiOa G1x%p VhM8E0w !nTfL6C-u#m R dJ5B(sYkQbH3 z*qWiOaG1x%p5 / 8VgM8E0v!nTf L 6C-u#lRdJ5A( sYkQbH3z*qWi OaF1x% pUgM8E0v! nTfK6C-u ZlRdJ5A (sYkP bH3zqWiOaF1x%pUgM8E+v!n TeK6C- uZlRdJ 4A(sYjPbH3zqWiO9F1x%oUg M8E+v!nTeK6C -tZlRdI4A(sYjPbH3yqWiN9 F1x%oU gM8D+v !nSeK6C-tZlRdI4A(sXjPbH2 yqWiN9F1x$o UgM7D+v! nSeK6C) tZlRcI4A( sXjPbH 2yqWh N9F1w$oUgM7D+v!mSeK6B) tZ lRcI4A (rXjPb G2yqWhN9F1w$oUgL7D+v#mS eK6B) tZlQcI4 A*rXjPbG2yq V hN9F0w$oUgL 7D+v#mSeK5B) tZkQcHbPjXs( A 4IdRlZt) C6K eSn!v+D 8MgUo $x1F9NiWqy3 H bPjXs(A4IdR lZt-C6KeTn!v +D8MgUo%x1F9OiWqy3HbPjY s(A4Jd RlZtSe K6B) tZlQcI4A(rXjPbG2yqV hN9F1w $oUgL7 D+v#mSeK5B) tZlQcI4A*rXjP aG2yqVhN9F0w$oUfL7D+v# m SeK5B) tZkQc I4z*rXjPaG2y lZt) C6KeSn!v + D8MgUo%x1F9 NiWqy3HbPjY s(A4IdRlZt-C 6KeTn! v+D8Mg Uo%x1F9OiWq z3HbPjYs(A4J dRlZu-C6KeTn !v+E8MgU p%x1 F9OiWqz3HbP k Ys(A5JdRlZu -C6KfTn!v0E8 MgUp%x1FaOiW q* z3HbPkYs(A 5JdRl#u -C6Lf Tn!v0E8MgVp% x1GaOiWq*z3H bQkYs(B5JdRl #u-C6LfTn! w0 E 8MhVp%x1GaO iWr*z3HcQkYs (B5JdRm#u-C7 L f) tYkQcI3z* rXiOaG2y%pVh N8E0w$nTfL7D - u#mSdJ5B) sY kQcH3z* rXiOa G2x%pVhM8E0w $nTfL7C-u#mR dJ5B) sY kQcH3 z*rWiOaG1x%p V hM8E0w!nTfL 6C-u#mRd J5B( sYkQbH3z*rWi OaG1x%pVgM8E 0v! nTfL6C-u# lRdJ5A(sYkQb H 3z*qW iOaF1x%pVgM8E0v! n TfK6C-uZlRdG aOiXr*z3IcQk Ys) B5JdSm #u- D7LfTn$w0E8N hVp%y2GaOiXr *z3IcQkYt) B5 JeSm#u-D7LfTo$w0E---------------------------------------------------------------最新资料推荐------------------------------------------------------9NhVp%y 2GaOjXr*z4IcQkYt) B5JeSm# u+D7LfUo$w0E 9NhVpy2GaPjXr*z4IcQkZt) B5KeSm#u+D7L fUo$w0F9NhV q y2GaPjXr*A4 IcQlZ t) B5KeS m#v+D7r*z4Ic QkZt) B5KeSm# u+D7L fUo$w0F 9NhVqy2GaP j Xr*A4IcQlZt) B5KeSm#v+D7L gUo$w0F9NhVq y2GbPjXr(A4 IcQlZ t) B6KeS m!v+D7LgUo$w 1F9NhWqy2Gb PjXr( A4IcRlZ t) C6KeSm! v+ D 7MgUo$x1F9Nh Wqy2HbPjXs( A4IcRlZt) C6KeStZlRdI4A(s XjPbH 2yqWiN 9F1x$oUgM7D+v!mSeK6C) tZl RcI4A (rXjPbH 2yqWhN9F1w$oUgM7D+v! mSe K6B) tZlQcI4A (rXjPbG2yqVhN9F1w$oUgL7 D+v#m SeK6B) t ZlQcI4A*rXjPaG2yqVhN9F0 w$oUf L7D+v#m SeK5B) tZkQcI4PjXs(A4IdR lZt) C6KeSn!v +D8MgUo%x1F9NiWqy3HbPjY s(A4Id RlZt-C 6KeTn!v+D8MgUo%x1F9OiWq z3HbPjY s(A4J dRlZu-C6KeTn! v+E8MgUp%x1 F9OiWqz3HbP kYs(A4JdRlZu-C6KfTn! v0E8 MgUp%x1FaOiW q*z3Hb0w$oUfL7D+u#mSeK5B ) tZkQcI4z*rX jPaG2ypVhN9E0w$oTfL7D+u #mSeJ5B) tYkQ cI4z*rXjOaG2y%pVhN9E0w$o TfL7D- u#mSdJ 5B) tYkQcI3z*rXiOaG2y%pVh N8E0w$nTfL7D -u#mSdJ5B) sYkQcH3z*rXiOa G2RlZu -C6KfT n!v0E8MgVp%x 1FaOiWq*z3Hb QkYs(A5JdRl# u-C6LfTn!v0E8MgVp%x1GaOi Wr*z3H bQkYs( B5JdRm#u-C6LfTn!w0E8MhVp %x1GaO iWr*z3 HcQkYs) B5JdRm#u-C7LfTn$w 0E8MhVp%x2GaOiXpVhN8E0w $nTfL7C-u#mS dJ5B)7 / 8sY kQcH3 z*rXiOaG2x%p V hM8E0w!nTfL 7C-u#mRd J5B( sYkQcH3z*rWi O aG1x%pVhM8E 0w!nTfL 6C-u# lRdJ5B(sYkQb H3z*qWiOaG1x %pVgM8E0v!nT fL6C-u#lRdJ5 OiWr*z3HcQkY s) B5JdSm #u-C 7LfTn$w0E8Nh V p%x2GaOiXr* z3IcQkY s) B5J dSm#u-D7LfTo $w0E8NhVp%y2 GaOjXr*z3IcQ kYt) B5JeSm#u - D7LfTo$w0E9 NhVpy2GaOjX r*z4IcQkZt) B 5JeSm#u+D7Lf Uo$w0E9NhVp y2G#u-D7LfTo $w 0E9NhVpy2 GaOjXr*z4IcQ kZt) B5JeSm#u + D7LfUo$w0E9 NhVpy2G aPjX r*A4IcQkZt) B 5KeSm#v+D7Lf Uo$w0F9N hVq y2GaPjXr*A4I cQlZt) B6KeSm #v+D7LgU o$w1 F9NhVqWiO9F1 x %oUgM 8E+v!nTeK6C-tZlRd J4A(sYjPbH3y q WiO9F1x%oU gM8D+v!n SeK6 C-tZlRdI4A(sXjPbH3y qWiN9F1x$oUgM8D+v! nSeK6 C) tZlRcI4A(s XjPbH2yqWhN9F1x$oUgM7D+ v!mSeK 6C) tZl RcI4A(rXjA4IcQlZt) B6KeSm !v+D7L gUo$w1 F9NhWqy2GbPjXr(A4IcRlZt ) B6KeSm!v+D7 MgUo$x1F9NhWqy2HbPjXs(A 4IcRlZ t) C6Ke Sn!v+D7MgUo$ x1F9NiWqy3H bPjXs(A47D+v !nSeK6C) tZlR cI4A(rXjPbH2 yqWh N9F1w$o UgM7D+v!mSeK 6B) tZlRcI4A( rXjPbG2yqVh N9F1w$oUgL7D +。

1.1.1集合的含义与表示

1.1.1集合的含义与表示

作业
教材P.11
T1~4.
【学习力-学习方法】
优秀同龄人的陪伴 让你的青春少走弯路
小案例—哪个是你
忙忙叨叨,起早贪黑, 上课认真,笔记认真, 小A 就是成绩不咋地……
好像天天在玩, 上课没事儿还调皮气老师, 笔记有时让人看不懂, 但一考试就挺好…… 小B
目 录/contents
1. 什么是学习力 2. 高效学习模型 3. 超级记忆法 4. 费曼学习法
费曼学习法-实操
第四步 循环强化
什么是学习力
什么是学习力-你遇到这些问 题了吗
一看就懂 一 做就错
看得懂,但不 会做
总是 比别人 学得慢
总是 比别人学得差 不会举一反三
什么是学习力含义
学习知识的能力 (学习新知识 速度、质量等)
管理知识的能力 (利用现有知识 解决问题)
长久坚持的能力 (自律性等)
什么是学习力-常见错误学 习方式
• 例3:已知A={a-2,2a2+5a,10},且 -3∈A,求a。
例4若A={x|x=3n+1,n ∈ Z}, B= {x|x=3n+2,n ∈ Z} C={x|x=6n+3,n ∈ Z}
(1) 若c ∈ C,问是否有a ∈ A,b ∈ B,使得 c=a+b; (2)对于任意a ∈ A,b ∈ B,是否 一定有a+b ∈ C ?并证明你的结论;
后摄抑制:可以理解为因为接受了新的内容,而把前 面看过的忘记了
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。

高一数学 必修一 第一章 1.1 1.1.1 集合的含义与表示

高一数学 必修一  第一章  1.1  1.1.1  集合的含义与表示
合A,记作 a∉A .
返回
2.常用的数集及其记法
常用的 自然
有理
正整数集 整数集
实数集
数集 数集
数集
记法 N N*或N+
Z
Q
R
返回
返回
观察下列集合: (1)中国古代四大发明组成的集合; (2)20的所有正因数组成的集合; (3)不等式x-2≥3的解集; (4)所有正偶数组成的集合.
返回
问题1:上述四个集合中的元素能分别一一列举出来吗? 提示:(1)(2)中的元素可以一一列举出来. (3)(4)中的元素不能一一列举,因为元素有无穷多个. 问题2:设(3)(4)中的元素为x,请用等式(或不等式)分别将 它们表示出来. 提示:(3)中元素x≥5;(4)中的元素x=2n,n∈N+.
返回
7.用描述法表示下列集合: (1)正偶数集; (2)被3除余2的正整数集合; (3)平面直角坐标系中第一象限的点组成的集合.
返回
解:(1)偶数可用式子x=2n,n∈Z表示,但此题要求为正 偶数,故限定n∈N*,所以正偶数集可表示为 {x|x=2n,n∈N*}. (2)设被3除余2的数为x,则x=3n+2,n∈Z,但元素为正 整数,故x=3n+2,n∈N*,所以被3除余2的正整数集合可 表示为{x|x=3n+2,n∈N*}. (3)第一象限内的点的横坐标大于0,且纵坐标大于0,故平 面直角坐标系中第一象限的点组成的集合为{(x,y)|x>0, y>0}.
返回
1.集合是一个原始的不加定义的概念,像点、 直线一样,只能描述性地说明.集合中的元素是确 定的.
2.集合是由元素组成的,元素与集合是“属于” 或“不属于”的关系.
返回
3.集合的表示法常见的有描述法与列举法.一般 是当集合中元素的个数较多或无限时,用描述法;当集 合中元素的个数较少时,用列举法.

集合第一课时教案数学必修第一章集合与函数概念11人教A版

集合第一课时教案数学必修第一章集合与函数概念11人教A版

第一章集合与函数的概念1.1 集合第一课时 1.1.1 集合的含义与表示1 教学目标[1]通过实例,使学生初步理解集合的概念,知道常用数集的概念及其记法[2]使学生体会元素与集合的“属于”关系[3]能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2 教学重点/难点教学重点:集合的基本概念与表示方法理解元素与集合之间的从属关系教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合掌握集合中元素的特性的应用3 专家建议这是高中数学的第一节课。

虽说在小学、初中都已渗透了这方面的内容,但集合这个概念还是很抽象。

在本节中,新的符号会比较多,对学生而言是一个难点,应让学生知道在某种意义上数学是一门研究符号的科学,在第一堂课就对数学符号有一个正确的认识。

要适当穿插学习数学的方法,让学生知道数学要自己摸索自己的学习方法。

在教学中尽可能创设一些情境,让学生自然、快乐、自觉地学习数学。

本节课要记的东西多,可让学生自己阅读,然后在老师的引导下思考问题,进一步解决问题。

在本节课的学习过程中,教师一方面让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生发现问题、解决问题.通过自主分析、交流合作,从而进行有机建构,解决问题,改变学生模仿式的学习方式.在教学过程中,渗透了特殊到一般的思想、数形结合思想.在教学过程中通过恰当的应用信息技术,从而突破难点4 教学方法启发式讲授法5 教学过程5.1 复习引入【师】我们初中学过的实数自然数都还记得吗?它们之间有什么关系呢?【板演/PPT】5.2 实例引入【师】我们来看下下面这些实例【板演/PPT】⑴ 1~20以内的所有整数;⑵我国从1991~2015的25年内所发射的所有人造卫星;⑶某汽车厂2015年生产的所有汽车;⑷所有的正方形;⑸某中学2015年9月入学的高一学生全体.5.3 新知介绍[1]元素与集合的相关概念【师】我们试着总结下这些事例它们有什么共同点?【生】思考交流【师】我们生活中的很多东西都能构成集合,你能举出一些例子吗?通过以上分析,能给出集合的含义吗【板书\PPT】一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)集合常用大写字母A,B,C,D,…表示,元素常用小写字母a,b,c,d…表示[2]元素与集合的关系【师】如果用A表示我们学校全体高一学生组成的集合,用a表示高一学生中的一位同学,b 是高二年级的一位同学,那么a、b与集合A分别有什么关系?由此可见元素与集合之间有什么关系?我们怎样才能简单明了地表示它们的关系呢?【生】讨论交流【板书\PPT】如果a是集合A的元素,就说a属于集合A,记作a∈A如果b不是集合A的元素,就说b属于集合A,记作b?A[3]集合的表示方法【师】我们用什么方法来表示我们的集合呢【生】讨论与理解【师】归纳总结【板书/PPT】列举法:把集合中的元素一个一个地写在一对大括号内表示集合的方法描述法:把集合中元素共有的,也只有该集合中元素才有的属性描述出来,已确定集合的方法【师】同学们请看题【板书\PPT】用适当的方法表示下列集合(1)方程 -4=0的解组成的集合{-2,2}或{x| -4=0}(2)大于3小于9的实数组成的集合{x|3<x<9,x∈R}(3)所有奇数组成的集合{y|y=2n-1,n∈Z}[4]集合元素的性质【师】我们观察一下实例中的数据它们能不能构成组合它们都有什么特征呢?【生】理解与交流【师】总结【板书/PPT】(1)确定性:集合中的元素必须是确定的,任何一个元素都能明确它是或不是某个集合的元素(2)互异性:集合中的元素必须是互不相同的(3)无序性:集合中的元素是无先后顺序的。

高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

(2)列举法和描述法
列举法
描述法
把集合的元一素一列举
用集合所含元素的
_____________出来,并用
共同特征
概念
_______________表示集合的
花括号“{ }”括起来表示集
方法
合的方法
一般
形式 {a1,a2,a3,…,an}
{x∈I|p(x)}
1.判断:(正确的打“√”,错误的打“×”) (1)你班所有的姓氏能组成集合.( √ ) (2)高一·二班“数学成绩好的同学”能组成集合.( × ) (3)一个集合中可以找到两个相同的元素.( × ) (4)集合{x|x>3}与集合{t|t>3}表示的是同一集合.(√ )
2.元素与集合的关系
关系
语言描述
记法
读法
属于 a是集合A中的元素 a∈A a属于集合A
不属于 a不是集合A中的元素 a∉A a不属于集合A
3.常用的数集及其记法
常用的 自然数 数集 集 记法 N
正整数集 N*或N+
有理数
整数集
实数集

Z
QR
4.集合的表示法 (1)自然语言法 用文字叙述的形式描述集合的方法.使用此方法要注意叙述 清楚,如由所有正方形构成的集合,就是自然语言表示的, 不能叙述成“正方形”.
4.当{a,0,-1}={4,b,0}时,a=___4_____,b= __-__1____.
集合的概念 判断下列各组对象能否组成一个集合: (1)新华中学高一年级全体学生; (2)我国的大河流; (3)不大于 3 的所有自然数;
(4)平面直角坐标系中,和原点距离等于 1 的点.
(链接教材P3思考) [解] (1)能,(1)中的对象是确定的;(2)不能,“大”无明确标 准;(3)能,不大于 3 的所有自然数有 0、1、2、3,其对象是 确定的;(4)能,在平面直角坐标系中任给一点,可明确地判 断是不是“和原点的距离等于 1”,故能组成一个集合.

1.1.1集合的概念

1.1.1集合的概念
组成这个集合的对象叫做这个集合的元素. 集合常用大写英文字母表示,如:A,B,C…, 元素常用小写英文字母表示,如:a,b,c… .
问题1 判断下列对象能否组成集合 (1)某班所有的“帅哥” (2)某班身高高于175厘米的男生
答案 (1)“帅哥”无明确的标准,所以不能确定构成集合 (2)高于175厘米的男生标准确定,所以能构成一个集合. 集合中的元素必须是确定的
名称 符号
自然数集 N
正整数集 N*或N

整数集 Z
有理数集 实数集
Q
R
典例精析 例2 方程x2=4的所有实数解组成的集合为A,则-2_____A, 5_____A(用符号“∈ ”或“∉”填空).
例3 用符号“ ”或“ ”填空:
0
N; 0.6
Z; π
R;
1
3
Q; 0
.
随堂练习
1.下列各语句中的对象能否组成集合?如果能组成集合,写出它的 元素.如果不能组成集合, 请说明理由.
问题2 写出构成单词“banana”的字母形成的集合,其中的元素有多少个?
答案 3个. 集合中的元素互不相同,这叫元素的互异性.
问题3 “中国的直辖市”构成的集合中,元素包括哪些?甲同学说: 北京、上海、天津、重庆;乙同学说:上海、北京、重庆、天津,他 们的回答都正确吗?由此说明什么?
答案 说明集合中的元素是无先后顺序的,这就是元素的无序性,只 要构成两个集合的元素一样。
总结归纳 元素的性质:
确定性
集合中的元 素必须是确 定的
无序性
集合中的元 素都是互不 相同的
互异性
集合中的元 素与顺序 无

典1.例1.1精集析合的概念
例1 判断下列对象能否组成集合?

1.1.1集合的概念及其表示(一)

1.1.1集合的概念及其表示(一)

用列举法表示下列集合: 例1 用列举法表示下列集合: (1) 小于 的所有自然数组成的集合; 小于10的所有自然数组成的集合 的所有自然数组成的集合;
(2) 方程x 2 = x的所有实数根组成的集合;
(3) 由1~20以内的所有质数组成的集合. 以内的所有质数组成的集合. ~ 以内的所有质数组成的集合
• 全体非负整数组成的集合称为自然数集,记为 N 全体非负整数组成的集合称为自然数集, • 所有正整数组成的集合称为正整数集,记为 N *或N + 所有正整数组成的集合称为正整数集, • 全体整数组成的集合称为整数集,记为 Z 全体整数组成的集合称为整数集, • 全体有理数组成的集合称为有理数集,记为 Q 全体有理数组成的集合称为有理数集, • 全体实数组成的集合称为实数集,记为 R 全体实数组成的集合称为实数集,
一般形式: 一般形式:{ x ∈ A x满足的条件}
说明: 1、不能出现未被说明的字母; 说明: 、不能出现未被说明的字母; 2、多层描述时,准确使用“且”、“或”; 、多层描述时,准确使用“ 3、描述语言力求简明、准确; 、描述语言力求简明、准确; 4、多用于元素无限多个时。 、多用于元素无限多个时。
的所有自然数组成的集合为A, 解:⑴设小于10的所有自然数组成的集合为A,那么 设小于 的所有自然数组成的集合为A,那么 A={0,1,2,3,4,5,6,7,8,9}. } A={
由于元素完全相同的两个集合相等,而与列举的顺序无关, 由于元素完全相同的两个集合相等,而与列举的顺序无关,因此 集合A可以有不同的列举方法. 集合A可以有不同的列举方法.例如 A={9 A={9,8,7,6,5,4,3,2,1,0}. }
具体方法:在花括号内先写上表示这个集合元素的一般符 具体方法 在花括号内先写上表示这个集合元素的一般符 号及以取值(或变化 范围,再画一条竖线 或变化)范围 再画一条竖线,在竖线后写出这个 号及以取值 或变化 范围 再画一条竖线 在竖线后写出这个 集合中元素所具有的共同特征. 集合中元素所具有的共同特征

第一章 集合1.1.1集合的概念

第一章    集合1.1.1集合的概念

• 用一条封闭的曲线的内部来表示一个集合 的办法,叫文氏图。
多用于解题些指定的对象集在一起就形成一个集合。 • 集合的表示以及元素与集合间关系表示方 法。 • 集合表示方法: 列举法、描述法、文氏图法。 D:\高一PPT\集合的表示方法.doc D:\高一PPT\集合概念与表示方法练习题.doc
如何表示一个集合呢?
1.1.2集合的表示方法
1.1.2 集合的表示方法
• 列举法 如果一个集合是有限集,元素又不太多,常 常把集合的所有元素都列举出来,写在话 括号“{ }”内表示这个集合。例如,由两 个元素0,1构成的集合可表示为 {0,1}. 又如,24的所有正因数1,2,3,4,6,8,12,24构成 的集合可以表示为 {1,2,3,4,6,8,12,24}.
• 大括号内竖线左边的x表示这个集合的任意 一个元素,元素x从实数集合中取值,在竖 线集合右边写出只有集合内的元素x才具有 的性质
• 一般地,如果在集合I中,属于集合A的任意一 个元素x都具有性质p(x),而不属于集合A的 元素都不具有性质p(x),则性质p(x)叫做集合A的 一个特征性质。于是,集合A可以用它的特征性 质p(x)描述为
例题:
• 下列各组对象能确定一个集合吗? (1)所以很大的实数; (2)市四中高一(二)班的高个子同学; (3)1,1,2,3,4,5.
上面我们用自然的语言来描述集合的几个例 子,下面我们来看下集合的表示方法。
• 集合通常用英语大写字母A,B,C,...来表示,它们的元 素通常用英语小写字母a,b,c,...来表示。 • 如果a是集合A的元素,就说a属于A,记作 读作“a属于A”. 如果a不是集合A的元素,就说a不属于A,记作
例题:
• 由方程 x 2 − 1 = 0 的所有解组成的集合,可 以表示为{-1,1}

人教版数学必修一 第一章 1.1.1 集合的含义与表示

人教版数学必修一 第一章 1.1.1 集合的含义与表示

问题
如果用A表示高一( )班学生组成的集合, 表示高 如果用 表示高一(3)班学生组成的集合,a表示高 表示高一 一(3)班的一位同学,b表示高一(4)班的一位同 )班的一位同学, 表示高一( ) 表示高一 那么a、 与集合 分别有什么关系? 与集合A分别有什么关系 学,那么 、b与集合 分别有什么关系?由此看出元 那么 素与集合之间有什么关系? 素与集合之间有什么关系?
4. 若-3 ∈ {a-3, 2a+1, a2+1},求实数 的值. 求实数a的值 求实数 的值
回顾交流
今天我们学习了哪些内容? 今天我们学习了哪些内容?
集合的含义 集合元素的性质:确定性,互异性,无序性 元素与集合的关系: , 常用数集及其表示 集合的表示法:列举法、描述法
第12页 页 习题1.1 A组 第1、2、3、4题 习题 组 、 、 、 题
2.选择题 . ⑴ 以下说法正确的( C )
(A) “实数集”可记为{R}或{实数集}或{所有实数} (B) {a,b,c,d}与{c,d,b,a}是两个不同的集合 (C) “我校高一年级全体数学学得好的同学”不能组 成一个集合,因为其元素不确定
0, a, a 2 3a + 2 }中的元素, ⑵ 已知2是集合M={ 则实数 a 为( c )
判断0与N,N*,Z的关系? 课堂练习P5 第1题 解析:判断一个元素是否在某个集合中 关键在于 解析 判断一个元素是否在某个集合中,关键在于 判断一个元素是否在某个集合中 弄清这个集合由哪些元素组成的. 弄清这个集合由哪些元素组成的
集合的表示方法 如何表示“地球上的四大洋”组成的集合? 问题 (1) 如何表示“地球上的四大洋”组成的集合 (2) 如何表示“方程 如何表示“方程(x-1)(x+2)=0的所有实数根”组成的集 的所有实数根” 的所有实数根 合? {太平洋,大西洋,印度洋,北冰洋} {1,-2} 太平洋,大西洋,印度洋,北冰洋} } 把集合中的元素一一列举出来,并用花括号 并用花括号{ 把集合中的元素一一列举出来 并用花括号{}括起来表示 注意:元素与元素之间用逗号隔开) (注意:元素与元素之间用逗号隔开) 叫做列举法 集合的方法叫做列举法. 集合的方法叫做列举法 用列举法表示下列集合: 例1 用列举法表示下列集合: 一个集合中的元素 (1)小于 的所有自然数组成的集合; 小于10的所有自然数组成的集合 小于 的所有自然数组成的集合; 的书写一般不考虑 2 (2)方程 x = x 的所有实数根组成的集合; 顺 序 ( 集 合 中 元 素 的所有实数根组成的集合; 方程 的无序性). 的无序性 (3)由1~20以内的所有素数组成的集合 以内的所有素数组成的集合. 由 以内的所有素数组成的集合 解:(1)A={0,1,2,3,4,5,6,7,8,9}. , , , , , , , , , (2)B={0,1}. , (3)C={2,3,5,7,11,13,17,19}. , , , , , , , 1.确定性 确定性 2.互异性 互异性 3.无序性 无序性

人教B版高中数学必修一第一章1.1.1集合的概念之集合的含义及表示

人教B版高中数学必修一第一章1.1.1集合的概念之集合的含义及表示
(2) 大于 11且小于 29 的整数 集B.
课堂小结
1.集合的定义; 2.集合中元素的性质:确定性, 互异性,无序性; 3.数集及有关符号; 4. 集合的表示方法;
A.1 B.2 C.3 D.4
例4、已知集合 A={x ax2+4x+4=0,x∈R,a∈R}
只有一个元素,求a的值和这个元 素..
课堂练习
1.若M={1,3},则下列表示方法
正确的是(C )
A. 3M B.1 M
C. 1 M D. 1 M且 3 M
2.用符号表示下列集合,并写 出其元素:
(1) 12的质因数集合A;
1.1.1集合的含义与表示
视察下列对象:
(1) 2,4,6,8,10,12; (2)我校的篮球队员; (3)满足x-3>2 的实数; (4)我国古代四大发明; (5)抛物线y=x2上的点.
1. 定 义: 2. 集合的表示法:
3.集合中元素的性质:
(1)确定性:集合中的元素必须 是确定的.
如果a是集合A的元素,就说a
(1)列举法:
- 例1.写出集合的元素,并用符号 表示下列集合: ①方程x2 _ 9=0的解的集合; ②大于0且小于10的奇数的集合;
③不等式x-3>2的解集; ④抛物线y=x2上的点集; ⑤方程x2+x +1=0的解集合. (2例3。若方程x2-5x+6=0和方程x2- x-2=0的解为元素的集合为M,则M 中元素的个数为( C )
属于集合A,记作a ∈ A;
如果a不是集合A的元素,就 说a不属于集合A,记作a A.
(2)互异性:集合中的元素必须 是互不相同的.
(3)无序性:集合中的元素是无 先后顺序的. 集合中的任何两个 元素都可以交换位置.

新教材高中数学第一章预备知识1集合1-1集合的概念与表示第1课时集合的概念课件北师大版必修第一册

新教材高中数学第一章预备知识1集合1-1集合的概念与表示第1课时集合的概念课件北师大版必修第一册

2.(多选题)下列关系正确的是( BD )
A.0∈N+
B.(√2 − √7)∉Q
C.0∉Q
D.8∈Z
3.已知集合S中的元素a,b是一个四边形的两条对角线的长,那么这个四边
形一定不是(
)
A.梯形 B.平行四边形
C.矩形 D.菱形
答案 C
解析 因为集合中的元素具有互异性,所以a≠b,即四边形对角线不相等,故选
可能只含有一个元素.
本节要点归纳
1.知识清单:
(1)元素与集合的概念、元素与集合的关系;
(2)集合中元素的三个特性及应用;
(3)常用数集的表示.
2.方归纳:分类讨论.
3.常见误区:忽视集合中元素的互异性.
学以致用•随堂检测全达标
1.(2022湖北襄阳月考)判断下列各组对象可以组成集合的是(
)
(1)1
N+;
(2)-3
N;
1
(3)3
Q;
(4)√3
1
(5)-2
(6)π
Q;
R;
R+.
答案 (1)∈ (2)∉
(3)∈ (4)∉ (5)∈
(6)∈
重难探究•能力素养全提升
探究点一 集合的概念
【例1】 给出下列各组对象:
①我们班比较高的同学;②无限接近于0的数的全体;③比较小的正整数的
全体;④平面上到点O的距离等于1的点的全体;⑤正三角形的全体;⑥ √的
第一章
第1课时 集合的概念
课标要求
1.通过实例,了解集合的含义.
2.掌握集合中元素的三个特征.
3.理解元素与集合的“属于”关系.
4.记住常用数集及其记法.

高中数学第一章集合与函数概念1.1.1集合的含义与表示

高中数学第一章集合与函数概念1.1.1集合的含义与表示
【情境导学】 导入 问题1:你能找出班级中比较高的同学,比较胖的同学吗? 答案:不能.比较高,比较胖没有明确的标准,是一个模糊的概念. 问题2:你能找出班级中身高在1米75以上的同学吗?体重在60 kg以上的呢? 答案:可以.有明确的判断标准.
知识探究
1.集合的概念 (1)一般地,我们把 研究对象 统称为元素,把一些元素组成的总体叫做集合. (2)集合与元素的表示 通常用大写拉丁字母A,B,C,…表示集合. 通常用小写拉丁字母a,b,c,…表示集合中的元素. 2.集合中元素的特性
简称
非负整正数整集数(或集自然数集) .
整数集 有理数集
实数集
记法 N
.
N*或N+ QZ
R. .
【拓展延伸】 集合语言的转换与应用 集合语言的不同形态各有自己的特点,符号语言比较简洁、严谨,可大大缩短 语言表达的“长度”,有利于推理、运算;图形语言易引起清晰的视觉形象, 它能直观地表达概念、定理的本质以及相互间的关系,在抽象的数学思维面 前起着具体化和帮助理解的作用;文字语言比较自然、生动,它能将问题所研 究的对象的含义更加明白地叙述出来.集合语言与其他语言的关系如图所示.
自我检测
1.(集合元素的确定性)下列各项中,不可以组成集合的是( C ) (A)所有的正数 (B)等于2的数 (C)接近于0的数 (D)不等于0的偶数
2.(元素与集合的关系)设集合M={(1,2)},则下列关系式成立的是(
(A)1∈M
(B)2∈M
(C)(1,2)∈M
(D)(2,1)∈M
C)
3.(集合元素的互异性)若一个集合中的三个元素a,b,c是△ABC的三边长, 则此三角形一定不是( D ) (A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)等腰三角形

高中数学 第一章 第一节 集合的含义及其表示(第1课时)

高中数学 第一章 第一节 集合的含义及其表示(第1课时)
3
解 (1)“高个子”没有明确的标准,因此不能构成集合.(2)
任给一个实数x,可以明确地判断是不是“不超过20的非负
数”,即“0≤x≤20”与“x>20或x<0”,两者必居其一,且
仅居其一,故“不超过20的非负数”能构成集合;(3)“一些
点”无明确的标准,对于某个点是否在“一些点”中无法确
定,因此“直角坐标平面内第一象限的一些点”不能构成集
(2)
不能
所以所给对象不确定,故不能构成集合
“比较接近 1”的标准不明确,所以所给
(3)
不能
对象不确定,故不能构成集合
(4)

其中的元素是“16岁以下的学生”
要点二 元素与集合的关系 例 2 所给下列关系正确的序号是________.
①-12∈R;② 2∉Q;③0∈N*;④|-3|∉N*. 答案 ①② 解析 -12是实数, 2是无理数,∴①②正确.N*表示正整 数集,∴③和④不正确.
求实数a的值. 解 ∵-3∈B,∴-3=a-3或-3=2a-1. 若-3=a-3,则a=0. 此时集合B含有两个元素-3,-1,符合题意; 若-3=2a-1,则a=-1. 此时集合B含有两个元素-4,-3,符合题意. 综上所述,满足题意的实数a的值为0或-1.
规律方法 1.由于集合B含有两个元素,-3∈B,本题以-3 是否等于a-3为标准,进行分类,再根据集合中元素的互异 性对元素进行检验.
确定的 不同的
(2)记法示大符写号拉丁字母
定义 自然数集 正整数集 整数集 有理数集 实数集
记法 N
N*或 N+ Z
Q
R
2.元素
(元1).定义:集合中的每一个对象
称为该集合的元素,简称
(2)记法,常用 小写拉丁字母 表示.

人教A版必修1第一章_1、1、1集合的含义(第1课时)课件-高一上学期数学

人教A版必修1第一章_1、1、1集合的含义(第1课时)课件-高一上学期数学

实数(R)
正整数(N*/N+) 自然数
整数(Z)
0
(N)
负整数
分数
(全体有理数组成的集合称为有理 数集,记作Q)
自然数集 正整数集 整数集
N N*/N+ Z
有理数集 实数集
Q
R
注意 ①通常情况下,N,N*,Z,Q,R 等,
不能表示其他集合,以免“混乱”
②特定集合是约定成俗的,解题中 直接使用,不用重述它们的意义。
撑的物体,就可以用它撬起重 物。人们把这样的棍子叫撬棍。
像撬棍这样的简单机械叫做杠杆
认识杠杆
杠杆上有三个重要的位置
支撑着杠杆,使杠杆围绕 其转动的位置叫支点;
在杠杆上用力的 位置叫用力点;
阻力点
克服阻力的位置叫阻力点。
支点
用力点
认识杠杆 用力点

推广应用:找出杠杆上的三个点
支点 阻力点
支点
压水井的压杆
拓展延伸
杠杆是一种简单机械,在物理学里把杠 杆分为三类:第一类杠杆,如撬棍、剪刀…… 这类杠杆可能省力可能费力,也可能不省力 也不费力。第二类杠杆,如开瓶器、榨汁 器……这类杠杆是省力的。第三类杠杆,如镊 子、烤肉夹子……这类杠杆永远是费力的。
拓展延伸
费力杠杆:费力省距离,如鱼竿、人的手臂等都是 费力杠杆,但是它们节省了很多的距离。
阻力点
省力
支点 原因:当用力点到支点的距离大于 阻力点到支点的距离时,杠杆省力。
研究杠杆
用力点
阻力点
支点
不省力也不费力
原因:当用力点到支点的距离等于阻力点 到支点的距离时,杠杆不省力也不费力。
研究杠杆
小结: 杠杆是否省力是由它的三个点的位

人教版高中数学必修一1.1.1_集合的含义与表示ppt课件

人教版高中数学必修一1.1.1_集合的含义与表示ppt课件
a∉A.
A,记作属于 . A,记不作属于
高一(1)班的学生组成集合A,a是高一(1)班的学生,b不是高一(1)班的学生 a与A,b与A之间有何关系? 提示:a∈A b∉A
Hale Waihona Puke 3.几种常用的数集及记法N
N*或N+
Z
Q
用“∈”或“∉”填空. 2________N; 2________Q;12________R; -3________Z;0________N*;5________Z. 提示:∈ ∉ ∈ ∈ ∉ ∈
[解] ∵1∈A,∴a+2,(a+1)2,a2+3a+3都可能等于1. ①若a+2=1,则a=-1,此时A中的元素为1,0,1与集合中元素的互异性矛盾 故舍去; ②若(a+1)2=1,则a=0或a=-2, 当a=0时,A={2,1,3}适合题意, 当a=-2时,A中的元素为0,1,1与集合中元素的互异性矛盾,舍去, ③若a2+3a+3=1,则a=-1或a=-2,由①②知都不合题意,舍去. 综上所述,a=0.
的、 确定 的.互不相同
(1)“高一(2)班1.78米以上的同学”、“16岁的少年”、 “大于1的数”能构成一个集合吗? 提示:能构成集合.
(2)“高一(2)班的高个子同学”、“年轻人”、“帅哥”、 “接近0的数”能构成集合吗? 提示:不能构成集合.
2.元素与集合的关系 (1)如果a是集合A中的元素,就说a (2)如果a不是集合A中的元素,就说a
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自学课本,并自己总结: 一:1.什么是元素?什么是集合? 2,集合有什么性质? 3、什么是等集? 二:用怎样的符号表示自然数集, 整数集,有理数集,实数集? 三;集合的表示方法 什么是列举法?什么是描述法? 还有什么方法可以表示集合吗?
一、集合的表示方法
1、元素:把研究的对象统称为元 素. 2、把一些元素组成的总体叫 做集合. 3,特性:对一个给定的集合中的 元 素具有:确定性、互异性、无序性。 4、等集;若构成集合的元素是一样
描述法有用数学式子法和自然语言法.
巩固应用
例1、用列举法表示下列集合: (1)小于10的所有自然数组 成的集合: (2)、方程x x的所有实数 根组成的集合: (3由1——20以内的所有素
2=
例2、试分别用列举法 和描述表示下列集合: 2-2=0 的实 (1)方程x 数根组成的集合: (2)有大于10小于20 的所有整数组成的集合:
二:常用数集的表示方法 自然数集------N, 整数集——z 有理数集 -------Q, 实数集------R. 三:集合的表示方法 1、列举法:把集合中的元素一一列 举出来,并用:“{ }” 括起来. 2、描述法;用集合含有元素的共同特 性表示集合的方法。形式{x/p(x)} 或 {x R/P(x)}.
课堂小结; 1、集合的概念:元素、集合,集合 的特性(三要素),元素与集合的表示 以及隶属关系。 Q 2、常用数集的表示方法:N——自 然数集,Z——整数集,O——有理 数集,R——实数集,以及R-, Z 等, 集合的表示方法:列举法、描述法 (数学式子法,自然语言发)

*
练习 P5 习题:若a,b为非负实数,那 |a| |b| 么 a b 的值组成的集合为— ——— 作业 P7习题1.1 : 1,2, 3
第一章
集合与函数概念 【自学:打开课本第二页,看例 子(1)————(8)】
事例
(1)1——20以内的素数:
(2)我国从1991年——2003年的13年内所发射 的所有人造卫星: (3)金星汽车厂2003年生产的所有汽车: (4)2004年1月1日之前与中华人民共和国建立 外交关系的所有国家: (5)所有的正方形: (6)到直线L的距离等于定长d的所有的点: (7)方程x2+3x-2=0 的所有实数根: (8)新华中学2004年9月入学的所有高一学生。
相关文档
最新文档