中考数学一轮复习第19讲全等三角形专题精练

合集下载

专题19 全等三角形-2021年中考数学一轮复习精讲+热考题型(解析版)

专题19 全等三角形-2021年中考数学一轮复习精讲+热考题型(解析版)

专题19 全等三角形【知识要点】知识点1 全等三角形及其性质全等图形概念:能完全重合的图形叫做全等图形.特征:①形状相同。

②大小相等。

③对应边相等、对应角相等。

全等三角形概念:两个能完全重合的三角形叫做全等三角形.小结:把两个全等三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.表示方法:全等用符号“≌”,读作“全等于”。

书写三角形全等时,要注意对应顶点字母要写在对应位置上。

全等变换定义:只改变图形的位置,而不改变图形的形状和大小的变换。

变换方式(常见):平移、翻折、旋转。

全等三角形的性质:对应边相等,对应角相等。

知识点2:全等三角形的判定(重点)注:①判定两个三角形全等必须有一组边对应相等;②全等三角形周长、面积相等.证题的思路(重点):知识点3 角平分线角平分线的性质定理:角平分线上的点到角两边的距离相等;判定定理:到角两边距离相等的点在角的平分线上.三角形中角平分线的性质:三角形的三条角平分线相交于一点,并且这点到三条边距离相等。

【考查题型】考查题型一全等三角形的性质典例1.如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAEC.AB=AE D.∠ABC=∠AED【答案】B【详解】根据全等三角形的性质即可得到结论.【解答】解:∵△ABC≌△ADE,∴AC=AE,AB=AD,∠ABC=∠ADE,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.故A,C,D选项错误,B选项正确,故选:B.变式1-1.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是()A.90B.120C.135D.180【答案】D【分析】根据全等三角形的性质和三角形的内角和定理和三角形的外角可得∠1+∠2+∠3+∠4+∠5+∠6=360〬,∠5+∠7+∠8=180°,即∠1+∠2+∠3=360°-180°.【详解】∵图中是三个全等三角形,∴∠4=∠8, ∠6=∠7,又∵三角形ABC的外角和=∠1+∠2+∠3+∠4+∠5+∠6=360〬,又∠5+∠7+∠8=180°,∴∠1+∠2+∠3=360°-180°=180°.故选D变式1-2.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC【答案】C【分析】通过全等三角形的性质进行逐一判断即可.【详解】A、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项错误;C、∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB,∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;D、∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD,∴AD∥BC,故本选项错误;故选:C.考查题型二全等三角形的判定-SSS∆≅∆的依据是典例2.用直尺和圆规作一个角的角平分线的示意图如图所示,其中说明COE DOE()A.SSS B.SAS C.ASA D.AAS【答案】A【分析】根据角平分线的作法可知CO=DO,EO=EO,EC=ED,符合三角形全等的判定方法中的SSS,可∆≅∆.证COE DOE【详解】解:由作法知CO=DO,EO=EO,EC=ED,∆≅∆(SSS),∴COE DOE故选:A.变式2-1.在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是()A.(6,0)B.(4,0)C.(4.﹣2)D.(4,﹣3)【答案】D【分析】画出平面直角坐标系,利用全等三角形的性质以及坐标与图形的性质得出符合题意的答案.【详解】解:如图所示:△ABC 与△EFB 全等,点F 的坐标可以是:(4,﹣3).故选:D .变式2-2.如图,在四边形ABCD 中,90B D ∠=∠=︒,点E ,F 分别在AB ,AD 上,AE AF =,CE CF =,求证:CB CD =.【答案】见解析【分析】连接AC ,证明△ACE ≌△ACF ,得到∠CAE=∠CAF ,再利用角平分线的性质定理得到CB=CD .【详解】解:连接AC ,∵AE=AF ,CE=CF ,AC=AC ,∴△ACE ≌△ACF (SSS ),∴∠CAE=∠CAF ,∵∠B=∠D=90°,∴CB=CD .变式2-3.人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:AOB∠求作:AOB∠的平分线做法:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N,(2)分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在AOB∠的内部相交于点C(3)画射线OC,射线OC即为所求.请你根据提供的材料完成下面问题:(1)这种作已知角平分线的方法的依据是__________________(填序号).①SSS②SAS③AAS④ASA(2)请你证明OC为AOB∠的平分线.【答案】(1)①;(2)证明见解析【分析】(1)根据作图的过程知道:OM=ON,OC=OC,CM=CM,由“SSS”可以证得△EOC≌△DOC;(2)根据作图的过程知道:OM=ON,OC=OC,CM=CM,由全等三角形的判定定理SSS可以证得△EOC ≌△DOC,从而得到OC为AOB∠的平分线.【详解】(1)根据作图的过程知道:OM=ON,OC=OC,CM=CM,所以由全等三角形的判定定理SSS可以证得△EOC≌△DOC,从而得到OC为AOB∠的平分线;故答案为:①;(2)如图,连接MC 、NC .根据作图的过程知,在△MOC 与△NOC 中,OM ON OC OC CM CN ⎧⎪⎨⎪⎩===,∴△MOC ≌△NOC (SSS ),∠AOC=∠BOC ,∴OC 为AOB ∠的平分线.考查题型三 全等三角形的判定-SAS典例3.如图,已知,AB DC ABC DCB =∠=∠.能直接判断ABC DCB △≌△的方法是( )A .SASB .AASC .SSSD .ASA【答案】A 【分析】根据三角形全等的判定定理解答.【详解】在△ABC 和△DCB 中,AB DC ABC DCB BC CB =⎧⎪∠=∠⎨⎪=⎩,∴ABC DCB △≌△(SAS),故选:A.变式3-1.如图所示,将两根钢条AA’、BB’的中点O 连在一起,使AA’、BB’可以绕着点O自由旋转,就做成了一个测量工件,则A’B’的长等于内槽宽AB ,那么判定△OAB ≌△OA’B’的理由是( )A .边角边B .角边角C .边边边D .角角边【答案】A 【分析】根据线段中点的定义可得,AO A O BO B O ''==,进一步即可根据SAS 证明△OAB ≌△OA B '',于是可得答案.【详解】解:∵点O 是AA '和BB '的中点,∴,AO A O BO B O ''==,在△OAB 和△OA B ''中,∵,,AO A O AOB A OB BO B O ''''=∠=∠=,∴△OAB ≌△OA B ''(SAS ).故选:A .变式3-2.如图,已知//AB CD ,AB CD =,BE CF =.求证:(1)ABF DCE ∆≅∆;(2)//AF DE .【答案】(1)证明见详解;(2)证明见解析.【分析】(1)先由平行线的性质得∠B=∠C ,从而利用SAS 判定△ABF ≌△DCE ;(2)根据全等三角形的性质得∠AFB=∠DEC ,由等角的补角相等可得∠AFE=∠DEF ,再由平行线的判定可得结论.【详解】证明:(1)∵AB ∥CD ,∴∠B=∠C ,∵BE=CF ,∴BE-EF=CF-EF ,即BF=CE ,在△ABF 和△DCE 中,==AB CD B C BF CE =⎧⎪∠∠⎨⎪⎩∴△ABF ≌△DCE (SAS );(2)∵△ABF ≌△DCE ,∴∠AFB=∠DEC ,∴∠AFE=∠DEF ,∴AF ∥DE .变式3-3.已知:如图,点A 、B 、C 、D 在一条直线上,//,,EA FB EA FB AB CD ==.(1)求证:E F ∠=∠;(2)若40,80A D ∠=︒∠=︒,求E ∠的度数.【答案】(1)见解析;(2)60°【分析】(1)根据已知条件证明△ACE ≌△BDF ,即可得到结论;(2)根据全等三角形的性质得到∠D=∠ACE=80°,再利用三角形内角和定理求出结果.【详解】解:(1)∵AE ∥BF ,∴∠A=∠DBF ,∵AB=CD ,∴AB+BC=CD+BC ,即AC=BD ,又∵AE=BF ,∴△ACE ≌△BDF (SAS ),∴∠E=∠F ;(2)∵△ACE ≌△BDF ,∴∠D=∠ACE=80°,∵∠A=40°,∴∠E=180°-∠A-∠ACE=60°.考查题型四 全等三角形的判定-AAS典例4.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-【答案】D【解析】如图,∵AB ⊥CD,CE ⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF ⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF ≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故选:D.变式4-1.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .2【答案】B 【分析】根据平行线的性质,得出A FCE ∠=∠,ADE F ∠=∠,根据全等三角形的判定,得出ADE CFE ∆≅∆,根据全等三角形的性质,得出AD CF =,根据4AB =,3CF =,即可求线段DB 的长.【详解】∵//CF AB ,∴A FCE ∠=∠,ADE F ∠=∠,在ADE ∆和FCE ∆中A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ADE CFE AAS ∆≅∆,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .变式4-2.△BDE 和△FGH 是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长【答案】A【分析】由等边三角形的性质和三角形的内角和定理可得:FH=GH,∠ACB=∠A=60°,∠AHF=∠HGC,进而可根据AAS证明△AFH≌△CHG,可得AF=CH,然后根据等量代换和线段间的和差关系即可推出五边形DECHF的周长=AB+BC,从而可得结论.【详解】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.变式4-3.如图,AC是∠BAE的平分线,点D是线段AC上的一点,∠C=∠E,AB=AD.求证:BC=DE.【答案】见解析【分析】根据角平分线的性质证明△BAC≌△DAE,即可得到结果;【详解】证明:∵AC是∠BAE的平分线,∴∠BAC=∠DAE,∵∠C=∠E,AB=AD.∴△BAC≌△DAE(AAS),∴BC=DE.变式4-4.如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△F AE;(2)求证:四边形ADCF为矩形.【答案】(1)见解析;(2)见解析【分析】(1)首先根据平行线的性质得到∠AFE =∠DBE ,再根据线段中点的定义得到AE =DE ,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF =BD ,推出四边形ADCF 是平行四边形,根据等腰三角形的性质得到∠ADC =90°,于是得到结论.【详解】(1)证明:∵AF ∥BC ,∴∠AFE =∠DBE ,∵E 是线段AD 的中点,∴AE =DE ,∵∠AEF =∠DEB ,∴BDE FAE ≅△△(AAS );(2)证明:∵BDE FAE ≅△△,∴AF =BD ,∵D 是线段BC 的中点,∴BD =CD ,∴AF =CD ,∵AF ∥CD ,∴四边形ADCF 是平行四边形,∵AB =AC ,∴AD BC ⊥,∴∠ADC =90°,∴四边形ADCF 为矩形.考查题型五 全等三角形的判定-ASA典例5.如图,EF 过▱ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若▱ABCD 的周长为18,1.5OE =,则四边形EFCD 的周长为( )A .14B .13C .12D .10【答案】C 【详解】∵平行四边形ABCD ,∴AD ∥BC ,AD =BC ,AO =CO ,∴∠EAO =∠FCO ,∵在△AEO 和△CFO 中,AEO CFO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEO ≌△CFO ,∴AE =CF ,EO =FO =1.5,∵C 四边形ABCD =18,∴CD +AD =9,∴C 四边形CDEF =CD +DE +EF +FC =CD +DE +EF +AE =CD +AD +EF =9+3=12.故选C.变式5-1.如图,在四边形ABCD 中,//AD BC ,90D ∠=,8AD =,6BC =,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A.B .6 C.D .8【答案】A【分析】连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出AF =FC .再根据ASA 证明△FOA ≌△BOC ,那么AF =BC =3,等量代换得到FC =AF =3,利用线段的和差关系求出FD =AD -AF =1.然后在直角△FDC 中利用勾股定理求出CD 的长.【详解】解:如图,连接FC ,∵点O 是AC 的中点,由作法可知,OE 垂直平分AC ,∴AF =FC .∵AD ∥BC ,∴∠F AO =∠BCO .在△FOA 与△BOC 中,FAO BCO OA OCAOF COB ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△FOA ≌△BOC (ASA ),∴AF =BC =6,∴FC =AF =6,FD =AD -AF =8-6=2.在△FDC 中,∵∠D =90°,∴CD 2+DF 2=FC 2,∴CD 2+22=62,∴CD=故选:A .变式5-2.如图,AB =AC ,AB ⊥AC ,AD ⊥AE ,且∠ABD =∠ACE .求证:BD =CE .【答案】见解析.【分析】先求出∠CAE =∠BAD 再利用ASA 证明△ABD ≌△ACE ,即可解答【详解】∵AB ⊥AC ,AD ⊥AE ,∴∠BAE +∠CAE =90°,∠BAE +∠BAD =90°,∴∠CAE =∠BAD .又AB =AC ,∠ABD =∠ACE ,∴△ABD ≌△ACE (ASA).∴BD =CE .变式5-2.如图,点C 在线段BD 上,且AB ⊥BD ,DE ⊥BD ,AC ⊥CE ,BC=DE ,求证:AB=CD .【答案】详见解析【分析】根据AB ⊥BD ,DE ⊥BD ,AC ⊥CE ,可以得到90ABC CDE ACB ︒∠=∠=∠=,90ACB ECD ︒∠+∠=,90ECD CED ︒∠+∠=,从而有ACB CED ∠=∠,可以验证ABC ∆和CDE ∆全等,从而得到AB =CD .【详解】证明:∵AB BD ⊥,DE BD ⊥,AC CE ⊥∴90ABC CDE ACB ︒∠=∠=∠=∴90ACB ECD ︒∠+∠=,90ECD CED ︒∠+∠=∴ACB CED ∠=∠在ABC ∆和CDE ∆中ACB CED BC DEABC CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABC ∆≌CDE ∆故AB CD =.考查题型六 全等三角形的判定-HL典例6.如图,∠B =∠E ,BF =EC ,AC ∥DF .求证:△ABC ≌△DEF .【答案】证明见解析【分析】首先利用平行线的性质得出∠ACB =∠DFE ,进而利用全等三角形的判定定理ASA ,进而得出答案.【详解】证明:∵AC ∥DF ,∴∠ACB =∠DFE ,∵BF =CE ,∴BC =EF ,在△ABC 和△DEF 中,B E BC EFACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA ).变式6-1.已知:如图,AB=CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,AE=CF .求证:△ABF ≌△CDE【答案】见解析.【分析】根据HL 即可判定Rt △ABF ≌Rt △CDE .【详解】证明:∵DE ⊥AC ,BF ⊥AC ,∴∠AFB =∠CED =90°,∵AE=CF ,∴AF=CE ,在Rt △ABF 和Rt △CDE 中,AB CD AF CE=⎧⎨=⎩ ∴Rt △ABF ≌Rt △CDE (HL ).考查题型七 判定三角形全等的的条件典例7.如图,点E 在菱形ABCD 的AB 边上,点F 在BC 边的延长线上,连接CE ,DF ,对于下列条件:①BE CF =;②,CE AB DF BC ⊥⊥;③CE DF =;④BCE CDF ∠=∠,只选其中一个添加,不能确定BCE CDF ∆≅∆的是( )A .①B .②C .③D .④【答案】C 【分析】根据菱形的性质和全等三角形的判定定理即可得到结论. 【详解】解:四边形ABCD 是菱形,BC CD ∴=,//AB CD ,B DCF ∴∠=∠, ①添加BE CF =,()BCE CDF SAS ∴∆≅∆, ②添加CE AB ⊥,DF BC ⊥,90CEB F ∴∠=∠=︒,()BCE CDF AAS ∴∆≅∆, ③添加CE DF =,不能确定BCE CDF ∆≅∆; ④添加BCE CDF ∠=∠,()BCE CDF ASA ∴∆≅∆,故选:C .变式7-1.如图,等腰△ABC 中,点D ,E 分别在腰AB ,AC 上,添加下列条件,不能判定ABE △≌ACD △的是( )A .AD AE =B .BE CD =C .ADC AEB ∠=∠D .DCB EBC ∠=∠【答案】B【分析】根据全等三角形的判定方法逐项判断即得答案.【详解】解: A 、若添加AD AE =,由于AB =AC ,∠A 是公共角,则可根据SAS 判定ABE △≌ACD △,故本选项不符合题意;B 、若添加BE CD =,不能判定ABE △≌ACD △,故本选项符合题意;C 、若添加ADC AEB ∠=∠,由于AB =AC ,∠A 是公共角,则可根据AAS 判定ABE △≌ACD △,故本选项不符合题意;D 、若添加DCB EBC ∠=∠,∵AB =AC ,∴∠ABC =∠ACB ,∴∠ABE =∠ACD ,由于∠A 是公共角,则可根据ASA 判定ABE △≌ACD △,故本选项不符合题意.故选:B .变式7-2.如图,四边形ABCD 是菱形,E 、F 分别是BC 、CD 两边上的点,不能保证....ABE △和ADF 一定全等的条件是( )A .BAF DAE ∠=∠B .EC FC =C .AE AF =D .BE DF =【答案】C 【分析】根据菱形的性质结合全等三角形的判定方法,对各选项分别判断即可得解.【详解】∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,BAD C ∠=∠,B D ∠=∠,如果BAF DAE ∠=∠,∴BAF EAF DAE EAF ∠∠∠∠-=-,即BAE DAF ∠=∠,∵BAE DAF AB DA B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABE △≅ADF (ASA ),故A 正确;如果EC=FC ,∴BC-EC=CD-FC ,即BE=DF ,∵AB DA B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴ABE △≅ADF (SAS ),故B 正确;如果AE=AF ,∵AB=DA ,B D ∠=∠,是SSA ,则不能判定ABE △和ADF 全等,故C 错误;如果BE DF =,则AB DA B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴ABE △≅ADF (SAS ),故D 正确;故选:C.考查题型八全等三角形综合问题典例8.如图AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.【答案】(1)证明见解析;(2)互相垂直,证明见解析【分析】(1)根据AAS推出△ACD≌△ABE,根据全等三角形的性质得出即可;(2)证Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根据等腰三角形的性质推出即可.【详解】(1)证明:∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°,△ACD和△ABE中,∵ADC AEBCAD BAE AB AC∠∠⎧⎪∠∠⎨⎪⎩===∴△ACD≌△ABE(AAS),∴AD=AE.(2)猜想:OA⊥BC.证明:连接OA、BC,∵CD ⊥AB ,BE ⊥AC ,∴∠ADC=∠AEB=90°.在Rt △ADO 和Rt △AEO 中,∵OA OA AD AE ⎧⎨⎩== ∴Rt △ADO ≌Rt △AEO (HL ).∴∠DAO=∠EAO ,又∵AB=AC ,∴OA ⊥BC .变式8-1.如图,AC BC ⊥,DC EC ⊥,AC BC =.DC EC =,AE 与BD 交于点F .(1)求证:AE BD =;(2)求AFD ∠的度数.【答案】(1)见解析(2)90°【分析】(1)根据题意证明△ACE ≌△BCD 即可求解;(2)根据三角形的内角和及全等三角形的性质即可得到AFD ∠的度数.【详解】(1)∵AC BC ⊥,DC EC ⊥,∴∠ACB=∠ECD=90°∴∠ACB+∠BCE=∠ECD+∠BCE即∠ACE=∠BCD又AC BC =.DC EC =∴△ACE ≌△BCD∴AE BD =(2)∵△ACE ≌△BCD∴∠A=∠B设AE 与BC 交于O 点,∴∠AOC=∠BOF∴∠A+∠AOC+∠ACO=∠B+∠BOF+∠BFO=180°∴∠BFO=∠ACO=90°故AFD ∠=180°-∠BFO=90°.变式8-2.如图,在△ABC 和△DCE 中,AC =DE ,∠B =∠DCE =90°,点A ,C ,D 依次在同一直线上,且AB ∥DE .(1)求证:△ABC ≌△DCE ;(2)连结AE ,当BC =5,AC =12时,求AE 的长.【答案】(1)见解析;(2)13【分析】根据题意可知,本题考查平行的性质,全等三角形的判定和勾股定理,根据判定定理,运用两直线平行内错角相等再通过AAS 以及勾股定理进行求解.【详解】解:(1)∵//AB DE∴BAC CDE ∠=∠在△ABC 和△DCE 中B DCE BAC CDE AC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCE(2)由(1)可得BC =CE =5在直角三角形ACE 中13AE ===变式8-3.如图,AC 是四边形ABCD 的对角线,∠1=∠B ,点E 、F 分别在AB 、BC 上,BE =CD ,BF =CA ,连接EF .(1)求证:∠D =∠2;(2)若EF ∥AC ,∠D =78°,求∠BAC 的度数.【答案】(1)证明见解析;(2)78°.【分析】(1)由“SAS ”可证△BEF ≌△CDA ,可得∠D =∠2;(2)由(1)可得∠D =∠2=78°,由平行线的性质可得∠2=∠BAC =78°.【详解】证明:(1)在△BEF 和△CDA 中,1BE CD B BF CA =⎧⎪∠=∠⎨⎪=⎩,∴△BEF ≌△CDA (SAS ),∴∠D =∠2;(2)∵∠D =∠2,∠D =78°,∴∠D =∠2=78°,∵EF ∥AC ,∴∠2=∠BAC =78°.变式8-4.如图,在三角形ABC 中,点D 是BC 上的中点,连接AD 并延长到点E ,使DE AD =,连接CE .(1)求证:ABD ECD ∆≅∆(2)若ABD ∆的面积为5,求ACE ∆的面积.【答案】(1)详见解析;(2)10.【分析】(1)根据中点定义、对顶角相等以及已知条件运用SAS 即可证明;(2)先根据三角形中点的性质和全等三角形的性质得到ABD ACD S S =、ABD ECD S S =,再结合5ABD S =以及ACE ACD ECD S S S =+解答即可.【详解】证明:(1)∵D 是BC 的中点,∴BD=CD在△ABD 和△CED 中,BD CD ADB CED AD ED =⎧⎪∠=∠⎨⎪=⎩所以ABD ECD ∆≅∆;(2)∵在△ABC 中,D 是BC 的中点∴ABD ACD S S =ABD ECD ∆≅∆ABD ECD S S ∴=∵5ABD S =5510ACE ACD ECD S S S ∴=+=+=.答:三角形ACE 的面积为10.考查题型九 角平分线的性质定理典例9.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC=5,DE=2,则△BCE 的面积等于( )A .10B .7C .5D .4【答案】C 【解析】试题分析:如图,过点E 作EF ⊥BC 交BC 于点F,根据角平分线的性质可得DE=EF=2,所以△BCE 的面积等于1152522BC EF ⨯⨯=⨯⨯=,故答案选C .变式9-1.如图,AB ∥CD ,AD 平分∠BAC ,若∠BAD=70°,则∠ACD 的度数为( )A .40°B .35°C .50°D .45°【答案】A 【解析】试题分析:已知AD 平分∠BAC ,∠BAD=70°,根据角平分线定义求出∠BAC=2∠BAD=140°,再由AB ∥CD ,所以∠ACD=180°﹣∠BAC=40°,故选A .变式9-2.如图,在△ABC 中,∠C =90°,以点B 为圆心,以适当长为半径画弧交AB 、BC 于P 、Q 两点,再分别以点P ,Q 为圆心,大于12PQ 的长为半径画弧,两弧相交于点N ,射线BN 交AC 于点D .若AB =10,AC =8,则CD 的长是( )A .2B .2.4C .3D .4【答案】C 【分析】作DE ⊥AB 于E ,根据角平分线的性质得到DE DC =,设DE DC x == ,根据ABD ∆的面积公式列方程计算即可.【详解】解:如图所示,作DE ⊥AB 于E ,∵10890AB AC C ∠︒=,=,= ,∴6BC = ,由基本尺规作图可知,BD 是△ABC 的角平分线,∵∠C =90°,DE ⊥AB ,∴可设DE DC x == , ∴1122ABD SAB DE AD BC =⨯⨯=⨯⨯, 即11108622x x ⨯⨯=⨯⨯(﹣), 解得3x = ,即3CD = ,故选C .变式9-3.三条公路将A 、B 、C 三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个公园,要使公园到三条公路的距离相等,那么这个公园应建的位置是( )A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点【答案】C【分析】根据角平分线上的点到角的两边的距离相等解答即可.【详解】在这个区域内修建一个公园,要使公园到三条公路的距离相等,根据角平分线的性质,公园应建在∠A、∠B、∠C的角平分线的交点处.故选C.考查题型十角平分线的判定定理典例10.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3B.4C.5D.6【答案】A【详解】作DE⊥AB于E,∵AB=10,S△ABD =15,∴DE=3,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=CD=3,故选A.变式10-1.如图,PA 、PB 分别切⊙O 于A 、B ,60APB ∠=,⊙O 半径为2,则PA 的长为( )A .3B .4C .D .【答案】C 【分析】连接PO 、AO 、BO ,由角平分线的判定定理得,PO 平分∠APB ,则∠APO=30°,得到PO=4,由勾股定理,即可求出PA.【详解】解:连接PO 、AO 、BO ,如图:∵PA 、PB 分别切⊙O 于A 、B ,∴PA AO ⊥,PB BO ⊥,AO=BO ,∴PO 平分∠APB ,∴∠APO=116022APB ∠=⨯︒=30°, ∵AO=2,∠PAO=90°,∴PO=2AO=4,由勾股定理,则PA ==故选:C.变式10-2.如图,已知P 是∠AOB 的平分线上的一点,∠AOB =60°,PD ⊥OA ,M 是OP 的中点,点C 是OB 上的一个动点,若PC 的最小值为3 cm ,则MD 的长度为( )A .3cmB .C .2cmD .【答案】A 【分析】根据垂线段最短、角平分线的性质求出PD ,根据直角三角形的性质解答.【详解】作PC ⊥OB 于C ,则此时PC 最小,∵P 是∠AOB 的角平分线上的一点,PD ⊥OA ,PC ⊥OB ,∴PD=PC=3,∠AOP=30°,∴OP=2PD=6,∵PD ⊥OA ,M 是OP 的中点,∴DM=12OP=3, 故选A .变式10-3.如图,已知ABC 和ADE 都是等腰三角形,90BAC DAE ∠=∠=︒,,BD CE 交于点F ,连接AF ,下列结论:①BD CE =;②BF CF ⊥;③AF 平分CAD ∠;④45AFE ∠=︒.其中正确结论的个数有( )A .1个B .2个C .3个D .4个【答案】C 【分析】①证明△BAD ≌△CAE,再利用全等三角形的性质即可判断;②由△BAD ≌△CAE 可得∠ABF=∠ACF ,再由∠ABF+∠BGA=90°、∠BGA=∠CGF 证得∠BFC=90°即可判定;③分别过A 作AM ⊥BD 、AN ⊥CE,根据全等三角形面积相等和BD=CE ,证得AM=AN,即AF 平分∠BFE,即可判定;④由AF 平分∠BFE结合BF CF⊥即可判定.【详解】解:∵∠BAC=∠EAD∴∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE 在△BAD和△CAE中AB=AC, ∠BAD=∠CAE,AD=AE∴△BAD≌△CAE∴BD=CE故①正确;∵△BAD≌△CAE∴∠ABF=∠ACF∵∠ABF+∠BGA=90°、∠BGA=∠CGF∴∠ACF+∠BGA=90°,∴∠BFC=90°故②正确;分别过A作AM⊥BD、AN⊥CE垂足分别为M、N ∵△BAD≌△CAE∴S△BAD=S△CAE,∴1122BD AM CE AN ⋅=⋅∵BD=CE∴AM=AN∴AF平分∠BFE,无法证明AF平分∠CAD.故③错误;∵AF 平分∠BFE ,BF CF ⊥ ∴45AFE ∠=︒故④正确.故答案为C .。

2020中考数学复习第19课时全等三角形测试

2020中考数学复习第19课时全等三角形测试

中考数学总复习课时检测题第四单元三角形第十九课时全等三角形基础达标训练1. 下列说法正确的是( )A. 全等三角形是指形状相同的两个三角形B. 全等三角形是指面积相等的两个三角形C. 两个等边三角形是全等三角形D. 全等三角形是指两个能完全重合的三角形2. 如图,在△AB C和△DEF中,AB=DE,∠B=∠DEF,补充下列哪一条件后,能应用“SAS”判定△ABC≌△DEF( )第2题图A. ∠A=∠DB. ∠ACB=∠DFEC. AC=DFD. BE=CF3.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()第3题图第4题图4. (2017眉山)如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,OE=1.5,则四边形EFCD的周长为( )A. 14B. 13C. 12D. 105. (2017黔东南州)如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件________使得△ABC≌△DEF.第5题图第6题图6. 如图,Rt△ABC≌Rt△DCB,两斜边交于点O,如果AC=3,那么OD的长为________.7. (2017达州)△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是________.第8题图8. (2017新疆建设兵团)如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD 的两组对角;④四边形ABCD 的面积S =12AC ·BD . 正确的是__________.(填写所有正确结论的序号)9. (6分)(2017云南)如图,点E 、C 在线段BF 上,BE =CF ,AB =DE ,AC =DF . 求证:∠ABC =∠DEF .第9题图10. (6分)(2017南充)如图,DE ⊥AB ,CF ⊥AB ,垂足分别是点E ,F ,DE =CF ,AE =BF .求证:AC ∥BD .第10题图11. (6分)(2017郴州)已知△ABC 中,∠ABC =∠ACB ,点D 、E 分别为边AB 、AC 的中点. 求证:BE =CD .第11题图12. (8分)(2017株州模拟)已知△ABN和△ACM位置如图,AB=AC=3,BD=CE=2,∠B=∠C.(1)求证:∠1=∠2;(2)若CM∥A B,求线段CM的长度.第12题图13. (8分)(2017苏州)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.第13题图14. (8分)(2017湘潭)如图,在▱ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB=2BC,∠F=36°,求∠B的度数.第14题图15. (8分)(2017广西四市)如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD 上,BE=DF.(1)求证:AE=CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.第15题图16. (8分)(2017长沙中考模拟卷一)如图,已知△ABC是等边三角形,点D、E分别是AC、BC上的两点,AD=CE,且AE与BD交于点P,BF⊥AE于点F.(1)求证:△ABD≌△CAE;(2)若BP=6,求PF的长.第16题图能力提升训练1. 在等腰Rt△ABC中,∠BAC=90°,D是AC的中点,EC⊥BD于E,交BA的延长线于点F,若BF=12,则△FBC的面积为( )A. 40B. 46C. 48D. 50第1题图第2题图2. 如图,点C为线段AB上一点,△DAC、△ECB都是等边三角形,AE、DC交于点M,DB、EC交于点N,DB、AE交于点P,连接MN,下列说法中正确的个数有( )①MN∥AB;②∠DPM=60°;③∠DAP=∠PEC;④△ACM≌△DCN;⑤若∠DBE=30°,则∠AEB =80°.A. 2个B. 3个C. 4个D. 5个3. (2017哈尔滨)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为( )A. 4B. 3C. 2D. 1第3题图4. (9分)(2017重庆B卷)如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE.(1)如图①,若AB=42,BE=5,求AE的长;(2)如图②,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD,CF.当AF =DF时,求证:DC=BC.第4题图5. 注重开放探究(9分)已知四边形ABCD 中,AB =AD , AB ⊥AD ,连接AC ,过点A 作AE ⊥AC ,且使AE =AC ,连接BE ,过点A 作AH ⊥CD 于H ,交BE 于F .(1)如图①,当E 在CD 的延长线上时,求证:①△ABC ≌△ADE ;②BF =EF ;(2)如图②,当E 不在CD 的延长线上时,BF =EF 还成立吗?请证明你的结论.第5题图拓展培优训练如图,在△ABC 中,∠BAC 、∠BCA 的平分线相交于点I ,若∠B =35°,BC =AI +AC ,则∠B A C 的度数为________.第1题图答案1. D2. D3. C4. C 【解析】∵四边形ABCD 是平行四边形,∴OA =OC ,AD ∥BC ,∴∠DAC =∠ACB ,在△OAE 和△OCF 中,⎩⎪⎨⎪⎧∠DAC=∠ACB OA =OC ∠AOE=∠COF,∴△OAE ≌△OCF (ASA ),∴CF =AE ,OE =OF ,∵OE =1.5,∴EF =2OE =3,∵▱ABC D 的周长为18,∴AD +DC =9,∴四边形EFCD 的周长=DE +EF +CF +C D =DE +AE +CD +EF =AD +CD +EF =9+3=12.5. AC =DF (答案不唯一) 【解析】∵FB =CE ,∴B C =EF ,∵AC ∥DF ,∴∠ACB =∠DFE ,由三角形全等的判定定理可知添加的条件为:AC =DF (SAS )或∠B =∠E (ASA )或∠A =∠D (AAS ).6. 1.5 【解析】如解图,连接AD ,∵Rt △ABC ≌Rt △DCB ,∴∠ABC =∠BCD =90°,且AB =CD ,∴AB ∥CD ,∴四边形ABCD 是矩形,∴OD =12BD =12AC =1.5.第6题解图7. 1<m <4 【解析】如解图,延长AD 到点E ,使AD =ED ,连接CE ,∵AD 是△ABC 的中线,∴BD =CD ,∵在△ABD 和△ECD 中,BD =CD ,DE =AD ,∠ADB =∠EDC,∴△ABD ≌△ECD ,∴AB =EC ,∴在△AEC 中,AC +EC >AE ,且EC -AC <AE ,即AB +AC >2AD ,AB -AC <2AD ,∴2<2AD <8,∴1<AD <4,即1<m <4.第7题解图8. ①④ 【解析】在△ABC 与△ADC 中,⎩⎪⎨⎪⎧AB =AD BC =DC AC =AC,∴△ABC ≌△A D C(SSS ),∴∠ABC =∠ADC ,故①正确;∵△ABC ≌△ADC ,∴∠BAC =∠DAC ,∠BCA =∠DCA ,∴AC 平分∠BAD 和∠BCD ,而AB 与BC 不一定相等,∴BD 不一定平分∠ABC 和∠ADC ,故③错误;又∵AB =AD ,∠BAC =∠CAD ,∴OB =OD ,∴AC,BD 互相垂直,但不互相平分,故②错误;∵AC,BD 互相垂直,∴四边形ABCD 的面积S =12AC ·B O +12AC ·OD =12AC ·BD .故④正确,综上所述,正确的结论是①④.9. 证明:∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF ,在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DEBC =EF AC =DF,∴△ABC ≌△DEF (SSS )∴∠ABC =∠DEF .10. 证明:∵DE ⊥AB ,CF ⊥AB ,∴∠AFC =∠BED =90°,又∵AE =BF ,∴A E +EF =BF +EF ,∴AF =BE ,在△ACF 和△BDE 中,⎩⎪⎨⎪⎧AF =BE∠AFC=∠BED CF =DE,∴△ACF ≌△BDE (SAS ),∴∠A =∠B ,∴AC ∥BD .11. 证明:∵∠ABC =∠ACB ,∴AB =AC ,∵点D 、E 分别为边AB 、AC 的中点,∴BD=12AB ,CE =12AC ,∴BD =CE ,又∵∠ABC =∠ACB ,BC =CB , ∴△CBE ≌△BCD (SAS ),∴BE =CD .12. (1)证明:在△ABD 与△ACE 中, ⎩⎪⎨⎪⎧AB =AC∠B=∠C BD =CE,∴△ABD ≌△ACE(SAS ),∴∠1=∠2;(2)解:∵CM ∥AB ,∴∠M =∠1,又∵∠C =∠B ,∴△AMC ∽△DAB ,∴MC AB =AC BD ,∴MC =AB·AC BD =92.13. (1)证明:∵AE 和BD 相交于点O , ∴∠AOD =∠BOE ,在△AOD 和△BOE 中,∠A =∠B , ∴∠BEO =∠2,又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC =∠BED ,在△AEC 和△BED 中,⎩⎪⎨⎪⎧∠A=∠BAE =BE ∠AEC=∠BED,∴△AEC ≌△BED (ASA );(2)解:∵△AEC ≌△BED ,∴EC =ED ,∠C =∠BDE ,∵在△EDC 中,EC =ED ,∠1=42°,∴∠C =∠EDC =69°,∴∠B D E =∠C =69°.14. (1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAE =∠CFE ,又∵∠A E D =∠FEC ,DE =CE ,∴△ADE ≌△FCE (AAS );(2)解:由(1)知,△ADE ≌△FCE ,∴AD =FC ,∵在▱ABCD 中,AD =BC ,AB =2BC ,∴AB =FB ,∴∠BAF =∠F =36°,∴∠B =180°-2×36°=108°.15. (1)证明:∵四边形ABCD 是矩形,∴AB =CD ,∠ABE =∠CDF ,∴在△ABE 与△CDF 中,⎩⎪⎨⎪⎧AB =CD∠ABE=∠CDF BE =DF,∴△ABE ≌△CDF (SAS ),∴AE =CF ;(2)解:∵四边形ABCD 是矩形,∴AO =OB ,∵∠COD =60°,∴∠AOB =60°,∴△AOB 为等边三角形,∴AO =AB =6,∴AC =12,在Rt △ABC 中,由勾股定理可得BC =AC 2-AB 2=63,∴矩形ABCD 的面积=AB ·BC =6×63=36 3.16. (1)证明:∵△ABC 是等边三角形,∴AB =AC ,∠BAC =∠C ,在△ABD 和△CAE 中,⎩⎪⎨⎪⎧AB =CA∠BAD=∠C AD =CE,∴△ABD ≌△CAE (SAS );(2)解:∵△ABD ≌△CAE ,∴∠ABD =∠CAE ,∴∠APD =∠ABP +∠PAB=∠BAC =60°,∴∠BPF=∠APD =60°,∴在Rt △BFP 中,∠PBF =30°,∴PF =12BP =12×6=3. 能力提升训练1. C 【解析】∵CE ⊥BD ,∴∠BEF =90°,∵∠BAC =90°,∴∠CAF =90°,∴∠FAC =∠BAD =90°,∠ABD +∠F =90°,∠ACF +∠F =90°,∴∠ABD =∠ACF ,∵在△ABD 和△ACF中,⎩⎪⎨⎪⎧∠BAD=∠CAF AB =AC ∠ABD=∠ACF,∴△ABD ≌△ACF (ASA ),∴AD =AF ,∵AB =AC ,D 为AC 中点,∴AB =AC =2AD =2AF ,∵BF =AB +AF =12,∴3AF =12,∴AF =4,∴AB =AC =2AF =8,∴△FBC的面积=12×BF ×AC =12×12×8=48. 2. C 【解析】∵△DAC 、△ECB 都是等边三角形,∴AC =CD ,BC =CE ,∠ACD =∠BCE =60°,∴∠ADC =∠DCE =60°,∴∠ACE =∠BCD ,∵∠DCE =60°,∴AD ∥CE ,∴∠DAP =∠PEC ,故③正确;在△ACE 与△DCB 中,⎩⎪⎨⎪⎧AC =CD ∠ACE=∠BCD CE =CB,∴△ACE ≌△DCB (SAS ),∴∠C A E =∠CDB ,又∵∠PMD =∠AMC ,∴∠DPM =∠ACM =60°,故②正确;在△ACM 与△DCN 中,⎩⎪⎨⎪⎧∠CAM=∠CDN AC =CD∠ACM=∠DCN=60°,∴△ACM ≌△DCN (ASA ),故④正确;∴CM =CN ,∴△CMN 是等边三角形,∴∠CMN =60°,∴∠CMN =∠ACD ,∴MN ∥AB ,故①正确;∵∠DBE =30°,∠BPE =∠APD =60°,∴∠AEB =90°,故⑤错误.综上所述,正确的个数是①②③④,共4个.第3题解图3. B 【解析】如解图,过点P 分别作OA 、OB 的垂线PC 、PD ,根据角平分线的性质可得PC=PD,∵OP为定值,∴OC=OD,∵∠AOB为定角,∠MPN与∠AOB互补,∴∠MPN也为定角,∵∠CPD与∠AOB也互补,∴∠MPN=∠CPD,∴∠MPC=∠NPD,∴△MPC≌△NPD,∴CM =DN,MP=NP,故(1)正确;∵OM+ON=OC+CM+OD-DN,∴OM+ON=OC+OD,∵OC=OD 为定长,∴OM+ON为定长,故(2)正确;∵△MPC≌△NPD,∴S四边形MONP=S△CMP+S四边形CONP=S△NPD +S四边形CONP=S四边形CODP,∴四边形MONP面积为定值,故(3)正确;∵Rt△MPC中,MP为斜边,CP为直角边,∴可设MP=k·CP,∴PN=k·DP,∵∠MPN=∠CPD,∴△MPN∽△CPD,其相似比为k,∴MN=k·CD,当点M与点C重合,点N和点D重合时,MN=CD,当点M与点C 不重合,点N与点D不重合时,MN≠CD,∴MN的长度在发生变化,故(4)错误.4. (1)解:在△ABC中,∵∠ACB=90°,AC=BC,∴∠BAC=∠ABC=45°,∴AC=BC=AB·sin45°=4,∴在Rt△BCE中,CE=BE2-BC2=3,∴AE=AC-CE=4-3=1;(2)证明:如解图,过C点作CM⊥CF交BD于点M,第4题解图∴∠FCM=90°,∴∠FCA=∠MCB,∵AF⊥BD,∴∠AFB=90°,∴∠AFE=∠ACB,∵∠AEF=∠BEC,∴∠CAF=∠CBM,在△ACF 和△BCM 中,⎩⎪⎨⎪⎧∠FCA=∠MCBAC =BC ∠CAF=∠CBM,∴△ACF ≌△BCM (ASA ),∴FC =MC ,又∵∠FCM =90°,∴∠CFM =∠CMF =45°,∴∠AFC =∠AFB +∠CFM =90°+45°=135°,∠DFC =180°-∠CFM=180°-45°=135°,∴∠AFC =∠DFC ,在△ACF 和△DCF 中,⎩⎪⎨⎪⎧AF =DF∠AFC=∠DFC CF =CF,∴△ACF ≌△DCF (SAS ),∴AC =DC ,∵AC =BC ,∴DC =BC .5. 解:(1)证明:①∵AB ⊥AD ,AE ⊥AC ,∴∠BAD =∠CAE =90°,∴∠BAD -∠CAD =∠CAE -∠CAD ,即∠BAC =∠DAE ,又∵AB =AD ,AC =AE ,∴△ABC ≌△ADE (SAS );②由①知△ABC ≌△ADE ,AE =AC ,∠ACB =∠AED ,∵AH ⊥CD ,∴∠AED=∠ACD=45°,CH=HE,∴∠ACB=∠AED=45°,∴∠BCD=∠ACB+∠ACD=90°,∴AH∥BC,∴点F是BE的中点,即BF=EF;第5题解图(2)成立.证明如下:如解图,过点B作BG∥AE,交AH于点G,∵AE∥BG,∴∠AGB=∠GAE,∵∠ACH+∠CAH=90°,∠GAE+∠CAH=90°,∴∠ACH=∠GAE,∴∠AGB=∠ACD,∵∠BAG+∠DAH=90°,∠ADC+∠DAH=90°,∴∠BAG=∠ADC,又∵AB=AD,∴△ABG≌△DAC(AAS),∴BG=AC,∵AC=AE,∴BG=AE,∵BG∥AE,∴∠AEF=∠GBF,∴△BFG≌△EFA(AAS),∴BF=EF.拓展培优训练1. 70° 【解析】如解图①,在BC 上取CD =AC ,连接BI 、DI ,∵CI 平分∠ACB,∴∠ACI=∠BCI,在△ACI 与△DCI 中,⎩⎪⎨⎪⎧AC =CD ∠A CI =∠DCI CI =CI,∴△ACI≌△DCI(SAS),∴AI=DI ,∠CAI=∠CDI,∵BC=AI +AC ,∴BD=AI ,∴BD=DI ,∴∠IBD=∠BID,∴∠CDI=∠IBD+∠BID =2∠IBD,又∵AI、CI 分别是∠BAC、∠ACB 的平分线,∴BI 是∠ABC 的平分线,∴∠ABC =2∠IBD,∠BAC=2∠CAI,∴∠CDI=∠ABC,∴∠BAC=2∠CAI=2∠CDI=2∠ABC,∵∠B =35°,∴∠BAC=35°×2=70°.【一题多解】如解图②,延长CA 到D ,使AD =AI ,∴∠D =∠AID,∵BC=AI +AC ,∴BC=CD ,在△BCI 与△DCI 中,⎩⎪⎨⎪⎧BC =CD ∠BCI=∠DCI CI =CI,∴△BCI≌△DCI(SAS),∴∠D=∠CBI,∵AI、CI 分别是∠BAC、∠ACB 的平分线,∴BI 是∠ABC 的平分线,∴∠ABC=2∠CBI,又∵∠CAI =∠D+∠AID=2∠D,∠BAC=2∠CAI=2∠ABC,∵∠B=35°,∴∠BAC=2×35°=70°.。

【2019-2020年度】中考数学 专题19 全等三角形试题(含解析)

【2019-2020年度】中考数学 专题19 全等三角形试题(含解析)

【2019-2020年度】中考数学专题19 全等三角形试题(含解析)☞解读考点【2015年题组】1.(2015六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【答案】D.【解析】试题分析:A.可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B.可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.利用ASA判定△ABC≌△DCB,故此选项不符合题意;D.SSA不能判定△ABC≌△DCB,故此选项符合题意;故选D.考点:全等三角形的判定.2.(2015贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE【答案】B.考点:全等三角形的判定与性质.3.(2015义乌)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS【答案】D.【解析】试题分析:在△ADC和△ABC中,∵AD=AB,DC=BC,AC=AC,∴△ADC≌△ABC (SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选D.考点:全等三角形的应用.4.(2015泰州)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对【答案】D.考点:1.全等三角形的判定;2.线段垂直平分线的性质;3.等腰三角形的性质;4.综合题.5.(2015宜昌)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()12 A.0个 B.1个 C.2个 D.3个【答案】D.【解析】试题分析:在△ABD与△CBD中,∵AD=CD,AB=BC,DB=DB,∴△ABD≌△CBD (SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,∵AD=CD,∠ADB=∠CDB,OD=OD,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②正确;故选D.考点:1.全等三角形的判定与性质;2.新定义;3.阅读型.6.(2015宜昌)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个【答案】C.考点:全等三角形的判定.7.(2015荆门)如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB 平分∠AMC,其中结论正确的有()A.1个 B.2个 C.3个 D.4个【答案】D.考点:1.全等三角形的判定与性质;2.等边三角形的判定与性质;3.综合题;4.压轴题.8.(2015柳州)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH12其中,正确的结论有()A.1个 B.2个 C.3个 D.4个【答案】B.【解析】试题分析:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;2∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.考点:1.全等三角形的判定与性质;2.正方形的性质;3.相似三角形的判定与性质;4.综合题.9.(2015柳州)如图,△ABC≌△DEF,则EF= .【答案】5.【解析】试题分析:∵△ABC≌△DEF,∴BC=EF,则EF=5.故答案为:5.考点:全等三角形的性质.10.(2015盐城)如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.【答案】DC=BC或∠DAC=∠BAC.考点:1.全等三角形的判定;2.开放型.11.(2015贵港)如图,在正方形ABCD的外侧,作等边三角形CDE,连接AE,BE,则∠AEB的度数为.【答案】30°.考点:1.全等三角形的判定与性质;2.等腰三角形的性质;3.正方形的性质;4.综合题.12.(2015常州)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是.【答案】(400,800).【解析】试题分析:连接AC,由题意可得:AB=300m,BC=400m,在△AOD和△ACB中,∵AD=AB,∠ODA=∠ABC,DO=BC,∴△AOD≌△ACB(SAS),∴∠CAB=∠OAD,∵B、O在一条直线上,∴C,A,D也在一条直线上,∴AC=AO=500m,则CD=AC=AD=800m,∴C点坐标为:(400,800).故答案为:(400,800).考点:1.勾股定理的应用;2.坐标确定位置;3.全等三角形的应用.13.(2015福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是【答案】.1考点:1.旋转的性质;2.全等三角形的判定与性质;3.角平分线的性质;4.等边三角形的判定与性质;5.等腰直角三角形;6.综合题.14.(2015鄂尔多斯)如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG= cm.12【答案】4.考点:1.全等三角形的判定与性质;2.等腰直角三角形;3.综合题.15.(2015长春)如图,在平面直角坐标系中,点P 在函数()的图象上.过点P 分别作x 轴、y 轴的垂线,垂足分别为A 、B ,取线段OB 的中点C ,连结PC 并延长交x 轴于点D .则△APD 的面积为 .6y x =0x >【答案】6.【解析】试题分析:∵PB⊥y 轴,PA⊥x 轴,∴=|k|=6,在△PBC 与△DOC 中,∵∠PBC=∠DOC=90°,BC=BC ,∠PCB=∠DCO,∴△PBC≌△DOC,∴S△APD=S 矩形APBO=6.故答案为:6.APBD S 矩形考点:1.反比例函数系数k 的几何意义;2.全等三角形的判定与性质.16.(2015)如图,OP 平分∠MON,PE⊥OM 于E ,PF⊥ON 于F ,OA=OB ,则图中有 对全等三角形.【答案】3.考点:1.全等三角形的判定;2.角平分线的性质;3.综合题.17.(2015贺州)如图,在△ABC 中,AB=AC=15,点D 是BC 边上的一动点(不与B 、C 重合),∠ADE=∠B=∠α,DE 交AB 于点E ,且tan∠α=.有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD 与△DBE 全等;③△BDE 为直角三角形时,BD 为12或;④0<BE≤,其中正确的结论是 (填入正确结论的序号).34214245【答案】②③.若△BDE 为直角三角形,则有两种情况:(1)若∠BED=90°,∵∠BDE=∠CAD ,∠B=∠C ,∴△BDE ∽△CAD ,∴∠CDA=∠BED=90°,∴AD ⊥BC ,∵AB=AC ,∴BD=BC=12;12(2)若∠BDE=90°,如图2,设BD=x ,则DC=24-x ,∵∠CAD=∠BDE=90°,∠B=∠C=∠α,∴cos ∠C=cosB=,∴,解得:,∴若△BDE 为直角三角形,则BD 为12或,故③正确;45154245AC DC x ==-214x =214设BE=x ,CD=y ,∵△BDE ∽△CAD ,∴,∴,∴,∴,∴,∴,∴0<BE ≤,∴故④错误;BE CD BD CA =2415x y y =-21524x y y =-215144(12)x y =--15144x ≤485x ≤485故答案为:②③.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质.18.(2015南宁)如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,且AE=CF ,(1)求证:△ADE≌△CB F ;(2)若∠DEB=90°,求证:四边形DEBF 是矩形.【答案】(1)证明见试题解析;(2)证明见试题解析.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.矩形的判定.19.(2015崇左)如图,点D 在AB 上,点E 在AC 上,AB=AC ,AD=AE .求证:BE=CD .【答案】证明见试题解析.【解析】试题分析:根据两边及其夹角对应相等可以判断△ADE≌△AEB,再由全等三角形对应边相等可说明结论.证明:在△ADE和△AEB中,∵AB=AC,∠A=∠A,AD=AE,∴△ADE≌△AEB,∴BE=CD.考点:全等三角形的判定与性质.20.(2015来宾)如图,在▱ABCD中,E、F为对角线AC上的两点,且AE=CF,连接DE、BF,(1)写出图中所有的全等三角形;(2)求证:DE∥BF.【答案】(1)△ABC≌△CDA,△ABF≌△△CDE,△ADE≌△CBF;(2)证明见试题解析.考点:1.平行四边形的性质;2.全等三角形的判定与性质.21.(2015百色)如图,AB∥DE,AB=DE,BF=EC.(1)求证:AC∥DF;(2)若CF=1个单位长度,能由△ABC经过图形变换得到△DEF吗?若能,请你用轴对称、平移或旋转等描述你的图形变换过程;若不能,说明理由.【答案】(1)证明见试题解析;(2)能,△ABC先向右平移1个单位长度,再绕点C旋转180°即可得到△DEF.考点:1.全等三角形的判定与性质;2.几何变换的类型;3.网格型.22.(2015常州)如图,在▱ABCD中,∠BCD=120°,分别延长DC、BC到点E,F,使得△BCE和△CDF都是正三角形.(1)求证:AE=AF;(2)求∠EAF的度数.【答案】(1)证明见试题解析;(2)60°.【解析】试题分析:(1)根据平行四边形的性质得到∠BAD=∠BCD=120°,∠ABC=∠ADC,AB=CD,BC=AD,根据等边三角形的性质得到BE=BC,DF=CD,∠EBC=∠CDF=60°,即可证出∠ABE=∠FDA,AB=DF,BE=AD,由SAS证明△ABE≌△FDA,得出对应边相等即可;(2)根据全等三角形的性质得到∠AEB=∠FAD,求出∠AEB+∠BAE=60°,得出∠FAD+∠BAE=60°,即可得出∠EAF的度数.试题解析:(1)∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∠ABC=∠ADC,AB=CD,BC=AD,∵△BCE和△CDF都是正三角形,∴BE=BC,DF=CD,∠EBC=∠CDF=60°,∴∠ABE=∠FDA,AB=DF,BE=AD,在△ABE和△FDA中,∵AB=DF,∠ABE=JIAO FDA,BE=AD,∴△ABE≌△FDA(SAS),∴AE=AF;(2)∵△ABE≌△FDA,∴∠AEB=∠FAD,∵∠ABE=60°+60°=120°,∴∠AEB+∠BAE=60°,∴∠FAD+∠BAE=60°,∴∠EAF=120°﹣60°=60°.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的性质.23.(2015乐山)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.【答案】(1)证明见试题解析;(2)试题解析:(1)∵AD∥BC,∴∠ADB=∠DBC,根据折叠的性质∠ADB=∠BDF,∠F=∠A=∠C=90°,∴∠DBC=∠BDF,∴BE=DE,在△DCE和△BFE中,∵∠BEF=∠DEC,∠F=∠C,BE=DE,∴△DCE≌△BFE;(2)在Rt△BCD中,∵CD=2,∠ADB=∠DBC=30°,∴BC=,在Rt△BCD中,∵CD=2,∠EDC=30°,∴DE=2EC,∴,∴CE=,∴BE=BC﹣EC=.222-=EC EC CD(2)33考点:1.翻折变换(折叠问题);2.全等三角形的判定与性质;3.综合题.24.(2015潜江)已知∠MAN=135°,正方形ABCD绕点A旋转.(1)当正方形ABCD旋转到∠MAN的外部(顶点A除外)时,AM,AN分别与正方形ABCD的边CB,CD的延长线交于点M,N,连接MN.①如图1,若BM=DN,则线段MN与BM+DN之间的数量关系是;②如图2,若BM≠DN,请判断①中的数量关系是否仍成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,当正方形ABCD旋转到∠MAN的内部(顶点A除外)时,AM,AN分别与直线BD交于点M,N,探究:以线段BM,MN,DN的长度为三边长的三角形是何种三角形,并说明理由.【答案】(1)①MN=BM+DN;②成立;(2)直角三角形.(2)如图3,将△ABM绕点A逆时针旋转90°,得到△ADE,连结NE.由旋转的性质得到DE=BM,AE=AM,∠EAM=90°,∠NDE=90°.先证明△AMN≌△AEN.得到MN=EN.由DN,DE,NE为直角三角形的三边,得到以线段BM,MN,DN的长度为三边长的三角形是直角三角形.②如图2,若BM≠DN,①中的数量关系仍成立.理由如下:延长NC到点P,使DP=BM,连结AP.∵四边形ABCD是正方形,∴AB=AD,∠ABM=∠ADC=90°.在△ABM与△ADP中,∵AB=AD,∠ABM=∠ADP,BM=DP,∴△ABM≌△ADP(SAS),∴AM=AP,∠1=∠2=∠3,∵∠1+∠4=90°,∴∠3+∠4=90°,∵∠MAN=135°,∴∠PAN=360°﹣∠MAN﹣(∠3+∠4)=360°﹣135°﹣90°=135°.在△ANM与△ANP中,∵AM=AP,∠MAN=∠PAN,AN=AN,∴△ANM≌△ANP(SAS),∴MN=PN,∵PN=DP+DN=BM+DN,∴MN=BM+DN;(2)以线段BM,MN,DN的长度为三边长的三角形是直角三角形.理由如下:如图3,将△ABM绕点A逆时针旋转90°,得到△ADE,连结NE.由旋转的性质得:DE=BM,AE=AM,∠EAM=90°,∠NDE=90°.∵∠MAN135°,∴∠EAN360°∠MAN∠EAM =135°,∴∠EAN =∠MAN.在△AMN与△AEN中,∵AM=AE,∠MAN=∠EAN,AN=AN,∴△AMN≌△AEN.∴MN=EN.∵DN,DE,NE为直角三角形的三边,∴以线段BM,MN,DN的长度为三边长的三角形是直角三角形.==--考点:1.几何变换综合题;2.全等三角形的判定与性质;3.勾股定理的逆定理;4.和差倍分;5.探究型;6.综合题;7.压轴题.【2014年题组】1.(2014年贵州黔西南)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【答案】C.考点:全等三角形的判定.2.(2014年湖南益阳)如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件不能是( )A .AE=CFB .BE=FDC .BF=DED .∠1=∠2【答案】A .【解析】试题分析:根据平行四边形的性质以及全等三角形的判定分别作出判断:A 、当AE=CF 时,构成的条件是SSA ,无法得出△ABE≌△CDF,故此选项符合题意;B 、当BE=FD 时,构成的条件是SAS ,可得△ABE≌△CDF,故此选项不符合题意;C 、当BF=ED 时,由等量减等量差相等得BE=FD ,构成的条件是SAS ,可得△ABE≌△CDF,故此选项不符合题意;D 、当∠1=∠2时,构成的条件是ASA ,可得△ABE≌△CDF,故此选项不符合题意.故选A .考点:1.平行四边形的性质;2.全等三角形的判定.3.(2014年江苏连云港)如图,若△ABC 和△DEF 的面积分别为、,则( )1S 2SA .B .C .D .1212S S =1272S S =12S S =1285S S = 【答案】C .考点:1.全等三角形的判定和性质;2.等底等高三角形的性质.4.(2014年福建福州)如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是边AB ,AC 的中点,延长BC 到点F ,使..若AB=10,则EF 的长是_______ .12CF BC =【答案】5.【解析】∵在Rt△ABC 中,∠ACB=90°,点D ,E 分别是边AB ,AC 的中点,AB=10,∴AD=5,AE=EC ,,∠AED=90°.12DE BC =∵,∴DE=FC .12CF BC =在Rt△ADE 和Rt△EFC 中,∵AE=EC ,DE=FC ,∴Rt△ADE≌Rt△EFC (SAS ).∴EF=AD=5.考点:1.三角形中位线定理;2.全等三角形的判定和性质.5.(2014年湖南长沙)如图,点B 、E 、C 、F 在一条直线上,AB ∥DE ,AB=DE ,BE=CF ,AC=6,则DF= __________ .【答案】6.考点:1.平行的性质;2.全等三角形的判定和性质.6.(2014年湖南常德)如图,已知△ABC 三个内角的平分线交于点O ,点D 在CA 的延长线上,且DC=BC ,AD=AO ,若∠BAC=80°,则∠BCA 的度数为______.【答案】60°.【解析】试题分析:∵△ABC 三个内角的平分线交于点O ,∴∠ACO=∠BCO.在△COD 和△COB 中,∵CD=CB,∠OCD=∠OCB,CO=CO ,∴△COD≌△COB (SAS ).∴∠D=∠CBO.∵∠BAC=80°,∴∠BAD=100°,∠BAO=40°.∴∠DAO=140°.∵AD=AO,∴∠D=20°.∴∠CBO=20°.∴∠ABC=40°.∴∠BCA=60°.考点:1.角的平分线定义;2.全等三角形的判定和性质;3.等腰三角形的性质.7、(2014年福建福州7分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.【答案】证明见试题解析.考点:全等三角形的判定和性质.8.(2014年湖北宜昌)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD 平分∠CAB.(1)求∠CAD的度数;(2)延长AC至E,使CE=AC,求证:DA=DE.【答案】(1)30°;(2)证明见试题解析.【解析】试题分析:(1)利用“直角三角形的两个锐角互余”的性质和角平分的性质进行解答.(2)由ASA证明△ACD≌△ECD来推知DA=DE.试题解析:解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,∴∠CAB=60°.又∵AD平分∠CAB,∴∠CAD=∠CAB=30°,即∠CAD=30°.12(2)证明:∵∠ACD+∠ECD=180°,且∠ACD=90°,∴∠ECD=90°.∴∠ACD=∠ECD.在△ACD与△ECD中,∵AC=EC,∠ACD=∠ECD,CD=CD,∴△ACD≌△ECD(SAS).∴DA=DE.考点:1.直角三角形两锐角的关系;2.全等三角形的判定与性质.☞考点归纳归纳 1:全等三角形的性质基础知识归纳:全等三角形的对应边相等,对应角相等基本方法归纳:利用全等三角形的性质解决有关线段相等和角的计算的有关问题注意问题归纳:利用全等三角形的性质时,关键是找准对应点,利用对应点得到相应的对应边以及对应角.【例1】如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为.【答案】60°.考点:1.全等三角形的判定与性质;2.等腰三角形的性质.归纳 2:全等三角形的判定方法基础知识归纳:三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”).基本方法归纳:证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.注意问题归纳:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)【例2】如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F【答案】C.考点:全等三角形的判定与性质.归纳 3:角平分线基础知识归纳:角平分线上的点到角的两边的距离相等,到角两边距离相等的点在角平分线上.基本方法归纳:角平分线的性质是证明线段相等的重要工具,角平分线的性质经常用来解决点到直线的距离以及三角形的面积问题.注意问题归纳:注意区分角平分线的性质与判定,角平分线的性质和判定都是由三角形全等得到的.【例3】如图所示,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F,求证:DE=DF.【答案】证明见试题解析.考点:1.全等三角形的判定和性质;2.角平分线的性质.☞1年模拟1.(2015届中考二模)用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A O B AOB'''∠=∠A .(SAS )B .(SSS )C .(AAS )D .(ASA )【答案】B .【解析】试题分析:由题意可知,利用尺规作图法,可知OC=O ′C ′,OD=O ′D ′,CD=C ′D ′,根据全等三角形的判定定理(SSS )可得△OCD ≌△O ′C ′D ′,得出.故选B .A O B AOB '''∠=∠考点:1.全等三角形的判定;2.尺规作图.2.(2015届中考二模)如图,等边△ABC 的边AB 上一点P ,作PE⊥AC 于E ,Q 为BC 延长线上的一点,当PA=CQ 时,连接PQ 交AC 于点D ,下列结论中不一定正确的是( )A .PD=DQB .DE=AC C .AE=CQD .PQ ⊥AB2121 【答案】D .考点:1.全等三角形的判定与性质;2.等边三角形的判定与性质;3.平行线的性质.3.(2015届中考模拟)如图,在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起,A 为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC 固定不动,△AFG 绕点A 旋转,AF 、AG 与边BC 的交点分别为D 、E (点D 不与点B 重合,点E 不与点C 重合),设BE=m ,CD=n .下列结论:(1)图中有三对相似而不全等的三角形;(2)m•n=2;(3)BD2+CE2=DE2;(4)△ABD≌△ACE;(5)DF=AE .其中正确的有( )A 、2个B 、3个C 、4个D 、5个【答案】A .(5)当AF 与AB 重合时,AE=AF ,AB=AF ,得到DF ≠AF ,于是由AE 与DF 不一定相等;12212试题解析:(1)△ABE ∽△DAE ,△ABE ∽△DCA ,故(1)错误;(2)∵△ABE ∽△DCA ,∴,由题意可知CA=BA=, ∴,∴m=,∴mn=2;(1<n <2); 故(2)正确;BE BAAC CD =n =2n (3)证明:将△ACE 绕点A 顺时针旋转90°至△ABH 的位置,则CE=HB ,AE=AH ,∠ABH=∠C=45°,旋转角∠EAH=90°.连接HD ,在△EAD 和△HAD 中, ∵AE=AH ,∠HAD=∠EAH-∠FAG=45°=∠EAD ,AD=AD , ∴△EAD ≌△HAD ,∴DH=DE .又∠HBD=∠ABH+∠ABD=90°, ∴BD2+CE2=DH2, 即BD2+CE2=DE2; 故(3)正确;(4)若△ABC固定不动,△AFG绕点A旋转,∴∠BAD≠∠CAE,∴△ABD与△ACE不一定全等,∴(4)错误;(5)当AF与AB重合时,AE=AF,AB=AF,∴DF≠AF,∴AE与DF不一定相等;∴(5)错误.故选A.121 2考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.等腰直角三角形.4.(2015届中考二模)如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是()A.1:2 B.1:3 C.1:4 D.1:5【答案】A.考点:1.平行四边形的性质;2.全等三角形的判定与性质.5.(2015届中考模拟二)如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.7.5 B.8 C.15 D.无法确定【答案】A.考点:1.角平分线的性质;2.全等三角形的判定与性质.6.(2015届中考二模)如图,点A,B,D,E在同一直线上,AB=ED,AC∥EF,∠C=∠F.求证:AC=EF.【答案】证明见解析.【解析】试题分析:根据全等三角形的片对于性质,再由原子条件即可证明△ABC ≌△EDF (AAS ),推出AC=EF 即可.试题解析:证明:∵AC ∥EF ,∴∠A=∠E .在△ABC 和△DEF 中,,∴△ABC ≌△EDF .A E C F AB ED ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AC=EF .考点:全等三角形的判定与性质.7.(2015届中考二模)如图,在△ABC 中,D 为AB 边上一点,F 为AC 的中点,连接DF 并延长至E ,使得EF=DF ,连接AE 和EC .(1)求证:四边形ADCE 为平行四边形;(2)如果DF=,∠FCD=30°,∠AED=45°,求DC的长.【答案】(1)证明见解析;(2).2+(2)解:如图,过点F 作FG ⊥DC 与G .∵四边形ADCE 为平行四边形,∴AE ∥CD .∴∠FDG=∠AED=45°,在Rt △FDG 中,∠FGD=90°,∠FDG=45°,DF=,∵cos ∠FDG=,∴DG=GF===2.DG DFcos DF FDG ⋅∠cos45︒ 在Rt △FCG 中,∠FGC=90°,∠FCG=30°,GF=2,∵tan ∠FCG=,∴,FGGC 2tan tan30FG CG FCG ===∠︒∴DC=DG+GC=.2+考点:1.解直角三角形;2.平行四边形的判定与性质;3.全等三角形的判定与性质.8.(2015届中考二模)如图1,在△ABC 中,CA=CB ,∠ACB=90°,D 是△ABC内部一点,∠ADC=135°,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE.(1)①依题意补全图形;②请判断∠ADC和∠CDE之间的数量关系,并直接写出答案;(2)在(1)的条件下,连接BE,过点C作CM⊥DE,请判断线段CM,AE和BE之间的数量关系,并说明理由;(3)如图2,在正方形ABCD中,AB=,如果PD=1,∠BPD=90°,请直接写出点A到BP【答案】(1)①作图见解析;②∠ADC+∠CDE=180°;(2)AE=BE+2CM,理由解析;(3)(2)线段CM,AE和BE之间的数量关系是AE=BE+2CM,理由如下:∵线段CD绕点C逆时针旋转90°得到线段CE,∴CD=CE,∠DCE=90°,∴∠CDE=∠CED=45°.又∵∠ADC=135°,∴∠ADC+∠CDE=180°,∴A、D、E三点在同一条直线上,∴AE=AD+DE.又∵∠ACB=90°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵AC=BC,CD=CE,∴△ACD≌△BCE,∴AD=BE.∵CD=CE,∠DCE=90°,CM⊥DE,∴DE=2CM,∴AE=BE+2CM.(3)点A到BP考点:1.作图—旋转变换;2.探究型;3.和差倍分;4.全等三角形的判定与性质.9.(2015届中考二模)如图,点D是等边△ABC中BC边上一点,过点D分别作DE∥AB,DF∥AC,交AC ,AB 于E ,F ,连接BE ,CF ,分别交DF ,DE 于点N ,M ,连接MN .试判断△DMN 的形状,并说明理由.【答案】△DMN 为等边三角形,理由见解析.考点:1.等边三角形的判定与性质;2.全等三角形的判定与性质.10.(2015届中考一模)如图,已知,在△ABC 中,CA=CB ,∠ACB=90°,E ,F 分别是CA ,CB 边的三等分点,将△ECF 绕点C 逆时针旋转α角(0°<α<90°),得到△MCN,连接AM ,BN .(1)求证:AM=BN ;(2)当MA∥CN 时,试求旋转角α的余弦值.【答案】(1)证明见解析;(2).13(2)∵MA∥CN,∴∠ACN=∠CAM,∵∠ACN+∠ACM=90°,∴∠CAM+∠ACM=90°,∴∠AMC=90°,∴cos α=.13CM CE AC AC == 考点:1.全等三角形的判定与性质;2.旋转的性质;3.锐角三角函数的定义.11.(2015届中考模拟)已知四边形ABCD 中,AB=BC ,∠ABC=120°,∠MBN=60°,∠MBN 绕B 点旋转,它的两边分别交AD ,DC (或它们的延长线)于E ,F .当∠MBN 绕B 点旋转到AE=CF 时(如图1),易证AE+CF=EF ;当∠MBN 绕B 点旋转到AE≠CF 时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE ,CF ,EF 又有怎样的数量关系?请写出你的猜想,不需证明.【答案】证明见解析.∴△ABE≌△CBF(SAS);∴∠ABE=∠CBF,BE=BF;∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴AE=BE,CF=BF;121 2∵∠MBN=60°,BE=BF,∴△BEF为等边三角形;∴AE+CF=BE+BF=BE=EF;121 2则△BAE≌△BCK,∴BE=BK,∠ABE=∠KBC,∵∠FBE=60°,∠ABC=120°,∴∠FBC+∠ABE=60°,∴∠FBC+∠KBC=60°,∴∠KBF=∠FBE=60°,在△KBF和△EBF中,BK BEKBF EBF BF BF⎪∠⎪⎩∠⎧⎨===∴△KBF≌△EBF,∴KF=EF,∴KC+CF=EF,即AE+CF=EF.图3不成立,AE、CF、EF的关系是AE-CF=EF.考点:1.全等三角形的判定与性质;2.和差倍分;3.存在型;4.探究型;5.综合题.12.(2015届中考一模)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.12【答案】(1)证明见解析,(2)四边形ABCD是矩形,理由见解析.考点:1.全等三角形的判定与性质;2.平行四边形的判定与性质;3.矩形的判定;4.探究型.13.(2015届九年级下学期4月中考模拟)在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.【答案】(1)BD=DP成立.证明见解析;(2)BD=DP.证明见解析.∵∠1+∠ADB=90°,∠ADB+∠2=90°,∴∠1=∠2.在△BDF与△PDA中,,∴△BDF≌△PDA(ASA),∴BD=DP .⎪⎩⎪⎨⎧︒=∠=∠=∠=∠4521DAP DFB DA DF(2)BD=DP .证明如下:如答图3,过点D 作DF ⊥MN ,交AB 的延长线于点F ,则△ADF 为等腰直角三角形,∴DA=DF .在△BDF 与△PDA 中,,∴△BDF ≌△PDA (ASA ),∴BD=DP .⎪⎩⎪⎨⎧∠=∠=︒=∠=∠PDA BDF DA DF PAD F 45考点:1.全等三角形的判定与性质;2.等腰直角三角形;3.平行四边形的性质;4.探究型.14.(2015届初中毕业班综合测试)如图,在△ABC 与△ABD 中,BC 与AD 相交于点O ,∠1=∠2,CO=DO .求证:∠C=∠D.【答案】证明见解析.考点:全等三角形的判定与性质.15.(2015届中考一模)已知:如图,在▱ABCD 中,线段EF 分别交AD .AC .BC 于点E 、O 、F ,EF⊥AC,AO=CO .(1)求证:△ABF≌△CDE;(2)在本题的已知条件中,有一个条件如果去掉,并不影响(1)的证明,你认为这个多余的条件是 (直接写出这个条件).【答案】(1)证明见解析;(2)EF ⊥AC .考点:1.平行四边形的性质;2.全等三角形的判定与性质.16.(2015届中考模拟二)如图,已知正方形ABCD ,E 是AB 延长线上一点,F 是DC 延长线上一点,连接BF 、EF ,恰有BF=EF ,将线段EF 绕点F 顺时针旋转90°得FG,过点B作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG.(1)求证:BE=2CF;(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.【答案】(1)证明见解析.(2)四边形BFGN为菱形,证明见解析.(2)解:四边形BFGN为菱形,证明如下:∵MN⊥EF,∴∠E+∠EBM=90°,且∠EBM=∠ABN,∴∠ABN+∠E=90°,∵BF=EF,∴∠E=∠EBF,∴∠ABN+∠EBF=90°,又∵∠EBC=90°,∴∠CBF+∠EBF=90°,∴∠ABN=∠CBF,∵四边形ABCD为正方形,∴AB=BC,∠NAB=∠CBF=90°,在△ABN和△CBF中∴△ABN≌△CBF(ASA),∴BF=BN,又由旋转可得EF=FG=BF,∴BN=FG,∵∠GFM=∠BME=90°,∴BN∥FG,∴四边形BFGN为菱形.考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的判定;4.旋转的性质;5.和差倍分.。

中考数学 一轮训练:全等三角形 附答案

中考数学 一轮训练:全等三角形   附答案

2020-2021 中考数学一轮训练:全等三角形一、选择题1. 如图,PD⊥AB,PE⊥AC,垂足分别为D,E,且PD=PE,则△APD与△APE全等的理由是()A.SAS B.AAA C.SSS D.HL2. 如图,P为OC上一点,PM⊥OA,PN⊥OB,垂足分别为M,N,PM=PN,∠BOC=30°,则∠AOB的度数为()A.30°B.45°C.60°D.50°3. 如图,BE⊥AC,CF⊥AB,垂足分别是E,F.若BE=CF,则图中全等三角形有()A.1对B.2对C.3对D.4对4. 根据下列条件,能画出唯一的△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=50°D.∠A=30°,∠B=70°,∠C=80°5. 如图所示,已知△ABC≌△ADE,BC的延长线交DE于点F,∠B=∠D=25°,∠ACB=∠AED=105°,∠DAC=10°,则∠DFB的度数为 ()A.40°B.50°C.55°D.60°6. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =a,BF=b,EF=c,则AD的长为()A.a+c B.b+cC.a-b+c D.a+b-c7. 如图,△ACB≌△A'CB',∠ACA'=30°,则∠BCB'的度数为()A.20°B.30°C.35°D.40°8. 如图,平面上到两两相交的三条直线a,b,c的距离相等的点一共有()A.4个B.3个C.2个D.1个二、填空题9. 如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________.10. 如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当条件:________,使△AEH≌△CEB.11. 如图,△ABC≌△ADE,BC的延长线交DE于点G,∠CAB=54°,∠DAC=16°,则∠DGB=°.12. 在平面直角坐标系xOy中,已知点A,B的坐标分别为(2,0),(2,4),若以A,B,P为顶点的三角形与△ABO全等,则点P的坐标为________________________.13. 已知△ABC的三边长分别为6,7,10,△DEF的三边长分别为6,3x-2,2x-1.若这两个三角形全等,则x的值为.14. 如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.有下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是.15. 如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC 的面积是.16. 如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.若△DBE的周长为20,则AB=________.三、解答题17. 如图2-Z-20,C是AB的中点,AD=CE,CD=BE.求证:∠A+∠ECA=180°.18. 如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上.若AD=16,BC=10,求AB的长.19. 如图,AC∥BE,点D在BC上,AB=DE,∠ABE=∠CDE.求证:DC=BE-AC.20. 如图,BE,CF都是△ABC的高,在BE上截取BD=AC,在射线CF上截取CG=AB,连接AG,AD.求证:(1)△BAD≌△CGA;(2)AD⊥AG.21. 在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一点,连接EM并延长交线段CD的延长线于点F.(1)如图①,求证:△AEM ≌△DFM;(2)如图②,若AB=2,过点M作MG⊥EF交线段BC于点G,求证:△GEF是等腰直角三角形;(3)如图③,若AB=23,过点M作MG⊥EF交线段BC的延长线于点G,若MG=nME,求n的值.22. 已知:在等边△ABC中,D、E分别是AC、BC上的点,且∠BAE=∠CBD <60°,DH⊥AB,垂足为点H.(1)如图①,当点D、E分别在边AC、BC上时,求证:△ABE≌△BCD;(2)如图②,当点D、E分别在AC、CB延长线上时,探究线段AC、AH、BE的数量关系;(3)在(2)的条件下,如图③,作EK∥BD交射线AC于点K,连接HK,交BC于点G,交BD于点P,当AC=6,BE=2时,求线段BP的长.2020-2021 中考数学 一轮训练:全等三角形-答案一、选择题 1. 【答案】D2. 【答案】C[解析] ∵点P 在OC 上,PM ⊥OA ,PN ⊥OB ,PM =PN ,∴OC 是∠AOB 的平分线.∵∠BOC =30°,∴∠AOB =60°.3. 【答案】C[解析] ①∵BE ⊥AC ,CF ⊥AB ,∴∠CFB =∠BEC =90°.在Rt △BCF 和Rt △CBE 中,⎩⎨⎧CF =BE ,BC =CB ,∴Rt △BCF ≌Rt △CBE(HL).②∵BE ⊥AC ,CF ⊥AB ,∴∠AFC =∠AEB =90°.在△ABE 和△ACF 中,⎩⎨⎧∠AEB =∠AFC ,∠A =∠A ,BE =CF ,∴△ABE ≌△ACF(AAS). ③设BE 与CF 相交于点O. ∵BE ⊥AC ,CF ⊥AB , ∴∠OFB =∠OEC =90°.∵△ABE ≌△ACF ,∴AB =AC ,AE =AF. ∴BF =CE.在△BOF 和△COE 中,⎩⎨⎧∠OFB =∠OEC ,∠BOF =∠COE ,BF =CE ,∴△BOF ≌△COE(AAS).4. 【答案】C[解析] 对于选项A 来说,AB +BC<AC ,不能画出△ABC ;对于选项B来说,可画出△ABC为锐角三角形或者钝角三角形;对于选项C来说,已知两边及其夹角,△ABC是唯一的;对于选项D来说,△ABC的形状可确定,但大小不确定.5. 【答案】D[解析] 因为△ABC≌△ADE,∠B=∠D=25°,∠ACB=∠AED=105°,所以∠CAB=∠EAD=180°-105°-25°=50°.所以∠DAB=∠CAB+∠DAC=60°.由图易得∠DFB=∠DAB=60°.6. 【答案】D[解析] ∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠CED=∠AFB=90°,∠A=∠C.又∵AB=CD,∴△CED≌△AFB.∴AF=CE=a,DE=BF=b,DF =DE-EF=b-c.∴AD=AF+DF=a+b-c.故选D.7. 【答案】B[解析] 由△ACB≌△A'CB',得∠ACB=∠A'CB'.由等式的基本性质,得∠ACB-∠A'CB=∠A'CB'-∠A'CB.所以∠BCB'=∠ACA'=30°.8. 【答案】A[解析] 如图,到三条直线a,b,c的距离相等的点一共有4个.二、填空题9. 【答案】120°【解析】由于△ABC≌△A′B′C′,∴∠C=∠C′=24°,在△ABC 中,∠B=180°-24°-36°=120°.10. 【答案】AH=CB(符合要求即可)【解析】∵AD⊥BC,CE⊥AB,垂足分别为点D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,在Rt△HDC中,∠ECB=90°-∠DHC,∵∠AHE=∠DHC,∴∠EAH=∠ECB,∴根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故答案为:AH=CB或EH=EB或AE=CE均可.11. 【答案】70[解析] ∵△ABC≌△ADE,∴∠B=∠D.∵∠GFD=∠AFB,∴∠DGB=∠F AB.∵∠F AB=∠DAC+∠CAB=70°,∴∠DGB=70°.12. 【答案】(4,0)或(4,4)或(0,4)13. 【答案】4[解析] ∵△ABC的三边长分别为6,7,10,△DEF的三边长分别为6,3x-2,2x-1,这两个三角形全等,∴3x-2=10,2x-1=7,解得x=4;还可以是3x-2=7,2x-1=10,这种情况不成立.14. 【答案】①②③[解析] 由△ABO≌△ADO,得AB=AD,∠AOB=∠AOD=90°,∠BAC=∠DAC.又因为AC=AC,所以△ABC≌△ADC,则CB=CD.所以①②③正确.15. 【答案】8[解析]∵DC⊥BC,∴∠BCD=90°.∵∠ACB=120°,∴∠ACD=30°.延长CD到H使DH=CD,∵D为AB的中点,∴AD=BD.在△ADH与△BDC中,∴△ADH≌△BDC(SAS),∴AH=BC=4,∠H=∠BCD=90°.∵∠ACH=30°,∴CH=AH=4,∴CD=2,∴△ABC的面积=2S△BCD=2××4×2=8.16. 【答案】20[解析] 由角平分线的性质可得CD=DE.易证Rt△ACD≌Rt△AED,则AC=AE,DE+DB=CD+DB=BC=AC=AE,故DE+DB+EB =AE+EB=AB.三、解答题17. 【答案】证明:∵C是AB的中点,∴AC=CB.在△ACD 和△CBE 中,∴△ACD ≌△CBE (SSS). ∴∠A=∠ECB.∴AD ∥CE.∴∠A+∠ECA=180°.18. 【答案】解:∵△ACF ≌△DBE ,∴AC=DB.∴AC-BC=DB-BC ,即AB=CD. ∵AD=16,BC=10, ∴AB=CD=(AD-BC )=3.19. 【答案】证明:∵AC ∥BE ,∴∠C =∠DBE ,∠A +∠ABE =180°. ∵∠BDE +∠CDE =180°,∠ABE =∠CDE , ∴∠A =∠BDE.在△ABC 和△DEB 中,⎩⎨⎧∠C =∠DBE ,∠A =∠BDE ,AB =DE ,∴△ABC ≌△DEB(AAS). ∴AC =DB ,BC =EB. 又∵DC =BC -BD , ∴DC =BE -AC.20. 【答案】证明:(1)∵BE ,CF 都是△ABC 的高, ∴∠ABE +∠BAC =90°,∠ACF +∠BAC =90°. ∴∠ABE =∠ACF.在△BAD 和△CGA 中,⎩⎨⎧AB =GC ,∠ABD =∠GCA ,BD =CA ,∴△BAD ≌△CGA(SAS).(2)∵△BAD ≌△CGA ,∴∠G =∠BAD. ∵∠AFG =90°,∴∠GAD =∠BAD +∠BAG =∠G +∠BAG =90°.∴AD ⊥AG .21. 【答案】(1)证明:∵四边形ABCD 是矩形, ∴∠EAM =∠FDM =90°, ∵M 是AD 的中点, ∴AM =DM ,在△AME 和△DMF 中,⎩⎨⎧∠A =∠FDBAM =DM∠AME =∠DMF, ∴△AEM ≌△DFM (ASA);(2)证明:如解图①,过点G 作GH ⊥AD 于H ,解图①∵∠A =∠B =∠AHG =90°, ∴四边形ABGH 是矩形, ∴GH =AB =2, ∵M 是AD 的中点,∴AM =12AD =2,∴AM =GH , ∵MG ⊥EF ,∴∠GME =90° ∴∠AME +∠GMH =90°. ∵∠AME +∠AEM =90°, ∴∠AEM =∠GMH , 在△AEM 和△HMG 中,⎩⎨⎧AM =GH∠AEM =∠GMH ∠A =∠AHG, ∴△AEM ≌△HMG ,∴ME =MG ,∴∠EGM =45°,由(1)得△AEM ≌△DFM ,∴ME =MF ,∵MG ⊥EF ,FMG EMG ≌△△∴,∴GE =GF ,∴∠EGF =2∠EGM =90°,∴△GEF 是等腰直角三角形.(3)解:如解图②,过点G 作GH ⊥AD 交AD 延长线于点H ,解图②∵∠A =∠B =∠AHG =90°,∴四边形ABGH 是矩形,∴GH =AB =23,∵MG ⊥EF ,∴∠GME =90°,∴∠AME +∠GMH =90°,∵∠AME +∠AEM =90°,∴∠AEM =∠GMH ,又∵∠A =∠GHM =90°,∴△AEM ∽△HMG ,∴EM MG =AM GH ,在Rt △GME 中,tan ∠MEG =MG EM = 3.∴n =322. 【答案】 (1)证明:∵△ABC 为等边三角形,∴∠ABC =∠C =∠CAB =60°,AB =BC ,在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD,∴△ABE ≌△BCD (ASA);(2)解:∵△ABC 为等边三角形,∴∠ABC =∠CAB =60°,AB =BC ,∴∠ABE =∠BCD =180°-60°=120°.∴在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA),∴BE =CD .∵DH ⊥AB ,∴∠DHA =90°,∵∠CAB =60°,∴∠ADH =30°,∴AD =2AH ,∴AC =AD -CD =2AH -BE ;(3)解:如解图,作DS ⊥BC 延长线于点S ,作HM ∥AC 交BC 于点M ,解图∵AC =6,BE =2,∴由(2)得AH =4,BH =2,与(1)同理可得BE =CD =2,CE =8,∵∠SCD =∠ACB =60°,∴∠CDS =30°,∴CS =1,SD =3,BS =7,∵BD 2=BS 2+SD 2=72+(3)2,∴BD =213,∵EK ∥BD ,∴△CBD ∽△CEK ,∴CB CE =CD CK =BD EK ,∴CK =CD ·CE CB =2×86=83,EK =CE ·BD CB =8×2136=8133. ∵HM ∥AC ,∴∠HMB =∠ACB =60°,∴△HMB 为等边三角形,BM =BH =HM =2, CM =CB -BM =4,又∵HM ∥AC ,∴△HMG ∽△KCG ,∴HM KC =MGCG ,即382=MG4-MG ,∴MG =127,BG =267,EG =407,∵EK ∥BD ,∴△GBP ∽△GEK ,∴BP EK =GBGE , ∴BP =261315.。

中考数学复习考点题型专练19--全等三角形(解析版)

中考数学复习考点题型专练19--全等三角形(解析版)

中考数学复习考点题型专练专题19全等三角形(满分:100分时间:90分钟)班级_________ 姓名_________学号_________ 分数_________ 一、单选题(共10小题,每小题3分,共计30分)1.(2022·浙江湖州市·中考真题)在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积. 如图是由5个边长为1的小正方形拼成的图形,P是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是()A.D【答案】D【分析】根据中心对称的性质即可作出剪痕,根据三角形全等的性质即可证得EM=DN,利用勾股定理即可求得.【详解】于G.如图,EF为剪痕,过点F作FG EM∵EF 将该图形分成了面积相等的两部分,∴EF 经过正方形ABCD 对角线的交点,∴,AF CN BF DN ==.易证PME PDN ∆∆≌,∴EM DN =,而AF MG =,∴1EG EM MG DN AF DN CN DC =+=+=+==.在Rt FGE ∆中,EF ==故选:D.2.(2022·黑龙江中考真题)如图,四边形ABCD 中,AB=AD ,AC=5,∠DAB=∠DCB=90°,则四边形ABCD 的面积为( )A .15B .12.5C .14.5D .17【答案】B【分析】过A 作AE ⊥AC ,交CB 的延长线于E ,判定△ACD ≌△AEB ,即可得到△ACE 是等腰直角三角形,四边形ABCD 的面积与△ACE 的面积相等,根据S △ACE =12×5×5=12.5,即可得出结论. 【详解】如图,过A 作AE ⊥AC ,交CB 的延长线于E ,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB,∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=12×5×5=12.5,∴四边形ABCD的面积为12.5,故选B.3.(2022·青海中考真题)如图,把直角三角形ABO放置在平面直角坐标系中,已知30OAB∠=,B 点的坐标为()0,2,将ABO沿着斜边AB翻折后得到ABC,则点C的坐标是()A.()4B.(2,C.)D.【答案】C【分析】过点C 作CD ⊥y 轴,垂直为D ,首先证明△BOA ≌△BCA ,从而可求得BC 的长,然后再求得∠DCB=30°,接下来,依据在Rt △BCD 中,求得BD 、DC 的长,从而可得到点C 的坐标.【详解】OAB BAC 30∠∠==,BOA BCA 90∠∠==,AB AB =,BOA ∴≌BCA ,OB BC 2∴==,CBA OBA 60∠∠==,过点C 作CD y ⊥轴,垂直为D ,则DCB 30∠=,1DB BC 12∴==,DC BC 2== )C ∴, 故选C .4.(2022·新疆中考真题)如图,在△ABC 中,∠C=90°,∠A=30°,以点B 为圆心,适当长为半径的画弧,分别交BA ,BC 于点M 、N ;再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D ,则下列说法中不正确的是()A .BP 是∠ABC 的平分线B .AD=BDC .:1:3CBD ABD S S D .CD=12BD 【答案】C【分析】A 、由作法得BD 是∠ABC 的平分线,即可判定;B 、先根据三角形内角和定理求出∠ABC 的度数,再由BP 是∠ABC 的平分线得出∠ABD =30°=∠A,即可判定;C ,D 、根据含30°的直角三角形,30°所对直角边等于斜边的一半,即可判定.【详解】解:由作法得BD 平分∠ABC ,所以A 选项的结论正确;∵∠C =90°,∠A =30°,∴∠ABC =60°,∴∠ABD =30°=∠A ,∴AD =BD ,所以B 选项的结论正确;∵∠CBD =12∠ABC =30°, ∴BD =2CD ,所以D 选项的结论正确;∴AD =2CD ,∴S △ABD =2S △CBD ,所以C 选项的结论错误.故选C .5.(2022·湖南张家界市·中考真题)如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .1【答案】C【分析】如图,过点D 作DE AB ⊥于E ,根据已知求出CD 的长,再根据角平分线的性质进行求解即可.【详解】如图,过点D 作DE AB ⊥于E ,AC 8=,1DC AD 3=,1CD 8213∴=⨯=+, C 90∠︒=,BD 平分ABC ∠,DE CD 2∴==,即点D 到AB 的距离为2,故选C .6.(2022·山东潍坊市·中考真题)如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .③连接OE 交CD 于点M .下列结论中错误的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠D .12OCED S CD OE =⋅四边形 【答案】C【分析】利用基本作图得出是角平分线的作图,进而解答即可.【详解】由作图步骤可得:OE 是AOB ∠的角平分线,∴∠COE=∠DOE ,∵OC=OD ,OE=OE ,OM=OM ,∴△COE ≌△DOE ,∴∠CEO=∠DEO ,∵∠COE=∠DOE ,OC=OD ,∴CM=DM ,OM ⊥CD ,∴S 四边形OCED =S △COE +S △DOE =111222OE CM OE DM CD OE +=, 但不能得出OCD ECD ∠=∠,∴A 、B 、D 选项正确,不符合题意,C 选项错误,符合题意,故选C .7.(2022·山东临沂市·中考真题)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .2【答案】B【分析】根据平行线的性质,得出A FCE ∠=∠,ADE F ∠=∠,根据全等三角形的判定,得出ADE CFE ∆≅∆,根据全等三角形的性质,得出AD CF =,根据4AB =,3CF =,即可求线段DB 的长.【详解】∵//CF AB ,∴A FCE ∠=∠,ADE F ∠=∠,在ADE ∆和FCE ∆中A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ADE CFE AAS ∆≅∆,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .8.(2022·广西河池市·中考真题)如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上,BE CF =,则图中与AEB ∠相等的角的个数是()A .1B .2C .3D .4【答案】C【分析】根据正方形的性质,利用SAS 即可证明△ABE ≌△BCF ,再根据全等三角形的性质可得∠BFC=∠AEB ,进一步得到∠DAE=∠AEB ,∠BFC=∠ABF ,从而求解.【详解】证明:∵四边形ABCD 是正方形,∴,,90AB BC AB BC ABE BCF =∠=∠=︒∕∕,在ABE ∆和BCF ∆中,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴()ABE BCF SAS ∆∆≌,∴BFC AEB ∠=∠,∴BFC ABF ∠=∠,又有EAD AEB ∠=∠故图中与AEB ∠相等的角的个数是3.故选C .9.(2022·四川宜宾市·中考真题)如图,,ABC ECD ∆∆都是等边三角形,且B ,C ,D 在一条直线上,连结,BE AD ,点M ,N 分别是线段BE ,AD 上的两点,且11,33BM BE AN AD ==,则CMN ∆的形状是()A .等腰三角形B .直角三角形C .等边三角形D .不等边三角形【答案】C【分析】先证明BCE ACD ≅,得到BE AD =,根据已知条件可得AN BM =,证明△△BCM ACN ≅,得到=60MCN ∠︒,即可得到结果;【详解】∵,ABC ECD ∆∆都是等边三角形,∴BC AC =,CE CD =,60BCA DCE ∠=∠=︒,∴+BCA ACE DCE ACE ∠∠=∠+∠,∴BCE ACD ∠=∠,在BCE 和ACD △中,BC AC BCE ACD CE CD ⎧=⎪∠=∠⎨⎪=⎩,∴()△△BCE ACD SAS ≅,∴BE AD =,CBMACN ∠=∠, 又∵11,33BM BE AN AD ==, ∴BM AN =,在BCM 和ACN △中,BM AN CBM ACN BC AC ⎧=⎪∠=∠⎨⎪=⎩,∴()△△BCM ACNSAS ≅, ∴BCM ACN ∠=∠,MC NC =,∴+60BCM ACMACN ACM ∠∠=∠+∠=︒, ∴CMN ∆是等边三角形.故答案选C .10.(2022·广西中考真题)如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为( )A .40︒B .45︒C .50︒D .60︒【答案】C【分析】利用等腰三角形的性质和基本作图得到CG AB ⊥,则CG 平分ACB ∠,利用A B ∠=∠和三角形内角和计算出ACB ∠,从而得到BCG ∠的度数.【详解】由作法得CG AB ⊥,∵AB AC =,∴CG 平分ACB ∠,A B ∠=∠,∵1804040100ACB ∠=︒-︒-︒=︒, ∴1502BCG ACB ∠=∠=︒. 故选:C . 二、填空题(共5小题,每小题4分,共计20分)11.(2022·广西玉林市·中考真题)如图,将两张对边平行且相等的纸条交叉叠放在一起,则重合部分构成的四边形ABCD_________菱形(是,或不是).【答案】是【分析】 如图(见解析),先根据“两张对边平行且相等的纸条”得出//,//,AB CD AD BC BE DF =,再根据平行四边形的判定可得四边形ABCD 是平行四边形,然后根据三角形全等的判定定理与性质可得AB AD =,最后根据菱形的判定即可得.【详解】如图,过点B 作BE AD ⊥,交DA 延长线于点E ,过点D 作DF AB ⊥,交BA 延长线于点F 由题意得://,//,AB CD AD BC BE DF =∴四边形ABCD 是平行四边形在ABE △和ADF 中,90BAE DAF AEB AFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩(AAS)ABE ADF ∴≅AB AD ∴=∴平行四边形ABCD 是菱形故答案为:是.12.(2022·黑龙江鹤岗市·中考真题)如图,Rt ABC ∆和Rt EDF ∆中,//BC DF ,在不添加任何辅助线的情况下,请你添加一个条件______,使Rt ABC ∆和Rt EDF ∆全等.【答案】AB ED =,答案不唯一【分析】本题是一道开放型的题目,答案不唯一,可以是AB =ED 或BC =DF 或AC =EF 或AE =CF 等,只要符合全等三角形的判定定理即可.【详解】∵Rt ABC ∆和Rt EDF ∆中,∴90BAC DEF ∠=∠=︒,∵//BC DF ,∴DFE BCA ∠=∠,∴添加AB ED =,在Rt ABC ∆和Rt EDF ∆中DFE BCA DEF BAC AB ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()Rt Rt AAS ABC EDF ∆∆≌,故答案为:AB ED =答案不唯一.13.(2022·辽宁本溪市·中考真题)如图,在ABC ∆中,M ,N 分别是AB 和AC 的中点,连接MN ,点E 是CN 的中点,连接ME 并延长,交BC 的延长线于点D ,若4BC =,则CD 的长为_________.【答案】2【分析】依据三角形中位线定理,即可得到MN=12BC=2,MN //BC ,依据△MNE ≌△DCE (AAS ),即可得到CD=MN=2.【详解】解:∵M ,N 分别是AB 和AC 的中点,∴MN 是△ABC 的中位线,∴MN=12BC=2,MN ∥BC , ∴∠NME=∠D ,∠MNE=∠DCE ,∵点E 是CN 的中点,∴NE=CE ,∴△MNE ≌△DCE (AAS ),故答案为:2.14.(2022·甘肃天水市·中考真题)如图,在边长为6的正方形ABCD 内作45EAF ∠=︒,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,将ADF ∆绕点A 顺时针旋转90︒得到ABG ,若3DF =,则BE 的长为__________.【答案】2【分析】根据旋转的性质可得AG=AF ,GB=DF ,∠BAG =∠DAF ,然后根据正方形的性质和等量代换可得∠GAE =∠F AE ,进而可根据SAS 证明△GAE ≌△F AE ,可得GE=EF ,设BE=x ,则CE 与EF 可用含x 的代数式表示,然后在Rt △CEF 中,由勾股定理可得关于x 的方程,解方程即得答案.【详解】解:∵将△ADF 绕点A 顺时针旋转90︒得到△ABG ,∴AG=AF ,GB=DF ,∠BAG =∠DAF ,∵45EAF ∠=︒,∠BAD =90°,∴∠BAE +∠DAF =45°,∴∠BAE +∠BAG =45°,即∠GAE =45°,∴∠GAE =∠F AE ,又AE=AE ,∴△GAE ≌△F AE (SAS ),设BE=x ,则CE =6-x ,EF=GE=DF+BE =3+x ,∵DF =3,∴CF =3,在Rt △CEF 中,由勾股定理,得:()()222633x x -+=+,解得:x =2,即BE =2.故答案为:2.15.(2022·黑龙江齐齐哈尔市·中考真题)如图,已知在△ABD 和△ABC 中,∠DAB =∠CAB ,点A 、B 、E 在同一条直线上,若使△ABD ≌△ABC ,则还需添加的一个条件是______.(只填一个即可)【答案】AD =AC (∠D =∠C 或∠ABD =∠ABC 等)【分析】利用全等三角形的判定方法添加条件即可求解.【详解】解:∵∠DAB =∠CAB ,AB =AB ,∴当添加AD =AC 时,可根据“SAS ”判断△ABD ≌△ABC ;当添加∠D =∠C 时,可根据“AAS ”判断△ABD ≌△ABC ;当添加∠ABD =∠ABC 时,可根据“ASA ”判断△ABD ≌△ABC .故答案为AD =AC (∠D =∠C 或∠ABD =∠ABC 等).三、解答题(共5小题,每小题10分,共计50分)16.(2022·柳州市柳林中学中考真题)如图,已知OC 平分∠MON ,点A 、B 分别在射线OM ,ON 上,且OA =OB .求证:△AOC ≌△BOC .【答案】见解析【分析】根据角平分线的性质和全等三角形的判定方法可以证明结论成立.【详解】证明:∵OC 平分∠MON ,∴∠AOC =∠BOC ,在△AOC 和△BOC 中,OA OB AOC BOC OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOC (SAS ).17.(2022·江苏连云港市·中考真题)如图,在四边形ABCD 中,//AD BC ,对角线BD 的垂直平分线与边AD 、BC 分别相交于M 、N .(1)求证:四边形BNDM 是菱形;(2)若24BD =,10MN =,求菱形BNDM 的周长.【答案】(1)见解析;(2)52【分析】(1)先证明BON DOM ≌△△,得到四边形BNDM 为平行四边形,再根据菱形定义证明即可; (2)先根据菱形性质求出OB 、OM 、再根据勾股定理求出BM ,问题的得解.【详解】(1)∵//AD BC ,∴CBD ADB ∠=∠.∵MN 是对角线BD 的垂直平分线,∴OB OD =,MB MD =.在BON △和DOM △中,CBD ADB OB OD BON DOM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()BON DOM ASA ≌,∴MD NB =,∴四边形BNDM 为平行四边形.又∵MB MD =,∴四边形BNDM 为菱形.(2)∵四边形BNDM 为菱形,24BD =,10MN =.∴90BOM ︒∠=,1122OB BD ==,152OM MN ==. 在Rt BOM △中,13BM ===.∴菱形BNDM 的周长441352BM ==⨯=.18.(2022·湖南湘西土家族苗族自治州·中考真题)如图,在正方形ABCD 的外侧,作等边角形ADE ,连接BE 、CE .(1)求证:BAE CDE △≌△;(2)求AEB ∠的度数.【答案】(1)见解析;(2)15°.【分析】(1)利用正方形的性质得到AB=CD ,∠BAD=∠CDA ,利用等边三角形的性质得到AE=DE ,∠EAD=∠EDA=60°即可证明;(2)由AB=AD=AE ,得到△ABE 为等腰三角形,进而得到∠ABE=∠AEB ,且∠BAE=90°+60°=150°,再利用三角形内角和定理即可求解.【详解】解:(1)证明:∵四边形ABCD 是正方形,∴AB=CD ,且∠BAD=∠CDA=90°,∵△ADE 是等边三角形,∴AE=DE ,且∠EAD=∠EDA=60°,∴∠BAE=∠BAD+∠EAD=150°,∠CDE=∠CDA+∠EDA=150°,∴∠BAE=∠CDE ,在△BAE 和△CDE 中:=⎧⎪∠=∠⎨⎪=⎩AB CD BAE CDE AE DE ,∴()△≌△BAE CDE SAS .(2)∵AB=AD ,且AD=AE ,∴△ABE 为等腰三角形,∴∠ABE=∠AEB ,又∠BAE=150°,∴由三角形内角和定理可知:∠AEB=(180°-150°)÷2=15°.故答案为:15°.19.(2022·江苏宿迁市·中考真题)如图,在正方形ABCD 中,点E ,F 在AC 上,且AF=CE .求证:四边形BEDF 是菱形.【答案】见解析【分析】由正方形的性质可得AB=AD=CD=BC ,∠DAE=∠BAE=∠BCF=∠DCF=45°,由“SAS”可证△ABE ≌△ADE ,△BFC ≌△DFC ,△ABE ≌△CBF ,可得BE=BF=DE=DF ,可得结论.【详解】∵四边形ABCD 是正方形,∴AB=AD=CD=BC ,∠DAE=∠BAE=∠BCF=∠DCF=45°,在△ABE 和△ADE 中,AB AD BAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADE (SAS ),∴BE=DE ,同理可得△BFC ≌△DFC ,可得BF=DF ,∵AF=CE ,∴AF-EF=CE-EF ,即AE=CF ,在△ABE 和△CBF 中,AB BC BAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBF (SAS ),∴BE=BF ,∴BE=BF=DE=DF ,∴四边形BEDF 是菱形.20.(2022·江苏南通市·中考真题)(1)如图①,点D 在AB 上,点E 在AC 上,AD =AE ,∠B =∠C .求证:AB =AC .(2)如图②,A 为⊙O 上一点,按以下步骤作图:①连接OA ;②以点A 为圆心,AO 长为半径作弧,交⊙O 于点B ;③在射线OB 上截取BC =OA ;④连接AC .若AC =3,求⊙O 的半径.【答案】(1)见解析;(2)⊙O【分析】(1)根据“AAS “证明△ABE ≌△ACD ,然后根据全等三角形的性质得到结论;(2)连接AB ,如图②,由作法得OA=OB=AB=BC ,先判断△OAB 为等边三角形得到∠OAB=∠OBA=60°,再利用等腰三角形的性质和三角形外角性质得到∠C=∠BAC=30°,然后根据含30度的直角三角形三边的关系求OA 的长.【详解】(1)证明:在△ABE 和△ACD 中B C A A AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (AAS ),∴AB =AC ;(2)解:连接AB ,如图②,由作法得OA =OB =AB =BC ,∴△OAB 为等边三角形,∴∠OAB =∠OBA =60°,∵AB =BC ,∴∠C =∠BAC ,∵∠OBA =∠C+∠BAC ,∴∠C =∠BAC =30°∴∠OAC =90°,在Rt △OAC 中,OA =3AC =3×3即⊙O .。

备战九年级中考数学一轮复习第19课 全等三角形(全国通用)

备战九年级中考数学一轮复习第19课 全等三角形(全国通用)

(5)有斜边和一条直角边对应相等的两个直角三角形全等.(HL)
3.(1)如图,点B,F,C,E在同一直线上,AB=DE,AC =DF,BF=EC.求证:△ABC≌△DEF;
证明:由题知AB=DE, AC=DF,BF=EC ∴BF+FC=EC+CF, 即BC=EF ∴△ABC≌△DEF(SSS)
(2)如图,已知AD∥BC,AD=CB,AE=CF. 求证:DF=BE;
DG
DC
∴△BDG≌△ADC(SAS)
∴BG=AC,∠BGD=∠C
又∵∠ADB=∠ADC=90°,E,F分别是BG,AC的中点.
∴DE= 1 BG=EG,DF= 1 AC=AF
2
2
∴DE=DF,∠EDG=∠EGD=∠C,∠FDA=∠FAD
∵∠C+∠DAF=90°
∴∠EDG+∠FDA=90°
∴DE⊥DF
(2)解:∵AC=10 ∴DF=5 ∴在等腰Rt△EDF中,EF= 2 DF=5 2.
20.(202X·牡丹江)如图,在Rt△ABC中,CA=CB,M是AB
的中点,点D在BM上,AE⊥CD,BF⊥CD,垂足分别为E,
F,连接EM.则下列结论中:
①BF=CE;
②∠AEM=∠DEM;
③AE-CE= 2 ME;
∴∠BDE=∠C=69°
17.(202X·齐齐哈尔)如图,已知在△ABD和△ABC中, ∠DAB=∠CAB,点A、B、E在同一条直线上,若使 △ABD≌△ABC,则还需添加的一个条件是_A_C_=__A_D__.(只 填一个即可)
C组
18.(202X·温州)如图,在△ABC和△DCE中,AC=DE,∠B=
∴AE= AC2 CE2 25 144 =13.
19.(齐齐哈尔中考)如图,在△ABC中,AD⊥BC于D,BD =AD,DG=DC,E,F分别是BG,AC的中点. (1)求证:DE=DF,DE⊥DF; (2)连接EF,若AC=10,求EF的长.

2024年中考数学一轮复习课件++第19课时+全等三角形

2024年中考数学一轮复习课件++第19课时+全等三角形
柴棒,点 A、C、E 共线,若 AC=6 cm,CD⊥BC,则线段
CE 的长度为 ( D )
A.6 cm
7 cm
C.6 2 cm
D.8 cm
6.如图,△ACB≌△A'CB',∠ACB=70°,∠ACB'=100°,则
∠BCA'的度数为 ( C )
A.30°
B.35°
C.40°
D.50°
7.(2020·成都)下列各图中 a、b、c 为三角形的边长,则甲、
正方形的边长都为 1,E 为 BD 与正方形网格线的交点,
下列结论正确的是 ( D )
1
A.CE≠ BD
2
B.△ABC≌△CBD
C.AC=CD
D.∠ABC=∠CBD
20.(2020·通辽)如图,在△ ABC 中,∠ACB=90°,AC=BC,点 P 在斜边
AB 上,以 PC 为直角边作等腰直角三角形 PCQ,∠PCQ=90°,则
∴AB=BC,
∵AD∥BE,∴∠A=∠EBC,
∵BD∥CE,∴∠C=∠DBA,
∠ = ∠,
在△ABD 与△BCE 中, = ,
∠ = ∠,
∴△ABD≌△BCE ASA .
13.如图,点 E,F 在 BC 上,且 AE⊥BC 于点 E,DF⊥BC 于点
F,AB=DC,BF=CE,求证:∠A=∠D.
AE,当 BC=5,AC=12 时,AE 的长是 13 .
11.如图,已知 AB∥DE,AB=DE,请你添加一个条件:
∠A=∠D(或BC=EF或∠ACB=∠F) ,使△ABC≌△DEF.
12.如图,B 是线段 AC 的中点,AD∥BE,BD∥CE,
求证:△ABD≌△BCE.

中考数学专题复习课件(第19讲_三角形与全等三角形)

中考数学专题复习课件(第19讲_三角形与全等三角形)

(4)(2010· 广州)在△ABC 中,D、E 分别是边 AB、AC 的中点,若 BC=5,则 DE 的长是 ( ) A.2.5 B.5 C.10 D.15
(5)(2010· 济宁 )若一个三角形三个内角度数的比为 2∶3∶4,那么这个三角形是( A.直角三角形 B.锐角三角形 C.钝角三角形 D.等边三角形
例 精 析
考 点 知 识 精 讲
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
(1)(2010· 山西 )现在四根木棒,长度分别为 4 cm、6 cm、8 cm、10 cm,从中任取三 考 ) 点 根木棒,能组成三角形的个数为( 知 A.1 个 B. 2 个 C. 3 个 D. 4 个 识 精 (2)(2009· 锦州)如图,∠BDC=98° ,∠C=38° ,∠ B=23° ,∠A 的度数是( ) 讲 A.61° B.60° C.37° D.39°
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
3.证明三角形全等的思路 找夹角 (1)已知两边 找直角 找另一边 (2)已知一边一角
找夹角的另一边 边为角的邻边时找夹边的另一角 找边的对角
边为角的对边时,找另一角
举 一 反 三
找夹边 (3)已知两角 找任意一边 1判定三角形全等必须有一组对应边相等 ; ..... 2判定三角形全等时不能错用 “SSA”“ AAA”来判定 .
举 一 反 三
考 点 训 练

中考数学一轮复习《全等三角形》专项练习题-附参考答案

中考数学一轮复习《全等三角形》专项练习题-附参考答案

中考数学一轮复习《全等三角形》专项练习题-附参考答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC等于()A.3 B.4 C.7 D.82.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去3.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=60°,∠ACB= 40°,然后在BC的同侧找到点M使∠MBC=60°,∠MCB=40°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA4.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°5.如图,在△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB,若BC=7,BD=4,则DE的长为()A.5 B.4 C.3 D.26.如图,在△ABC中,点D在AC上,BD平分∠ABC,延长BA到点E,使得BE=BC,连接DE.若∠ADE=38°,则∠ADB的度数是()A.68°B.69°C.71°D.72°7.如图∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE垂足分别是点D,E,若AD=3,BE=1则DE的长是()C.3 D.4A.2 B.528.如图,∠C=90°,AD平分∠BAC,DE⊥AB于点E,有下列结论:①CD=ED;②AC+BE=AB;③DA平分∠CDE;④∠BDE=∠BAC;⑤S△ABD:S△ACD=AB:AC.其中结论正确的个数有()A.5个B.4个C.3个D.2个二、填空题9.如图,∠ACD=∠BCE,BC=EC,要使△ABC≌△DEC,则可以添加的一个条件是.10.如图所示,在△ABC中,∠C=90°,AB=8,AD是△ABC的一条角平分线.若CD=2,则△ABD的面积为.11.如图,在Rt△ABC中,∠BAC=90°,分别过点B,C作过点A的直线的垂线BD,若BD=4cm,CE=3cm则DE= cm.12.如图,把两根钢条AB,CD的中点连在一起做成卡钳,已知AC的长度是6cm,则工件内槽的宽BD是cm.13.如图,△ABC为等腰直角三角形AC=BC,若A(−3,0),C(0,2),则点B的坐标为.三、解答题14.如图,四边形ABCD中∠A=∠D,AB=CD,且点E、F分别是线段AD、BC的中点.求证:EF⊥BC.15.如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.=,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足,16.如图,在ABC中AC BC=.求证:且AE CF⊥;(1)AC BC(2)AE BF EF+=.17.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)证明:△BCE≌△CAD;(2)若AD=25cm,BE=8cm,求DE的长.18.如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD为一边作等边三角形CDE,连接AE.(1)求证:△CBD≌△CAE.(2)判断AE与BC的位置关系,并说明理由.参考答案1.C2.C3.D4.B5.C6.C7.A8.A9.AC=DC(答案不唯一)10.811.712.613.(2,-1)14.证明:∵点E是AD的中点∴EA=ED在△ABE,△DCE中{EA=ED∠A=∠DAB=CD ∴△ABE≌△DCE(SAS)∴EB=EC∵点F是BC的中点.∴BF=FC∴EF⊥BC.15.(1)证明:在△ACD与△ABE中∵{∠A=∠A∠ADC=∠AEB=900AC=AB∴△ACD≌△ABE∴AD=AE.(2)答:直线OA 垂直平分BC .理由如下:连接BC ,AO 并延长交BC 于F 在Rt △ADO 与Rt △AEO 中{OA =OAAD =AE∴Rt △ADO ≌Rt △AEO (HL )∴∠DAO=∠EAO即OA 是∠BAC 的平分线又∵AB=AC∴OA ⊥BC 且平分BC .16.(1)证明:AE l ⊥ BF l ⊥90AEC BFC ∠∠∴==.在Rt ACE 和Rt CBF △中,,AC BC AE CF =⎧⎨=⎩∴()Rt Rt HL ACE CBF ≌△△EAC BCF ∴∠=∠.90EAC ACE ∠∠+=90ACE BCF ∠∠∴+=即1809090ACB ∠=-=.AC BC ∴⊥(2)解:Rt Rt ACE CBF △≌△CE BF ∴=.又AE CF = CF CE EF +=AE BF EF ∴+=.17.(1)证明:∵∠ACB =90°,BE ⊥CE ,AD ⊥CE ∴∠BEC =∠ACB =∠ADC =90°∴∠ACE+∠BCE =90°,∠BCE+∠CBE =90° ∴∠ACD =∠CBE在△BCE 和△CAD 中{∠ADC =∠BEC ∠ACD =∠CBE AC =BC∴△BCE ≌△CAD (AAS );(2)解:∵△BCE ≌△CAD∴AD =CE ,BE =CD∴DE =CE ﹣CD =AD ﹣BE =25﹣8=17(cm ).18.(1)证明:∵△ABC 、△DCE 为等边三角形 ∴AC=BC ,EC=DC ,∠ACB=∠ECD=∠DBC=60° ∵∠ACD+∠ACB=∠DCB ,∠ECD+∠ACD=∠ECA ∴∠ECA=∠DCB在△ECA 和△DCB 中{AC =BC ∠ECA =∠DCB EC =DC∴△ECA ≌△DCB (SAS );(2)解:∵△ECA ≌△DCB∴∠EAC=∠DBC=60°又∵∠ACB=∠DBC=60°∴∠EAC=∠ACB=60°∴AE ∥BC .。

中考初三数学 一轮复习导学案及专题精练 (含答案)

中考初三数学 一轮复习导学案及专题精练 (含答案)

中考一轮复习导学案及专题精练目录➢第1讲实数概念与运算➢第2讲整式与因式分解➢第3讲分式➢第4讲二次根式➢第5讲一元一次方程及其应用➢第6讲一次方程组及其应用➢第7讲一元二次方程及其应用➢第8讲分式方程及其应用➢第9讲一元一次不等式组及其应用➢第10讲平面直角坐标系与函数➢第11讲一次函数的图象与性质➢第12讲一次函数的应用➢第13讲反比例函数➢第14讲二次函数的图象及其性质➢第15讲二次函数与一元二次方程➢第16讲二次函数的应用➢第17讲几何初步及平行线相交线➢第18讲三角形与多边形➢第19讲全等三角形➢第20讲等腰三角形➢第21讲直角三角形与勾股定理➢第22讲相似三角形及其应用第1讲 实数概念与运算一、知识梳理实数的概念1、实数、有理数、无理数、绝对值、相反数、倒数的概念。

(1)_____________叫有理数,_____________________叫无理数;______________叫做实数。

(2)相反数:①定义:只有_____的两个数互为相反数。

实数a 的相反数是______0的相反数是________②性质: 若a+b=0 则a 与b 互为______, 反之,若a 与b 互为相反数,则a+b= _______(3)倒数:①定义:1除以________________________叫做这个数的倒数。

②a 的倒数是________(a ≠0)(4)绝对值:① 定义:一般地数轴上表示数a 的点到原点的_______, 叫数a 的绝对值。

②2、平方根、算术平方根、立方根(1)平方根:一般地,如果_________________________,这个数叫a 的平方根,a 的平方根表示为_________.(a ≥0)(2)算术平方根:正数a 的____的平方根叫做a 的算术平方根,数a 的算术平方根表示为为_____(a ≥0)(3)立方根:一般地,如果_________,这个数叫a 的立方根,数a 的立方根表示为______。

2019年人教版中考数学一轮复习《全等三角形》同步练习(含答案)

2019年人教版中考数学一轮复习《全等三角形》同步练习(含答案)

2019年中考数学一轮复习全等三角形一、选择题1.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S=9,DE=2,AB=5,则AC长是()△ABCA.3 B.4 C.5 D. 62.如图,已知AD∥BC,AP平分∠DAB,BP平分∠ABC,点P恰好在CD上,则PD与PC的大小关系是()A.PD>PC B.PD=PC C.PD<PC D.无法判断3.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.90°B.150°C.180°D.210°4.如图,已知点P到AE、AD、BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是( )A.①②③④B.①②③C.④D.②③5.已知图中的两个三角形全等,则∠度数是()A.72°B.60°C.58°D.50°6.如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于O,AO的延长线交BC于F,则图中全等的直角三角形有( )A.3对B.4对C.5对D.6对7.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE8.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB于点E,若BC=7,则AE的长为()A.4 B.5 C.6 D.79.如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为( )A.90°B.108°C.110°D.126°10.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是()。

中考数学第一轮夯实基础《第19讲 全等三角形》(课本回归+考点聚焦+典例题解析)课件 苏科

中考数学第一轮夯实基础《第19讲 全等三角形》(课本回归+考点聚焦+典例题解析)课件 苏科

[解析] 根据题意,有CD=BC,∠ABC=∠EDC, ∠ACB=∠ECD,根据ASA可以证明△ABC≌△EDC. 解:因为AB⊥BF,DE⊥BF,B、D分别为垂足, 所以∠ABC=∠EDC=90°. 又因为BC=CD,∠ACB=∠ECD, 所以△ABC≌△EDC. 所以AB=ED.
第19讲┃ 回归教材
5.斜边和一条直角边对应相等的两个直角三角形 全等(简记为_H__L_ )
第19讲┃ 考点聚焦
拓展延 伸
满足下列条件的三角形是全等三角形:
(1)有两边和其中一边上的中线对应相等的两个三角形全等; (2)有两边和第三边上的中线对应相等的两个三角形全等; (3)有两角和其中一角的平分线对应相等的两个三角形全等; (4)有两角和第三个角的平分线对应相等的两个三角形全等; (5)有两边和其中一边上的高对应相等的锐角(或钝角)三角形 全等;
图19-2
第19讲┃ 归类示例
第19讲┃ 归类示例
变式题2[2013·江津 ]如图19-3,在△ABC中,AB=CD ,∠ABC=90°,F为AB延长线上一点,点E在BC上,且 AE=CF.
(1)求证:Rt△ABE≌Rt△CBF; (2)若∠CAE=30°,求∠ACF的度数.
[解析] 可以利用旋转Rt△ABE 到Rt△CBF,证明 Rt△ABE≌Rt△CBF.
中考变式
[2013·柳州]如图19-6,小强利用全等三角形的知识测 量池塘两端M、N的距离,如果△PQO≌△NMO,则只需 测出其长度的线段是( B )
A.PO B.PQ C.MO D.MQ
图19-3
第19讲┃ 归类示例
[解析] 要想利用△PQO≌△NMO求得MN的长 ,只需求得线段PQ的长,故选B.
第19讲┃ 全等三角形

中考数学一轮复习第19讲全等三角形专题精练

中考数学一轮复习第19讲全等三角形专题精练
4.证明:∵在△ABE和△ACD中,∠B=∠C,AB=AC,∠A=∠A,∴△ABE≌△ACD(ASA).∴BE=CD.
5.(1)证明:在梯形ABCD中,∵AD∥BC,AB=CD,
∴∠ABE=∠BAD,∠BAD=∠CDA.
∴∠ABE=∠C DA。
在△ABE和△CDA中,
∴△ABE≌△CDA.
(2)解:由(1)得∠AEB=∠CAD,AE=AC,∴∠AEB=∠ACE。
四、 中考链接
14.如图,已知在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过点E作AC的垂线,交CD的延长线于点F.求证:AB=FC.
15.如图,点A,B,D,E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC =EF.
参考答案
一、 夯实基础
1.A 设∠A=x,则∠B=2x,∠C=x+20°,则x+2x+x+20°=180°,解得x=40°,即∠A=40°。
A.5 m B.15 m
C.20 m D.28 m
7.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )
A.2 B.4
C.3 D.4
8.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B=__________.
9.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )
2.B由已知可得两个三角形已有两组边对应相等,还需要另一组边对应相等或夹角对应相等,只有B能满足条件.
3.①②④由题意知AD=AD,条件①可 组成三边对应相等,条件②可组成两角和其中一角的对边对应 相等,条件④可组成两边及其夹角对应相等,这三个条件都可得出△ADB≌△ADC,条件③组成的是两边及其一边的对角对应相等,不能得出△ADB≌△ADC.

中考数学总复习第四单元三角形第19课时全等三角形

中考数学总复习第四单元三角形第19课时全等三角形

相等
全等三角形的对应边上的中线④
全等三角形的对应角平分线⑤
相等
相等
第三页,共三十四页。
课前双基巩固
考点(kǎo diǎn)三
全等三角形的判定
1. 全等三角形的判定定理
对应元素
两边一角
一般
三角形
两角一边
直角
三角形
2021/12/9
两边及其①
三角形是否全等
夹角( jiā
两边及其中一边的②
jiǎo)
对角(duì jiǎo)
= ,
= ,Biblioteka ∴Rt△ABC≌Rt△DCB(HL),
∴∠ACB=∠DBC,∴OB=OC.
图 19-13
2021/12/9
第二十一页,共三十四页。
高频考向探究
探究(tànjiū)二
全等三角形的开放性问题
【命题角度】
(1)添加条件使三角形全等;
(2)由三角形全等得出有关结论并证明.
例 2 如图 19-14,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD 的是 (
不稳定性 叫做四边形的不稳定性
2021/12/9
第九页,共三十四页。
课前双基巩固
考点五 角平分线的性质(xìngzhì)与判定
2021/12/9
性质
角平分线上的点到角两边的① 距离( jùlí)相等
判定
角的内部到角两边的距离相等的点在这个角的②
第十页,共三十四页。
平分线

课前双基巩固
对点演练(yǎn liàn)
[解析] ∵在△ABC 中,∠C=31°,∠ABC
BC,那么∠A=
的平分线 BD 交 AC 于点 D,∴∠DBE=

中考复习第19课时全等三角形

中考复习第19课时全等三角形

九年级数学讲学稿系列(北师大版)中考复习第19课时全等三角形课型复习课主备人审核人九年级数学备课组上课时间学习目标1.了解全等三角形的概念及角平分线的性质;2.掌握三角形全等的条件与性质;3.会应用全等三角形的性质与判定及角平分线的性质进行有关的计算证明推理。

学习重难点重点:全等三角形的性质与判定的应用;难点:能灵活应用全等三角形的性质与判定进行推理。

学习方法知识回顾、讲练结合学科核心素养培养学生数学抽象、推理能力。

复习过程一、创设情境,引出课题:某同学把一块三角形的玻璃打碎成了三片,现在要带第块玻璃去店里就可配到与原来一样的玻璃。

师:上述问题的实质是判断三角形全等需要什么条件的问题,今天这节课我们来复习全等三角形。

(引出课题)二、展示学习目标三、基础知识梳理全等三角形听来的容易忘记,看到的会记得住,做过的才能掌握!1无限相信自己的潜能----学好数学从动手、动脑开始!!! 拥有一个理想,成就更好的自己!2 四、考点训练、引入真题考点一 全等三角形性质与判定1. 如图1△ABE ≌△DEC ,且BD=5,AE=2,则CE 的长 ()A.2B.3C.5D.2.5 图12.如图1,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB 的是( )A.∠A =∠DB.∠ACB =∠DBCC.AC =DBD.AB =DC变式训练:①已知,如图2,线段AE ,BD 交于点C ,AB=DE ,请你添加一个条件___________,△ABC ≌△DEC . ②已知,如图3点D,E 分别在AB 、CD 上,BE 、CD 相交于点O,AE=AD,要使 △AB E ≌△ACD ,可以添加的一个条件是 。

图2 图3 图43.如图4,D 在BC 边上,△ABC ≌△ADE ,∠EAC =40°,则∠B 的度数为_______.点拨:注意图形中隐含公共边、公共角、对顶角可作为推理的依据。

考点二 角平分线性质与判定4. 如图5,在△ABC 中,AD 是△ABC 中的角平分线,BD =CD ,DE ⊥AB ,DF ⊥AC ,请你在图中找出三对全等的三角形,并任选一对进行证明.①_____ _②____ _③__ __.EB C A中考数学复习我记牢:温故知新、扎实基础----自己做、不放过。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第19讲:全等三角形
一、夯实基础
1.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于( )
A.40° B.60° C.80° D.90°
2.如图,已知点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )
A.∠BCA=∠F B.∠B=∠E
C.BC∥EF D.∠A=∠EDF
3.在△ADB和△ADC中,下列条件:①BD=DC,AB=AC;②∠B=∠C,∠BAD=∠CAD;③∠B
=∠C,BD=DC;④∠ADB=∠ADC,BD=DC.能得出△ADB≌△ADC的序号是__________.4.如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BE=CD.
5.如图,在梯形ABCD中,已知AD∥BC,AB=CD,延长线段CB到E,使BE=AD,连接AE,AC.
(1)求证:△ABE≌△CDA;
(2)若∠DAC=40°,求∠EAC的度数.
二、能力提升
6.如图,为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16 m,PB =12 m,那么AB间的距离不可能是( )
A.5 m B.15 m
C.20 m D.28 m
7.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )
A.2 2 B.4
C.3 2 D.4 2
8.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B=__________.
9.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )
A.AB=AC B.BD=CD
C.∠B=∠C D.∠BDA=∠CDA
10.下面的命题中,真命题是( )
A.有一条斜边对应相等的两个直角三角形全等
B.有两条边和一个角对应相等的两个三角形全等
C.有一条边对应相等的两个等腰三角形全等
D.有一条高对应相等的两个等边三角形全等
三、课外拓展
11.如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大,若∠A减少α度,∠B增加β度,∠C增加γ度,则α,β,γ三者之间的等量关系是__________.
12.如图所示,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为__________.
13.如图,点B,C,F,E在同一直线上,∠1=∠2,BC=FE,∠1__________(填“是”或“不是”)∠2的对顶角,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是__________(只需写出一个).
四、中考链接
14.如图,已知在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过点E作AC的垂线,交CD的延长线于点F.求证:AB=FC.
15.如图,点A,B,D,E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF.
参考答案
一、夯实基础
1.A 设∠A =x ,则∠B =2x ,∠C =x +20°,则x +2x +x +20°=180°,解得x =40°,即∠A =40°.
2.B 由已知可得两个三角形已有两组边对应相等,还需要另一组边对应相等或夹角对应相等,只有B 能满足条件.
3.①②④ 由题意知AD =AD ,条件①可组成三边对应相等,条件②可组成两角和其中一角的对边对应相等,条件④可组成两边及其夹角对应相等,这三个条件都可得出△ADB ≌△ADC ,条件③组成的是两边及其一边的对角对应相等,不能得出△ADB ≌△ADC.
4.证明:∵在△ABE 和△ACD 中,∠B =∠C ,AB =AC ,∠A =∠A ,∴△ABE ≌△ACD(ASA).∴BE =CD.
5.(1)证明:在梯形ABCD 中,∵AD ∥BC ,AB =CD , ∴∠ABE =∠BAD ,∠BAD =∠CDA. ∴∠ABE =∠C DA.
在△ABE 和△CDA 中,⎩⎪⎨⎪

AB =CD ,∠ABE =∠CDA ,
BE =DA ,
∴△ABE ≌△CDA.
(2)解:由(1)得∠AEB =∠CAD ,AE =AC ,∴∠AEB =∠ACE. ∵∠DAC =40°,∴∠AEB =∠ACE =40°. ∴∠EAC =180°-40°-40°=100°. 二、能力提升
6.D 由三角形三边关系知16-12<AB <16+12,故选D. 7.B 因为由已知可证明△BDF ≌△ADC ,所以DF =CD. 8.70° 9. B
三、课外拓展 11.α=β+γ
12.60° ∵∠A +∠B +∠C =180°,∠CDE +∠CED +∠C =180°, ∴∠A +∠B =∠CDE +∠CED.
∴∠A +∠B +∠CDE +∠CED =2(∠A +∠B)=280°. ∵∠1+∠2+∠CDE +∠CED +∠A +∠B =360°,
∴∠1+∠2=360°-280°=80°. 又∵∠1=20°,∴∠2=60°. 13.不是 ∠B =∠E(答案不唯一) 四、中考链接
14.证明:∵FE ⊥AC 于点E ,∠ACB =90°, ∴∠FEC =∠ACB =90°. ∴∠F +∠ECF =90°. 又∵CD ⊥AB 于点D , ∴∠A +∠ECF =90°. ∴∠A =∠F.
在△ABC 和△FCE 中,⎩⎪⎨⎪

∠A =∠F ,∠ACB =∠FEC ,
BC =CE ,
∴△ABC ≌△FCE.∴AB =FC. 15.证明:∵AD =EB , ∴AD -BD =EB -BD ,即AB =ED. 又∵BC ∥DF ,∴∠CBD =∠FDB. ∴∠ABC =∠EDF. 又∵∠C =∠F , ∴△ABC ≌△EDF. ∴AC =EF.。

相关文档
最新文档