第1讲 复习一次函数

合集下载

(课件1)《一次函数》复习总结

(课件1)《一次函数》复习总结
(1)y1与x的函数解析式为________; (2)五月份该公司的总销售量为______; (3)设公司五月份售出甲种型号器材t台,则乙种型号器材 _____台,丙种型号器材_____台,五月份总销售利润为W(万元 ),求W与t的函数关系式;(销售利润=销售额-进价-其他各 项支出)
(4)请推测该公司五月份总销售利润的最大值.
不妨 取k=1,得b=1. ∴ 解析式为y=x+1;
取k=2,得b=0, ∴解析式为y=2x;
取k=3,得b=-1,∴解析式为y=3x-1; …
∴满足条件的解析式有无数个,故答案为:
y=x+1或y=2x或y=3x-1…等.
例2.某班同学在探究弹簧的长度跟外力的变化关系时,实验
记录得到的相应数据如下表: 则y关于x的函数图象是( D )
(4)请推测该公司五月份总销售利润的最大值.
解:(3)设售出乙种型号器材a台,则丙种型号器材( 60-t-a )台 由进货款为64万元列方程得,
0.9t+1.2a+1.1 ( 60-t-a )=64 解得a=2t-20, 60-t-a=-3t+80
即,乙种型号器材2t-20台,丙种型号器材-3t+80台,
4 3
x+4
例像3与.x已轴知和:y如轴图交,于在A,B平两面点直,角将坐△标A系O中B绕,点一O次顺函时数针y旋= 43转x+930的°图后
得到△ A’OB’.
y
A’
(1)求直线A’B’的解析式
BC
(2)若直线A’B’与直线AB相交于点C,
求S△A’BC: S△AOB的值
A
0
B’ X
(2) ∵ OA’=4,OB=3, ∴ A’B=4-3=1

一次函数复习1

一次函数复习1

(B)大于4件
l2
300 200 (C)等于4件 100 (D)大于或等于4件 O 1 2 3 4
5 6
X(件)
一慢车和一快车沿相同路线从A地到B地,所行的 路程与时间的函数图象如图,试根据图象回答下 列问题 (1)慢车比快车早出发 2 小时, 快车追上慢车时行使了 276 千米, 快车比慢车早 4 小时到达B地; (2)回答下列三个问题:
y=2x
y=-3x+1
y=x2
5 y x
2、某函数具有下列两条性质
(1)它的图像是经过原点(0,0)的一条直线;
(2)y的值随x值的增大而增大。 请你举出一个满足上述条件的函数(用关系式表示)
2 3、函数 y x 4 的图像与x轴交点坐标为________, 3
与y轴的交点坐标为____________。
y行李票费用(元)
10 6
(1) y=0.2x-6 (2) 30kg (3)9.8元
o
40
60
x 行李重量(千克)
80
讨论发言
柴油机在工作时油箱中的余油量Q(千克)
与工作时间t(小时)成一次函数关系,当工作开始时 油箱中有油40千克,工作3.5小时后,油箱中余油22.5
千克(1)写出余油量Q与时间t的函数关系式;
一、知识要点:
kx +b 1、一次函数的概念:函数y=_______(k、b为常 ≠0 =0 数,k______)叫做一次函数。当b_____时,函数 kx ≠0 y=____(k____)叫做正比例函数。 ★理解一次函数概念应注意下面两点:
K≠0 1 ⑴、解析式中自变量x的次数是___次,⑵系数_____。
x
(2).一次函数图像y=2x-4与x轴的交点的坐

一次函数复习1

一次函数复习1

解:由图像知直线过(-2,0),(0,-1)两点, 把两点的坐标分别代入y=kx+b,得 0=-2k+b
-1=b Y
解得 k=- 1
2
b=-1
-2
所以,其函数解析式为y= - 1x-1
-1
X
2
四.知识拓展
1.直线y=k1x+b1 、y=k2x+b2.若平行则
k1=k2 b1≠b2
若与y轴相交于同一点,则 k1 ≠ k2 b1= b2
y
o
x
A
y
o
x
B
y
o
x
C
y
o
x
D
例:线段AB, CD分别是一辆轿车的油箱剩余油量y1 (升) 与另一辆客车的油箱剩余油量y2 (升)关于行驶路程 x(千米)的函数图象。
(1)分别求y1, y2关于x的函数解析式,并写出定义域。
(2)如果两车同时出发,轿车的行驶速度为每小时100千米,
客车的行驶速度为每小时80千米,当邮箱的剩余油量相同
y
x
4.函数y=(-k+3)x+(2k-4)
(1)当k =2 时,函数图像过原点. (2)当k﹤3 时, y随x的增大而增大.
5.函数y=kx+b 当k>0,b<0时,此函数图像不经过
的象限是 第二象限
y x
6.一次函数y=(a-5)x+(a-3)的图像不经过第三
象限,则a的取值范围 _3_≤_a_﹤__5_
(1) y 2x (2) y 1 (3) y x 1(4) y kx b x
答: (1)是 (2)不是 (3)是 (4)不是
2:函数y=(k+2)x+( k2-4)为正比例

一次函数专题复习——k的再认识1

一次函数专题复习——k的再认识1

一次函数专题复习(1)——“k ”的再认识1班级________ 姓名__________一、学习目标:1.进一步认识一次函数y =kx +b (k ≠0)中的常数k 的作用.2.进一步体会数形结合的数学思想.二、探究活动探究1:探究“k ”的取值和两直线位置关系1、在同一直角坐标系中画出下列一次函数的图像: (1)22,21y x y x =-=+ (2)11,21y x y x =+=--2、根据图象 (1)填表: (2)性质①平移:一般地,一次函数y =kx +b 的图象是由正比例函数y =kx 的图象沿y 轴向上(b >0)或向下(b <0)平移b 个单位长度得到的.思考1:一次函数的图像若沿x 轴向左或向右平移,则函数的解析式会有什么变化?②位置关系: 已知两条直线l 1:y 1=k 1x +b 1与l 2:y 2=k 2x +b 2,若l 1∥l 2,则k 1与k 2的关系为 ; 若l 1⊥l 2,则k 1与k 2的关系为 .反之也是成立的.思考2:一条直线k 确定了,b 不确定,这些直线之间有什么位置关系?反过来如果一条直线b 确定了,k 不确定,又是怎样一种情形?例1.如图,是一个正比例函数的图象,(1)把该图象向上平移一个单位长度,得到的函数图象的表达式为 . (2)把该图象向左平移2个单位长度,得到的函数图象的表达式为 .例2.对于直线y =-2x +4 ,与它(1)关于x 轴成对称的直线解析式为 . (2)关于y 轴成对称的直线解析式为 .练习1.已知直线y =kx +b 与直线y =3x -1平行,且过(0,12)点,这条直线的函数解析式为_ ___练习2.对于一次函数y =-2x +4,下列结论错误的是( ) A .函数值随自变量的增大而减小 B .函数的图象不经过第三象限C .函数的图象向下平移4个单位长度得y =-2x 的图象D .函数的图象与x 轴的交点坐标是(0,4)例3.如图,有一种动画程序,屏幕上方正方形区域ABCD 表示黑色物体甲,其中A ( 1,1 ) B ( 2,1 ) C ( 2,2 ) D ( 1,2 ),用信号枪沿直线2y x b =+发射信号,当信号遇到区域甲时,甲由黑变白,则当b 的取值范围为___________时,甲能由黑变白.变式:把直线表达式改为y =-2x +b , 其他条件不变,则当b 的取值范围为___________时,甲能由黑变白.练习3.如图,A (0,1),M (3,2),N (4,4).动点P 从点A 出发,沿y轴以每秒1个单位长的速度向上移动,且过点P 的直线l :y =-x +b 也随之移动,设移动时间为t 秒. (1)当t =3时,求l 的解析式;(2)若点M ,N 位于l 的异侧,确定t 的取值范围;(3)直接写出t 为何值时,点M 关于l 的对称点落在坐标轴上.x一次函数专题复习(1)——“k ”的再认识2班级________ 姓名__________一、学习目标:1.进一步认识一次函数y =kx +b (k ≠0)中的常数k 的作用.2.进一步体会数形结合的数学思想. 二、复习回顾:一天,一次函数y =kx +b (k ≠0)中的两个常数k 和b 之间发生了激烈的争论,都夸自己的作用大,争了半天也没有结果.这时y 说话了:“你们都不要争了,我来评评理.k 先说说你的作用.”k :我的作用可大着呢?首先,我的正负可决定函数的增减性,当我大于零(k >0)时,y 的值随x 的增大而增大……三、探究探究2:探究k 的取值与x 轴夹角的关系1.在同一直角坐标系中画出下列一次函数的图象:(1)y =x +1, y =2x +1, y =4x +1; (2)y =-x +1, y =-2x +1, y =-4x +1,思考1:经过画图你发现一次函数y =kx +b 的图象与x 轴所成的锐角大小与什么有关?2.典型例题例1.如图,三个正比例函数的图象分别对应表达式:①y =ax ,②y =bx ,③y =cx ,将a ,b ,c 从小到大排列并用“<”连接为____________. 例2. 在平面直角坐标系中,线段AB 的端点坐标为A (1,2),B (2,1),直线y kx与线段AB 有交点,求k 的范围.变式1:在平面直角坐标系中,线段AB 的端点坐标为A (-2,4),B (4,2),不于y 轴重合的直线y kx =与线段AB 有交点,则k 的范围是_____________.变式2:在平面直角坐标系中,线段AB 的端点坐标为A (-2,4),B (4,2),不于y 轴重合的直线y kx =-2与线段AB 有交点,则k 的范围是_____________.思考2:当直线与x 轴的夹角为45°时,k 的值为多少?为什么?30°、60°呢?例3.如图,已知A0),直线y =x +b (b >0)与y 轴交于点B ,与x 轴交于点C ,连接AB ,∠α=75°,(1)∠BCA=_______°;(2)则b 的值为_________.例4.如图,已知直线l :y=33x ,过点A (0,1)作y 轴的垂线交直线l 于 点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…按此作法继续下去,则点A 2014的坐标为 .变式.如图,已知直线l :y,过点M (2,0)作x 轴的垂线交直线l 于点N ,过点N 作直线l 的垂线交x 轴于点M 1;过点M 1作x 轴的垂线交直线l 于N 1,过点N 1作直线l 的垂线交x 轴于点M 2,…;按此作法继续下去,则点M 10的坐标为__________.y。

第1讲-用一次函数看方程、不等式

第1讲-用一次函数看方程、不等式

y2 1 1 O -2 -1x第1讲-用一次函数看方程、不等式序号知识点典型练习1从函数的角度看解一元一次方程:以x 为未知数的一元一次方程可以变形为ax +b =0(a ≠0)的形式,解一元一次方程相当于在一次函数y =ax +b 的函数值为0时,求自变量x 的值.1.若关于x 的方程kx +b =0的解是x =2,则一次函数y =kx +b 与x 轴的交点坐标是 .2从函数的角度看解一元一次不等式:以x 为未知数的一元一次不等式可以变形为ax +b >0或ax +b <0(a ≠0)的形式,解一元一次不等式相当于在一次函数y =ax+b 的值大于0或小于0时,求自变量x 的取值范围.一般地,已知函数值范围求自变量x 的范围或者已知自变量范围求函数值范围时,可以通过观察图象得到(数形结合). 2.如图,一次函数y =kx +b 的图象与x 轴交于点A (-1,0)则关于x 的不等式kx +b >0的解集是 .3从函数的角度看解二元一次方程组: 由含有未知数x 和y 的两个二元一次方程组成的二元一次方程组对应两个一次函数,也对应两条直线.从“数”的角度看,相当于求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从“形”的角度看,相当于确定两条相应的直线的交点坐标. 3.已知直线y =k 1x +b 1与y =k 2x +b 2的交点坐标为(1,4),则方程组⎩⎨⎧y =k 1x +b 1,y =k 2x +b 2的解为 .4.(1)直线y =x +3与x 轴的交点坐标 ,所以相应的方程x +3=0的解是 .(2)如图,直线y =kx +b :①关于x 的方程kx +b =0的解是 , ②关于x 的不等式kx +b <0的解集是 ; ③当x <0时,函数值y 的取值范围是 .5.若关于x 的方程kx +b =0的解是x =-4,则一次函数y =kx +b 的图象与x 轴的交点坐标为 .-21O yx-3Oxy -6 y 1=kx yy 2=ax+bx -2O -4 P6.已知一次函数y =kx +b 的图象,如图所示,当x <0时,y 的取值范围是( ).A .y >0B .y <0C .-2<y <0D .y <-27.如图,已知一次函数图象y =-2x -6,利用图象回答: (1)不等式-2x -6>0解集是 ,不等式-2x -6<0解集是 ;(2)函数图象与坐标轴围成的三角形的面积为 ; (3)当y =-4时,则x = ,当y =2时,则x = ;(4)如果y 的取值范围-4<y ≤2,则x 的取值范围 ;(5)如果x 的取值范围-3≤x ≤3,则y 的最大值是 ,最小值是 ; (6)若直线y =3x +4和直线y =-2x -6交于点A ,则点A 的坐标 .8.如图所示,已知直线y 2=ax +b 和直线y 1=kx 的图象交于点P ,利用图象回答:(1)关于二元一次方程组⎩⎨⎧y =ax+b ,y =kx的解是 ,则两直线的交点坐标是 ;(2)当y 2<y 1时,则x 的取值范围是 ; (3)当ax +b ≥kx 时,则x 的取值范围是 ; (4)当ax ≤kx -b 时,则x 的取值范围是 .9.(15海珠期末)直线y =x +1与直线y =-2x +a 的交点在第一象限,则a 的取值可以是( ). A .2B .1C .0D .-110.(15一中期末)如图,已知函数y1=3x+b和y2=ax-3的图象交于点P(-2,-5),则不等式3x+b>ax-3的解集为.11.(13太原期末改编)如图,直线l1:y1=x+1与直线l2:y2=mx+n相交于点P(1,b),直线y2与x轴交于点A(4,0).(1)求b的值并直接写出关于x,y的方程组1y xy mx n=+⎧⎨=+⎩的解;(2)求直线l2的表达式;(3)判断直线l3:y3=nx+m是否也经过点P?请说明理由.(4)若y3>y2>0,则x的取值范围是________________.12.已知一次函数y =kx+b的图象,如图所示,当y<0时,x的取值范围是().A.x>0B.x<0C.0<x<1D.x<113.(11广州)当实数x的取值使得x-2有意义时,函数y=4x+1中y的取值范围是().A.y≥-7B.y≥9 C.y>9D.y≤9 14.(15海珠期末)如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确的是().A.B.C.D.15.如图,1l反映了某公司的销售收入与销售量的关系,2l反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量().A.小于3t B.大于3t C.小于4t D.大于4t第14题第15题16.(16天河期末)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<4时,y1<y2;④b<0.其中正确的结论的个是().A.4个B.3个C.2个D.1个-2yO1x17.(16南充)小朱和爸爸从家步行去公园,爸爸先出发一直匀速前行,小朱后出发.家到公园的距离为2500m,如图是小明和爸爸所走的路程s(m)与步行时间t(min)的函数图象.(1)直接写出小朱所走路程s与时间t的函数关系式;(2)小朱出发多少时间与爸爸第三次相遇?(3)在速度都不变的情况下,小朱希望比爸爸早20min到达公园,则小朱在步行过程中停留的时间需作怎样的调整?18.(15衢州)高铁的开通,给衢州市民出行带来了极大的方便,“五一”期间,小卓卓和小越越相约到杭州市的某游乐园游玩,小卓卓乘私家车从衢州出发1小时后,小越越乘坐高铁从衢州出发,先到杭州火车站,然后再转出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示.请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米?(2)当小越越达到杭州火车东站时,小卓卓距离游乐园还有多少千米?(3)若小卓卓要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?y (千米)游乐园t(小时)19.(14海珠期末)今年龙舟赛甲乙两队同时出发,其中甲、乙两队在比赛时,路程y (千米)与时间x (小时)的函数关系如图所示.甲队在出发2.5小时到达终点.(假设乙队速度不变)(1)写出比赛全程多少千米?谁先到达终点?乙队花多少时间到达终点? (2)求乙队何时追上甲队?(3)求在比赛过程中,甲乙两队何时相距最远?20.(1)(12恩施州)如图,直线y =kx +b 经过A (3,1)和B (6,0)两点,则不等式组0<kx +b<13x 的解集为 .(1) (2)(2)如图,直线y =kx +b 经过A (2,1),B (-1,-2)两点,则不等式组12x >kx +b >-2的解集为 .21.(15广雅期末)若直线y =-2x +m 与直线y =2x -1的交点在第四象限,则m 的取值范围是( ). A .m >-1 B .m <1C .-1<m <1D .-1≤m ≤1yA 2 1 xB 0 -1 -2 -3 -2-1 1 2 322.依照题意,解答下列问题:(1)如图①,已知直线y =2x +4与x 轴,y 轴分别交于A ,B 两点,请在图①中画出直线y =-12x +4,并探究两函数的图象与x 轴围成的三角形的特点;(2)如图②,已知点M 和点N 的坐标分别为(3,4)和(-2,-1),问在y 轴上是否存在一点P ,使△MNP 是以点M 或点N 为直角顶点的直角三角形?若存在,请求出P 的坐标;若不存在,请说明理由.y xB AO(图①))yx MN O(图②))第一讲-参考答案1.(2,0) 2.x >-13.⎩⎨⎧x =1,y =44.(1)(-3,0),x =-3; (2)①x =-2;②x <-2;③y <1. 5.(-4,0)6.D 7.(1)x <-3,x >-3; (2)9;(3)-1,-4; (4)-4≤x <-1;(5)0,-12;(6)(-2,-2).8.(1)⎩⎨⎧x =-4,y =-2,(-4,-2);(2)x >-4;(3)x ≤-4;(4)x ≥-4.9.A10.x >-211.(1)b =2,12x y =⎧⎨=⎩; (2)2833y x =-+;(3)由(2)可知m =23-,n =83,∴ y =83x -23,当x =1时,y =2.∴直线l 3:y =nx +m 也经过点P . (4)1<x <4.12.D 13.B 14.A 15.D 16.D17.解:(1)s =50(020)1000(2030)50500(3060)t t t t t ⎧⎪⎨⎪-⎩≤≤<≤<≤;(2)设小朱的爸爸所走的路程s 与步行时间t 的函数关系式为:s =kt +b ,则251000250k b b +=⎧⎨=⎩,解得30250k b =⎧⎨=⎩,则小朱的爸爸所走的路程与步行时间的关系式为:s =30t +250, 当50t -500=30t +250,即t =37.5min 时,小朱与爸爸第三次相遇; (3)30t +250=2500,解得,t =75,则小朱的爸爸到达公园需要75min , ∵小朱到达公园需要的时间是60min ,∴小朱希望比爸爸早20min 到达公园,则小朱在步行过程中停留的时间需减少5min .18.解:(1)v =2402-1=240(km/h ).答:高铁的平均速度是每小时240千米; (2)设乘坐高铁时路程与时间的关系式为y =kt +b ,当t =1时,y =0,当t =2时,y =240,得:⎩⎨⎧0=k +b 240=2k +b ,解得:⎩⎨⎧k =240b =-240,故把t =1.5代入y =240t -240,得y =120, 设乘坐私家车时路程与时间的关系式为y =at , 当t =1.5,y =120,得a =80,∴y =80t , 当t =2,y =160,216-160=56(千米), ∴小卓卓距离游乐园还有56千米; (3)把y =216代入y =80t ,得t =2.7,2.7-1860=2.4(小时),216 2.4=90(千米/时).∴小卓卓要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.19.解:(1)35千米;乙;3516小时; (2)对于乙队,x =1时,y =16,所以y =16x ,对于甲队,出发1小时后,设y 与x 关系为y =kx +b ,把x =1,y =20和x =2.5,y =35代入,得⎩⎨⎧20=k +b35=2.5k +b,则y =10x +10.联立方程组,⎩⎨⎧y =16x y =10x +10,得x =53,即:出发1小时40分钟后,乙队追上甲队; (3)1小时之内,两队相距最远距离是4千米,即当x =3516时,y 甲=10×3516+10=31.875,y 乙=35,y 甲-y 乙=35-31.875=3.125; 当x =1时,y 甲-y 乙=20-16=4;∵3.125<4,所以比赛过程中,甲、乙两队在出发后1小时相距最远.20.(1)3<x <6;(2)-1<x <2. 21.C22.(1)图略;用勾股定理的逆定理可以证明两函数与x 轴围成的三角形是一个直角三角形; (2)设P (0,y ),①当PM为斜边时,PN2+MN2=PM2,即(-2)2+(-1-y)2+25+25=32+(4-y)2,解得:y=-3,即P为(0,-3);②当PN为斜边时,PM2+MN2=PN2,即32+(4-y)2+25+25=(-2)2+(-1-y)2,解得:y=7,即P为(0,7);综上所述,在y轴上存在一点P,使△MNP是直角三角形,P为(0,-3)或(0,7).。

第1讲 一次函数的概念及图像(练习)解析版

第1讲 一次函数的概念及图像(练习)解析版

第1讲 一次函数的概念及图像(练习)夯实基础一、单选题1.(2019·上海黄浦区·)下列函数中,是一次函数的是( )A .21y x =+B .12y x =-C .23y x =+D .y kx b =+(k 、b 是常数)【答案】C【分析】根据一次函数的定义逐项分析即可.【详解】A . 21y x =+中自变量的次数是2,故不是一次函数; B . 12y x=-中自变量在分母上,故不是一次函数; C . 23y x =+是一次函数;D . 当k=0时,y kx b =+(k 、b 是常数)不是一次函数.故选C .【点睛】本题考查了一次函数的定义,一般地,形如y =kx +b ,(k 为常数,k ≠0)的函数叫做一次函数.2.(2019·上海市敬业初级中学)下列命题错误的是( )A .正比例函数是一次函数B .反比例函数不是一次函数C .如果1y -和x 成正比例,那么y 是x 的一次函数D .一次函数也是正比例函数【答案】D【分析】直接利用正比例函数与一次函数的定义判断得出即可.【详解】解:A 、正比例函数是一次函数,此选项正确;B 、反比例函数不是一次函数,故此选项正确;C 、如果1y -和x 成正比例,则y-1=kx ,即y=kx+1,那么y 是x 的一次函数,故此选项正确;D 、一次函数可能是正比例函数,也可能不是正比例函数,故此选项错误;故选:D .【点睛】此题主要考查了正比例函数与一次函数的定义,正确把握它们的区别与联系是解题关键.3.(2020·上海市奉贤区弘文学校八年级期末)正比例函数的图像在第二、四象限内,则点(--1m m ,)在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】根据一次函数图象与系数的关系由正比例函数y =mx 的图象在第二、四象限内得到m <0,则﹣m>0,m −1<0,于是得到点(−m ,m −1)在第四象限.【详解】解:∵正比例函数y =mx 的图象在第二、四象限内,∴m <0,∴-m>0,m −1<0,∴点(-m ,m −1)在第四象限.故选:D .【点睛】本题考查了一次函数图象与系数的关系:一次函数y =kx +b (k ≠0),当k >0,图象经过第一、三象限;当k <0,图象经过第二、四象限;当b >0,图象与y 轴的交点在x 轴上方;b =0,图象过原点;当b <0,图象与y 轴的交点在x 轴下方.4.(2018·上海全国·八年级期中)一次函数y kx k =+的图象可能是( )A .B .C .D . 【答案】A【分析】根据一次函数的图象与系数的关系进行解答即可【详解】解:当k>0时,函数图象经过一、二、三象限;当k<0时,函数图象经过二、三、四象限,故A 正确.故选A.【点睛】本题考查的是一次函数的图象,熟知一次函数y=kx+b (k ≠0)中,当k<0,b<0时,函数图像经过二、三、四象限是解答此题的关键.5.(2020·上海徐汇区·八年级期末)若一次函数的图像不经过第三象限,则k b 、的取值范围是( ).A .k ﹤0,0b ≥;B .k ﹥0,b ﹥0;C .k ﹤0,b ﹥0;D .k ﹥0,b ﹤0;【答案】A【分析】根据一次函数的图象与系数的关系即可得出结论.【详解】∵一次函数y kx b =+的图象不经过第三象限,∴直线y kx b =+经过第一、二、四象限或第二、四象限,∴0k <,0b ≥.故选:A .【点睛】本题考查的是一次函数的图象与系数的关系,熟知一次函数一次函数y kx b=+(0k ≠)的图象与系数k ,b 的关系是解答此题的关键.6.(2018·上海松江区·八年级期中)如图,一次函数y kx b =+的图像经过,两点,那么当3y >时,x 的取值范围是( )A .0x <B .2x <C .1x >D .1x <【答案】D【分析】根据一次函数的图象可直接进行解答.【详解】由函数图象可知,此函数是减函数,当y=3时x=1,故当y>3时,x<1,故选:D.【点睛】此题考查一次函数的性质,一次函数图象上点的坐标特点.7.(2019·上海市闵行区明星学校)在一次函数y=ax-a 中,y 随x 的增大而减小,则其图像可能是( )A .B .C .D .【答案】B 【分析】根据y 随x 的增大而减小可得a <0,−a >0,然后判断函数图象即可.【详解】解:∵一次函数y =ax-a 中,y 随x 的增大而减小,∴a <0,−a >0, ∴其图象过一、二、四象限,故选:B .【点睛】本题考查了一次函数的图象和性质,根据增减性判断出a <0,−a >0是解题的关键.8.(2020·上海市南汇第四中学八年级月考)一次函数y mx n =+的图像如图所示,那么下列说法正确的是( )A .当0x >时,2y >-B .当1x ≥时,0y ≤C .当1x <时,0y >D .当0x <时,20y -<<【答案】A【分析】根据图像,结合一次函数的性质逐项分析即可.【详解】A . 由图像可知,当0x >时,2y >-,故正确;B . 由图像可知, 当1x ≥时,0y ≥,故不正确;C . 由图像可知, 当1x <时,0y <,故不正确;D . 由图像可知,当0x <时,2y <-,故不正确;故选A .【点睛】本题主要考查函数和不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.9.(2019·青浦东方中学八年级期中)在函数y =kx (k >0)的图象上有三点A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3),已知x 1<x 2<0<x 3,则下列各式中正确的是( )A .y 1<0<y 3B .y 3<0<y 1C .y 2<y 1<y 3D .y 3<y 1<y 2【答案】A【分析】根据正比例函数的图象性质.【详解】k >0,正比例函数,y 随x 增大而增大.【点睛】正比例函数y=kx (k 图象性质: 0,k >,正比例函数图象过一、三象限和原点,y 随x 增大而增大;0,k <,正比例函数图象过二、四象限和原点,y 随x 增大而减小.二、填空题10.(2020·上海嘉定区·八年级期末)已知一次函数,那么()1f -=______.【答案】1-【分析】代入1x =-,即可求出()1f -的值.【详解】当1x =-时,.故答案为:1-.【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y kx b =+是解题的关键.11.(2019·上海市闵行区明星学校)如果y关于x 的函数y=(k-1)x+1是一次函数,那么k 的取值范围是______.【答案】k ≠1【分析】根据一次函数的定义条件求解即可.【详解】解:∵y =(k -1)x+1是一次函数,∴k -1≠0,即k ≠1,故答案为:k ≠1.【点睛】本题主要考查了一次函数的定义,属于基础题,注意掌握一次函数y =kx +b 的定义条件是:k 、b 为常数,k ≠0.12.(2020·上海市静安区实验中学八年级期中)已知点(,)P a b 在一次函数21y x =+的图象上,则21a b --=_____.【答案】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将(,)P a b 代入函数解析式得:b=2a+1,将此式变形即可得到:210a b -+=,两边同时减去2,得:21a b --=-2,故答案为:.【点睛】本题考查了通过函数上点的坐标,求相关代数式的值,解决本题的关键要熟练掌握一次函数的性质,明白函数上的点都能使函数解析式成立.13.(2019·上海).已知函数y=(k+2)x+k 2﹣4,当k _________ 时,它是一次函数.【答案】﹣2【分析】根据一次函数的定义可知自变量的系数不为零.【详解】解:∵函数y=(k+2)x+k 2﹣4是一次函数,∴k+2≠0,即k ≠﹣2.故答案为:≠﹣2.【点睛】本题考点:一次函数的定义,正确把握定义是解题的关键.14.(2019·上海)根据图中的程序,当输入x=-3时,输出结果y =________.【答案】1【分析】根据题意可知当x=-3≤1时,应代入函数y=x+4,然后求解即可.【详解】解:∵x=-3≤1,∴当x=-3时,y= x+4=﹣3+4=﹣1.故答案为:﹣1.【点睛】本题主要考查一次函数,解此题的关键在于理解题意,根据自变量的取值范围选择正确的函数进行求解.15.(2019·上海)若298y m x x =-+表示一次函数,则m 满足的条件是__________________。

第一讲 一次函数的概念与图象-【寒假预习】八年级数学核心考点+重难点讲练与测试(沪教版)(原卷版)

第一讲 一次函数的概念与图象-【寒假预习】八年级数学核心考点+重难点讲练与测试(沪教版)(原卷版)

第01讲 一次函数的概念与图象目录考点一:识别一次函数考点二:一次函数图象考点三:一次函数图象与系数关系考点四:一次函数图象上的点的坐标特征考点五:一次函数图象与几何变换【基础知识】一、一次函数的概念(1) 一般地,解析式形如y kx b =+(k ,b 是常数,且0k ≠)的函数叫做一次函数;(2) 一次函数y kx b =+的定义域是一切实数;(3) 当0b =时,解析式y kx b =+就成为y kx =(k 是常数,且0k ≠),这时y 是x 的正比例函数,所以正比例函数是一次函数的特例;(4) 一般地,我们把函数y c =(为常数)叫做常值函数.它的自变量由所讨论的问题确定.二、一次函数的图像:一般地,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图像是一条直线.一次函数y kx b =+的图像也称为直线y kx b =+,这时,我们把一次函数的解析式y kx b =+称为这一直线的表达式.画一次函数y kx b =+的图像时,只需描出图像上的两个点,然后过这两点作一条直线.三、 一次函数的截距:一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距,一般地,直线y kx b =+(0k ≠)与y 轴的交点坐标(0)b ,.直线y kx b =+(0k ≠)的截距是b .四、 一次函数图像的平移:一般地,一次函数y kx b =+(0b ≠)的图像可由正比例函数y kx =的图像平移得到.当0b >时,向上平移个单位;当0b <时,向下平移b 个单位.(函数平移口诀简记为:“上加下减,左加右减”)【考点剖析】一.一次函数的定义(共3小题)1.(2022春•杨浦区校级期中)以下函数中,属于一次函数的是()A.y=B.y=C.y=c(c为常数)D.y=kx+b(k、b为常数)2.(2022春•静安区校级期中)根据变量x、y的关系式,属于y是x的一次函数的是()①y=k(x﹣1)(k≠0)②y=1﹣(k≠0)③x﹣y=2(k≠0)④y=kx+(k≠0).A.①B.①②③C.①③D.全部都是.3.(2022春•闵行区校级月考)已知函数y=(m﹣3)x+3是一次函数,则m=.二.一次函数的图象(共6小题)4.(2022春•静安区校级期中)如图,若k•b>0,且b+k>0,则一次函数y=kx+b的大致图象是()A.B.C.D.5.(2021春•徐汇区期中)如图所示,一次函数y=mx+m的图象中可能是()A.B.C.D.6.(2021春•徐汇区校级月考)如图,已知一次函数y=kx+b(k、b为常数,k≠0)的图象,当y>﹣2时,x的取值范围为()A.x<1B.x>1C.x<0D.x>07.(2022春•徐汇区校级期中)一次函数y=kx+b的图象如图所示,当y>3时,x的取值范围是()A.x<0B.x>0C.x<2D.x>2.8.(2022春•闵行区校级期中)在直角坐标平面内,一次函数y=ax+b的图象如图所示,那么下列说法正确的是()A.当x>0时,y>﹣2B.当x<1时,y>0C.当x<0时,﹣2<y<0D.当x≥1时,y≤09.(2022春•嘉定区期中)如图是一次函数y=kx+b的图象,当x时,函数图象在x轴的上方.三.一次函数图象与系数的关系(共7小题)10.(2022春•杨浦区校级期末)若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.11.(2022春•闵行区校级期中)如果一次函数y=(m﹣3)x+m的图象过第一、二、四象限,那么m的取值范围是.12.(2022春•徐汇区校级期中)一次函数y=(k+1)x﹣2的函数值y随自变量x的增大而减小,那么k 的取值范围是.13.(2022春•静安区校级期中)已知直线y=(1﹣3m)x+(2m﹣1)经过第二、三、四象限,则m的取值范围为.14.(2022春•嘉定区期中)一次函数y=(4﹣k)x+3,y随x的增大而减小,则k的取值范围是.15.(2022春•黄浦区校级期中)已知一次函数y=(2k﹣1)x+k的函数值y随x的值增大而增大,那么k 的取值范围是.16.(2022春•杨浦区校级期中)已知一次函数y=kx+k﹣1(其中k为常数且k≠0)的图象不经过第二象限,则k的取值范围是.四.一次函数图象上点的坐标特征(共8小题)17.(2022春•徐汇区期末)一次函数y=3(x﹣1)在y轴上的截距是()A.﹣1B.1C.﹣3D.318.(2022春•嘉定区校级期中)下列各点在直线y=﹣2x+1上的是()A.(1,0)B.(2,0)C.(0,1)D.(0,)19.(2021秋•金山区期末)已知正比例函数y=kx的图象经过点(2,﹣2),则y的值随着x的值增大而(填“增大”、“减小”、或“不变”).20.(2022春•杨浦区校级期中)一次函数y=3x+b的图象过坐标点(﹣2,4),则该函数的截距为.21.(2022春•普陀区校级期中)一次函数y=﹣4x﹣2的图象与x轴的交点坐标是.22.(2022春•浦东新区校级期中)已知一次函数y=x﹣1的图象上有点A(2,a)和点P,且PO=P A,则点P的坐标为.23.(2022春•普陀区校级期中)已知一次函数y=2x+4的图象与x轴、y轴分别相交于点A、点B,在直线x=4上有一点C,连接AC、BC,三角形ABC是等腰三角形,则点C的坐标为.24.(2022春•静安区校级期中)直线y=kx+b经过A(﹣20,5)、B(10,20)两点,求这条直线与两坐标轴围成的三角形的面积是.五.一次函数图象与几何变换(共8小题)25.(2022春•闵行区校级期末)将直线y=2x﹣3沿y轴向上平移6个单位后,所得直线的解析式是.26.(2022春•奉贤区校级期末)如果将函数y=2x﹣2的图象平移,且经过(0,3),那么所得图象的函数解析式是.27.(2022春•静安区期中)将直线y=﹣2x﹣4向上平移5个单位,所得直线的表达式是.28.(2022春•黄浦区校级期中)将直线y=3x+2沿y轴向下平移个单位,那么平移后直线就经过点(0,﹣1).29.(2022春•杨浦区校级期中)将直线y=﹣3x向上平移1个单位,则平移后的新直线一定不经过第象限.30.(2022春•浦东新区校级期中)将直线y=﹣x﹣1向上平移4个单位所得的直线表达式为.31.(2022春•静安区校级期中)已知:如图所示,直线y=﹣x+4的与x轴、y轴分别交于点B和点A,将这条直线平移后与x轴、y轴分别交于点C和点D,且BA=CB.(1)求点C的坐标;(2)求CD所在直线的函数解析式.32.(2022春•长宁区校级期中)如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△P AB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.【过关检测】一.选择题(共7小题)1.(2022春•徐汇区校级期中)以下函数中,属于一次函数的是()A.y=x2+2B.y=kx+b(k、b是常数)C.y=D.y=2.(2022春•徐汇区期末)一次函数y=3(x﹣1)在y轴上的截距是()A.﹣1B.1C.﹣3D.33.(2022春•静安区校级期中)如图,若k•b>0,且b+k>0,则一次函数y=kx+b的大致图象是()A.B.C.D.4.(2022春•嘉定区校级期中)下列各点在直线y=﹣2x+1上的是()A.(1,0)B.(2,0)C.(0,1)D.(0,)5.(2022春•徐汇区校级期中)函数y=x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2022春•嘉定区校级期中)已知一次函数y=kx+b,k<0,b>0,那么下列判断中,正确的是()A.图象不经过第一象限B.图象不经过第二象限C.图象不经过第三象限D.图象不经过第四象限7.(2022春•普陀区校级期中)一次函数y=kx+k(k<0)的图象大致是()A.B.C.D.二.填空题(共20小题)8.若y=kx+4﹣x是一次函数,则k的取值范围是.9.(2021秋•金山区期末)已知正比例函数y=kx的图象经过点(2,﹣2),则y的值随着x的值增大而(填“增大”、“减小”、或“不变”).10.(2022春•青浦区校级期末)一次函数y=kx+2x+k2,若函数值y随自变量x的增大而减小,那么k的取值范围是.11.(2022春•上海期中)一次函数y=2(x﹣1)+3的图象在y轴上的截距是.12.(2022春•嘉定区期中)若直线y=﹣x﹣1的图象过点A(4,m),则m=.13.(2022春•黄浦区校级期中)若直线y=mx﹣2经过点(4,2),则该直线与两坐标轴围成的三角形的面积为.14.(2022春•奉贤区校级月考)已知经过点(1,﹣2)的直线y=kx+b是由y=3x+1向下平移后得到的,那么这条直线的解析式是.15.(2022春•徐汇区校级期中)已知一次函数y=(2m+1)x﹣1,且y的值随着x的值增大而减小,则m 的取值范围是.16.(2022春•静安区期中)把函数y=2x的图象向下平移3个单位,再向左平移2个单位,得到的函数图象解析式为.17.(2022春•浦东新区校级期中)已知一次函数y=kx+4(k≠0)的图象与两坐标轴围成的三角形面积为4,则k=.18.(2022春•徐汇区校级期中)直线y=kx+2经过点A(2,4),且交x轴于点B,在x轴上有一点C,若△ABC的面积为12,则C点坐标为.19.(2022春•徐汇区校级期中)一次函数y=﹣x+4与x轴交于点A,与y轴交于点B,将线段AB绕A 点逆时针旋转90°,使B点落在M点处,则M的坐标为.20.(2022春•浦东新区校级期中)点(a,b)在直线y=﹣2x+3上,则4a+2b﹣1=.21.(2022春•杨浦区校级期中)若函数y=4x+b的图象与两坐标轴围成的三角形面积为6,那么b=.22.(2022春•普陀区校级期中)一次函数y=﹣3x﹣6的图象与x轴的交点坐标是.23.(2022春•闵行区校级期中)如果关于x的一次函数y=(m﹣3)x+m的图象不经过第三象限,那么m 的取值范围.24.(2022春•虹口区期中)点A(1,3)(填“在”或“不在”)直线y=﹣x+2上.25.(2022春•闵行区校级月考)如果点A(﹣1,a),B(1,b)在直线y=﹣2x+m上,那么a b (填“>”、“<”或“=”).26.(2022春•奉贤区校级期末)当x=2时,不论k取任何实数,函数y=k(x﹣2)+3的值为3,所以直线y=k(x﹣2)+3一定经过定点(2,3);同样,直线y=(k﹣2)x+4k一定经过的定点为.27.(2015春•闸北区期中)已知:如图所示,直线y=﹣x+交x轴于点A,交y轴于点B,若点P 从点A出发,沿射线AB做匀速运动,点Q从点B出发,沿射线BO做匀速直线运动,两点同时出发,运动速度也相同,当△BPQ为直角三角形时,则点Q的坐标为.三.解答题(共7小题)28.(2022春•奉贤区校级月考)如图,一次函数y=x+3的函数图象与x轴,y轴分别交于点A,B.(1)若点P(﹣2,m)为第三象限内一个动点,请问△OPB的面积会变化吗?若不变,请求出面积;若变化,请说明理由.(2)在(1)的条件下,试用含m的代数式表示四边形APOB的面积;若△APB的面积是6,求m的值.29.(2021春•嘉定区校级期中)如图,直线l:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.30.(2021春•浦东新区期中)如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△P AB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.31.(2021春•嘉定区校级期中)若直线分别交x轴、y轴于A、B两点,点P是该直线上的一点,PC⊥x轴,C为垂足.(1)求△AOB的面积.(2)如果四边形PCOB的面积等△AOB的面积的一半,求出此时点P的坐标.32.(2021春•徐汇区校级月考)在平面直角坐标系中,直线y=kx+b(k≠0)向上平移2个单位后与直线y=x重合,且直线y=kx+b(k≠0)与x轴交于点A,与y轴交于点B.(1)写出点B的坐标,求直线AB的表达式;(2)求△AOB的面积.33.(2021春•松江区月考)已知一次函数y=(2﹣k)x﹣k2+4.(1)k为何值时,y随x的增大而减小?(2)k为何值时,它的图象经过原点?34.(2021春•徐汇区期中)已知把直线y=kx+b(k≠0)沿着y轴向上平移3个单位后,得到直线y=﹣2x+5.(1)求直线y=kx+b(k≠0)的解析式;(2)求直线y=kx+b(k≠0)与坐标轴围成的三角形的周长.。

第1讲 一次函数的图像与性质

第1讲  一次函数的图像与性质

第1讲一次函数的图像与性质1、一次函数的解析式:2、一次函数的图像:3、一次函数的性质:K决定函数的增减性: k 0,y随x增大而增大(增函数);k 0,y随x增大而减小(减函数)。

b决定直线与y轴的交点: b 0,直线交于y的正半轴;b 0,直线交于y的负半轴。

b 0,直线过原点。

精练题:1.如图所示的函数图象反映的过程是:小明从家去书店看一会儿书,又去学校取封信后马上回家,其中x表示时间(单位:小时),y表示小明离家的距离(单位:千米),则小明从学校回家的平均速度为千米∕小时.2.园林队在公园进行绿化,中间休息了一段时间.已知绿化面积S与时间t的函数关系的图象如图所示,则休息后园林队绿化面积为平方米.3.图象中所反映的过程是:小强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示小强离家的距离.图象提供的信息,有以下四个说法:①体育场离小强家2.5千米②在体育场锻炼了15分钟③体育场离早餐店4千米④小强从早餐店回家的平均速度是3千米/小时.其中正确的说法为(只需填正确的序号.).4.为了增强抗旱能力,保证今年夏粮丰收,某村新建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是.5.小明骑车外出,所行的路程S(千米)与时间t(小时)的关系如图所示,现有下列四种说法:①第3小时的速度比第1小时的速度快;②第3小时的速度比第1小时慢;③第三小时已停止前进;④第三小时后保持匀速前进.其中说法正确的是.6.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示,当0≤x≤1时,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为.7.若一次函数y=(k﹣2)x+1(k是常数)中y随x的增大而增大,则k的取值范围是.8.一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是.9.已知一次函数y=(1﹣m)x+m﹣2,当m时,y随x的增大而增大.10.设0<k<1,关于x的一次函数,当1≤x≤2时y的最大值是.11.若一次函数的图象过点(0,2),且函数y随自变量x的增大而增大,请写出一个符合要求的一次函数表达式:.12.请写出一个经过第一、二、三象限,并且与y轴交于点(0,1)的直线表达式.13.某一次函数的图象经过点(1,﹣2),且函数y的值随自变量x的增大而减小,请写出一个满足上述条件的函数关系式:.14.直线过点(0,﹣1),且y随x的增大而减小.写出一个满足条件的一次数解析式..15.已知一次函数y=3x﹣6.(1)画出函数的图象;(2)求图象与x轴、y轴的交点A、B的坐标;(3)求A、B两点间的距离;(4)求△AOB的面积;(5)利用图象直接写出,当x为何值时,y≥0.16.画出直线y=的图象,利用图象求:(1)当x≥2时,y的取值范围;(2)当y<0时,x的取值范围;(3)当﹣1≤y≤2时,对应x的取值范围.17.一次函数y=ax﹣a+1(a为常数,且a≠0).(1)若点在一次函数y=ax﹣a+1的图象上,求a的值;(2)当﹣1≤x≤2时,函数有最大值2,请求出a的值.18.已知一次函数y=(m+3)x+m﹣4,y随x的增大而增大,(1)求m的取值范围;(2)如果这个一次函数又是正比例函数,求m的值;(3)如果这个一次函数的图象与y轴正半轴有交点,求m的值.19.已知一次函数y=(2m+4)x+(3﹣n).(1)当m、n是什么数时,y随x的增大而增大;(2)当m、n是什么数时,函数图象经过原点;(3)若图象经过一、二、三象限,求m、n的取值范围20.已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.21.在直角坐标系中,已知点A(4,0),B(0,2),点P(x,y)在第一象限内,且x+2y=4,设△AOP 的面积是S.(1)写出S与x之间的函数关系式,并求出x的取值范围;(2)当S=3时,求点P的坐标;(3)若直线OP平分△AOB的面积时,求点P的坐标..。

人教版数学八年级下册《19.2.2 一次函数 第1课时 一次函数的概念》精品课件(最新)

人教版数学八年级下册《19.2.2 一次函数 第1课时 一次函数的概念》精品课件(最新)
人教版数学八年级下册课件
第十九章 一次函数
19.2.2 一次函数
第1课时 一次函数的概念
问题引入 某登山队大本营所在地的气温为 5 ℃, 海拔每升高 1 km 气温下降 6 ℃. 登山队员由大本营 向上登高 x km 时,他们所在位置的气温是 y ℃.
(1)试用函数解析式表示 y 与 x 的关系; y = 5 - 6x
(1)次是函正数比的例概函念数进.行判断.
典例当精堂析练习
例1 已知函数 y = (m - 1)x + 1 - m2.
(1)当 m 为何值时,这个函数是一次函数? 解:由题意可得
m - 1 ≠ 0,解得 m ≠ 1. 即 m ≠ 1 时,这个函数是一次函数.
注意:利用定义求一次函数 y kx b 解析式时,
(1) 当月收入大于 3500 元而又小于 5000 元时,写出 应缴所得税 y (元)与收入 x (元)之间的函数解析式.
解:y = 0.03×( x - 3500) (3500 < x < 5000).
当堂练习
(2) 某人月收入为 4160 元,他应缴所得税多少元? 解:当 x = 4160 时,y = 0.03×(4160 - 3500) = 19.8(元). (3) 如果某人本月应缴所得税 19.2 元,那么此人本 月工资是多少元?
(2)正比例函数是一种特殊的一次函数.
练一当练堂练习
下列函数中哪些是一次函数,哪些是正比例函数?
(1)y=-8x ; (4)y=-0.5x-1
(2)y=
-8 x
; (5)y=
; x
(3)y=5x2 -1 ;
+6

(6)y=
2
-13

人教版数学八年级下册_《第19章_第1课时_一次函数复习》教学设计

人教版数学八年级下册_《第19章_第1课时_一次函数复习》教学设计

人教版八下第19章一次函数复习课(第1课时)教学设计教学内容解析教学流程图地位与作用函数是反映现实世界中数量关系和变化规律的常见数学模型之一,一次函数作为学生接触的第一种函数模型,是数学中最简单、最基本的函数,也是学生今后学习二次函数、反比例函数的基础.本章学习了函数与一次函数的定义和图象,结合图象研究了一次函数的性质,探讨了一次函数与一元一次方程、一元一次不等式、二元一次方程组之间的关系;其中,对一次函数的图象和性质的研究思路和方法,将对其他函数的研究起到很好的铺垫作用.一次函数是初中数学研究的一类最基本、最简单的函数,其中函数的定义、一次函数的定义、图象和性质是本章的主要基础知识;会根据问题的条件写出一次函数的解析式,会画一次函数的图象,是学习本章后应具备的基本技能.通过复习,加深学生利用函数观点对数学问题的理解.概念解析在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值都有唯一确定的y值与其对应,那么我们就说x是自变量,y是x的函数.函数的定义中包括了对应值的存在性和唯一性两重意思.单值对应是函数概念的关键词,是函数概念的核心所在.变量y要成为变量x的函数需满足两个条件:一是在同一变化过程中有两个变量x和y;二是对于变量x的每一个确定值,变量y都有唯一确定的值与之对应.一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数.一次函数与正比例函数之间的关系是一般与特殊的关系,当一次函数中常数b=0时,一次函数就是正比例函数.思想方法本章从实际问题出发,研究变量与变量之间的一种对应关系,提出了函数的概念,给出了三种刻画函数的表示形式;学习了利用待定系数法求函数解析式的方法;结合函数图象研究了函数的性质,利用函数的性质也解释了函数的图象,接着研究了一次函数与一元一次方程、一元一次不等式、二元一次方程组之间的关系.这个过程不仅是知识的形成过程,更体现了数学建模、方程、数形结合、由特殊到一般等数学思想.知识类型本课时复习内容既有概念性知识,又有像正比例函数、一次函数的图象与性质等关于有理与规则的知识,更有数学抽象、数学建模、数形结合等关于数学思想方法的知识.由知识的类型决定,教学中应由具体事例出发,引导学生回顾知识,逐步完善知识结构,并注意对有关技能给予强化训练.教学重点一次函数的图象和性质,及三个“一次”之间的关系.教学目标解析教学目标1.掌握一次函数及其相关知识;并能运用这些知识解决相关的数学问题.2.通过具体实例,进一步体会数学中的数学建模、方程思想、数形结合、待定系数法等重要的数学思想和方法.目标解析达成目标1的标志是:能辨别函数及一次函数,会用描点法画函数的图象,能说出一次函数的性质,并能利用一次函数图象和性质解决相关的数学问题.达成目标2的标志是:能分析实际问题中变量之间的关系,将实际问题抽象为函数问题,能利用待定系数法求出一次函数解析式,能依据一次函数性质或图象解决有关问题.教学问题诊断分析具备的基础学生已经学完了本章的内容,对函数的定义、一次函数的图象和性质、一次函数与方程不等式的关系有了一定的理解,另外学生已掌握一元一次方程、二元一次方程组的解法,具备了一定的化归能力,积累了一定的数形结合解决问题的经验.与本课目标的差距分析学习本节内容,需要学生在学习过函数、一次函数相关知识的基础上,深入理解函数的概念,熟练准确调用一次函数的性质,并能结合函数的图象解决相关问题.在解决问题的过程中需要学生具备解方程的技能和较强的运算能力.存在的问题函数的概念较为抽象,掌握其本质——任给一x值都有唯一的y值和其对应,还需要一段时间消化;对一次函数的解析式中k≠0容易忽略,对一次函数与方程、不等式关系的理解和运用还需要进一步强化.应对策略(1)注意引导学生对相关概念、性质的理解;(2)通过呈现不同的题目,引导学生主动辨别概念和隐含条件;(3)通过解题反思和分享,引导学生熟练利用一次函数及其性质解决问题;(4)通过练习思考,逐步积累学习的经验,加深对相关概念和性质的理解.教学难点一次函数的图象及性质的综合应用.教学支持条件分析函数概念之中体现的是“变化与对应”的思想,教学中可以充分利用信息技术手段,用思维导图帮助学生完善本章的知识体系,运用几何画板、Geogebra等动态几何软件画出函数图象、利用其中的电子表格功能分析数量关系。

2022-2023学年上海初二下学期同步讲义第1讲 一次函数的概念及图像解析版

2022-2023学年上海初二下学期同步讲义第1讲 一次函数的概念及图像解析版

第1讲 一次函数的概念及图像模块一:一次函数的概念 知识精讲1、 一次函数的概念(1) 一般地,解析式形如y kx b =+(k ,b 是常数,且0k ≠)的函数叫做一次函数;(2) 一次函数y kx b =+的定义域是一切实数;(3) 当0b =时,解析式y kx b =+就成为y kx =(k 是常数,且0k ≠)这时,y 是x 的正比例函数,所以正比例函数是一次函数的特例;(4) 一般地,我们把函数y c =(为常数)叫做常值函数.它的自变量由所讨论的问 题确定.例题解析例1.下列函数中,哪些是一次函数? (1)232y x =-;(2)12y x -=;(3)(5)(0)y m x m =-≠; (4)1(0)y ax a a =+≠ ; (5)(0)ky kx k x =+≠;(6)(3)(3)y k x k =-+≠-.【难度】★【答案】(2)、(3)、(4)、(6).【解析】判断是否是一次函数,要整理成(0)y kx b k =+≠的形式,一次函数有x 要是一次,0k ≠且是整式几个注意点.(1)是二次函数,(5)是分式. 【总结】考查一次函数的基本概念,会判断两个量是否是一次函数关,一般要把关系式整理成概念的标准形式,找出对应k b ,.例2.(1)已知函数2(2)1y k x =-+是一次函数,则k 的取值范围是_________; (2)当m =________时,函数215(4)my x m -=+-是一次函数,且不是正比例函数.【难度】★【答案】(1)k ≠;(2)4m =-.【解析】(1)一次函数(0)y kx b k =+≠,所以k ≠;(2)一次函数(0)y kx b k =+≠其中,x 要是一次,所以4m =±,又因为是一次函数,不是正比例函数,所以4m -()不能为0, 所以4m =-.【总结】考查一次函数的基本概念中对于自变量一次的理解.例3.已知一个一次函数,当自变量2x =-时,函数值为1y =-;当2x =时,11y =.求这个函数的解析式. 【难度】★★ 【答案】35y x =+.【解析】设一次函数解析式为(0)y kx b k =+≠,将()()21211-,-,,两点代入解二元一次方程组, 解得:35k b ==,,所以这个函数的解析式为:35y x =+.【总结】考察两点代入法求一次函数解析式,即两点代入转而解二元一次方程组. 例4.已知一次函数()23317kk y k x -+=-+是一次函数,求实数k 的值.【难度】★★ 【答案】2k =.【解析】由一次函数的概念可知:10k -≠,且2331k k --=,解得:1k =或2k =,又因为1k ≠,所以2k =.【总结】考察一次函数的基本概念,对于自变量一次的及自变量系数不为零同时要满足的理解.例5.(2020·上海市格致初级中学)如图,正方形ABCD 的顶点A 、B 落在x 轴正半轴上,点C 落在正比例函数y =kx (k >0)上,点D 落在直线y =2x 上,且点D 的横坐标为a . (1)直接写出A 、B 、C 、D 各点的坐标(用含a 的代数式表示); (2)求出k 的值;(3)将直线OC 绕点O 旋转,旋转后的直线将正方形ABCD 的面积分成1:3两个部分,求旋转后得到的新直线解析式.【答案】(1)点A 、B 、C 、D 的坐标分别为(a ,0)、(3a ,0)、(3a ,2a )、(a ,2a );(2)k=23;(3)y =(3x . 【分析】(1)点D 的横坐标为a ,则点D(a ,2a),则AB =AD =2a ,进而 求解; (2)将C 点坐标代入y=kx 即可求得k ;(3)根据题干,可求得直线OF 的的解析式为m y x a ,当y=2a 时,可求出点E( 22a m,2a),由S △DEF =14S正方形ABCD ,可列方程进而求出m .【详解】解:(1)点D 的横坐标为a ,则点D (a ,2a ),则AB =AD =2a ,则点A 、B 、C 的坐标分别为(a ,0)、(3a ,0)、(3a ,2a ), 故点A 、B 、C 、D 的坐标分别为(a ,0)、(3a ,0)、(3a ,2a )、(a ,2a ); (2)将点C 的坐标代入y =kx 得,2a =3ak ,解得k =23; (3)设AF =m ,则点F (a ,m ),设直线OC 旋转后交AD 于点F ,交CD 于点E ,则直线OF 的表达式为m y x a =,当y =2a 时,y =2mx a a=, 解得x=22a m ,故点E (22a m,2a ),由题意得:S △DEF =14S 正方形ABCD =()22124a a ⨯=,即()22112222a DE DF a a m a m ⎛⎫⨯⨯=⨯--=⎪⎝⎭,解得:m =3a ,则函数的表达式为y =mx a=(3x . 【点睛】本题考查一次函数的性质、正方形的性质、面积的计算等,掌握一次函数的性质是解题关键.模块二:一次函数的图像 知识精讲1、 一次函数的图像:一般地,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图像是一条直线.一次函数y kx b =+的图像也称为直线y kx b =+,这时,我们把一次函数的解析式y kx b =+称为这一直线的表达式.画一次函数y kx b =+的图像时,只需描出图像上的两个点,然后过这两点作一条直线. 2、 一次函数的截距:一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距, 一般地,直线y kx b =+(0k ≠)与y 轴的交点坐标是(0)b ,,直线y kx b =+(0k ≠)的截距是b .3、 一次函数图像的平移:一般地,一次函数y kx b =+(0b ≠)的图像可由正比例函数y kx =的图像平移得到.当0b >时,向上平移b 个单位;当0b <时,向下平移b 个单位. (函数平移口诀简记为:“上加下减,左加右减”) 4、 直线位置关系:如果12b b ≠,那么直线1y kx b =+与直线2y kx b =+平行.反过来,如果直线11y k x b =+与直线22y k x b =+平行,那么12k k =,12b b ≠.例题解析例1.若一次函数2(3)(9)y a x a =-+-函数图像过原点,求a 的值,并在坐标系中画出函数的图像. 【难度】★ 【答案】6y x =.【解析】一次函数2(3)(9)y a x a =-+-的图像过原点,即通过(0,0)点,且30a -≠.把这点坐标代入解析式求解可得3a =-,所以解析式是6y x =.【总结】一次函数的解析式与图像的关系,解析式中k 不为0的前提条件,以及图像过原点的在解析式中的含义.例2.若一次函数y kx b =+,当x =2时,y =-1,且函数图像的截距为-3,求函数的解析式. 【难度】★ 【答案】3y x =-.【解析】截距是-3,则3b =-,又因为过(2,-1)点,代入求解,得解析式为3y x =-. 【总结】考查一次函数截距的意义,和待定系数法求一次函数解析式的方法.例3.若一次函数y =-x +b 的图像的截距是-4,求将这个一次函数向左平移2个单位后的函数解析式. 【难度】★【答案】6y x =--.【解析】截距是-4,则4b =-,则解析式是-4y x =-,则平移后的解析式为:246y x x =-+-=--.【总结】考察一次函数截距的意义,及函数图像平移与解析式变化的关系,即“上加下减,左加右减”.例4.将直线y =+1向右平移1个单位,相当于将直线y =+1向上平移了多少个单位?【难度】★★个.【解析】一次函数1y =+右移一个单位,解析式变为1)11y x =-+=+,则相当于1y =+【总结】考察一次函数图像平移与函数解析式变化的关系,即“上加下减,左加右减”. 例5.已知一次函数的图像平行于直线y =23x ,且当3x =-时,函数y 的值是1,求这个函数解析式.【难度】★★【答案】233y x =+.【解析】设这个一次函数解析式为y kx b =+,由题易知23k =,把点(-3,1)代入,可得3b =.所以这个一次函数解析式为233y x =+. 【总结】考察两条直线平行与一次函数解析式的关系,即两条直线平行,k 相等. 例6.若直线2(3)(21)y m x m =-++与直线23y x =-+平行,求m 的值.【难度】★★ 【答案】1m =-.【解析】因为两条直线平行,所以可知k 相等且b 不相等,即232m -=-,解得:1m =±; 因为b 不相等,所以1m =-.【总结】考察两条直线平行与一次函数解析式的关系,两条直线平行,即无交点,而重合是两条直线有无数个交点,所以两条直线平行的含义是k 相等且b 不相等. 例7.根据下列条件,求解相应的直线表达式.(1)直线经过(3,2)以及(1,1); (2)直线经过(7,0)以及截距是14;(3)直线经过(30)-,以及截距是【难度】★★【答案】(1)1122y x =+;(2)214y x =-+;(3)y =. 【解析】(1)设直线的解析式为y kx b =+,把(3,2)和(1,1)代入,可得:12k =,12b =,所以直线的解析式为1122y x =+; (2)设直线的解析式为y kx b =+,截距是14,则14b =,再把(7,0)代入,可得2k =-. 所以直线的解析式为214y x =-+;(3)设直线的解析式为y kx b =+,截距是b =-3,0)代入,可得23k =-,所以直线的解析式为y =.【总结】考察两点代入法求解一次函数解析式的方法及截距的含义,两点代入法求解一次函数的解析式可转化为求解二元一次方程,从而求出对应的k b 和.例8.直线2(13)(22)y k x k =-+-与已知直线21y x =-+平行,且不经过第三象限,求k 的值.【难度】★★ 【答案】1k =.【解析】两条直线平行,则可知k 相等,即2132k -=-,可得:1k =或1k =-,则截距为220k -=或224k -=-.又因为图像不经过第三象限,所以舍去224k -=-,即舍去1k =-,所以1k =.【总结】考察一次函数的的基本概念以及k b 和的符号与图像所过象限的关系. 例9.设点P (3,m ),Q (n ,2)都在函数y =x +b 的图象上,求m +n 的值. 【难度】★★ 【答案】5.【解析】把点P (3,m ),Q (n ,2)代入解析式y =x +b 中,可得3,2b m n b +=+=,两式子相减,得32n m -=-,整理得5m n +=.【总结】考察一次函数的应用,一次函数图像上的点的坐标都满足函数解析式.例10.设一次函数y kx b =+的图像过点P (3,2),它与x 轴、y 轴的正半轴分别交于A 、B 两点,且OA +BO =12时,求一次函数的解析式. 【难度】★★【答案】28y x =-+或133y x =-+.【解析】由题易知,A 点坐标为0b k ⎛⎫- ⎪⎝⎭,,B 点坐标为()0b ,,且A 、B 两点都在x 轴、y 轴的正 半轴上,所以()12bb k+-=,又点P (3,2)在此函数图像上,代入可得32k b +=,两个式子联立求解,可得:23720k k ++=,解得:2k =-或13-,对应的8b =或3.所以该一次函数的解析式为28y x =-+或133y x =-+.【总结】本题主要考查一次函数与两坐标轴的交点问题,注意分类讨论. 例11.已知一次函数21544m y x +=-与233my x =-+的图像在第四象限内交于一点,求整数m 的值.【难度】★★★ 【答案】-1,0,1.【解析】将两个解析式联立求解可得:237m x +=,27m y -=,所以交点坐标为2m 3m-277+⎛⎫⎪⎝⎭,,因为交点在第四象限内,所以2320077m m +-><,,解不等式得:322m -<<, 所以整数m 的值为-1,0,1.【总结】考查对两个一次函数的交点坐标问题,并且注意每个象限内的点的横纵坐标的符号特征.例12.已知两个一次函数144b y x =--和212y x a a =+;(1)a 、b 为何值时,两函数的图像重合?(2)a 、b 满足什么关系时,两函数的图像相互平行?(3)a 、b 取何值时,两函数图像交于x 轴上同一点,并求这一点的坐标. 【难度】★★★【答案】(1)182a b =-=,;(2)4ab =-且12a ≠-;(3)8b =,0a ≠,坐标为(-2,0).【解析】(1)由题可知,两个一次函数的比例系数和常数项都相等,即1244b a a -=-=,,解得:182a b =-=,;(2)两个一次函数的图像平行,则比例系数相等,常数不相等,所以14b a-=, 即4ab =-,且12a ≠-;(3)两个一次函数的图像交于x 轴上一点,即两个一次函数与x 轴的交点重合,先分别求出与x 轴的交点,令10y =,得116x b =-,同理可得22x =-,由题可知12x x =,162b-=-, 即8b =,交点坐标为(-2,0).【总结】主要考查两个一次函数图像的平行、重合的关系与区别以及两条直线交点的含义. 例13.(1)一次函数3y x b =+的图象与两坐标轴围成的三角形的面积为48,求b 的值;(2)一次函数y kx b =+的图像与两坐标围成的三角形的面积是10,求一次函数的解析式. 【难度】★★★【答案】(1)b =±(2)14y x =或14y x =-. 【解析】(1)一次函数(0)y kx b k =+≠与两轴围成的三角形面积公式是22b s k =,所以24823b =⨯,解得:b =±(2)同理可知,2102b b k =,14k =±,所以一次函数的解析式为14y x =或 14y x =-+.【总结】一次函数与两轴围成的面积公式22b s k=,注意双解的情况.例14.(1)求直线14222y x y x =-=+和与y 轴所围成的三角形的面积; (2)求直线24y x =-与直线31y x =-+与x 轴所围成的三角形的面积. 【难度】★★★【答案】(1)12;(2)53.【解析】(1)联立14222y x y x =-=+和,解得交点坐标为(-4,-6),又因为两条直线与y 轴的交点坐标分别为(0,-4)和(0,2),所以这两条直线与y 轴围成的三角形面积为()1244122⨯--⨯-=⎡⎤⎣⎦; (2)联立2431y x y x =-=-+与,解得交点坐标为(1,-2),又因为两条直线与x 轴的交点坐标分别为(2,0)和103(,),所以这两条直线与x 轴围成的面积为115(2)2233⨯-⨯-=.【总结】考查一次函数与坐标轴所围成的三角形的面积的综合应用.例15.如图,已知由x 轴、一次函数4(0)y kx k =+<的图像及分别过点C (1,0)、D (4,0) 两点作平行于y 轴的两条直线所围成的图形ABDC 的面积为7,试求这个一次函数的解析式.【难度】★★★【答案】243y x =-+.【解析】由题易知A 的坐标为(1,4k +),B 的坐标为(4,44k +)所围成的梯形ABCD 的面积为11(444)(41)22AC BD CD k k ⨯+⨯=⨯+++⨯-()=7,解得:23k =-,所以一次函数的解析式是243y x =-+.【总结】考查一次函数与面积的综合应用.模块三:一次函数的性质 知识精讲1、 一次函数的增减性:一般地,一次函数y kx b =+(,k b 为常数,0k ≠)具有以下性质: 当0k >时,函数值y 随自变量x 的值增大而增大,图像为上升; 当0k <时,函数值y 随自变量x 的值增大而减小,图像为下降. 2、一次函数图像的位置情况:直线y kx b =+(0k ≠,0b ≠)过(0,)b 且与直线y kx =平行,由直线y kx =在平面直角坐标系内的位置情况可知:(要用图像的平移推导可得) 当0k >,且0b >时,直线y kx b =+经过一、二、三象限; 当0k >,且0b <时,直线y kx b =+经过一、三、四象限; 当0k <,且0b >时,直线y kx b =+经过一、二、四象限; 当0k <,且0b <时,直线y kx b =+经过二、三、四象限.例题解析例1.如果一次函数y =kx +b 的图象经过第一象限,且与y 轴负半轴相交,那么( )A . 0k >,0b >B .0k >,b <0C .0k <,b >0D .0k <,0b < 【难度】★【答案】B【解析】一次函数y kx b =+的图像经过第一象限,且与y 轴负半轴相交,通过画图可知 00k b ><,.所以答案选B .【总结】考察一次函数的基本概念以及k 、b 的符号对一次函数图像所过象限的决定作用. 例2.一次函数y =-2x +3的图象不经过的象限是 ( )A .第一象限B .第二象限C .第三象限D .第四象限 【难度】★【答案】C .【解析】一次函数23y x =-+中,00k b <>,,通过画图,可知该一次函数的图像不经过第三象限,答案选C【总结】考察一次函数的基本概念k 、b 的符号对一次函数图像所过象限的决定作用. 例3.根据下列条件填空:(1)已知函数245(1)(3)m m y m x m -+=-+-,当m 等于______时,它是一次函数,此时它的图象经过__________象限,y 随x 的增大而_____________;(2)如果一次函数2y x =和y x k =+的图象的交点在第一象限,则k 的取值范围是_________;(3)已知关于x 的一次函数(27)2y a x a =-+-的图象与y 轴的交点在x 轴的上方,且y 随x 的增大而减小,则a 的取值范围是________________.【难度】★★【答案】(1)2m =;一、三、四;增大;(2)0k >;(3)722a <<. 【解析】(1)由题可知,要是一次函数则要满足210451m m m -≠-+=,且,解得:2m =.此时函数解析式为1y x =-,它的图像经过第一、三、四象限,且y 随x 的增大而增大;(2)联立2y x =与y x k =+,可得交点坐标为()2k k ,,因为交点在第一象限,则020k k >>且,所以k 的取值范围是0k >.(3)由题易知,一次函数与y 轴的交点坐标为()02a -,,且20a ->,又y 随x 的增大而减小,所以27a -0<,从而可得722a <<. 【总结】考查一次函数的基本概念及k 、b 对一次函数图像所过象限及变化趋势的影响. 例4.设b a >,将一次函数y bx a =+与y ax b =+的图像画在同一平面直角坐标系内,则有一组a ,b 取值,使得下列四幅图中的一个为正确的是( )AB C D【难度】★★【答案】D 【解析】A 选项中,由图像可知0b >,且图像过一、二、三象限,可知0a >,而另一条直线的解析式为y bx a =+与y 轴的交点为()0a ,在x 轴下方,则0a <与上面那条直线0a >矛盾,所以A 错误;B 选项中,两条直线与y 轴的交点坐标都在x 轴上方,可知00a b >>,, 且b a <,这与题目中的b a >矛盾,所以B 错误;C 选项中,由题易知,上面那条直线解析 式为y ax b =+,下面那条直线解析式为y bx a =+,且00a b <>,.与x 轴交点都为(2,0), 分别代入可得2020b a a b +=+=,,解得:00a b ==,,与已知不符,所以错误;D 选项中,由图可知00a b <>,,而两条直线有一条是y 随x 的增大而减小即作为k ,a b , 中有一个小于0,正好相符,且满足题目中的条件,故选项D 正确.【总结】本题主要考查一次函数的性质及k 、b 对一次函数图像所过象限的影响.例5.若k 、b 是一元二次方程20x px q +-=的两个实根(0kb ≠),在一次函数y kx b =+中,y 随x 的增大而减小,则一次函数的图像一定经过()A 、第一、二、四象限B 、第一、二、三象限C 、第二、三、四象限D 、第一、三、四象限【难度】★★【答案】A【解析】由题易知0k b q •=-<,又在一次函数y kx b =+中,y 随x 的增大而减小,可知0k <,所以0b >,所以一次函数的图像经过第一、二、四象限.故选A【总结】一次函数的基本概念,k ,b 对一次函数图像所过象限及变化趋势的影响. 例6.已知0abc ≠,而且a b b c c a p c a b +++===,那么直线y px p =+一定经过( ) A 、第一、二象限; B 、第二、三象限; C 、第三、四象限; D 、第一、四象限【难度】★★★【答案】B【解析】由题可得a b pc b c pa c a pb +=+=+=,,三式相加得()()2a b c p a b c ++=++, ()()20a b c p a b c ++-++=,()()20a b c p ++-=,可得20p a b c =++=或, 当0a b c a b c ++=+=-时,,b 1a c p c c+-===-,所以2p =或-1. 当2p =时,22y x =+经过第一、二、三象限,当1p =-时,1y x =--,图像经过第二、三、四象限.两种情况下,图像第一定经过第二、三象限.故选B【总结】考察一次函数的图像特征及k 、b 对一次函数图像所过象限的影响.例7.在式子()y kx b k b =+,为常数中,3119x y -≤≤≤≤当时,,kb 求的值. 【难度】★★★【答案】14或-6.【解析】由题可知存在如下几种种情况,(1)当0k >时,3119x y x y =-===,或,,则319k b k b -+=⎧⎨+=⎩,解得:27k b =⎧⎨=⎩,则14kb =; (2)当03911k x y x y <=-===时,,或,,则391k b k b -+=⎧⎨+=⎩,解得:23k b =-⎧⎨=⎩,则6kb =-; (3)当0k =时,y b =,是个常值函数,不随x 的变化而变化,与题目不符.【总结】本题主要考查一次函数的性质的运用,注意分类讨论.例8.已知一次函数1121y x k =+-中y 随x 的增大而增大,它的图像与两坐标轴构成的直角三 角形的面积不超过32,反比例函数23k y x-=的图像在第二、四象限,求满足以上条件的k 的整数值.【难度】★★★【答案】整数值为1或2. 【解析】一次函数1121y x k =+-中y 随x 的增大而增大,可知1021k >-,它的图像与两坐标轴构的直角三角形面积不超过32,可知21312221k ≤-;又反比例函数23k y x -=的图像在第二、四象限,可知230k -<,解不等式可得:223k <≤,故整数解为1或者2. 【总结】考查一次函数与反比例函数的性质及一次函数与坐标轴所围成的三角形的面积问题.例9.如图,已知函数1y x =+的图象与y 轴交于点A ,一次函数y kx b =+的图象经过点B (0,1-),并且与x 轴以及1y x =+的图象分别交于点C 、D ;(1)若点D 的横坐标为1,求四边形AOCD 的面积(即图中阴影部分的面积);(2)在第(1)小题的条件下,在y 轴上是否存在这样的点P ,使得以点P 、B 、D 为顶点的三角形是等腰三角形;如果存在,求出点P 坐标;如果不存在,说明理由;(3)若一次函数y kx b =+的图象与函数1y x =+的图象的交点D 始终在第一象限,则系数k 的取值范围是________(请直接写出结果).【难度】★★★【答案】(1)56;(2)((0101--,,,,(0,5),108⎛⎫ ⎪⎝⎭,;(3)1k >. 【解析】(1)由题易知A 的坐标为(0,1),点D 的横坐标为1,代入1y x =+,得112y =+=,即D (1,2);因为点B 的坐标为(0,-1),且y kx b =+经过点D 和点B ,代入得:201k b b +=⎧⎨+=-⎩,解得:13b k =-⎧⎨=⎩, 则一次函数的解析式为31y x =-,继而可求出点C 的坐标为(13,0). 故阴影部分的面积为:1122ABD OBC x S S S AB D OB OC ∆∆=-=⨯⨯-⨯⨯阴=()111511112236⨯--⨯-⨯⨯=⎡⎤⎣⎦.(2)假设P 点的坐标为0m (,),则BD = 分三类情况讨论:①当BD BP =时,以点B 为圆心,BD 为半径画圆,与y 轴的交点即为所求P 点.所以P 的坐标为((0101-+-,或者,;②当DB DP =时,以点D 为圆心,BD 为半径画圆,与y 轴的交点即为所求P 点,所以点P 的坐标为(0,5);③当PB PD =时,点P 即为线段BD 的中垂线与y 轴的交点,则()1m --解得:23m =,即P 的坐标203⎛⎫ ⎪⎝⎭,,综上,点P 的坐标为((0101--,或者,或(0,5)或203⎛⎫ ⎪⎝⎭,;(3)因为点B 的坐标为(0,-1),可知y kx b =+中的1b =,可得1y kx =-. 联立11y x y kx =+=-,,可得交点D 坐标为2111k k k +⎛⎫ ⎪--⎝⎭,,因为点D 在第一象限内, 所以210011k k k +>>--且,解不等式组,得1k >. 【总结】本题综合性较强,主要考查一次函数的形式与面积的综合应用.例10.(2018·上海崇明区·八年级期中)已知:如图,在直角坐标平面中,点A 在x 轴的负半轴上,直线y kx =+经过点A ,与y 轴相交于点M ,点B 是点A 关于原点的对称点,过点B 的直线BC x ⊥轴,交直线y kx =+C ,如果60MAO ∠=︒.(1)求直线AC 的表达式;(2)如果点D 在直线AC 上,且ABD ∆是等腰三角形,请求出点D 的坐标.【答案】(1)y =+(2)(或(2,-.【分析】(1)先求出点M 的坐标,从而可得OM 的长,再根据直角三角形的性质可得OA 的长,从而可得点A 的坐标,然后利用待定系数法求解即可;(2)先根据对称性得出点B 的坐标,再根据两点之间的距离公式可得,,AB BD AD 的长,然后根据等腰三角形的定义分三种情况建立等式求解即可.【详解】(1)对于y kx =+,当0x =时,y =M 的坐标为( 3OM ∴=,设OA a =,∵60CAB ∠=︒。

一次函数知识归纳 (1)

一次函数知识归纳 (1)

一次函数知识归纳一、变量:自变量:自己变化的量;在一个变化的过程中,我们称数值变化的量是自变量.常量:有些量的数值是始终不变的量叫常量.函数:被变量是自变量的函数.函数值:当自变量确定一个值,被变量随之确定的一个值.因变量:自变量的变化引起另一个量的变化,另一个量是因变量.二、一次函数和正比例函数的概念1.概念:若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b(k,b为常数,k≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数.★判断一个等式是否是一次函数先要化简(3)当b=0,k≠0时,y= kx仍是一次函数.(正比例函数)(4)当b=0,k=0时,它不是一次函数.2. 函数的表示方法:1)解析法,2)列表法,3)图象法.列表法直观但不完全解析法准确完全但不直观图象法直观形象但不够准确也不太完全图象的画法:一列表、二描点、三连线(顺次用平滑的曲线)解析式的列法:一)实际问题,确定自变量的取值二)符合题意三、函数的图象把一个函数的自变量x与所对应的y的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.一次函数的图象由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.由于两点确定一条直线,描出适合关系式的两点,再连成直线,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(-kb,0).画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.四、一次函数性质1. 一次函数y=kx+b(k,b为常数,k≠0)的性质(1)k的正、负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;②k﹤O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;K b 经过的象限Y随x的变化图像Y=kx+bk>0 b>0 一二三Y随x的增大而增大(b≠0)k>0 b<0 一三四Y随x的增大而增大Y=kx+b(b≠0)k<0 b>0 一二四Y随x的增大而减小Y=kx+b(b≠0)Y=kx+bk<0 b<0 二三四Y随x的增大而减小(b≠0)(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.2. 正比例函数y=kx (k≠0)的性质(1)正比例函数y=kx 的图象必经过原点;(2)当k >0时,图象经过第一、三象限,y 随x 的增大而增大;(3)当k <0时,图象经过第二、四象限,y 随x 的增大而减小.Y=kx ( k>0) y=kx (k<0)点P (00,x y )与直线与y=kx+b 的图象的关系(1)如果点P (00,x y )在直线y=kx+b 的图象上,那么00,x y 的值必满足解析式y=kx+b ;(2)如果00,x y 是满足函数解析式的一对对应值,那么以00,x y 为坐标的点P (1,2)必在函数的图象上.例如:点P (1,2)满足直线y=x+1,即x=1时,y=2,则点P (1,2)在直线y=x+l 的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l 的图象上确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx (k≠0)中只有一个待定系数k ,故只需一个条件(如一对x ,y 的值或一个点)就可求得k 的值.(2)由于一次函数y=kx+b (k≠0)中有两个待定系数k ,b ,需要两个独立的条件确定两个关于k ,b 的方程,求得k ,b 的值,这两个条件通常是两个点或两对x ,y 的值.3、 正比例函数和一次函数及性质比较正比例函数一次函数概 念 一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,是y=kx ,所以说正比例函数是一种特殊的一次函数.自变量 X 为全体实数范 围图 象一条直线 必过点(0,0)、(1,k )(0,b )和(-k b ,0) 走 向 k>0时,直线经过一、三象限; k<0时,直线经过二、四象限 k >0,b >0,直线经过第一、二、三象限k >0,b <0直线经过第一、三、四象限k <0,b >0直线经过第一、二、四象限k <0,b <0直线经过第二、三、四象限增减性 k>0,y 随x 的增大而增大;(从左向右上升)k<0,y 随x 的增大而减小。

一次函数复习(第1课时)

一次函数复习(第1课时)
临岐初中
知识结构图
变化的 建立数学模型 函数
世界
一次函数
再认识
应用
一元一次方程
一元一次不等式 二元一次方程组
图象 性质
知识联接
• 1、一列火车从A地前往B地,火车每小时 行驶90千米,在这一过程中变量有两个, 即___路_程_____和_时__间_______,我们可以把 ____路__程__看作__时__间___的函数,其中时间
(2)y _____不_是___(“是”“不是”)x的正比例函
数函数。
0≤X≤1250
(3)自变量X的取值范围是:线段
(4)函数的图象是一条:
5、弹簧挂上物体后会伸长,测得一弹簧的长 度y(cm)与所挂物体的质量x(kg)有下 面关系:那么弹簧总长y(cm)与所挂物 体质量x(kg)之间的函数关系式为
当销售量 小于4吨 时,该公司亏损(收入小于成本);
(5) l1对应的函数表达式是 y=1000x

l2对应的函数表达式是 y=500x+2000 。
y/元
6000
5000
l1 l2
4000
3000
2000
1000
O 1 23 4 5 6
x/ 吨
刘强的爸爸带回一张电信营业厅的资费表,上面有 A、B、C三种新的手机计费标准(打电话收费,接电话 不收费) 卡名 月租费 打出时每分钟通话费
(2)求这两个函数的图象与x轴围成的三角 形的面积。
例3. 如图,l1反映了某公司产品的销售收入与销售量 的关系,l2反映了该公司产品的销售成本与销售量的 关系,根据图意填空:
(1)当销售量为2吨时,销售收入= 2000 元, 销售成本= 3000 元;

人教版八年级下册数学第1课时 一次函数的概念教案与教学反思

人教版八年级下册数学第1课时 一次函数的概念教案与教学反思

19.2.2 一次函数青海一中李清第1课时一次函数的概念【知识与技能】1.理解一次函数的概念以及它与正比例函数的关系.2.能根据问题的信息写出一次函数的表达式,能利用一次函数解决简单的问题.【过程与方法】在探究过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系.【情感态度】经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力.【教学重点】1.一次函数的概念.2.根据已知信息写出一次函数的表达式.【教学难点】理解一次函数的定义及与正比例函数的关系.一、情境导入,初步认识引导学生一起回忆函数、正比例函数的概念和两者间的关系.问题某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃,登山队员由大本营向上登高xkm,他们所在位置的气温是y℃,试用解析式表示y与x的关系.【分析】 y随x的变化规律是,从大本营向上海拔增加xkm时,气温从5℃减少6x℃,因此y与x的函数关系为y=5-6x,变形可写成y=-6x+5.【教学说明】找出y与x的关系式后,引导学生观察这个函数式是不是正比例函数,它的形式与正比例函数解析式有什么异同?由学生共同讨论.二、思考探究,获取新知学生思考下列问题,写出对应的函数解析式:(1)有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(单位:℃)有关,即C的值约是t的7倍与35的差.(2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h,h再减常数105,所得的差是G的值.(3)把一个长10cm,宽5cm的长方形的长减小xcm,宽不变,长方形的面积y(单位:cm2)随x的值而变化.【答案】(1)C=7t-35;(2)G=h-105;(3)y=-5x+50.【教学说明】让学生观察所写解析式的特点,并让学生认识到:各小题表示变量的字母虽然不同,但结构相同.变量间对应关系反映出了一种函数形式,与所取符号无关,找出这些式子的共同点,才能概括出一般规律.【归纳总结】(1)一般地,形如y=kx+b(k,b为常数,k≠0)的函数,叫一次函数.(2)当b=0时,得y=kx,故正比例函数是一次函数的特例.三、典例精析,掌握新知例1 下列函数中哪些是一次函数?哪些正比例函数?①y=-2x;②2yx=-;③y=2x2-3;④y=13x+2.【答案】①④是一次函数,①是正比例函数.【教学说明】一次函数包括正比例函数.例2 某校校办工厂的现有年产值是15万元,计划今后每年增加2万元,由此可知,年产值发生了变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果年数用x(年)表示,年产值用y(万)元表示,那么y与x之间有什么样的关系?(3)当年由1年增加到5年时,年产值是怎样变化的?【分析】由题意可知,现有年产值是15万元,以后每年增加2万元,可见,年数乘以2万元即为增加的产值.【答案】(1)在这个变化过程中,自变量是年数,因变量是年产值.(2)y=2x+15.(3)当年数由1年增加到5年时,年产值由17万元增加到25万元.例3托运行李P千克(P为整数)的费用为c元,已知托运第一个1千克须付2元,以后每增加1千克(不足1克的按1千克计)须增加费用5角,写出c与P的关系式,并计算出托运5千克行李的托运费.【分析】因为P千克可写成(P1)+1,其中1千克付费2元,P-1千克增加费用0.5(P-1),所以c=2+0.5(P-1)=0.5P+1.5.【答案】c=2+0.5(P-1)=0.5P+1.5.当P=5时,c=0.5×5+1.5=4(元).即5千克行李的托运费是4元.【教学说明】在写系式时,应注意(P-)千克是增加的重量.类似的问题还有用水、用电、话费结算等,它们都是以分段形式收费的.四、运用新知,深化理解1.一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米/秒.(1)求小球速度v随时间t变化的函数关系式,它是一次函数吗?(2)求第2.5秒时小球的速度.2.汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y(单位:升随行驶时间x(单位:时)变化的函数关系式,并写出自变量x的取值范围,y是x 的一次函数吗?3.气温随着高度的增加而下降,下降的一般规律是从地面到高空11km处,每升高1km,气温下降6℃.高于11km时,气温几乎不再变化,设地面的气温为38℃,高空中xkm的气温为y℃.(1)当0≤x≤11时,求y与x的关系式.(2)求当x=2,5,8,11时y的值.(3)求在离地面13km的高空处,气温是多少度?(4)当气温是-16℃时,问在离地面多高的地方?【教学说明】上述问题由学生思考并得出结果.【答案】1.(1)v=2t,是一次函数;(2)第2.5秒时小球的速度是5米/秒.2.y=50-5x,0≤x≤10,y是x的一次函数.3.(1)0≤x≤11时,y与x之间的关系式为y=38-6x.(2)分别为26,8,-10,-28.(3)气温是-28℃.(4)离地面9km高的地方.五、师生互动,课堂小结问题1 反思函数、正比例函数、一次函数的概念及它们间的关系.问题2 就本节课所学、所想、所思、所获,交流体会.【教学说明】引导学生用语言表述个人见解,指导获取正确清晰的知识点和知识间联系.1.布置作业:从教材“习题19.2”中选取.2.完成练习册中本课时练习.本课时重点是引领学生从整体的高度把握一次函数与正比例函数的概念间的关系,教师应选取适当的材料帮助学生从不同的角度认识这个知识点,并通过一定的练习指导学生巩固认识.教学中可重点指导学生表述、交流个人体会,再互相分析,在师生的共同探讨中逐步抓住知识的本质,再鼓励学生主动地应用于解决问题中,获得实际应用能力. 【素材积累】1、走近一看,我立刻被这美丽的荷花吸引住了,一片片绿油油的荷叶层层叠叠地挤摘水面上,是我不由得想起杨万里接天莲叶无穷碧这一句诗。

一次函数的图象和性质复习(1)

一次函数的图象和性质复习(1)

一次函数图象和性质复习(1)【教学目标】1.理解一次函数的概念,会用待定系数法确定一次函数表达式.2.能利用一次函数图象和表达式理解其性质.3.会根据表达式求其图象与两坐标轴的交点坐标.4.在解题的过程中,真正体会“数”与“形”的相互转化,学习数形结合与分类讨论的思想方法.5.培养学生交流合作的意识,提高观察和分析问题的能力,使学生养成良好的学习习惯.【教学重点】一次函数的图象和性质的运用【教学难点】根据表达式和图象解决一些与三角形的面积有关的综合问题.【教学过程】一、自查学习:1.在下列函数中,是一次函数是( ) A.y=kx+2 B.31+=xy C.y=-x 2+6 D.y=3x-2 2.一次函数26y x =-+的图象是一条 ,经过第 象限。

一次函数26y x =-+的图象与x 轴的交点坐标是 ,与y 轴的交点坐标是 。

3.在一次函数y=kx+3中,y 的值随着x 的增大而增大,请你写出符合条件的k 的一个值:k=____4.将直线y=2x+1向下平移3个单位长度后所得的直线解析式是___________.5.已知一次函数的图象与y=x 平行,且过点(0,1),则这个一次函数的解析式为___________.二、知识梳理1.一次函数概念一般地,解析式形如___________(k,b 是常数,且k____0)的函数叫做一次函数。

当b=0时,y=_______(k___0)是正比例函数。

2.一次函数的图象和性质3.直线的平移:(1)上下平移:上加下减直线y=kx+b(k ≠0)向上平移m (m >0)个单位长度得到的解析式为y=kx+b+m;直线y=kx+b(k ≠0)向下平移m (m >0)个单位长度得到的解析式为y=kx+b-m(2) 左右平移:左加右减直线y=kx+b(k ≠0)向左平移n (n >0)个单位长度得到的解析式为y=k(x+n)+b直线y=kx+b(k ≠0)向右平移n (n >0)个单位长度得到的解析式为y=k(x-n)+b4.求一次函数解析式:待定系数法步骤: (1)设:设出一次函数解析式 ;(2)代:把已知条件代入y=kx+b 中,得到关于k 、b 的方程(组);(3)求:解方程(组),求_______、________;(4)写:写出一次函数解析式.5.两条直线的位置关系: 对于两条直线222111y b x k y b x k +=+=与(1k ,2k ≠0)(1) 当1k 2k 且 1b 2b 时,两直线平行,即21y ∥y ;(2) 当1k 2k 且 1b 2b 时,两直线重合;(3) 当1k 2k 时,两直线相交;(4) 当 时,两直线互相垂直,即21y ⊥y ;三、精析精练例1:已知一次函数 y=(1-2m)x+m-1 , 求满足下列条件的m 的值:(1)函数值y 随x 的增大而增大;(2)函数图象与y 轴的负半轴相交;(3)函数的图象过原点;(4)函数的图象过第二、三、四象限;点评:熟练运用一次函数的概念、图象和性质,及数形结合思想的运用,特别注意概念中的条件k ≠0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②当b<0时,直线与y轴交于负半轴上;
③当b=0时,直线经过原点,是正比例函数.
(4)k,b的符号不同,直线所经过的象限也不同;
①当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);
②当k>0,b<O时,直线经过第一、三、四象限(直线不经过第二象限);
③当k<O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);
(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果x(千克)之间的函数关系式,并写出自变量x的取值范围;
(2)当购买在什么范围时,选择哪种购买方案付款最少?并说明理由。
例3、某影碟出租店开设两种租碟方式:一种是零星租碟,每张1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元,小兵经常来该店租碟,若每月租碟数量为x张。
知识点2:一次函数的图象和性质
【内容概述】
1、画函数图象一般分为三步:列表、描点、连线.
2、一次函数y=kx+b(k,b为常数,k≠0)的性质
(1)k的正负,决定直线的倾斜方向(函数值的增减性);
①k>0时,y的值随x值的增大而增大;
②k<O时,y的值随x值的增大而减小.
(2)|k|大小,决定直线的倾斜程度;
(1)写出零星租碟方式应付款 (元)与租碟数量x(张)之间的函数关系式。
(2)写出会员卡租碟方式应付款 (元)与租碟数量x(张)之间的函数关系式。
(3)小兵选取哪种租碟方式更合算?
例4、如图,已知,直线y=2x+3与直线y=-2x-1.(1)求两直线交点C的坐标;(2)求△ABC的面积.
练习1、已知Байду номын сангаас比例函数y=(3k-1)x,,若y随x的增大而增大,则k的取值范围是()
练习4、直线y=2-3x不经过第______________象限,y随x的增大而___________.
练习5、直线y=2x+b的图象过点(3,5),则该直线与x轴的交点是____ __,与y轴的交点是__
练习6、A校和B校各有电脑12台和6台,现决定送给C校10台、D校8台,已知从A校调一台电脑到C校、D校的费用分别是40元和80元,从B校调运一台电脑到C校、D校的运费分别是30元和50元,试求出总运费最低的调运方案,最低是多少运费?
例如:y=2x+3,y=-x+2,y= x等都是一次函数,y= x,y=-x都是正比例函数.
【典型例题—1】一次函数和正比例函数的概念
例1、如果 是一次函数,则的值是()
A、1 B、-1 C、±1 D、±
例2、函数y=2x+3,当x=1时,y的值是()
A、1 B、0 C、-1 D、-5
例3、若 是正比例函数,则b的值是__________
练习7、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离。
练习8、已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数 的图象相交于点(2,a).求:
(1)求a的值;(2)求一次函数的解析式。
课后作业
1、如果 是一次函数,则的值是()
A、1 B、-1 C、±1 D、±
2、若 是正比例函数,则b的值是()
例2、一次函数的图象经过点(-2,3)与(1,-1),它的解析式是________.
例3、已知y-3与x成正比例,且x=2时,y=7.
(1)写出y与x之间的函数关系式;
(2)当x=4时,求y的值;
(3)当y=4时,求x的值.
例4、已知y与x+1成正比例,当x=5时,y=12,则y关于x的函数关系式是.
8、当 时,函数y=ax+b与 在同一坐标系中的图象大致是()
9、平行四边形相邻的两边长为x、y,周长是30,则y与x的函数关系式是__________.
10、直线y=- 不经过第象限。
第1讲复习一次函数
教学目标
掌握一次函数的性质,识别一次函数的图像。
重点、难点
1、一次函数的性质
2、一次函数的综合应用
考点及考试要求
1、一次函数的性质和图像
2、一次函数的综合应用
教学内容
知识框架
1、一次函数的性质与图像
2、一次函数的应用
知识点1:一次函数和正比例函数的概念
【内容概述】
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.
④当k<O,b<O时,直线经过第二、三、四象限(直线不经过第一象限).
【典型例题—2】一次函数的图象和性质
例1、若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()
A.m<OB.m>0 C.m< D.m>
例2、函数y=(k-1)x,y随x增大而减小,则k的范围是( )
A. B. C. D.
例3、已知一次函数y=kx+b的图象如图所示,则k、b的符号是( )
A.k>0,b>0 B、k>0,b<0
C、k<0,b>0 D、k<0,b<0
例4、关于函数y= -x - 2的图像,有如下说法:
①.图像过点(0,-2)②图像与x轴的交点是(-2,0)
③由图象可知y随x的增大而增大④图像不经过第一象限⑤图像是与y= -x+2平行的直线
|k|越大,直线与x轴相交的锐角度数越大(直线陡);
|k|越小,直线与x轴相交的锐角度数越小(直线缓);
两直线的k相同,则它们是互相平行.(也可从平移的角度加以分析)
例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.
(3)b的正、负,决定直线与y轴交点的位置;
①当b>0时,直线与y轴交于正半轴上;
A.0 B. C. D.
3、若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()
A.m<OB.m>0 C.m< D.m>
4、函数 ,自变量x的取值范围是()
A. x≥-1 B. x 0 C. x>-1且 D. x≥-1且
5、已知a、b、c都是正数,且 ,则下列四个点中,在正比例函数y=kx图象上的点的坐标是()
其中正确说法有()
A.5个B. 4个C. 3个D. 2
知识点3:待定系数法求解析式
【内容概述】
用待定系数法确定一次函数表达式的一般步骤
(1)设函数表达式为y=kx+b;
(2)将已知点的坐标代入函数表达式,解方程(组);
(3)求出k与b的值,得到函数表达式.
【典型例题—3】待定系数法求解析式
例1、已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.
A.(1, )B.(1,2)C.(1, )D.(1,-1)
6、直线y=kx+b与坐标轴的两个交点分别为A(2,0)和B(0,-3),则不等式kx+b+3≥0的解为()
A x≥0 B. x≤0 C. x≥2 D. x≤2
7、若m<0,n>0,则一次函数y=mx+n的图象不经过()
A.第一象限B.第二象限C.第三象限D.第四象限
知识点4:函数图象的平移
【内容概述】
左加右减,上加下减
【典型例题—4】函数图象的平移
例1、将直线y=3x向左平移5个单位,得到直线;将直线y=-x-5向上平移5个单位,得到直线.
例2、直线y=2x+1按坐标(2,-1)平移后的函数的表达式为________________
知识点5:一次函数的综合应用
【典型例题—5】一次函数的综合应用
例1、如图,已知直线y=-x+2与x轴,y轴分别交于点A和点B,另一直线y=kx+b(k≠0)经过点C(1,0),且把△AOB分成两部分。
(1)若△AOB被分成的两部分面积相等,求k和b的值
(2)若△AOB被分成的两部分面积比为1:5,求k和b的值
例2、某公司到果园基地购买某种优质水果,慰问医务工作者。果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回。已知该公司租车从基地到公司的运输费为5000元。
A. k<0 B.k>0 C.k< D.k>
练习2、如图,直线y=kx+b与x轴交于点(-4,0),则当y<0时,x的取值范围是()
A.x>-4 B.x>0 C.x<-4 D.x<0
练习3、已知一次函数y=kx+b的图象,当x<0时,y的取值范围是()
A. y>0 B.y>0 C.-2<y<0 D.y<-2
相关文档
最新文档