2017中考复习一摸试卷20170412

合集下载

2017年中考数学一模试卷及答案

2017年中考数学一模试卷及答案

2017年中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x 2﹣2x+4具有相同对称轴的是( ) A .y=4x 2+2x+1B .y=2x 2﹣4x+1C .y=2x 2﹣x+4D .y=x 2﹣4x+22.如图,点D 、E 位于△ABC 的两边上,下列条件能判定DE ∥BC 的是( )A .AD •DB=AE •ECB .AD •AE=BD •EC C .AD •CE=AE •BD D .AD •BC=AB •DE 3.已知一个坡的坡比为i ,坡角为α,则下列等式成立的是( ) A .i=sinα B .i=cosα C .i=tanα D .i=cotα4.已知向量和都是单位向量,则下列等式成立的是( ) A .B .C .D .||﹣||=05.已知二次函数y=x 2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为( )A .y=(x+2)2+3 B .y=(x+2)2﹣3 C .y=(x ﹣2)2+3 D .y=(x ﹣2)2﹣36.Word 文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC ,已知AB=AC ,当它以底边BC 水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC 以腰AB 水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是( )图形图①图②图③图④图⑤绝对高度1.52.01.22.4?0 0 0 绝对宽度2.001.502.503.60?A .3.60和2.40B .2.56和3.00C .2.56和2.88D .2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a 是线段b 、c 的比例中项,如果a=3,b=2,那么c= . 8.化简:= .9.已知点P 是线段AB 的黄金分割点(AP >BP ),若AB=2,则AP ﹣BP= .10.已知二次函数y=f (x )的图象开口向上,对称轴为直线x=4,则f (1) f (5)(填“>”或“<”)11.求值:sin60°•tan30°= .12.已知G 是等腰直角△ABC 的重心,若AC=BC=2,则线段CG 的长为 . 13.两个相似三角形的相似比为2:3,则它们的面积之比为 .14.等边三角形的周长为C ,面积为S ,则面积S 关于周长C 的函数解析式为 .15.如图,正方形ABCD 的边EF在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知BC=6,△ABC 的面积为9,则正方形DEFG 的面积为 .16.如图,小明家所在小区的前后两栋楼AB 、CD ,小明在自己所住楼AB 的底部A 处,利用对面楼CD 墙上玻璃(与地面垂直)的反光,测得楼AB 顶部B 处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB 的高度是 米.17.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B 重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A.B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度2.01.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时, =,即=,解得AP=4;当△ADP∽△ACB时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .【考点】菱形的性质;解直角三角形.【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD 的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD面积的,所以S△AMB=S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM ∥CD 交AD 、EF 于M 、N 两点,将问题转化到△ABM 中,利用相似三角形的判定与性质求EN ,由EF=EN+NF=EN+AD 进行求解;(2)由=、=得BC=AD ,EB=AB ,根据=可得答案.【解答】解:(1)作BM ∥CD 交AD 、EF 于M 、N 两点,又AD ∥BC ,EF ∥AD ,∴四边形BCFN 与MNFD 均为平行四边形.∴BC=NF=MD=2,∴AM=AD ﹣MD=1.又=2,∴=,∵EF ∥AD ,∴△BEN ∽△BAM ,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD ,EB=AB ,∴==, ==,则==+. 【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC 中,∠ACB=90°,AB=5,tanA=,将△ABC 沿直线l 翻折,恰好使点A 与点B 重合,直线l 分别交边AB 、AC 于点D 、E ;(1)求△ABC 的面积;(2)求sin ∠CBE 的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A 的正切用BC 表示出AC ,再利用勾股定理列方程求出BC ,再求出AC ,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x ,表示出AE ,再根据翻折变换的性质可得BE=AE ,然后列方程求出x ,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC ,在Rt △ABC 中,BC 2+AC 2=AB 2,即BC 2+4BC 2=25,解得BC=,所以,AC=2,△ABC 的面积=AC •BC=××2=5;(2)设CE=x ,则AE=AC ﹣CE=2﹣x ,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=xsin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。

2017中考模拟语文试卷(答案)

2017中考模拟语文试卷(答案)

2017中考模拟语文试卷(答案)语文试卷考试时间150分钟,试卷满分150分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.主观试题答案必须用0.5毫米黑色签字笔填写,字体工整。

3.作答时,将答案(包括客观试题答案)写在答题卡上,写在本试卷上无效。

请按题号顺序在各题的答题区内作答,超出范围的答案无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、积累与运用(满分30分)1.下列加点字注音完全正确的一项是()。

(2分)A.惩.(chěng)罚星宿.(xiù)因地制.( zhì)宜忍俊不禁.(jīn)B. 栈.(zhàn)桥附和.(hè) 根深蒂.( dì ) 固谈笑风生.(shēng)C. 诀. (jué )别木讷.(nè) 脍.(kuài)炙人口妇儒.(rú)皆知D.庇.(bì)护遒劲.(jìn )叱咤.(zhà)风云引经剧.(jù)典2.下列词语书写完全正确的一项是()。

(2分)A.秩序井然惊慌失错期期艾艾波光嶙嶙B.气充斗牛锲而不舍顶礼摹拜芒刺在背C.精巧绝纶物竞天泽踉踉跄跄无可置疑D.长途跋涉红装素裹袅袅烟云孜孜不倦3.下列句子中加点成语使用正确的一项是()。

(2分)A.所谓学习,不一定限于书本或是某种技术,随时随地学习,这是不断提升自我的不二法门....。

B.在读书汇报会上,张山同学旁征博引,断章取义....,赢得了同学们的一致好评。

C.三月撄花节期间,磁湖南岸,樱花盛开,如云如霞,游人鳞次栉比....。

D.长沙以“湘江新区”获批国家级新区为契机,提质大河西生态文明建设,让自然景观惟妙惟肖....。

4.依次填入下面横线处的词语,最恰当的一项是()。

(2分)倾听使人,你将不再囿于一己的狭隘;倾听使人,你将懂得山外有山天外有天;倾听使人,你会知道孤独和苦难并非只莅临你的屋檐;倾听使人,你会觉察此时此刻有多少大脑飞速运转,有多少巧手翻飞不息。

2017年中考语文一模试题

2017年中考语文一模试题

2017年中考语文一模试题(时间120分钟满分120分)注意事项:1.本试卷共120分,考试时间120分分钟。

2.答案一律填涂或书写在答题卷上。

选择题必须使用2B铅笔填涂,非选择题必须使用黑色墨水笔书写。

一(23分)1.用诗文原句填空。

(9分)(1),切问而近思。

(《论语.子张》)(2)念天地之悠悠,。

(陈子昂《登幽州台歌》)(3),烟波江上使人愁。

(崔浩《黄鹤楼》)(4)长风破浪会有时,。

(李白《行路难》)(5),润物细无声。

(杜甫《春夜喜雨》)(6)山映斜阳天接水,更在斜阳外。

(范仲淹《苏幕遮》)(7)无可奈何花落去,。

(晏殊《浣溪沙》)(8)鸢飞戾天者,;经纶世务者,窥谷忘反。

(吴均《与朱元思书》)(9)“”,刚起头儿,有的是工夫,有的是希望。

(朱自清《春》)2.用正楷字或行书将对联抄写在方格内。

(4分)崇楼北望可阅江蛟龙东去欲探海,。

3.阅读下面新闻,按要求回答问题。

(7分)樱花如约开放,3月25日,阴雨终于按下暂停键,气温瞬间回暖。

市区里的樱花没有爽约,在连日小雨滋润下缓缓盛开,进入最佳观赏状态。

鸡鸣寺、玄武湖、明孝陵风景区等久fù( ① )盛名的赏樱点,本周日迎来客流高峰。

鸡鸣寺的“樱花大道”人头攒.( ② )动,如云似雪的早樱惹得游人驻足。

晚樱品种绽放,含苞的花蕾.( ③ )微微透出粉色。

玄武湖的樱花节也正热闹,樱花品种丰富,有山樱、重瓣樱、垂枝樱等,花海无边。

明孝陵的樱花园内,白色樱花将亭台楼阁掩映其中,古朴典雅。

樱花树下,人流涌动,更有汉服爱好者,以绚丽的古装映衬“漫天樱雪”。

阳光明媚,落英缤纷,漫步南京,何等qiè( ④ )意!(新闻源自网络) (1)根据拼音写汉字,给加点字注音。

(4分)①久fù( )盛名②人头攒.( )动③花蕾.( ) ④qiè( )意(2)在文中方格处填写适当的关联词。

(1分)(3)根据新闻内容,补全标题。

(限6字以内)(2分)4.下面文字分别是哪三部作品的开篇?对应的正确选项是()(3分)(1)昏暗狭窄的房子里,我的父亲摊手摊脚地躺在地板上。

2017年中考第一次模拟考试英语试题卷

2017年中考第一次模拟考试英语试题卷

2017年中考第一次模拟考试英语试题卷东莞市2017年中考第一次模拟考试试题卷英语科一. 听力部分(共25分) A. 听句子。

(每题1分,共5分)( ) 1. How will the weather be tomorrow?( ) 2. How does Peter usually go to school?( ) 3. Where is Mr. Green from?( ) 4. What can the twins do?( ) 5. What time is it now?B.听对话(本大题10分,每小题1分,共10分听第一段对话,回答第6小题。

( ) 6. What was the weather like yesterday?A. Sunny.B. Windy.C. Rainy.听第二段对话,回答第7小题。

( )7. Where is Yuanyuan’s mother now?A. In Yunnan.B. In Shanghai.C. In Wuhan.听第三段对话,回答第8小题。

( )8. Why is it a good time for the students to plant trees?A. Because they have no classes.B. Because they like to plant trees in the afternoon.C. Because the soil is easy to be dug after rain.听第四段对话,回答第9小题。

( )9. Who wants to leave the window open, Jim or Kate?A. Kate.B. Jim.C. Neither Jim nor Kate.听第五段对话,回答第10小题。

( )10. What’s the relationship(关系) between the two speakers?A. Mother and son.B. Father and daughter.C. Customer and assistant.听第六段对话,回答第11-12小题。

2017中考数学一模备考试卷(有答案)

2017中考数学一模备考试卷(有答案)

2017中考数学一模备考试卷(有答案)A级基础题1.已知点P(1,-3)在反比例函数y=kx(k≠0)的图象上,则k的值是()A.3B.-3C.13D.-132.对于反比例函数y=3x,下列说法正确的是()A.图象经过点(1,-3)B.图象在第二、四象限C.x>0时,y随x的增大而增大D.x 3.在同一直角坐标系下,直线y=x+1与双曲线y=1x的交点的个数为()A.0个B.1个C.2个D.不能确定4.当a≠0时,函数y=ax+1与函数y=ax在同一坐标系中的图象可能是()A正比例函数B反比例函数C相交D垂直5.已知反比例函数y=bx(b为常数),当x>0时,y随x的增大而增大,则一次函数y=x+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.矩形的长为x,宽为y,面积为9,则y与x之间的函数关系用图象表示大致为()A正方形B长方形C圆D梯形7已知A(2,y1),B(3,y2)是反比例函数y=-2x图象上的两点,则y1____y2(填“>”或“ 8如图3­3­10,已知A点是反比例函数y=kx(k≠0)的图象上一点,AB⊥y轴于B,且△ABO的面积为3,则k的值为________.9.已知一个函数的图象与y=6x的图象关于y轴成轴对称,则该函数的解析式为__________.10.已知反比例函数的图象经过点(m,2)和(-2,3),则m的值为______.11.某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?B级中等题12如图3­3­11,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=kx(x>0)的图象经过顶点B,则k的值为()A.12B.20C.24D.3213.下列图形中,阴影部分面积最大的是()ABCD14如图3­3­12,已知一次函数y1=kx+b与反比例函数y2=mx 的图象交于A(2,4),B(-4,n)两点.(1)分别求出y1和y2的解析式;(2)写出当y1=y2时,x的值;(3)写出当y1>y2时,x的取值范围.C级拔尖题15.如图3­3­13,等腰梯形ABCD放置在平面直角坐标系中,已知A(-2,0),B(6,0),D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位长度后,使点B恰好落在双曲线上,求m的值.反比例函数1.B2.D3.C4.C5.B6.C解析:由矩形的面积知xy=9,可知它的长x与宽y之间的函数关系式为y=9x(x>0),是反比例函数图象,且其图象在第一象限.故选C.7. 11.(1)由题意,得y=360x,把y=120代入y=360x,得x=3;把y=180代入y=360x,得x=2,∴自变量的取值范围为2≤x≤3.∴y=360x(2≤x≤3).(2)设原计划平均每天运送土石方x万米3,则实际平均每天运送土石方(x+0.5)万米3,根据题意,得360x-360x+0.5=24,解得x=2.5或x=-3.经检验x=2.5或x=-3均为原方程的根,但x=-3不符合题意,故舍去.x+0.5=2.5+0.5=3(万米3)答:原计划每天运送2.5万米3,实际每天运送3万米3.12.D13.C14.解:(1)将A(2,4)代入反比例解析式,得m=8,∴反比例函数解析式为y2=8x.将B(-4,n)代入反比例解析式,得n=-2,即B(-4,-2),将点A与点B坐标代入一次函数解析式,得2k+b=4,-4k+b=-2,解得k=1,b=2.则一次函数解析式为y1=x+2.(2)联立两函数解析式,得y=x+2,y=8x,解得x=2,y=4,或x=-4,y=-2.则当y1=y2时,x的值为2或-4.(3)利用图象,得当y1>y2时,x的取值范围为-42.15.解:(1)如图8,过点C作CE⊥AB于点E,∵四边形ABCD是等腰梯形,∴AD=BC,DO=CE.∴△AOD≌△BEC(HL).∴AO=BE=2.∵BO=6,∴DC=OE=4,∴C(4,3).设反比例函数的解析式为y=kx(k≠0),∵反比例函数的图象经过点C,∴3=k4,解得k=12.∴反比例函数的解析式为y=12x.(2)将等腰梯形ABCD向上平移m个单位长度后得到梯形A′B′C′D′,如图9,∴点B′(6,m).∵点B′(6,m)恰好落在双曲线y=12x上,∴当x=6时,m=126=2.即m=2.这篇中考数学一模备考试卷的内容,希望会对各位同学带来很大的帮助。

2017中考语文一模试卷4

2017中考语文一模试卷4

2017年中考语文一模试卷4第Ⅰ卷(选择题24分)注意事项:1.选择题必须使用2B铅笔将答案标号填涂在答题卡上对应题目标号的位置上。

2.在每小题给出的四个选项中,只有一项是最符合题目要求的。

3.本卷共8小题,每小题3分,共24分。

一、语文基础知识(15分,每小题3分)1.下列词语中加点字的注音有错误的一项是()A.觅食mì惧惮dàn萧索xiāo臆测yìB.山麓lù栈桥jiàn惘然mǎnɡ煞白shàC.汲取jí诅咒zǔ孕育yùn窒息zhìD.亵渎xiè搓捻cuō芳馨xīn繁衍yǎn2.下列词语书写全部正确的一项是()A.禀告滑稽险象叠生随机应变B.归咎潺弱骇人听闻恪敬职守C.鄙夷阴霾囊萤印雪肃然起敬D.匀称酬和望眼欲穿鳞次栉比3.依次填入下面句子中横线处的词语恰当的一项是()①至发电时止,我东路各军已大部南岸。

②他们小声地谈论着,似乎怕惊扰那的空气,他们穿过方场,走过桥,赶上他们的连队,投入战斗。

③上帝久久地伫立着,随后深沉地思索着离去了。

④他立刻停止了朗读,惊慌地往四下里看了看,还好,没有人在笑话他,大家的神情都那么和认真。

A.渡过肃穆凝视专注B.度过肃静凝望专心C.度过肃静凝望专注D.渡过肃穆凝视专心4.下列各句中加点的成语使用正确的一项是()A.面对小区保安的盘问,作案后的小偷义愤填膺,反应相当激烈,然而,在铁证面前不得不束手就擒。

B.第一回合取胜后,丁辉同学没有自满,决心卷土重来,拿下第二回合,直到夺取最后的胜利。

C.“成乐高铁”一旦开通,那么在乐山,水运的顺畅与高铁的快捷相得益彰,这将大大提升乐山经济发展的速度和质量。

D.在激烈的辩论场上,正方第四辩表现出色,屡次在关键时刻妙手回春,扭转局面,为本队的获胜作出了主要贡献。

5.下列句子没有语病的一项是()A.今年,我省将在普通高考中启用首次考生身份验证系统。

2017年中考第一次模拟考试英语试题卷

2017年中考第一次模拟考试英语试题卷

市2017年中考第一次模拟考试试题卷英语科一. 听力部分(共25分) A. 听句子。

(每题1分,共5分)( ) 1. How will the weather be tomorrow?( ) 2. How does Peter usually go to school?( ) 3. Where is Mr. Green from?( ) 4. What can the twins do?( ) 5. What time is it now?B.听对话(本大题10分,每小题1分,共10分听第一段对话,回答第6小题。

( ) 6. What was the weather like yesterday?A. Sunny.B. Windy.C. Rainy.听第二段对话,回答第7小题。

( )7. Where is Yuanyuan’s mother now?A. In Yunnan.B. In Shanghai.C. In Wuhan.听第三段对话,回答第8小题。

( )8. Why is it a good time for the students to plant trees?A. Because they have no classes.B. Because they like to plant trees in the afternoon.C. Because the soil is easy to be dug after rain.听第四段对话,回答第9小题。

( )9. Who wants to leave the window open, Jim or Kate?A. Kate.B. Jim.C. Neither Jim nor Kate.听第五段对话,回答第10小题。

( )10. What’s the relation ship(关系) between the two speakers?A. Mother and son.B. Father and daughter.C. Customer and assistant.听第六段对话,回答第11-12小题。

2017年中考模拟试题一

2017年中考模拟试题一

2017年中考模拟试题一2017年是中国中小学生的一个重要年份,因为这一年的中考对于即将升入高中的学生来说至关重要。

为了帮助学生更好地备战中考,各地教育部门纷纷推出了一系列中考模拟试题,以检测学生的学业水平和应对考试的能力。

下面就让我们一起来看一下2017年中考模拟试题一的试题内容。

听力部分(共20分)一、听对话,选择与对话内容相符的图片。

每段对话听一遍。

(共5分,每小题1分)1. What is the man going to do?2. Where will the boy meet his friend?3. What did the woman buy?4. How does the girl usually go to school?5. Where are the speakers talking?二、听对话,选择正确答案。

每段对话听两遍。

(共5分,每小题1分)6. What does the girl often do after school?A. Read books.B. Watch TV.C. Do homework.7. How much will the man pay for the shirt?A. 25 yuan.B. 30 yuan.C. 35 yuan.8. What is the weather like in Beijing today?A. Rainy.B. Sunny.C. Windy.9. What does the girl think of the school trip?A. Boring.B. Exciting.C. Tiring.10. What is the probable relationship between the two speakers?A. Teacher and student.B. Father and daughter.C. Classmates.三、听短文,判断正误。

2017年中考数学模拟试卷

2017年中考数学模拟试卷
1
12. 用长为 1 cm 的 ������ 根火柴可以拼成如图 1 所示的 ������ 个边长都为 1 cm 的菱形,还可 以拼成如图 2 所示的 2������ 个边长都为 1 cm 的菱形,那么用含 ������ 的代数式表示 ������ , 得到 .
B. ������ ≥ 2
2
1
C. ������ > 2 且 ������ ≠ 1
2. 每 天 供 给 地 球 光 和 热 的 太 阳 与 我 们 的 距 离 非 常 遥 远 , 它 距 地 球 的 距 离 约 为 15000000 千米,将 150000000 千米用科学记数法表示为 ( A. 0.15 × 109 千米 B. 1.5 × 108 千米 C. 15 × 107 千米 10. 如图,以 ������������ 为直径的 ⊙ ������ 与弦 ������������ 相交于点 ������ ,且 ������������ = 2, ������������ = 3,������������ = 1.则弧 ������������ 的长是
0
+ −3
2
=
. 边形.
8. 若一个多边形的内角和是 540∘ ,则这个多边形是 9. 如图所示的扇形是一个圆锥的侧面展开图,若 ∠������������������ = D. 0 120∘ , 弧 ������������ 的 长 为 12π cm , 则 该 圆 锥 的 侧 面 积 为 cm2 .
2
≤ 1,
14. 计算:
3−π
0
+ 4sin45∘ − 8+∣ 1 − 3 ∣.
第 2 页(共 4 页)
17. 请你依据图所示的寻宝游戏规则,探究“寻宝游戏”的奥秘.

2017届中考物理一模试题 和答案

2017届中考物理一模试题 和答案

2017届中考物理一模试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分80分,考试时间90分钟。

第Ⅰ卷(选择题 共30分)一、选择题(本题包括15个小题,每题2分,共30分。

每小题只有一个选项符合题意)1.下列估测中最接近真实值的是A .一位中学生双脚站立时对水平地面的压强约为100PaB .一位成年人在游泳,他漂浮在水面上时所受到的浮力大约是65NC .我国1元硬币的质量大约是6000mgD .运动会上200米赛跑冠军用时约为9.8s2.加强对物理概念的理解和辨析,对于学好物理学很重要。

下列描述中正确的是 A .相互接触的物体之间不一定产生弹力,相互压紧的粗糙物体之间一定存在摩擦力 B .物体内能减小时其温度不一定降低,物体温度升高其内能一定增大 C .在受力面积一定时,物体重力越大,压强一定越大D .力对物体做的功越多,功率一定越大,但是机械效率不一定越大 3.下列说法中正确的是A .茶壶、船闸都属于连通器,主要是利用大气压原理工作的B .荷花飘香、烟雨蒙蒙都是说明分子在不停地做无规则运动C .调节小提琴琴弦的松紧程度,主要目的不是为了改变音色而是改变响度D .跳高运动员起跳蹬地时,他对地的压力大小等于地面对他的支持力 4.如图所示,小军对箱子施加水平推力,下列分析正确的是A .当推力为80N 时,箱子不动,此时推力等于地面对箱子的摩擦力,这两个力是一对相互作用力B .当增大推力时,箱子由静止开始运动,说明力是使箱子产生运动的原因C .当推力为100N 时,箱子做匀速直线运动,地面对箱子的摩擦力大小为100N ,当推力增大为120N 时,摩擦力变为120ND .箱子在水平地面上做匀速直线运动时,人对箱子的推力做了功,地面给箱子的支持力没有做功5.下图所示工具,在使用时属于省距离杠杆的是6.下列四句话中,所描述的具体应用和其对应的物理知识相符的是 A .瓶盖的侧面一般都做有凹凸相间的竖条纹,是为了在接触面的粗糙程度一定时,通过增大压力来增大摩擦力,便于旋开天平 门把手 瓶盖起子 A B C D食品夹B .屠呦呦发现青蒿素受热易失去活性,为了从溶液中提取青蒿素,她创造性地选用乙醚代替水或酒精,这是利用了乙醚具有较小的比热容C .用手机自拍逐渐成为一种时尚,自拍时人离镜头的距离u 和镜头焦距f 的关系是f<u<2fD .飞机前进时由于机翼下方空气流速较小,对机翼的压强较大,因而在机翼上下表面产生了压强差,从而产生了向上的升力7.掷实心球是某市的中考体育加试项目之一。

2017年中考化学一模

2017年中考化学一模

2017年初中毕业暨升学考试模拟试卷(一)化学(满分:100分;考试时间:90分钟)可能用到的相对原子质量:H-1 S-32 O-16 Zn-65 Cu-64注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答第Ⅰ卷时,用.2B..铅笔把答题.....卡上对应题目的答案标号涂黑.........,在本试卷上.............;答第Ⅱ卷时,用黑色水笔.....将答案写在答题卡上作答无效....;2.答题前,请认真阅读试卷和答题卡上的注意事项.................;3.考试结束后,将本试卷和答题卡一并交回............。

第I卷选择题一、单项选择题(本大题包括20小题,每小题2分,共40分。

每小题只有1个符合题意的选项,多选、错选均不得分。

)1.下列生活现象,属于物理变化的是A.糯米酿酒B.香水挥发C.光合作用D.牛奶变酸2.下列实验操作正确的是A.闻气体气味B.过滤C.稀释浓硫酸D.取少量液体3.地壳中含量最多的元素是A.硅B.铝C.氧D.铁4.下列物质,属于纯净物的是A.高锰酸钾B. 洁净的空气C. 食盐水D.石油5. 决定元素种类的依据是A.质子数B.中子数C.核外电子数D.原子的相对原子质量6.我市中考实行网上阅卷,答题时必须用2B铅笔填涂答题卡,2B铅笔笔芯的主要成分是A.铅B.木炭C.石墨D.C607.二氧化碳气体通入石蕊试液后,再加热溶液,最后溶液的颜色为A.紫色B.红色 C.蓝色D.无色8.百色是芒果之乡,芒果含有丰富的钾、镁、钠、硒和维生素C等多种营养成分,其中“钾、化学模拟考试试卷(二)第1页(共6页)化学模拟考试试卷(二) 第2页(共6页)镁、钠、硒”指的是A .单质B .元素C .原子D .化合物9.含磷洗衣粉含有Na 5P x O 10其洗涤废水任意排放造成环境污染。

已知该化合物中磷的化合价为+5,则x 应为 A .1 B .2 C .3 D .410.将厨房里常用的下列四种物质分别放入水中,不能形成溶液的是A .白糖B .食用油C .米醋D .食盐11.我国正在推行中小学营养中餐计划,营养中餐必须含有六大营养素,其中蛋白质的量必须要达到一定标准.下列物质不富含蛋白质的是 A .蛋类 B .鱼 C .瘦肉 D .红薯12.下列物品所用的主要材料属于天然纤维的是A .合成橡胶B .尼龙绳C .棉布衬衣D .涤纶衬衫13.小林家种玉米因为缺氮,生长迟缓、叶色发黄。

2017年中考模拟考试试题(卷)数学试题

2017年中考模拟考试试题(卷)数学试题

2017年中考模拟考试试题(卷)数学注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共8页,满分120分,考试时间120分钟.2.答卷前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置.3. 答案全部在答题卡上完成,答在本试卷上无效.4. 考试结束后,只收回答题卡.第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该选项涂黑)1.计算-3×2的结果等于A.-1 B.-5 C.-6 D.12A.2和3之间B.3和4之间C.4和5之间D.5和6之间3.如图所示是某长方体形状包装盒的表面展开图,根据图中的数据,该包装盒的容积是(包装盒材料的厚度忽略不计)A.40×70×80 B.80×80×40C.40×40×70 D.70×70×804.计算22x yx y y x+--的值为A.x y+B.y x-C.x y-D.x y--5.石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成的六角型呈蜂巢晶格的平面薄膜,是目前发现的厚度最薄、强度最大、导电导热性能最强的一种新型纳米材料,其厚度仅为0.334纳米.数据0.334纳米用科学记数法可以表示为(1纳米=0.000000001米)A .0.334×10-9米B .3.34×10-9米C .3.34×10-10 米D .3.34×10-8米 6.某市在一次空气污染指数抽查中,收集到10天的数据如下:61,75,70,56,81,91,92,91,75,81.该组数据的中位数是 A .77.3B .91C.81D .787.已知点A (1-2x ,x-1)在第二象限,则x 的取值范围在数轴上表示正确的是8.已知一次函数y kx b =+的图象如图所示,则不等式1kx b +>-的解集是A .2x >-B .2x <-C .0x >D .0x <9.如图,△ABC 与△DEF 是位似图形,点A (-1,2)和点D (2,-4)是对应点, 则△ABC 内的点P (m ,n )的对应点P ′的坐标为 A .(2m,2n ) B .(-2m ,-2n ) C .(2m ,-2n ) D .(-2m ,2n )10.如图,击打台球时小球反弹前后的运动路线遵循轴对称原理,即小球反弹前后的运动路线与台球案边缘的夹角相等(α=β).在一次击打台球时,把位于点P 处的小球沿所示方向击出,小球经过5次反弹后正好回到点P ,若台球案的0.510.510.5110.50DC B A -2-1OyxP′P F EDOC BA边AD 的长度为4,则小球从P 点被击出到回到点P ,运动的总路程为 A .16 B .162 C .20 D .202第Ⅱ卷 非选择题(共90分)二、填空题(每小题3分,共15分)11.将一副三角尺按如图所示方式摆放,若斜边DF ∥AB ,则∠1的度数为 ▲ .12.某广告公司欲招聘一名创作总监,对2名应试者进行了三项素质测试,他们的各项测试成绩如下表所示:如果公司赋予“创新能力”、“计算机能力”、“公关能力”三项的权重为5:3:2, 则本次招聘中应试者 ▲ 将被录用(填“甲”或“乙”). 13.我国古代数学著作《九章算术》中有这样一个问题:今有池方一丈,葭生其中央,出水一尺,引 葭赴岸,适于岸齐,问水深,葭长各几何?”这 道题的意思是说:有一个边长为10尺的正方形水池,在水池的正中央长着一根芦苇,芦苇露出水面1尺,若将芦苇拉到水池一 边的中点处,芦苇的顶端恰好到达池边的水面,问水的深度与这根芦苇的长度分 别是多少?若设水的深度为x 尺,则可以得到方程 ▲ .14.如图1是一种阳台户外伸缩晾衣架,侧面示意图如图2所示,其支架AB ,CD ,EF ,GH ,BE ,DG ,FK 的长度都为40cm (支架的宽度忽略不计),四边形βαPCDBA应试者测试成绩创新能力计算机能力公关能力1FEDCBA45°BQCP ,DMEQ ,FNGM 是互相全等的菱形,当晾衣架的A 端拉伸到距离墙壁最远时,∠B =∠D =∠F =80°,这时A 端到墙壁的距离约为 ▲ cm. (sin40°≈0.643,cos40°≈0.766,tan40°≈0.839)15.如图,点A 是反比例函数(0)k y x x=>的图象上一点,OA 与反比例函数1(0)y x x=>的图象交于点C ,点B 在y 轴的正半轴上,且AB =OA .若△ABC 的面积为6, 则k 的值为 ▲ .三、解答题(本大题共8个小题,共75分.解答题应写出文字说明、证明过程或演算步骤)16.(每小题5分,共10分)(1)计算:11942cos602-⎛⎫--+-- ⎪⎝⎭(2)因式分解:()()4x y x y xy --+图2KN M Q PHG FBE DC A 图1图2 图117.(6分)解方程:28124x x x -=--18.(7分)“五一”假日期间,某网店为了促销,设计了一种抽奖送积分活动.在该网店网页上显示有如图所示的圆形转盘,转盘被均等的分成四份,四个扇形上分别标有“谢谢惠顾”、“10分”、“20分”、“40分”字样.参与抽奖的顾客只需用鼠标点击转盘,指针就会在转动的过程中随机的停在某个扇形区域,指针指向扇形上的积分就是顾客获得的奖励积分.凡是在活动期间下单的顾客,均可获得两次抽奖机会.求两次抽奖顾客获得的总积分不低于30分的概率.19.(8分)如图,△ABC 是直角三角形,∠ACB =90°,∠A =30°.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法). ①作△ABC 的外接圆O ;②在AB的延长线上作一点D,使得CD与⊙O相切;(2)综合与运用:在你所作的图中,若AC=6,则由线段CD,BD及BC所围成图形的面积为▲ .20.(8分)阅读下列材料,完成相应任务:CB A⌒学习任务:(1)将剩余部分的证明过程补充完整;(2)若将图(1)中的点S 与点D 重合,重复材料中的操作过程得到图(4),请利用图(4),直接写出tan15°= ▲ (不必化简).21.(10分)近年来,某市坚持绿色发展理念,着力建设生态典范城市,大力开展绿化工程建设.某校 “社会实践”小组的同学为了了解该市绿地的发展情况,对市园林局进行了走访调查,获取了如下信息:信息1:2015年的绿地总面积(绿地总面积=森林面积+草场面积)为276km 2,其中森林面积比上一年增长40%,草场面积比上一年增长20%.信息2:2014年的绿地总面积为200km 2.求:(1)该市2014年的森林面积和草场面积分别为多少km 2?(2)若该市2016年的绿地总面积为338km 2,求2014年至2016年该市绿地总面积的年平均增长率为多少?22.(12分)综合与实践 在数学活动课上,老师给出如下问题,让同学们展开探究活动:问题情境:如图(1),在△ABC 中,∠ACB = 90°,AC = BC = a ,点D 为AB 上一点 (0<AD <12AB ),将线段CD 绕点C 逆时针旋转90°,得到的对应线段为CE ,过点E 作EF ∥AB ,交BC 于点F .请你根据上述条件,提出恰当的数学问题并解答.图(4)(S)D A BCM F E N T HGA′QP 草场森林图(4)解决问题:下面是学习小组提出的三个问题,请你解答这些问题: (1)“兴趣”小组提出的问题是:求证:AD =EF .(2)“实践”小组提出的问题是:如图(2),若将△ACD 沿AB 的垂直平分线对折,得到△BCG ,连接EG ,则线段EG 与EF 有怎样的数量关系?请说明理由.(3)“奋进”小组在“实践”小组探究的基础上,提出了如下问题:延长EF 与AC交于点H ,连接HD ,FG .求证:四边形DGFH 是矩形.提出问题: (4)完成上述问题的探究后,老师让同学们结合图(3),提一个与四边形DGFH有关的问题.“智慧”小组提的问题是:当AD 为何值时,四边形DGFH 的面积最大? 请你参照智慧小组的做法,再提出一个与四边形DGFH 有关的数学问题(提出问题即可,不要求进行解答,但所提问题必须有效.)你提出的问题是: ▲ .23.(14分)如图(1),抛物线W 1:x x y 42+-=与x 轴的正半轴交于点B ,顶点为A ,抛物线W 2与W 1关于x 轴对称,顶点为D . (1)求抛物线W 2的解析式;(2)将抛物线W 2 向右平移m 个单位,点D 的对应点为D ′,点B 的对应点为B ′,则当m 为何值时,四边形AOD ′B ′为矩形?请直接写出m 的值.(3)在(2)的条件下,将△AOD ′沿x 轴的正方向向右平移n 个单位(0<n <5),得到△A ′O ′D ′′,AD ′分别与O ′A ′、O ′D ′′交于点M 、点P ,A ′D ′′ 分别与AB ′、B ′D ′交于点N 、点Q .①求当n 为何值时,四边形MNQP 为菱形?②若四边形MNQP 的面积为S ,求S 关于n 的函数关系式;并求当n 为何值时,S 的值最大?最大值为多少?H图(3)FED CBA GGA B CD EF图(2)图(1)FED CB A。

2017年中考模拟测试试题及答案

2017年中考模拟测试试题及答案

2017年中考模拟测试试题生物说明:1、全卷共6页,全部为单项选择题,每小题2分,满分为100分,考试用时为50分钟。

2、答卷前,考生务必用黑色字迹的钢笔或签字笔在答题卡上填写自己的准考证号、姓名、考 场号、座位号。

用2B 铅笔将考场号和座位号相应号码的标号涂黑。

3、每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4、考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

1、在同一块地里同时栽培大蒜,若栽培在露天环境中,长出的叶片是绿色的;而在遮光条件下栽培,长出的叶片是黄色的、该探究实验说明影响叶绿素形成的环境因素是A 、水分B 、光C 、无机盐D 、空气 2、生物体的形态结构总是与其生活环境相适应,下列有关叙述错误的是A 、蜥蜴的体表有角质的鳞片,可以防止体内水分的蒸发B 、野兔神经系统发达,能迅速躲避天敌C 、蝗虫有外骨骼,不易被天敌发现D 、鲫鱼身体两侧各有一条侧线,可感知水流和测定方向3、为探究草履虫对刺激的反应,某同学制作了如图所示的临时装片,用显微镜观察发现草履虫将A 、从左向右运动B 、从右向左运动C 、没有特定的移动方向D 、不运动4、二氧化硫是污染大气的主要有害物质之一,下列可作为 大气污染程度指示植物的是A 、水绵B 、葫芦藓C 、肾蕨D 、满江红5、如图表示某细胞分裂过程中遗传物质的含量曲线,正确的是6、“垂涎三尺”、“望梅止渴”都与人体唾液腺有关,你认为人的唾液腺主要由什么组织构成A 、上皮组织B 、结缔组织C 、肌肉组织D 、神经组织 7、关于器官的说法正确的是A 、肾脏是形成尿液的器官,尿液的形成受大脑的控制左B、花椰菜(俗称“花菜”)是属于营养器官C、皮肤是人体最大的器官D、肝脏是人体最大的消化器官8、下列关于实验的叙述中“实验方法”和“结论或观点”能匹配的是A、用稀碘液检测唾液淀粉酶在不同温度下对馒头的消化,可知温度越高酶的活性越强B、滴加生理盐水制作洋葱鳞片叶表皮细胞临时装片,是为了维持细胞形态C、盆中植物用塑料袋罩一晚后袋内会出现水珠,说明植物晚上也能进行蒸腾作用D、“测定某食物中的能量”实验中,实验结果均超过标准值很多,原因是材料燃烧不充分9、某同学于6月中旬晴朗的一天做了如下的探究:从上午8点开始,在同一植株的相同位臵上,每隔5小时(8点、13点、18点和23点)摘取一片大小相同的叶片,摘取了4片叶子,并按时间顺序编号,甲、乙、丙和丁,低温保存,同时进行脱色处理再滴加碘液,颜色最蓝的是A、甲叶B、乙叶C、丙叶D、丁叶10、现在的菜农在种植黄瓜、丝瓜、西红柿、菜豆等蔬菜时,都要给这些植物搭架供其在上面生长。

2017中考数学一模模拟试题(含答案)

2017中考数学一模模拟试题(含答案)

2017中考数学一模模拟试题(含答案) A级基础题1.要使分式1x-1有意义,则x的取值范围应满足( )A.x=1B.x≠0C.x≠1D.x=02.(2013年贵州黔西南州)分式x2-1x+1的值为零,则x的值为( )A.-1B.0C.±1D.13.(2013年山东滨州)化简a3a,正确结果为( )A.aB.a2C.a-1D.a-24.约分:56x3yz448x5y2z=________;x2-9x2-2x-3=________.5.已知a-ba+b=15,则ab=__________.6.当x=______时,分式x2-2x-3x-3的值为零.7.(2013年广东汕头模拟)化简:1x-4+1x+4÷2x2-16.8.(2012年浙江衢州)先化简x2x-1+11-x,再选取一个你喜欢的数代入求值.9.先化简,再求值:m2-4m+4m2-1÷m-2m-1+2m-1,其中m=2.B级中等题10.(2012年山东泰安)化简:2mm+2-mm-2÷mm2-4=________.11.(2013年河北)若x+y=1,且x≠0,则x+2xy+y2x÷x+yx的值为________.12.(2013年贵州遵义)已知实数a满足a2+2a-15=0,求1a+1-a+2a2-1÷a+1a+2a2-2a+1的值.C级拔尖题13.(2012年四川内江)已知三个数x,y,z满足xyx+y=-2,yzz+y=34,zxz+x=-34,则xyzxy+yz+zx的值为________.14.先化简再求值:ab+ab2-1+b-1b2-2b+1,其中b-2+36a2+b2-12ab=0.参考答案1.C2.D3.B4.7z36x2y x+3x+15.326.-17.解:原式=x+4+x-4x+4x-4•x+4x-4 2=x+4+x-42=x.8.解:原式=x2-1x-1=x+1,当x=2时,原式=3(除x=1外的任何实数都可以).9.解:原式=m-22m+1m-1•m-1m-2+2m-1=m-2m+1+2m-1=m-2m-1+2m+1m+1m-1=m2-m+4m+1m-1,当m=2时,原式=4-2+43=2.10.m-6 11.112.解:原式=1a+1-a+2a+1a-1•a-12a+1a+2=1a+1-a-1a+12=2a+12,∵a2+2a-15=0,∴(a+1)2=16.∴原式=216=18.13.-4 解析:由xyx+y=-2,得x+yxy=-12,裂项得1y+1x=-12.同理1z+1y=43,1x+1z=-43.所以1y+1x+1z+1y+1x+1z=-12+43-43=-12,1z+1y+1x=-14.于是xy+yz+zxxyz=1z+1y+1x= -14,所以xyzxy+yz+zx=-4.14.解:原式=a b+1b+1b-1+b-1b-12=ab-1+1b-1=a+1b-1.由b-2+36a2+b2-12ab=0,得b-2+(6a-b)2=0,∴b=2,6a=b,即a=13,b=2.∴原式=13+12-1=43.精心整理,仅供学习参考。

2017中考数学一模试卷含答案解析

2017中考数学一模试卷含答案解析

2017年中考数学一模试卷一、选择题1.的平方根是()A.±3 B.3 C.±9 D.92.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b34.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140° D.40°5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.87.不等式组的解集在数轴上表示正确的是()A. B.C.D.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b二、填空题11.分解因式:ab2﹣4ab+4a=.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是.15.用科学计算器计算:cos32°≈.(精确到0.01)三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.17.解分式方程:﹣=1.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF= AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)2016年陕西省西安市XX中学中考数学一模试卷参考答案与试题解析一、选择题1.的平方根是()A.±3 B.3 C.±9 D.9【考点】平方根;算术平方根.【分析】根据平方运算,可得平方根、算术平方根.【解答】解:∵,9的平方根是±3,故选:A.2.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】左视图是从左边看得到的视图,结合选项即可得出答案.【解答】解:所给图形的左视图为C选项说给的图形.故选C.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】利用合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂的除法法则:底数不变,指数相减进行分析即可.【解答】解:A、b3+a3=2b6,计算错误;B、(﹣3pq)2=﹣9p2q2,计算错误;C、5y3+3y5=15y8,计算错误;D、b9÷b3=b3,计算正确;故选:D.4.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140° D.40°【考点】平行线的判定与性质.【分析】首先根据同位角相等,两直线平行可得a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故选:C.5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限【考点】一次函数图象与系数的关系;反比例函数图象上点的坐标特征.【分析】首先利用反比例函数图象上点的坐标特征可得k的值,再根据一次函数图象与系数的关系确定一次函数y=kx﹣k的图象所过象限.【解答】解:∵反比例函数y=的图象过点(﹣2,1),∴k=﹣2×1=﹣2,∴一次函数y=kx﹣k变为y=﹣2x+2,∴图象必过一、二、四象限,故选:A.6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.8【考点】等腰三角形的判定;坐标与图形性质.【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点M,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点M,作出图形,利用数形结合求解即可.【解答】解:如图,满足条件的点M的个数为6.故选C.分别为:(﹣2,0),(2,0),(0,2),(0,2),(0,﹣2),(0,).7.不等式组的解集在数轴上表示正确的是()A. B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集再求出其公共解集.【解答】解:该不等式组的解集为1<x≤2,故选C.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)【考点】坐标与图形变化﹣旋转.【分析】如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA 绕点O逆时针旋转90°到RtOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.【解答】解:如图,OA=3,PA=4,∵线段OP绕点O逆时针旋转90°到OP′位置,∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,∴P′点的坐标为(﹣3,4).故选C.9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°【考点】菱形的性质.【分析】连接BF,利用SAS判定△BCF≌△DCF,从而得到∠CBF=∠CDF,根据已知可注得∠CBF的度数,则∠CDF也就求得了.【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.故选D.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b【考点】二次函数图象与系数的关系.【分析】由二次函数的性质,即可确定a,b,c的符号,即可判定A是错误的;又由对称轴为x=﹣,即可求得a=b;由当x=1时,a+b+c<0,即可判定C错误;然后由抛物线与x轴交点坐标的特点,判定D正确.【解答】解:A、∵开口向上,∴a>0,∵抛物线与y轴交于负半轴,∴c<0,∵对称轴在y轴左侧,∴﹣<0,∴b>0,∴abc<0,故A选项错误;B、∵对称轴:x=﹣=﹣,∴a=b,故B选项错误;C、当x=1时,a+b+c=2b+c<0,故C选项错误;D、∵对称轴为x=﹣,与x轴的一个交点的取值范围为x1>1,∴与x轴的另一个交点的取值范围为x2<﹣2,∴当x=﹣2时,4a﹣2b+c<0,即4a+c<2b,故D选项正确.故选D.二、填空题11.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.【考点】反比例函数系数k的几何意义.【分析】由于同底等高的两个三角形面积相等,所以△AOB的面积=△ABP的面积=2,然后根据反比例函数中k的几何意义,知△AOB的面积=|k|,从而确定k的值,求出反比例函数的解析式.【解答】解:设反比例函数的解析式为.∵△AOB的面积=△ABP的面积=2,△AOB的面积=|k|,∴|k|=2,∴k=±4;又∵反比例函数的图象的一支位于第一象限,∴k>0.∴k=4.∴这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为2.【考点】平行四边形的性质;三角形的面积.【分析】由已知条件可知AC=2,AB=,应该是当AB、AC是直角边时三角形的面积最大,根据AB⊥AC即可求得.【解答】解:由已知条件可知,当AB⊥AC时▱ABCD的面积最大,∵AB=,AC=2,==,∴S△ABC∴S▱ABCD=2S△ABC=2,∴▱ABCD面积的最大值为2.故答案为:2.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是15.【考点】多边形内角与外角.【分析】根据多边形内角和定理列出方程,解方程即可.【解答】解:由题意得,=156°,解得,n=15,故答案为:15.15.用科学计算器计算:cos32°≈ 2.68.(精确到0.01)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方.【分析】熟练应用计算器,对计算器给出的结果,根据精确度的概念用四舍五入法取近似数.【解答】解:cos32°=3.1623×0.8480≈2.68,故答案为2.68.三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【分析】涉及绝对值、特殊角的三角函数值、0指数幂、负整数指数幂、二次根式的运算等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+,=|2﹣|﹣1+4+,=2﹣﹣1+4+,=5.17.解分式方程:﹣=1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣5x+6﹣3x﹣9=x2﹣9,解得:x=,经检验x=是分式方程的解.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).【考点】三角形的外接圆与外心.【分析】要使三棵树都在花坛的边上则应使花坛为△ABC的外接圆,故只要作出三角形两边垂直平分线的交点即为△ABC的外接圆圆心,再以此点为圆心,以此点到点A的长度为半径画圆,此圆即为花坛的位置.【解答】解:①分别以A、B为圆心,以大于AB为半径画圆,两圆相交于D、E两点,连接DE;②分别以A、C为圆心,以大于AC为半径画圆,两圆相交于G、F两点,连接GF;③直线DE与GF相交于点O,以O为圆心,以OA的长为半径画圆,则此圆即为花坛的位置.19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;(2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;(3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;(4)利用总人数12000乘以对应的比例即可.【解答】解:(1)样本容量是:30÷20%=150;(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=75(人).;(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×=108°;(4)12000×=9600(人).20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)由四边形ABCD为正方形,得到AB=AD,∠B=∠D=90°,DC=CB,由E、F分别为DC、BC中点,得出DE=BF,进而证明出两三角形全等;=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF得(2)首先求出DE和CE的长度,再根据S△AEF出结果.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠D=∠B=90°,DC=CB,∵E、F为DC、BC中点,∴DE=DC,BF=BC,∴DE=BF,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:由题知△ABF、△ADE、△CEF均为直角三角形,且AB=AD=4,DE=BF=×4=2,CE=CF=×4=2,=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF∴S△AEF=4×4﹣×4×2﹣×4×2﹣×2×2=6.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)【考点】解直角三角形的应用﹣方向角问题.【分析】首先过点A作AH⊥CF于点H,易得∠ACH=60°,然后利用三角函数的知识,求得AH的长,继而可得消防车是否需要改进行驶.【解答】解:如图:过点A作AH⊥CF于点H,由题意得:∠MCF=75°,∠CAN=15°,AC=125米,∵CM∥AN,∴∠ACM=∠CAN=15°,∴∠ACH=∠MCF﹣∠ACM=75°﹣15°=60°,∴在Rt△ACH中,AH=AC•sin∠ACH=125×≈108.25(米)>100米.答:消防车不需要改道行驶.22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.【考点】一次函数的应用.【分析】(1)设出一次函数解析式,代入图象上的两个点的坐标,即可解答;(2)把x=6代入(1)中的函数解析式,求得路程(甲、乙距A城的距离),进一步求得速度即可解答.【解答】解:(1)设甲车返回过程中y与x之间的函数解析式y=kx+b,∵图象过(5,450),(10,0)两点,∴, 解得,∴y=﹣90x +900.函数的定义域为5≤x ≤10;(2)当x=6时,y=﹣90×6+900=360,(千米/小时).23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x ,小敏从剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点P 的坐标(x ,y ).(1)请你运用画树状图或列表的方法,写出点P 所有可能的坐标;(2)求点P (x ,y )在函数y=﹣x +5图象上的概率.【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】(1)首先根据题意画出表格,即可得到P 的所以坐标;(2)然后由表格求得所有等可能的结果与数字x 、y 满足y=﹣x +5的情况,再利用概率公式求解即可求得答案【解答】解:列表得:(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.【考点】切线的判定.【分析】(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,继而由∠OAP=∠AOC﹣∠P,可得出OA ⊥PA,从而得出结论;(2)利用含30°的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直径.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵,∴.∴⊙O的直径为.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.【考点】二次函数综合题.【分析】(1)根据平移规律写出抛物线解析式,再求出M、A、B坐标即可.(2)首先证明△ABE∽△AMF,推出的值,∠BAM=90°,根据tan∠ABM=即可解决问题.(3)分点P在x轴上方或下方两种情形解决问题.【解答】解:(1)∵抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=(x﹣1)2﹣3,∴顶点M(1,﹣3),令x=0,则y=(0﹣1)2﹣3=﹣2,∴点A(0,﹣2),x=3时,y=(3﹣1)2﹣3=4﹣3=1,∴点B(3,1),(2)过点B作BE⊥AO于E,过点M作MF⊥AO于M,∵EB=EA=3,∴∠EAB=∠EBA=45°,同理可求∠FAM=∠FMA=45°,∴△ABE∽△AMF,∴==,又∵∠BAM=180°﹣45°×2=90°,∴tan∠ABM==,(3)过点P作PH⊥x轴于H,∵y=(x﹣1)2﹣3=x2﹣2x﹣2,∴设点P(x,x2﹣2x﹣2),①点P在x轴的上方时,=,整理得,3x2﹣7x﹣6=0,解得x1=﹣(舍去),x2=3,∴点P的坐标为(3,1);②点P在x轴下方时,=,整理得,3x2﹣5x﹣6=0,解得x1=(舍去),x2=,x=时,y=x2﹣2x﹣2=,∴点P的坐标为(,),综上所述,点P的坐标为(3,1)或(,).26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF= AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)【考点】作图—应用与设计作图.【分析】(1)根据等边三角形的性质得出∠BAD=30°,得出EF=AE;(2)根据题意得出C,M,N在一条直线上时,此时最小,进而求出即可;(3)作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求,在Rt△ABD中,求出AD的长,在Rt△MBD中,得出MD的长,即可得出答案.【解答】解:(1)如图①,作EF⊥AB,垂足为点F,点F即为所求.理由如下:∵点E是正△ABC高AD上的一定点,∴∠BAD=30°,∵EF⊥AB,∴EF=AE;(2)如图②,作CN⊥AB,垂足为点N,交AD于点M,此时最小,最小为CN的长.∵△ABC是边长为2的正△ABC,∴CN=BC•sin60°=2×=,∴MN+CM=AM+MC=,即的最小值为.(3)如图③,作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求.在Rt△ABD中,AD===480(km),在Rt△MBD中,∠MBD=∠MAF=30°,得MD=BD•tan30°=(km),所以AM=km.2017年3月19日。

2017年中考第一次模拟数学试题及答案(校用)

2017年中考第一次模拟数学试题及答案(校用)
A.1个B.2个C.3个D.4个
二、填空题(本大题共6小题,每小题3分,共18分)
13.分解因式:x2+xy=_______________
14.计算:-2+(-2)0=______________.
15.有一组数据:2,a,4,6,7,它们的平均数是5,则这组数据的中位数是______________.
A.2B.3C.4D.12
8.如图,将等腰直角三角形ABC绕点A逆时针旋转15度得到ΔAEF,若AC= ,则阴影部分的面积为( )
A.1B. C. D.
9.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为100元的药品进行连续两次降价后为81元,设平均每次降价的百分率为x,则下面所列方程正确的是( )
21. (本小题满分8分)
甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,
且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?
22.(本小题满分8分)
为了解学生体育训练的情况,某市从全市九年级学生中随机抽取部分学生进行了一次体育科目测试(把成绩结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:
由②得x<3 …………………………………………………...2分
把解集在数轴上表示
……………………………...3分
∴不等式组的解集为2<x<3…………………………………...4分
20.(1)证明:(方法一)
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD.……………………………………………………1分
2017年九年级第一次模拟数学试题(2017.4)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学校 班级 姓名 考场 考号
密 封 线 内 不 得 答 题
2016-2017学年度第一次摸底考试试卷
九年级 数学 座位号
一、选一选,比比谁细心(本大题共
10
小题,每小题3
分,共30分) 1.﹣3的绝对值的倒数是( )
A. 3
B. ﹣3
C.31-
D. 3
1
2.钓鱼岛是中国的固有领土,位于中国东海,面积为4400000m 2,数据4400000用科学记数法表示为( ) A. 44×105 B. 4.4×106 C. 4×106 D. 0.44×107 3.不等式组⎩
⎨⎧2x -1≥5,
8-4x<0的解集在数轴上表示为( )
4.下列算式①;②;③26÷23
=4;④
⑤a +a =a 2
.运
算结果正确的概率是( )
A .
B .
C .
D . 5.图中三视图对应的正三棱柱是( )
A .
B .
C .
D .
6.如图,直线a ∥b ,一块含60°角的直角三角板ABC (∠A =60°)按如图所示放置. 若∠1=55°,则∠2的度数为( )
A. 120°
B. 115°
C. 110°
D. 105° 7.金昌市 “紫荆花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( ) A .20(1+2x )=28.8 B .28.8(1+x )2=20
C .20(1+x )2=28.8
D .20+20(1+x )+20(1+x )2=28.8
8.如图,点A 为反比例函数x
y 4
-
= 图象上一点,过A 作AB ⊥x 轴于点B ,连接OA ,则△ABO 的面积为( )
A .﹣4
B .4
C .﹣2
D .2
9.二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,下列说法: ①2a +b =0; ②当-1<x<3时,y<0;
③若(x 1,y 1)、(x 2,y 2)在函数图象上,当x 1<x 2时,y 1<y 2;④9a +3b +c =0.其中正确的是( )
A. ①④ B .③④ C .①②③ D .①②④
10.如图,正方形ABCD 的边长为3 cm ,动点P 从B 点出发以3 cm/s 的速度沿着边BC -CD -DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发以1 cm/s 的速度沿
着边BA 向A 点运动,到达A 点停止运动.设P 点运动时间为x (s),△BPQ 的面积为
y (cm 2),则y 关于x 的函数图象是( )
二、用心填一填(本大题共8小题,每小题4分,共32分) 11.分解因式:a 3﹣9a = .
12.化简:在函数y =1
x +2
中,自变量x 的取值范围是________. 13.分式方程
解是 .
14.一个三角形的两边长是3和4,第三边是方程x 2-10x+16=0的解,则这个三角形的周长是_______
15.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,△ABC 的面积为24,则四边形BCED 的面积为__________
16.关于x 的一元二次方程k x 2-2x +1=0有实数根,则k 的取值范围是 __ .
17.如图,四边形ABCD 是菱形AC =8,DB =6,DH ⊥AB 于H ,则DH 等于 . 18.请看杨辉三角(1),并观察下列等式(2):
根据前面各式的规律,则(a +b )6=________________________________________.
三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.
19.(6分)计算:(-2017)0+|1
-2|-2cos45°+8+(-1)-2.
值: , 其中x =2+.
20.(6分)先化简再求
21.(8分)如图,在边长为1的正方形组成的网格中,△ABC 点A 、B 、C 的坐标分别是A (-2,3)、B (-1,2)、C (-3,1),△ABC 绕点针旋转90°后得到△A 1B 1C 1.
(1)在正方形网格中作出△A 1B 1C 1;(3分)
(2)求线段OA 旋转到OA 1扫过的扇形面积;(结果保留π)(3分) (3)在x 轴上找一点P ,使PC+PC 1的值最小,并直接写出P 点坐标.(2分)
22.(8字1和-2;乙袋中有三个完全相同的小球,分别标有数字-1、0和2.中随机取出一个小球,记录下小球上的数字为x 录下小球上的数字为y ,设点P 的坐标为(x ,y ).
(1
)请用表格或树状图列出点
P 所有可能的坐标;
(2)求点P 在一次函数y =x +1图象上的概率.
学校 班级 姓名 考场 考号
密 封 线 内 不 得 答 题
23.(10分)如图,某建筑物BC 顶部有一旗杆AB ,且点A ,B ,C 在同一条直线上.小红在D 处观测旗杆顶部A 的仰角为47°,观测旗杆底部B 的仰角为42°.已知点D 到地面的距离DE 为1.56 m ,EC =21 m ,求旗杆AB 的高度和建筑物BC 的高度(结果保留小数点后一位).(参考数据:tan47°≈1.07,tan42°≈0.90)
四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.
24.(8分)中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列统计图表:
抽取的200名学生海选成绩分组表
请根据所给信息,解答下列问题:
(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上) (2)在图2的扇形统计图中,记表示B 组人数所占的百分比为a %,则a 的值为 ,表示C 组扇形的圆心角θ的度数为 度;
(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?
25.(10分)如图,在平面直角坐标系中,一次函数y=kx+b (k ≠0)的图像与反比例函数x
m
y
(m ≠0)的图像交于A ,B 两点,与x 轴交于点C ,点A 的坐标为(n ,6),点C 的坐标为(-2,0)且tan ∠ACO=2. (1)求反比例函数和一次函数的解析式;(4分) (2)求点B 的坐标;(4分) (3)观察图象,直接写出不等式的解集.(2分)
26.(10分)如图,将□ABCD的边AB延长到点E,使AB
BE=,连接DE,交BC于点F.(1)求证:BEF
∆≌CDF
∆;
(2)连接BD、CE,若A
BFD∠
=
∠2,求证四边形BECD是矩形.
27.(10分)已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,OF延长线交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB =∠AEC. (1)求证:BD是⊙O的切线;(2)求证:CE2=EH·EA;28.(12分)如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0) M关于x轴的对称点是M′.
(1)求抛物线的解析式;
(2)
若直线AM′
与此抛物线的另一个交点为C,求△CAB的面积;
(3)是否存在过A、B两点的抛物线,其顶点P关于x轴的对称点为Q APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.。

相关文档
最新文档