鲁教版五四制七年级数学下册第一章三角形1认识三角形第1课时同步测试(解析版).docx
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(68)
章节测试题1.【答题】在△ABC中,三个内角∠A、∠B、∠C满足∠B﹣∠A=∠C﹣∠B,则∠B=______度.【答案】60【分析】先整理得到∠A+∠C=2∠B,再利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵∠B﹣∠A=∠C﹣∠B,∴∠A+∠C=2∠B,又∵∠A+∠C+∠B=180°,∴3∠B=180°,∴∠B=60°.故答案为:60.2.【答题】在Rt△ABC中,∠C=90°,∠A=70°,则∠B=______.【答案】20°【分析】本题考查了三角形的内角和定理.【解答】∵Rt△ABC中,∠C=90°,∴∠A+∠B=90°,∵∠A=70°,∴∠B=90°-70°=20°,故答案为:20°.3.【答题】△ABC中,∠C=90°,∠A∶∠B=1∶2,则∠A=______度.【答案】30【分析】本题考查了三角形的内角和定理.【解答】∵△ABC中,∠C=90°,∴∠A+∠B=90°,又∵∠A:∠B=1:2,∴∠B=2∠A,∴∠A+2∠A=90°,∴∠A=30°,故答案为:30.4.【答题】在△ABC中,∠A+∠B=∠C,∠B=2∠A,则∠C=______,∠A=______【答案】90° 30°【分析】本题考查了三角形的内角和定理.【解答】解:∵∠A+∠B+∠C=180°,∠A+∠B=∠C,∴∠C=90°,∠A+∠B=90°.∵∠B=2∠A,∴3∠A=90°,∴∠A=30°.故答案为:90°,30°.5.【答题】已知,在△ABC中,∠A=80°,那么∠B=∠C=______度.【答案】50【分析】本题考查了三角形的内角和定理.【解答】又故答案为:50.6.【答题】在△ABC中,AD是角平分线,若∠B=50º,∠C=70º,则∠ADC=______.【答案】80º【分析】本题考查了三角形的内角和定理、三角形的角平分线.【解答】如图,∵△ABC中,∠B=50º,∠C=70º,∴∠BAC=60°,∵AD平分∠BAC,∴∠DAC=30°,∴∠ADC=180°-70°-30°=80°.故答案为:80°.7.【答题】在△ABC中,∠C=90°,∠A=60°,则∠B=______°.【答案】30【分析】本题考查了三角形的内角和定理.【解答】解:∠B=90°-∠A=90°-60°=30°.故答案为:30.8.【答题】在我们的生活中处处有数学的身影,请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,就得到一个著名的几何定理,请你写出这一定理______.【答案】三角形的内角和是180°【分析】本题考查了三角形的内角和定理.【解答】根据折叠的性质,折叠前后的两个角相等,即∠A=∠1,∠B=∠2,∠C=∠3,根据把三角形的三个角转化为一个平角∠1+∠2+∠3=180°,可得∠A+∠B+∠C=180°,因此这个定理为:三角形的内角和是180°.故答案为:三角形的内角和是180°.9.【答题】一个三角形的三个内角之比为1∶2∶3,则三角形是______三角形【答案】直角【分析】本题考查了三角形的内角和定理.【解答】设三角形三内角度数分别为x,2x,3x,根据三角形的内角和为180°得:x+2x+3x=180°,即6x=180°,解得:x=30°,可得三角形三内角分别为30°,60°,90°,则三角形是直角三角形.故答案为:直角.10.【答题】在一个直角三角形中,有一个锐角等于30°,则另一个锐角的大小为______度.【答案】60【分析】【解答】解:∵三角形是直角三角形,一个锐角等于30°,∴另一个锐角为90°﹣30°=60°.故答案为:60.11.【答题】在△ABC中,∠A-∠B=30°、∠C=4∠B,则∠C=______.【答案】100°【分析】本题考查了三角形的内角和定理.【解答】①,②,①−②得,解得故答案为:12.【答题】直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为______.【答案】65°和25°【分析】本题考查了三角形的内角和定理.【解答】设这两个锐角的度数分别为x,y,根据题意得,解得故答案为:13.【答题】Rt△ABC中,∠C=90°,∠A=35°30′,则∠B=______.【答案】54.5°【分析】本题考查了三角形的内角和定理.【解答】Rt△ABC中,∵∠C=90°,∠A=35°30′,∴∠B=90°−∠A=90°−35°30′=54°30′=54.5°.故答案为:54.5°.14.【答题】已知,在△ABC中,AD是BC边上的高线,且∠ABC=25°,∠ACD =55°,则∠BAC=______.【答案】100°或30°【分析】本题考查了三角形的内角和定理.【解答】如图,有两种情况,当∠ACD=55°时,∠BAC=∠ACD-∠ABC=55°-25°=30°;当∠AC′D=55°时,∠BAC′=180°-∠ABC-∠AC′B=180°-25°-55°=100°;综上,∠BAC为:100°或30°,故答案为:100°或30°.15.【答题】在△ABC中,∠C=2(∠A+∠B),则∠C=______.【答案】120°【分析】本题考查了三角形的内角和定理.【解答】:∵∠A+∠B=180°-∠C,∠C=2(∠A+∠B),∴∠C=2(180°-∠C),∴∠C=120°.16.【答题】在△ABC中,∠B=50°,∠C=60°,则∠A的度数是______度.【答案】70【分析】本题考查了三角形的内角和定理.【解答】∠B=50°,∠C=60°,∠A+∠B+∠C=180°,.17.【答题】一个三角形的三个内角的度数比是1∶6∶5,最大的一个内角是______度,按角分,它是一个______角三角形.【答案】90 直角【分析】本题考查了三角形的内角和定理.【解答】设这个三角形的最小内角为x,则另外两个角分别为6x、5x,根据三角形的内角和定理可得x+6x+5x=180,解得x=15,∴这个三角形的最大内角为15×6=90°,这个三角形是直角三角形.18.【答题】已知三角形三个内角的度数比是2:3:4,则这个三角形中最大角的度数是______.【答案】80°【分析】本题考查了三角形的内角和定理.【解答】根据三角形的内角和定理,设三个内角分别为2x,3x,4x,可得2x+3x+4x=180°,解得x=20°,因此最大内角的度数为:80°.故答案为:80°.19.【答题】在△ABC中,∠A:∠B:∠C=2:3:4,则∠A=______度【答案】40【分析】本题考查了三角形的内角和定理.【解答】设∠A、∠B、∠C的度数分别为2x、3x、4x,则2x+3x+4x=180°,解得x=20°∴2x=40°,故答案为:40.20.【答题】若一个三角形的三个内角度数之比为4∶3∶2,则这个三角形的最大内角为______度.【答案】80【分析】本题考查了三角形的内角和定理.【解答】根据三角形的内角和是180°,再根据三角形的三个内角之比为4:3:2即可求出这个三角形的最大内角为:180°×=80°.。
鲁教版数学目录(七年级)
七年级上册第一章三角形1.认识三角形(定义、分类、三边关系、有关的线段)2.图形的全等3.探索三角形全等的条件4.三角形的尺规作图5.利用三角形全等测距离第二章轴对称1.轴对称现象2.探索轴对称的性质3.简单的轴对称图形(线段、角、等腰三角形、垂直平分线性质、角的平分线的性质)4.利用轴对称进行设计综合与实践七巧板第三章勾股定理1.探索勾股定理2.一定是直角三角形吗3.勾股定理的应用举例第四章实数1.无理数2.平方根3.立方根4.估算5.用计算器开方6.实数综合与实践计算器运用与功能探索第五章位置与坐标1.确定位置2.平面直角坐标系3.轴对称与坐标变化第六章一次函数1.函数2.一次函数(正比例函数、一次函数)3.一次函数的图象4.确定一次函数的表达式5.一次函数的应用七年级下册第七章二元一次方程组1.二元一次方程组2.解二元一次方程组3.二元一次方程组的应用4.二元一次方程组与一次函数5.三元一次方程组综合与实践哪一款“套餐”更合适第八章平行线的有关证明1.定义与命题2.证明的必要性3.基本事实与定理4.平行线的判定定理5.平行线的性质定理6.三角形的内角和定理(外角)第九章概率初步1.感受可能性2.频率的稳定性3.等可能事件的概率第十章三角形的有关证明1.全等三角形2.等腰三角形3.直角三角形4.线段的垂直平分线5.角平分线第十一章一元一次不等式与一元一次不等式组1.不等关系2.不等式的基本性质3.不等式的解集4.一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组综合与实践生活中的“一次模型”。
鲁教版五四制七年级数学下册认识三角形1试题.doc
认识三角形1测试题1、△ABC 中,若∠A =350,∠B =650,则∠C =___;若∠A =1200,∠B =2∠C ,则∠C =___2、三角形的三个内角之比为1∶3∶5,那么这个三角形的最大内角为_______;3、三角形三个内角中, 最多有___个直角,最多有__个钝角,最多有___个锐角,至少有___个锐角;4、如果三角形的三个内角的度数比是2:3:4,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形5、下列说法正确的是( )A.三角形的内角中最多有一个锐角B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角D.三角形的内角都大于60°6、已知三角形两个内角的和等于第三个内角,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形7、已知三角形的一个内角是另一个内角的32,是第三个内角的54,则这个三角形各内角的度数分别为( )A.60°,90°,75°B.48°,72°,60°C .48°,32°,38°D.40°,50°,90°8、设α,β,γ是某三角形的三个内角,则α+β,β+γ,α+γ 中 ( )A.有两个锐角一个钝角B.有两个钝角、一个锐角C.至少有两个钝角D.三个都可能是锐角9、如图,C 岛在A 岛的北偏东50°方向,B 岛在A 岛的北偏东80°方向,C 岛在B 岛的北偏西40°方向。
从C 岛看A 、B 两岛的视角∠ACB是多少度?参考答案1、800 2002、10003、1 1 3 24、B5、C6、C7、A8、C9、900初中数学试卷马鸣风萧萧。
鲁教版五四制七年级数学下册第一章三角形综合测评(二)
初中数学试卷第一章 三角形综合测评(二)时间: 满分:120分班级: 姓名: 得分:一、选择题(每小题4分,共32分)1. 下列四个图形是全等图形的是( )A . (1)和(3)B . (2)和(3)C . (2)和(4)D . (3)和(4)2. 图1中的三角形被木板遮住了一部分,这个三角形是( )A . 锐角三角形B . 直角三角形C . 钝角三角形D . 以上都有可能3. 下面的事例:①过去农村的人们通常会在栅栏门上斜着钉上一些木条;②新植的树木,常用一些粗木与之成角度支撑起来防止倒斜;③活动挂衣架;④学校门口的伸缩大门.其中是用到三角形稳定性的有( )A .1个B .2个C .3个D .4个4. 根据下列条件,能画出唯一△ABC 的是( )A .AB =4,BC =5,AC =10 B .AB =5,BC =4,∠A=40° C .∠A=60°,∠B=50°,AB =5D .∠C=90°,AB =85. 已知三角形三边长分别为2,x ,13,若x 为正整数,则这样的三角形个数为( )A . 2B . 3C . 5D . 136. 如图2,要使△ABC≌△ABD,下面给出的四组条件中,错误的一组是( )A . BC=BD ,∠BAC=∠BADB . ∠C=∠D,∠BAC=∠BADC . ∠BAC=∠BAD,∠ABC=∠ABD D . BC=BD ,AC=AD7.若直角三角形的一个锐角是另一个锐角的4倍,则这个直角三角形中最小锐角的度数是( ) A . 9° B. 18° C. 27° D. 36° 8. 如图3,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE=DF ,连接BF ,CE .下列说法: ①△ABD 和△ACD 面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的有( )图1图2图3A . 1个B . 2个C . 3个D . 4个二、填空题(每小题4分,共32分)9. 如图4所示,图中有 个三角形, 个直角三角形.10.如图5,∠ACD=155°,∠B=35°,则∠A= 度. 11. 如图6所示,CD 是△ABC 的中线,AC=9cm ,BC=3cm ,那么△ACD 和△BCD 的周长差是 cm .12.已知△DEF≌△ABC,AB=AC ,且△ABC 的周长为22cm ,BC=4cm ,则△DEF 中最长的一条边为 .13.如图7,点B 、E 、C 、F 在一条直线上,AB∥DE,BE=CF ,请添加一个条件 ,使△ABC≌△DEF.14.如图8是标准跷跷板的示意图.横板AB 的中点过支撑点O ,且绕点O 只能上下转动.如果∠OCA=90°,∠CAO=25°,则小孩玩耍时,跷跷板可以转动的最大角度为 .15. 已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________.16.图9所示的图案是由全等的图形拼成的,其中AD=1cm ,BC=2cm ,后面有一部分图案被墨水污染了,已知AF=117cm ,请思考一下被墨水完全盖住的全等图形共有 个。
鲁教版(五四制)七年级数学第一章《三角形》单元评价测试2
山东省广饶县实验中学七年级数学第一章《三角形》单元评价测试(鲁教版)1班级n加油姓名成绩(时间:90分钟分值:120分)一、选择题(每小题3分,共30分)1.下列四个图形中,线段BE是△ABC的高的是()2.下列长度的三条线段能组成三角形的是()(A)1,2,3.5(B)4,5,9(C)20,15,8(D)5,15,8[3.下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)4.a,b,c为三角形三边的长,化简|a+b+c|-|a-b-c|-|a-b+c|-|a+b-c|的结果是A.0 B.2a+2b+2cC.4aD.2b-2c5.在△ABC中,满足下列条件:①∠A=600,∠C=300;②∠A+∠B=∠C;③∠A:∠B:∠C=3:4:5;④∠A=900﹣∠C,能确定△ABC是直角三角形的有()A.1个B.2个C.3个D.4个6.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS 7.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形D.三角形有稳定性8.如图,在△ABC中,∠ABC=45°,AC=5,F是高AD和BE的交点,则BF的长是()A.7B.6C.5D.49.如图为二环四边形,它的内角和∠A+∠B+∠C+∠D+∠A1+∠B1+∠C1+∠D1度数为()A.360°B.540°C.720°D.900°10.已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有几个(1)DA平分∠EDF;(2)△EBD≌△FCD;(3)△AED≌△AFD;(4)AD垂直BC.()A.1个B.2个C.3个D.4个二、填空题(每小题4分,共32分)11.已知等腰三角形有一个角为100°,那么它的底角为。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(52)
章节测试题1.【题文】如图,已知AB∥CD,∠B=60°,CM平分∠BCE,∠MCN=90°,求∠DCN 的度数.【答案】30°【分析】本题考查了平行线的性质,角平分线定义的应用,解本题的关键是求出∠ECA的度数.【解答】解:∵AB//CD,∴∠B=∠BCE=180°,∠BCD=∠B,∵∠B=60°,∴∠BCE=120°,∠BCD=60°,∵CM平分∠BCE,∴∠ECM=∠BCE=60°,∵∠MCN=90°,∴∠DCN=180°-60°-90°=30°.2.【题文】如图AB//CD,∠ABD和∠BDC的平分线交于点E,BE的延长线交CD 于点F.(1)求证:∠1+∠2=90°;(2)如果∠EDF=30°,那么∠BFC等于多少度?【答案】(1)见解答;(2)120°.【分析】本题考查了角平分线的性质以及平行线的性质.解题的关键是掌握角平分线定义和平行线性质的灵活运用.【解答】(1)证明:∵AB∥CD,∴∠ABD+∠BDC=180°,∵BE、DE分别平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC,∴∠1+∠2=(∠ABD+∠BDC)=90°,(2)解:∵DE平分∠BDC,BF平分∠ABD,∴∠2=∠EDF=30°,∠1=∠FBD,又∵∠1+∠2=90°,∴∠1=60°,∵AB∥CD,∴∠BFC=180°-∠1=180°-60°=120°.3.【题文】如图,已知△ABC中,点D、E分别在边AB、AC上,点F在CD上.(1)若∠AED=∠ACB,∠DEF=∠B,求证:EF//AB;(2)若D、E、F分别是AB、AC、CD的中点,连接BF,若四边形BDEF的面积为6,试求△ABC的面积.【答案】(1)见解答;(2)16【分析】本题考查了平行线判定和性质、三角形中线.【解答】(1)证明:∵∠AED=∠ACB,∴DE∥BC.∴∠ADE=∠B.又∵∠DEF=∠B,∴∠ADE=∠DEF,∴EF∥AB.(2)解:∵点F是DC的中点,∴设S△DEF=S△CEF=x,∵点E是AC的中点,∴S△ADE=S△CDE=2x,∵点D是AB的中点,∴S△BDC=4x,S△BDF=2x,∴S四边形BDEF=3x.∵S四边形BDEF=6,∴3x=6,∴x=2,∴S△ABC=8x=16.4.【题文】如图,AD为△ABC的中线,BE为△ABD的中线.△ABC 的面积为40,BD=5,则E到边BC的距离为多少.【答案】4【分析】本题考查三角形的中线.【解答】解:过E作边BC的垂线,F为垂足,则EF为所求的E到边BC的距离,∵AD是△ABC的中线,∴S△ABD=S△ACD=S△ABC∵BE.是△ABD的中线,∴S△ABE=S△BDE=S△ABD∴S△BDE=S△ABC==10,∴,即,,到边的距离为.5.【答题】三角形的三条高所在的直线相交于一点,此点在()A. 三角形的内部B. 三角形的外部C. 三角形的边上D. 不能确定【答案】D【分析】本题考查了三角形的高.【解答】锐角三角形三条高所在直线的交点在三角形内部,直角三角形三条高所在直线的交点在直角顶点,钝角三角形三条高所在直线的交点在三角形外部,选D.6.【答题】三角形一边上的中线把原三角形一定分成两个()A. 形状相同的三角形B. 面积相等的三角形C. 周长相等的三角形D. 直角三角形【答案】B【分析】本题考查了三角形的中线.【解答】三角形一边上的中线把原三角形分成两个面积相等的三角形.选B. 7.【答题】如图,AE是△ABC的中线,已知EC=4,DE=2,则BD的长为()A. 2B. 3C. 4D. 6【答案】A【分析】本题考查了三角形的中线.【解答】∵AE是△ABC的中线,EC=4,∴BE=EC=4,∵DE=2,∴BD=BE-DE=4-2=2.选A.8.【答题】下列说法不正确的是()A. △ABC的中线AD平分边BCB. △ABC的角平分线BE平分∠ABCC. △ABC的高CF垂直ABD. 直角△ABC只有一条高【答案】D【分析】本题考查了三角形的高、中线与角平分线.【解答】A、∵AD是△ABC的中线,∴D是BC的中点,即AD平分边BC,故此选项正确;B、∵BE是△ABC的角平分线,∴BE平分∠ABC,故此选项正确;C、∵CF是△ABC的高,∴CF⊥AB,故此选项正确;D、直角△ABC有三条高,其中两条是直角边,一条在三角形内部,故此选项错误.选D.9.【答题】如图,在△ABC中,∠1=∠2,G为AD的中点,BG的延长线交AC于点E,F为AB上的一点,CF与AD垂直,交AD于点H,则下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH是△ACD的边AD上的高;④AH是△ACF的角平分线和高.A. 1个B. 2个C. 3个D. 4个【答案】B【分析】本题考查了三角形的高、中线与角平分线.【解答】①根据三角形的角平分线的概念,知AG是△ABE的角平分线,故此说法错误;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法错误;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.选B.10.【答题】如图,∠1=∠2,∠3=∠4,则下列结论正确的有()①AD平分∠BAE;②AF平分∠EAC;③AE平分∠DAF;④AF平分∠BAC;⑤AE 平分∠BAC.A. 4个B. 3个C. 2个D. 1个【答案】C【分析】本题考查了三角形的角平分线.【解答】AD不一定平分∠BAE,①错误;AF不一定平分∠EAC,②错误;∵∠1=∠2,∴AE平分∠DAF,③正确;∵∠1=∠2,∠3=∠4,∴∠1+∠3=∠2+∠4,即∠BAE=∠CAE,∴AE平分∠BAC,⑤正确,选C.11.【答题】如图,△ABC中BC边上的高线是______,△BCE中BC边上的高线是______,以CF为高线的三角形有______.【答案】AD;BE;△ABC,△BCF,△AFC【分析】本题考查了三角形的高.【解答】如图,△ABC中BC边上的高是AD;△BCE中BC边上的高是BE;△ACD中CD边上的高是AD;以CF为高线的三角形有△ABC,△BCF,△AFC.故答案为:AD,BE,△ABC,△BCF,△AFC.12.【答题】如图,在△ABC中,BD是∠ABC的角平分线,已知∠ABC=80°,则∠DBC=______.【答案】40°【分析】本题考查了三角形的角平分线.【解答】∵BD是∠ABC的角平分线,∠ABC=80°,∴∠DBC=∠ABD=∠ABC=×80°=40°.故答案为:40°.13.【答题】AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,△ABD与△ACD的周长之差为______.【答案】2cm【分析】本题考查了三角形的中线.【解答】∵AD是△ABC中BC边上的中线,∴BD=DC=BC,∴△ABD和△ADC的周长的差=(AB+BC+AD)-(AC+BC+AD)=AB-AC=5-3=2(cm).故答案为:2cm.14.【题文】如图,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.【答案】AD不是△ABC的角平分线【分析】本题考查了三角形的角平分线.【解答】根据三角形的角平分线的定义,可知:①平分三角形的一个内角;②是一条线段,一个端点是三角形的顶点,另一点在这个顶点的对边上.而此题中AD 满足①,但点D不在BC边上,故不满足②.∴,AD不是△ABC的角平分线.15.【题文】如图,△ABC的边BC上的高为AF,AC边上的高为BG,中线为AD.已知AF=6,BC=10,BG=5.(1)求△ABC的面积;(2)求AC的长;(3)试说明△ABD和△ACD的面积相等.【答案】(1)30(2)12(3)见解答.【分析】本题考查了三角形的高、中线.【解答】(1)∵△ABC的边BC上的高为AF,AF=6,BC=10,∴△ABC的面积为BC·AF=×10×6=30.(2)∵AC边上的高为BG,BG=5,∴△ABC的面积为AC·BG=30,即AC×5=30,∴AC=12.(3)∵△ABC的中线为AD,∴BD=CD.∵△ABD以BD为底,△ACD以CD为底,而且等高,∴S△ABD=S△ACD.16.【题文】如图,△ABC的顶点都在方格纸的格点上,将△ABC向右平移4格,再向上平移2格,其中每个格子的边长为1个单位长度.(1)在图中画出平移后的△A′B′C′;(2)若连接AA′、CC′,则这两条线段的关系是______;(3)利用格点作直线MN,将△ABC分成面积相等的三角形.【答案】见解答.【分析】(1)首先确定A、B、C三点平移后的位置,再顺次连接即可;(2)根据平移的性质:对应点连线平行且相等可得AA′=CC′,AA′∥CC′;(3)根据三角形的中线平分三角形的面积可得MN就是△ABC中线所在直线,因此根据网格图可得AC的中点位置,再画直线即可.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)连接AA′,CC′,根据平移的性质可得AA′=CC′,AA′∥CC′,故答案为:平行且相等;(3)如图所示,直线MN即为所求.①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.17.【题文】在等腰三角形ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为18和15两部分,求这个等腰三角形的底边长.【答案】12或10.【分析】不确定是哪一部分的长是18或15,则需要分类讨论,分18是腰长与腰长一半和15是腰长与腰长一半两种情况.【解答】解:根据题意,①当18是腰长与腰长一半时,AC+AC=18,解得AC=12,∴底边长=15﹣×12=9;②当15是腰长与腰长一半时,AC+AC=15,解得AC=10,∴底边长=18﹣×10=13.∴底边长等于12或10.18.【题文】如图,在△ABC中,∠BAC=90°,∠B=50°,AE,CF是角平分线,它们相交于为O,AD是高,求∠BAD和∠AOC的度数.【答案】∠BAD=40°,∠AOC=115°.【分析】先根据直角三角形的两个锐角互余,求得再根据角平分线的定义,求得最后根据三角形内角和定理,求得中的度数.【解答】∵AD是高,中,∴△ABC中,∵AE,CF是角平分线,∴△AOC中,19.【题文】如图,已知∠ABC=∠ADC,BF,DE是∠ABC,∠ADC的角平分线,∠1=∠2,试说明:DC∥AB.【答案】证明见解答.【分析】先利用角平分线定义得到∠3=∠ADC,∠2=∠ABC,而∠ABC=∠ADC,则∠3=∠2,加上∠1=∠2,则∠1=∠3,于是可根据平行线的判定得到DC∥AB.【解答】证明:∵DE、BF分别是∠ABC,∠ADC的角平分线,∴∠3=∠ADC,∠2=∠ABC,∵∠ABC=∠ADC,∴∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴DC∥AB.20.【题文】若等腰三角形一腰上的中线分周长为12cm和15cm两部分,求这个等腰三角形的底边和腰的长.【答案】三角形三边的长分别为8,8,11或10,10,7.【分析】设腰长为x,底边长为y,根据等腰三角形一腰上的中线将这个等腰三角形的周长分为6cm或9cm两部分,列方程解得即可.【解答】解:在三角形ABC中,AB=AC,BD是中线,设AB=x,BC=y.(1)当AB+AD=12时,则,解得,∴三角形三边的长为8,8,11;(2)当AB+AD=15时,则,解得,∴三角形三边的长为10,10,7;经检验,两种情况均符合三角形的三边关系.三角形三边的长分别为8,8,11或10,10,7.。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(12)
章节测试题1.【答题】如图,于C,于D,于E,则下列说法中错误的是()A. 中,AC是BC边上的高B. 中,DE是BC边上的高C. 中,DE是BE边上的高D. 中,AD是CD边上的高【答案】C【分析】根据三角形的高线的定义解答即可.【解答】中,AC是BE边上的高,C错.2.【答题】三角形一边上的高()A. 必在三角形内部B. 必在三角形外部C. 必在三角形的边上D. 以上三种情况都有可能【答案】D【分析】根据三角形的高线的定义和特征解答即可.【解答】锐角三角形所有高在内部,直角三角形两条高在边上,钝角三角形两条高在外部.选D.3.【答题】下列叙述中正确的是()A. 三角形一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的射线,叫做三角形的角平分线B. 连结三角形一个顶点和它对边中点的直线,叫做三角形的中线C. 从三角形一个顶点向它的对边画垂线叫做三角形的高D. 三角形的三条中线总在三角形的内部【答案】D【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】选项A,三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线,A错.选项B, 三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线.B错.选项C, 从三角形一个顶点向它的对边作一条垂线,三角形顶点和垂足之间的线段称三角形这条边上的高.C错误.D正确.所以选D.4.【答题】如图,在△ABC中,已知点E、F分别是AD、CE边上的中点,且S△BEF=4cm2,则S△ABC的值为()A. 1cm2B. 2cm2C. 8cm2D. 16cm2【答案】D【分析】根据三角形中线的定义解答即可.【解答】解:∵F是CE中点,∴△BEF的面积与△BCF的面积相等,∴S△BEC=2S△BEF=8(cm2),∵D、E分别为BC、AD的中点,∴△ABE、△DBE、△DCE、△AEC的面积相等,∴S△ABC=2S△BEC=16(cm2).选D.5.【答题】如果AD是△ABC的中线,那么下列结论一定成立的有()①BD=CD;②AB=AC;③S△ABD=S△ABC.A. 3个B. 2个C. 1个D. 0个【答案】B【分析】根据三角形的中线定义解答即可.【解答】解:∵AD是△ABC的中线,∴BD=CD=BC,故①正确;∵AD与BC不一定互相垂直,∴AB与AC不一定相等,故②错误;设△ABC中BC边上的高为h,则S△ABD=•BD•h=•BC•h=S△ABC,故③正确.选B.6.【答题】一定在△ABC内部的线段是()A. 锐角三角形的三条高、三条角平分线、三条中线B. 钝角三角形的三条高、三条中线、一条角平分线C. 任意三角形的一条中线、二条角平分线、三条高D. 直角三角形的三条高、三条角平分线、三条中线【答案】A【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:钝角三角形一条高在三角形内部,另两条高在三角形的外部,三条中线和三条角平分线都在三角形的内部,故B、C错误;任意三角形的三条角平分线、三条中线、一条高一定在三角形内部,故D错误.选A.7.【答题】给出下列说法:①三条线段组成的图形叫三角形;②三角形的角平分线是射线;③三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;④任何一个三角形都有三条高、三条中线、三条角平分线;⑤三角形的三条角平分线交于一点,且这点在三角形内.正确的说法有()A. 1个B. 2个C. 3个D. 4个【答案】B【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:三条线段首尾顺次相接组成的图形叫三角形,故①错误;三角形的角平分线是线段,故②错误;三角形的高所在的直线交于一点,这一点可以是三角形的直角顶点,故③错误;所以正确的命题是④⑤,共2个.选B.8.【答题】下列说法不正确的是()A. 三角形的重心是其三条中线的交点B. 三角形的三条角平分线一定交于一点C. 三角形的三条高线一定交于一点D. 三角形中,任何两边的和大于第三边【答案】C【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:A、三角形的重心是其三条中线的交点,正确;B、三角形的三条角平分线一定交于一点,正确;C、钝角三角形的三条高线不相交,故三角形的三条高线一定交于一点错误;D、根据三角形的三边关系定理可知三角形中,任何两边的和大于第三边,正确.选C.9.【答题】如图,AD⊥BC,GC⊥BC,CF⊥AB,垂足分别是D、C、F,下列说法中,错误的是()A. △ABC中,AD是边BC上的高B. △ABC中,GC是边BC上的高C. △GBC中,GC是边BC上的高D. △GBC中,CF是边BG上的高【答案】B【分析】根据三角形的高线的定义解答即可.【解答】解:A、AD经过△ABC的一个顶点,且AD垂直于BC边所在的直线,所以△ABC中AD是边BC上的高,故此选项正确;B、GC没有经过BC所对的顶点A,所以△ABC中,GC不是BC边上的高,故此选项错误;C、GC经过△GBC的一个顶点,且GC垂直于BC,所以△GBC中GC是边BC上的高,故此选项正确;D、CF经过△GBC的一个顶点,且CF垂直于BG,所以△GBC中CF是边BG上的高,故此选项正确.选B.10.【答题】下列说法不正确的是()A. △ABC的中线AD平分边BCB. △ABC的角平分线BE平分∠ABCC. △ABC的高CF垂直ABD. 直角△ABC只有一条高【答案】D【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:A、∵AD是△ABC的中线,∴D是BC的中点,即AD平分边BC,故此选项正确;B、∵BE是△ABC的角平分线,∴BE平分∠ABC,故此选项正确;C、∵CF是△ABC的高,∴CF⊥AB,故此选项正确;D、直角△ABC有三条高,其中两条是直角边,一条在三角形内部,故此选项错误.选D.11.【答题】能把一个三角形的面积一分为二的线段是()A. 高B. 中线C. 角平分线D. 外角平分线【答案】B【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:三角形的中线把三角形分成两个三角形,这两个三角形等底同高,所以这两个三角形的面积相等,所以能把一个三角形的面积一分为二的线段是中线.选B.12.【答题】如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定【答案】B【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:因为直角三角形的三条高线的交点是直角顶点,而其他三角形三条高线的交点都不在顶点上,所以如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是直角三角形.选B.13.【答题】如图,△ABC的角平分线BD与中线CE相交于点O.有下列两个结论:①BO是△CBE的角平分线;②CO是△CBD的中线.其中()A. 只有①正确B. 只有②正确C. ①和②都正确D. ①和②都不正确【答案】A【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:BD是△ABC的角平分线,所以OBE=OBC,所以BO是△CBE的角平分线,CE平分AB,但不平分BD,所以CO不是△CBD的中线.选A.14.【答题】如图,△ABC中∠C=90°,CD⊥AB,图中线段中可以作为△ABC的高的有()A. 2条B. 3条C. 4条D. 5条【答案】B【分析】根据三角形的高的定义:三角形的顶点到对边的垂直距离.得到可以作为△ABC的高的条数.【解答】解:可以作为△ABC的高的有AC,BC,CD,共3条.选B.15.【答题】如下图中的最右图:在△ABC中,AD平分∠BAC交BC于D,AE⊥BC于E,∠B=40°,∠BAC=80°,则∠DAE=()A. 7B. 8°C. 9°D. 10°【答案】D【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】∵AD平分∠BAC,又∵∠BAC=80°,∴.∵AE⊥BC,又∵∠B=40°,即∠ABE=40°,∴在Rt△AEB中,∠BAE=90°-∠ABE=90°-40°=50°,∴∠DAE=∠BAE-∠BAD=50°-40°=10°.故本题应选D.16.【答题】三角形的高线是()A. 直线B. 线段C. 射线D. 三种情况都可能【答案】B【分析】根据三角形高线的定义解答即可.【解答】由三角形高的定义:“过三角形的一个顶点向对边或对边所在的直线引垂线,顶点到垂足之间的线段叫三角形的高线”可知:三角形的高线是线段.选B.17.【答题】在△ABC中,AD为中线,BE为角平分线,则在以下等式中:①∠BAD=∠CAD;②∠ABE=∠CBE;③BD=DC;④AE=EC. 正确的是()A. ①②B. ③④C. ①④D. ②③【答案】D【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】如下图,∵AD是△ABC的中线,BE是△ABC的角平分线,∴BD=CD,∠ABE=∠CBE,∴上述结论中正确的是②③.选D.18.【答题】如图所示,AD是△ABC的角平分线,AE是△ABD的角平分线.若∠BAC=80°,则∠EAD的度数是()A. 20°B. 30°C. 45°D. 60°【答案】A【分析】根据三角形角平分线的定义解答即可.【解答】∵AD△ABC的角平分线,∠BAC=80°,∴∠BAD=∠BAC=40°.又∵AE是△ABD的角平分线,∴∠EAD=∠BAD=20°.选A.19.【答题】如图,D、E分别是△ABC的边AC、BC的中点,那么下列说法中不正确的是()A.DE是△BCD的中线B.BD是△ABC的中线C.AD=DC,BE=ECD.AD=EC,DC=BE【答案】D【分析】根据三角形的中线的定义解答即可.【解答】∵D、E分别是△ABC的边AC、BC的中点,∴DE是△BCD的中线,BD是△ABC的中线,AD=DC,BE=EC.但不能得到AD=EC和DC=BE.选D.20.【答题】如图,在△ABC中,∠1=∠2,G为AD的中点,BG的延长线交AC于点E,F为AB上的一点,CF与AD垂直,交AD于点H,则下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH是△ACD的边AD上的高;④AH是△ACF的角平分线和高A. 1个B. 2个C. 3个D. 4个【答案】B【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:①根据三角形的角平分线的概念,知AG是△ABE的角平分线,故此说法错误;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法错误;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.选B.。
鲁教版(五四制)七年级上册数学课件第一章1认识三角形第1课时(鲁教版七年级上·五四制)
灿若寒星
2.探究三角形三角关系 (1)在纸上任意画一个三角形,测量它的三个内角可得,三个 内角的和是__1_8_0_°_. (2)做一个三角形纸片,将其三个内角剪下拼在一起可以得到 一个_平__角. (3)做一个直角三角形的纸片,将其两个锐角剪下拼在一起可 得一个_直__角.
灿若寒星
【归纳】 ①三角形的三个内角的和是_1_8_0_°__; ②直角三角形的两锐角_互__余__. 3.三角形按角可分为:_锐__角__三角形、_直__角__三角形、_钝__角__三 角形. 【点拨】判断三角形中最大内角的度数,就可以判断这一个三角 形的形状.
灿若寒星
【解析】因为DE∥BC, 所以∠3=∠4=30°, 又∠ACB=45°, 所以∠2=15°, 又∠BAC=90°, 所以∠1=180°-90°-15°=75°. 答案:75°
灿若寒星
1.(2012·南通中考)如图,在△ABC中,∠C=70°, 沿图中虚线截去∠C,则∠1+∠2=( ) (A)360°(B)250° (C)180°(D)140° 【解析】选B.因为∠1+∠3=180°,∠2+∠4=180°, 所以∠1+∠2+∠3+∠4=360°. 又因为∠3+∠4=180°-∠C=110°, 所以∠1+∠2=360°-110°灿若=2寒5星0°.
【解析】第n个图中,三角形的个数是1+4(n-1)=4n-3,所以当
n=6时,三角形的个数是21.
答案:21
灿若寒星
知识点2三角形内角和性质的应用 【例2】(6分)如图,△ABC中,∠A=60°,∠B∶∠C=1∶5.求 ∠B的度数.
灿若寒星
【规范解答】设∠B=x°, 因为∠B∶∠C=1∶5, 所以∠C=__5_x_°.……………………………………………2分 因为三角形的三个内角的和是_1_8_0_°__, 所以_∠__A_+_∠__B_+_∠__C_=180°, 所以得方程:_6_0_+_x_+_5_x_=_1_8_0_,………………………………4分 解得x=_2_0_, 故∠B=__2_0_°_…………………………………………………6分
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(17)
章节测试题1.【答题】如图,△ABC中,点D、E分别在AB、AC边上,DE∥BC,∠A=50°,∠C=70°,那么∠ADE的度数是______.【答案】60°【分析】根据三角形内角和定理解答即可.【解答】∵DE∥BC,∴∠AED=∠C=70°,又∵∠ADE+∠AED+∠A=180°,∴∠ADE=180°−∠A−∠AED=180°−70°−50°=60°,故答案为:60°.2.【答题】如图,∠α=______.【答案】17°【分析】根据三角形内角和定理解答即可.【解答】解:∵三角形内角和是180°,∴40°+32°=55°+α,解得α=17°.3.【答题】三角形中,最大角等于最小角的2倍,最大角又比另一个角大20°,则此三角形的最小角等于______.【答案】40°【分析】根据三角形内角和定理解答即可.【解答】解:设最小角度数为x,则最大角为2x,另一角为2x﹣20°,列方程得,x+2x+2x﹣20°=180°,解得x=40°.答:这个三角形的最小角度数为40°.4.【答题】已知Rt△ABC,,,则______.【答案】60°【分析】根据三角形内角和定理解答即可.【解答】在Rt△ABC中,因为∠C=90°,所以∠A+∠B=90°,又因为∠A−∠B=30°,所以∠A=60°,故答案为:60°5.【答题】在△ABC中,∠B,∠C的平分线交于点O,若∠BOC=132°,则∠A=______度.【答案】84【分析】本题考查了三角形的角平分线概念和三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.【解答】解:∵∠BOC=132°,∴∠OBC+∠OCB=48°,∵∠ABC与∠ACB的平分线相交于O点,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=96°,∴∠A=180°-96°=84°.故答案为:84.6.【答题】如图,△ABC中,∠ABC、∠ACB的平分线相交于点I.(1)若∠ABC=70°,∠ACB=50°,则∠BIC=______;(2)若∠ABC+∠ACB=120°,则∠BIC= ______;(3)若∠A=60°,则∠BIC=______;(4)若∠A=100°,则∠BIC=______;(5)若∠A=n°,则∠BIC=______.【答案】 120° 120°, 120° 140°, 90°+n°.【分析】根据三角形的角平分线解答即可.【解答】解:(1)∵BI是∠ABC的平分线,∵CI是∠ACB的平分线,在△BCI中,在△BCI中,(3)在△ABC中,∵BI是∠ABC的平分线,CI是∠ACB的平分线,在△BCI中,(4)在△ABC中,在△BCI中,(5)在△ABC中,∵BI是∠ABC的平分线,CI是∠ACB的平分线,在△BCI中,则故答案为120∘,120∘,120∘,140∘,7.【题文】如图,直线a∥b,BC 平分∠ABD,DE⊥BC,若∠1=70°,求∠2 的度数.【答案】55°【分析】根据平行线的性质得到∠1=∠ABD=70°,由角平分线的定义得到∠EBD= ∠ABD=35°,根据三角形的内角和即可得到结论.【解答】解:∵直线a∥b,∴∠1=∠ABD=70°,∵BC平分∠ABD,∴∠EBD=∠ABD=35°,∵DE⊥BC,∴∠BED=90°∴∠2=90°-∠EBD=55°.8.【题文】如图,已知l1∥l2,Rt△ABC的两个顶点A,B分别在直线l1,l2上,,若l2平分∠ABC,交AC于点D,∠1=26°,求∠2的度数.【答案】38°【分析】根据平行线的性质先求得∠ABD=26°,再根据角平分线的定义求得∠ABC=52°,再根据直角三角形两锐角互余即可得.【解答】解:∵l1∥l2,∠1=26°,∴∠ABD=∠1=26°,又∵l2平分∠ABC,∴∠ABC=2∠ABD=52°,∵∠C=90°,∴Rt△ABC中,∠2=90°﹣∠ABC=38°.9.【题文】如图,∠ABC和∠ACB的平分线交于点O,DE经过点O且平行于BC,分别与AB,AC交于点D、E。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(39)
章节测试题1.【答题】已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A. 5B. 6C. 11D. 16【答案】C【分析】本题考查了三角形三边关系.【解答】设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.选:C.2.【答题】若三角形的三条边长分别为4,5,x,则x的取值范围是()A. 4<x<5B. 0<x<9C. 1<x<9D. ﹣1<x<9【答案】C【分析】本题考查了三角形三边关系.【解答】∵三角形的两边长分别为4和5,∴第三边长x的取值范围是:5﹣4<x<5+4,即:1<x<9,选:C.3.【答题】若三角形的两边长是7和4,且周长是偶数,则第三边长可能是______.【答案】5或7或9【分析】本题考查了三角形三边关系.【解答】设第三边长为x,由题意得:7﹣4<x<7+4,3<x<11,∵周长是偶数,∴x=5,7,9,故答案为:5或7或9.4.【答题】在△ABC中,三边长分别为4、7、x,则x的取值范围是______.【答案】3<x<11【分析】本题考查了三角形三边关系.【解答】根据三角形的三边关系,得7﹣4<x<7+4,则3<x<11.故答案为:3<x<11.5.【答题】三角形的三边长为3,a,7,如果这个三角形中有两条边相等,那么它的周长是______.【答案】17【分析】本题考查了三角形三边关系.【解答】根据题意,得第三边可能是3或7.根据三角形的三边关系,得当三边是3,3,7时,则3+3<7,不能构成三角形,应舍去.当三边是3,7,7时,则3+7>7,能构成三角形.那么它的周长是:3+7+7=17,故答案为:17.6.【答题】在△ABC中,若AB=5,BC=2,且AC的长为奇数,则AC=______.【答案】5【分析】本题考查了三角形三边关系.【解答】根据题意得5﹣2<AC<5+2,即3<AC<7,而AC的长为奇数,∴AC=5.故答案为5.7.【答题】如果3、5、a是一个三角形的三边,那么a的取值范围是______.【答案】2<a<8【分析】本题考查了三角形三边关系.【解答】∵在三角形中任意两边之和大于第三边,∴a<3+5=8,∵任意两边之差小于第三边,∴a>5-3=2,∴2<a<8.8.【题文】若三角形三条边的长度依次为,,,则的取值范围是多少?【答案】【分析】本题考查了三角形三边关系.【解答】根据三角形三边关系:任意两边和大于第三边,可知只要最小两边和大于第三边,其他两种情况必然成立.则有9.【题文】若a、b、c为三角形的三边,且a、b满足,求第三边c的取值范围.【答案】1<c<5【分析】本题考查了三角形三边关系.【解答】由题意得,,,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.10.【答题】三角形按角分类可以分为()A. 锐角三角形、直角三角形、钝角三角形B. 等腰三角形、等边三角形、不等边三角形C. 直角三角形、等边直角三角形D. 以上答案都不正确【答案】A【分析】根据三角形的分类情况可得答案.【解答】解:三角形按角分类可以分为锐角三角形、直角三角形、钝角三角形,选A.11.【答题】下列说法正确的是()A. 所有的等腰三角形都是锐角三角形B. 等边三角形属于等腰三角形C. 不存在既是钝角三角形又是等腰三角形的三角形D. 一个三角形里有两个锐角,则一定是锐角三角形【答案】B【分析】根据锐角三角形、钝角三角形、等腰三角形的定义一一判断即可.【解答】A选项:内角为30°,30°,120°的等腰三角形是钝角三角形,故是错误的.B选项:等边三角形属于等腰三角形,故正确.C选项:内角为30°,30°,120°的三角形既是钝角三角形又是等腰三角形的三角形,故错误.D选项:内角为30°,30°,120°的三角形有两个锐角,是钝角三角形,故错误.选B.12.【答题】下列说法正确的有()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.A. ①②B. ①③④C. ③④D. ①②④【答案】C【分析】①根据等腰三角形及等边三角形的定义进行解答即可;②由三角形按边分可分为不等边三角形和等腰三角形,其中等腰三角形又可分为底和腰不相等的三角形和等边三角形,可得结论;③根据等腰三角形的定义进行解答;④根据三角形按角分类情况可得答案.【解答】①∵有两个边相等的三角形叫等腰三角形,三条边都相等的三角形叫等边三角形,∴等腰三角形不一定是等边三角形,∴①错误;②∵三角形按边分可分为不等边三角形和等腰三角形,其中等腰三角形又可分为底和腰不相等的三角形和等边三角形,∴②错误;③∵两边相等的三角形称为等腰三角形,∴③正确;④∵三角形按角分类可以分为锐角三角形、直角三角形、钝角三角形,∴④正确.选C.13.【答题】如图,共有三角形的个数是()A. 3B. 4C. 5D. 6【答案】D【分析】本题考查了三角形.【解答】如图,图中有△ABC,△ABD,△ABE,△ACD,△ACE,△ADE,共6个.选D.14.【答题】若等腰三角形的两条边长分别为5cm和10cm,则它的周长为()A. 20B. 25C. 15或30D. 20或25【答案】B【分析】本题考查了三角形的三边关系.【解答】当等腰三角形的腰为5时,三边为5,5,10,5+5=10,三边关系不成立;当等腰三角形的腰为10时,三边为5,10,10,三边关系成立,周长为5+10+10=25.选B.15.【答题】一根长竹签切成四段,分别为3cm、5cm、7cm、9cm.从中任意选取三根首尾依次相接围成不同的三角形,则围成的三角形共有()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】本题考查了三角形的三边关系.【解答】长为3,5,7,9的线段第三条为一组,能组成的情况有:3,5,7;②3,5,9;③3,7,9;④5,7,9.根据三角形的三边关系,三角形的两边之和大于第三边,两边之差小于第三边,其中②不能构成一个三角形.选C.16.【答题】已知三角形两边的长分别是2和8,则此三角形第三边的长可能是()A. 5B. 6C. 7D. 11【答案】C【分析】本题考查了三角形的三边关系.【解答】设第三边为x,则8-2<x<8+2,解得:6<x<10.选C.17.【答题】如图,图中有______个三角形,其中,______是锐角三角形,______是直角三角形,______是钝角三角形.【答案】(1).6(2).△ABC,△ACD(3).△ACE,△ABE,△ADE(4).△ABD【分析】本题考查了三角形的概念与分类.【解答】解:图中有6个三角形,其中,△ABC,△ACD是锐角三角形,△ACE,△ABE,△ADE是直角三角形,△ABD是钝角三角形.故答案为:6;△ABC,△ACD;△ACE,△ABE,△ADE;△ABD.18.【答题】(1)如图,点D在△ABC内,写出图中所有除△ABC外的三角形:______;(2)在△ACD中,∠ACD所对的边是______;在△ABD中,边AD所对的角是______.【答案】(1).△ABD,△ACD,△BCD(2).AD(3).∠ABD【分析】本题考查了三角形的概念.【解答】解:(1)△ABD,△ACD,△BCD;(2)AD,∠ABD.故答案为:(1)△ABD,△ACD,△BCD;(2)AD,∠ABD.19.【答题】已知三角形的三边长分别为2,x-3,4,求x的取值范围______.【答案】5<x<9【分析】本题考查了三角形的三边关系.【解答】∵三角形的三边长分别为2、x−3、4,∴4−2<x−3<4+2,即5<x<9.20.【答题】等腰三角形的周长为14,其一边长为4,那么它的底边为______.【答案】4或6【分析】已知的边可能是腰,也可能是底边,应分两种情况进行讨论.【解答】解:当腰是4时,则另两边是4,6,且4+4>6,6﹣4<4,满足三边关系定理,当底边是4时,另两边长是5,5,5+4>5,5﹣4<5,满足三边关系定理,∴该等腰三角形的底边为4或6,故答案为:4或6.。
鲁教版五四制七年级数学下册第一章三角形5利用三角形全等测距离同步测试(解析版).docx
知能提升作业(九)5 利用三角形全等测距离(30分钟 50分)一、选择题(每小题5分,共15分)1.如图,小强利用全等三角形的知识测量池塘两端M,N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )(A)PO (B)PQ (C)MO (D)MQ2.如图,将两根钢条AA′,BB′的中点O连在一起,使AA′,BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB;那么判定△OAB≌△OA′B′的理由是( )(A)边角边(B)角边角(C)边边边(D)角角边3.如图所示,太阳光线AC与A′C′是平行的,AB表示一棵塔松,A′B′表示电线杆,BC表示塔松的影长,B′C′表示电线杆的影长,且BC=B′C′,已知电线杆高3米,则塔松高( )(A)大于3米(B)等于3米(C)小于3米(D)和影子的长相同二、填空题(每小题5分,共15分)4.如图所示,赵刚站在楼顶B处看一烟囱,当看到烟囱顶A时,视线与水平方向成的角是45°,当看到烟囱底部D时,视线与水平方向成的角也是45°,如果楼高15米,那么烟囱高______米.5.如图所示,已知AB=AC,AD=AE,∠BAC=∠DAE,BD=7cm,则CE=________cm.6.如图,小明与小敏玩跷跷板游戏.如果跷跷板的支点O(即跷跷板的中点)至地面的距离是50cm,当小敏从水平位置CD下降40cm时,这时小明离地面的高度是________.三、解答题(共20分)7.(9分)“石门福地”小区有一块直角梯形花园,测量得AB=20米,∠DEC= 90°,∠ECD=45°,则该花园面积为多少平方米?【拓展延伸】8.(11分)某建筑公司想测出一电视塔EF的高度,如图,身高 1.65米的公司员工(其眼部的垂直高度刚好 1.60米),登上15米的顶楼阳台,他固定自己的站立位置,看到该电视塔的最高点,此时测出视线的仰角,再转过角度,用同样大小的角度作为俯角,使视线刚好落在该员工与电视塔距离相等的另一个建筑物的某一点C上,然后测出与该员工在同一直线上的另一建筑物上的点D到该点C上的距离CD=10米,就可以利用该距离求出该电视塔的高度,你能将其表示出来吗?答案解析1.【解析】选B.要想利用△PQO≌△NMO求得MN的长,只需求得线段PQ的长.2.【解析】选A.△OAB与△OA′B′中,因为AO=A′O,∠AOB=∠A′OB′,BO=B′O,所以△OAB≌△OA′B′(SAS).3.【解析】选B.因为太阳光线AC与A′C′是平行的,所以∠ACB=∠A′C′B′,又因为塔松与电线杆都垂直于地面.所以∠ABC=∠A′B′C′.又因为同一时刻两物体的影长相等,即BC=B′C′.所以△ABC≌△A′B′C′(ASA),所以AB=A′B′=3米.4.【解析】作BC⊥AD于C点,则CD=15米,∠ACB=∠DCB=90°.在△ABC和△DBC中,∠所以△ABC≌△DBC(ASA),所以AC=DC=15米.故AD=AC+CD=30米.即烟囱高30米.答案:305.【解析】因为∠BAC=∠DAE,所以∠BAD=∠CAE.因为AB=AC,AD=AE,所以△ABD≌△ACE(SAS),所以BD=CE=7cm.答案:76.【解析】在△COF和△DOG中,OF=OG,∠COF=∠DOG,∠OCF=∠ODG=90°,所以△COF≌△DOG(AAS),所以CF=DG=40cm,这时小明离地面50+40=90(cm).答案:90cm7.【解析】因为∠DEC=90°,∠ECD=45°,所以∠EDC=45°,所以DE=CE,因为四边形ABCD是直角梯形,所以AD∥BC,∠A=∠B=90°,所以∠ADC+∠BCD=180°,因为∠ECD=∠EDC=45°,所以∠1+∠3=90°,因为∠1+∠2=90°,∠3+∠4=90°,所以∠1=∠4,∠2=∠3,在△ADE与△BEC中,∠1=∠4,DE=EC,∠2=∠3,所以△ADE≌△BEC,所以AD=BE,AE=BC,所以花园面积=(AD+BC)·AB=(BE+AE)·AB=·AB·AB=×20×20=200(平方米).8.【解析】由题意得这个人的仰角∠GOF与俯角∠DOC相等,所以∠GOF=∠DOC. 又因OG=OD,∠FGO=∠CDO=90°,所以△FGO≌△CDO(ASA).所以FG=CD,GE=15+1.60=16.60(米).又EF=GE+FG=GE+CD=16.60+10=26.6(米),电视塔的高度为26.6米.初中数学试卷马鸣风萧萧。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(28)
章节测试题1.【答题】如图所示,CD是△ABC的中线,AC=9cm,BC=3cm,那么△ACD和△BCD的周长差是______cm.【答案】6【分析】根据三角形的中线的概念,由CD是△ABC中AB边上的中线得BD=AD.∴△ACD与△BCD的周长之差为AC与BC的差.【解答】解:∵CD是△ABC的中线,∴BD=AD,∴△ACD和△BCD的周长差是AC与BC的差,∵AC=9cm,BC=3cm,∴△ACD和△BCD的周长差是6cm.2.【答题】如图,AD是△ABC的中线,AB=5,AC=3,△ABD的周长和△ACD的周长相差______.【答案】2【分析】根据三角形的周长的计算方法得到△ABD的周长和△ACD的周长的差就是AB与AC的差.【解答】解:∵AD是△ABC中BC边上的中线,∴BD=DC=BC,∴△ABD和△ADC的周长的差,=(AB+BC+AD)-(AC+BC+AD),=AB-AC,=5-3,=2,故答案为:2.3.【答题】图中可数出的三角形个数为______个.【答案】48【分析】∵图中线段DE上的每条线段都对着两个三角形,故数出线段条数即可求出三角形的个数,以及以AC为轴,左右还有6个,即可得出总数.【解答】解:如图,共有6+5+4+3+2+1=21条线段,则有三角形21×2=42个.以AC为轴,左右还有6个,∴三角形个数一共有48个,故答案为:48.4.【答题】阅读材料,并填表:在△ABC中,有一点P1,当P1,A,B,C没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图).当△ABC内的点的个数增加时,若其它条件不变,三角形内互不重叠的小三角形的个数情况如下表所示:ABC内点的个数 1 2 3 (1002)构成不重叠的小三角形的个数 3 5 …按表格顺序填入为______,______.【答案】7 2005【分析】当△ABC内的点是1个时,三角形内互不重叠的小三角形有3个;当△ABC内的点是2个时,三角形内互不重叠的小三角形有5个;依此类推得到当△ABC内的点是3个时,三角形内互不重叠的小三角形有7个;当△ABC内的点是n个时,三角形内互不重叠的小三角形有2n+1个;∴当△ABC内的点是1002个时,三角形内互不重叠的小三角形有2×1002+1=2005个.【解答】解:当△ABC内的点的个数是n个时,三角形内互不重叠的小三角形有2n+1个.∴按表格顺序填入为7,2005.5.【答题】如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形______个.【答案】21【分析】根据前边的具体数据,再结合图形,不难发现:后面的图形比前面的多4个,即第n个图形中,三角形共有1+4(n-1)=(4n-3)个.∴当n=6时,4n-3=21.【解答】解:第n个图形中,三角形共有1+4(n-1)=(4n-3)个.∴当n=6时,4n-3=21,故填21.6.【答题】图1是一个三角形,分别连接这个三角形三边的中点得到图2;再分别连接图2中间小三角形的中点,得到图3.(若三角形中含有其它三角形则不记入)(1)图2有______个三角形;图3中有______个三角形(2)按上面方法继续下去,第20个图有______个三角形;第n个图中有______个三角形.(用n的代数式表示结论)【答案】5 9 77 4n-3【分析】正确数一下(2)(3)中,三角形的个数,可以得到(3)比(2)增加了4个三角形,同理后面的图形都比前面增加了4个三角形,依此类推即可求解.【解答】解:(1)图2有5个三角形;图3中有9个三角形;(2)按上面方法继续下去,可以得到后面的图形都比前面增加了4个三角形,依此类推,第20个图有1+(20-1)×4=77个三角形;第n个图中有4(n-1)+1=(4n-3)个三角形.7.【答题】原三角形如图所示,如图1,原三角形内部有1个点时,原三角形可被分成3个三角形;如图2,原三角形内部有2个不同点时,原三角形可被分成5个三角形;如图3,原三角形内部有3个不同点时,原三角形可被分成7个三角形;…以此类推,原三角形内部有n个不同点时,原三角形可被分成______个三角形.【答案】2n+1【分析】认真审题可以发现:在三角形内部每增加一个点,就会增加两个三角形,以此类推,即可发现三角形的个数正好是比点的个数的2倍还多1个.∴原三角形内部有n个不同点时,答案即现.【解答】解:观察发现,三角形的个数正好是比点的个数的2倍还多1个.故答案为:2n+1.8.【答题】在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,如果b=4,则这样的三角形共有______个.【答案】10【分析】先根据三角形的三边关系得出c<a+b,再根据b=4可求出a的值,进而得出结论.【解答】解:∵在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,∴c<a+b∵b=4,∴a=1,2,3,4,a=1时,c=4,a=2时,c=4,5a=3时,c=4,5,6a=4时,c=4,5,6,7∴这样的三角形共有1+2+3+4=10个.故答案为10.9.【答题】两条平行直线上各有n个点,用这n对点按如下的规则连接线段;①平行线之间的点在连线段时,可以有共同的端点,但不能有其它交点;②符合①要求的线段必须全部画出;图1展示了当n=1时的情况,此时图中三角形的个数为0;图2展示了当n=2时的一种情况,此时图中三角形的个数为2;(1)当n=3时,请在图3中画出使三角形个数最少的图形,此时图中三角形的个数为______个;(2)试猜想当有n对点时,按上述规则画出的图形中,最少有______个三角形;(3)当n=2006时,按上述规则画出的图形中,最少有______个三角形.【答案】4,2(n-1),4010【分析】(1)根据题意,作图可得答案;(2)分析可得,当n=1时的情况,此时图中三角形的个数为0个,有0=2×(1-1);当n=2时的一种情况,此时图中三角形的个数为2个,有2=2×(2-1);…故当有n对点时,最少可以画2(n-1)个三角形;(3)当n=2006时,按上述规则画出的图形中,最少有2×(2006-1)=4010个三角形.【解答】解:(1)4个;(2)当有n对点时,最少可以画2(n-1)个三角形;(3)2×(2006-1)=4010个,即当n=2006时,最少可以画4010个三角形.10.【答题】观察下表中三角形个数变化规律,填表并回答下面问题.问题:如果图中三角形的个数是102个,则图中应有______条横截线.【答案】16【分析】观察图形,不难发现:当横线是0条的时候,有6个三角形;当横线是1条的时候有6+6=12个三角形,即多一条横线,多6个三角形;∴当有n条横线的时候,有(6+6n)个三角形.根据这一规律,得当有1条横线时,有12个三角形;当有2条横线时,有18个三角形;当有102个三角形的时候,即6+6n=102,n=16.【解答】解:表格中应是12,18;有n条横线的时候,有(6+6n)个三角形,∴6+6n=102,n=16,有16条横线.11.【答题】一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为______.【答案】8【分析】首先设第三边长为x,根据三角形的三边关系可得3-2<x<3+2,然后再确定x的值,进而可得周长.【解答】解:设第三边长为x,∵两边长分别是2和3,∴3-2<x<3+2,即:1<x<5,∵第三边长为奇数,∴x=3,∴这个三角形的周长为2+3+3=8,故答案为:8.12.【答题】如果一个三角形的两边长分别为3和5,那么这个三角形的周长可能是()A. 9B. 12C. 16D. 18【答案】B【分析】根据三角形三边关系定理求出第三边的范围,得到三角形的周长的范围,判断即可.【解答】解:∵三角形的两边长为3和5,∴第三边x的长度范围是5-3<x<5+3,即2<x<8,∴这个三角形的周长a范围是2+5+3<a<5+3+8,即10<a<16,选B.13.【答题】用长分别为5,7,9,13(单位:厘米)的四段木棒为边摆三角形,可摆出不同的三角形的个数为()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.【解答】①5,7,9时,能摆成三角形;②5,7,13时,∵5+7=12<13,∴不能摆成三角形;③5,9,13时,能摆成三角形;④7,9,13时,能摆成三角形;∴,可以摆出不同的三角形的个数为3个.选C.14.【答题】以长为3cm,5cm,7cm,10cm的四条线段中的三条线段为边,可以构成三角形的个数是()A. 1个B. 2个C. 3个D. 4个【答案】B【分析】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.【解答】从3cm,5cm,7cm,10cm的四条线段任选3条,有3,5,7;3,5,10;3,7,10;5,7,10四种情况,根据三角形的三边关系,则其中的3,5,7和5,7,10能组成三角形.选B.15.【答题】已知等腰三角形的其中二边长分别为4,9,则这个等腰三角形的周长为()A. 17B. 22C. 17或22D. 无法确定【答案】B【分析】根据三角形的三边关系和等腰三角形的定义进行判断.【解答】解:①若4是底边,则三角形的三边分别为4、9、9,能组成三角形,周长=4+9+9=22;②若4是腰长,则三角形的三边分别为4、4、9,∵4+4=8<9,∴不能组成三角形,综上所述,这个等腰三角形的周长为22.选B.16.【答题】任取长度分别为4cm,5cm,6cm,7cm四根细木棍中的三根,首尾顺次相接组成三角形,则三角形的个数最多为()A. 1个B. 2个C. 3个D. 4个【答案】D【分析】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.【解答】解:任取三根,共有4cm,5cm,6cm;4cm,5cm,7cm;4cm,6cm,7cm;5cm,6cm,7cm四种情况,它们都满足三角形三边关系,则三角形的个数最多4个.选D.17.【答题】下列每组数分别表示三根小棒的长度,将它们首尾连接后,能摆成三角形的一组是()A. 1、2、3B. 2、3、5C. 2、3、6D. 3、5、7【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】选项A,1+2=3,根据三角形的三边关系可知,不能够组成三角形;选项B,2+3=5,根据三角形的三边关系可知,不能够组成三角形;选项C,2+3<6,根据三角形的三边关系可知,不能够组成三角形;选项D,3+5>7,根据三角形的三边关系可知,能够组成三角形;选D.18.【答题】两根木棒分别长5cm、7cm,第三根木棒与这两根木棒首尾依次相接构成三角形.如果第三根木棒的长是偶数(单位:cm),则一共可以构成不同的三角形有()A. 4个B. 5个C. 8个D. 10个【答案】A【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】根据三角形的三边关系,得第三根木棒的长大于2cm而小于12cm.又第三根木棒的长是偶数,则应为4cm,6cm,8cm,10cm.共可以构成4个不同的三角形选A.19.【答题】下列长度的三条线段能组成三角形的是()A. 2,3,5B. 7,4,2C. 3,4,8D. 3,3,4【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:A.∵3+2=5,∴2,3,5不能组成三角形,故A错误;B.∵4+2<7,∴7,4,2不能组成三角形,故B错误;C.∵4+3<8,∴3,4,8不能组成三角形,故C错误;D.∵3+3>4,∴3,3,4能组成三角形,故D正确;选D.20.【答题】长度为3cm、4cm两根木棒,与它们首尾相接能构成三角形的第三根木棒长度是()A. 1cmB. 5cmC. 7cmD. 9cm【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三根木棒长度是xcm,∴4-3<x<4+3,即1<x<7,选B.。
鲁教版五四制七年级数学下册三角形综合测评
初中数学试卷第一章三角形综合测评时间:分钟满分:120分班级:姓名:得分:一、选择题(每题 4 分,共 32 分)1.已知三角形的两边长分别为3cm 和 5cm ,则此三角形的第三边长可能是()2.在△ABC 中,若∠ A+ ∠B< ∠C,则三角形为()A. 锐角三角形B.直角三角形C.钝角三角形D.等腰三角形3.以下说法不正确的选项是()A.三角形的三条中线交于三角形内一点B.三角形的三条角均分线交于三角形内一点C.三角形的三条高交于三角形内一点D.三角形的中线、角均分线和高都是线段4.在同一平面内有 4 个点,且随意三点都不在同一条直线上,以此中三点为三角形的极点可作出全部三角形的个数为()5.已知△ABC ≌△DEF,AB=4cm,AC=6cm,DE+EF=9cm,则EF的长为()6.如图 1 ,已知 BD 均分∠ABC,DE ⊥ AB,DF ⊥ BC,则以下结论不正确的选项是()A.AD=CDB.DE=DFC.BE=BFD.∠BDE= ∠BDF7.如图 2 ,小聪想作∠ MAN的均分线,但手边仅有一条细线,于是他用细线量取AB=AC, 而后截取一段长为 BC 的细线 ,将截得的细线对折,再在线段BC 上量取 BD,使 BD 等于对折后的细线长,过A,D 作射线 AD, 则射线 AD 就是∠MAN的均分线,很明显,小聪是经过△ ABD≌△ACD得出的结论,则△ABD≌△ACD 的条件是()8.如图 3 ,在四边形ABCD 中,连结AC,BD 交于点 E,若 AB=AD,CB=CD,则图中全等三角形共有()A.1 对B.2 对C.3 对D.4 对二、填空题(每题 4 分,共 32 分)9.图 4 是活动挂架,挂架不做成三角形的原因是____________.10.如图 5 ,△ABC 的高 AD 和 BE 交于点 F,若∠C=70 °,则∠AFB=_______°.11.若三角形三个内角的度数比为3:5:10 ,则这个三角形中最大的角的度数为_______°,这个三角形是________三角形 .12.如图 6 ,点 B, E,C, F 在同一条直线上, BE=CF,AC ∥DF,要使△ABC ≌△DEF,则还需要增添一个条件 ____________.13. 如图 7 ,△ABC ≌△ADE, 若∠BAD=40 °,则∠CAE 的度数为 ________°.14. 如图 8 所示,要丈量池塘的宽AB ,亮亮在地面上确立一条直线AC ,使 AC ⊥AB, 连结 BC,作∠ACD= ∠ACB, 交 BA 的延伸线于点D,此时,亮亮测得AD=30m,AC=40m,CD=50m,则池塘的宽AB 为 ________m.15. 若等腰三角形的底边长为10cm ,腰长为偶数,则知足条件的腰长的最小值为____cm.16. 如图 9 ,在△ABC 中,∠C=90 °,∠B=30 °,AD 均分∠BAC,DE ⊥ AB 于 E,有以下结论:①DE=DC ;②∠BDE= ∠ADC ;③ AB=2AC ;④图中共有两对全等三角形.此中正确的选项是:(填序号即可).三、解答题(共 56 分)17.( 8 分)在△ABC 中,∠B 比∠A 的 4 倍少 10 °,∠C 比∠A 的 4 倍多 10 °,你知道△ABC 是什么三角形吗?请你简单说明原因.18.( 9 分)如图 10 ,在△ABC 中, D 为 AC 的中点, F 为 AB 上随意一点, CE∥AB,CE 与直线 DF 交于点 E,问:△ADF 与△CDE 全等吗?请说明原因 .19.( 9 分)如图 11 ,点 B, C, D 在同一条直线上,∠ B= ∠D=90 °,△ABC ≌△CDE,AB=6,BC=8,CE=10.(1 )求△ABC 的周长;(2 )求△ACE 的面积 .20. ( 9 分)如图12 ,已知线段AB, 利用尺规作图,作出一个以线段AB 为边的等边三角形ABC. (保留作图印迹,不写作法)21. ( 9 分)认真阅读下边的解题过程,并达成填空:如图 13 , AD 为△ABC 的中线,已知AD=4cm,试确立AB+AC的取值范围.解:延伸AD 到 E,使 DE = AD, 连结 BE.由于 AD 为△ABC 的中线,因此 BD=CD.在△ACD 和△EBD 中,由于 AD=DE, ∠ADC= ∠EDB,CD=BD ,因此△ACD ≌△EBD (__________).因此 BE=AC(_____________________).由于 AB+BE>AE(_____________________),因此 AB+AC>AE.由于 AE=2AD=8cm,因此 AB+AC>_______cm.22.( 12 分)如图 14 ,已知△ABC ≌△BAD,AD 与 BC 交于点 E,试说明△ABE 是等腰三角形 .参照答案一、2. C二、 9. 三角形拥有稳固性钝角12. 答案不独一,如AC=DF 等16. ①②③三、 17. 解:直角三角形 .原因以下:设∠A=x, 则∠B=4x-10,∠C=4x+10,由三角形内角和为180 °,得x+4x-10+4x+10=180. 解方程,得x=20.因此 4x+10=90.因此∠C=90 °.因此△ABC 是直角三角形.18.解:△ADF ≌△CDE. 原因以下:由于 CE∥AB ,因此∠ A=∠DCE.由于 D 为 AC 的中点,因此AD=CD.又由于∠ ADF= ∠CDE,因此△ ADF ≌△CDE.19. 解:( 1 )由于△ABC ≌△CDE,因此 AC=CE=10.因此△ABC 的周长为AB+BC+AC=6+8+10=24.(2) 由于△ABC ≌△CDE,因此∠ ACB= ∠CED , AC=CE=10.由于∠CED+ ∠ECD=90 °,因此∠ACB+ ∠ECD=90 °.因此∠ACE=90 °.因此 S△ACE= 1AC ·CE=1×10 ×10=50.2 220.解:以下图:21.解:挨次填 SAS 全等三角形对应边相等三角形两边之和大于第三边822.解:由于△ABC ≌△BAD ,因此∠ C= ∠D,AC=BD. 又由于∠ AEC= ∠BED ,因此△AEC ≌△BED.因此 AE=BE.金戈铁制卷。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(36)
章节测试题1.【答题】若等腰三角形的周长为,其中一边长为,则该等腰三角形的底边长为()A. B. C. 或 D.【答案】B【分析】本题考查了了等腰三角形的计算,正确理解分两种情况讨论,并且注意到利用三角形的三边关系定理,是解题的关键.【解答】解:当长是3cm的边是底边时,三边为3cm,5cm,5cm,等腰三角形成立;当长是3cm的边是腰时,底边长是:13-3-3=7cm,而3+3<7,不满足三角形的三边关系.故底边长是:3cm.选B.2.【答题】下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A. 1,2,1B. 1,2,3C. 1,2,2D. 1,2,4【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:三角形的三边关系为:任意两边之和大于第三边.A.不能构成三角形.B.不能构成三角形.C.能构成三角形.D.不能构成三角形.选C.3.【答题】△ABC的三条边长分别是、、,则下列各式成立的是()A. B.C. D.【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】对于任意一个三角形,三角形的三边关系满足:两边之和大于第三边.选B.4.【答题】如果一个三角形的两边长分别为和,则第三边长可能是()A. B. C. D.【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:设第三边长为x,则由三角形三边关系定理得4-2<x<4+2,即2<x <6.因此,本题的第三边应满足2<x<6,把各项代入不等式符合的即为答案.2,6,8都不符合不等式2<x<6,只有4符合不等式.选B.5.【答题】下列各数可能是一个三角形的边长的是().A. 1,3,5B. 3,4,5C. 2,2,4D.【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.A、∵1+3<5,∴本组数不能构成三角形.故本选项错误;B、∵3+4>5,∴本组数能构成三角形.故本选项正确;C、∵2+2=4,∴本组数可以构成三角形.故本选项正确;D、∵,∴本组数不能构成三角形.故本选项错误;6.【答题】若a,b,c为△ABC的三边长,且满足a-4+(b-2)2=0,则c的值可以为()A. 5B. 6C. 7D. 8【答案】A【分析】根据非负数的性质和三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:∵∴a−4=0,a=4;b−2=0,b=2;则4−2<c<4+2,2<c<6,5符合条件;选A.7.【答题】下列各组数不可能是一个三角形的边长的是().A. ,,B. ,,C. ,,D. ,,【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:A.5+5>5,能构成三角形;B.5+7>7,能构成三角形;C.5+12>13,能构成三角形;D.7+5=12,不能构成三角形.8.【答题】下列长度的四根木棒中,能与长为,的两根木棒围成一个三角形的是().A. B. C. D.【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三边长为,则,即.选C.9.【答题】下列各组数不可能是一个三角形的边长的是().A. ,,B. ,,C. ,,D. ,,【答案】A【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】三角形中任意两边和需大于第三边,任意两边之差小于第三边,可知A选项:1+2=3,构不成三角形,选.10.【答题】以下列长度的线段为边,能组成三角形的是()A. ,,B. ,,C. ,,D. ,【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】A、1+2=3,构不成三角形,不符合题意;B、6+8<15,构不成三角形,不符合题意;C、4+7>10,10-7<4,能构成三角形,符合题意;D、3+3<7,构不成三角形,不符合题意,选C.11.【答题】下列长度的三条线段能组成三角形的是()A. 3,4,8B. 2,5,3C. ,,5D. 5,5,10【答案】C【分析】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.【解答】选项A,3+4<8,根据三角形的三边关系可知,不能够组成三角形;选项B,2+3=5,根据三角形的三边关系可知,不能够组成三角形;选项C,+>5,根据三角形的三边关系可知,能够组成三角形;选项D,5+5=10,根据三角形的三边关系可知,不能够组成三角形;选C.12.【答题】等腰三角形的周长为13cm,其中一边长为3cm.则该等腰三角形的底长为()A. 3cm或5cmB. 3cm或7cmC. 3cmD. 5cm【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】①3cm是腰长时,底边=13﹣3×3=7cm,此时,三角形的三边分别为3cm、3cm、7cm,∵3+3=6<7,∴不能组成三角形;②3cm是底边时,腰长=(13﹣3)=5cm,此时,三角形的三边分别为5cm、5cm、3cm,能够组成三角形,∴等腰三角形的底长为3cm,选C.13.【答题】至少有两边相等的三角形是()A. 等边三角形B. 等腰三角形C. 等腰直角三角形D. 锐角三角形【答案】B【分析】本题考查了三角形的分类.本题属于易错题,同学们往往忽略了等边三角形是一特殊的等腰三角形,且等腰三角形也可以是锐角三角形、钝角三角形以及直角三角形.【解答】解:本题需要分类讨论:两边相等的三角形称为等腰三角形,该等腰三角形可以是等腰直角三角形,该等腰三角形有可能是锐角三角形,也有可能是钝角三角形;当有三边相等时,该三角形是等边三角形.等边三角形是一特殊的等腰三角形.14.【答题】图中三角形的个数是()A. 8个B. 9个C. 10个D. 11个【分析】本题考查了三角形,注意要不重不漏地找到所有三角形,一般从一边开始,依次进行.【解答】解:∵图中的三角形有:△AGD,△ADF,△AEF,△AEC,△ABC,△DGF,△DEF,△CEF,△CEB,∴共9个三角形.15.【答题】以下三条线段为边,能组成三角形的是()A. 1cm、2cm、3cmB. 2cm、2cm、4cmC. 3cm、4cm、5cmD. 4cm、8cm、2cm【答案】C【分析】本题考查三角形的三边关系:任何两边的和大于第三边;做本题题目的关键是直接判断较小的两条边的和与最长边的和的大小关系,如果前者大,说明这三条边能组成三角形,否则,不能组成三角形.【解答】解:根据三角形的三边关系,得:A项,1+2=3,不能组成;B项,2+2=4,不能组成;C项,3+4>5,能组成;D项,4+2=8,不能组成.选C.16.【答题】已知三角形的三边为4、5、x,则不可能是()A. 6B. 5C. 4D. 1【答案】D【分析】根据“三角形两边的和大于第三边”和“三角形两边的差小于第三边”可得第三条边的取值范围.【解答】解:根据三角形三边关系,可得,即,则x不能取1.17.【答题】若三角形的三边长分别为3,4,x-1,则x的取值范围是()A. 0<x<8B. 2<x<8C. 0<x<6D. 2<x<6【答案】B【分析】根据“三角形两边的和大于第三边”和“三角形两边的差小于第三边”可得第三条边的取值范围;当然,本题不要忘了第三条边长为(x-1).【解答】解:这里第三边长为x-1,根据三角形三边关系,可得,即,选B.18.【答题】如图,过A、B、C、D、E五个点中任意三点画三角形,(1)其中以AB为一边可以画出______个三角形;(2)其中以C为顶点可以画出______个三角形.【答案】3 6【分析】(1)根据以AB为一边,分别得出符合题意的三角形即可;(2)根据以C为顶点,分别得出符合题意的三角形即可.【解答】解:(1)其中以AB为一边可以画出3个三角形为:△ABE,△ABD,△ABC;(2)其中以C为顶点可以画出6个三角形为:△ABC,△BCD,△BCE,△ADC,△DEC,△ACE.故答案为:(1)3;(2)6.19.【答题】一个三角形的周长为81cm,三边长的比为2:3:4,则最长边比最短边长______ cm.【答案】18【分析】本题考查了一元一次方程在三角形中的应用,解答本题的关键是读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.【解答】解:设三角形的三边长为2x,3x,4x,由题意,得2x+3x+4x=81,解得x=9,则三角形的三边长分别为:18cm,27cm,36cm,∴,最长边比最短边长:36-18=18(cm).20.【答题】小华要从长度分别是5cm,6cm,11cm,16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是______ cm、______ cm、______ cm(按照从小到大的顺序填写).【答案】6 1116【分析】按顺序写出4种取法,然后根据三角形的三边关系再判断;判断是注意技巧,即符合“两条较短边长的和大于较大的边长”的就能组成三角形.【解答】解:从这四根小木棒取出三根有以下取法:①5cm,6cm,11cm;②5cm,6cm,16cm;③5cm,11cm,16cm;④6cm,11cm,16cm,一共有4种选法.其中,①5+6=11,不能;②5+6<16,不能;③5+11=16,不能;④6+11<16,能.综上,能摆成三角形的只有④.。
鲁教版(五四制)数学七年级上册第一章《三角形》3.1认识三角形同步练习(含答案)
初中数学鲁教版七年级上册第一章《三角形》3.1认识三角形学校:___________姓名:___________班级:___________得分:___________一、选择题(本大题共10小题,共30分)1.给出下列长度的三条线段,能组成三角形的是()A.3cm,4cm,5cmB.8cm,7cm,15cmC.13cm,12cm,25 cmD.5cm,5cm,11cm2.若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cmB.3cmC.6cmD.9cm3.下列长度的三条线段能组成三角形的是()A.2,2,6B.3,4,8C.4,6,10D.5,6,104.在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是()A.2B.4C.5D.65.如果三角形的两边长分别为5和7,第三边长为偶数,那么这个三角形的周长可以是()A.15B.16C.19D.266.若三角形的两边a、b的长分别为3和5,则其第三边c的取值范围是()A.2<c<5B.3<c<8C.2<c<8D.2≤c≤87.如图,一个三角形只剩下一个角,这个三角形为()A.锐角三角形B.钝角三角形C.直角三角形D.都有可能8.下列说法中,正确的个数有()①三角形具有稳定性;②如果两个角相等,那么这两个角是对顶角;③三角形的角平分线是射线;④直线外一点到这条直线的垂线段叫做这点到直线的距离;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内;A.2B.3C.4D.59.下列四个图形中,线段BE是△ABC的高的图形是()A.B. C. D.10.已知三角形的三边长分别为2、x、3,则x可能是()A.1B.4C.5D.6二、填空题(本大题共5小题,共15分)11.若三角形的三边长分别为3,x,5,请写出x可能的整数值______。
(只要写一个)12.△ABC中三边长分别为a,b,c,已知a=5,b=8,则第三边c的取值范围是______。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(10)
章节测试题1.【题文】如图,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.【答案】不是,理由见解析.【分析】考查了三角形的角平分线的定义,三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.【解答】解:根据三角形的角平分线的定义,可知:①平分三角形的一个内角;②是一条线段,一个端点是三角形的顶点,另一点在这个顶点的对边上.而此题中AD 满足①,但点D不在BC边上,故不满足②.所以,AD不是△ABC的角平分线.2.【题文】如图,AD为△ABC的中线,BE为△ABD的中线.若△ABC的面积为40,BD=5,则△BDE中BD边上的高为多少?【答案】4【分析】首先根据三角形的中线把三角形的面积分成相等的两部分可得△EBD的面积是10,再利用三角形的面积公式进而得到BD边上的高.【解答】解:∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD=S△ABC,S△BDE=S△ABD,∴S△BDE=×S△ABC=S△ABC,∵△ABC的面积为40,∴S△BDE=×40=10,设△BDE中BD边上的高为x,∵BD=5,∴×5•x=10,解得x=4,故△BDE中BD边上的高为4.3.【题文】已知:△ABC中,AB=AC,BD是AC边上的中线,如果D点把三角形ABC的周长分为12cm和15cm两部分,求此三角形各边的长.【答案】8厘米,8厘米,11厘米或10厘米,10厘米,7厘米【分析】本题D点把三角形ABC的周长分成两部分(AB+AD)和(BC+CD),题中未说明12cm和15cm分别是哪一部分,因此要分类讨论.【解答】解:∵AB=AC,BD是AC边上的中线,∴AB=2AD=2CD,∴AB+AD=3AD.①当AB与AD的和是12厘米时,AD=12÷3=4(厘米),所以AB=AC=2×4=8(厘米),BC=12+15-8×2=12+15-16=11(厘米);②当AB与AD的和是15厘米时,AD=15÷3=5(厘米),所以AB=AC=2×5=10(厘米),BC=12+15-10×2=12+15-20=7(厘米).所以三角形的三边可能是8厘米,8厘米,11厘米或10厘米,10厘米,7厘米.4.【题文】如图:(1)画出△ABC的BC边上的高线AD;(2)画出△ABC的角平分线CE.【答案】(1)作图见解析;(2)作图见解析.【分析】(1)利用钝角三角形高线作法延长BC进而作出高线即可;(2)利用角平分线作法得出CE即可.解:(1)如图所示:AD即为所求;(2)如图所示:CE即为所求.5.【题文】已知AD为△ABC的中线,AB=5 cm,且△ACD的周长比△ABD的周长少2 cm,求AC的长度.【答案】3cm【分析】由AD是△ABC的中线可得CD=BD,从而可得C△ABD-C△ACD=(AB+AD+BD)-(AC+AD+CD)=AB-AC=2,由AB=5,可解得AC=3(cm).【解答】解:∵AD为△ABC的中线,∴BD=CD.∵△ACD的周长比△ABD的周长少2 cm,∴(AB+BD+AD)-(AC+AD+CD)=AB-AC=2 cm,∴AC=AB-2=5-2=3(cm).6.【题文】如图,在△ABC中,AD⊥BC,BE⊥AC,BC=12,AC=8,AD=6,BE的长为多少?【答案】9【分析】由已知易得:S △ABC=AC BE=BC AD,代入BC=12,AC=8,AD=6即可解得BE的长.【解答】解:∵在△ABC中,AD⊥BC,BE⊥AC,BC=12,AC=8,AD=6,∴S △ABC=BC AD ==36,又∵S△ABC=AC·BE,∴×8×BE=36,解得:BE=9.7.【题文】如图,D是△ABC中BC边上的一点,DE∥AC交AB于点E,若∠EDA=∠EAD,试说明AD是△ABC的角平分线.【答案】见解析【分析】由DE∥AC交AB于点E可得∠CAD=∠EDA,结合∠EDA=∠EAD,可得∠CAD=∠EAD,即可得到结论.【解答】解:∵DE∥AC,∴∠EDA=∠CAD.∵∠EDA=∠EAD,∴∠CAD=∠EAD.∴AD是△ABC的角平分线.8.【题文】如图,在△ABC中,AB=AC,P是BC边上任意一点,PF⊥AB于点F,PE⊥AC于点E,BD为△ABC的高线,BD=8,求PF+PE的值.【答案】8【分析】连接AP,根据S△ABC=S△ABP+S△ACP列式整理即可得解;【解答】解:连结P A,由图形可知:S△ABC=S△ABP+S△ACP,即AC·BD=AB·PF+AC·PE,∵AB=AC,∴BD=PF+PE,∴PF+PE=8.9.【题文】如图,在△ABC中,∠B = 50º,∠C = 70º,AD是∠BAC的角平分线,AE是高,求∠EAD的度数。
1.1 认识三角形(第1课时)(同步课件) (共24张PPT)七年级数学上册同步课堂(鲁教版五四制)
探索&交流
下面的图(1)、图(2)、图(3)中的三角形被遮住的两 个内角是什么角?试着说明理由.
(1)
(2)
(3)
探索&交流
思考:按照三角形内角的大小,三角形可以分为哪几类?
锐角三角形 直角三角形
钝角三角形
三个角都是锐 有一个角是直 角的三角形 角的三角形
有一个角是钝角的 三角形
探索&交流
直角三角形有许多性质,你能发现它的两个锐角之间有什么关系吗?
三角形三个内角的和等于180°.
已知:△ABC. 求证:∠A+∠B+∠C=180°.
证法1:过点A作l∥BC,所以∠B=∠1. (两直线平行,内错角相等) ∠C=∠2. (两直线平行,内错角相等) 因为∠2+∠1+∠BAC=180°, 所以∠B+∠C+∠BAC=180°.
探索&交流
l
12
证法2:延长BC到D,过点C作CE∥BA,
边: 三角形中三边 AB,BC,AC
典例精析
例1.(1)图中有几个三角形?用符号表示出这些三角形?
5个,它们分别是△ABE,△ABC,
D
△BEC,△BCD,△ECD.
A
(2)以AB为边的三角形有哪些?
△ABC、△ABE.
E
(3)以E为顶点的三角形有哪些? B
C
△ ABE 、△BCE、 △CDE.
(4)以∠D为角的三角形有哪些?
∠A和∠C的度数.
解:因为BD⊥AC,所以∠ADB=∠CDB=90°.
A
因为∠A+∠ABD+∠ADB=180°, ∠ABD=54°,∠ADB=90°,
所以∠A=180°-∠ABD-∠ADB
鲁教版五四制七年级数学上册第一章三角形1认识三角形第1课时同步测试(解析版)
知能提升作业(一)
第一章三角形
1 认识三角形
第1课时
(30分钟 50分)
一、选择题(每小题5分,共15分)
1.一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是( )
(A)等腰三角形(B)直角三角形
(C)锐角三角形(D)钝角三角形
2.如图,直线BD∥EF,AE与BD交于点C,若∠ABC=30°,
∠BAC=75°,则∠CEF的大小为( )
(A)60°(B)75°(C)90°(D)105°
3.如图所示,在△ABC中,∠ACB是钝角,让点C在射线BD
上向右移动,则( )
(A)△ABC将先变成直角三角形,然后再变成锐角三角形,
而不会再是钝角三角形
(B)△ABC将变成锐角三角形,而不会再是钝角三角形
(C)△ABC将先变成直角三角形,然后再变成锐角三角形,接着又由锐角三角形
变为钝角三角形
(D)△ABC先由钝角三角形变为直角三角形,再变为锐角三角形,接着又变为直
角三角形,然后再次变为钝角三角形
二、填空题(每小题5分,共15分)
4.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(9)
章节测试题1.【答题】如图,三角形被木板遮住一部分,这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 以上都有可能【答案】D【分析】根据三角形的分类可得答案.【解答】从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角,选D.2.【答题】若一个三角形的两边长分别为5和8,则第三边长可能是()A. 14B. 10C. 3D. 2【答案】B【分析】根据三角形的三边关系进行判断.【解答】设第三边是x,由三角形边的性质,8-5<x<8+5,3<x<13.所以选B.3.【答题】下列长度的三根小木棒能构成三角形的是()A. 2cm,3cm,5cmB. 7cm,4cm,2cmC. 3cm,4cm,8cmD. 3cm,3cm,4cm【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解: A.因为2+3=5,所以不能构成三角形,故A错误;B.因为2+4<6,所以不能构成三角形,故B错误;C.因为3+4<8,所以不能构成三角形,故C错误;D.因为3+3>4,所以能构成三角形,故D正确.选D.4.【答题】下列各组长度的线段能构成三角形的是()A. 1.5cm 3.9cm 2.3cmB. 3.5cm 7.1cm 3.6cmC. 6cm 1cm 6cmD. 4cm 10cm 4cm【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:根据三角形的三边关系,得A.1.5+2.3<3.9,不能组成三角形,故此选项错误;B.3.5+3.6=7.1,不能组成三角形,故此选项错误;C.1+6>6,能够组成三角形,故此选项正确;D.4+4<10,不能组成三角形,故此选项错误.选C.方法总结:此题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个.5.【答题】若一个三角形的两边长分别是3和4,则第三边的长可能是()A. 1B. 2C. 7D. 8【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三边长x,根据三角形的三边关系,得1<x<7.选B.6.【答题】以下列各组长度的线段为边,能构成三角形的是()A. 8,4,4B. 5,6,12C. 6,8,10D. 1,2,3【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】根据三角形的三边关系,得A. 4+4=8,不能组成三角形;B. 5+6<12,不能组成三角形;C. 6+8>10,能够组成三角形;D.1+2=3,不能组成三角形。
鲁教版(五四制)七年级数学第一章《三角形》单元评价测试
山东省东营市英才中学七年级数学第一章《三角形》单元评价测试(鲁教版)班级姓名成绩(时间:90分钟分值:120分)一、选择题(每小题3分,共30分)1. 下列长度的三条线段能组成三角形的是()(A)1,2,3.5 (B)4,5,9(C)20,15,8 (D)5,15,82.一个三角形的两边长分别为3 cm和7 cm,则此三角形的第三边的长可能是()A.3 cm B.4 cm C.7 cm D.11 cm3.在等腰三角形ABC中,它的两边长分别为8cm和3cm,则它的周长为()A.10cm B.19cm或14cm C.11cmD.19cm4. 如图,已知AC=DB,AO=DO,CD=100m,则A,B两点间的距离()A.大于100 mB.等于100 mC.小于100 mD.无法确定5.小华在电话中问小明:“已知一个三角形的三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是()A. B. C. D.6. 将一副三角板按图中的方式叠放,则∠α等于()A.75°B.60°C.45°D.30°7.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它的三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处8. 某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去9.如图所示,在△ABC中,AB=AC,∠AB C、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE,上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④10. 如图,已知四边形ABCD中,AB∥DC,连接BD,BE平分∠ABD,BE⊥AD,∠EBC和∠DCB的角平分线相交于点F,若∠ADC=110°,则∠F的度数为()A.115°B.110°C.105°D.100°二、填空题(每小题4分,共32分)11.已知三角形的两边分别是5和10,则第三边长x的取值范围是.12. 如图,在△ABC中,已知∠1=∠2,BE=CD,AB=10,AE=4,则CE=__________.13.已知△ABC底边BC上的高为8cm,当它的底边BC从16cm变化到5cm时,△ABC的面积减少了cm214.如图,点B,E,F,C在同一直线上.已知∠A=∠D,∠B=∠C,要使△ABF ≌△DCE,需要补充的一个条件是________(写出一个即可).15.如图,若CD平分∠ACE,BD平分∠ABC,∠A=45°,则∠D=°.16. 如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于.17. 如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC 边于E,∠BAC=600,∠ABE=25.求∠DAC的度数.18.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB、AC上,将△ABC沿着DE折叠压平,使点A与点N重合.(1)若∠B=35°,∠C=60°,则∠A的度数为;(2)若∠A=70°,则∠1+∠2的度数为.三、解答题(共58分)19.(10分)如图所示,四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.求证:(1)OA=OB;(2)AB∥CD.20.(11分)如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数21.(12) (1)如图①,你知道∠BOC=∠B+∠C+∠A的奥秘吗?请用你学过的知识予以证明;死记硬背是一种传统的教学方式,在我国有悠久的历史。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知能提升作业(一)
第一章三角形
1 认识三角形
第1课时
(30分钟 50分)
一、选择题(每小题5分,共15分)
1.一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是( )
(A)等腰三角形(B)直角三角形
(C)锐角三角形(D)钝角三角形
2.如图,直线BD∥EF,AE与BD交于点C,若∠ABC=30°,
∠BAC=75°,则∠CEF的大小为( )
(A)60°(B)75°(C)90°(D)105°
3.如图所示,在△ABC中,∠ACB是钝角,让点C在射线BD
上向右移动,则( )
(A)△ABC将先变成直角三角形,然后再变成锐角三角形,
而不会再是钝角三角形
(B)△ABC将变成锐角三角形,而不会再是钝角三角形
(C)△ABC将先变成直角三角形,然后再变成锐角三角形,接着又由锐角三角形变为钝角三角形
(D)△ABC先由钝角三角形变为直角三角形,再变为锐角三角形,接着又变为直角三角形,然后再次变为钝角三角形
二、填空题(每小题5分,共15分)
4.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板
的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么
∠BMD为________度.
5.阅读材料,并填表:
在△ABC中,有一点P1,当P1,A,B,C没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图).当△ABC内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样?
完成下表:
ABC内点的个数 1 2 3 … 2 012
构成不重叠的
3 5 …
小三角形的个数
按表格顺序填入为________,________.
6.如图,直线l1∥l2,且l1,l2被直线l3所截,∠1=∠2=
35°,∠P=90°,则∠3=________.
三、解答题(共20分)
7.(8分)在△ABC 中,已知∠A=12∠B=13∠C ,试判断三角形的形状.
【拓展延伸】
8.(12分)如图,BO ,CO 分别平分∠ABC 和∠ACB.
(1)若∠A=70°,求∠BOC 的度数.
(2)试探究∠BOC 与∠A 的关系.
答案解析
1.【解析】选D.三角形的三个内角依次为180°×22+3+7=30°,180°×32+3+7=
45°,180°×72+3+7=105°,所以这个三角形是钝角三角形.
2.【解析】选D.因为∠ABC=30°,∠BAC=75°,
所以∠ACB=75°,
所以∠DCE=75°,
又BD ∥EF ,所以∠DCE+∠CEF=180°,
所以∠CEF=105°.
3.【解析】选D.点C 在射线BD 上向右移动的过程中,△ABC 先由钝角三角形变为直角三角形,再变为锐角三角形,接着又变为直角三角形,然后再次变为钝角三角形.
4.【解析】因为∠ADF=100°,∠EDF=30°,
所以∠MDB=180°-∠ADF-∠EDF=180°-100°-30°=50°,
所以∠BMD=180°-∠B-∠MDB=180°-45°-50°=85°.
答案:85
5.【解析】当△ABC 内的点的个数是n 时,三角形内互不重叠的小三角形的个数是2n+1.所以按表格顺序填入为7,4025.
答案:7 4025
6.【解析】因为∠2=35°,∠P=90°,
所以∠4=55°,因为l 1∥l 2,
所以∠1+∠2+∠3+∠4=180°,
因为∠1=∠2=35°,
所以∠3=180°-35°-35°-55°=55°.
答案:55°
7.【解析】由题意,设∠C=6x ,
则有∠B=4x ,∠A=2x ,
则6x+4x+2x=180°,
所以x=15°,
所以最大角∠C=6x=90°,
则三角形的形状是直角三角形.
8.【解析】(1)因为∠A=70°,
所以∠ABC+∠ACB=110°.
又因为BO ,CO 分别平分∠ABC 和∠ACB ,
所以∠OBC=12∠ABC ,∠OCB=12∠ACB ,
所以∠OBC+∠OCB=12∠ABC+12∠ACB
=12(∠ABC+∠ACB)
=12×110°
=55°,
所以∠BOC=180°-(∠OBC+∠OCB)
=180°-55°=125°.
(2)∠BOC=90°+12∠A.
理由如下:
∠BOC=180°-(∠OBC+∠OCB)
=180°-(12∠ABC+12∠ACB)
=180°-12(∠ABC+∠ACB)
=180°-12(180°-∠A)
=180°-90°+12∠A
=90°+12∠A.
初中数学试卷 桑水出品。