北师大版七年级下册数学期中测试卷3
北师大版数学七年级下册《期中考试卷》含答案
北 师 大 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题,满分30分,每小题3分) 1.下列各式中计算结果为5x 的是( ) A .32x x + B .32x xC .3x xD .72x x -2.计算()2019201821.53⎛⎫-⨯ ⎪⎝⎭的结果是( ) A .32-B .32C .23-D .233.计算63a a ÷,正确的结果是( ) A .2B .3aC .2aD .3a4.计算23(3)2x x -的结果是( ) A .65x -B .66x -C .55x -D .56x -5.下列多项式相乘,不能用平方差公式计算的是( ) A .(23)(32)x y y x -- B .(23)(23)x y x y -+--C .(2)(2)x y y x -+D .(3)(3)x y x y +-6.下列等式成立的是( ) A .22(1)(1)x x --=- B .22(1)(1)x x --=+ C .22(1)(1)x x -+=+D .22(1)(1)x x +=-7.计算3(42)2x x x -+÷的结果正确的是( ) A .221x -+B .221x +C .321x -+D .482x x -+8.下列各图中,1∠与2∠是对顶角的是( ) A .B .C .D .9.如图,下列结论中错误的是( )A .1∠与2∠是同旁内角B .1∠与6∠是内错角C .2∠与5∠是内错角D .3∠与5∠是同位角10.如图,//AB EF ,设90C ∠=︒,那么x 、y 和z 的关系是( )A .y x z =+B .90x y z +-=︒C .180x y z ++=︒D .90y z x +-=︒二.填空题(共7小题,满分28分,每小题4分) 11.已知(1)(1)80m n m n +-++=,则m n += .12.在关系式31y x =-中,当x 由1变化到5时,y 由 变化到 .13.已知,梯形的高为8cm ,下底是上底的3倍,设这个梯形的上底为xcm ,面积为2Scm ,这个问题中,常量是 ,变量是 .14.若2249x kxy y ++是一个完全平方式,则k 的值为 .15.如图,在ABC ∆中,以点C 为顶点,在ABC ∆外画ACD A ∠=∠,且点A 与D 在直线BC 的同一侧,再延长BC 至点E ,在作的图形中,A ∠与 是内错角;B ∠与 是同位角;ACB ∠与 是同旁内角.16.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为 .17.已知,在同一平面内,50ABC ∠=︒,//AD BC ,BAD ∠的平分线交直线BC 于点E ,那么AEB ∠的度数为 . 三.解答题(共3小题,每小题6分,满分18分)18011(2(2)()|3-+-+--19.化简:222(23)(23)(3)x x y x y x y +-+----,其中2x =-,1y =-.20.(1)如图,以B 为顶点,射线BC 为一边,用直尺和圆规作CBE ∠,使CBE CAD ∠=∠; (2)在所作图中,BE 与AD 平行吗?为什么?四.解答题(共3小题,每小题8分,满分24分)21.如图,在四边形ABCD 中,连接BD ,点E 、F 分别在AB 和CD 上,连接CE 、AF ,CE 与AF 分别交BD 于点N 、M .已知AMD BNC ∠=∠.(1)若110AFC ∠=︒,求ECD ∠的度数;(2)若ABD BDC ∠=∠,试判断ECD ∠与BAF ∠之间的数量关系,并说明理由.22.已知24a =,26b =,212c = (1)求证:1a b c +-=; (2)求22a b c +-的值.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?五.解答题(共2小题,每小题10分,满分18分) 24.观察下列关于自然数的等式: (1)223415-⨯= (1) (2)225429-⨯= (2) (3)2274313-⨯= (3) ⋯根据上述规律解决下列问题: (1)完成第五个等式:2114-⨯2= ;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性. 25.感知与填空:如图①,直线//AB CD .求证:B D BED ∠+∠=∠.阅读下面的解答过程,井填上适当的理由. 解:过点E 作直线//EF CD 2(D ∴∠=∠ )//AB CD (已知),//EF CD ,//(AB EF ∴ ) 1(B ∴∠=∠ ) 12BED ∠+∠=∠,(B D BED ∴∠+∠=∠ )应用与拓展:如图②,直线//AB CD .若22B ∠=︒,35G ∠=︒,25D ∠=︒,则E F ∠+∠= 度. 方法与实践:如图③,直线//AB CD .若60E B ∠=∠=︒,80F ∠=︒,则D ∠= 度.答案与解析一.选择题(共10小题,满分30分,每小题3分) 1.下列各式中计算结果为5x 的是( ) A .32x x +B .32x xC .3x xD .72x x -[解析]A .不是同类项不能合并,所以A 选项不符合题意; B .325x x x =.符合题意;C .34x x x =,不符合题意;D .不是同类项不能会并,不符合题意.故选:B .2.计算201820192( 1.5)()3-⨯的结果是( ) A .32-B .32C .23-D .23[解析]201820192( 1.5)()3-⨯2018201822(1.5)()33=⨯⨯2018322()233=⨯⨯ 2018213=⨯213=⨯23=. 故选:D .3.计算63a a ÷,正确的结果是( ) A .2B .3aC .2aD .3a[解析]由同底数幂除法法则:底数不变,指数相减知,63633a a a a -÷==.故选:D . 4.计算23(3)2x x -的结果是( ) A .65x -B .66x -C .55x -D .56x -[解析]23(3)2x x -56x =-,故选:D .5.下列多项式相乘,不能用平方差公式计算的是( ) A .(23)(32)x y y x --B .(23)(23)x y x y -+--C .(2)(2)x y y x -+D .(3)(3)x y x y +-[解析](23)(32)x y y x --不能利用平方差公式计算,故选:A . 6.下列等式成立的是( ) A .22(1)(1)x x --=- B .22(1)(1)x x --=+C .22(1)(1)x x -+=+D .22(1)(1)x x +=-[解析]A .22(1)(1)x x --=+,故本选项不合题意; B .22(1)(1)x x --=+,正确;C .22(1)(1)x x -+=-,故本选项不合题意;D .22(1)(1)x x +=+,故本选项不合题意.故选:B .7.计算3(42)2x x x -+÷的结果正确的是( ) A .221x -+B .221x +C .321x -+D .482x x -+[解析]3(42)2x x x -+÷3(4)222x x x x =-÷+÷221x =-+故选:A .8.下列各图中,1∠与2∠是对顶角的是( ) A .B .C .D .[解析]A 、1∠与2∠不是对顶角,故A 选项不符合题意; B 、1∠与2∠不是对顶角,故B 选项不符合题意;C 、1∠与2∠是对顶角,故C 选项符合题意;D 、1∠与2∠不是对顶角,故D 选项不符合题意.故选:C .9.如图,下列结论中错误的是( )A .1∠与2∠是同旁内角B .1∠与6∠是内错角C .2∠与5∠是内错角D .3∠与5∠是同位角[解析]A 、1∠与2∠是同旁内角,正确,不合题意;B 、1∠与6∠是内错角,正确,不合题意; C 、2∠与5∠是内错角,错误,符合题意;D 、3∠与5∠是同位角,正确,不合题意;故选:C .10.如图,//AB EF ,设90C ∠=︒,那么x 、y 和z 的关系是( )A .y x z =+B .90x y z +-=︒C .180x y z ++=︒D .90y z x +-=︒[解析]过C 作//CM AB ,延长CD 交EF 于N ,则CDE E CNE ∠=∠+∠,即CNE y z ∠=-//CM AB ,//AB EF ,////CM AB EF ∴,1ABC x ∴∠==∠,2CNE ∠=∠,90BCD ∠=︒,1290∴∠+∠=︒,90x y z ∴+-=︒.故选:B .二.填空题(共7小题,满分28分,每小题4分) 11.已知(1)(1)80m n m n +-++=,则m n += . [解析](1)(1)80m n m n +-++=,22()180m n +-=, 2()81m n +=,9m n +=±,故答案为:9±.12.在关系式31y x =-中,当x 由1变化到5时,y 由 变化到 . [解析]当1x =时,代入关系式31y x =-中,得312y =-=;当5x =时,代入关系式31y x =-中,得15114y =-=. 故答案为:2,14.13.已知,梯形的高为8cm ,下底是上底的3倍,设这个梯形的上底为xcm ,面积为2Scm ,这个问题中,常量是 ,变量是 .[解析]常量是梯形的高,变量是梯形的上下底和面积, 故答案为:梯形的高,梯形的上下底和面积.14.若2249x kxy y ++是一个完全平方式,则k 的值为 . [解析]2249x kxy y ++是一个完全平方式,12k ∴=±,故答案为:12±15.如图,在ABC ∆中,以点C 为顶点,在ABC ∆外画ACD A ∠=∠,且点A 与D 在直线BC 的同一侧,再延长BC 至点E ,在作的图形中,A ∠与 是内错角;B ∠与 是同位角;ACB ∠与 是同旁内角.[解析]如图所示,A ∠与ACD ∠、ACE ∠是内错角;B ∠与DCE ∠、ACE ∠是同位角;ACB ∠与A ∠、B ∠是同旁内角.故答案是:ACD ∠、ACE ∠;DCE ∠、ACE ∠;A ∠、B ∠.16.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为 . [解析]数字55000用科学记数法表示为45.510⨯. 故答案为:45.510⨯.17.已知,在同一平面内,50ABC ∠=︒,//AD BC ,BAD ∠的平分线交直线BC 于点E ,那么AEB ∠的度数为 . [解析]分两种情况:①当D 点在A 点左侧时,如图1所示,此时AE 交CB 延长线于E 点,//AD BC ,50DAB ABC ∴∠=∠=︒.AE 平分DAB ∠,1252EAB DAB ∴∠=∠=︒, 502525AEB ∴∠=︒-︒=︒;②当D 点在A 点右侧时,如图2所示,此时AE 交BC 于E 点,//AD BC ,180********DAB ABC ∴∠=︒-∠=︒-︒=︒. AE 平分DAB ∠,1652EAB DAB ∴∠=∠=︒, 180506565AEB ∴∠=︒-︒-︒=︒.综上所述,25AEB ∠=︒或65︒. 故答案为25︒或65︒.三.解答题(共3小题,满分18分,每小题6分)18011(2(2)()|3-+-+--[解析]原式34513=+-+-19.化简:222(23)(23)(3)x x y x y x y +-+----,其中2x =-,1y =-. [解析]原式2222224969x x y x xy y =+--+-225618x xy y =+-当2x =-,1y =-时,原式5462181=⨯+⨯-⨯ 14=.20.(1)如图,以B 为顶点,射线BC 为一边,用直尺和圆规作CBE ∠,使CBE CAD ∠=∠; (2)在所作图中,BE 与AD 平行吗?为什么?[解析](1)如图,CBE ∠即为所求;(2)CBE CAD ∠=∠,//BE AD ∴(同位角相等,两条直线平行).四.解答题(共3小题,满分28分,每小题8分)21.如图,在四边形ABCD 中,连接BD ,点E 、F 分别在AB 和CD 上,连接CE 、AF ,CE 与AF 分别交BD 于点N 、M .已知AMD BNC ∠=∠.(1)若110AFC ∠=︒,求ECD ∠的度数;(2)若ABD BDC ∠=∠,试判断ECD ∠与BAF ∠之间的数量关系,并说明理由.[解析](1)AMD BMF ∠=∠,AMD BNC ∠=∠, BMF BNC ∴∠=∠,//AF CE ∴,180AFC ECD ∴∠+∠=︒, 110AFC ∠=︒, 70ECD ∴∠=︒;(2)ECD ∠与BAF ∠相等,理由是:ABD BDC ∠=∠,//AB CD ∴,180AFC BAF ∴∠+∠=︒,180AFC ECD ∠+∠=︒,ECD BAF ∴∠=∠.22.已知24a =,26b =,212c =(1)求证:1a b c +-=;(2)求22a b c +-的值.[解析](1)证明:24a =,26b =,212c =,222462122a b c ∴⨯÷=⨯÷==,1a b c ∴+-=,即1a b c +-=;(2)解:24a =,26b =,212c =,222(2)22a b c a b c +-∴=⨯÷16612=⨯÷8=.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?[解析]如果//PQ MN ,那么AB 与CD 平行.理由如下:如图,//PQ MN ,EAQ ACN ∴∠=∠.又AB 平分EAQ ∠,CD 平分ACN ∠,112EAQ ∴∠=∠,122ACN ∠=∠, 12∴∠=∠,//AB CD ∴,即AB 与CD 平行.五.解答题(共3小题,满分27分,每小题9分)24.观察下列关于自然数的等式:(1)223415-⨯= (1)(2)225429-⨯= (2)(3)2274313-⨯= (3)⋯根据上述规律解决下列问题:(1)完成第五个等式:2114-⨯ 2= ;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.[解析](1)22114521-⨯=,故答案为:5;21;(2)第n 个等式为:22(21)441n n n +-=+,证明:2222(21)4441441n n n n n n +-=++-=+.25.感知与填空:如图①,直线//AB CD .求证:B D BED ∠+∠=∠.阅读下面的解答过程,井填上适当的理由.解:过点E 作直线//EF CD2(D ∴∠=∠ )//AB CD (已知),//EF CD ,//(AB EF ∴ )1(B ∴∠=∠ )12BED ∠+∠=∠,(B D BED ∴∠+∠=∠ )应用与拓展:如图②,直线//AB CD .若22B ∠=︒,35G ∠=︒,25D ∠=︒,则E F ∠+∠= 度.方法与实践:如图③,直线//AB CD .若60E B ∠=∠=︒,80F ∠=︒,则D ∠=度.[解析]感知与填空:过点E 作直线//EF CD ,2D ∴∠=∠(两直线平行,内错角相等),//AB CD (已知),//EF CD ,//AB EF ∴(两直线都和第三条直线平行,那么这两条直线也互相平行),1B ∴∠=∠(两直线平行,内错角相等),12BED ∠+∠=∠,B D BED ∴∠+∠=∠(等量代换),故答案为:两直线平行,内错角相等;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换.应用与拓展:过点G 作//GN AB ,则//GN CD ,如图②所示:由感知与填空得:E B EGN ∠=∠+∠,F D FGN ∠=∠+∠,22253582E F B EGN D FGN B D EGF ∴∠+∠=∠+∠+∠+∠=∠+∠+∠=︒+︒+︒=︒, 故答案为:82.方法与实践:设AB 交EF 于M ,如图③所示:180180806040AME FMB F B ∠=∠=︒-∠-∠=︒-︒-︒=︒,由感知与填空得:E D AME ∠=∠+∠,604020D E AME ∴∠=∠-∠=︒-︒=︒,故答案为:20.。
北师大版七年级下册数学《期中考试试题》及答案
所以DE∥BC()
所以∠B+∠BDE=180°()
因为∠DEF=∠B(已知)
所以∠DEF+∠BDE=180°()
所以___∥___()
所以∠1=∠2().
23.已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.
(1)如图1,连接CE,
A. y=8.2xB. y=100-8.2xC. y=8.2x-100D. y=100+8.2x
8.如图,由∠1=∠2,则可得出()
A.AB∥CDB.AD∥BCC.A D∥BC且AB∥CDD.∠3=∠4
9.已知一个长方形的长为a,宽为b,它的面积为6,周长为10,则a2+b2的值为( )
A 37B. 30C. 25D. 13
10.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()
A B. C. D.
11.如图,AD是△ABC的中线,△ABC的面积为10cm2,则△ABD的面积是()cm2.
A.5B.6C.7D.8
12.如图①,在长方形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图像如图②所示,则当x=9时,点R应运动到( )
[详解]解:∵骆驼的体此题考查常量和变量问题,函数的定义:设x和y是两个变量,若对于每个值x的每个值,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,x是自变量.
3.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()
6.在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有()
北师大版初中数学七年级下册期中测试卷(较易)(含答案解析)
北师大版初中数学七年级下册期中测试卷(较易)(含答案解析)考试范围:第一.二.三单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:−3xy(4y−2x−1)=−12xy2+6x2y+▫,▫的地方被钢笔水弄污了,你认为▫内应为( )A. 3xyB. −3xyC. −1D. 12. 下列计算中正确的是( )A. (−a n)2=a n+2B. (−a3)4=(−a4)3C. (a4)4=a4⋅a4D. (a4)4=(a2)83. 如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是( )A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧4. 如图,∠1=120°,要使a//b,则∠2的大小是( )A. 60°B. 80°C. 100°D. 120°5. 如图所示,已知AB//EF,那么∠BAC+∠ACE+∠CEF=( )A. 180°B. 270°C. 360°D. 540°6. 变量x与y之间的关系是y=−1x2+1,当自变量x=2时,因变量y的值是( )2A. −2B. −1C. 1D. 27. 如图是某市一天的温度变化曲线图,通过该图可知,下列说法错误的是( )A. 这天15点时的温度最高B. 这天3点时的温度最低C. 这天最高温度与最低温度的差是13℃D. 这天21点时的温度是30℃8. 甲、乙两人在100米赛跑中,路程s(m)与时间t(s)的关系如图所示,根据图象,下列结论错误的是( )A. 甲比乙先到达终点B. 甲、乙速度相差2m/sC. 甲的速度为10m/sD. 乙跑完全程需12s9. 计算x2⋅x3结果是( )A. 2x5B. x5C. x6D. x810. 在等式x2⋅(−x)⋅=x11中,括号内的代数式为( )A. x8B. (−x)8C. −x9D. −x811. 如图,DE//BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为( )A. 20°B. 35°C. 55°D. 70°12. 下图是统计一位病人的体温变化图,则这位病人在16时的体温约是( )A. 37.8℃B. 38℃C. 38.7℃D. 39.1℃第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 一个长方体的长,宽,高分别是3x−4,2x和x,则它的表面积是.14. 已知直线m//n,将一块含30°角的直角三角板ABC,按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=18°,则∠2的度数为______15. 如图,已知直线AB与直线CD相交于点O,EO⊥CD,垂足为O.若∠AOC=35°,则∠BOE 的度数为____ ∘.16. 小颖画了一个边长为5cm的正方形,如果将正方形的边长增加x(cm),那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为.三、解答题(本大题共9小题,共72.0分。
北师大版七年级下册数学《期中考试题》(带答案)
北师大版七年级下册数学期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题,满分30分,每小题3分)1.计算2(2)x 的结果是( )A .22xB .24xC .4xD .2x2.下列语句不是命题的是( )A .连结ABB .对顶角相等C .相等的角是对顶角D .同角的余角相等 3.下列运算不正确的是( )A .235a a a =B .3412()y y =C .33(2)8x x -=-D .3362x x x += 4.已知α∠与β∠互补,150α∠=︒,则β∠的余角的度数是( )A .30︒B .60︒C .45︒D .90︒5.当3x =时,函数2y x =-的值是( )A .2-B .1-C .0D .16.某种商品的售价为每件150元,若按现售价的8折进行促销,设购买x 件需要y 元,则y 与x 间的函数表达式为( )A .0.8y x =B .30y x =C .120y x =D .150y x =7.若2()(3)x px q x -+-展开后不含x 的一次项,则p 与q 的关系是( )A .3p q =B .30p q +=C .30q p +=D .3q p =8.如图,已知//AB CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若145∠=︒,235∠=︒,则3(∠= )A .65︒B .70︒C .75︒D .80︒9.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y (元)与通话时间t (分钟)之间的函数图象是图中的( )A .B .C .D .10.运用乘法公式计算2(2)a -的结果是( )A .244a a -+B .224a a -+C .24a -D .244a a --二.填空题(共7小题,满分28分,每小题4分)11.已知2m a =,5n a =,则m n a += .12.某计算程序编辑如图所示,当输入x = 时,输出的3y =.13.如图,直线a ,b 被直线c 所截,若//a b ,1110∠=︒,240∠=︒,则3∠= ︒.14.甲骑自行车、乙骑摩托沿相同路线由A 地到B 地,行驶过程中路程与时间的函数关系的图象如图所示.根据图象可知:①先出发的是 (填”甲”或”乙” );②甲的行驶速度是 (公里/分);③乙的行驶速度是 (公里/分).15.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则AOC DOB ∠+∠= .16.若22(3)16x m x +-+是完全平方式,则m 的值等于 .17.设2017a x =-,2019b x =-,2018c x =-,若2234a b +=,则2c 的值是 .三.解答题(共3小题,满分18分,每小题6分)18.计算:(1)96()()()x y y x x y -÷-÷-;(2)62543512()8(2)()2x x x x x --+÷-.19.若2210x x --=,先化简,后求出2(1)(2)x x x -+-的值.20.一个角的补角加上10︒后等于这个角的余角的3倍,求这个角.四.解答题(共3小题,满分24分,每小题8分)21.已知:如图,//AC BD ,A D ∠=∠,求证:E F ∠=∠.22.如图,某中学校园内有一块长为(3)a b +米,宽为(2)a b +米的长方形地块,学校计划在中间留一块边长为()a b +米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a 、b 的代数式表示)(2)当2a =,4b =时,求绿化的面积.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?五.解答题(共2小题,满分20分,每小题10分)24.某市A ,B 两个蔬菜基地得知四川C ,D 两个灾民安置点分别急需蔬菜240t 和260t 的消息后,决定调运蔬菜支援灾区,已知A 蔬菜基地有蔬菜200t ,B 蔬菜基地有蔬菜300t ,现将这些蔬菜全部调运C ,D 两个灾区安置点从A 地运往C ,D 两处的费用分别为每吨20元和25元,从B 地运往C ,D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x 的值:(2)设A ,B 两个蔬菜基地的总运费为w 元,求出w 与x 之间的函数关系式,并求总运费最小的调运方案; (3)经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(0)m >,其余线路的运费不变,试讨论总运费最小的调动方案.25.如图,已知//AB CD ,现将一直角三角形PMN 放入图中,其中90P ∠=︒,PM 交AB 于点E ,PN 交CD 于点F(1)当PMN ∆所放位置如图①所示时,则PFD ∠与AEM ∠的数量关系为 ;(2)当PMN ∆所放位置如图②所示时,求证:90PFD AEM ∠-∠=︒;(3)在(2)的条件下,若MN 与CD 交于点O ,且30DON ∠=︒,15PEB ∠=︒,求N ∠的度数.答案与解析一.选择题(共10小题,满分30分,每小题3分)1.计算2(2)x 的结果是( )A .22xB .24xC .4xD .2x【解析】2222(2)24x x x =⨯=.故选:B .2.下列语句不是命题的是( )A .连结ABB .对顶角相等C .相等的角是对顶角D .同角的余角相等 【解析】A 、连结AB ,不是命题,符合题意;B 、对顶角相等,是命题,不符合题意; C 、相等的角是对顶角,是命题,不符合题意;D 、同角的余角相等,是命题,不符合题意; 故选:A .3.下列运算不正确的是( )A .235a a a =B .3412()y y =C .33(2)8x x -=-D .3362x x x +=【解析】A .23235a a a a +==,故本选项不合题意;B .343412()y y y ⨯==,故本选项不合题意;C .3333(2)(2)8x x x -=-=-,故本选项不合题意;D .3332x x x +=,故本选项符合题意.故选:D . 4.已知α∠与β∠互补,150α∠=︒,则β∠的余角的度数是( )A .30︒B .60︒C .45︒D .90︒【解析】α∠与β∠互补,180αβ∴∠+∠=︒,150α∠=︒,18030βα∴∠=︒-∠=︒,β∴∠的余角为:903060︒-︒=︒,故选:B .5.当3x =时,函数2y x =-的值是( )A .2-B .1-C .0D .1【解析】当3x =时,函数2321y x =-=-=,故选:D .6.某种商品的售价为每件150元,若按现售价的8折进行促销,设购买x 件需要y 元,则y 与x 间的函数表达式为( )A .0.8y x =B .30y x =C .120y x =D .150y x =【解析】每件商品的实际售价为:1500.8120⨯=(元),y ∴与x 间的函数表达式为:120y x =.故选:C . 7.若2()(3)x px q x -+-展开后不含x 的一次项,则p 与q 的关系是( )A .3p q =B .30p q +=C .30q p +=D .3q p =【解析】232232()(3)333(3)(3)3x px q x x x px px qx q x p x p q x q -+-=--++-=+--++-,结果不含x 的一次项,30q p ∴+=.故选:C .8.如图,已知//AB CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若145∠=︒,235∠=︒,则3(∠= )A .65︒B .70︒C .75︒D .80︒ 【解析】//AB CD ,145C ∴∠=∠=︒,3∠是CDE ∆的一个外角,32453580C ∴∠=∠+∠=︒+︒=︒,故选:D .9.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y (元)与通话时间t (分钟)之间的函数图象是图中的( )A .B .C .D .【解析】由题意可知:当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.40.4(010)y t t ∴=-,故只有选项D 符合题意.故选:D .10.运用乘法公式计算2(2)a -的结果是( )A .244a a -+B .224a a -+C .24a -D .244a a --【解析】原式244a a =-+,故选:A .二.填空题(共7小题,满分28分,每小题4分)11.已知2m a =,5n a =,则m n a +=__________.【解析】5210m n m n a a a +==⨯=,故答案为:10.12.某计算程序编辑如图所示,当输入x =__________时,输出的3y =.【解析】当3x 时,3y =3,解得12x =;当3x <时,3y =即353x +=,解得:23x =-.故答案为:12或23-. 13.如图,直线a ,b 被直线c 所截,若//a b ,1110∠=︒,240∠=︒,则__________︒.【解析】//a b ,41110∴∠=∠=︒,342∠=∠-∠,31104070∴∠=︒-︒=︒,故答案为:70.14.甲骑自行车、乙骑摩托沿相同路线由A 地到B 地,行驶过程中路程与时间的函数关系的图象如图所示.根据图象可知:①先出发的是__________(填”甲”或”乙” )②甲的行驶速度是__________(公里/分)③乙的行驶速度是__________(公里/分)【解析】(1)甲先出发,10分钟后乙出发;(2)甲20分钟行驶了4公里,则甲的速度40.220==(公里/分);(3)乙10分钟行驶了4公里,则甲的速度40.410==(公里/分). 故答案为甲;0.2;0.4. 15.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则AOC DOB ∠+∠=__________.【解析】设AOD a ∠=,90AOC a ∠=︒+,90BOD a ∠=︒-,所以9090180AOC BOD a a ∠+∠=︒++︒-=︒. 故答案为:180︒.16.若22(3)16x m x +-+是完全平方式,则m 的值等于__________.【解析】22(3)16x m x +-+是完全平方式,2(3)24m x x ∴-=±,解得:7m =或1-,故答案为:7或1-.17.设2017a x =-,2019b x =-,2018c x =-,若2234a b +=,则2c 的值是__________.【解析】2017a x =-,2019b x =-,2234a b +=,22(2017)(2019)34x x ∴-+-=,22(20181)(20181)34x x ∴-++--=,22(2018)2(2018)1(2018)2(2018)134x x x x ∴-+-++---+=, 22(2018)32x ∴-=,2(2018)16x ∴-=,又2018c x =-,216c ∴=.故答案为:16.三.解答题(共3小题,满分18分,每小题6分)18.计算:(1)96()()()x y y x x y -÷-÷-(2)62543512()8(2)()2x x x x x --+÷-【解析】(1)原式96222()()()()2x y x y x y x y x xy y =-÷-÷-=-=-+; (2)原式62512567767128(8)()2282104x x x x x x x x x x =--+÷-=---=--.19.若2210x x --=,先化简,后求出2(1)(2)x x x -+-的值.【解析】2(1)(2)x x x -+- 22212x x x x =-++-2241x x =-+,2210x x --=,221x x ∴-=,∴原式222412(2)12113x x x x =-+=-+=⨯+=.20.一个角的补角加上10︒后等于这个角的余角的3倍,求这个角.【解析】设这个角为x ︒,则它的余角为90x ︒-︒,补角为180x ︒-︒,根据题意,得180103(90)x x ︒-︒+︒=⨯︒-︒,解得40x =,答:这个角为40度.四.解答题(共3小题,满分24分,每小题8分)21.已知:如图,//AC BD ,A D ∠=∠,求证:E F ∠=∠.【解析】证明://AC BD ,12∴∠=∠.又A D ∠=∠,1180A E ∠+∠+∠=︒,2180D F ∠+∠+∠=︒,E F ∴∠=∠.22.如图,某中学校园内有一块长为(3)a b +米,宽为(2)a b +米的长方形地块,学校计划在中间留一块边长为()a b +米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a 、b 的代数式表示)(2)当2a =,4b =时,求绿化的面积.【解析】(1)依题意得:2(3)(2)()a b a b a b ++-+22226322a ab ab b a ab b =+++---2(53)a ab =+平方米.答:绿化面积是2(53)a ab +平方米;(2)当2a =,4b =时,原式202444=+=(平方米).答:绿化面积是44平方米.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?【解析】如果//PQ MN ,那么AB 与CD 平行.理由如下: 如图,//PQ MN ,EAQ ACN ∴∠=∠. 又AB 平分EAQ ∠,CD 平分ACN ∠,112EAQ ∴∠=∠,122ACN ∠=∠, 12∴∠=∠,//AB CD ∴,即AB 与CD 平行.五.解答题(共2小题,满分20分,每小题10分)24.某市A ,B 两个蔬菜基地得知四川C ,D 两个灾民安置点分别急需蔬菜240t 和260t 的消息后,决定调运蔬菜支援灾区,已知A 蔬菜基地有蔬菜200t ,B 蔬菜基地有蔬菜300t ,现将这些蔬菜全部调运C ,D 两个灾区安置点从A 地运往C ,D 两处的费用分别为每吨20元和25元,从B 地运往C ,D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x 的值:(2)设A ,B 两个蔬菜基地的总运费为w 元,求出w 与x 之间的函数关系式,并求总运费最小的调运方案; (3)经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(0)m >,其余线路的运费不变,试讨论总运费最小的调动方案. 【解析】(1)填表如下:依题意得:20(240)25(40)1518(300)x x x x -+-=+- 解得:200x =两个蔬菜基地调运蔬菜的运费相等时x 的值为200.(2)w 与x 之间的函数关系为:20(240)25(40)1518(300)29200w x x x x x =-+-++-=+由题意得:240040003000x x x x -⎧⎪-⎪⎨⎪⎪-⎩,40240x ∴,在29200w x =+中,20>,w ∴随x 的增大而增大,∴当40x =时,总运费最小,此时调运方案为:(3)由题意得(2)9200wm x=-+,02m ∴<<,(2)中调运方案总费用最小; 2m =时,在40240x 的前提下调运方案的总费用不变; 215m <<时,240x =总费用最小,其调运方案如下:25.如图,已知//AB CD ,现将一直角三角形PMN 放入图中,其中90P ∠=︒,PM 交AB 于点E ,PN 交CD 于点F(1)当PMN ∆所放位置如图①所示时,则PFD ∠与AEM ∠的数量关系为 90PFD AEM ∠+∠=︒ ; (2)当PMN ∆所放位置如图②所示时,求证:90PFD AEM ∠-∠=︒;(3)在(2)的条件下,若MN 与CD 交于点O ,且30DON ∠=︒,15PEB ∠=︒,求N ∠的度数.【解析】(1)作//PG AB ,如图①所示:则//PG CD ,1PFD ∴∠=∠,2AEM ∠=∠,1290P ∠+∠=∠=︒,1290PFD AEM ∴∠+∠=∠+∠=︒,故答案为:90PFD AEM ∠+∠=︒; (2)证明:如图②所示://AB CD ,180PFD BHF ∴∠+∠=︒,90P ∠=︒,290BHF ∴∠+∠=︒,2AEM ∠=∠,90BHF PHE AEM ∴∠=∠=︒-∠,90180PFD AEM ∴∠+︒-∠=︒,90PFD AEM ∴∠-∠=︒;(3)如图③所示:90P ∠=︒,90901575PHE FEB ∴∠=︒-∠=︒-︒=︒, //AB CD ,75PFC PHE ∴∠=∠=︒,PFC N DON ∠=∠+∠,753045N ∴∠=︒-︒=︒.。
北师大版七年级下学期期中考试数学试卷(带答案)
七年级下学期期中考试数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第三章《变量之间的关系》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。
在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.某学习小组做了一个试验:从一幢100m高的楼顶随手放下一只苹果(此试验在安全的环境下进行),测得有关数据如下:下落时间t(s)1234下落高度ℎ(m)5204580则下列说法错误的是()A. 苹果每秒下落的高度不变B. 苹果每秒下落的高度越来越长C. 苹果下落的速度越来越快D. 可以推测,苹果落到地面的时间不超过5秒2.下列图形中,∠1与∠2是同旁内角的是()A. B.C. D.3.x n−1⋅()=x n+1,括号内应填的代数式是()A. x n+1B. x n−1C. x2D. x4.冠状病毒的直径约为80∼120纳米,1纳米=1.0×10−9米.若用科学记数法表示110纳米,则正确的结果是()A. 1.1×10−9米B. 1.1×10−8米C. 1.1×10−7米D. 1.1×10−6米5.如果x2+kx+4恰好是另一个整式的平方,那么k的值为()A. 2B. 4C. −4D. ±46.如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A. ∠1=∠2B. ∠2=∠3C. ∠2+∠4=180∘D. ∠1+∠4=180∘7.一跳远运动员跳落沙坑时的痕迹如图所示,则表示运动员成绩的是()A. 线段AP1的长B. 线段BP1的长C. 线段CP2的长D. 线段CP3的长8.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的关系为()A. y=20xB. y=40xC. y=10+30xD. y=10x+309.张大伯出去散步,从家走了20min,到了一个离家900m的阅报亭,看了10min报纸后,用了15min返回到家,如图图象中能表示张大伯离家时间与距离之间关系的是()A. B.C. D.10.在一条笔直的航道上依次有甲、乙、丙三个港口,一艘船从甲出发,沿直线匀速行驶经过乙港驶向丙港,最终达到丙港,设行驶x(ℎ)后,与乙港的距离为y(km),y与x的关系如图所示,则下列说法正确的是()A. 甲港与丙港的距离是90kmB. 船在中途休息了0.5ℎC. 船的行驶速度是45km/ℎD. 从乙港到达丙港共花了1.5ℎ11.如图,2条直线相交最多有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,...,按照此规律,n条直线相交最多有()个交点.A. n(n−1)2B. n(n+1)2C. (n−1)(n+1)2D. 无法确定12.若(−2x+a)(x−1)展开后的结果中不含x的一次项,则()A. a=1B. a=−1C. a=−2D. a=213.a表示两个相邻整数的平均数的平方,b表示这两个相邻整数平方的平均数,那么a与b的大小关系是()A. a>bB. a≥bC. a≤bD. a<b14.如图所示,同位角共有()A. 6对B. 8对C. 10对D. 12对15.一辆汽车由韶关匀速驶往广州,下列图象中大致能反映汽车距离广州的路程S(千米)和行驶时间t(小时)的关系的是()A. B. C. D.卷Ⅱ二、填空题(本大题共5小题,共25.0分)16.鸡蛋每个0.8元,那么所付款y(元)与所买鸡蛋个数x(个)之间的函数解析式是______.17.如图,点O在直线l上,当∠1与∠2满足条件时,OA⊥OB.18.用科学记数法表示0.0000109为__________________.19.观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,…,像这样,10条直线相交最多有______个交点.20.根据图中的程序,当输入x=3时,输出的结果y=.三、解答题(本大题共7小题,共80.0分)a),其中a、b21.(8分)先化简,再求值:[(a−b)2+(2a+b)(1−b)−b]÷(−12满足|a+1|+(2b−1)2=0.22.(8分)如图,已知∠AOB=50°,OC平分∠AOB.(1)请在图中∠AOB的外部画出它的一个余角∠BOD;(2)求∠COD的度数.23.(10分)王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:(1)爷爷比小强先上了多少米?山顶离山脚多少米?(2)谁先爬上山顶?小强爬上山顶用了多少分钟?(3)图中两条线段的交点表示什么意思?这时小强爬山用时多少?离山脚多少米?24.(12分)已知a x⋅a y=a5,a x÷a y=a.(1)求x+y和x−y的值;(2)求x2+y2的值.25.(12分)如图所示,l1,l2,l3相交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.26.(14分)某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家订立月租车合同.设汽车每月行驶x千米,应付给个体车主月租费是y1元,应付给出租车公司的月租费是y2元,y1与y2分别与x之间的数量关系图象(两条射线)如图所示,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租个体车主的车合算?(2)每月行驶的路程等于多少时,两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算27.(16分)如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是;(把符合条件的角都填出来)(2)图中除直角相等外,还有相等的角,请写出三对: ①; ②; ③;(3) ①如果∠AOD=160∘,那么根据可得∠BOC=; ②如果∠AOD=4∠EOF,求∠EOF的度数.答案1.A2.C3.C4.C5.D6.D7.B8.D9.C10.D11.A12.C13.D14.C15.B16.y=0.8x17.∠1+∠2=90∘18.1.09×10−519.4520.2a),21.解:原式=(a2−2ab+b2+2a−2ab+b−b2−b)÷(−12a),=(a2−4ab+2a)÷(−12=−2a+8b−4,∵|a+1|+(2b−1)2=0,又∵|a+1|≥0,(2b−1)2≥0,∴a=−1.b=1,2∴原式=2+4−4=2.22.解:(1)如图:(2)∵∠AOB=50°,OC平分∠AOB,∴∠AOC=∠BOC=25°,又∵∠AOB与∠BOD互余,∴∠AOB+∠BOD=90°,∴∠BOD=90°−50°=40°,∴∠COD=∠COB+∠BOD=25°+40°=65°.故答案为:65°.23.解:(1)由图可知,爷爷比小强先上了100米,当小强爬了10分钟,爬了300米∴小强的速度300÷10=30米/分,∴山高30×15=450米;(2)小强先到山顶,小强爬了15分钟;(3)图中两条线段的交点表示小强和爷爷相遇的时候,这时小强爬山用时10分钟,离山脚300米.24.解:(1)x+y=5,x−y=1.(2)x2+y2=13.25.解:设∠1=∠2=x∘,则∠3=8x∘.由∠1+∠2+∠3=180∘,得10x=180.解得x=18.所以∠1=∠2=18∘.所以∠4=∠1+∠2=36∘.26.解:(1)每月行驶的路程小于1500千米时,租个体车主的车合算.(2)每月行驶的路程等于1500千米时,两家车的费用相同.(3)由2300>1500可知,如果这个单位估计每月行驶的路程为2300千米,那么这个单位租出租车公司的车合算.27.解:(1)∠EOF,∠BOD,∠AOC(2)(答案不唯一) ①∠AOC=∠EOF ②∠AOC=∠BOD ③∠DOE=∠AOF(3) ①对顶角相等160∘ ②因为∠AOC=∠EOF,所以∠AOD=4∠EOF=4∠AOC.又因为∠AOC+∠AOD=180∘,所以5∠AOC=180∘.所以∠EOF=∠AOC=36∘.。
北师大版七年级下册数学期中试卷(含答案)
2021-2022学年七年级(下)期中数学试卷一、选择题(本大题共12小题,共36分)1.下列计算正确的是()A. 2x2⋅3x3=6x6B. 2x2+3x3=5x5C. (−2x3)2=4x6D. 6x6÷3x2=2x32.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.假设一种可入肺的颗粒物的直径约为0.0000018米(即1.8微米),用科学记数法表示该颗粒物的直径为()A. 18×10−5米B. 1.8×10−6米C. 1.8×10−5米D. 0.18×10−5米3.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A. 太阳光强弱B. 水的温度C. 所晒时间D. 热水器4.如图,能够判断DE//BC的条件是()A. ∠1=∠2B. ∠4=∠CC. ∠1+∠3=180°D. ∠3+∠C=180°5.下列各式中,不能用平方差公式计算的是()A. (−x−y)(x−y)B. (−x+y)(−x−y)C. (x+y)(−x+y)D. (x−y)(−x+y)6.已知(m+n)2=36,(m−n)2=16,求mn的值()A. 7B. 6C. 5D. 47.滕州某布店新进了一批花布,卖出的数量x(米)与售价y(元)的关系如表:数量x(米)1234…售价y(元)8+0.316+0.624+0.932+1.2…那么y与x的关系式是()A. y=8x+0.3B. y=(8+0.3)xC. y=8+0.3xD. y=8+0.3+x8.如图,直线a//b,将三角尺的直角顶点放在直线b上,若∠1=35°,则∠2等于()A. 45°B. 55°C. 35°D. 65°9.如图,AB//CD,∠1=∠2,∠3=130°,则∠2等于()A. 30°B. 25°C. 35°D. 40°10.下列说法中正确的是()A. 互为补角的两个角不相等B. 两个相等的角一定是对顶角C. 从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离D. 一个锐角的补角比这个角的余角大90°11.任意给定一个非零数,按下列程序计算,最后输出的结果是()A. mB. m2C. m+1D. m−112.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()第2页,共16页A. B.C. D.二、填空题(本大题共6小题,共24分)13.已知2m=a,4n=b,m,n为正整数,则23m+4n=________.14.如图,AD//BC,∠D=100°,CA平分∠BCD,则∠DAC=______度.15.如果(x−1)(3x+m)的积中不含x的一次项,则常数m的值为______.16.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=66°,则∠AED′的度数为______.17.定义一种新运算:a※b=a(a−b),例如5※3=5×(5−3)=10.根据定义给出以下运算结果:①2x※x=2x2;②(3−5x)※(6−5x)=15x−9;③(a※b)−(b※a)=b2−a2;④若a=b,则(a※b)※b=0.其中正确的是______(填写所有正确结果的序号).18.在平面内,若两条直线的最多交点数记为a1,三条直线的最多交点数记为a2,四条直线的最多交点数记为a3,…,依此类推,则1a1+1a2+1a3+⋯+1a10=______.三、解答题(本大题共7小题,共60分)19.计算:)−2;(1)(−1)2020+(−2)3+(π−1)0+(−14(2)(x−y)(x+2y)−(−x+y)2.20.先化解再求值:(3a−b)2+(a+2−b)(a+2+b)−(a+2)2,其中a=1,b=−3.321.如图,AB//CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E,∠B=62°.求∠E的度数.请你在横线上补充其推理过程或理由.解:因为AB//CD(已知)所以∠1=∠CFE(理由:______)因为AE平分∠BAD(已知)所以______=∠2(角平分线的定义)又因为______=∠E(已知)所以∠2=∠E(等量代换)所以______.(内错角相等,两直线平行)所以∠B+______=180°(理由:______)因为∠B=62°(已知)∠BAD=______.所以∠2=12所以______.22.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积(结果不用化简):①方法1:______;方法2:______.②请你写出代数式:(m+n)2,(m−n)2,mn之间的等量关系;(2)根据(1)题中的等量关系,解决问题:若a−b=5,ab=−6,求(a+b)2;(3)实际上有许多代数恒等式可以用图形的面积来表示.如图③,写出它表示的代数恒等式.第4页,共16页23.已知:∠DAC+∠ACB=180°,∠1=∠2,∠3=∠4,∠ACF=24°,∠DAC=4∠5.(1)求证:CE平分BCF;(2)求∠5的大小.24.周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往海滨公园.如图是他们离家路程s(km)与小明离家时间t(ℎ)的关系图,请根据图回答下列问题:(1)图中自变量是______,因变量是______;(2)小明家到滨海公园的路程为______km,小明在中心书城逗留的时间为______ℎ;(3)小明出发______小时后爸爸驾车出发;(4)图中A点表示______;(5)小明从中心书城到滨海公园的平均速度为______km/ℎ,小明爸爸驾车的平均速度为______km/ℎ;(补充:爸爸驾车经过______追上小明;)(6)小明从家到中心书城时,他离家路程s与坐车时间t之间的关系式为______.25.如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°.(1)请判断AB与CD的位置关系并说明理由;(2)如图2,在(1)的结论下,当∠E=90°保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?答案和解析1.【答案】C解:A、2x2⋅3x3=6x5,故A错误,不符合题意;B、2x2与3x3不是同类项,不能合并,故B错误,不符合题意;C、(−2x3)2=4x6,故C正确,符合题意;D、6x6÷3x2=2x4,故D错误,不符合题意;故选:C.根据单项式乘除法法则,积的乘方与幂的乘方,同类项概念逐个判断.本题考查整式的运算,解题的关键是掌握整式运算的相关法则.2.【答案】B解:0.0000018米的悬浮颗粒物,用科学记数法表示该颗粒物的直径为1.8×10−6米,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】B解:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.故选:B.函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫自变量.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量.本题主要考查常量与变量的知识,解题的关键是对函数的定义以及对自变量和因变量的认识和理解,难度不大.4.【答案】C解:A、∵∠1=∠2,∴EF//AC,故不符合题意;第6页,共16页B、∵∠4=∠C,∴EF//AC,故不符合题意;C、∵∠1+∠3=180°,∴DE//BC,故符合题意;D、∵∠3+∠C=180°,∴EF//AC,故不符合题意;故选:C.根据平行线的判定定理即可得到结论.本题考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.5.【答案】D解:A、含y的项符号相同,含x的项符号相反,能用平方差公式计算;B、含x的项符号相同,含y的项符号相反,能用平方差公式计算;C、含y的项符号相同,含x的项符号相反,能用平方差公式计算;D、含y的项符号相反,含x的项符号相反,不能用平方差公式计算.故选:D.根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,对各选项分析判断后利用排除法求解.本题考查了平方差公式,注意两个二项式中有一项完全相同,另一项互为相反数,并且相同的项和互为相反数的项必须同时具有,熟记公式结构是解题的关键.6.【答案】C解:∵(m+n)2=m2+2mn+n2,(m−n)2=m2−2mn+n2,∴(m+n)2−(m−n)2=4mn,将(m+n)2=36,(m−n)2=16代入,得36−16=4mn,∴mn=5.故选:C.根据(m+n)2−(m−n)2=4mn即可求出mn的值.本题考查了完全平方公式,推导出(m+n)2−(m−n)2=4mn是解决本题的关键.7.【答案】B解:∵16+0.6=2(8+0.3);24+0.9=3(8+0.3);32+1.2=4(8+0.3),...∴y=(8+0.3)x;故选:B.根据表格可知布的数量(米)与售价(元)的关系为售价=8.3×数量.本题考查了函数关系式,正确得出数字变化规律是解题的关键.8.【答案】B解:如图,∵∠1=35°,∴∠3=180°−35°−90°=55°,∵a//b,∴∠2=∠3=55°.故选:B.根据平角的定义求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.本题考查了平行线的性质,熟记性质并准确识图是解题的关键.9.【答案】B解:∵AB//CD,∠3=130°,∴∠GAB=∠3=130°,∵∠BAE+∠GAB=180°,∴∠BAE=180°−∠GAB=180°−130°=50°,∵∠1=∠2,∴∠2=12∠BAE=12×50°=25°.故选:B.先根据平行线的性质求出∠GAB的度数,再根据邻补角的定义求出∠BAE的度数,最后根据∠1=∠2求出∠2即可.本题主要考查了平行线的性质.解题的关键是掌握平行线的性质:两直线平行,同位角相等.10.【答案】D解:A、互为补角的两个角和为180°,但两个角要么不相等,要么相等,都是90°,故本选项不正确;B、对顶角相等,但相等的角不一定是对顶角,故本选项不正确;C、点到直线的距离,是指垂线段的长度,而不是垂线段,故本选项不正确;D、设锐角为x,则余角为90°−x,补角为180°−x,所以一个锐角的补角比这个角的余角大180°−x−(90°−x)=90°,故本选项是正确的.故选:D.A、根据补角的定义来推断即可;第8页,共16页B、根据对顶角的定义来判断即可;C、根据垂线段的定义来判断即可;D、根据余角、补角的定义来判断即可.本题考查的是余角、补角、对顶角、垂线段的定义,解题的关键是熟练掌握余角、补角、对顶角、垂线段的定义.11.【答案】C解:根据题意可列出代数式:(m2−m)÷m+2=m−1+2=m+1.故选:C.根据题意可列出代数式:(m2−m)÷m+2=m−1+2=m+1.列代数式时,要注意是前面整个式子除以m,应把前面的式子看成一个整体.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.12.【答案】D【解析】【分析】本题考查了动点问题的函数图象.用图象解决问题时,要理清图象的含义即会识图.该题属于分段函数:点P在边AC上时,s随t的增大而减小;当点P在边BC上时,s随t的增大而增大;当点P在线段BD上时,s随t的增大而减小;当点P在线段AD上时,s随t的增大而增大.【解答】解:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s时点P在线段BD上的最小值,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故选:D.13.【答案】a3b2【解析】【分析】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.直接利用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形得出答案.【解答】解:∵2m=a,4n=b,m,n为正整数,∴22n=b,∴23m+4n=(2m)3×(22n)2=a3b2.故答案为a3b2.14.【答案】40解:∵AD//BC,∴∠BCD=180°−∠D=80°,∠DAC=∠ACB,又∵CA平分∠BCD,∠BCD=40°,∴∠ACB=12∴∠DAC=∠ACB=40°.故答案为40.利用两直线平行,同旁内角互补以及角平分线的定义进行做题.本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.15.【答案】3解:∵(x−1)(3x+m)=3x2+mx−3x−m=3x2+(m−3)x−m,∴m−3=0,∴m=3,故答案为:3.利用多项式乘以多项式的法则进行计算,合并同类项后使x的一次项的系数为0,得出关于m 的方程,解方程即可得出m的值.本题考查了多项式乘多项式,掌握多项式乘多项式的法则是解决问题的关键.16.【答案】48°第10页,共16页解:∵AD//BC,∠EFB=66°,∴∠DEF=66°,又∵∠DEF=∠D′EF,∴∠D′EF=66°,∴∠AED′=180°−2×66°=48°.故答案为:48°.先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论.本题考查的是平行线的性质以及折叠的性质,用到的知识点为:两直线平行,内错角相等.17.【答案】①②④解:①2x※x=2x(2x−x)=2x2,故运算结果正确;②(3−5x)※(6−5x)=(3−5x)(3−5x−6+5x)=−3(3−5x)=15x−9,故运算结果正确;③(a※b)−(b※a)=a(a−b)−b(b−a)=a2−ab−b2+ab=a2−b2,故原来的运算结果错误;④若a=b,则(a※b)※b=[a(a−b)]※b=0※b=0×(0−b)=0,故运算结果正确.故答案为:①②④.各项利用题中新定义进行计算判断即可.此题考查了有理数的混合运算,熟练掌握新定义的运算法则是解本题的关键.18.【答案】2011解:∵2条直线最多交点有1个,即3条直线最多交点有(1+2)个,第12页,共16页4条直线最多交点有(1+2+3)个,……∴n 条直线最多交点有(1+2+3+⋯…+n −1)个,即n(n−1)2个(n 为大于等于2的正整数), ∴1a 1+1a 2+1a 3+⋯+1a 10 =12×12+13×22+14×32+⋯+111×102 =22×1+23×2+24×3+⋯+211×10 =2×(1−12+12−13+13−14+⋯+110−111)=2×1011=2011,故答案为:2011.利用两条、三条、四条直线最多交点个数,推理出n 条直线最多交点个数即可.本题考查的是相交线的最多交点数,解题的关键是找到直线条数与最多交点个数的规律.19.【答案】解:(1)原式=1−8+1+16=10;(2)原式=(x 2+2xy −xy −2y 2)−(x 2−2xy +y 2)=x 2+xy −2y 2−x 2+2xy −y 2=3xy −3y 2.【解析】(1)根据有理数的乘方、零指数幂和负整数指数幂的性质计算即可;(2)根据多项式的乘法和完全平方公式分别计算,再合并即可.本题考查实数和整式的运算,熟练掌握有理数的乘方、零指数幂和负整数指数幂的性质以及完全平方公式是解题关键.20.【答案】解:原式=9a 2−6ab +b 2+(a +2)2−b 2−(a 2+4a +4)=9a 2−6ab +b 2+a 2+4a +4−b 2−a 2−4a −4=9a 2−6ab ,当a =13,b =−3时,原式=9×(13)2−6×13×(−3)=1+6=7.【解析】直接利用平方差公式以及完全平方公式化简,再合并同类项,把已知代入得出答案.此题主要考查了整式的混合运算—化简求值,正确运用乘法公式化简是解题关键.21.【答案】两直线平行,同位角相等∠1∠CFE AD//BE∠BAD两直线平行,同旁内角互补59°∠E=59°解:因为AB//CD(已知),所以∠1=∠CFE(理由:两直线平行,同位角相等),因为AE平分∠BAD(已知),所以∠1=∠2(角平分线的定义),又因为∠CFE=∠E(已知),所以∠2=∠E(等量代换),所以AD//BE(内错角相等,两直线平行),所以∠B+∠BAD=180°(理由:两直线平行,同旁内角互补),因为∠B=62°(已知),∠BAD=59°,所以∠2=12所以∠E=59°.故答案为:两直线平行,同位角相等;∠1;∠CFE;AD//BE;∠BAD;两直线平行,同旁内角互补;59°;∠E=59°.由平行线的性质可得∠1=∠CFE,再由角平分线的定义得∠1=∠2,从而有∠2=∠E,则可判定AD//BE,从而可求∠E的度数.本题主要考查平行线的判定与性质,解答的关键是结合图形分析清楚角与角之间的关系.22.【答案】(m−n)2(m+n)2−4mn解:(1)根据题意可得,①方法1:阴影部分正方形的边长为m−n,则面积为:(m−n)2,方法2:用边长为m+n的大正方形面积减去4个长为m,宽为n的小长方形面积,(m+n)2−4mn;故答案为:(m−n)2,(m+n)2−4mn;(2)(m+n)2=(m−n)2+4mn;(a+b)2=(a−b)2+4ab=52+4×(−6)=49;(3)根据题意可得;(2m+n)(m+n)=2m2+3mn+n2.(1)①方法1:阴影部分正方形的边长为m−n,根据正方形的面积计算方法进行计算即可得出答案;方法2:用边长为m+n的大正方形面积减去4个长为m,宽为n的小长方形面积,列式计算即可得出答案;(2)根据(1)中两次计算面积相等可得,(m+n)2=(m−n)2+4mn;等量代换即可得出答案;(3)根据题意大长方形的长为2m+n,宽为m+n,应用多项式乘多项式法则进行计算即可得出答案.本题主要考查了完全平方公式的几何背景,熟练掌握完全平方公式的几何背景的计算方法进行求解是解决本题关键.23.【答案】(1)证明:∵∠DAC+∠ACB=180°,∴AD//BC,∵∠1=∠2,∴AD//EC,∴EF//BC,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∴CE平分∠BCF;(2)解:∵∠DAC+∠ACB=180°,∠DAC=4∠5,∠4=∠5,∴4∠5+2∠5+∠ACF=180°,∵∠ACF=24°,∴∠5=26°.【解析】(1)根据平行线的判定与性质、角平分线的定义求解即可;(2)根据角的和差求解即可.此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.24.【答案】(1)t,s;(2)30,1.7;(3)2.5;(4)2.5小时后小明继续坐公交车到滨海公园;ℎ;(5)12,30,23(6)s=15t(0≤t≤0.8)第14页,共16页解:(1)由图可得,自变量是t,因变量是s,故答案为:t,s;(2)由图可得,小明家到滨海公园的路程为30km,小明在中心书城逗留的时间为2.5−0.8=1.7(ℎ);故答案为:30,1.7;(3)由图可得,小明出发2.5小时后爸爸驾车出发;故答案为:2.5;(4)由图可得,A点表示2.5小时后小明继续坐公交车到滨海公园;故答案为:2.5小时后小明继续坐公交车到滨海公园;(5)小明从中心书城到滨海公园的平均速度为30−124−2.5=12(km/ℎ),小明爸爸驾车的平均速度为303.5−2.5=30(km/ℎ);爸爸驾车经过1230−12=23ℎ追上小明;故答案为:12,30,23ℎ;(6)小明从家到中心书城时,他的速度为120.8=15(km/ℎ),∴他离家路程s与坐车时间t之间的关系式为s=15t(0≤t≤0.8),故答案为:s=15t(0≤t≤0.8).(1)根据图象进行判断,即可得出自变量与因变量;(2)根据图象中数据进行计算,即可得到路程与时间;(3)根据梯形即可得到爸爸驾车出发的时间;(4)根据点A的坐标即可得到点A的实际意义;(5)根据相应的路程除以时间,即可得出速度;(6)根据小明从家到中心书城时的速度,即可得到离家路程s与坐车时间t之间的关系式.本题主要考查了函数图象,以及行程问题的数量关系的运用,解答时理解清楚函数图象的意义是解答此题的关键.25.【答案】解:(1)AB//CD.理由如下:∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180°∴AB//CD;(2)∠BAE与∠MCD存在确定的数量关系:∠BAE+12∠MCD=90°.理由如下:过E作EF//AB,∵AB//CD,∴EF//AB//CD∴∠BAE=∠AEF,∠FEC=∠DCE∵∠E=90°,∴∠BAE+∠ECD=90°∵∠MCE=∠ECD,∠MCD=90°.∴∠BAE+12【解析】(1)结论是AB//CD.利用同旁内角互补两直线平行进行证明即可;∠MCD=90°.过E作EF//AB,先利用平(2)∠BAE与∠MCD存在确定的数量关系:∠BAE+12行线的传递性得出EF//AB//CD,再利用平行线的性质及已知条件可推得答案.本题考查了平行线的判定与性质,属于基础知识与基本证明方法的考查,难度不大.第16页,共16页。
北师大版数学七年级下册《期中测试卷》及答案
B.若 ,则 ,故此选项正确;
C.若 ,则 ,故此选项错误;
D.若 ,则 ,故此选项错误.
故选:B.
[点睛]本题考查平行线的判定与性质.解题时注意内错角与同旁内角的确定,关键是找到哪两条直线被第三条直线所截构造的内错角与同旁内角即可.
6. 弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系:
A. B.
C. D.
[答案]D
[解析]
[分析]
由题意根据开车从学校出发行驶一段时间后,途中耽搁后进而加速前行最后匀速开车回到学校,进行分析即可得出答案.
[详解]解:A、出发行驶一段时间后距离学校更近,故不符合条件,排除;
B、最后距离学校没有越来越近,即并没有匀速开车回到学校,故不符合条件,排除;
C、途中耽搁后进而减速前行最后匀速开车回到学校,故不符合条件,排除;
[详解](1)∵AB∥CD,
∴∠1+∠2=180°(两直线平行,同旁内角互补);
(2)过点E作一条直线EF平行于AB,
故选:B.
[点睛]此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5.如图,下列判断中正确的是()
A. 若 ,则 B. 若 ,则
C. 若 ,则 D. 若 ,则
[答案]B
[解析]
[分析]
由题意直接根据平行线的性质与判定,对各选项进行逐一判定即可.
[详解]解:A. ,故此选项错误;
B. ,故此选项错误;
C. ,故此选项正确;
D. ,故此选项错误.
故选:C.
北师大版七年级数学下册期中学情评估附答案 (3)
北师大版七年级数学下册期中学情评估一、选择题(每题3分,共30分)1.计算:(-3)-1=( )A.-3 B.3 C.13D.-132.下列各图中,∠1与∠2是对顶角的是( )3.某颗粒物的直径约为0.000 001 8米,用科学记数法表示该颗粒物的直径为( )A.0.18×10-5米B.1.8×10-5米C.1.8×10-6米D.18×10-5米4.下列运算正确的是( )A.(a2)3=a6B.a3·a4=a12C.a8÷a4=a2D.(-3a2)2=6a45.如图,点E在BC的延长线上,下列条件不能判断AB∥CD的是( )A.∠BAC=∠ACDB.∠DCE=∠BC.∠B+∠BCD=180°D.∠B+∠BAD=180°6.下列算式不能运用平方差公式计算的是( )A.(x+a)(x-a)B.(x+2a)(-2a+x)C.(a+b)(-a-b)D.(-x-b)(x-b)7.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间关系的图象大致为( )8.已知在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下表的关系,下列说法不正确的是( )x/kg0123 4y/cm2022242628A.x与y都是变量,且x是自变量,y是因变量B.所挂物体的质量为2 kg时,弹簧的长度为24 cmC.弹簧不挂物体时的长度为0 cmD.在弹性限度内,所挂物体的质量每增加1 kg,弹簧的长度增加2 cm 9.观察如图所示的图形,下列说法正确的个数是( )①过点A有且只有一条直线与直线BD平行;②平面内,过点A有且只有一条直线AC垂直于直线BD;③线段AC的长是点A到直线BD的距离;④线段AB、AC、AD中,线段AC最短,根据是两点之间,线段最短.A.1个B.2个C.3个D.4个(第9题) (第10题)10.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=n°,则下列结论:①∠COE=90°-12n°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的有( )A.①②③B.①②④C.①③④D.①②③④二、填空题(每题3分,共15分)11.小明家离学校3千米,上学时小明骑自行车以10千米/时的速度骑了x小时,这时离学校还有y千米.写出y与x之间的关系式:__________________.12.一个角的补角与这个角的余角的差是 ______ °.13.已知2x=6,4y=7,那么2x+2y的值是______.14.若代数式x2-6x+k是完全平方式,则k=______.15.如图①,在某个底面积为20 cm2的盛水容器内,有一个实心圆柱体铁块,现在匀速持续地向容器内注水,容器内水的高度y(cm)和注水时间x(s)之间的关系满足如图中的图象,则水流速度是______cm3/s.三、解答题(一)(每题8分,共24分)16.先化简,再求值:[(ab+2)(ab-2)-2a2b2+4]÷2ab,其中a=1,b=-2. 17.如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D.(1)BD和CE平行吗?请说明理由;(2)∠A和∠F相等吗?请说明理由.18.作图题(保留作图痕迹,不写作图过程):(1)在如图所示的方格纸中不用量角器与三角尺,仅用直尺.①经过点P,画直线PQ平行于AB所在直线.②过点C,画直线CN垂直于CB所在直线.(2)尺规作图:已知∠ACB,求作:∠A′C′B′,使∠A′C′B′=∠ACB.四、解答题(二)(每题9分,共27分)19.亮亮计算一道整式乘法的题(3x-m)·(2x-5),由于亮亮在解题过程中,抄错了第一个多项式中m前面的符号,把“-”写成了“+”,得到的结果为6x2-5x-25.(1)求m的值;(2)计算这道整式乘法的正确结果.20.为了解某种品牌汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:(1)根据上表的数据,请你写出Q与t的关系式;(2)该品牌汽车的油箱有50L油,若以100km/h的速度匀速行驶,该车最多能行驶多远?21.小明骑单车上学,当他骑了一段路后,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次上学所用的时间与离家距离的关系示意图.根据图中的信息回答下列问题:(1)小明家到学校的距离是______米;(2)小明在书店停留了______分钟;(3)本次上学途中,小明一共行驶了____米,一共用了______分钟;(4)若骑单车的速度超过300米/分就超过了安全限度.在整个上学途中小明的最快车速是多少米/分?速度是否在安全限度内?五、解答题(三)(每题12分,共24分)22.如图①的两个长方形可以按不同的形式拼成图②和图③两个图形.(1)在图②中的阴影部分的面积S1可表示为____________;(写成多项式乘法的形式);在图③中的阴影部分的面积S2可表示为______;(写成两数平方差的形式)(2)比较图②与图③的阴影部分面积,可以得到的等式是______;A.(a+b)2=a2+2ab+b2B.(a+b)(a-b)=a2-b2C.(a-b)2=a2-2ab+b2(3)请利用所得等式解决下面的问题:①已知4m2-n2=12,2m+n=4,则2m-n=______;②计算(2+1)(22+1)(24+1)(28+1)+…+(232+1)+1的值,并写出该值的个位数字是多少.23.【阅读理解】两条平行线间的拐点问题经常可以通过作一条直线的平行线进行转化.例如:如图①,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.试说明:∠CAB=∠MCA+∠PBA.解:如图①,过点A作AD∥MN,因为MN∥PQ,AD∥MN,所以AD∥MN∥PQ,所以∠MCA=∠DAC,∠PBA=∠DAB,所以∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即∠CAB=∠MCA+∠PBA.【类比应用】若直线AB∥CD,P为平面内一点,连接PA、PD.(1)如图②,若∠A=50°,∠D=150°,求∠APD的度数;(2)如图③,设∠PAB=∠α、∠CDP=∠β,则∠α、∠β、∠P之间的数量关系为__________________;【联系拓展】如图④,直线AB∥CD,P为平面内一点,连接PA、PD.AP⊥PD,DN平分∠PDC,若∠PAN+12∠PAB=∠P,运用(2)中的结论,直接写出∠N的度数.答案一、1.D 2.B 3.C 4.A 5.D 6.C 7.D 8.C 9.C 10.A二、11.y =3-10x 12.90 13.42 14. 915.403提示:由题图可知,5s 时,水面刚好到达实心圆柱体铁块顶端,5s 后水面高度不受实心圆柱体铁块影响, 则水流速度为(15-11)×2011-5=403(cm 3/s).故答案为403. 三、16.解:原式=(a 2b 2-4-2a 2b 2+4)÷2ab=(-a 2b 2)÷2ab =-12ab .当a =1,b =-2时,原式=-12×1×(-2)=1.17.解:(1)平行.理由:因为∠1=∠2,∠2=∠3,所以∠1=∠3,所以BD ∥CE .(2)相等.理由:因为BD ∥CE ,所以∠C =∠DBA , 又因为∠C =∠D ,所以∠DBA =∠D , 所以DF ∥AC ,所以∠A =∠F . 18.解:(1)如图.(2)如图.四、19.解:(1)根据题意可得,(3x+m)(2x-5)=6x2-15x+2mx-5m=6x2-(15-2m)x-5m,所以-5m=-25,解得m=5.(2)(3x-5)(2x-5)=6x2-15x-10x+25=6x2-25x+25. 20.解:(1)由题意得汽车每行驶1h,油量减少6L,则剩余油量为Q=100-6t.(2)50÷6×100=2 5003(km),答:该车最多能行驶2 5003km.21.解:(1)1 500 (2)4 (3)2 700;14(4)当时间在0~6分钟内时,速度为1 200÷6=200(米/分),当时间在6~8分钟内时,速度为(1 200-600)÷(8-6)=300(米/分),当时间在12~14分钟内时,速度为(1 500-600)÷(14-12)=450(米/分),因为450>300>200,所以在整个上学途中小明的最快车速为450米/分,速度不在安全限度内.五、22.解:(1)(a+b)(a-b);a2-b2(2)B(3)①3②原式=(2-1)(2+1)(22+1)(24+1)(28+1)+…+(232+1)+1=(22-1)(22+1)(24+1)(28+1)+…+(232+1)+1=(24-1)(24+1)(28+1)+…+(232+1)+1=…=264-1+1=264,而21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,其个位数字2,4,8,6重复出现,而64÷4=16,于是“2,4,8,6”经过16次循环,因此264的个位数字为6.23.解:(1)如图①,过点P作PE∥AB,因为AB∥CD, PE∥AB,所以AB∥PE∥CD,所以∠APE=∠A=50°,∠DPE+∠D=180°,所以∠DPE= 180°-150°=30°.所以∠APD=∠APE+∠DPE= 50°+30°=80°.(2)∠α+∠β-∠P=180°【联系拓展】∠N的度数为45°. 提示:如图②,设PD交AN于点O,因为AP⊥PD,所以∠APO=90°,所以∠POA+∠PAN= 90°,因为∠PAN+12∠PAB=∠APD,所以∠PAN+12∠PAB= 90°,所以∠POA=12∠PAB,因为∠POA=∠NOD,所以∠NOD=12∠PAB,因为DN平分∠PDC,所以∠ODN=12∠PDC,所以∠AND= 180°-∠NOD-∠ODN= 180°-12(∠PAB+∠PDC),由(2)得∠CDP+∠PAB-∠APD= 180°,所以∠CDP+∠PAB= 180°+∠APD,所以∠AND= 180°-12(∠PAB+∠PDC)= 180°-12(180°+∠APD)= 180°-12(180°+90°)= 45°.北师大版七年级数学下册期末学情评估一、选择题(每题3分,共30分)1.下列运算正确的是( )A.a3·a4=a12B.2a5÷a=2a6C.(-ab3)2=a2b6D.3ab-2ab=12.目前已知自然界中最小的细胞是支原体,直径只有0.1~0.3μm,已知1μm =0.000 001m,则0.3μm用科学记数法可以表示为( )A.3×10-6m B.0.3×10-6mC.0.3×10-7m D.3×10-7m3.下列诗句所描述的事件中,不可能事件是( )A.黄河入海流B.手可摘星辰C.大漠孤烟直D.红豆生南国4.如图,直线a,b被直线c所截,下列不能判定直线a∥b的条件是( )A.∠3=∠4B.∠1=∠3C.∠1=∠4D.∠1+∠2=180°5.某天学校组织学生到市文化宫参观学习,早上,学生们乘客车从学校出发到市文化宫,匀速行驶一段时间后,途中遇到堵车,原地等了一会儿,然后客车加快速度行驶,按时到达市文化宫.参观学习后,客车匀速行驶返回.其中t 表示客车从学校出发后所用的时间,s表示客车离学校的距离.下面能反映s 与t之间关系的大致图象是( )6.关于x的多项式(x+2)(x-m)展开后,若常数项为6,则m的值为( ) A.6 B.-6C.3 D.-37.如图,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠BFC=125°,则∠A的度数为( )A.60°B.80°C.70°D.45°8.端午节的早上,小丽妈妈买了八个粽子,其中有两个蜜枣的,如果她只吃一个粽子,那么她吃不到蜜枣粽子的概率是( )A.0 B.1C.14D.349.如图,BD为∠ABC的平分线,DE⊥BC于点E,AB=5,DE=2,则△ABD的面积是( )A.5 B.7C.7.5 D.10(第9题) (第10题)10.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是( )A.12B.1 C.3 D.2二、填空题(每题3分,共15分)11.已知x+y=8,x-y=2,则x2-y2=______.12.小明在自家的院子里种下一棵小树苗,随着一天天过去,小树苗也一天天长高.小明详细记录了小树苗的生长过程,发现小树苗的高度h(cm)与时间t(个月)之间的关系如图所示,则小树苗种下3个月时的高度是______.13.如图,点A,B,C在直线l上,PB⊥l,PA=6,PB=5,PC=7,点P到直线l的距离是______.14.如图,在3×4的正方形网格中已有2个正方形涂灰,再选择一个正方形涂灰,使得3个涂灰的正方形组成轴对称图形,可选择的位置共有______处.15.如图,在△ABC 中,依次取AB 的中点D 1,AC 的中点D 2,AD 1的中点D 3,AD 2的中点D 4,…,并连接CD 1,D 1D 2,D 2D 3,D 3D 4,…,若△ABC 的面积是1,则△AD 2 022D 2 023的面积是______.三、解答题(一)(每题8分,共24分) 16.计算:(-1)2 023-(3.14-π)0×⎝ ⎛⎭⎪⎫-12-3.17.先化简,再求值:[](a -2b )2-(a -2b )(a +2b )+4b 2÷(-2b ),其中a =1,b =-2.18.如图,要在长方形木板上截去一个平行四边形,使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为AB.请过点C画出与AB平行的另一条边CD.(要求:不写作法,但要保留作图痕迹)四、解答题(二)(每题9分,共27分)19.端午节,又称端阳节,是中国四大传统节日之一.赛龙舟是端午节重要的节日民俗活动,6月22日,时逢端午佳节,某地组织了“龙腾虎跃”龙舟竞渡大赛.甲、乙两队参加了比赛,两队在比赛时的路程y(米)与时间x(分钟)之间的关系如图所示,请你根据图象,回答下列问题:(1)图象中的自变量是______,因变量是______;(2)本次龙舟竞渡大赛的全程是______米,______队先到达终点;(3)比赛2分钟后,乙队的速度为______米/分;(4)甲队比乙队晚到几分钟?20.如图,在所给的网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)求△A1B1C1的面积;(3)在DE上画出点P,使PB+PC最小.(保留作图痕迹)21.如图,已知AB∥CD,AD与BC交于点F,点H在AD的延长线上,∠1=∠2.(1)判断BC与DE平行吗?为什么?(2)若∠1=110°,∠A=50°,求∠C的度数.五、解答题(三)(每题12分,共24分)22.在一个不透明的口袋中放入6个白球和14个红球,它们除颜色外其他完全相同.(1)求从口袋中随机摸出一个球是白球的概率;(2)现从口袋中取出若干个红球,并放入相同数量的白球,充分摇匀后,要使从口袋中随机摸出一个球是白球的概率是45,问取出了多少个红球?23.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,将边AB沿AD折叠,点B的对应点B′落在DC上.(1)利用尺规作出∠CAB′的平分线AP,交CD于点E,延长AB′到点F,使AF=AC,连接EF;(保留作图痕迹,不写作法)(2)判断(1)中EF与BC的位置关系,并说明理由;(3)在(1)的条件下,若AB=3,AC=4,求B′F的长.答案一、1.C 2.D 3.B 4.A 5.B 6.D 7.C 8.D 9.A 10.B 提示:因为AD ⊥BC ,CE ⊥AB ,所以∠ADC =∠AEH =90°. 因为∠AHE =∠CHD , 所以易得∠HAE =∠BCE .因为在△HEA 和△BEC 中,⎩⎨⎧∠HAE =∠BCE ,∠AEH =∠CEB =90°,EH =EB ,所以△HEA ≌△BEC ,所以AE =EC =4, 所以CH =EC -EH =4-3=1.故选B. 二、 11.16 12.85 cm 13.5 14.715.122 023 提示:因为D 1是AB 的中点,△ABC 的面积是1, 所以△ACD 1的面积=12×△ABC 的面积=12.因为D 2是AC 的中点,所以△AD 1D 2的面积=12×△ACD 1的面积=12×12=122, 同理△AD 2D 3的面积=12×△AD 1D 2的面积=123,……则△AD n -1D n 的面积=12n ,所以△AD 2 022D 2 023的面积是122 023.故答案为122 023. 三、16.解:(-1)2 023-(3.14-π)0×⎝ ⎛⎭⎪⎫-12-3=-1-1×(-8)=-1+8=7.17.解:[](a -2b )2-(a -2b )(a +2b )+4b 2÷(-2b )=(a2-4ab+4b2-a2+4b2+4b2)÷(-2b)=(-4ab+12b2)÷(-2b)=2a-6b.当a=1,b=-2时,原式=2×1-6×(-2)=2+12=14.18.解:如图所示.四、19.解:(1)时间;路程(2)800;乙(3)240(4)由图象知甲队的速度为200米/分钟,甲队到达终点所用的时间为800÷200=4(分钟),乙队到达终点所用的时间为2+(800-360)÷240=236(分钟),4-236=16(分钟).答:甲队比乙队晚到16分钟.20.解:(1)如图①,△A1B1C1即所求.(2)S△A1B1C1=2×3-12×1×2×2-12×1×3=52.答:△A1B1C1的面积为5 2 .(3)如图②,点P即为所求.21.解:(1)BC∥DE,理由如下:因为∠1=∠BFD,∠1=∠2,所以∠BFD=∠2,所以BC∥DE.(2)因为∠1=110°,所以∠AFB=180°-∠1=70°.因为∠A=50°,所以在△ABF中,∠B=180°-∠A-∠AFB=60°.因为AB∥CD,所以∠C=∠B=60°.五、22.解:(1)因为口袋中共有6个白球和14个红球,所以一共有6+14=20(个)球,所以P(摸出白球)=620=310.答:从口袋中随机摸出一个球是白球的概率是3 10 .(2)设取出了x个红球.根据题意,得6+x20=45,解这个方程,得x=10.答:取出了10个红球.23.解:(1)作图如下.(2)EF⊥BC.理由如下:因为AP平分∠B′AC,所以∠CAE=∠FAE.因为AC=AF,AE=AE,所以△AEC≌△AEF,所以∠C=∠AFE.因为∠BAC=90°,所以∠B+∠C=90°,所以∠B+∠AFE=90°.因为将边AB沿AD折叠,点B的对应点B′落在DC上,所以∠B=∠AB′D=∠FB′E,所以∠FB′E+∠AFE=90°,所以∠B′EF=90°,所以EF⊥BC.(3)因为将边AB沿AD折叠,点B的对应点B′落在DC上,所以AB=AB′=3.因为AF=AC=4,所以B′F=AF-AB′=4-3=1.21。
北师大版数学七年级下学期期中测试卷三(含答案及解析)
9 8 0 0 北师大版数学七年级下学期期中测试卷三一.选择题1. 一本笔记本 3 元,买 x 本需要 y 元,在这一问题中,自变量是() A .笔记本B .3C .xD .y2. 如图,下列结论正确的是()A .∠5 与∠2 是对顶角B .∠1 与∠3 是同位角C .∠2 与∠3 是同旁内角D .∠1 与∠2 是同旁内角3. 生物学家发现了一种病毒,其长度约为 0.0000000052mm ,数据 0.0000000052 用科学记数法表示正确的是( )A .5.2×108B .5.2×109C .5.2×1﹣ D .5.2×1 ﹣4. 如图,O A ⊥A B 于点 A ,点 O 到直线 A B 的距离是()A .线段 O AB .线段 O A 的长度C .线段 O B 的长度D .线段 A B 的长度5. 弹簧挂上物体后会伸长,测得一弹簧的长度 y (cm)与所挂的物体的质量 x (kg)间有如下关系:x 0 1 2 3 4 5 y1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,x是自变量,y是因变量B.所挂物体质量为 4 kg 时,弹簧长度为 12 cmC.弹簧不挂重物时的长度为 0 cmD.物体质量x每增加 1 kg,弹簧长度y增加 0.5 cm6.若x+m 与x+2 的乘积化简后的结果中不含x 的一次项,则m 的值为()A.2 B.﹣2 C.4 D.﹣47.如图,直线l 分别与直线A B、C D相交于点E、F,E G平分∠B E F交直线C D于点G,若∠1=∠BEF=68°,则∠E G F的度数为()A.34°B.36°C.38°D.68°8.小刘上午从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小刘离家的距离y(米)和所经过的时间x(分)之间的函数图象如图所示,则下列说法不正确的是( )A.小刘家与超市相距 3000 米B.小刘去超市途中的速度是 300 米/分C.小刘在超市逗留了 30 分D.小刘从超市返回家比从家里去超市的速度快二、填空.9.若a+3b﹣3=0,则3a•27b=.10.(a﹣2018)2+(2020﹣a)2=20,则a﹣2019=.11.已知a,b,c 是一个三角形的三边长,化简|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=.12.已知BD、CE 是△ABC 的高,BD、CE 所在的直线相交所成的角中有一个角为60°,则∠BAC=.13.若(4x﹣2m)(x+3)的乘积中不含x 的一次项,则常数m=.14.已知长方形的周长为16cm,其中一边长为xcm,面积为ycm2,则这个长方形的面积y 与x 之间的关系可表示为.三.简答题15.如图,有一块边长为(3a+2)米的正方形铁片,王师傅要制作一个工件,欲在正方形铁片中央剪去一个小正方形铁片,按照图纸要求剪去小正方形后工件的宽度为 2b米.剪去小正方形后工件的面积是多少?16.计算(1)(﹣a)3•a2+(﹣2a4)2÷a3(2).17.如图,若∠1=∠3,∠2=60°,则∠4 的大小为多少度?四.解答题18.如图,在四边形ABCD 中,AB∥CD,E 为BC 延长线上一点,AE 交CD 于点F,∠1=∠2,∠3=∠4,试说明AD∥BE.证明:∵∠3=∠4(已知)且∠4=∠AFD(对顶角相等)∴∠3=∠AFD在△ABC 中,∠1+∠B+∠3=180°在△ADF 中,∠2+∠D+∠AFD =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D(等式的性质)∵AB∥CD∴∠B=∠DCE(两直线平行,同位角相等)∴∠D=∠DCE (等量代换)∴AD∥BE(内错角相等,两直线平行)19.如图,有一池塘,要测池塘两端A,B 两点的距离,可先在平地上取一个可以直接到达A,B 两点的C,连接AC 并延长AC 到点D,使CD=CA,连接BC 并延长BC 到点E,使CE=CB,连接DE,那么量出的长就等于AB 的长.这是因为可根据方法判定△ABC≌△DEC.20.计算题:(1)(﹣)﹣1﹣(﹣3)2+(π﹣2)0;(2)(2ab)m•(﹣3b2)÷(ab2)2;(3)(2x+y)2+(x+y)(x﹣y)﹣5x(x﹣y);(4)2022﹣203×201(简便运算).21.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回,16min 时到家,假设小东始终以100m/min 的速度步行,两人离家的距离y(单位:m)与小东打完电话后的步行时间t(单位;min)之间的函数关系如图所示:(1)小东打电话时,他离家m;(2)填上图中空格相应的数据,,;(3)小东和妈妈相遇后,妈妈回家的速度为m/min;(4)min 时,两人相距m.9 8 0 0 北师大版数学七年级下学期期中测试卷三一.选择题参考答案与试题解析1. 一本笔记本 3 元,买 x 本需要 y 元,在这一问题中,自变量是( ) A .笔记本 B .3 C .xD .y【解答】:C2. 如图,下列结论正确的是()A .∠5 与∠2 是对顶角B .∠1 与∠3 是同位角C .∠2 与∠3 是同旁内角D .∠1 与∠2 是同旁内角【解答】: D3. 生物学家发现了一种病毒,其长度约为 0.0000000052mm ,数据 0.0000000052 用科学记数法表示正确的是( )A .5.2×108B .5.2×109C .5.2×1﹣ D .5.2×1 ﹣【解答】: C4. 如图,O A ⊥A B 于点 A ,点 O 到直线 A B 的距离是()A .线段 O AB .线段 O A 的长度C .线段 O B 的长度D .线段 A B 的长度【解答】:B5.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有如下关系:x012345y10 10.5 11 11.5 12 12.5下列说法不正确的是( )A.x与y都是变量,x是自变量,y是因变量B.所挂物体质量为 4 kg 时,弹簧长度为 12 cmC.弹簧不挂重物时的长度为 0 cmD.物体质量x每增加 1 kg,弹簧长度y增加 0.5 cm【解答】:C6.若x+m 与x+2 的乘积化简后的结果中不含x 的一次项,则m 的值为()A.2 B.﹣2 C.4 D.﹣4【解答】: B7.如图,直线l 分别与直线A B、C D相交于点E、F,E G平分∠B E F交直线C D于点G,若∠1=∠BEF=68°,则∠E G F的度数为()A.34°B.36°C.38°D.68°【解答】:A8.小刘上午从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小刘离家的距离y(米)和所经过的时间x(分)之间的函数图象如图所示,则下列说法不正确的是( )A.小刘家与超市相距 3000 米B.小刘去超市途中的速度是 300 米/分C.小刘在超市逗留了 30 分D.小刘从超市返回家比从家里去超市的速度快【解答】:D三、填空.9.若a+3b﹣3=0,则3a•27b=27 .【分析】先将原式化为同底,然后利用条件即可求出答案.【解答】解:原式=3a•(33)b=3a+3b,∵a+3b=3,∴原式=33=27,故答案为:2710.(a﹣2018)2+(2020﹣a)2=20,则a﹣2019=±3 .【分析】将(a﹣2018)、(2020﹣a)分别转化为含有(a﹣2019)的形式,然后利用完全平方公式解答.【解答】解:∵(a﹣2018)2+(2020﹣a)2=[(a﹣2019)+1]2+[(a﹣2019)﹣1]2=2(a﹣2019)2+2=20.∴(a﹣2019)2=9.∴a﹣2019=±3.故答案是:±3.11.已知a,b,c 是一个三角形的三边长,化简|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=a﹣3b+c .【分析】根据三角形三边关系得到a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,再去绝对值,合并同类项即可求解.【解答】解:∵a,b,c 是一个三角形的三条边长,∴a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=a+c﹣b﹣b+c﹣a+a﹣b﹣c=a﹣3b+c,故答案为:a﹣3b+c.12.已知BD、CE 是△ABC 的高,BD、CE 所在的直线相交所成的角中有一个角为60°,则∠BAC=60°或120°.【分析】分两种情况:(1)当∠A 为锐角时,如图1;(2)当∠A 为钝角时,如图2;根据四边形的内角和为360°以及三角形内角和为180°,即可得出结果.【解答】解:分两种情况:(1)当∠A 为锐角时,如图1,∵∠DOC=60°,∴∠EOD=120°,∵BD、CE 是△ABC 的高,∴∠AEC=∠ADB=90°,∴∠A=360°﹣90°﹣90°﹣120°=60°;(2)当∠A 为钝角时,如图2,∵∠F=60°,同理:∠ADF=∠AEF=90°,∴∠DAE=360°﹣90°﹣90°﹣60°=120°,∴∠BAC=∠DAE=120°,综上所述,∠BAC 的度数为60°或120°,故答案为:60°或120°.13.若(4x﹣2m)(x+3)的乘积中不含x 的一次项,则常数m= 6 .【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出12﹣2m=0,求出方程的解即可.【解答】解:(4x﹣2m)(x+3)=4x2+12x﹣2mx﹣6m=4x2+(12﹣2m)x﹣6m,∵(4x﹣2m)(x+3)的乘积中不含x 的一次项,∴12﹣2m=0,解得:m=6,故答案为:6.14.已知长方形的周长为16cm,其中一边长为xcm,面积为ycm2,则这个长方形的面积y 与x 之间的关系可表示为y=﹣x2+8x .【分析】用含有x 的代数式表示出矩形的长,进而表示出面积y 即可.【解答】解:由矩形的面积的计算方法得:y=x×=﹣x2+8x,故答案为:y=﹣x2+8x.三.简答题15.如图,有一块边长为(3a+2)米的正方形铁片,王师傅要制作一个工件,欲在正方形铁片中央剪去一个小正方形铁片,按照图纸要求剪去小正方形后工件的宽度为 2b米.剪去小正方形后工件的面积是多少?【解答】:由题意,减去的小正方形的边长为 3a+2-4b,所以剪去小正方形后工件的面积为(3a+2)2-(3a+2-4b)2=24ab+16b-16b2(平方米).16.计算(1)(﹣a)3•a2+(﹣2a4)2÷a3(2).【分析】(1)直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别化简得出答案;(2)直接利用乘法公式将原式变形进而得出答案.【解答】解:(1)原式=﹣a5+4a8÷a3=﹣a5+4a5=3a5;(2)原式=20192﹣(2019﹣1)(2019+1)+1+8=20192﹣(20192﹣1)+9=20192﹣20192+1+9=10.17.如图,若∠1=∠3,∠2=60°,则∠4 的大小为多少度?【分析】根据平行线的判定得出AB∥CD,根据平行线的性质得出∠2=∠5,再求出∠4 即可.【解答】解:∵∠1=∠3,∴AB∥CD,∴∠2=∠5,∵∠2=60°,∴∠5=60°,∴∠4=180°﹣∠5=120°,故答案为:120.四.解答题18.如图,在四边形ABCD 中,AB∥CD,E 为BC 延长线上一点,AE 交CD 于点F,∠1=∠2,∠3=∠4,试说明AD∥BE.证明:∵∠3=∠4(已知)且∠4=∠AFD(对顶角相等)∴∠3=∠AFD在△ABC 中,∠1+∠B+∠3=180°在△ADF 中,∠2+∠D+∠AFD =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D(等式的性质)∵AB∥CD∴∠B=∠DCE(两直线平行,同位角相等)∴∠D=∠DCE (等量代换)∴AD∥BE(内错角相等,两直线平行)【分析】利用平行线的性质定理和判定定理进行解答即可.【解答】证明:∵∠3=∠4(已知)∴且∠4=∠AFD(对顶角相等)∴∠3=∠AFD,在△ABC 中,∠1+∠B+∠3=180°,在△ADF 中,∠2+∠D+∠AFD=180°,∵∠1=∠2,∠3=∠AFD,∴∠B=∠D(等式的性质),∵AB∥CD,∴∠B=∠DCE(两直线平行,同位角相等)∴∠D=∠DCE(等量代换),∴AD∥BE(内错角相等,两直线平行).故答案为:已知;对顶角相等;∠2+∠D+∠AFD;等式的性质;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.19.如图,有一池塘,要测池塘两端A,B 两点的距离,可先在平地上取一个可以直接到达A,B 两点的C,连接AC 并延长AC 到点D,使CD=CA,连接BC 并延长BC 到点E,使CE=CB,连接DE,那么量出DE 的长就等于AB 的长.这是因为可根据SAS 方法判定△ABC≌△DEC.【分析】利用“边角边”证明△ABC 和△DEC 全等,再根据全等三角形对应边相等解答.【解答】解:量出DE 的长就等于AB 的长.这是因为可根据SAS 方法判定△ABC≌△DEC.故答案为:DE,SAS.20.计算题:(1)(﹣)﹣1﹣(﹣3)2+(π﹣2)0;(2)(2ab)m•(﹣3b2)÷(ab2)2;(3)(2x+y)2+(x+y)(x﹣y)﹣5x(x﹣y);(4)2022﹣203×201(简便运算).【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用幂的乘方与积的乘方运算法则计算,再利用单项式乘除单项式法则计算即可求出值;(3)原式利用完全平方公式,以及平方差公式计算即可求出值;(4)原式变形后,利用平方差公式计算即可求出值.【解答】解:(1)原式=﹣3﹣9+1=﹣12+1=﹣11;(2)原式=(2m a m b m)•(﹣3b2)÷(a2b4)=﹣12×2m a m﹣2b m﹣2;(3)原式=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy;(4)原式=2022﹣(202+1)×(202﹣1)=2022﹣(2022﹣1)=2022﹣2022+1=1.21.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回,16min 时到家,假设小东始终以100m/min 的速度步行,两人离家的距离y(单位:m)与小东打完电话后的步行时间t(单位;min)之间的函数关系如图所示:(1)小东打电话时,他离家1400 m;(2)填上图中空格相应的数据800 ,2400 ,2900 ;(3)小东和妈妈相遇后,妈妈回家的速度为50 m/min;(4) 3 或.min 时,两人相距700m.【分析】(1)根据函数图象可以直接得到小东打电话时,他离家的距离;(2)根据函数图象中的数据,可以算出图中空格中应填入的数据;(3)根据函数图象中的数据可以计算出小东和妈妈相遇后,妈妈回家的速度;(4)根据题意和图象中的数据,可以计算出两人相距700m 对应的时间【解答】解:(1)由图象可得,小东打电话时,他离家1400m,故答案为:1400;(2)由图可得,小东行驶6min 对应的y 的值为:1400﹣6×100=800,小东行驶到22min 时对应的y 值为:(1400﹣6×100)+(22﹣6)×100=2400,小东行驶到27min 时对应的y 值为:(1400﹣6×100)+(27﹣6)×100=2900,故答案为:800,2400,2900;(3)小东和妈妈相遇后,妈妈回家的速度为:=50(m/min),故答案为:50;(4)设在tmin 时,两人相距700m,相遇前相距700m,t==3,相遇后相距700m,t=6+=,故答案为:3 或.。
北师大版七年级下册数学《期中检测试卷》及答案
B.∵ ,∴AB∥CD,故本选项不符合题意;
C.∵ ,∴AB∥CD,故本选项不符合题意;
D.∵ ∴AD∥BC,故本选项符合题意.
故选D.
[点睛]此题考查平行线的判定,解题关键在于掌握判定定理.
5.点A(3,4)和点B(3,-5),则A、B相距()
A. 1个单位长度B. 6个]C
[解析]
[分析]
根据点A、B的坐标特征即可求出线段AB的长.
[详解]解:∵点A(3,4)和点B(3,-5)的横坐标相同
∴A、B相距4-(-5)=9个单位长度
故选C.
[点睛]此题考查的是求平面直角坐标系中两点之间的距离,掌握横坐标相同的两点之间的距离求法是解决此题的关键.
12.用吸管吸易拉罐内的饮料时,如图,∠1=100°,则2=_____(易拉罐的上下底面互相平行)
13. 的绝对值是_______.
14. 的相反数是______.
15.如图,各个小正方形格子的边长均为1,图中A,B两点的坐标分别为(-3,5),(3,5),则点C在同一坐标系下的坐标为_______.
三、解答题(一)(每题6分,共18分)
18.计算:
[答案]
[解析]
[分析]
根据合并同类二次根式法则计算即可.
[详解]解:
=
=
[点睛]此题考查的是二次根式的加减运算,掌握合并同类二次根式法则是解决此题的关键.
19.计算:
[答案]1
[解析]
分析]
根据绝对值的性质和合并同类二次根式法则计算即可.
[详解]解:
[详解]解:(1)∵数m的两个不等的平方根为a+3和2a-15
北师大版七年级下册数学期中测试题带答案
北师大版七年级下册数学期中考试试卷一、单选题1.下面计算正确的是( ) A .b 3b 2=b 6B .x 3+x 3=x6C .a 4+a 2=a 6D .mm 5=m 62.计算:()23m n 的结果是A .6m nB .62m nC .52m nD .32m n3.计算:x 5÷x 2等于( ) A .x 2B .x 3C .2xD .2+x4.计算:(5a 2b )•(3a )等于( ) A .15a 3bB .15a 2bC .8a 3bD .8a 2b5.计算:(5)(5)m m +-等于( ) A .225m -B .25m -C .25m -D .225m -6.计算:(x ﹣1)2等于( ) A .x 2﹣x+1B .x 2﹣2x+1C .x 2﹣1D .2x ﹣27.计算:15a 3b ÷(﹣5a 2b )等于( ) A .﹣3abB .﹣3a 3bC .﹣3aD .﹣3a 2b8.下面四个图形中,∠1与∠2是对顶角的是()A.B.C.D.9.如图,下列四组角中是内错角的是()A.∠1与∠7 B.∠3与∠5 C.∠4 与∠5 D.∠2与∠5 10.如图,已知a∥b,∠1=50°,则∠2=()A.40°B.50°C.130°D.120°二、填空题11.化简(x+y)(x﹣y)=_____.12.快餐每盒5元,买n盒需付m元,则其中常量是_____.13.若x2+kxy+y2是完全平方式,则k=_____.14.如图,∠B的同位角是_____.15.光在真空中的速度约为3×108米/秒,太阳光照射到地球上大约需要5×102秒,地球与太阳距离约为_____米.16.两个角的两边分别平行,且其中一个角比另一个角的2倍少15°,则这两个角为_____.三、解答题17.计算:(1)(﹣3)0+11()2+|﹣2|(2)用简便方法计算:103×9718.先化简,再求值:[(x ﹣y )(x+y )﹣(x ﹣y )2]÷2y ,其中x =2020,y =1.19.如图,点D 是AB 边上的一点,请用尺规作出线段DE ,使DE ∥BC ,交AC 于E .20.如图,四边形ABCD中,∠ADB=60°,∠CDB=50°.(1)若AD∥BC,AB∥CD,求∠ABC的度数;(2)若∠A=70°,请写出图中平行的线段,并说明理由.21.如图,CD⊥AB,垂足为点D,点E在BC上,EF⊥AB,垂足为F;(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=105°,求∠ACB的度数;22.已知a+b=5,ab=﹣2.(1)求4a2+4b2+4a2b2+8ab的值;(2)求(a﹣b)2的值.23.已知:x m=4,x n=8.(1)求x2m的值;(2)求x m+n的值;(3)求x3m﹣2n的值.24.如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是_____,它是自然数_____的平方,第8行共有 _____个数;(2)用含n的代数式表示:第n行的第一个数是_____,最后一个数是_____,第n行共有_____个数;(3)求第n行各数之和.25.如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°(1)请判断AB与CD的位置关系并说明理由;(2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD 否存在确定的数量关系?并说明理由;(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB 与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.参考答案1.D【解析】根据同底数幂的乘法底数不变指数相加,可判断A、D,根据合并同类项,可判断B、C.【详解】解:A、底数不变指数相加,故A错误;B、系数相加字母部分不变,故B错误;C、指数不能相加,故C错误;D、底数不变指数相加,故D正确;故选:D . 【点睛】本题考查同底数幂的乘法,同底数幂的乘法底数不变指数相加. 2.B 【解析】根据积的乘方和幂的乘方运算法则计算即可:()2332262m n m n m n ⨯==.故选B . 3.B 【解析】 【分析】根据同底数幂的除法法则,底数不变,指数相减,据此计算即可. 【详解】解:x 5÷x 2=x 5﹣2=x 3. 故选:B . 【点睛】考核知识点:同底数幂的除法.熟记同底数幂的除法法则是关键. 4.A 【解析】根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可. 【详解】解:原式=(5×3)•(a 2•a )•b =15a 3b ,故选:A . 【点睛】考核知识点:单项式与单项式相乘.掌握乘法法则是关键. 5.A 【解析】根据平方差公式计算即可. 【详解】解:2(5)(5)25m m m +-=-,故选:A. 【点睛】本题考查了平方差公式,属于基本题型,熟练掌握平方差公式是解题的关键. 6.B 【解析】根据完全平方公式展开即可. 【详解】解:(x ﹣1)2=x 2﹣2x+1. 故选:B . 【点睛】考核知识点:完全平方公式.熟记公式是关键. 7.C 【解析】根据单项式除以单项式的法则计算即可.【详解】解:15a3b÷(﹣5a2b)=15÷(﹣5)•a3﹣2•b1﹣1=﹣3a.故选:C.【点睛】考核知识点:单项式除以单项式.理解运算法则是关键.8.D【解析】【分析】根据对顶角的定义,可得答案.【详解】解:由对顶角的定义,得D选项是对顶角,故选:D.【点睛】考核知识点:对顶角.理解定义是关键.9.B【解析】【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.【详解】解:A、∠1与∠7不是内错角,故A错误;B、∠3与∠5是内错角,故B正确;C、∠4与∠5是同旁内角,故C错误;D、∠2与∠6不是内错角,故D错误.故选:B.【点睛】考核知识点:内错角.理解内错角定义是关键. 10.C【解析】【分析】利用平行线的性质以及对顶角的性质解决问题即可.【详解】解:如图,∵a∥b,∴∠2+∠3=180°,∵∠1=∠3=50°,∴∠2=130°,故选:C.【点睛】考核知识点:平行线性质.理解平行线性质是关键.11.x2﹣y2【解析】【分析】根据平方差公式求出即可.【详解】解:(x+y)(x﹣y)=x2﹣y2,故答案为:x2﹣y2.【点睛】考核知识点:平方差公式.熟记平方差公式是关键.12.5【解析】【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.【详解】解:单价5元固定,是常量.故答案为:5.【点睛】考核知识点:函数.理解函数相关意义是关键.13.±2【解析】【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【详解】解:∵x2+kxy+y2=(x±y)2=x2±2xy+y2,∴kxy=±2xy,解得k=±2.故答案为:±2.【点睛】考核知识点:完全平方公式.熟记完全平方公式是关键.14.∠DCF【解析】【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.【详解】解:∠B与∠DCF是AB和DC被BF所截而成的同位角,故答案为:∠DCF.【点睛】考核知识点:同位角.理解同位角定义是关键.15.1.5×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:3×108×5×102=1.5×1011.故答案为:1.5×1011.【点睛】考核知识点:科学记数法.掌握记数法则是关键.16.65°,115°或15°,15°【解析】解:∵两个角的两边分别平行,∴这两个角相等或互补.设其中一个角为x°,则另一个角为2x-15°.①若这两个角相等,则2x- 15°=x,解得:x=15°,∴这两个角的度数分别为15°,15°;②若这两个角互补,则2x-15°+x=180°,解得:x=65°,∴这两个角的度数分别为65°,115°.综上所述:这两个角的度数分别为65°,115°或15°,15°.故答案为:65°,115°或15°,15°.点睛:此题考查了平行线的性质.解答本题的关键是注意由两个角的两边分别平行,可得这两个角相等或互补,注意分类讨论思想的应用.17.(1)5;(2)9991.【解析】【分析】(1)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值;(2)原式变形后,利用平方差公式计算即可求出值.【详解】解:(1)原式=1+2+2=5;(2)原式=(100+3)×(100﹣3)=1002﹣32=10000﹣9=9991.【点睛】考核知识点:零指数幂、负整数指数幂相关运算.掌握运算法则是关键.18.x﹣y,2019.【解析】【分析】原式去括号中利用平方差公式,以及完全平方公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【详解】解:原式=(x2﹣y2﹣x2+2xy﹣y2)÷2y=(2xy﹣2y2)÷2y=x﹣y,当x=2020,y=1时,原式=2020﹣1=2019.【点睛】考核知识点:整式化简求值.运用乘法公式是关键.19.见解析【解析】【分析】作∠ADE=∠ABC,射线DE交AC于点E,线段DE即为所求.【详解】解:如图所示线段DE为所求.【点睛】考核知识点:作平行线.利用平行线判定是关键.20.(1)110°;(2)AB∥CD.理由见解析.【解析】【分析】(1)先由平行线的性质求得∠A,再由平行线的性质求得∠ABC;(2)根据三角形内角和定理可求∠ABD=50°,再由平行线的判定即可求解.【详解】解:(1)∵∠ADB=60°,∠CDB=50°,∴∠ADC=110°∵AD∥BC,∴∠A=70°,∵AB∥CD,(2)AB∥CD.理由如下:∵∠ADB=60°,∠A=70°,∴∠ABD=50°,∴∠CDB=∠ABD=50°,∴AB∥CD.【点睛】考核知识点:三角形内角和定理,平行线性质和判定.理解平行线判定是关键.21.(1)CD∥EF,见解析;(2)∠ACB=105°.【解析】【分析】(1)由题意可得∠CDB=∠EFB=90°,继而根据平行线的判定即可得EF ∥DC;(2)先判定DG//BC,再利用平行线的性质即可求得角的度数.【详解】(1) ∵ CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°,∴ CD∥EF;(2) ∵ EF∥DC,∴∠2=∠BCD,∵∠1=∠2,∴ DG∥BC,∴∠ACB=∠3=105°.【点睛】本题主要考查了平行线的判定和性质,重点考查了平面内垂直于同一条直线的两条直线互相平行的性质.22.(1)116;(2)33.【解析】【分析】(1)根据a+b=5,ab=﹣2,将题目中的式子变形,即可求得所求式子的值;(2)根据a+b=5,ab=﹣2,将所求式子变形,即可求得所求式子的值.【详解】解:(1)∵a+b=5,ab=﹣2,∴4a2+4b2+4a2b2+8ab=4(a2+2ab+b2)+4a2b2=4(a+b)2+4a2b2=4×52+4×(﹣2)2=4×25+4×4=100+16=116;(2)∵a+b=5,ab=﹣2,∴(a﹣b)2=(a+b)2﹣4ab=52﹣4×(﹣2)=25+8=33.【点睛】考核知识点:整式化简求值.运用乘法公式求值是关键.23.(1)16;(2)32;(3)1.【解析】【分析】(1)直接利用幂的乘方运算法则计算得出答案;(2)直接利用同底数幂的乘法运算法则计算得出答案;(3)直接利用幂的乘方运算法则以及同底数幂的除法运算法则计算得出答案.【详解】解:(1)∵x m=4,x n=8,∴x2m=(x m)2=16;(2)∵x m=4,x n=8,∴x m+n=x m•x n=4×8=32;(3)∵x m=4,x n=8,∴x3m﹣2n=(x m)3÷(x n)2=43÷82=1.【点睛】考核知识点:幂的运算.掌握幂的相关运算法则是关键.24.(1)64,8,15;(2)(n-1)2+1,n2,2n-1,(3)32-+-n n n2331【解析】【分析】(1)先从给的数中得出每行最后一个数是该行的平方,即可求出第8行的最后一个数,再根据每行的个数为1,3,5,…的奇数列,即可求出第8行共有的个数;(2)根据第n行最后一个数为n2,得出第一个数为n2-2n+2,根据每行的个数为1,3,5,…,即可得出答案;(3)通过(2)得出的第n行的第一个数与最后一个数及第n行共有的个数,列出算式,进行计算即可.【详解】(1)先从给的数中得出每行最后一个数是该行的平方,则第8行的最后一个数是82=64,每行数的个数为1,3,5,…的奇数列,∴第8行共有8×2-1=15个;故答案为64,8,15;(2)由(1)知第n行最后一个数是n2,则得出第一个数为n 2-2n+2第n 行共有2n-1个数故答案为n 2,2n-1;(3)∵第n 行第一个数为n 2-2n+2,最后一个数为n 2,共有2n-1个数∴第n 各数之和为3222(21)2322312n n n n n n n ⋅-=-+++-- 25.(1)AB ∥CD ,理由见解析;(2)∠BAE+12∠MCD=90°,理由见解析;(3)∠BAC=∠PQC+∠QPC ,理由见解析【解析】【分析】(1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC=2∠EAC ,∠ACD=2∠ACE ,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出结论;(2)过E 作EF ∥AB ,根据平行线的性质可知EF ∥AB ∥CD ,∠BAE=∠AEF ,∠FEC=∠DCE ,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD 即可得出结论;(3)根据AB ∥CD 可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC .【详解】(1)∵CE 平分∠ACD ,AE 平分∠BAC ,∴∠BAC=2∠EAC ,∠ACD=2∠ACE ,∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180°,∴AB∥CD;(2)∠BAE+12∠MCD=90°;过E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE,∵∠E=90°,∴∠BAE+∠ECD=90°,∵∠MCE=∠ECD,∴∠BAE+12∠MCD=90°;(3)∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC.【点睛】考查了平行线的性质,根据题意作出平行线是解答此题的关键.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.师大版七年级下册数学期中考试试卷一、单选题1.下面计算正确的是( ) A .b 3b 2=b 6B .x 3+x 3=x6C .a 4+a 2=a 6D .mm 5=m 62.计算:()23m n 的结果是A .6m nB .62m nC .52m nD .32m n3.计算:x 5÷x 2等于( ) A .x 2B .x 3C .2xD .2+x4.计算:(5a 2b )•(3a )等于( ) A .15a 3bB .15a 2bC .8a 3bD .8a 2b5.计算:(5)(5)m m +-等于( ) A .225m -B .25m -C .25m -D .225m -6.计算:(x ﹣1)2等于( ) A .x 2﹣x+1B .x 2﹣2x+1C .x 2﹣1D .2x ﹣27.计算:15a 3b ÷(﹣5a 2b )等于( ) A .﹣3abB .﹣3a 3bC .﹣3aD .﹣3a 2b8.下面四个图形中,∠1与∠2是对顶角的是( )A.B.C.D.9.如图,下列四组角中是内错角的是()A.∠1与∠7 B.∠3与∠5 C.∠4 与∠5 D.∠2与∠5 10.如图,已知a∥b,∠1=50°,则∠2=()A.40°B.50°C.130°D.120°二、填空题11.化简(x+y)(x﹣y)=_____.12.快餐每盒5元,买n盒需付m元,则其中常量是_____.13.若x2+kxy+y2是完全平方式,则k=_____.14.如图,∠B的同位角是_____.15.光在真空中的速度约为3×108米/秒,太阳光照射到地球上大约需要5×102秒,地球与太阳距离约为_____米.16.两个角的两边分别平行,且其中一个角比另一个角的2倍少15°,则这两个角为_____.三、解答题17.计算:(1)(﹣3)0+11()2+|﹣2|(2)用简便方法计算:103×9718.先化简,再求值:[(x ﹣y )(x+y )﹣(x ﹣y )2]÷2y ,其中x =2020,y =1.19.如图,点D 是AB 边上的一点,请用尺规作出线段DE ,使DE ∥BC ,交AC 于E .20.如图,四边形ABCD中,∠ADB=60°,∠CDB=50°.(1)若AD∥BC,AB∥CD,求∠ABC的度数;(2)若∠A=70°,请写出图中平行的线段,并说明理由.21.如图,CD⊥AB,垂足为点D,点E在BC上,EF⊥AB,垂足为F;(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=105°,求∠ACB的度数;22.已知a+b=5,ab=﹣2.(1)求4a2+4b2+4a2b2+8ab的值;(2)求(a﹣b)2的值.23.已知:x m=4,x n=8.(1)求x2m的值;(2)求x m+n的值;(3)求x3m﹣2n的值.24.如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是_____,它是自然数_____的平方,第8行共有 _____个数;(2)用含n的代数式表示:第n行的第一个数是_____,最后一个数是_____,第n行共有_____个数;(3)求第n行各数之和.25.如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°(1)请判断AB与CD的位置关系并说明理由;(2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD 否存在确定的数量关系?并说明理由;(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.成为学生喜欢的教师你可以问问身边的教师,他们上学的时候是否曾经受到过积极教师的影响,很可能所有人都有过这样的经历。
最新(北师大版)七年级下学期期中考试数学试卷(含答案)
七年级下学期期中考试数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第三章《变量之间的关系》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。
在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.某数学兴趣小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表),下列说法错误的是()温度/℃−20−100102030声速/(m/s)318324330336342348A. 在这个变化中自变量是温度,因变量是声速B. 当温度每升高10℃,声速增加6m/sC. 当空气温度为20℃,5s的时间声音可以传播1740mD. 温度越高声速越快2.体育课上,老师测量跳远成绩的依据是()A. 平行线间的距离相等B. 两点之间,线段最短C. 垂线段最短D. 两点确定一条直线3.下列各项中,两个幂是同底数幂的是()A. x2与a2B. (−a)5与a3C. (x−y)2与(y−x)2D. −x2与x34.若(x−1)0−2(2x−6)−2有意义,那么x的取值范围是()A. x>1B. x<3C. x≠1或x≠3D. x≠1且x≠35.如图,∠B的同位角可以是()A. ∠1B. ∠2C. ∠3D. ∠46.一蓄水池中有水50m3,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分1234…水池中水量/m348464442…下列说法不正确的是()A. 蓄水池每分钟放水2m3B. 放水18分钟后,水池中水量为14m3C. 蓄水池一共可以放水25分钟D. 放水12分钟后,水池中水量为24m37.某商场为了增加销售额,推出优惠活动,其活动内容为凡活动期间一次购物超过50元,超过50元的部分按9折优惠.在活动期间,李明到该商场为单位购买单价为30元的办公用品x(件)(x>2),则应付款y(元)与商品件数x的关系式为()A. y=27x(x>2)B. y=27x+5(x>2)C. y=27x+50(x>2)D. y=27x+45(x>2)8.如图 ①,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的关系的图象如图 ②,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的关系的图象大致是()A. B.C. D.9.如图,将一副三角尺按下列位置摆放,使∠α和∠β互余的摆放方式是()A.B.C.D.10.如图,直线AB,CD相交于点O,射线OM平分∠BOD.若∠AOC=42∘,则∠AOM等于()A. 159∘B. 161∘C. 169∘D. 138∘11.小萌在利用完全平方公式计算一个二项整式的平方时,得到正确结果4x2+20xy+■,不小心把最后一项染黑了,你认为这一项是()A. 5y2B. 10y2C. 100y2D. 25y212.某同学在计算−3x2乘一个多项式时错误的计算成了加法,得到的答案是x2−x+1,由此可以推断正确的计算结果是()A. 4x2−x+1B. x2−x+1C. −12x4+3x3−3x2D. 无法确定13.若多项式x2+x+m能被x+5整除,则此多项式也能被下列哪个多项式整除()A. x−6B. x+6C. x−4D. x+414.如图所示,与∠α构成同位角的角的个数为()A. 1B. 2C. 3D. 415.某人要在规定的时间内加工100个零件,则工作效率η与时间t之间的关系中,下列说法正确的是()A.数100和η、t都是变量B. 数100和η都是常量C. η和t是变量D. 数100和t都是常量卷Ⅱ二、填空题(本大题共5小题,共25.0分)16.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是_________________.17.如图,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车距离最近,请你在铁路边选一点来建火车站(位置已选好),理由是.18.已知2x=a,3x=b,则6x=.19.如图,直线EF与CD相交于点O,OA⊥OB,且OC平分∠AOF.若∠AOE=40∘,则∠BOD的度数为.20.观察下列图形及表格:梯形个数n123456⋯周长l5811141720⋯则周长l与梯形个数n之间的关系式为.三、解答题(本大题共7小题,共80.0分)21.(8分)计算:(1)(x2y−12xy2−2xy)÷12xy;(2)[2(x+y)3−4(x+y)2−x−y]÷(x+y).22.(8分)如图,直线a、b被直线l所截,已知∠1=40°,试求∠2的同位角及同旁内角的度数.23.(12分)(1)表示汽车性能的参数有很多,例如:长宽高、轴距、排量、功率、扭矩、转速、百公里油耗等等.为了了解某种车的耗油量,某专业检测人员对这种车在高速公路上做了耗油试验,并把试验的数据记录下米,制成下表:汽车行驶时间t(ℎ)0123…油箱剩余油量Q(L)100948882…①上表反映的两个变量中,白变量是______;②根据上表可知,每小时耗油______升;③根据上表的数据,写出用t表示Q的关系式:______④若汽车油箱中剩余油量为55L,则汽车行驶了多少小时?(2)年龄与手机号码的秘密:①选取你家里任意一部手机的最后一位:②把这个数字乘上2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥最后用这个数目减去你出生的那一年(例如2004年).现在你看到一个三位数的数字.第一位数字是你家手机号的最后一位,接下来就是你的实际年龄!你能否用你所选数字按照上述步骤验证下?你能用所学知识解释这一问题吗?(计算年龄时按照农历现在为2017年)24.(10分)观察下列式:(x2−1)÷(x−1)=x+1;(x3−1)÷(x−1)=x2+x+1;(x4−1)÷(x−1)=x3+x2+x+1;(x5−1)÷(x−1)=x4+x3+x2+x+1;(1)猜想:(x7−1)÷(x−1)=______;(27−1)÷(2−1)=______;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27.25.(12分)如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=72∘,求∠BOD的度数;(2)若∠DOE=2∠AOC,判断射线OE,OD的位置关系,并说明理由.26.(14分)2018年5月14日川航3U8633航班挡风玻璃在高空爆裂,机组临危不乱,果断应对,正确处置,顺利返航,避免了一场灾难的发生,下面表格是成都当日海拔ℎ(千米)与相应高度处气温t(℃)的关系(成都地处四川盆地,海拔较低,为方便计算,在此题中近似为0米).海拔ℎ(千米)012345…气温t(℃)201482−4−10…根据上表,回答以下问题:(1)由上表可知海拔5千米的上空气温约为________℃;(2)由表格中的规律请写出当日气温t与海拔高度h的关系式为________;如图表示当日飞机下降过程中海拔与玻璃爆裂后立即返回地面所用的时间关系.根据图象回答以下问题:(3)挡风玻璃在高空爆裂时飞机所处的高度为________千米,返回地面用了________分钟;(4)飞机在2千米高空水平面上大约盘旋了________分钟;(5)求挡风玻璃在高空爆裂时,飞机所处高空的气温.27.(16分)已知:如图是一个跳棋棋盘,其游戏规则是:一个棋子从某一个起始角开始,经过若干步跳动以后,到达终点角.跳动时,每一步只能跳到它的同位角或内错角或同旁内角的位置上,例如:从起始位置∠1跳到终点位置∠3写出其中两种不同路径,路径1:∠1−同旁内角→∠9−内错角→∠3.路径2:∠1一内错角→∠12一内错角→∠6−同位角→∠10−同旁内角→∠3.试一试:(1)从起始∠1跳到终点角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能否跳到终点∠8?答案1.C2.C3.D4.D5.D6.D7.B8.C9.A10.A11.D12.C13.C14.C15.C16.y=4−x2(0<x<2)17.垂线段最短18.ab19.20∘20.l=3n+221.解:(1)(x2y−12xy2−2xy)÷12xy=x2y÷12xy−12xy2÷12xy−2xy÷12xy=2x−y−4;(2)[2(x+y)3−4(x+y)2−x−y]÷(x+y)=2(x+y)3÷(x+y)−4(x+y)2÷(x+y)−(x+y)÷(x+y) =2(x+y)2−4(x+y)−1.22.解:如图,由图可知,∠4是∠2的同位角,∠3是∠2的同旁内角,∵∠1=40°,∴∠3=∠1=40°,∠4=180°−∠1=140°,即∠2的同位角是140°,∠2的同旁内角是40°.23.解:(1)①自变量是t,②据上表可知,每小时耗油100−94=6升;③Q=100−6t;④当Q=55时,55=100−6t,6t=45,t=7.5.答:汽车行使了7.5小时;(2)比如:我选择数字为9,出生时间为2004年,我的年龄为13岁,由题意得(9×2+5)×50+1767−2004=900+2017−2004=913,解释:假设选取数字为m,出生时间为n年,由题意得(m×2+5)×50+1767−n=100m+(2017−n)因为m为个位数字,(2017−n)两位数,所以100m+(2017−n)三位数,而且第一位数字就所选数字,后两位恰好为年龄.24.(1)x6+x5+x4+x3+x2+x+1;26+25+24+23+22+2+1;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27=(28−1)÷(2−1)=28−1=255.25.解:(1)因为OA平分∠EOC,∠EOC=72∘,∠EOC=36∘.所以∠AOC=12所以∠BOD=∠AOC=36∘.(2)OE⊥OD.理由如下:因为∠DOE=2∠AOC,OA平分∠EOC,所以∠DOE=2∠AOC=∠EOC.又因为∠DOE +∠EOC =180∘, 所以∠DOE =∠EOC =90∘. 所以OE ⊥OD .26.解:(1)−10;(2)t =20−6ℎ; (3)9.8,20; (4)2;(5)根据图象可知,当ℎ=9.8时,挡风玻璃爆裂,此时t =20−6×9.8=−38.8, 所以挡风玻璃在高空爆裂时,飞机所处高空的气温为−38.8℃.27.解:(1)路径∠1→内错角∠12→同旁内角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能跳到终点∠8.其路径为: 路径:∠1→同位角∠10→内错角∠5→同旁内角∠8.。
北师大版七年级数学下册期中测试卷及答案
(北师大版)七年级数学下册期中模拟检测试卷及答案(1)说明:本卷共六大题,全卷共24题,满分120分,考试时间为120分钟 一、选择题(本大题共6小题,每小题3分,共18分)每题只有一个正确的选项1.结果为 a 2的式子是(▲)A . a 6÷a 3B . a • aC .(a --1)2D . a 4-a 2=a 2 2.如图,AB ∥CD ,DB ⊥BC ,∠1=40°,则∠2的度数是(▲) A .40° B .50° C .60° D .140°3.已知三角形的两边长分别为4和9,则下列长度的四条线段中能作为第三边的是(▲)A .13B .6C .5D .44.如果(x ―5)(2x +m )的积中不含x 的一次项,则m 的值是(▲) A .5 B .-10 C .-5 D .105.若m +n =3,则2m 2+4mn +2n 2-6的值为( ) A .12 B .6C .3D .06.如图,过∠AOB 边OB 上一点C 作OA 的平行线,以C 为顶点的角与∠AOB 的关系是(▲)A .相等B .互补C .相等或互补D .不能确定二、填空题(本大题共8个小题,每小题3分,共24分) 7.已知∠α的余角的3倍等于它的补角,则∠α=_________;8.计 算:=_______________; 9.如果多项式x 2+mx +9是一个完全平方式,则m =_________;10.把一块含30°角的直角三角板放在两平行直线上,如图,则∠1+∠2=__________°;11.三角形的三边长为3、a 、7,且三角形的周长能被5整除,则a =__________; 12.如图,AB 与CD 相交于点O ,OA =OC ,还需增加一个条件:____________________, 可得△AOD ≌△COB (AAS ) ;13.AD 是△ABC 的边BC 上的中线,AB =12,AC =8,那么中线AD 的取值范围___________. 14.观察烟花燃放图形,找规律:B●OAC1210题ABDC O12题20201321)3()1(-⎪⎭⎫ ⎝⎛--π⨯-依此规律,第9个图形中共有_________个★. 三、解答题(本大题共4小题,每小题6分,共24分) 15.计 算:()2432a a a +÷解:16.计 算:)5)(14()32)(32(+--+-y y y y解:17.如图,∠ABC =∠BCD ,∠1=∠2,请问图中有几对平行线?并说明理由. 解:18.如图,C 、F 在BE 上,∠A =∠D ,AB ∥DE ,BF =EC .求证:AB =DE . 解:四、(本大题共2小题,每小题8分,共16分)19.先化简,再求值: , 其中2=x ,2-=y .解:()()[]x xy x y y y x 28422÷-+-+ AF CBED20.如图,直线CD 与直线AB 相交于点C ,根据下列语句画图(注:可利用三角尺画图,但要保持图形清晰)(1)过点P 作PQ ∥AB ,交CD 于点Q ;过点P 作PR ⊥CD ,垂足为R ; (2)若∠DCB =120°,则∠QPR 是多少度?并说明理由. 解:五、(本大题共2小题,每小题9分,共18分)21.如图,已知AB =AE ,BC =ED ,∠B =∠E ,AF ⊥CD ,F 为垂足, 求证:(1)AC =AD ; (2)CF =DF . 解:22.如图,在边长为1的方格纸中,△PQR 的三个顶点及A 、B 、C 、D 、E 五个点都在小方格的格点上,现以A 、B 、C 、D 、E 中的三个点为顶点画三角形. (1)请在图1中画出与△PQR 全等的三角形;(2)请在图2中画出与△PQR 面积相等但不全等的三角形;(3)顺次连结A 、B 、C 、D 、E 形成一个封闭的图形,求此图形的面积.CDBA ·P解:六、(本大题共2个小题,每小题10分,共20分)23.如图①是一个长为2a,宽为2b的长方形纸片,其长方形的面积显然为4ab,现将此长方形纸片沿图中虚线剪开,分成4个小长方形,然后拼成如图②的一个正方形.(1)图②中阴影正方形EFGH的边长为: _________________;(2)观察图②,代数式(a -b)2表示哪个图形的面积?代数式(a+b)2呢?(3)用两种不同方法表示图②中的阴影正方形EFGH的面积,并写出关于代数式(a+b)2、(a-b)2和4ab之间的等量关系;(4)根据(3)题中的等量关系,解决如下问题:若a+b=7,ab=5,求:(a -b)2的值.解:24.如图(1)线段AB、CD相交于点O,连接AD、CB.如图(2),在图(1)的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图(1)中,请直接写出∠A、∠B、∠C、∠D之间的等量关系;(2)在图(2)中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)(3)如果图(2)中,∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间数量关系.(直接写出结论即可)解:参考答案四、(本大题共2个小题,每小题各8分,共16分)19.解:原式=[4x2+4xy+y2-y2-4xy-8xy]÷2x=[4x2-8xy]÷2x=2x-4y 当x=2,y=-2时,原式=4+8=1220.解:(1)见图(2)∠QPR=300五、(本大题共2小题,每小题9分,共18分)21.解:(1) ∵AB=AE,BC=ED,∠B=∠E∴△ABC≌△AED∴AC=AD24.解: (1) ∠A+∠D=∠B+∠C (2) 由(1)可知,∠1+∠D=∠3+∠P, ∠2+∠P=∠4+∠B∴∠1-∠3=∠P-∠D,∠2-∠4=∠B-∠P 又∵AP、CP分别平分∠DAB和∠BCD∴∠1=∠2, ∠3=∠4 ∴∠P-∠D=∠B-∠P 即2∠P=∠B+∠D ∴∠P=(40°+30°)÷2=35°.(3)2∠P=∠B+∠D.CDBA·PQR。
北师大版数学七年级下册期中考试试卷含答案
北师大版数学七年级下册期中考试试卷含答案北师大版数学七年级下册期中考试试题一、单选题(每小题3分,共27分)1.下列运算正确的是()A。
x2+x3=x5B。
x2·x3=x6C。
(3x3)2=6x6D。
x6÷x3=x22.将0.xxxxxxxx用科学记数法表示为()A。
0.573×10^-5B。
5.73×10^-5C。
5.73×10^-6D。
0.573×10^-63.计算(a-b)2的结果是()A。
a2-b2B。
a2-2ab+b2C。
a2+2ab-b2D。
a2+2ab+b24.如果一个角的补角是150∘,那么这个角的余角的度数是()A。
30∘B。
60∘C。
90∘D。
120∘5.两直线被第三条直线所截,则()A。
内错角相等B。
同位角相等C。
同旁内角互补D。
以上结论都不对6.某天,XXX去朋友家借书,在朋友家停留一段时间后,返回家中,如图是他离家的路程(千米)与时间(分)的关系的图象,根据图象信息,下列说法正确的是()A。
XXX去时的速度大于回家的速度B。
XXX在朋友家停留了10分钟C。
XXX去时所花时间少于回家所花时间D。
XXX去时走上坡路,回家时走下坡路7.如图,AB∥CD,∠AGE=128°,HM平分∠EHD,则∠MHD的度数是()A。
46°B。
23°C。
26°D。
24°8.设(5a+3b)2=(5a-3b)2+A,则A=A。
30abB。
60abC。
15abD。
12ab9.一辆汽车在广场上行驶,两次转弯后要想行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A。
第一次向右拐50°,第二次向左拐130°B。
第一次向左拐30°,第二次向右拐30°C。
第一次向右拐50°,第二次向右拐130°D。
第一次向左拐50°,第二次向左拐130°二、填空题10.若a=-√2,b=(-1)^-1,c=-2/π,则a、b、c从小到大的排列是_____<_____<_____。
北师大版七年级第二学期期中考试数学试题(含答案) (3)
七年级(下)期中数学试卷一、选择题(本大题共 10 小题,共 30 分)x4y)的结果是()1、(3分) 计算3x2y•(-43A.-4x6y2B.-4x6yC.x6y2D.x8y2、(3分) 等式(x+4)0=1成立的条件是()A.x为有理数B.x≠0C.x≠4D.x≠-43、(3分) 若(x-2y)2=(x+2y)2+m,则m等于()A.4xyB.-4xyC.8xyD.-8xy4、(3分) 下列计算式中,可以用平方差公式计算的是()A.(m-n)(n-m)B.(a+b)(-b-a)C.(-a-b)(a-b)D.(a+b)(b+a)5、(3分) 当m=()时,x2+2(m-3)x+25是完全平方式.A.±5B.8C.-2D.8或-26、(3分) 如图,已知a⊥b.垂足为O,直线c经过点O,则∠1与∠2的关系一定成立的是()A.相等B.互余C.互补D.对顶角7、(3分) 如图,将一块三角尺的直角顶点放在直线a上,a∥b,∠1=50°,则∠2=()A.80°B.70°C.60°D.50°8、(3分) 下列命题是假命题的是()A.对顶角相等B.等角的余角相等C.同旁内角相等D.垂线段最短9、(3分) 一支蜡烛长20cm.若点燃后每小时燃烧5cm.则燃烧剩余的长度y(cm)与燃烧时间x(小时)之间的函数关系的图象大致为()A. B. C. D.10、(3分) 如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A. B. C. D.二、填空题(本大题共 9 小题,共 29 分)11、(3分) 有理数0.00000035用科学记数法表示为______.12、(3分) 如图,∠A+∠B∠C+∠D+∠E+∠F=______.13、(3分) 一个等腰三角形的两边长分别为3和7,这个三角形的周长是______.14、(3分) 观察如表,则y与x的关系式为______.y 3 5 7 9 11 …15、(3分) 如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO,下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中正确结论的序号是______.16、(3分) 若x2-y2=-1.则(x-y)2019(x+y)2019=______.17、(3分) 已知a2+b2+4a-8b+20=0.则b a=______.18、(3分) 如图1,长方形ABCD中,动点P从B出发,沿B→C→D→A路径匀速运动至点A处停止,设点P运动的路程为x,△PAB的面积为y,如果y关于x的函数图象如图2所示,则长方形ABCD的面积等于______.19、(5分) 如图,填写证明过程和理由∵∠1+∠2=180°(已知)∴______∥______(______)∵∠3=∠4(已知)∴______∥______(______)∴a∥c (______)三、解答题(本大题共 5 小题,共 35 分))−1−3220、(6分) (π−2019)0+(1221、(6分) (a3)2•(a4)3+(a2)522、(6分) (ab+1)2-(ab-1)2.23、(7分) 如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE 交于H,求∠CHD的度数.24、(10分) 如图,已知点C是线段BD上一点,以BC、DC为一边在BD的同一侧作等边△ABC 和等边△ECD,连接AD,BE相交于点F,AC和BE交于点M,AD,CE交于点N,(注:等边三角形的每一个内角都等于60°)(1)求证:AD=BE(2)线段CM与CN相等吗?请证明你的结论.(3)求∠BFD的度数.四、计算题(本大题共 1 小题,共 6 分)25、(6分) 先化简再求值:(2x-3y)2-(2x+y)(2x-y),其中x=1,y=-2.七年级(下)期中数学试卷【第 1 题】【答案】A【解析】解:原式=-4x6y2,故选:A.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.【第 2 题】【答案】D【解析】解:∵(x+4)0=1成立,∴x+4≠0,∴x≠-4.故选:D.根据零指数幂的意义进行计算.本题考查了零指数幂的意义,即任何非0实数的0次幂等于1.【第 3 题】【答案】D【解析】解:(x-2y)2,=x2-4xy+4y2,=x2-8xy+4xy+4y2,=(x+2y)2-8xy,∴m=-8xy.故选:D.把等号左边展开后整理为完全平方和公式即可得到m的值.本题考查完全平方公式的灵活应用,要注意做好公式间的转化,如(a-b)2=(a+b)2-4ab;(a+b)2=(a-b)2+4ab.【第 4 题】【答案】C【解析】解:根据平方差公式特点,左边是两个二项式相乘,且这两个二项式中有一项完全相同,另一项互为相反数,因此可以用平方差公式计算的是C.(-a-b)(a-b).故选:C.根据平方差公式两个数的和与这两个数的差相乘,等于这两个数的平方差进行判断.本题考查了平方差公式,正确运用公式是解题的关键.【第 5 题】【答案】D【解析】解:这里首末两项是x和5这两个数的平方;那么中间一项为加上或减去x和5的积的2倍,故2(m-3)=±10,m=8或-2.故选:D.先根据平方项找出这两个数,再根据完全平方公式:(a±b)2=a2±2ab+b2,中间项是这两个数的乘积二倍项求解即可.本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.【第 6 题】【答案】B【解析】解:图中,∠2=∠3(对顶角相等),又∵a⊥b,∴∠1+∠3=90°,∴∠1+∠2=90°,∴∠1与∠2互余.故选:B.根据图形可看出,∠2的对顶角∠3与∠1互余,那么∠1与∠2就互余.本题考查了余角和垂线的定义以及对顶角相等的性质.【第 7 题】【答案】B【解析】解:由已知知:∠3=60°∵1=50°,∠3=60°,∴∠4=180°-∠1-∠3=180°-50°-60°=70°,∴∠5=∠4=70°,∵a∥b,∴∠2=∠5=70°故选:B.先根据三角形内角和定理求出∠4的度数,由对顶角相等求出∠5的度数,根据平行线的性质即可得出结论.本题考查的是平行线的性质,三角形的内角和定理,掌握两直线平行,同位角相等是解决问题的前提.【第 8 题】【答案】C【解析】解:A、对顶角相等,正确,是真命题;B、等角的余角相等,正确,是真命题;C、两直线平行,同旁内角相等,错误,是假命题;D、垂线段最短,正确,是真命题;故选:C.利用对顶角的性质、余角的定义、平行线的性质及垂线段的性质分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是了解对顶角的性质、余角的定义、平行线的性质及垂线段的性质,难度不大.【第 9 题】【答案】C【解析】解:∵一支蜡烛长20cm.点燃后每小时燃烧5cm,∴这支蜡烛可以燃烧:20÷5=4(h),∴y=-4x(0≤x≤4),y随x的增大而减小,故选:C.根据题意,可以得到y与x的函数图象,从而可以解答本题.本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.【第 10 题】【答案】D【解析】解:因为该做水池就是一个连通器.开始时注入甲池,乙池无水,当甲池中水位到达与乙池的连接处时,乙池才开始注水,所以A、B不正确,此时甲池水位不变,所有水注入乙池,所以水位上升快.当乙池水位到达连接处时,所注入的水使甲乙两个水池同时升高,所以升高速度变慢.在乙池水位超过连通部分,甲和乙部分同时升高,但蓄水池底变小,此时比连通部分快.故选:D.根据特殊点的实际意义即可求出答案.主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.【第 11 题】【答案】3.5×10-7【解析】解:0.00000035=3.5×10-7.故答案为:3.5×10-7绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.【第 12 题】【答案】360°【解析】解:如图所示,∵∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∴∠1+∠2+∠3=∠A+∠B+∠C+∠D+∠E+∠F,又∵∠1、∠2、∠3是三角形的三个不同的外角,∴∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.利用三角形外角性质可得∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,三式相加易得∠1+∠2+∠3=∠A+∠B+∠C+∠D+∠E+∠F,而∠1、∠2、∠3是三角形的三个不同的外角,从而可求∠A+∠B+∠C+∠D+∠E+∠F.本题考查了三角形的外角性质,三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.【第 13 题】【答案】17【解析】解:(1)若3为腰长,7为底边长,由于3+3<7,则三角形不存在;(2)若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为7+7+3=17.故答案为:17.求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.【第 14 题】【 答 案 】y=2x+1【 解析 】解:观察图表可知,x 每增加1,y 的对应值增加2,故y 是x 的一次函数,设y=kx+b ,把x=1,y=3和x=2,y=5代入得:{k +b =32k +b =5, 解得:{k =2b =1, 故变量y 与x 之间的函数关系式:y=2x+1.故答案为:y=2x+1.由表中x 与y 的对应值可看出y 是x 的一次函数,由一般式代入一对值用待定系数法即可求解. 本题考查了待定系数法求一次函数解析式,掌握待定系数法求函数解析式是解决问题的关键.【 第 15 题 】【 答 案 】①②③【 解析 】解:∵△ABO≌△ADO ,∴AB=AD ,∠BAO=∠DAO ,∠AOB=∠AOD=90°,OB=OD ,∴AC⊥BD ,故①正确;∵四边形ABCD 的对角线AC 、BD 相交于点O ,∴∠COB=∠COD=90°,在△ABC 和△ADC 中,∵{AB =AD ∠BAO =∠DAO AC =AC ,∴△ABC≌△ADC (SAS ),故③正确;∴BC=DC ,故②正确.故答案为:①②③.根据全等三角形的性质得出AB=AD ,∠BAO=∠DAO ,∠AOB=∠AOD=90°,OB=OD ,再根据全等三角形的判定定理得出△ABC≌△ADC ,进而得出其它结论.本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法:SSS ,SAS ,ASA ,AAS ,以及HL ,是解题的关键.【 第 16 题 】【 答 案 】-1【 解析 】解:原式=(x-y )2019(x+y )2019=[(x+y )(x-y )]2019=(x 2-y 2)2019=(-1)2019=-1, 故答案为-1.平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.a+b )(a-b )=a 2-b 2 本题考查了平方差公式,正确运用公式是解题的关键.【 第 17 题 】【 答 案 】1 【 解析 】解:a 2+b 2+4a-8b+20=0,a 2+4a+4+b 2-8b+16=0,(a+2)2+(b-4)2=0,则a+2=0,b-4=0,解得,a=-2,b=4,则b a =4-2=116,故答案为:116. 利用完全平方公式把原式变形,根据非负数的性质分别求出a 、b ,根据负整数指数幂的运算法则计算.本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.【 第 18 题 】【 答 案 】15【 解析 】当点P 在BC 段时,对应图2,x≤3的部分,故BC=3;当点P 在CD 段时,对应图2,3<x≤8的部分,故DC=5;故长方形ABCD 的面积等于CB×CD=3×5=15,故答案为15.分别分析点P 在BC 段时,对应图2,x≤3的部分,点P 在CD 段时,对应图2,3<x≤8的部分,即可求解.本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.【 第 19 题 】【 答 案 】a b 同旁内角互补,两直线平行 b c 内错角相等,两直线平行平行于同一直线的两直线平行【解析】解:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行),∵∠3=∠4(已知),∴b∥c(内错角相等,两直线平行),∴a∥c(平行于同一直线的两直线平行),故答案为:a,b,同旁内角互补,两直线平行,b,c,内错角相等,两直线平行,平行于同一直线的两直线平行.根据平行线的判定推出即可.本题考查了平行线的判定,能熟练地运用定理进行推理是解此题的关键,注意:平行线的判定有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.【第 20 题】【答案】解:原式=1+2-9=-6.【解析】直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.此题主要考查了负指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.【第 21 题】【答案】解:原式=a6•a12+a10=a18+a10.【解析】先根据幂的乘方化简,再根据同底数幂的乘法化简即可.本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.【第 22 题】【答案】解:(ab+1)2-(ab-1)2,=(ab+1+ab-1)-(ab+1-ab+1),=2ab•2,=4ab.【解析】此题不要急于平方,而要把(ab+1),(ab-1)当成一个整体,利用平方差公式计算可简化计算.本题考查了平方差公式,逆用公式计算使运算更加简便,整体思想的运用是解题的关键.【第 23 题】【答案】解:在△ABC中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH中,三内角之和为180°,∴∠CHD=45°,【解析】利用三角形的三条高交于一点解决问题即可.本题考查三角形内角和定理,三角形的高的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【第 24 题】【答案】(1)证明:∵△ABC是等边三角形,∴BC=AC,∠BAC=∠ABC=∠ACB=60°,同理:CE=CD,∠ECD=60°,∴∠ACB=∠ECD=60°,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,在△ACD 和△BCE 中,{AC =BC ∠ACD =∠BCE CD =CE ,∴△ACD≌△BCE (SAS ),∴AD=BE ;(2)解;CM=CN ,理由如下:∵△ACD≌△BCE ,∴∠CBE=∠CAD ,∵∠ACB=∠ECD=60°,∴∠ACE=60°∴∠ACB=∠ACE ,在△BCM 和△ACN 中,{∠CBM =∠CAN BC =AC ∠BCM =∠ACN ,∴△BCM≌△ACN (ASA ),∴CM=CN ;(3)解:∵△ACD≌△BCE ,∴∠CBE=∠CAD ,∴∠BFD=∠BAF+∠ABE=∠BAC+∠CAD+∠ABE=∠BAC+∠CBE+∠ABE=∠BAC+∠ABC=60°+60°=120°.【 解析 】(1)根据SAS 即可证明△BCE≌△ACD ,即可得出结论;(2)证明△BCFM≌△ACN ,即可得出结论;(3)由全等三角形的性质和三角形的外角性质即可得出结果.本题考查了全等三角形的判定和性质以及等边三角形的判定和性质;熟练掌握等边三角形的性质,证明三角形全等是解题的关键.【 第 25 题 】【 答 案 】解:原式=4x 2-12xy+9y 2-(4x 2-y 2)=4x 2-12xy+9y 2-4x 2+y 2=-12xy+10y 2,当x=1,y=2时,原式=-12×1×2+10×22=-24+40=16.【 解析 】先计算乘法,再去括号,最后合并同类项即可化简原式,继而将x 、y 的值代入计算即可得.本题主要考查整式的混合运算-化简求值,解题的关键是熟练掌握整式混合运算顺序和运算法则.。
【期中卷】北师大版七年级数学下学期期中质量检测卷(三)含答案与解析
北师大版七年级下学期期中质量检测卷(三)数 学(考试时间:120分钟 试卷满分: 100分)班级___________ 姓名___________ 学号____________ 分数____________一、选择题(共10题,每小题3分,共30分) 1.下列计算正确的是( ) A .2352a b a +=B .44a a a ÷=C .236a a a ⋅=D .()326a a -=-2. 2.5PM 是指大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025m 用科学记数法表示为( )m . A .52510-⨯B .60.2510-⨯C .62.510-⨯D .32.510-⨯3.如图,可以判断//AD BC 的是( )A .12∠=∠B .34∠=∠C .180DAB ABC ∠+∠=︒D .180ABC BCD ∠+∠=︒4.下列乘法公式的运用,不正确...的是( ) A .()()2232349x x x -+=-B .()22411681x x x --=-+ C .()22324912a a a -=+-D .()()22233294x y y x y x -++=-5.229a M ab b -⋅+是一个完全平方式,则M 等于( ) A .6±B .6C .3±D .186.已知两条线段的长度分别为2cm 、8cm ,下列能与它们构成三角形的线段长度为( ) A .4cmB .6cmC .8cmD .10cm7.下列说法中错误的是( )A .三角形的中线、角平分线、高线都是线段;B .任意三角形的内角和都是180°;C .三角形的一个外角大于任何一个内角;D .三角形的三条高至少有一条高在三角形的内部8.如图,在△ABC 和△DEF 中,已有条件AB=DE ,还需要添加两个条件才能使△ABC ≌△DEF ,不能添加的一组条件是( )A .∠B=∠E ,BC=EFB .∠A=∠D ,BC=EFC .∠A=∠D ,∠B=∠E D .BC=EF ,AC=DF9.如图,//AB CD ,23ABF ABE ∠=∠,23CDF CDE ∠=∠,则:E F ∠∠=( )A .2:1B .3:1C .3:2D .4:310.如图中的图象(折线ABCDE )描述了一汽车在某一直路上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在行驶过程中的第3小时到第4.5小时这段时间平均速度为80千米/时;④汽车自出发后1.5小时内的行驶速度比第2小时至3小时之间的行驶速度大.其中正确的说法共有( )A .1个B .2个C .3个D .4个二、填空题(共6题,每小题3分,共18分)11.计算:2007200831143⎛⎫⎛⎫⨯-= ⎪ ⎪⎝⎭⎝⎭________.12.若2225x kxy y -+是一个完全平方式,则k 的值是_______. 13.一个角的余角比它的补角的14还少12︒,则这个角的度数为_______. 14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________15.已知2340x y +-=,则927x y =___________.16.如图,在ABC ∆中,若将ABC ∆沿DE 折叠,使点A 与点C 重合,若BCD ∆的周长为25,ABC ∆的周长为35,则AE =_______.三、解答题(共52分) 17.计算(1)()()12201142 3.141523π---⎛⎫⎛⎫-⨯-+-- ⎪ ⎪⎝⎭⎝⎭;(2)()()()223233a b a b a b +-+-; (3)()22332521232a bab a b ⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (4)2200520072003-⨯.18.先化简,再求值:()()()()()22222a b a b a b a b a b +--+++-,其中21,3a b =-=.19.某市电力公司采用分段计费的方法计算电费.每月用电不超过100度时,按每度0.57元计算费用,每月用电超过100度时,超过部分按每度0.60元计算.(1)设每月用电x 度时,应交电费y 元,写出y 与x 之间的函数关系式,并写出自变量的取值范围. (2)小王家一月份用了125度电,应交电费多少元?(3)小王家三月份交纳电费45元6角,求小王家三月份用了多少度电?20.如图:已知12,3,B FG AB G ∠=∠∠=∠⊥于,猜想CD 与AB 的位置关系,并写出合适的理由.21.已知:如图,在△ABC中,AB⊥CB,点D在CB的延长线上,且AB=BD,点E在AB上,DE的延长线交AC于点F,且BC=BE.试判断AC与DE的关系并说明理由.22.如图,已知AM∥BN,∠A=60°,点P是射线M上一动点(与点A不重合),BC,BD分别平分∠ABP 和∠PBN,分别交射线AM于点C,D,(1)∠CBD=(2)当点P运动到某处时,∠ACB=∠ABD,则此时∠ABC=(3)在点P运动的过程中,∠APB与∠ADB的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.23.阅读材料: 若x 满足(9)(4)4x x ,求22(4)(9)x x -+-的值.解:设9x a -=,4x b -=, 则(9)(4)4x x ab , (9)(4)5a bx x,222222(9)(4)()252417x x a b a b ab ∴-+-=+=+-=-⨯=.请仿照上面的方法求解下列问题:(1)若x 满足(5)(2)2x x ,求22(5)(2)x x 的值;(2)22(2019)(2020)1n n -+-=,求(2019)(2020)n n --;(3)已知正方形ABCD 的边长为x ,,E F 分别是,AD DC 上的点,且1AE =,3CF =,长方形EMFD 的面积是15,分别以,MF DF 为边长作正方形,求阴影部分的面积.参考答案与解析四、选择题(共10题,每小题3分,共30分) 1.下列计算正确的是( ) A .2352a b a += B .44a a a ÷=C .236a a a ⋅=D .()326a a -=-【答案】D【分析】根据合并同类项法则判断A ;根据同底数幂的除法判断B ;根据同底数幂的乘法判断C ;根据幂的乘方判断D 即可.【详解】A 选项:2a 与3b 不是同类项,不能进行加法运算,故A 项错误. B 选项:441a a ÷=,故B 项错误. C 选项:235a a a ⋅=,故C 项错误. D 选项:()326a a -=-,故D 项正确.故选D .【点睛】本题考查了合并同类项、同底数幂的除法、同底数幂的乘法、幂的乘方等知识.熟练的掌握各种运算的法则是解答的关键.2. 2.5PM 是指大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025m 用科学记数法表示为( )m . A .52510-⨯ B .60.2510-⨯C .62.510-⨯D .32.510-⨯【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.0000025用科学记数法表示为62.510-⨯. 故选C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 3.如图,可以判断//AD BC 的是( )A .12∠=∠B .34∠=∠C .180DAB ABC ∠+∠=︒D .180ABC BCD ∠+∠=︒【答案】C【分析】根据平行线的判定定理即可依次判断. 【详解】A 选项:∵12∠=∠,∴//AB CD (内错角相等,两直线平行),故A 错误; B 选项:34∠=∠,同旁内角相等,不能得到平行,故B 错误; C 选项:∵180DAB ABC ∠+∠=︒,∴//AD BC (同旁内角互补,两直线平行),故C 正确; D 选项:∵180ABC BCD ∠+∠=︒,∴//AB CD (同旁内角互补,两直线平行),故D 错误. 故选C .【点睛】此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理. 4.下列乘法公式的运用,不正确...的是( ) A .()()2232349x x x -+=-B .()22411681x x x --=-+ C .()22324912a a a -=+- D .()()22233294x y y x y x -++=-【答案】B【分析】根据平方差公式和完全平方公式,即可求得. 【详解】A 选项:222(23)(23)(2)349xx x x ,故A 项正确.B 选项:2222(41)(4)2(4)11681x x x x x --=--⨯-+=++,故B 项错误.C 选项:2222(32)3232(2)4129a a a a a -=-⨯⨯+=-+,故C 项正确.D 选项:2222(23)(32)(3)(2)94x y y x y x y x -++=-=-,故D 项正确. 故选B .【点睛】本题考查平方差公式和完全平方公式,掌握公式是解题的关键. 5.229a M ab b -⋅+是一个完全平方式,则M 等于( ) A .6± B .6C .3±D .18【答案】A【分析】这里首末两项是a 和3b 这两个数的平方,那么中间一项为加上或减去a 和3b 积的2倍,故M=±6. 【详解】解:∵229a M ab b -⋅+是一个完全平方式,∴①236M -=⨯=,即6M =-; ②236M =⨯=,综上所述:M 等于6±,故选A .【点睛】本题考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.6.已知两条线段的长度分别为2cm 、8cm ,下列能与它们构成三角形的线段长度为( ) A .4cm B .6cmC .8cmD .10cm【答案】C【解析】根据三角形的三边关系,得:第三边应>两边之差,即8-2=6;而<两边之和,即8+2=10. 下列答案中,只有8符合条件.故选C 7.下列说法中错误的是( )A .三角形的中线、角平分线、高线都是线段;B .任意三角形的内角和都是180°;C .三角形的一个外角大于任何一个内角;D .三角形的三条高至少有一条高在三角形的内部 【答案】C【解析】A 、正确,符合线段的定义; B 、正确,符合三角形内角和定理;C 、三角形的一个外角大于任何一个内角,错误;D 、正确.故选C8.如图,在△ABC 和△DEF 中,已有条件AB=DE ,还需要添加两个条件才能使△ABC ≌△DEF ,不能添加的一组条件是( )A .∠B=∠E ,BC=EFB .∠A=∠D ,BC=EFC .∠A=∠D ,∠B=∠E D .BC=EF ,AC=DF【答案】B【分析】根据全等三角形的判定定理对选项逐一进行判断即可.【详解】添加∠B=∠E ,BC=EF 可用SAS 判定两个三角形全等,故A 选项不符合题意, 添加∠A=∠D ,BC=EF 是SSA ,不能判定两个三角形全等,故B 选项符合题意, 添加∠A=∠D ,∠B=∠E 可用ASA 判定两个三角形全等,故C 选项不符合题意, 添加BC=EF ,AC=DF 可用SSS 判定两个三角形全等,故D 选项不符合题意. 故选B.【点睛】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,熟练掌握全等三角形的判定定理是解题关键.9.如图,//AB CD ,23ABF ABE ∠=∠,23CDF CDE ∠=∠,则:E F ∠∠=( )A .2:1B .3:1C .3:2D .4:3【答案】C【分析】过点F 作1////l CD AB ,过点E 作2////l CD AB , 由平行线的性质可知12DFB CDF ABF ∠=∠+∠=∠+∠,34BED CDE ABE ∠=∠+∠=∠+∠,由23ABF ABE ∠=∠,23CDF CDE ∠=∠和等量代换可得到∠BFD 和∠BED 的数量关系,继而即可求解.【详解】过点F 作1////l CD AB ,过点E 作2////l CD AB ,∵1////l CD AB ,∴1CDF ∠=∠,2ABF ∠=∠,∴12DFB CDF ABF ∠=∠+∠=∠+∠. ∵2////l CD AB ,∴3CDE ∠=∠,4ABE ∠=∠,∴34BED CDE ABE ∠=∠+∠=∠+∠. ∵23ABF ABE ∠=∠, 23CDF CDE ∠=∠,∴∠BFD =∠1+∠2=∠CDF +∠ABF = 23(∠ABE +∠CDE )=23∠BED 即:3:2E F ∠∠=.故选C .【点睛】本题主要考查平行线的性质,角的和差,解题的关键是熟练掌握平行线的性质.10.如图中的图象(折线ABCDE )描述了一汽车在某一直路上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在行驶过程中的第3小时到第4.5小时这段时间平均速度为80千米/时;④汽车自出发后1.5小时内的行驶速度比第2小时至3小时之间的行驶速度大.其中正确的说法共有( )A .1个B .2个C .3个D .4个【答案】C【分析】根据函数图象结合实际意义进行逐项分析.【详解】①行驶的最远距离是120千米,共行驶240千米,故①错误; ②根据图象从1.5时到2时,是停留时间,停留0.5小时,故②正确; ③汽车在行驶过程中的第3小时到第4.5小时这段时间平均速度为:120804.53=-千米/时,故③正确;④汽车出发后1.5小时内的行程速度为:801601.53=千米/时, 汽车出发第2小时至第3小时之间的速度是:120804032-=-千米/时, ∵160403>,故④正确.故正确的说法是:②③④.故选:C .【点睛】本题考查了函数图象与行程问题,能够明确分辨函数图象上各阶段所代表的实际意义是解决问题的关键.五、填空题(共6题,每小题3分,共18分)11.计算:2007200831143⎛⎫⎛⎫⨯-= ⎪ ⎪⎝⎭⎝⎭________.【答案】43【分析】把带分数化为假分数,并把2008次幂转化为(2007+1)次幂,再逆运用积的乘方的性质解答;【详解】原式=200720083443⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭2007344433⎛⎫=⨯⨯⎪⎝⎭2007413=⨯413=⨯43= 故答案为:43【点睛】本题考查了同底数幂的乘法,积的乘方的性质,熟练掌握性质并逆运用性质是解题的关键. 12.若2225x kxy y -+是一个完全平方式,则k 的值是_______. 【答案】10±【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值. 【详解】2225x kxy y -+是一个完全平方式,()222255x kxy y x y ∴-+=±10k ∴=±故答案为:10±【点睛】此题考查完全平方公式,解题关键在于熟练掌握完全平方公式即可. 13.一个角的余角比它的补角的14还少12︒,则这个角的度数为_______. 【答案】76︒【分析】设这个角为x ,则它的余角为90x ︒-,补角为180x ︒-,根据题意列出方程即可求解.【详解】设这个角为x ,则它的余角为90x ︒-,补角为180x ︒-()190180124x x ∴-=-- 19045124x x -=--3574x = 4573x =⨯76x =︒即这个角为76︒ 故答案为76︒.【点睛】此题主要考查角度的计算,解题的关键是根据题意列出方程求解.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________【答案】15°【分析】如下图,过点E 作EF ∥BC ,然后利用平行线的性质结合已知条件进行分析解答即可. 【详解】由题意可得AD ∥BC ,∠DAE=∠1+45°,∠AEB=90°,∠EBC=30°,过点E 作EF ∥BC , 则AD ∥EF ∥BC ,∴∠AEF=∠DAE=∠1+45°,∠FEB=∠EBC=30°, 又∵∠AEF=∠AEB-∠FEB ,∴∠AEF=90°-30°=60°,∴∠1+45°=60°, ∴∠1=60°-45°=15°.故答案为:15°.15.已知2340x y +-=,则927x y =___________. 【答案】81【分析】由2x+3y-4=0得2x+3y=4,再把927x y 统一为底数为3的乘方的形式,再根据同底数幂的乘法法则即可得到结果.【详解】解:∵2x+3y-4=0,∴2x+3y=4,∴232349273?33381x y x y x y +====, 故答案是:81.【点睛】本题考查了同底数幂的乘法、幂的乘方等多个运算性质,熟悉相关性质是解题的关键.16.如图,在ABC ∆中,若将ABC ∆沿DE 折叠,使点A 与点C 重合,若BCD ∆的周长为25,ABC ∆的周长为35,则AE =_______.【答案】5【分析】根据翻折得到DEA DEC ∆≅∆,根据35ABC C AB BC AC ∆=++=,10ABC BCD C C AC ∆∆-==即可求出AC,再根据E 是中点即可求解. 【详解】ABC ∆沿DE 翻折使A 与C 重合DEA DEC ∴∆≅∆,AD CD AE CE ∴==∴+=+=DB CD BD AD AB35ABC C AB BC AC ∆=++= 25∆=++=DBC C DB BC DC 10ABC BCD C C AC ∆∆-==152AE AC ∴== 故答案为:5.【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性质. 六、解答题(共52分) 17.计算(1)()()12201142 3.141523π---⎛⎫⎛⎫-⨯-+-- ⎪ ⎪⎝⎭⎝⎭;(2)()()()223233a b a b a b +-+-; (3)()22332521232a bab a b ⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (4)2200520072003-⨯.【分析】(1)根据负整数指数幂和零指数幂进行计算即可; (2)根据平方差公式和完全平方公式进行计算即可; (3)根据积的乘方和幂的乘方进行计算即可;(4)先将2007×2003变形为(2005+2)(2005-2)再进行计算即可.2119=-+-7=-;()()()()2223233a b a b a b +-+-22224969a b a ab b =-+-+ 256a ab =-;()24200520072003-⨯()()220052005220052=-+-()222200520052=-- 22= 4=.【点睛】本题考查了负整数指数幂,零指数幂,平方差公式,完全平方公式,积的乘方,幂的乘方,掌握运算法则是解题关键.18.先化简,再求值:()()()()()22222a b a b a b a b a b +--+++-,其中21,3a b =-=. 【答案】23a ab +;-1.【分析】先根据完全平方公式、平方差公式、多项式乘多项式法则和合并同类项法则化简,然后代入求值即可.【详解】解:()()()()()22222a b a b a b a b a b +--+++-22222244422a ab b a b a ab ab b =++-++-+-23a ab =+当21,3a b =-=时 原式()()221313=-+⨯-⨯12=-1=-【点睛】此题考查的是整式的混合运算,掌握完全平方公式、平方差公式、多项式乘多项式法则和合并同类项法则是解题关键.19.某市电力公司采用分段计费的方法计算电费.每月用电不超过100度时,按每度0.57元计算费用,每月用电超过100度时,超过部分按每度0.60元计算.(1)设每月用电x 度时,应交电费y 元,写出y 与x 之间的函数关系式,并写出自变量的取值范围. (2)小王家一月份用了125度电,应交电费多少元?(3)小王家三月份交纳电费45元6角,求小王家三月份用了多少度电?【答案】(1)()()0.5701000.63100x x y x x ⎧≤≤⎪=⎨->⎪⎩;(2)72元;(3)80度电.【分析】(1)分每月用电不超过100度和每月用电超过100度两种情况,分别根据应交电费等于用电量×0.57、应交电费等于100×0.57+超出部分×0.6解答即可; (2)由于125>100,只要把x =125代入(1)题相应的关系式计算即可;(3)由于45.6<57,则可判断小王家三月份用电不超100度,然后代入(1)题中相应的关系式求解即可. 【详解】解:()1由题意得;当0100x ≤≤时,0.57y x =, 当时100x >,()1000.571000.60.63y x x =⨯+-⨯=-,则y 与x 的关系式为()()0.5701000.63100x x y x x ⎧≤≤⎪=⎨->⎪⎩;()2把125x =代入0.63y x =-,得0.6125372y =⨯-=,∴小王家一月份应交电费72元.()3设小王家三月份用了x 度电,∵45.6<57,∴小王家三月份用电不超100度, 由0.5745.6x =,解得:80x =,∴小王家三月份用了80度电.【点睛】本题考查了列出实际问题中的关系式和一元一次方程的应用,属于常考题型,正确理解题意、熟练掌握相关知识是解题的关键.20.如图:已知12,3,B FG AB G ∠=∠∠=∠⊥于,猜想CD 与AB 的位置关系,并写出合适的理由.【答案】CD AB ⊥【分析】已知∠3=∠B ,根据同位角相等,两直线平行,则DE ∥BC ,通过平行线的性质和等量代换可得∠2=∠DCB ,从而证得CD ∥GF ,又因为FG ⊥AB ,所以CD 与AB 的位置关系是垂直. 【详解】CD AB ⊥ ,∵3B ∠=∠.∴DE BC , ∴14∠=∠, 又∵12∠=∠,∴24∠=∠, ∴GF CD , ∴CDB BGF ∠=∠,又∵FG AB ⊥,∴90BGF ∠=︒, 90CDB ∴∠=︒,即CD AB ⊥.【点睛】本题考查了平行线的判定和性质,证明GF CD 是解答本题的关键.平行线的判定方法:①两同位角相等,两直线平行; ②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.21.已知:如图,在△ABC 中,AB ⊥CB ,点D 在CB 的延长线上,且AB =BD ,点E 在AB 上,DE 的延长线交AC 于点F ,且BC =BE .试判断AC 与DE 的关系并说明理由.【答案】AC =DE ,AC ⊥DE ,证明见解析.【分析】AC 与DE 的关系为:①AC =DE ;②AC ⊥DE ;证明①,根据SAS 即可证明△ABC ≌△DBE ,根据全等三角形的对应边相等,即可证得;证明②,根据△ABC ≌△DBE 可以得到:∠CAB =∠EDB ,则△AEF 与△BED 中有两个角对应相等,根据三角形内角和定理可得:∠AFE =∠DBE =90°,即可证明垂直关系. 【详解】解:AC 与DE 的关系为:①AC =DE ;②AC ⊥DE 理由如下: ①∵AB ⊥CB ,∴∠ABC =∠DBE =90°在△ABC 和△DBE 中AB BDABC DBE BC BE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DBE ,∴AC =DE②∵△ABC ≌△DBE ,∴∠CAB =∠EDB又∵∠CAB +∠AEF +∠AFE =180°,∠EDB +∠BED +∠DBE =180°,∠AEF =∠BED ∴∠AFE =∠DBE =90°,∴AC ⊥DE .【点睛】本题主要考查全等三角形的性质与判定,熟练掌握三角形全等的判定条件是解题的关键. 22.如图,已知AM ∥BN ,∠A=60°,点P 是射线M 上一动点(与点A 不重合),BC ,BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D, (1)∠CBD=(2)当点P 运动到某处时,∠ACB=∠ABD ,则此时∠ABC=(3)在点P 运动的过程中,∠APB 与∠ADB 的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.【答案】(1)60°;(2)30°;(3)不变.【分析】(1)由AM ∥BN 可得∠ABN=180°-∠A ,再由BC 、BD 均为角平分线可求解; (2)由AM ∥BN 可得∠ACB=∠CBN ,再由∠ACB=∠ABD 可得∠ABC =∠DBN ; (3)由AM ∥BN 可得∠APB=∠PBN ,再由BD 为角平分线即可解答. 【详解】解:(1)∵AM ∥BN ,∴∠ABN=180°﹣∠A=120°, 又∵BC ,BD 分别平分∠ABP 和∠PBN , ∴∠CBD=∠CBP+∠DBP=12(∠ABP+∠PBN )=12∠ABN=60°,故答案为60°. (2)∵AM ∥BN ,∴∠ACB=∠CBN ,又∵∠ACB=∠ABD ,∴∠CBN=∠ABD ,∴∠ABC=∠ABD ﹣∠CBD=∠CBN ﹣∠CBD=∠DBN ,∴∠ABC=∠CBP=∠DBP=∠DBN , ∴∠ABC=12∠ABN=30°,故答案为30°. (3)不变.理由如下:∵AM ∥BN ,∴∠APB=∠PBN ,∠ADB=∠DBN , 又∵BD 平分∠PBN ,∴∠ADB=∠DBN=12∠PBN=12∠APB ,即∠APB :∠ADB=2:1. 【点睛】本题考查了平行线的性质. 23.阅读材料: 若x 满足(9)(4)4x x ,求22(4)(9)x x -+-的值.解:设9x a -=,4x b -=, 则(9)(4)4x x ab , (9)(4)5a bx x,222222(9)(4)()252417x x a b a b ab ∴-+-=+=+-=-⨯=.请仿照上面的方法求解下列问题:(1)若x 满足(5)(2)2x x ,求22(5)(2)x x 的值;(2)22(2019)(2020)1n n -+-=,求(2019)(2020)n n --;(3)已知正方形ABCD 的边长为x ,,E F 分别是,AD DC 上的点,且1AE =,3CF =,长方形EMFD 的面积是15,分别以,MF DF 为边长作正方形,求阴影部分的面积.【答案】(1)22(5)(2)5x x -+-=;(2)(2019)(2020)0n n --=;(3)阴影部分的面积为16.【分析】(1)设5x a -=,2x b -=,根据题目所给方法变形求解即可; (2)设2019n a -=,2020n b -=,根据题目所给方法变形求解即可; (3)根据题意用x 表示出MF ,DF ,求出阴影部分面积即可.【详解】(1)设5x a -=,2x b -=,则(5)(2)2x x ab --==,523a b x x +=-+-=, ∴222222(5)(2)()23225x x a b a b ab -+-=+=+-=-⨯=; (2)设2019n a -=,2020n b -=,则2222(2019)(2020)1n n a b -+-=+=,201920201a b n n +=-+-=,∴()2222()11(2019)(2020)022a b a b n n ab +-+---====;(3)由题意得1MF x =-,3DF x =-,则(1)(3)15x x --=,设1x a -=,3x b -=,则(1)(3)15x x ab --==,132a b x x -=--+=, ∴2222(13)()()4241564x x a b a b ab -+-=+=-+=+⨯=, ∵0a ≥,0b ,∴138x x a b -+-=+=,∴阴影部分的面积为2222(1)(3)()()8216x x a b a b a b ---=-=+-=⨯=.【点睛】本题考查了完全平方式和几何图形面积,解决本题的关键是要从整体和部分两方面来理解完全平方公式的几何意义.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版七年级下册数学期中测试卷
说明:本卷共六大题,全卷共24题,满分120分,考试时间为120分钟 一、选择题(本大题共6小题,每小题3分,共18分)每题只有一个正确的选项
1.结果为 a 2
的式子是(▲) A . a 6÷a 3
B . a • a
C .(a --1)2
D . a 4-a 2=a 2
2.如图,AB ∥CD ,DB ⊥BC ,∠1=40°,则∠2的度数是(▲) A .40° B .50° C .60° D .140°
3.已知三角形的两边长分别为4和9,则下列长度的四条线段中能作为第三边的
是(▲) A .13 B .6 C .5 D .4 4.如果(x ―5)(2x +m )的积中不含x 的一次项,则m 的值是(▲) A .5 B .-10 C .-5 D .10
5.若m +n =3,则2m 2
+4mn +2n 2
-6的值为( ) A .12
B .6
C .3
D .0
6.如图,过∠AOB 边OB 上一点C 作OA 的平行线,以C 为顶点的角与∠AOB 的关系是(▲)
A .相等
B .互补
C .相等或互补
D .不能确定
二、填空题(本大题共8个小题,每小题3分,共24分)
7.已知∠α的余角的3倍等于它的补角,则∠α=_________;
8.计 算: =_______________;
9.如果多项式x 2
+mx +9是一个完全平方式,则m =_________;
10.把一块含30°角的直角三角板放在两平行直线上,如图,则∠1+∠2=__________°;
11.三角形的三边长为3、a 、7,且三角形的周长能被5整除,则a =__________; 12.如图,AB 与CD 相交于点O ,OA =OC ,还需增加一个条件:____________________,
可得△AOD ≌△COB (AAS ) ;
B
●
O A
C
A
B
D
C
O
12题
2
2013
21)3()1(-⎪⎭
⎫
⎝⎛--π⨯-
13.AD 是△ABC 的边BC 上的中线,AB =12,AC =8,那么中线AD 的取值范围___________.
14.观察烟花燃放图形,找规律
:
依此规律,第9个图形中共有_________个★. 三、解答题(本大题共4小题,每小题6分,共24分)
15.计 算:()
243
2
a a a +÷
解:
16.计 算:)5)(14()32)(32(+--+-y y y y
解:
17.如图,∠ABC =∠BCD ,∠1=∠2,请问图中有几对平行线?并说明理由. 解:
18.如图,C 、F 在BE 上,∠A =∠D ,AB ∥DE ,BF =EC .
求证:AB =DE . 解:
A
F
C
B
E
D
四、(本大题共2小题,每小题8分,共16分)
19.先化简,再求值: , 其中2=x ,2-=y .
解:
20.如图,直线CD 与直线AB 相交于点C ,
根据下列语句画图(注:可利用三角尺画图,但要保持图形清晰) (1)过点P 作PQ ∥AB ,交CD 于点Q ;过点P 作PR ⊥CD ,垂足为R ; (2)若∠DCB =120°,则∠QPR 是多少度?并说明理由. 解:
五、(本大题共2小题,每小题9分,共18分)
21.如图,已知AB =AE ,BC =ED ,∠B =∠E ,AF ⊥CD ,F 为垂足, 求证:(1)AC =AD ; (2)CF =DF . 解:
()()[]
x xy x y y y x 28422÷-+-+ C
D
B
A ·P
22.如图,在边长为1的方格纸中,△PQR的三个顶点及A、B、C、D、E五个点都在小方格的格
点上,现以A、B、C、D、E中的三个点为顶点画三角形.
(1)请在图1中画出与△PQR全等的三角形;
(2)请在图2中画出与△PQR面积相等但不全等的三角形;
(3)顺次连结A、B、C、D、E形成一个封闭的图形,求此图形的面积.
解:
六、(本大题共2个小题,每小题10分,共20分)
23.如图①是一个长为2a,宽为2b的长方形纸片,其长方形的面积显然为4ab,现将此长方形纸片
沿图中虚线剪开,分成4个小长方形,然后拼成如图②的一个正方形.
(1)图②中阴影正方形EFGH的边长为: _________________;
(2)观察图②,代数式(a -b)2表示哪个图形的面积?代数式(a+b)2呢?
(3)用两种不同方法表示图②中的阴影正方形EFGH的面积,并写出关于代数
式(a+b)2、(a -b)2和4ab之间的等量关系;
(4)根据(3)题中的等量关系,解决如下问题:若a+b=7,ab=5,求:(a -b)2的值.
解:
24.如图(1)线段AB、CD相交于点O,连接AD、CB.如图(2),在图(1)的条件下,∠DAB和∠
BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.
试解答下列问题:
(1)在图(1)中,请直接写出∠A、∠B、∠C、∠D之间的等量关系;
(2)在图(2)中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)
(3)如果图(2)中,∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间数量关
系.(直接写出结论即可)
解:
参考答案
四、(本大题共2个小题,每小题各8分,共16分)
19.解:原式=[4x2+4xy+y2-y2-4xy-8xy]÷2x=[4x2-8xy]÷2x
24.解: (1) ∠A+∠D=∠B+∠C (2) 由(1)可知,∠1+∠D=∠3+∠P, ∠2+∠P=∠4+∠B ∴∠1-∠3=∠P-∠D,∠2-∠4=∠B-∠P 又∵AP、CP分别平分∠DAB和∠BCD
∴∠1=∠2, ∠3=∠4 ∴∠P-∠D=∠B-∠P 即2∠P=∠B+∠D ∴∠P=(40°+30°)÷2=35°.
(3)2∠P=∠B+∠D.。