埋弧焊焊接参数选择标准精编版

合集下载

焊接参数的选择

焊接参数的选择

焊接参数的选择焊接参数的选择影响焊缝形状及尺⼨的变量包括焊接⼯艺参数、⼯艺因素和结构因素等⼏⽅⾯。

1、焊接⼯艺参数埋弧焊时焊接⼯艺参数主要有:焊接电流、电弧电压和焊接速度。

(1)焊接电流其他条件不变时,增加焊接电流对焊缝形状和尺⼨的影响正常焊接条件下,焊缝熔深H⼏乎与焊接电流成正⽐:H=Km*IKm为⽐例系数,随电流种类、极性、焊丝直径以及焊剂的化学成分⽽异。

表4-14为各种条件下的Km值。

表4-14 Km值与焊丝直径、电流种类、极性及焊剂的关系同样⼤⼩的电流下,改变焊丝直径(即变更电流密度),焊缝的形状和尺⼨将随之改变。

表4-15表⽰了它们之间的关系。

表4-15 电流密度对焊缝形状、尺⼨的影响从该表可见,当其他条件相同时,熔深与焊丝直径约成反⽐关系。

但这种关系在电流密度极⾼时(超时100A/)即不复存在。

此时由于焊丝熔化量不断增加,熔池中填充⾦属量增多,熔融⾦属后排困难,熔深增加得⽐采⽤⼀般电流密度(30~50A/)的慢。

并且随焊接电流的增加,焊丝熔化量增⼤。

当焊缝熔宽保持不变时,余⾼加⼤,使焊缝成形恶化。

因⽽提⾼电流的同时,必须相应地提⾼电弧电压。

(2)电弧电压电弧电压与电弧长度成正⽐,在相同的电弧电压和电流数值时,如果所⽤的焊剂不同,电弧空间的电场强度也不同,则电弧长度可能不同。

在其他条件不变的情况下,改变电弧电压对焊缝形状影响如图4-28所⽰。

可见,随着电弧电压的增⾼,焊缝熔宽显著增加⽽熔深和余⾼将略微有减少。

极性不同时,电弧电压对熔宽的影响不同。

表4-16为采⽤HJ431时,正极性和反极性下电弧电压对熔宽的影响。

埋弧焊时,电弧电压是根据焊接电流确定的。

即⼀定的焊接电流时要保持⼀定范围的弧长,以保证电弧的稳定燃烧,因此电弧电压的变动范围是有限的。

表4-16 不同极性埋弧焊时电弧电压对熔宽的影响3)焊接速度焊接速度对熔深和熔宽均有明显影响。

焊接速度较⼩(如单丝埋弧焊焊速⼩于67cm/min)时;随焊接速度的增加,弧柱倾斜,有利于熔池⾦属向后流动,故熔深略有增加,但焊接速度到达⼀定数值后,由于线能量减少的影响增⼤,熔深和熔宽都明显减少。

埋弧焊焊接参数选择标准

埋弧焊焊接参数选择标准
在焊接工艺上主要采取气保焊打底,埋弧自动焊填充及盖面,在船形位置施焊,过程中应着重注意以下几点:
1.焊接顺序应为:大坡口面打底焊一道,打底厚度根据板厚为10-20mm;反面碳弧气刨清根后,打底焊一道,打底厚度根据板厚为15-30mm,然后,填充、盖面;翻身后进行正面焊缝的填充、盖面。
2.在具体的施焊过程中,根据实际焊缝的高度、构件的变形情况,加强构件翻身的次数,防止扭曲变形。
在焊接有斜坡的焊件时,顺斜坡方向向上的焊缝余高呈凸型,而逆斜坡方向向下焊接的焊缝余高趋于凹型。
3.4.1.8焊剂的堆放高度
焊接时,焊剂的堆放高度对焊接熔池表面的压力成正比。焊剂堆放过高,焊缝表面波纹粗大,凹凸不平,有“麻点”。一般使用玻璃状焊剂的堆放高度以25~45mm为佳,高速焊时宜堆放低些,但不能太低,否则电弧外露,焊缝表面变得粗糙。
3.3.3埋弧自动焊焊接方式的选择
根据工厂的设备情况,埋弧自动焊主要有小车式埋弧自动焊和门型埋弧自动焊,根据产品类型的不同选择相应的焊接方式,通常钢板的拼接采用小车式埋弧自动焊,箱型梁(柱)、工字梁(柱)等工件采用门型埋弧自动焊。
3.3.4焊接前对设备的检查
焊接前,先检查整个焊接系统的设备和工具全部运转正常,并确保安全的条件下才能运行,而且在焊接过程中应注意保持。主要检验指标如下:
焊丝直径(mm)
<
电流范围(A)
<400
300~500
350~800
500~1100
700~1300
电压范围(V)
25~27
25~30
27~32
29~40
29~40
电弧电压要与焊接电流相匹配,采用φ4.8mm焊丝时,电弧电压与焊接电流的配合关系可参考下表:

【埋弧焊焊接参数选择标准】埋弧焊焊接参数

【埋弧焊焊接参数选择标准】埋弧焊焊接参数

【埋弧焊焊接参数选择标准】埋弧焊焊接参数本标准所引用的技术规范与标准分为“执行技术规范与标准”和“参考技术规范与标准”两部分。

2.1执行技术规范与标准2.1.1 GB50205-xx 《钢结构工程施工及验收规范》 2.1.2GB986-88 《埋弧焊焊缝坡口的基本形式和尺寸》 2.1.3 JGJ81-xx 《建筑钢结构焊接技术规程》 2.1.4 GB50205-xx 《钢结构工程施工质量验收规范》 2.1.5 GB5293 《碳素钢埋弧焊用焊剂》 2.2参考技术规范与标准 2.2.1 《钢结构制作安装手册》 2.2.2 《建筑钢结构施工手册》 2.2.3 《焊接手册》2.2.4 《钢结构工程施工工艺标准》三部分:埋弧自动焊接技术3.1焊接原理:焊接电弧是在焊剂层下的焊丝与母材之间产生,电弧热使其周围的母材、焊丝和焊剂熔化以致部分蒸发,金属和焊剂的蒸发气体形成一个气泡,电弧就在这个气泡内燃烧。

气泡上部被一层熔化了的焊剂——熔渣构成的外膜所包围,这层外膜以及覆盖在上面的未熔化的焊剂共同对焊接起隔离空气、绝热、和屏蔽光辐射作用。

焊丝熔化的熔滴落下与已局部熔化的母材混合而构成金属熔池,部分熔渣因密度小而浮在熔池表面。

随着焊丝向前移动,电弧力将熔池中熔化金属推向熔池后方,在随后的冷却过程中,这部分熔化金属凝固成焊缝。

熔渣凝固成渣壳,覆盖在焊缝金属表面上。

在焊接过程中,熔渣除了对熔池和焊缝金属起机械保护作用外,还与熔化金属发生冶金反应(如脱氧、去杂质、渗合金等),从而影响焊缝金属的化学成分。

3.2埋弧焊焊接施工工艺流程3.3 焊前准备工作 3.3.1焊剂及焊丝的选择根据目前钢结构的钢材类型,常用埋弧焊丝和焊剂的选择如下表:表3.1类别适用母材焊丝牌号焊剂牌号备注——低碳钢——薄板不开坡口对接Q345SJ101、HJ431中厚板开坡口对接δs=340Mpa级低合金钢3.3.2焊接材料的保管和使用3.3.2.1焊剂的烘焙埋弧焊用焊剂的烘焙温度如下表:表3.2焊剂类型烘陪温度(℃)烘焙时间(h )约1 约1熔炼焊剂烧结焊剂3.3.2.2焊剂的保存焊接低碳钢的熔炼焊剂在使用中放置时间不超过24h ;焊接低合金钢的熔炼焊剂在使用中放置时间不超过8h ;烧结焊剂经高温烘焙后,应转入100~150℃的低温保温箱中存放,从保温箱中取出时间不超过4h 。

4.2.1埋弧焊工艺参数-电子教材(精)

4.2.1埋弧焊工艺参数-电子教材(精)

埋弧焊工艺参数一、埋弧焊工艺参数埋弧自动焊的焊缝成形是由焊接工艺参数决定的,埋弧焊选择工艺参数的原则是,应保证电弧稳定燃烧,保证焊缝良好成形及形状尺寸符合要求;焊缝内部无气孔、裂纹、夹渣、未焊透等缺陷;焊缝及接头性能满足技术要求。

因此焊接工艺参数的选择,对焊接质量具有重要意义。

1.焊接电流焊接过程中,当其他因素不变,增加焊接电流则电弧吹力增加,电弧可深入母材,使熔深h 增大,但电弧活动范围受到约束,所以焊缝宽度b 变化不大。

此外由于电流增加,焊丝的熔化速度也相应增加,因此余高e 稍有增加。

焊接电流对熔深h 、焊缝宽度b 和余高e 的影响,如图3-3-1所示。

图3-3-1 焊接电流对焊缝形状的影响图 3-3-2 电弧电压对焊缝形状的影响2.电弧电压在其他因素不变条件下,电弧电压升高,即焊接电弧拉长。

电弧作用于母材的面积增大,焊缝熔宽明显增加,而被熔化的焊丝填充量不变,所以焊缝余高相应减小。

同时,因电弧拉长部分电弧热量被更多的焊剂吸收熔化,拉长的电弧对熔池底部液体金属作用减弱而使续焊熔深略有减小。

当焊接电流不变,电弧电压减小,即电弧压短,作用于母材的面积减小而填充金属量不变,所以焊缝熔宽减小,余高增大,熔深有所增加,如图3-3-2所示。

表2-1-1 焊接电流与焊接电压的对应关系3.焊接速度根据线能量公式 V IU q /⋅=η当焊接速度提高时,线能量减小,焊缝熔宽和熔深都减小,余高也随之减小,因为单位长度焊缝上的焊丝金属的熔化量与焊接速度成反比,而熔宽则近似于与焊接速度成反比,所以焊接速度对焊缝成形的影响明显,焊缝的焙深、熔宽随焊接速度变化而变化,焊接速度快,焊缝熔深、熔宽小;焊接速度慢则焊缝熔深、熔宽大。

4.焊丝直径随着焊丝直径增大焊缝熔宽增加,这是因为电弧弧柱直径也增大,使电弧作用于母材热面积增加所致,而此时焙深则稍有下降。

当焊接电流不变而改变焊丝直径时,焊缝形状发生较大的变化,因为电流密度变化的原因,焊丝直径减小,电流密度增大,电弧热量更集中,熔深便增加。

埋弧焊焊接参数选择标准

埋弧焊焊接参数选择标准

本标准所引用的技术规范与标准分为“执行技术规范与标准”和“参考技术规范与标准”两部分2.1 执行技术规范与标准2.1.1GB50205-2002《钢结构工程施工及验收规范》2.1.2GB986-88《埋弧焊焊缝坡口的基本形式和尺寸》2.1.3JGJ81-2002《建筑钢结构焊接技术规程》2.1.4GB50205-2001《钢结构工程施工质量验收规范》2.1.5GB5293《碳素钢埋弧焊用焊剂》2.2 参考技术规范与标准2.2.1《钢结构制作安装手册》2.2.2《建筑钢结构施工手册》2.2.3《焊接手册》2.2.4《钢结构工程施工工艺标准》三部分:埋弧自动焊接技术3.1 焊接原理:焊接电弧是在焊剂层下的焊丝与母材之间产生,电弧热使其周围的母材、焊丝和焊剂熔化以致部分蒸发,金属和焊剂的蒸发气体形成一个气泡,电弧就在这个气泡内燃烧。

气泡上部被一层熔化了的焊剂——熔渣构成的外膜所包围,这层外膜以及覆盖在上面的未熔化的焊剂共同对焊接起隔离空气、绝热、和屏蔽光辐射作用。

焊丝熔化的熔滴落下与已局部熔化的母材混合而构成金属熔池,部分熔渣因密度小而浮在熔池表面。

随着焊丝向前移动,电弧力将熔池中熔化金属推向熔池后方,在随后的冷却过程中,这部分熔化金属凝固成焊缝。

熔渣凝固成渣壳,覆盖在焊缝金属表面上。

在焊接过程中,熔渣除了对熔池和焊缝金属起机械保护作用外,还与熔化金属发生冶金反应(如脱氧、去杂质、渗合金等),从而影响焊缝金属的化学成分。

3.2 埋弧焊焊接施工工艺流程3.3焊前准备工作331焊剂及焊丝的选择根据目前钢结构的钢材类型,常用埋弧焊丝和焊剂的选择如下表:表3.13.3.2焊接材料的保管和使用3.3.2.1焊剂的烘焙表3.2焊接低碳钢的熔炼焊剂在使用中放置时间不超过24h;焊接低合金钢的熔炼焊剂在使用中放置时间不超过8h;烧结焊剂经高温烘焙后,应转入100~150C的低温保温箱中存放,从保温箱中取出时间不超过4h。

完整版埋弧焊工艺参数及焊接技术

完整版埋弧焊工艺参数及焊接技术

完整版埋弧焊工艺参数及焊接技术在进行埋弧焊工艺参数及焊接技术的探讨之前,首先需要了解埋弧焊的基本概念。

埋弧焊是一种常用的电弧焊接方法,通过将焊丝埋在焊缝中,利用电弧加热熔化焊缝两侧的材料,形成牢固的焊接接头。

埋弧焊广泛应用于工业领域中的焊接工艺中,具有高效、快捷、高质量的特点。

一、埋弧焊工艺参数埋弧焊工艺参数是指在埋弧焊过程中需要控制和调节的参数。

不同的焊接材料和焊接工件要求不同的工艺参数,下面介绍几个常见的埋弧焊工艺参数。

1. 电流:焊接过程中电流的选择对焊接质量至关重要。

一般来说,焊接电流越大,焊接速度越快,但是如果电流过大,会使焊接接头产生过渡熔化、气孔等缺陷。

因此,在设置电流时需要根据焊接材料和工件的要求选择适当的电流。

2. 电压:焊接电压直接影响到焊接速度和焊缝的质量。

当电压过高时,焊接速度会加快,但是容易产生飞溅和熔穿等缺陷。

而电压过低则会导致焊缝不完全熔化,影响焊接接头的强度。

因此,在设置电压时需要根据焊接材料和工件的要求选择适当的电压。

3. 焊接速度:焊接速度是指焊枪在焊接过程中移动的速度。

焊接速度的选择应根据焊接材料和工件的要求以及焊接的位置和环境条件来确定。

焊接速度过快会导致焊缝不完全熔化,焊接速度过慢则容易使焊接区域过热,从而产生焊缝凹陷和熔渣残留等问题。

二、焊接技术除了合适的工艺参数,有效的焊接技术也是埋弧焊的关键。

下面介绍几个常用的焊接技术。

1. 准备工作:在焊接之前,需要进行准备工作,包括清除焊接表面的污垢和氧化物,并将焊缝两侧的材料加热到适当的温度,以确保焊接质量。

2. 焊接姿势:埋弧焊通常采用手持式焊枪进行,焊工应采取稳定的姿势,控制焊枪的角度和位置,以保证焊接过程的稳定和准确。

3. 焊接顺序:在进行多道焊接时,需要根据焊接材料和工件的要求确定焊接的顺序。

通常情况下,先焊接两端再进行中间部分的焊接,以保证焊接接头的质量和稳定性。

4. 控制温度:焊接过程中需要控制焊接区域的温度,以保证焊缝的质量。

自动埋弧焊的焊接参数的确定

自动埋弧焊的焊接参数的确定

自动埋弧焊的焊接参数的确定
(1)焊丝直径
在焊接电流、电压和速度不变的情况下,焊丝直径将直接影响焊缝的熔深。

随着焊丝直径的减小,熔深将加大,成型系数降低。

(2)焊接电流
对焊缝熔深大小影响最大的因素焊丝焊接电流。

随着焊接电流的增大,熔深将增加。

(3)电弧电压
电弧电压低时,熔深大、焊缝宽度窄;电弧电压高时熔深浅,焊缝宽度增加;过分正价电压,会使电弧不稳定,熔深少,易造成未焊透的现象,严重时还会造成咬边、气孔等缺陷。

(4)焊接速度
如焊接速度增加,焊缝的线能量减少,使熔宽减少、熔深增加,然而继续加大焊接速度,反而会使熔深减少,焊接速度快,电弧对焊件加热不足,使融合比减少,还会造成咬边、为焊透及气孔等缺陷。

埋弧焊焊接参数

埋弧焊焊接参数

1.3 埋弧焊工艺参数及焊接技术1.3.1 影响焊缝形状、性能的因素埋弧焊主要适用于平焊位置焊接,如果采用一定工装辅具也可以实现角焊和横焊位置的焊接。

埋弧焊时影响焊缝形状和性能的因素主要是焊接工艺参数、工艺条件等。

本节主要讨论平焊位置的情况。

(1) 焊接工艺参数的影响影响埋弧焊焊缝形状和尺寸的焊接工艺参数有焊接电流、电弧电压、焊接速度和焊丝直径等。

1)焊接电流当其他条件不变时,增加焊接电流对焊缝熔深的影响(如图1所示),无论是Y 形坡口还是I 形坡口,正常焊接条件下,熔深与焊接电流变化成正比,即状的影响,如图2所示。

电流小,熔深浅,余高和宽度不足;电流过大,熔深大,余高过大,易产生高温裂纹。

图1 焊接电流与熔深的关系(φ4.8mm)图2 焊接电流对焊缝断面形状的影响a)I形接头b)Y形接头2)电弧电压电弧电压和电弧长度成正比,在相同的电弧电压和焊接电流时,如果选用的焊剂不同,电弧空间电场强度不同,则电弧长度不同。

如果其他条件不变,改变电弧电压对焊缝形状的影响如图3所示。

电弧电压低,熔深大,焊缝宽度窄,易产生热裂纹:电弧电压高时,焊缝宽度增加,余高不够。

埋弧焊时,电弧电压是依据焊接电流调整的,即一定焊接电流要保持一定的弧长才可能保证焊接电弧的稳定燃烧,所以电弧电压的变化范围是有限的。

图3电弧电压对焊缝断面形状的影响a)I形接头b)Y形接头焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。

焊接速度对焊缝断面形状的影响,如图 5 所示。

焊接速度过小,熔化金属量多,焊缝成形差:焊接速度较大时,熔化金属量不足,容易产生咬边。

实际焊接时,为了提高生产率,在增加焊接速度的同时必须加大电弧功率,才能保证焊缝质量。

3)焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。

埋弧焊焊接参数选择标准

埋弧焊焊接参数选择标准

埋弧焊焊接参数选择标准 Prepared on 24 November 2020本标准所引用的技术规范与标准分为“执行技术规范与标准”和“参考技术规范与标准”两部分。

执行技术规范与标准2.1.1 GB50205-2002 《钢结构工程施工及验收规范》2.1.2 GB986-88 《埋弧焊焊缝坡口的基本形式和尺寸》2.1.3 JGJ81-2002 《建筑钢结构焊接技术规程》2.1.4 GB50205-2001 《钢结构工程施工质量验收规范》2.1.5 GB5293 《碳素钢埋弧焊用焊剂》参考技术规范与标准2.2.1 《钢结构制作安装手册》2.2.2 《建筑钢结构施工手册》2.2.3 《焊接手册》2.2.4 《钢结构工程施工工艺标准》三部分:埋弧自动焊接技术焊接原理:焊接电弧是在焊剂层下的焊丝与母材之间产生,电弧热使其周围的母材、焊丝和焊剂熔化以致部分蒸发,金属和焊剂的蒸发气体形成一个气泡,电弧就在这个气泡内燃烧。

气泡上部被一层熔化了的焊剂——熔渣构成的外膜所包围,这层外膜以及覆盖在上面的未熔化的焊剂共同对焊接起隔离空气、绝热、和屏蔽光辐射作用。

焊丝熔化的熔滴落下与已局部熔化的母材混合而构成金属熔池,部分熔渣因密度小而浮在熔池表面。

随着焊丝向前移动,电弧力将熔池中熔化金属推向熔池后方,在随后的冷却过程中,这部分熔化金属凝固成焊缝。

熔渣凝固成渣壳,覆盖在焊缝金属表面上。

在焊接过程中,熔渣除了对熔池和焊缝金属起机械保护作用外,还与熔化金属发生冶金反应(如脱氧、去杂质、渗合金等),从而影响焊缝金属的化学成分。

埋弧焊焊接施工工艺流程3.3.1焊剂及焊丝的选择根据目前钢结构的钢材类型,常用埋弧焊丝和焊剂的选择如下表:表3.3.2焊接材料的保管和使用 3.3.2.1焊剂的烘焙3.3.2.2焊剂的保存焊接低碳钢的熔炼焊剂在使用中放置时间不超过24h ;焊接低合金钢的熔炼焊剂在使用中放置时间不超过8h ;烧结焊剂经高温烘焙后,应转入100~150℃的低温保温箱中存放,从保温箱中取出时间不超过4h 。

埋弧焊不锈钢的焊接参数表

埋弧焊不锈钢的焊接参数表

埋弧焊不锈钢的焊接参数表以埋弧焊不锈钢的焊接参数表为标题,写一篇文章。

埋弧焊是一种常用的焊接方法,适用于不锈钢等金属材料的焊接。

在进行埋弧焊不锈钢时,需要根据具体的焊接要求和材料特性,设置合适的焊接参数。

下面是一份常见的埋弧焊不锈钢的焊接参数表。

焊接参数表:材质:不锈钢焊接方式:埋弧焊焊接电流:100-250A焊接电压:20-30V焊接速度:50-100cm/min焊丝直径:1.2-2.0mm焊接极性:直流电源,直流电极负极焊接气体:保护气体为纯净的氩气气体流量:8-12L/min焊接角度:30-45度根据上述焊接参数表,我们可以根据不同的焊接要求和工件材料,进行合理的参数选择,以确保焊接质量和效率。

焊接电流和电压是影响焊接质量和熔化金属的主要参数。

一般来说,焊接电流越大,熔化金属的深度越大,但是过大的电流会导致焊缝过宽,焊接变形增大。

电压的选择要根据电流来确定,通常电压在20-30V之间。

焊接速度也是影响焊接质量的重要参数。

焊接速度过快会导致熔化金属不充分,焊缝质量下降;焊接速度过慢则容易产生过大的热影响区,引起焊缝变形。

一般来说,焊接速度在50-100cm/min之间。

焊丝直径的选择要根据焊缝的宽度和所需的焊接电流来确定。

一般来说,焊丝直径选择在1.2-2.0mm之间。

焊接极性一般选择直流电源,电极负极连接焊丝。

这样可以保证焊缝质量和电弧稳定性。

保护气体在不锈钢焊接中起到保护熔化金属和焊缝的作用,一般选择纯净的氩气,气体流量在8-12L/min之间。

焊接角度要根据工件的形状和焊接要求来确定。

一般来说,焊接角度选择在30-45度之间。

通过合理选择和调整上述焊接参数,可以实现不锈钢的高质量焊接。

在实际应用中,还需要根据具体情况进行适当的调整和优化。

总结起来,埋弧焊不锈钢的焊接参数表提供了一些常见的焊接参数范围,供焊接操作人员参考。

根据具体的焊接要求和工件材料,合理选择和调整焊接参数,可以实现高效、高质量的不锈钢焊接。

埋弧焊焊接参数

埋弧焊焊接参数

1.3 埋弧焊工艺参数及焊接技术1.3.1 影响焊缝形状、性能的因素埋弧焊主要适用于平焊位置焊接,如果采用一定工装辅具也可以实现角焊和横焊位置的焊接。

埋弧焊时影响焊缝形状和性能的因素主要是焊接工艺参数、工艺条件等。

本节主要讨论平焊位置的情况。

(1) 焊接工艺参数的影响影响埋弧焊焊缝形状和尺寸的焊接工艺参数有焊接电流、电弧电压、焊接速度和焊丝直径等。

1)焊接电流当其他条件不变时,增加焊接电流对焊缝熔深的影响(如图1所示),无论是Y 形坡口还是I 形坡口,正常焊接条件下,熔深与焊接电流变化成正比,即状的影响,如图2所示。

电流小,熔深浅,余高和宽度不足;电流过大,熔深大,余高过大,易产生高温裂纹。

图1 焊接电流与熔深的关系(φ4.8mm)图2 焊接电流对焊缝断面形状的影响a)I形接头b)Y形接头2)电弧电压电弧电压和电弧长度成正比,在相同的电弧电压和焊接电流时,如果选用的焊剂不同,电弧空间电场强度不同,则电弧长度不同。

如果其他条件不变,改变电弧电压对焊缝形状的影响如图3所示。

电弧电压低,熔深大,焊缝宽度窄,易产生热裂纹:电弧电压高时,焊缝宽度增加,余高不够。

埋弧焊时,电弧电压是依据焊接电流调整的,即一定焊接电流要保持一定的弧长才可能保证焊接电弧的稳定燃烧,所以电弧电压的变化范围是有限的。

图3电弧电压对焊缝断面形状的影响a)I形接头b)Y形接头焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。

焊接速度对焊缝断面形状的影响,如图 5 所示。

焊接速度过小,熔化金属量多,焊缝成形差:焊接速度较大时,熔化金属量不足,容易产生咬边。

实际焊接时,为了提高生产率,在增加焊接速度的同时必须加大电弧功率,才能保证焊缝质量。

3)焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。

埋弧焊焊接参数

埋弧焊焊接参数

1.3 埋弧焊工艺参数及焊接技术1.3.1 影响焊缝形状、性能的因素埋弧焊主要适用于平焊位置焊接,如果采用一定工装辅具也可以实现角焊和横焊位置的焊接。

埋弧焊时影响焊缝形状和性能的因素主要是焊接工艺参数、工艺条件等。

本节主要讨论平焊位置的情况。

(1) 焊接工艺参数的影响影响埋弧焊焊缝形状和尺寸的焊接工艺参数有焊接电流、电弧电压、焊接速度和焊丝直径等。

1)焊接电流当其他条件不变时,增加焊接电流对焊缝熔深的影响(如图1所示),无论是Y 形坡口还是I 形坡口,正常焊接条件下,熔深与焊接电流变化成正比,即状的影响,如图2所示。

电流小,熔深浅,余高和宽度不足;电流过大,熔深大,余高过大,易产生高温裂纹。

图1 焊接电流与熔深的关系(φ4.8mm)图2 焊接电流对焊缝断面形状的影响a)I形接头b)Y形接头2)电弧电压电弧电压和电弧长度成正比,在相同的电弧电压和焊接电流时,如果选用的焊剂不同,电弧空间电场强度不同,则电弧长度不同。

如果其他条件不变,改变电弧电压对焊缝形状的影响如图3所示。

电弧电压低,熔深大,焊缝宽度窄,易产生热裂纹:电弧电压高时,焊缝宽度增加,余高不够。

埋弧焊时,电弧电压是依据焊接电流调整的,即一定焊接电流要保持一定的弧长才可能保证焊接电弧的稳定燃烧,所以电弧电压的变化范围是有限的。

图3电弧电压对焊缝断面形状的影响a)I形接头b)Y形接头焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。

焊接速度对焊缝断面形状的影响,如图 5 所示。

焊接速度过小,熔化金属量多,焊缝成形差:焊接速度较大时,熔化金属量不足,容易产生咬边。

实际焊接时,为了提高生产率,在增加焊接速度的同时必须加大电弧功率,才能保证焊缝质量。

3)焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。

埋弧焊焊接参数

埋弧焊焊接参数

1.3 埋弧焊工艺参数及焊接技术1.3.1 影响焊缝形状、性能的因素埋弧焊主要适用于平焊位置焊接,如果采用一定工装辅具也可以实现角焊和横焊位置的焊接。

埋弧焊时影响焊缝形状和性能的因素主要是焊接工艺参数、工艺条件等。

本节主要讨论平焊位置的情况。

(1) 焊接工艺参数的影响影响埋弧焊焊缝形状和尺寸的焊接工艺参数有焊接电流、电弧电压、焊接速度和焊丝直径等。

1)焊接电流当其他条件不变时,增加焊接电流对焊缝熔深的影响(如图1所示),无论是Y 形坡口还是I 形坡口,正常焊接条件下,熔深与焊接电流变化成正比,即状的影响,如图2所示。

电流小,熔深浅,余高和宽度不足;电流过大,熔深大,余高过大,易产生高温裂纹。

图1 焊接电流与熔深的关系(φ4.8mm)图2 焊接电流对焊缝断面形状的影响a)I形接头b)Y形接头2)电弧电压电弧电压和电弧长度成正比,在相同的电弧电压和焊接电流时,如果选用的焊剂不同,电弧空间电场强度不同,则电弧长度不同。

如果其他条件不变,改变电弧电压对焊缝形状的影响如图3所示。

电弧电压低,熔深大,焊缝宽度窄,易产生热裂纹:电弧电压高时,焊缝宽度增加,余高不够。

埋弧焊时,电弧电压是依据焊接电流调整的,即一定焊接电流要保持一定的弧长才可能保证焊接电弧的稳定燃烧,所以电弧电压的变化范围是有限的。

图3电弧电压对焊缝断面形状的影响a)I形接头b)Y形接头焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。

焊接速度对焊缝断面形状的影响,如图 5 所示。

焊接速度过小,熔化金属量多,焊缝成形差:焊接速度较大时,熔化金属量不足,容易产生咬边。

实际焊接时,为了提高生产率,在增加焊接速度的同时必须加大电弧功率,才能保证焊缝质量。

3)焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。

埋弧焊焊接参数

埋弧焊焊接参数

1.3 埋弧焊工艺参数及焊接技术1.3.1 影响焊缝形状、性能的因素埋弧焊主要适用于平焊位置焊接,如果采用一定工装辅具也可以实现角焊和横焊位置的焊接。

埋弧焊时影响焊缝形状和性能的因素主要是焊接工艺参数、工艺条件等。

本节主要讨论平焊位置的情况。

(1) 焊接工艺参数的影响影响埋弧焊焊缝形状和尺寸的焊接工艺参数有焊接电流、电弧电压、焊接速度和焊丝直径等。

1)焊接电流当其他条件不变时,增加焊接电流对焊缝熔深的影响(如图1所示),无论是Y 形坡口还是I 形坡口,正常焊接条件下,熔深与焊接电流变化成正比,即状的影响,如图2所示。

电流小,熔深浅,余高和宽度不足;电流过大,熔深大,余高过大,易产生高温裂纹。

图1 焊接电流与熔深的关系(φ4.8mm)图2 焊接电流对焊缝断面形状的影响a)I形接头b)Y形接头2)电弧电压电弧电压和电弧长度成正比,在相同的电弧电压和焊接电流时,如果选用的焊剂不同,电弧空间电场强度不同,则电弧长度不同。

如果其他条件不变,改变电弧电压对焊缝形状的影响如图3所示。

电弧电压低,熔深大,焊缝宽度窄,易产生热裂纹:电弧电压高时,焊缝宽度增加,余高不够。

埋弧焊时,电弧电压是依据焊接电流调整的,即一定焊接电流要保持一定的弧长才可能保证焊接电弧的稳定燃烧,所以电弧电压的变化范围是有限的。

图3电弧电压对焊缝断面形状的影响a)I形接头b)Y形接头焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。

焊接速度对焊缝断面形状的影响,如图 5 所示。

焊接速度过小,熔化金属量多,焊缝成形差:焊接速度较大时,熔化金属量不足,容易产生咬边。

实际焊接时,为了提高生产率,在增加焊接速度的同时必须加大电弧功率,才能保证焊缝质量。

3)焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。

埋弧焊焊接参数

埋弧焊焊接参数

1.3 埋弧焊工艺参数及焊接技术1.3.1 影响焊缝形状、性能的因素埋弧焊主要适用于平焊位置焊接,如果采用一定工装辅具也可以实现角焊和横焊位置的焊接。

埋弧焊时影响焊缝形状和性能的因素主要是焊接工艺参数、工艺条件等。

本节主要讨论平焊位置的情况。

(1) 焊接工艺参数的影响影响埋弧焊焊缝形状和尺寸的焊接工艺参数有焊接电流、电弧电压、焊接速度和焊丝直径等。

1)焊接电流当其他条件不变时,增加焊接电流对焊缝熔深的影响(如图1所示),无论是Y 形坡口还是I 形坡口,正常焊接条件下,熔深与焊接电流变化成正比,即状的影响,如图2所示。

电流小,熔深浅,余高和宽度不足;电流过大,熔深大,余高过大,易产生高温裂纹。

图1 焊接电流与熔深的关系(φ4.8mm)图2 焊接电流对焊缝断面形状的影响a)I形接头b)Y形接头2)电弧电压电弧电压和电弧长度成正比,在相同的电弧电压和焊接电流时,如果选用的焊剂不同,电弧空间电场强度不同,则电弧长度不同。

如果其他条件不变,改变电弧电压对焊缝形状的影响如图3所示。

电弧电压低,熔深大,焊缝宽度窄,易产生热裂纹:电弧电压高时,焊缝宽度增加,余高不够。

埋弧焊时,电弧电压是依据焊接电流调整的,即一定焊接电流要保持一定的弧长才可能保证焊接电弧的稳定燃烧,所以电弧电压的变化范围是有限的。

图3电弧电压对焊缝断面形状的影响a)I形接头b)Y形接头焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。

焊接速度对焊缝断面形状的影响,如图 5 所示。

焊接速度过小,熔化金属量多,焊缝成形差:焊接速度较大时,熔化金属量不足,容易产生咬边。

实际焊接时,为了提高生产率,在增加焊接速度的同时必须加大电弧功率,才能保证焊缝质量。

3)焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。

埋弧焊焊接参数

埋弧焊焊接参数

1.3 埋弧焊工艺参数及焊接技术1.3.1 影响焊缝形状、性能的因素埋弧焊主要适用于平焊位置焊接,如果采用一定工装辅具也可以实现角焊和横焊位置的焊接。

埋弧焊时影响焊缝形状和性能的因素主要是焊接工艺参数、工艺条件等。

本节主要讨论平焊位置的情况。

(1) 焊接工艺参数的影响影响埋弧焊焊缝形状和尺寸的焊接工艺参数有焊接电流、电弧电压、焊接速度和焊丝直径等。

1)焊接电流当其他条件不变时,增加焊接电流对焊缝熔深的影响(如图1所示),无论是Y 形坡口还是I 形坡口,正常焊接条件下,熔深与焊接电流变化成正比,即状的影响,如图2所示。

电流小,熔深浅,余高和宽度不足;电流过大,熔深大,余高过大,易产生高温裂纹。

图1 焊接电流与熔深的关系(φ4.8mm)图2 焊接电流对焊缝断面形状的影响a)I形接头b)Y形接头2)电弧电压电弧电压和电弧长度成正比,在相同的电弧电压和焊接电流时,如果选用的焊剂不同,电弧空间电场强度不同,则电弧长度不同。

如果其他条件不变,改变电弧电压对焊缝形状的影响如图3所示。

电弧电压低,熔深大,焊缝宽度窄,易产生热裂纹:电弧电压高时,焊缝宽度增加,余高不够。

埋弧焊时,电弧电压是依据焊接电流调整的,即一定焊接电流要保持一定的弧长才可能保证焊接电弧的稳定燃烧,所以电弧电压的变化范围是有限的。

图3电弧电压对焊缝断面形状的影响a)I形接头b)Y形接头焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。

焊接速度对焊缝断面形状的影响,如图 5 所示。

焊接速度过小,熔化金属量多,焊缝成形差:焊接速度较大时,熔化金属量不足,容易产生咬边。

实际焊接时,为了提高生产率,在增加焊接速度的同时必须加大电弧功率,才能保证焊缝质量。

3)焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。

埋弧焊工艺参数及焊接技术

埋弧焊工艺参数及焊接技术

1.3 埋弧焊工艺参数及焊接技术1.3.1 影响焊缝形状、性能的因素埋弧焊主要适用于平焊位置焊接,如果采用一定工装辅具也可以实现角焊和横焊位置的焊接。

埋弧焊时影响焊缝形状和性能的因素主要是焊接工艺参数、工艺条件等。

本节主要讨论平焊位置的情况。

(1) 焊接工艺参数的影响影响埋弧焊焊缝形状和尺寸的焊接工艺参数有焊接电流、电弧电压、焊接速度和焊丝直径等。

1)焊接电流当其他条件不变时,增加焊接电流对焊缝熔深的影响(如图1所示),无论是Y 形坡口还是I 形坡口,正常焊接条件下,熔深与焊接电流变化成正比,即状的影响,如图2所示。

电流小,熔深浅,余高和宽度不足;电流过大,熔深大,余高过大,易产生高温裂纹图1 焊接电流与熔深的关系(φ4.8mm)图2 焊接电流对焊缝断面形状的影响a)I形接头b)Y形接头2)电弧电压电弧电压和电弧长度成正比,在相同的电弧电压和焊接电流时,如果选用的焊剂不同,电弧空间电场强度不同,则电弧长度不同。

如果其他条件不变,改变电弧电压对焊缝形状的影响如图3所示。

电弧电压低,熔深大,焊缝宽度窄,易产生热裂纹:电弧电压高时,焊缝宽度增加,余高不够。

埋弧焊时,电弧电压是依据焊接电流调整的,即一定焊接电流要保持一定的弧长才可能保证焊接电弧的稳定燃烧,所以电弧电压的变化范围是有限的图3电弧电压对焊缝断面形状的影响a)I形接头b)Y形接头3)焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图 4 所示。

焊接速度对焊缝断面形状的影响,如图5 所示。

焊接速度过小,熔化金属量多,焊缝成形差:焊接速度较大时,熔化金属量不足,容易产生咬边。

实际焊接时,为了提高生产率,在增加焊接速度的同时必须加大电弧功率,才能保证焊缝质量。

图4 焊接速度对焊缝形成的影响H-熔深B-熔宽图5焊接速度对焊缝断面形状的影响a)I形接头b)Y形接头4)焊丝直径焊接电流、电弧电压、焊接速度一定时,焊丝直径不同,焊缝形状会发生变化。

埋弧焊参数

埋弧焊参数

1. 焊接规范及其影响埋弧焊最主要的焊接规范是焊接电流、焊接电压和焊接速度,其次是焊丝直径、焊丝伸出长度、焊剂和焊丝类型、焊剂粒度和焊剂层厚度等。

所有这些规范,对焊缝成形和焊接质量都有不同程度的影响(表1)此外,在同样焊接规范下焊件倾斜角度也直接影响焊缝成形。

操作者必须知道这些规范的影响情况,才能正确选择和调节规范,焊出优质焊缝。

(1)焊接电流焊接电流是埋弧焊最重要的规范,它直接决定焊丝熔化速度、熔深和母材熔化量。

增大焊接电流可以加快焊丝熔化速度,提高焊接生产率。

同时,电弧吹力随焊接电流而增大,熔池金属被电弧排开,使熔池底部未熔化母材受到电弧直接加表1 焊接规范及其影响焊缝特点当以下规范增大时的影响焊接电流焊接电压(伏)焊接速度(米/时)焊丝直径1500(安)以内由22~24到32~34 由34~36到50~60 10~40 40~100熔深显著增大略增大略减小无变化减小减小熔宽略增大增大显著增大(除直流正接)减小减小增大余高显著增大减小减小略增大略增大减小形状系数显著减小增大显著增大(除直流正接)减小略减小增大熔合比显著减小略增大无变化显著增大增大减小焊缝特点当以下规范增大时的影响焊丝前倾焊件倾斜间歇和坡口焊剂粒度上坡焊下坡焊熔深显著减小略增大减小无变化略减小熔宽增大略减小增大无变化略增大余高减小增大减小减小略减小形状系数显著增大减小增大无变化增大熔合比减小略增大减小减小略减小热,熔深增加。

电流过大时会造成烧穿钢板,电流过大还会使焊缝余高过高,热影响区增大和引起较大焊接变形。

电流减小,熔深减小。

电流过小时,容易产生未焊透,电弧稳定性不好。

电流变化对熔宽变化影响不大。

(2)焊接电压焊接电压是焊丝端头与熔化金属表面间的电压,即电弧两端的电压。

由于这个电压难以测量,实际生产中是测量导电嘴与工件间的电压,可由机头上的电压表读出。

当焊接电缆较长时,由于电流大,在电缆上有电压降,焊接电源上电压表的指示值,比机头上电压表的指示值要高1~2伏以上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本标准所引用的技术规范与标准分为“执行技术规范与标准”和“参考技术规范与标准”两部分。

2.1执行技术规范与标准2.1.1 GB50205-2002 《钢结构工程施工及验收规范》2.1.2 GB986-88 《埋弧焊焊缝坡口的基本形式和尺寸》2.1.3 JGJ81-2002 《建筑钢结构焊接技术规程》2.1.4 GB50205-2001 《钢结构工程施工质量验收规范》2.1.5 GB5293 《碳素钢埋弧焊用焊剂》2.2参考技术规范与标准2.2.1 《钢结构制作安装手册》2.2.2 《建筑钢结构施工手册》2.2.3 《焊接手册》2.2.4 《钢结构工程施工工艺标准》三部分:埋弧自动焊接技术3.1焊接原理:焊接电弧是在焊剂层下的焊丝与母材之间产生,电弧热使其周围的母材、焊丝和焊剂熔化以致部分蒸发,金属和焊剂的蒸发气体形成一个气泡,电弧就在这个气泡内燃烧。

气泡上部被一层熔化了的焊剂——熔渣构成的外膜所包围,这层外膜以及覆盖在上面的未熔化的焊剂共同对焊接起隔离空气、绝热、和屏蔽光辐射作用。

焊丝熔化的熔滴落下与已局部熔化的母材混合而构成金属熔池,部分熔渣因密度小而浮在熔池表面。

随着焊丝向前移动,电弧力将熔池中熔化金属推向熔池后方,在随后的冷却过程中,这部分熔化金属凝固成焊缝。

熔渣凝固成渣壳,覆盖在焊缝金属表面上。

在焊接过程中,熔渣除了对熔池和焊缝金属起机械保护作用外,还与熔化金属发生冶金反应(如脱氧、去杂质、渗合金等),从而影响焊缝金属的化学成分。

3.2埋弧焊焊接施工工艺流程3.3 焊前准备工作 3.3.1焊剂及焊丝的选择根据目前钢结构的钢材类型,常用埋弧焊丝和焊剂的选择如下表:表3.13.3.2焊接材料的保管和使用3.3.2.1焊剂的烘焙埋弧焊用焊剂的烘焙温度如下表:表3.23.3.2.2焊剂的保存焊接低碳钢的熔炼焊剂在使用中放置时间不超过24h;焊接低合金钢的熔炼焊剂在使用中放置时间不超过8h;烧结焊剂经高温烘焙后,应转入100~150℃的低温保温箱中存放,从保温箱中取出时间不超过4h。

3.3.2.3焊剂的领用和使用焊接所用的埋弧焊焊剂必须在二级库领取;埋弧焊过程中,未熔化的焊剂可以反复使用,但一般不超过10次。

3.3.3埋弧自动焊焊接方式的选择根据工厂的设备情况,埋弧自动焊主要有小车式埋弧自动焊和门型埋弧自动焊,根据产品类型的不同选择相应的焊接方式,通常钢板的拼接采用小车式埋弧自动焊,箱型梁(柱)、工字梁(柱)等工件采用门型埋弧自动焊。

3.3.4焊接前对设备的检查焊接前,先检查整个焊接系统的设备和工具全部运转正常,并确保安全的条件下才能运行,而且在焊接过程中应注意保持。

主要检验指标如下:a.焊接的电压电流表和焊接速度调节钮上的刻度,应与焊接速度与刻度关系曲线相对应;b.焊剂要完全覆盖熔池,不能露出弧光;c.机体行走平稳,使用轨道时要保证平直和无振动;d.焊丝传送正常,无时快时慢现象;e.焊咀的角度和位置准确。

3.3.5埋弧自动焊坡口的制备根据钢板厚度和技术要求制备坡口,坡口尺寸符合工艺标准,要求使用半自动切割坡口。

坡口加工完毕后,应对坡口面及周围50mm的范围内进行打磨,去除铁锈、氧化皮及焊点等杂物。

3.3.6组装和定位焊3.3.6.1接头的组装接头的组装是指组合件或者分组件的装配,它直接影响焊缝质量、强度和变形。

应严格控制错边和间隙的允差,参照下表、当出现局部间隙过大时,可用性能相近的电弧焊进行修补。

不允许随便塞入金属垫片或焊条头。

3.3.6.2定位焊定位焊是为了装配和固定焊件接头的位置而进行的焊接。

使用与母材性能相近而抗裂性能好的焊条。

定位焊焊缝尺寸要求如下表:表3-43.3.7引弧板和引出板通常始焊和终焊处最易产生焊接缺陷,例如焊瘤、弧坑等,避免这些缺陷落在接头的始末端,从而保证焊缝质量均匀。

引弧板材质应与母材相同,其坡口尺寸形状也应与母材相同。

埋弧焊焊缝引出长度应大于60mm,其引弧、引出板的板宽不小于100mm,长度不小于150mm;引弧板及熄弧板的设置形式及点焊位置如下示意图所示:3.3.8埋弧焊的焊接衬垫和打底焊焊接衬垫是为了防止烧穿,保证接头根部焊透和焊缝背面成形。

垫板的厚度视母材的板厚而定,一般在5~10mm之间,其宽度在20~50mm之间。

打底焊就是焊接有坡口的接头时,在接头根部焊接的第一条焊道。

其目的是使埋弧焊能焊透而不至于烧穿。

埋弧自动焊接的打底焊可以采用手工电弧焊和CO2气体保护焊,焊条和焊丝的选择要与母材相匹配,焊完打底焊道后,须打磨或刨削接头根部,以保证在无缺陷的清洁金属上熔敷第一道正面埋弧焊缝。

3.4埋弧焊焊接规范的选择3.4.1焊接规范与焊缝形状的关系焊接规范是决定焊缝截面形状的重要参数,也是控制焊缝质量的重要手段。

焊接规范参数主要是指焊接电流、焊接电压、焊接速度、焊丝直径和送丝速度等。

所谓焊缝截面形状,一般是指对接焊缝宽度b、熔透深度h和余高e;角接焊缝的焊脚K、喉深H、凹凸度C和下陷等见图3-1:图3-1焊缝截面形状3.4.1.1焊接电流对焊缝形状的影响焊接电流是决定熔深的主要参数,一般情况下,电流越大,熔深越深。

随着电流的增加,由于电弧潜入熔池的深度增加,使电弧缩短,电弧摆动能力减弱,因此,这时熔宽增加不明显,若继续增加电流,电弧产生的热量大,焊丝熔化量增加,这时,熔深反倒不再增加。

当焊接电流较高时,由于熔深增大,熔宽变化不大,这时焊缝截面的形状系数变小,这样的焊缝结晶方向不利于气体和杂质上浮逸出,容易产生气孔、夹渣和裂纹,为了改善这一情况,在增加焊接电流的同时,还必须相应的提高电弧电压,以利于得到较为合适的焊缝形状。

当采用直流电源时,由于电弧较为稳定,电弧对母材的加热较为集中,因此,其熔深在采用相同电流值的情况下比交流电源要深,另外,在直流电源时采用反极性(工件接负)接法要比正极性接法要深,它与手工电弧焊时相反。

焊接电流对焊缝截面形状的影响规律见图3-2b -焊缝宽度 ; h -焊缝深度; e -余高;I -电流 图3-2 焊接电流对焊缝截面形状的影响3.4.1.2电弧电压对焊缝形状的影响随着电弧电压的增加,焊缝的宽度将明显增加,而熔深和余高则有所下降。

电弧电压的增加,实际上就是电弧长度的增加,这样母材加热面积增加,从而焊缝的熔宽也增加。

当电弧拉长后,焊剂的熔化量也会相应的增加,而焊缝余高和熔深反而会有所减小,因此,单一的过份增加电弧电压,容易造成未焊透,焊播粗糙,脱渣困难,严重时还会造成焊缝咬边。

电弧电压对焊缝宽度、熔深和余高的影响规律见图3b-焊缝宽度; h-焊缝深度; e-余高; v-电弧电压图3-3 电弧电压对焊缝截面的影响3.4.1.3焊接速度的影响增加焊接速度时,焊缝的线能量将减小,焊缝宽度明显变窄,而余高则稍有增加。

当焊接速度过快时(如每小时超过40米左右),由于电弧对母材加热时间缩短,故熔深会逐渐减小。

不适当的提高焊接速度,有发生母材未焊透和边缘未熔合的危险,但适当的提高焊接速度,对减小焊接变形是有利的。

焊接速度与熔深,熔宽的关系见图3-4:b-焊缝宽度;h-焊缝深度;Vc-焊接速度(米/小时)图3-4 焊接速度与熔深、熔宽的关系3.4.1.4焊丝直径的影响随着焊丝直径的减小,电流密度则增加,母材的熔深增大,成形系数提高,因此生产效率也将随之提高。

由于增加了熔深,因此可以降低对母材的开槽要求,这样不但可以节省人工和焊丝消耗量,同时,还可节省电能和减小工件变形。

焊丝直径与电流密度,熔深的关系见表:表3.5焊接电流应在规定的范围内,不能为增大熔深过分的增加电流。

埋弧自动焊焊丝直径与电流、电压的范围见表3-6:表3.6电弧电压要与焊接电流相匹配,采用φ4.8mm焊丝时,电弧电压与焊接电流的配合关系可参考下表:3.4.1.5焊剂类型和颗粒度的影响:目前常用的焊剂有熔炼型焊剂和烧结型焊剂二类,由于前者的熔点低于后者,因此在相同焊接规范参数下,前者的熔深也低于后者。

由于烧结型焊剂的熔点高,因此焊剂的消耗量应相应的减少,焊缝成型和脱渣性比熔炼焊剂要好,但烧结型焊剂的吸潮性比较强,所以在使用过程中应严格执行焊剂烘培制度。

此外,焊剂的颗粒度越细,焊件的熔透深度也相应增加。

3.4.1.6焊丝伸出长度的影响:焊丝伸出长度增加,焊丝产生的电阻热便随之增加,焊丝被预热,熔化速度加快,熔深和熔合比将稍有减小。

当电流密度较大时,焊丝伸出长度的影响更为明显。

3.4.7焊丝和工件倾斜度的影响焊丝倾斜角越大,则焊缝宽度增加,而熔深及余高减小,若焊丝顺焊接方向倾斜,则焊件熔深增加,而逆焊接方向倾斜,焊件的熔深会减小。

在焊接有斜坡的焊件时,顺斜坡方向向上的焊缝余高呈凸型,而逆斜坡方向向下焊接的焊缝余高趋于凹型。

3.4.1.8焊剂的堆放高度焊接时,焊剂的堆放高度对焊接熔池表面的压力成正比。

焊剂堆放过高,焊缝表面波纹粗大,凹凸不平,有“麻点”。

一般使用玻璃状焊剂的堆放高度以25~45mm为佳,高速焊时宜堆放低些,但不能太低,否则电弧外露,焊缝表面变得粗糙。

3.4.1.9工件间隙和定位焊的影响工件的间隙大小,对熔深的影响明显,间隙越大,熔深也越深,所以,过大的间隙会造成焊穿。

在封底焊时由于无间隙,若规范选择不当,焊缝的余高过凸,这也是不允许的。

定位焊的焊脚大小,对角焊缝的成型将产生影响,若焊接规范选择不当,在主焊缝上便会凸现定位焊缝的痕迹,影响焊缝的外型,因此,若定位焊缝焊后需要覆盖埋弧焊的焊件,定位焊脚的尺寸应控制在4~5mm。

在进行箱型柱(梁)的焊接时,对于坡口焊缝在进行气保焊打底埋弧焊盖面时,应注意气保焊打底的质量,气保焊焊缝不应超过焊缝的坡口面。

3.5埋弧焊焊接参考规范3.5.1H型钢船型位置自动埋弧焊3.5.2厚板H型钢船型位置自动埋弧焊:焊件的坡口形式在考虑施焊和坡口加工条件下,尽量减小焊接变形,提高劳动生产率,降低成本,通常在坡口形式的选择上主要按以下坡口形式进行选择:在焊接工艺上主要采取气保焊打底,埋弧自动焊填充及盖面,在船形位置施焊,过程中应着重注意以下几点:⑴.焊接顺序应为:大坡口面打底焊一道,打底厚度根据板厚为10-20mm;反面碳弧气刨清根后,打底焊一道,打底厚度根据板厚为15-30mm,然后,填充、盖面;翻身后进行正面焊缝的填充、盖面。

⑵.在具体的施焊过程中,根据实际焊缝的高度、构件的变形情况,加强构件翻身的次数,防止扭曲变形。

箱型柱(梁)坡口平焊单丝埋弧焊箱型柱(梁)坡口平焊双丝埋弧焊坡口形式及焊缝成型规范要求如下:第四部分:埋弧自动焊质量控制4.1焊接过程中,应随时注意观察影响焊缝质量的因素,保证焊接的连续性,如在零件加工、接缝组对和焊接过程中均应严格执行工艺要求,否则就会产生一系列不符合工艺要求的生产准备和焊接缺陷。

相关文档
最新文档