玻璃的折射率和色散
玻璃折射知识点总结
玻璃折射知识点总结介绍玻璃是一种常见的透明物质,广泛应用于建筑、汽车、家具、装饰等领域。
玻璃的折射特性使其具有许多有趣的物理性质,同时也有很多实际应用价值。
通过对玻璃折射的深入了解,我们可以更好地利用玻璃的性质,设计出更加优秀的产品和技术。
1. 折射和玻璃的相关概念折射是光线在通过两种介质界面时改变传播方向的现象。
当光线从一种介质射向另一种介质时,由于两种介质的光速不同,光线会发生折射。
玻璃是一种典型的介质,对光线有明显的折射效应。
2. 折射定律当光线从一种介质射向另一种介质时,它会满足一定的折射定律。
这个定律可以通过数学公式来描述:n1*sin(θ1) = n2*sin(θ2),其中n1和n2分别代表两种介质的折射率,θ1和θ2分别代表入射角和折射角。
3. 玻璃的折射率玻璃是一种典型的介质,具有特定的折射率。
不同种类的玻璃由于成分不同,其折射率也有所差异。
根据玻璃的折射率,可以计算出光线在玻璃中的传播路径和折射角度。
4. 全反射当光线从折射率较高的介质射向折射率较低的介质时,可能会发生全反射的现象。
这是因为,当入射角足够大时,折射定律中的折射角会超过90度,光线无法通过介质界面,而是会完全反射回原来的介质中。
5. 玻璃的折射应用玻璃的折射特性使其在很多实际应用中得到了广泛的应用。
例如,光纤通信技术就利用了玻璃对光线的折射特性,实现了光信号的传输。
此外,光学仪器、眼镜、望远镜、显微镜等设备中也都广泛应用了玻璃的折射特性。
6. 玻璃折射的影响因素玻璃折射的特性受到多种因素的影响,包括材料的折射率、入射角度、波长等。
不同的因素对玻璃折射的影响并不相同,需要综合考虑才能准确描述玻璃的折射特性。
7. 折射角和入射角的关系折射定律描述了折射角和入射角之间的关系,它们之间通过介质的折射率相关联。
当入射角或折射介质的折射率发生变化时,折射角也会相应改变。
8. 折射和色散色散是光线在通过介质时发生波长分离的现象。
光学玻璃参数详解
光学玻璃是一种用于制造光学元件(如透镜、棱镜、窗口等)的特殊玻璃。
它的参数决定了光学性能和适用范围。
以下是一些常见的光学玻璃参数及其详解:1. 折射率(Refractive Index):折射率是光线从真空中进入玻璃时的折射比值。
它决定了光线在玻璃中传播的速度和方向。
不同类型的光学玻璃具有不同的折射率,一般在1.4到2.0之间。
2. 色散(Dispersion):色散是光线经过光学玻璃时,不同波长的光被折射的程度不同,导致光的分散现象。
色散性能用于描述玻璃的色散效果,一般通过Abbe数来表示。
Abbe数越大,色散越小,即色差越小。
3. 热膨胀系数(Thermal Expansion Coefficient):热膨胀系数表示光学玻璃随温度变化时的尺寸变化。
高热膨胀系数的玻璃对温度变化更敏感,可能导致光学元件的变形或破裂。
4. 导热系数(Thermal Conductivity):导热系数表示光学玻璃传导热量的能力。
高导热系数的玻璃可以更好地散热,防止光学元件过热损坏。
5. 抗光蚀性(Optical Durability):抗光蚀性表示光学玻璃抵抗环境中光蚀和化学侵蚀的能力。
高抗光蚀性的玻璃可以更长时间地保持光学性能。
6. 透过率(Transmittance):透过率表示光线通过光学玻璃时的光强损失程度。
高透过率的玻璃可以提供更高的光传输效率。
这些参数对于光学元件的设计和应用非常重要。
根据具体的需求,选择合适的光学玻璃参数可以优化光学系统的性能和效果。
在选择光学玻璃时,一般会参考厂商提供的技术数据和规格表,以便选择适合的光学玻璃材料。
玻璃的光学性质
第8章 玻璃的光学性质玻璃的光学性质是指玻璃的折射、反射、吸收和透射等性质。
玻璃常用作透光材料,因此对其光学性质的研究在理论上和实践上都具有重要意义。
玻璃是一种高度透明的物质,可以通过调整成分、着色、光照、热处理、光化学反应以及涂膜等物理和化学方法,获得一系列重要光学性能,以满足各种光学材料对特定的光性能和理化性能的要求。
玻璃的光学性能涉及范围很广。
本章仅在可见光范围内(包括近紫外和近红外)讨论玻璃的折射率、色散、反射、吸收和透射(玻璃的着色和脱色在第9章中介绍)。
为了便于讨论玻璃的光学性质,先简略介绍光的本质。
外来能源激发物质中的分子或原子,使分子或原子中的外层电子,由低能态跃迁到高能态,当电子跳回到原来状态时,吸收的能量便以光的形式对外产生辐射,此过程就叫发光。
光是一种电磁波,具有一定的波长和频率,且以极高的速度在空间传播(光速约为3×108m/s )。
可见光、紫外线、红外线以及其他电磁辐射的波长频率范围见图8-1。
从图8-1中可看出,可见光在整个电磁波中只是很窄的一个波段(390~770nm )。
在这一狭窄的波段内,存在着各种不同的色光,包括红、橙、黄、绿、青、蓝、紫等光谱。
常说的“白光”应该当作“全色光”来理解。
棱镜把太阳光分解为七色颜色光的相应波段,每一波段人眼看来是单一的色,叫做单色光,但它不是单一的值,只不过人眼区别颜色的能力有限,看不出单色复杂性而已。
8.1玻璃的折射率当光照射到玻璃时,一般产生反射、透过和吸收。
这三种基本性质与折射率有关。
玻璃的折射率可以理解为电磁波在玻璃中传播速度的降低(以真空中的光速为准)。
如果用折射率来表示光速的降低,则:V C n / (8-1)式中:n —玻璃的折射率C —光在真空中的传播速度 V —光在玻璃中的传播速度 一般玻璃的折射率为1.5~1.75频率/Hz 图8-1电磁波的频率和波长范围 波长/nmnm光在真空中的传播速度不同于在玻璃中的传播速度,因为光波是电磁波,而玻璃内部有着各种带电的质点,如离子、离子集团和电子。
光的色散和折射率
光的色散和折射率光的色散和折射率是光学中常用的两个术语,它们分别描述了光在媒介中传播时的特性。
本文将就光的色散和折射率进行详细阐述。
一、光的色散光的色散是指不同波长的光在媒介中传播时受到的折射程度不同,从而使光发生弯曲的现象。
这种现象是由于不同波长的光在媒介中具有不同的折射率所引起的。
1. 自然光的色散当自然光通过一个透明的物质(如水、玻璃等)时,会因为其不同波长的光成分具有不同的速度而发生色散现象。
这就是为什么在白色光通过三棱镜后会分解成七彩虹的原因。
波长较长的红光弯曲程度较小,而波长较短的紫光则会弯曲更多。
2. 色散的衍射理论色散现象可以通过衍射理论来解释。
衍射理论认为,光的传播是一种波动过程,不同波长的光波在媒介中发生衍射时,会因波长不同而产生不同的弯曲程度。
3. 色散的应用色散现象在实际应用中有着广泛的应用。
例如,它常用于光谱仪的设计和制造中,可以通过测量物质对不同波长光的吸收谱线来分析物质的成分。
二、折射率折射率是媒介对光的折射能力的度量,它表示的是光在从真空(或空气)射入其他媒介时的折射程度。
不同介质具有不同的折射率,而同一媒介中,不同波长的光也会以不同的折射率进行传播。
1. 折射定律折射定律是描述光在媒介界面上的折射规律的基本定律。
它可以用数学公式表示为:n1sinθ1 = n2sinθ2,其中n1和n2分别代表两种媒介的折射率,θ1和θ2分别代表光线入射角和出射角。
根据折射定律,可以推导出光在不同媒介中的传播规律。
2. 折射率与波速折射率与光的传播速度有密切的关系。
根据光速在真空中的恒定性,可以得到折射率与光速之间的关系:n = c/v,其中n代表折射率,c代表光在真空中的速度,v代表光在媒介中的速度。
不同波长的光根据其速度的不同而具有不同的折射率。
3. 折射率的应用折射率在光学领域中具有广泛的应用。
例如,通过测量材料的折射率,可以判断其透明度和成分。
折射率还用于设计和制造光学器件,如透镜、棱镜等。
玻璃工艺学
8.4.1 玻璃的红外吸收 一般认为在红外区的吸收属于分子光谱。 吸收主要是由于红外光的频率与玻璃中分子振子
(或原子团)的本征频率相近或相同引起共振所致。 物质振动频率可表示为:
1 f 2 M
27
玻璃形成氧化物M较小,f较大,故ν大;铅玻璃和 一些非氧玻璃相对M较大,f较小,故ν小。
一般,网络外体加入量越多、离子半径越大、电荷 越小,玻璃的紫外吸收极限波长越长。
31
以上材料由阿洛奇美第提供!
32
子折射度 R i 决定的。
分子折射度越大,玻璃的折射率越大; 分子体积越大,玻璃的折射率越小。
7
玻璃的折射率由玻璃的分子体积和玻璃的分子折射 度决定。
玻璃的分子体积标志着结构的紧密程度。取决于网络的 体积及网络外空隙的填充程度,与组成玻璃各种阳离子 半径有关。对于原子价相同的氧化物,阳离子半径越大, 玻璃的分子体积越大。
时变化更迅速的色散现象。 反常色散:当光波波长接近于材料的吸收带时所发
生的折射率急剧变化,在吸收带的长波侧折射率高, 在吸收带的短波侧折射率低的现象。
11
8.1.3 玻璃折射率与温度的关系 玻璃折射率是温度的函数。当温度上升时,折射率
受到作用相反的两个因素的影响:
温度升高,玻璃受热膨胀密度减小,折射率下降; 温度升高,阳离子对O2-的作用减小,极化率增加,折射
率增大;电子振动的本征频率减小,紫外线吸收极限向 长波方向移动,折射率上升。
12
nRddR t t t
玻璃折射率的温度系数取决于玻璃的分子折射度随
温度的变化 R 和热膨胀系数随温度的变化 d 。
t
t
高温时,玻璃热膨胀系数变化不大,折射率温度系
数主要取决于 R ,折射率随温度上升而增加。Fra bibliotek低温时,
zemax中常用玻璃库折射率,阿贝数和色散关系
在Zemax中,常用玻璃库提供了多种不同特性的玻璃材料,包括折射率、阿贝数和色散关系等参数。
在Zemax的玻璃库中,常见的折射率范围在1.5至1.8之间,而阿贝数则一般在40至70之间。
阿贝数越大,色散越小。
这些参数值可以根据不同的光学设计和应用需求进行选择和调整。
除了折射率和阿贝数,Zemax还提供了色散图,用户可以查看材料的色散情况。
同时,还可以查看四种材料的色散曲线,包括正常色散、反常色散、异常色散和线性色散。
这些曲线可以帮助用户更好地了解材料的色散特性。
在玻璃库中,用户还可以查看材料的折射率公式和透过率,但需要注意的是,这些数据只在右下角最小波长和最大波长范围内才比较准确。
此外,用户还可以自定义材料,以满足特定的光学设计需求。
总之,Zemax中的玻璃库为用户提供了丰富的光学材料参数,帮助用户更好地进行光学设计和分析。
用户可以根据实际需求选择合适的玻璃材料,并利用这些参数进行准确的光学模拟和分析。
光学玻璃的折射率和色散
DATE May 2004 PAGE 1/15TIE-29: Refractive Index and Dispersion0. IntroductionThe most important property of optical glass is the refractive index and its dispersion behavior.This technical information gives an overview of the following topics:- Dispersiono Principal dispersion (page 2) o Secondary spectrum (page 3)o Sellmeier dispersion equation (page 4)- Temperature dependence of refractive index (page 6)- Influence of the fine annealing process on the refractive index and Abbe number(page 9)- Tolerances (page 12)- Refractive index measurement (page 13)1. Refractive IndexIf light enters a non-absorbing homogeneous materials reflection and refraction occurs at the boundary surface. The refractive index n is given by the ratio of the velocity of light in vacuum c to that of the medium vvc n =(1-1)The refractive index data given in the glass catalogue are measured relative to the refractive index measured in air. The refractive index of air is very close to 1.Practically speaking the refractive index is a measure for the strength of deflection occurring at the boundary surface due to the refraction of the light beam. The equation describing the amount of deflection is called Snell’s law:)sin()sin(2211αα⋅=⋅n n (1-2)The refractive index is a function of the wavelength. The most common characteristic quantity for characterization of an optical glass is the refractive index n in the middle range of the visible spectrum. This principal refractive index is usually denoted as n d – the refractive index at the wavelength 587.56 nm or in many cases as n e at the wavelength 546.07 nm.2. Wavelength Dependence of Refractive Index: DispersionThe dispersion is a measure of the change of the refractive index with wavelength. Dispersion can be explained by applying the electromagnetic theory to the molecular structure of matter. If an electromagnetic wave impinges on an atom or a molecule the bound charges vibrate at the frequency of the incident wave.DATE May 2004 PAGE 2/15The bound charges have resonance frequency at a certain wavelength. A plot of the refractive index as a function of the wavelength for fused silica can be seen in Figure 2-1. It can be seen that in the main spectral transmission region the refractive index increases towards shorter wavelength. Additionally the dotted line shows the absorption coefficient as a function of the wavelength.Figure 2-1: Measured optical constants of fused silica (SiO 2 glass) [1]2.1 Principal DispersionThe difference (n F – n C ) is called the principal dispersion. n F and n C are the refractive indices at the 486.13 nm and 656.27 nm wavelengths.The most common characterization of the dispersion of optical glasses is the Abbe number. The Abbe number is defined as)/()1(C F d d n n n −−=ν (2.1-1)Sometimes the Abbe number is defined according to the e line as)/()1(C F e e n n n ′′−−=ν (2.1-2).Traditionally optical glasses in the range of νd > 50 are called crown glasses, the other ones as flint glasses.Glasses having a low refractive index in general also have a low dispersion behaviour e.g. a high Abbe number. Glasses having a high refractive index have a high dispersion behaviour and a low Abbe number.DATE May 2004 PAGE 3/152.2. Secondary SpectrumThe characterization of optical glass through refractive index and Abbe number alone is insufficient for high quality optical systems. A more accurate description of the glass properties is achievable with the aid of the relative partial dispersions.The relative partial dispersion P x,y for the wavelengths x and y is defined by the equation:)/()(,C F y x y x n n n n P −−= (2.2-1)As Abbe demonstrated, the following linear relationship will approximately apply to the majority of glasses, the so-called ”normal glasses”d xy xy y x b a P ν⋅+≈, (2.2-2)a xy andb xy are specific constants for the given relative partial dispersion.In order to correct the secondary spectrum (i.e. color correction for more than two wavelengths) glasses are required which do not conform to this rule. Therefore glass types having deviating partial dispersion from Abbe’s empirical rule are especially interesting.As a measure of the deviation of the partial dispersion from Abbe’s rule the ordinate difference ∆P is introduced. Instead of relation (2.2-2) the following generally valid equation is used:y x d xy xy y x P b a P ,,∆+⋅+=ν (2.2-3)The term ∆P x,y therefore quantitatively describes a dispersion behavior that deviates from that of the ”normal glasses.”The deviations ∆P x,y from the ”normal lines” are listed for the following five relative partial dispersions for each glass type in the data sheets.)/()()/()()/()()/()()/,,,,C F g i g i C F F g F g C F e F e F C F s C s C C F t C C,t n n n n P n n n n P n n n n P n n n n P n (n )n (n P −−=−−=−−=−−=−−= (2.2-4)The position of the normal lines is determined based on value pairs of the glass types K7 and F2. The explicit formulas for the deviations ∆P x,y of the above-mentioned five relative partial dispersions are:DATE May 2004 PAGE 4/15)008382.07241.1()/()()001682.06438.0()/()()000526,04884.0()/()()002331.04029.0()/()()004743.05450.0()/()(,,,,,d C F g i g i d C F F g F g d C F e F e F d C F s C s C d C F t C t C n n n n P n n n n P n n n n P n n n n P n n n n P ννννν⋅−−−−=∆⋅−−−−=∆⋅−−−−=∆⋅+−−−=∆⋅+−−−=∆ (2.2-5)Figure 2.2-1 shows the P g,F versus the Abbe number νd diagram.Figure 2.2-1: P g,F as a function of the Abbe number for Schott’s optical glass sortiment.Additionally the normal line is given.The relative partial dispersions listed in the catalog were calculated from refractive indices to 6 decimal places. The dispersion formula (2.3-1) can be used to interpolate additional unlisted refractive indices and relative partial dispersions (see chapter 2.3).2.3. Sellmeier Dispersion EquationThe Sellmeier Equation is especially suitable for the progression of refractive index in the wavelength range from the UV through the visible to the IR area (to 2.3 µm). It is derived from the classical dispersion theory and allows the description of the progression of refractive index over the total transmission region with one set of data and to calculate accurate intermediate values.DATE May 2004 PAGE 5/15)()()(1)(3223222212212C B C B C B n −⋅+−⋅+−⋅=−λλλλλλλ (2.3-1)The determination of the coefficients was performed for all glass types on the basis of precision measurements by fitting the dispersion equation to the measurement values. The coefficients are listed in the data sheets.The dispersion equation is only valid within the spectral region in which refractive indices are listed in the data sheets of each glass. Interpolation is possible within these limits. The wavelengths used in the equation have to be inserted in µm with the same number of digits as listed in Table 2.3-1. For practical purposes Equation 2.3-1 applies to refractive indices in air at room temperature. The achievable precision of this calculation is generally better than 1·10-5 in the visible spectral range. The coefficients of the dispersion equation can be reported for individual glass parts upon request. This requires a precision measurement for the entire spectral region, provided the glass has sufficient transmission.Table 2.3-1: Wavelengths for a selection of frequently used spectral linesDATE May 2004 PAGE 6/153. Temperature Dependence of Refractive IndexThe refractive indices of the glasses are not only dependent on wavelength, but also upon temperature. The relationship of refractive index change to temperature change is called the temperature coefficient of refractive index. This can be a positive or a negative value. The data sheets contain information on the temperature coefficients of refractive index for several temperature ranges and wavelengths. The temperature coefficients of the relative refractive indices ∆n rel /∆T apply for an air pressure of 0.10133·106 Pa. The coefficients of the absolute refractive indices dn abs /dT apply for vacuum.The temperature coefficients of the absolute refractive indices can be calculated for other temperatures and wavelengths values with the aid of equation (3-1).)232(),(21),(),(22102210002TKabs TE E T D T D D T n T n dT T dn λλλλλ−∆⋅⋅++∆⋅⋅+∆⋅⋅+⋅⋅−= (3-1)Definitions:T 0 Reference temperature (20°C) T Temperature (in °C) ∆T Temperature difference versus T 0 λ Wavelength of the electromagnetic wave in a vacuum (in µm) D 0, D 1, D 2, E 0, E 1 and λTK : constants depending on glass typeThis equation is valid for a temperature range from -40°C to +80°C and wavelengths between 0.6438 µm and 0.4358 µm. The constants of the dispersion formula are also calculated from the measurement data and listed on the test certificate.The temperature coefficients in the data sheets are guideline values. Upon request, measurements can be performed on individual melts in the temperature range from -100°C to +140°C and in the wavelength range from 0.3650 µm to 1.014 µm with a precision better than ± 5·10-7/K. The accuracy at the limits of the measurement range is somewhat less than in the middle of this interval.The temperature coefficients of the relative refractive indices ∆n rel /∆T and the values for ∆n abs can be calculated with the help of the equations listed in Technical Information TI Nr. 19 (available upon request).Figures 3-1 to 3-4 show the absolute temperature coefficient of refractive index for different glasses, temperatures and wavelengths.DATE May 2004 PAGE 7/15DATE May 2004PAGE 8/15SF 6.DATE May 2004 PAGE 9/154. Influence of the Fine Annealing Process on the Refractive Index and Abbe numberThe optical data for a glass type are chiefly determined by the chemical composition and thermal treatment of the melt. The annealing rate in the transformation range of the glass can be used to influence the refractive index within certain limits (depending on the glass type and the allowable stress birefringence). Basically slower annealing rates yield higher refractive indices. In practice, the following formula has proven itself.)/log()()(00h h m h n h n x nd d x d ⋅+= (4-1) h 0 Original annealing rate h x New annealing rate m nd ? Annealing coefficient for the refractive index depending on the glass typeThe refractive index dependence on annealing rate is graphically shown in Figure 4-1.Figure 4-1: Dependence of refractive index on the annealing rate for several glass types. Reference annealing rate is 7 K/hAn analogous formula applies to the Abbe number.)/log()()(00h h m h h x d d x d ⋅+=ννν (4-2) m νd ? Annealing coefficient for the Abbe number depending on the glass typeThe annealing coefficient m νd can be calculated with sufficient accuracy with the following equation:)/())((0C F nC nF d nd d n n m h m m −⋅−=−νν (4-3)The coefficient m nF-nC has to be determined experimentally.DATE May 2004 PAGE 10/15Figure 4-2 shows that individual glass types vary greatly in their dependence of t he Abbe number on the annealing rate. In general also the Abbe number increases with decreasing annealing rate. High index lead free glass types like N-SF6 show anomalous behavior. Anomalous behaviour means that the Abbe number decreases with decreasing annealing rate.Figure 4-2: Abbe number as a function of the annealing rate for several glass types. Reference annealing rate is 7 K/hValues for Annealing coefficients of some optical glasses are shown in Table 4-1. We will provide the values for the annealing coefficients of our glasses upon request.m nd m nF-nc m νdN-BK7 -0.00087 -0.000005 -0.0682 N-FK51 -0.00054 -0.000002 -0.0644 SF 6 -0.00058 +0.000035 -0.0464 N-SF6 -0.0025 -0.000212 0.0904Table 4-1: Annealing coefficients for several selected glass typesThe annealing rate can be used to adjust the refractive index and Abbe number to the desired tolerance range.In practice the annealing rate influences the refractive index and the Abbe number simultaneously. Figure 4-3 shows a diagram of the Abbe number versus the refractive index for N -BK7. The rectangular boxes indicate the tolerance limits (steps) for the refractive index and the Abbe number. For example the largest box with a dotted frame indicates the tolerance borders for step 3 in refractive index and step 4 in Abbe number. The smallest box indicates step 1 in refractive index and Abbe number. In the center of the frames is the nominal catalog value.DATE May 2004PAGE 11/15 After melting the optical glass is cooled down at a high annealing rate. To control the refractive index during the melting process samples are taken directly from the melt after each casting. These samples are cooled down very fast together with a reference sample of the same glass. The reference sample has a known refractive index at an annealing rate of 2°C/h. By measuring the change in refractive index of the reference sample the refractive index of the sample can be measured with moderate accuracy in the range of ±10-4.The annealing rate dependence of the Abbe number and refractive index of each glass is represented by a line in the diagram having a slope that is characteristic for the glass type. For a given melt the position of the line in the diagram is given by the initial refractive index / Abbe number measurement for a cooling rate of 2°C/h as a fix-point together with the glass typical slope. The refractive index and Abbe number for a given glass part can be adjusted by a fine annealing step along this characteristic line.Glass for cold processing has to be fine annealed to reduce internal stresses. During this fine annealing the annealing rate is in general lower than 2°C/h. The initial refractive index has to be adjusted during melting in such a way that the desired tolerances can be reached during fine annealing. The initial refractive index of N-BK7 for example is in general lower than the target value.Figure 4-3:The influence of the annealing rate on the refractive index and Abbe numberof N-BK7 for different initial refractive indices.DATE May 2004PAGE 12/15 Glass for hot processing i.e reheat pressing is subjected to much more rapid annealing. The heat treatment processes used by the customer in general use annealing rates much higher than 2°C/h. Therefore for N-BK7 pressings for example the initial refractive index needs to be higher than the target value. For a better visualization in figure 4-3 the annealing line for pressings was shifted to higher Abbe numbers. In general it is also possible to achieve step 1/1 for pressings after hot processing. We deliver an annealing schedule for each batch of glass for hot processing purpose. This annealing schedule contains the initial refractive index at 2°C/h and the limit annealing rates to stay within the tolerances.5. TolerancesThe refractive indices, which are listed to 5 decimal places in the data sheets, represent values for a melt with nominal n d-νd position for the glass type in question. The refractive index data are exact to five decimal places (for λ > 2 µm: ± 2·10-5). The accuracy of the data is less in wavelength regions with limited transmission. All data apply to room temperature and normal air pressure (0,10133·10-6 Pa).Defining tolerances for the refractive index of a glass the customer has to distinguish between the refractive index tolerance, the tolerance of refractive index variation within a lot and the refractive index homogeneity (figure 5-1).Figure 5-1:Refractive index variation from within a production sequence.DATE May 2004 PAGE 13/15All deliveries of fine annealed block glass and fabricated glass are made in lots of single batches. The batch may be a single block or some few strip sections. More information on the new lot id system can be found in [3].The refractive index and Abbe number tolerance is the maximum allowed deviation of a single part within the delivery lot from nominal values given in the data sheets of the catalog. The refractive index of the delivery lot given in the standard test certificates is given by the following formulae:2/)(min max n n n lot += (5-1)n max is the maximum and n min the minimum refractive index within the lot.The refractive index variation from part to part within a lot is always smaller than ± 1*10-4. The refractive index homogeneity within a single part is better than ± 2*10-5 in general [4]. A short summary of the refractive index tolerance, variation and homogeneity grades can be found in table 5-1. More information is given in the optical glass catalogue [5].Tolerance Grade Refractive Index [*10-5] Abbe NumberStep 4-- ± 0.8% Step 3 ± 50 ± 0.5% Step 2 ± 30 ± 0.3% AbsoluteStep 1± 20 ± 0.2% SN± 10 -- S0 ± 5 -- Variation S1± 2 -- H1± 2 -- H2 ± 0.5 -- H3 ± 0.2 -- H4 ± 0.1 -- Homogeneity H5 ± 0.05--Table 5-1: Refractive Index Tolerances6. Refractive Index MeasurementFor refractive index measurement two different measurement setups are used: the v -block refractometer (figure 6-2) and the spectral goniometer. Figure 6-1 shows the principle of the v-Block measurement. The samples are shaped in a nearly square shape. One sample is about 20x20x5 mm small. The sample will be placed in a v shaped block prism. The refractive index of this prism is known very precisely. The refraction of an incoming light beam depends on the refractive index difference between the sample and the v-block-prism. The advantage of this method is that up to 10 samples can be glued together into one v -block stack. Therefore many samples can be measured in a very short time. The relative measurement accuracy is very h igh, therefore differences in refractive index within one v -block stack can be measured very accurately.DATE May 2004 PAGE 14/15Figure 6-1: Refractive index variation from within a production sequence .Figure 6-2: V-block refractometer.The spectral goniometric method is based on the measurement of the angle of minimum refraction in a prism shaped sample. This is the most accurate absolute refractive index measurement method. In our laboratory we have standard manual spectral goniometers and automated improved spectral goniometer with higher accuracy and the ability to measure in the infrared and UV region (figure 6-3).Figure 6-3: Manual spectral goniometer (left side), automated spectral goniometer (rightside).sample with lowerrefractive indexsample with higher refractive index samplev-block-prism immersion oillightbeamDATE May 2004PAGE 15/15 Table 6-1 shows a summary of the refractive index measurements available at Schott.Measurement accuracyMeasurementRefractive index DispersionWavelengths MethodV-block standard ± 30*10-6 ± 20*10-6g, F’, F, e, d, C’,CV-block enhanced ± 20*10-6± 10*10-6I, h, g, F’, F, e, d,C’, C, r, tv-blockrefractometerPrecisionspectrometer± 10*10-6± 3*10-6Super precision spectrometer ± 5*10-6± 2*10-6h, g, F’, F, e, d,C’, CspectralgoniometerUV precisionspectrometer± 10-20*10-6± 3*10-6UV super precision spectrometer ± 2-5*10-6± 2*10-6248.3 nm –2325.4 nm(about 30spectral linespossible)automaticspectralgoniometerTable 6-1: Absolute refractive index measurement accuraciesThe temperature coefficient of refractive index is measured using an automated spectral goniometer and a temperature controlled climate chamber with a temperature range from -100°C up to +140°C. The temperature coefficient can be measured with an accuracy of ± 0.5*10-6 K-1.7. Literature[1] The properties of optical glass; H. Bach & N. Neuroth (Editors), Springer Verlag 1998[2] SCHOTT Technical Information No. 19 (available upon request).[3] SCHOTT Technical Note No. 4: Test report for delivery lots[4] SCHOTT Technical Information No. 26: Homogeneity of optical glass[5] SCHOTT Optical Glass Pocket CatalogueFor more information please contact:Optics for DevicesSCHOTT GlasGermanyPhone: + 49 (0)6131/66-3835Fax: + 49 (0)6131/66-1998E-mail: info.optics@/optics_devices。
光学玻璃 参数
光学玻璃参数
光学玻璃是一种特殊的玻璃材料,具有优异的光学性能。
其参数包括折射率、色散、透光率、消光系数、热膨胀系数等。
折射率是光学玻璃最重要的参数之一,用于描述光在材料中传播时的弯曲程度。
不同光学玻璃的折射率不同,可以通过改变化学组成和制备工艺来调节折射率。
色散是光学玻璃另一个重要的参数,它描述光在介质中通过时不同波长光的传播速度不同。
色散也可以通过调节光学玻璃的化学组成和加工工艺来控制。
透光率是衡量光学玻璃透过光线的能力,它通常以可见光波段来进行测量。
高透光率的光学玻璃能够在光学器件中最大限度地减少光能的损失。
消光系数是光学玻璃在被线偏振光穿过时吸收光能的程度。
低消光系数的光学玻璃能够减少光学器件中的散射和反射,提高光学系统的性能。
热膨胀系数是光学玻璃在受热时长度变化的程度,它描述了玻璃在温度变化下的物理特性。
合适的热膨胀系数可以确保光学器件在温度变化时保持稳定的光学性能。
综上所述,光学玻璃的参数包括折射率、色散、透光率、消光系数和热膨胀系数。
这些参数的合理调节和控制是保证光学玻璃在光学器件中具有优异性能的关键。
高折射率低色散光学玻璃的研究
高折射率低色散光学玻璃的研究光学玻璃具有良好的光学性能,可以实现高折射率、低色散、高反射率和抗变形性能。
在消费类产品、安防工业、光电设备和其他方面都有广泛的应用,是光学领域的一个重要材料。
由于这些特性的改变,高折射率低色散光学玻璃已经受到了广泛的关注和研究。
高折射率低色散光学玻璃包括双系统玻璃和高折射率低色散玻璃两大类。
双系统玻璃是一种两种介质中夹层的结构,它由双重介质透镜组成,它的透镜有非常高的折射率,但色散不是很低。
此外,高折射率低色散玻璃由高折射率玻璃与低色散玻璃组成,它的折射率和色散互补,较高的折射率和较低的色散使它的光学性能更加优异。
工艺技术是研究高折射率低色散光学玻璃的关键。
此外,对玻璃的折射率和色散的优化也是研究的重点。
目前,主要的高折射率低色散光学玻璃工艺技术有多普勒技术、离散反转技术和双普勒技术。
多普勒技术是通过溶质来改变玻璃中的折射率,使折射率与温度有关,从而实现高折射率、低色散。
离散反转技术利用离散反转将多个层合成为一个单体,从而实现高折射率和低色散。
双普勒技术是将双重介质透镜和离散反转结合起来,实现高折射率低色散的目的。
工艺不是唯一研究高折射率低色散光学玻璃的关键,材料的选择也很重要。
采用钠和铝组成的钠铝玻璃,由于铝的存在,它具有高折射率和低色散性。
此外,钙钛玻璃是一种新兴的高折射率低色散光学玻璃,由于钙钛玻璃的调制机制,它具有高折射率和低色散的光学性能。
在传统的高折射率低色散光学玻璃的基础上,能够通过变形实现高折射率、低色散的光学玻璃也引起了人们的关注。
由于加入了聚酰胺,经过热处理可以实现光学性能的改变。
此外,基于熔盐温度的变形玻璃可以实现高折射率、低色散的光学性能。
研究高折射率低色散光学玻璃,可以实现更优异的光学性能,有助于提高光学设备的性能和使用寿命,也有助于消费类产品、安防工业、光电设备的发展。
未来,高折射率低色散光学玻璃的应用范围将会越来越广,它将成为光学材料应用研究领域的一个重要课题。
光的色散与光的折射率的关系
光的色散与光的折射率的关系光的色散是指光在传播过程中,不同波长的光线受到介质折射的程度不同,从而导致光的波长分离的现象。
色散性质是光通过介质时的重要特征之一,它与光的折射率存在一定的关系。
本文将详细探讨光的色散与折射率之间的关系。
1. 引言光的色散是由于光的折射率对波长的依赖性所引起的。
折射率可以简单地定义为光在某个介质中的传播速度与光在真空中的传播速度之比。
折射率的大小取决于介质的密度和光通过介质时的相互作用。
2. 光的折射与折射率当光从一种介质射入另一种介质时,会引起折射现象。
根据斯涅尔定律,入射角、出射角和两种介质的折射率之间存在一个关系式。
这个关系式称为折射定律,可表示为:n₁sinθ₁ = n₂sinθ₂,其中n₁和n₂分别为两种介质的折射率,θ₁和θ₂分别为入射角和出射角。
3. 色散现象当光通过透明介质时,不同波长的光会发生色散现象。
这是因为介质对不同波长的光的折射率存在依赖性。
以玻璃为例,蓝光的折射率要大于红光的折射率,因此在通过玻璃时,蓝光的折射角会比红光的折射角更大,从而使得蓝光的折射方向比红光的折射方向向下偏转。
4. 高折射率与低折射率色散现象与光波在介质中的折射率有直接关系。
一般来说,高折射率的介质会导致更显著的色散现象。
以水和钻石为例,钻石的折射率要大于水的折射率,因此钻石会产生比水更强的色散效果。
5. 频率色散与色散曲线除了波长色散,光还存在着频率色散现象。
频率色散是指在介质中,不同频率的光在折射过程中速度不同,导致相位差的变化。
频率色散可以用色散曲线来表示,色散曲线通常是频率与折射率之间的关系曲线。
通过色散曲线可以直观地了解光在不同频率下的折射率变化情况。
6. 光纤中的色散在光纤通信中,色散是一个重要的影响因素。
由于光纤中的折射率随波长的变化而变化,在长距离传输中,不同波长的光会呈现出不同的传输速度,从而导致信号失真和数据丢失。
为了克服色散的问题,人们引入了色散补偿技术,通过设备和技术手段来减少色散对光信号的影响。
高中物理光的色散与折射率计算
高中物理光的色散与折射率计算光是我们日常生活中少不了的一部分,而色散和折射率计算是光学中的两个重要概念。
本文将就高中物理中的光的色散和折射率计算进行详细说明。
一、光的色散光的色散是指在光通过透明介质(如水、玻璃等)时,不同波长的光在折射过程中会有不同的折射角,从而导致光的分离和变色现象。
其中,光的色散可以分为两类:正常色散和反常色散。
1. 正常色散正常色散指的是光在通过透明介质后,不同波长的光线按照从紫色到红色的顺序分离,形成光谱。
这是因为不同波长的光在介质中的折射率不同导致的。
一般来说,对于透明介质来说,折射率随着波长的增加而逐渐减小。
2. 反常色散反常色散则正好相反,即光在通过透明介质后,不同波长的光线按照从红色到紫色的顺序分离。
这是因为介质的折射率不符合经验规律所导致的。
二、折射率的计算折射率是描述光在不同介质中传播速度差异的物理量。
在数学上,折射率可以通过以下公式进行计算:n = c/v其中,n代表介质的折射率,c为光在真空中的光速,v为光在介质中的传播速度。
根据这个公式,我们可以得出以下结论:1. 折射率大于1根据公式,光在介质中的传播速度v一般小于真空中的光速c,因此介质的折射率n一般大于1。
介质的折射率越大,光在介质中传播的速度越慢。
2. 折射率与光的波长有关根据公式,折射率n与光在介质中的传播速度v有关,而光的传播速度与波长也有关。
因此,不同波长的光在同一介质中的折射率可能会有所不同。
3. 不同介质的折射率差异不同介质的折射率也会有所不同,这是由于不同介质中原子结构、分子结构以及密度等因素的差异所导致的。
一般来说,光在光密介质中的传播速度较慢,而在光疏介质中的传播速度较快。
在实际应用中,我们可以通过测量光线的入射角和折射角来计算出介质的折射率。
具体而言,我们可以使用斯奈尔定律来计算折射率的值,斯奈尔定律的公式为:n1*sinθ1 = n2*sinθ2其中,n1和n2分别代表两个介质的折射率,θ1和θ2分别代表入射角和折射角。
光的色散和折射率的关系
光的色散和折射率的关系光的色散现象在自然界中随处可见。
我们可以通过一些简单的实验来观察到光的色散现象。
当一束白光经过一个三棱镜时,我们可以看到光被分解成七种不同颜色的光谱。
这就是光的色散现象。
那么,为什么光会发生色散呢?色散现象的产生与光的折射率有着密切的关系。
折射率是介质对光传播的阻力大小的量度。
不同的介质具有不同的折射率,而不同波长的光在介质中传播时会受到不同程度的折射。
这就导致了光的色散现象。
以空气为例,空气对不同波长的光的折射率几乎相同。
因此,当光从空气中进入到其他介质中时,如水或玻璃,不同波长的光将会以不同的角度发生折射。
根据我国科学家杨振宁的研究,波长较长的红光折射角较小,波长较短的蓝光折射角较大。
这就是为什么我们在三棱镜实验中能够看到红、橙、黄、绿、蓝、靛、紫七种颜色的光谱。
进一步探讨光的色散现象与折射率的关系,我们可以引入斯涅尔定律,该定律揭示了光在两个介质之间传播时的折射规律。
斯涅尔定律可以以数学公式的形式表述为:n1sinθ1=n2sinθ2。
其中,n1和n2分别是两个介质的折射率,θ1和θ2分别是入射角和折射角。
通过斯涅尔定律,我们可以进一步了解光的折射率与入射角之间的关系以及光的色散现象。
当入射角为0度时,即光垂直于介质表面传播时,根据斯涅尔定律,折射角也为0度,光不会发生偏折现象。
此时,入射光线直接穿过介质,不会改变方向。
而当入射角增大时,光会发生折射,且入射角越大,折射角也越大。
这就解释了为什么光进入介质中后会发生色散现象,因为不同波长的光在折射时会以不同的角度偏折。
除了斯涅尔定律,还有一个重要的公式与光的折射率相关,那就是光速与折射率的关系公式。
在真空中,光的传播速度为光速c。
而在介质中,光的传播速度会因为介质的折射率而发生改变。
折射率越大,光的传播速度越慢。
根据光速与折射率的关系公式,我们可以计算出介质的折射率。
综上所述,光的色散现象与折射率密切相关。
不同介质对不同波长光的折射率不同,所以当白光通过介质时,不同波长的光会以不同的角度发生折射,进而产生出光的色散现象。
玻璃板成像规律
玻璃板成像规律全文共四篇示例,供读者参考第一篇示例:玻璃板成像规律是指当光线通过玻璃板时,会发生折射现象,并最终形成一个倒立的图像。
这一规律是由玻璃的折射性质所决定的,而折射规律则依据光线在介质间传播时速度的变化而定。
玻璃是一种常见的透明材料,其折射率通常在1.5左右。
当光线从空气等介质射入玻璃板时,由于光速在玻璃中比在空气中慢,光线会向垂直于表面的法线方向偏折,这就是折射的基本规律。
根据斯涅尔定律,光线在折射时会遵循一条路径,被折射后在玻璃板内部的路径经过的点都位于同一直线上。
这就是为什么我们能够通过玻璃板看到折射出的图像。
在玻璃板成像中,图像的形成主要取决于入射光线的方向。
如果光线是从垂直于玻璃板的方向射入,那么折射后的光线路径会和入射光线路径完全平行,这样就无法形成图像。
当光线从一定角度射入时,折射后的光线路径会交叉并集中在一点,形成清晰的倒立图像。
玻璃板成像规律还有一个重要的特点是图像的位置和大小。
根据物距公式和像距公式,我们可以计算出物体和图像之间的距离关系,从而确定图像在玻璃板上的位置和大小。
当物体和玻璃板之间的距离越近时,图像就会越大;而当物体和玻璃板之间的距离越远时,图像则会越小。
除了以上的规律外,玻璃板成像还受到光线颜色的影响。
由于不同颜色的光线在玻璃中的折射率不同,所以不同颜色的光线会发生色散现象,导致图像出现色彩偏差。
这一现象在日常生活中也十分常见,比如彩色电视机的光束分离就是依据这一规律来实现的。
玻璃板成像规律是光学中的基础知识之一,它揭示了光线在玻璃板中传播时的规律,并帮助我们理解和利用光学原理。
通过研究玻璃板成像规律,我们可以更好地设计和制造光学仪器,同时也能更好地解释和理解光学现象,为科学研究和工程技术提供帮助。
第二篇示例:玻璃板成像规律是指在光学成像过程中,当光线穿过一块玻璃板时,会发生折射和反射,并产生成像现象的规律。
玻璃板是一种常见的光学元件,用于制造透镜、棱镜和其他光学器件。
玻璃折射率色散数据
玻璃折射率色散数据玻璃是一种常见的无机非金属材料,具有透明、坚硬、易加工等特点,被广泛应用于建筑、光学、电子等领域。
光在玻璃中的传播受到玻璃的折射率和色散特性的影响。
本文将围绕玻璃的折射率和色散数据展开讨论。
折射率是光线由一种介质进入另一种介质时发生折射的现象。
玻璃的折射率是指光线由真空或空气进入玻璃时的折射率。
不同种类的玻璃具有不同的折射率,这取决于玻璃的成分和制备工艺。
例如,普通玻璃的折射率约为1.5左右,而高铅玻璃的折射率可达到1.85。
玻璃的折射率对光的传播路径和速度有重要影响。
根据斯涅尔定律,当光线从一种介质射入另一种介质时,入射角和折射角之间遵循一定的关系。
折射率越大,光线经过折射后的偏折角度越大。
这一特性使玻璃可以用于光学透镜和光纤等光学器件中,用于收集、聚焦和传输光线。
除了折射率,玻璃的色散特性也是非常重要的。
色散是指光线在通过介质时由于折射率随光的波长而变化而产生的偏折现象。
不同波长的光在玻璃中的传播速度不同,导致光的色散现象。
色散导致光线经过玻璃后会出现色彩分离的现象,例如光的折射通过三棱镜会分解为七色光谱。
玻璃的色散特性可以通过色散率来描述。
色散率是指单位波长变化下折射率的变化率。
一般来说,玻璃的色散率随波长的增加而增加,即长波光的折射率较短波光的折射率高。
这也是为什么在太阳光通过玻璃后会产生彩虹的原因,因为太阳光包含了多种波长的光。
玻璃的折射率和色散特性在光学设计和应用中起着重要的作用。
通过合理选择玻璃的折射率和色散特性,可以实现对光线的控制和调节。
例如,在镜头设计中,需要根据不同的光学要求选择适当的玻璃材料,以实现对光线的聚焦和成像。
另外,在光纤通信中,需要选择具有低色散率的玻璃材料,以保证光信号的传输质量。
总结起来,玻璃的折射率和色散特性对光的传播和应用有重要影响。
通过研究和了解不同种类玻璃的折射率和色散数据,可以更好地理解光在玻璃中的行为,为光学设计和应用提供参考和指导。
玻璃折射率色散数据
玻璃折射率色散数据折射率是描述光在介质中传播速度变化的物理量,是光线从一种介质进入另一种介质时发生折射现象的重要参数。
而色散则是指不同频率的光在介质中传播速度不同,导致折射率随光的频率而变化的现象。
玻璃是一种常见的透明材料,用于制作窗户、眼镜等物品。
不同类型的玻璃具有不同的折射率色散特性,这些特性对于光的传播和色彩的表现具有重要影响。
常见的玻璃包括石英玻璃、硼硅玻璃、硼铝硅玻璃等。
它们的折射率随着光的波长而变化,形成了特定的色散曲线。
石英玻璃是一种无色透明的玻璃,具有优良的光学性能。
它的折射率随着光的波长增加而减小,这意味着它对短波长的光具有较高的折射率,对长波长的光具有较低的折射率。
这种色散特性使得石英玻璃在光学领域中应用广泛,例如用于制作光纤通信中的光纤。
硼硅玻璃是一种具有低折射率和低色散特性的玻璃。
它的折射率变化相对较小,对不同波长的光具有相似的折射率。
这种特性使得硼硅玻璃在光学镜片和光学仪器领域中被广泛应用。
硼铝硅玻璃是一种特殊的玻璃,具有较高的折射率和较高的色散特性。
它的折射率随着光的波长增加而增加,这意味着它对长波长的光具有较高的折射率,对短波长的光具有较低的折射率。
这种色散特性使得硼铝硅玻璃在光学透镜和光学仪器的设计中具有重要意义。
除了上述几种常见的玻璃,还有其他类型的玻璃具有不同的折射率色散特性。
这些特性对于光学设计和光学性能的优化具有重要影响。
科学家和工程师通过研究玻璃的折射率色散数据,可以深入了解不同玻璃材料的光学特性,进而选择合适的材料用于特定的光学应用。
玻璃的折射率色散数据是描述玻璃光学特性的重要参数。
不同类型的玻璃具有不同的折射率色散特性,这些特性对于光的传播和色彩的表现具有重要影响。
科学家和工程师通过研究和分析玻璃的折射率色散数据,可以优化光学设计和提升光学性能。
单色光玻璃折射率
单色光玻璃折射率
单色光在玻璃中的折射率通常会因玻璃的种类、制造工艺以及光的波长而有所不同。
一般来说,玻璃的折射率随着光的波长的变化而变化,这种现象称为色散。
因此,在实际应用中,我们通常会使用多个波长的折射率数据,并根据需要进行插值或外推,以获得所需波长的折射率。
举例来说,对于常见的玻璃材料,如硅玻璃(硅二氧化物)、玻璃(硼硅酸盐玻璃)等,其折射率通常在可见光范围内(约380nm至780nm)都会略有变化。
具体数值可以通过相关资料或光学数据库进行查询。
一些典型的玻璃折射率(在约589.3纳米处)示例如下:
●硅玻璃(SiO2):约1.45
●玻璃(硼硅酸盐玻璃):约1.5-1.6
●玻璃(石英玻璃):约1.46-1.48
需要注意的是,这些数值仅为估算值,具体数值可能会因不同的制造工艺和光学性质而有所不同。
在实际应用中,应根据具体需求和条件选择合适的材料,并进行实际测试和验证。
oc玻璃材质参数
oc玻璃材质参数
oc玻璃是一种低温熔融玻璃,具有优异的化学稳定性和光学性能,被广泛应用于光学、电子、化学等领域。
其材质参数如下:
1. 折射率:oc玻璃的折射率在1.5左右,具有良好的透明性和色散性。
2. 热膨胀系数:oc玻璃的热膨胀系数约为5×10^-6 /℃,较低的热膨胀系数使其能够承受高温变形。
3. 导热系数:oc玻璃的导热系数较低,约为1.4W/m·K,适用于高温绝缘材料。
4. 软化温度:oc玻璃的软化温度为约725℃,具有较高的耐高温性能。
5. 化学稳定性:oc玻璃具有优异的化学稳定性,能够耐受大多数酸、碱、溶剂等腐蚀介质的侵蚀。
6. 机械强度:oc玻璃的机械强度较低,易于加工成各种形状和尺寸。
总的来说,oc玻璃是一种优异的材料,具有良好的光学、化学、热学性能,可广泛应用于各种领域。
- 1 -。
肖特玻璃参数
肖特玻璃参数肖特玻璃是一种特殊的光学材料,具有很多独特的参数和特性。
本文将介绍几个重要的肖特玻璃参数,包括折射率、色散、透过率和热膨胀系数等。
一、折射率折射率是光线从真空或空气中进入某种介质时的光速与在真空或空气中的光速之比。
对于肖特玻璃而言,折射率是一个重要的参数,它决定了光线在玻璃中的传播速度和光线的弯曲程度。
肖特玻璃的折射率通常在可见光范围内变化较小,但在紫外光和红外光区域可能会发生较大的变化。
折射率的变化对于光学元件的设计和使用非常重要,因为它直接影响光线的聚焦和折射效果。
二、色散色散是指光线经过折射或反射后,不同波长的光线发生的偏移量不同的现象。
肖特玻璃的色散特性是由其折射率随波长的变化引起的。
肖特玻璃通常具有较小的色散,即不同波长的光线在玻璃中的传播速度变化较小,因此能够实现较好的色彩再现和光学成像效果。
这使得肖特玻璃在光学仪器、摄影镜头等领域得到广泛应用。
三、透过率透过率是指光线通过材料时的光强与入射光强之比。
肖特玻璃的透过率通常较高,能够使光线在玻璃中传播时尽量减少能量损失。
肖特玻璃的高透过率使其在光学领域中得到广泛应用,例如光学透镜、窗户玻璃等。
高透过率不仅可以提高光学器件的效率,还可以减少光线的散射和反射,提高成像质量。
四、热膨胀系数热膨胀系数是指物体在温度变化时单位温度变化下的长度或体积变化比例。
肖特玻璃的热膨胀系数相对较小,表明它在温度变化时能够保持较好的稳定性和可靠性。
由于肖特玻璃的热膨胀系数较小,使得它在高温或低温环境中能够保持较好的物理性能和光学性能。
这使得肖特玻璃在高温熔炼、光学仪器和光学测量等领域得到广泛应用。
肖特玻璃的折射率、色散、透过率和热膨胀系数是其重要的参数和特性。
这些参数决定了肖特玻璃在光学领域中的应用范围和性能表现。
了解和掌握这些参数对于光学器件的设计、制造和使用具有重要意义。
肖特玻璃的独特性能使其在光学仪器、摄影镜头、光学测量等领域具有广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DATE May 2004 PAGE 1/15TIE-29: Refractive Index and Dispersion0. IntroductionThe most important property of optical glass is the refractive index and its dispersion behavior.This technical information gives an overview of the following topics:- Dispersiono Principal dispersion (page 2) o Secondary spectrum (page 3)o Sellmeier dispersion equation (page 4)- Temperature dependence of refractive index (page 6)- Influence of the fine annealing process on the refractive index and Abbe number(page 9)- Tolerances (page 12)- Refractive index measurement (page 13)1. Refractive IndexIf light enters a non-absorbing homogeneous materials reflection and refraction occurs at the boundary surface. The refractive index n is given by the ratio of the velocity of light in vacuum c to that of the medium vvc n =(1-1)The refractive index data given in the glass catalogue are measured relative to the refractive index measured in air. The refractive index of air is very close to 1.Practically speaking the refractive index is a measure for the strength of deflection occurring at the boundary surface due to the refraction of the light beam. The equation describing the amount of deflection is called Snell’s law:)sin()sin(2211αα⋅=⋅n n (1-2)The refractive index is a function of the wavelength. The most common characteristic quantity for characterization of an optical glass is the refractive index n in the middle range of the visible spectrum. This principal refractive index is usually denoted as n d – the refractive index at the wavelength 587.56 nm or in many cases as n e at the wavelength 546.07 nm.2. Wavelength Dependence of Refractive Index: DispersionThe dispersion is a measure of the change of the refractive index with wavelength. Dispersion can be explained by applying the electromagnetic theory to the molecular structure of matter. If an electromagnetic wave impinges on an atom or a molecule the bound charges vibrate at the frequency of the incident wave.DATE May 2004 PAGE 2/15The bound charges have resonance frequency at a certain wavelength. A plot of the refractive index as a function of the wavelength for fused silica can be seen in Figure 2-1. It can be seen that in the main spectral transmission region the refractive index increases towards shorter wavelength. Additionally the dotted line shows the absorption coefficient as a function of the wavelength.Figure 2-1: Measured optical constants of fused silica (SiO 2 glass) [1]2.1 Principal DispersionThe difference (n F – n C ) is called the principal dispersion. n F and n C are the refractive indices at the 486.13 nm and 656.27 nm wavelengths.The most common characterization of the dispersion of optical glasses is the Abbe number. The Abbe number is defined as)/()1(C F d d n n n −−=ν (2.1-1)Sometimes the Abbe number is defined according to the e line as)/()1(C F e e n n n ′′−−=ν (2.1-2).Traditionally optical glasses in the range of νd > 50 are called crown glasses, the other ones as flint glasses.Glasses having a low refractive index in general also have a low dispersion behaviour e.g. a high Abbe number. Glasses having a high refractive index have a high dispersion behaviour and a low Abbe number.DATE May 2004 PAGE 3/152.2. Secondary SpectrumThe characterization of optical glass through refractive index and Abbe number alone is insufficient for high quality optical systems. A more accurate description of the glass properties is achievable with the aid of the relative partial dispersions.The relative partial dispersion P x,y for the wavelengths x and y is defined by the equation:)/()(,C F y x y x n n n n P −−= (2.2-1)As Abbe demonstrated, the following linear relationship will approximately apply to the majority of glasses, the so-called ”normal glasses”d xy xy y x b a P ν⋅+≈, (2.2-2)a xy andb xy are specific constants for the given relative partial dispersion.In order to correct the secondary spectrum (i.e. color correction for more than two wavelengths) glasses are required which do not conform to this rule. Therefore glass types having deviating partial dispersion from Abbe’s empirical rule are especially interesting.As a measure of the deviation of the partial dispersion from Abbe’s rule the ordinate difference ∆P is introduced. Instead of relation (2.2-2) the following generally valid equation is used:y x d xy xy y x P b a P ,,∆+⋅+=ν (2.2-3)The term ∆P x,y therefore quantitatively describes a dispersion behavior that deviates from that of the ”normal glasses.”The deviations ∆P x,y from the ”normal lines” are listed for the following five relative partial dispersions for each glass type in the data sheets.)/()()/()()/()()/()()/,,,,C F g i g i C F F g F g C F e F e F C F s C s C C F t C C,t n n n n P n n n n P n n n n P n n n n P n (n )n (n P −−=−−=−−=−−=−−= (2.2-4)The position of the normal lines is determined based on value pairs of the glass types K7 and F2. The explicit formulas for the deviations ∆P x,y of the above-mentioned five relative partial dispersions are:DATE May 2004 PAGE 4/15)008382.07241.1()/()()001682.06438.0()/()()000526,04884.0()/()()002331.04029.0()/()()004743.05450.0()/()(,,,,,d C F g i g i d C F F g F g d C F e F e F d C F s C s C d C F t C t C n n n n P n n n n P n n n n P n n n n P n n n n P ννννν⋅−−−−=∆⋅−−−−=∆⋅−−−−=∆⋅+−−−=∆⋅+−−−=∆ (2.2-5)Figure 2.2-1 shows the P g,F versus the Abbe number νd diagram.Figure 2.2-1: P g,F as a function of the Abbe number for Schott’s optical glass sortiment.Additionally the normal line is given.The relative partial dispersions listed in the catalog were calculated from refractive indices to 6 decimal places. The dispersion formula (2.3-1) can be used to interpolate additional unlisted refractive indices and relative partial dispersions (see chapter 2.3).2.3. Sellmeier Dispersion EquationThe Sellmeier Equation is especially suitable for the progression of refractive index in the wavelength range from the UV through the visible to the IR area (to 2.3 µm). It is derived from the classical dispersion theory and allows the description of the progression of refractive index over the total transmission region with one set of data and to calculate accurate intermediate values.DATE May 2004 PAGE 5/15)()()(1)(3223222212212C B C B C B n −⋅+−⋅+−⋅=−λλλλλλλ (2.3-1)The determination of the coefficients was performed for all glass types on the basis of precision measurements by fitting the dispersion equation to the measurement values. The coefficients are listed in the data sheets.The dispersion equation is only valid within the spectral region in which refractive indices are listed in the data sheets of each glass. Interpolation is possible within these limits. The wavelengths used in the equation have to be inserted in µm with the same number of digits as listed in Table 2.3-1. For practical purposes Equation 2.3-1 applies to refractive indices in air at room temperature. The achievable precision of this calculation is generally better than 1·10-5 in the visible spectral range. The coefficients of the dispersion equation can be reported for individual glass parts upon request. This requires a precision measurement for the entire spectral region, provided the glass has sufficient transmission.Table 2.3-1: Wavelengths for a selection of frequently used spectral linesDATE May 2004 PAGE 6/153. Temperature Dependence of Refractive IndexThe refractive indices of the glasses are not only dependent on wavelength, but also upon temperature. The relationship of refractive index change to temperature change is called the temperature coefficient of refractive index. This can be a positive or a negative value. The data sheets contain information on the temperature coefficients of refractive index for several temperature ranges and wavelengths. The temperature coefficients of the relative refractive indices ∆n rel /∆T apply for an air pressure of 0.10133·106 Pa. The coefficients of the absolute refractive indices dn abs /dT apply for vacuum.The temperature coefficients of the absolute refractive indices can be calculated for other temperatures and wavelengths values with the aid of equation (3-1).)232(),(21),(),(22102210002TKabs TE E T D T D D T n T n dT T dn λλλλλ−∆⋅⋅++∆⋅⋅+∆⋅⋅+⋅⋅−= (3-1)Definitions:T 0 Reference temperature (20°C) T Temperature (in °C) ∆T Temperature difference versus T 0 λ Wavelength of the electromagnetic wave in a vacuum (in µm) D 0, D 1, D 2, E 0, E 1 and λTK : constants depending on glass typeThis equation is valid for a temperature range from -40°C to +80°C and wavelengths between 0.6438 µm and 0.4358 µm. The constants of the dispersion formula are also calculated from the measurement data and listed on the test certificate.The temperature coefficients in the data sheets are guideline values. Upon request, measurements can be performed on individual melts in the temperature range from -100°C to +140°C and in the wavelength range from 0.3650 µm to 1.014 µm with a precision better than ± 5·10-7/K. The accuracy at the limits of the measurement range is somewhat less than in the middle of this interval.The temperature coefficients of the relative refractive indices ∆n rel /∆T and the values for ∆n abs can be calculated with the help of the equations listed in Technical Information TI Nr. 19 (available upon request).Figures 3-1 to 3-4 show the absolute temperature coefficient of refractive index for different glasses, temperatures and wavelengths.DATE May 2004 PAGE 7/15DATE May 2004PAGE 8/15SF 6.DATE May 2004 PAGE 9/154. Influence of the Fine Annealing Process on the Refractive Index and Abbe numberThe optical data for a glass type are chiefly determined by the chemical composition and thermal treatment of the melt. The annealing rate in the transformation range of the glass can be used to influence the refractive index within certain limits (depending on the glass type and the allowable stress birefringence). Basically slower annealing rates yield higher refractive indices. In practice, the following formula has proven itself.)/log()()(00h h m h n h n x nd d x d ⋅+= (4-1) h 0 Original annealing rate h x New annealing rate m nd ? Annealing coefficient for the refractive index depending on the glass typeThe refractive index dependence on annealing rate is graphically shown in Figure 4-1.Figure 4-1: Dependence of refractive index on the annealing rate for several glass types. Reference annealing rate is 7 K/hAn analogous formula applies to the Abbe number.)/log()()(00h h m h h x d d x d ⋅+=ννν (4-2) m νd ? Annealing coefficient for the Abbe number depending on the glass typeThe annealing coefficient m νd can be calculated with sufficient accuracy with the following equation:)/())((0C F nC nF d nd d n n m h m m −⋅−=−νν (4-3)The coefficient m nF-nC has to be determined experimentally.DATE May 2004 PAGE 10/15Figure 4-2 shows that individual glass types vary greatly in their dependence of t he Abbe number on the annealing rate. In general also the Abbe number increases with decreasing annealing rate. High index lead free glass types like N-SF6 show anomalous behavior. Anomalous behaviour means that the Abbe number decreases with decreasing annealing rate.Figure 4-2: Abbe number as a function of the annealing rate for several glass types. Reference annealing rate is 7 K/hValues for Annealing coefficients of some optical glasses are shown in Table 4-1. We will provide the values for the annealing coefficients of our glasses upon request.m nd m nF-nc m νdN-BK7 -0.00087 -0.000005 -0.0682 N-FK51 -0.00054 -0.000002 -0.0644 SF 6 -0.00058 +0.000035 -0.0464 N-SF6 -0.0025 -0.000212 0.0904Table 4-1: Annealing coefficients for several selected glass typesThe annealing rate can be used to adjust the refractive index and Abbe number to the desired tolerance range.In practice the annealing rate influences the refractive index and the Abbe number simultaneously. Figure 4-3 shows a diagram of the Abbe number versus the refractive index for N -BK7. The rectangular boxes indicate the tolerance limits (steps) for the refractive index and the Abbe number. For example the largest box with a dotted frame indicates the tolerance borders for step 3 in refractive index and step 4 in Abbe number. The smallest box indicates step 1 in refractive index and Abbe number. In the center of the frames is the nominal catalog value.DATE May 2004PAGE 11/15 After melting the optical glass is cooled down at a high annealing rate. To control the refractive index during the melting process samples are taken directly from the melt after each casting. These samples are cooled down very fast together with a reference sample of the same glass. The reference sample has a known refractive index at an annealing rate of 2°C/h. By measuring the change in refractive index of the reference sample the refractive index of the sample can be measured with moderate accuracy in the range of ±10-4.The annealing rate dependence of the Abbe number and refractive index of each glass is represented by a line in the diagram having a slope that is characteristic for the glass type. For a given melt the position of the line in the diagram is given by the initial refractive index / Abbe number measurement for a cooling rate of 2°C/h as a fix-point together with the glass typical slope. The refractive index and Abbe number for a given glass part can be adjusted by a fine annealing step along this characteristic line.Glass for cold processing has to be fine annealed to reduce internal stresses. During this fine annealing the annealing rate is in general lower than 2°C/h. The initial refractive index has to be adjusted during melting in such a way that the desired tolerances can be reached during fine annealing. The initial refractive index of N-BK7 for example is in general lower than the target value.Figure 4-3:The influence of the annealing rate on the refractive index and Abbe numberof N-BK7 for different initial refractive indices.DATE May 2004PAGE 12/15 Glass for hot processing i.e reheat pressing is subjected to much more rapid annealing. The heat treatment processes used by the customer in general use annealing rates much higher than 2°C/h. Therefore for N-BK7 pressings for example the initial refractive index needs to be higher than the target value. For a better visualization in figure 4-3 the annealing line for pressings was shifted to higher Abbe numbers. In general it is also possible to achieve step 1/1 for pressings after hot processing. We deliver an annealing schedule for each batch of glass for hot processing purpose. This annealing schedule contains the initial refractive index at 2°C/h and the limit annealing rates to stay within the tolerances.5. TolerancesThe refractive indices, which are listed to 5 decimal places in the data sheets, represent values for a melt with nominal n d-νd position for the glass type in question. The refractive index data are exact to five decimal places (for λ > 2 µm: ± 2·10-5). The accuracy of the data is less in wavelength regions with limited transmission. All data apply to room temperature and normal air pressure (0,10133·10-6 Pa).Defining tolerances for the refractive index of a glass the customer has to distinguish between the refractive index tolerance, the tolerance of refractive index variation within a lot and the refractive index homogeneity (figure 5-1).Figure 5-1:Refractive index variation from within a production sequence.DATE May 2004 PAGE 13/15All deliveries of fine annealed block glass and fabricated glass are made in lots of single batches. The batch may be a single block or some few strip sections. More information on the new lot id system can be found in [3].The refractive index and Abbe number tolerance is the maximum allowed deviation of a single part within the delivery lot from nominal values given in the data sheets of the catalog. The refractive index of the delivery lot given in the standard test certificates is given by the following formulae:2/)(min max n n n lot += (5-1)n max is the maximum and n min the minimum refractive index within the lot.The refractive index variation from part to part within a lot is always smaller than ± 1*10-4. The refractive index homogeneity within a single part is better than ± 2*10-5 in general [4]. A short summary of the refractive index tolerance, variation and homogeneity grades can be found in table 5-1. More information is given in the optical glass catalogue [5].Tolerance Grade Refractive Index [*10-5] Abbe NumberStep 4-- ± 0.8% Step 3 ± 50 ± 0.5% Step 2 ± 30 ± 0.3% AbsoluteStep 1± 20 ± 0.2% SN± 10 -- S0 ± 5 -- Variation S1± 2 -- H1± 2 -- H2 ± 0.5 -- H3 ± 0.2 -- H4 ± 0.1 -- Homogeneity H5 ± 0.05--Table 5-1: Refractive Index Tolerances6. Refractive Index MeasurementFor refractive index measurement two different measurement setups are used: the v -block refractometer (figure 6-2) and the spectral goniometer. Figure 6-1 shows the principle of the v-Block measurement. The samples are shaped in a nearly square shape. One sample is about 20x20x5 mm small. The sample will be placed in a v shaped block prism. The refractive index of this prism is known very precisely. The refraction of an incoming light beam depends on the refractive index difference between the sample and the v-block-prism. The advantage of this method is that up to 10 samples can be glued together into one v -block stack. Therefore many samples can be measured in a very short time. The relative measurement accuracy is very h igh, therefore differences in refractive index within one v -block stack can be measured very accurately.DATE May 2004 PAGE 14/15Figure 6-1: Refractive index variation from within a production sequence .Figure 6-2: V-block refractometer.The spectral goniometric method is based on the measurement of the angle of minimum refraction in a prism shaped sample. This is the most accurate absolute refractive index measurement method. In our laboratory we have standard manual spectral goniometers and automated improved spectral goniometer with higher accuracy and the ability to measure in the infrared and UV region (figure 6-3).Figure 6-3: Manual spectral goniometer (left side), automated spectral goniometer (rightside).sample with lowerrefractive indexsample with higher refractive index samplev-block-prism immersion oillightbeamDATE May 2004PAGE 15/15 Table 6-1 shows a summary of the refractive index measurements available at Schott.Measurement accuracyMeasurementRefractive index DispersionWavelengths MethodV-block standard ± 30*10-6 ± 20*10-6g, F’, F, e, d, C’,CV-block enhanced ± 20*10-6± 10*10-6I, h, g, F’, F, e, d,C’, C, r, tv-blockrefractometerPrecisionspectrometer± 10*10-6± 3*10-6Super precision spectrometer ± 5*10-6± 2*10-6h, g, F’, F, e, d,C’, CspectralgoniometerUV precisionspectrometer± 10-20*10-6± 3*10-6UV super precision spectrometer ± 2-5*10-6± 2*10-6248.3 nm –2325.4 nm(about 30spectral linespossible)automaticspectralgoniometerTable 6-1: Absolute refractive index measurement accuraciesThe temperature coefficient of refractive index is measured using an automated spectral goniometer and a temperature controlled climate chamber with a temperature range from -100°C up to +140°C. The temperature coefficient can be measured with an accuracy of ± 0.5*10-6 K-1.7. Literature[1] The properties of optical glass; H. Bach & N. Neuroth (Editors), Springer Verlag 1998[2] SCHOTT Technical Information No. 19 (available upon request).[3] SCHOTT Technical Note No. 4: Test report for delivery lots[4] SCHOTT Technical Information No. 26: Homogeneity of optical glass[5] SCHOTT Optical Glass Pocket CatalogueFor more information please contact:Optics for DevicesSCHOTT GlasGermanyPhone: + 49 (0)6131/66-3835Fax: + 49 (0)6131/66-1998E-mail: info.optics@/optics_devices。