期中考试高二数学(理科)答案

合集下载

高二数学期中(理科)参考答案

高二数学期中(理科)参考答案

2013-2014学年第一学段模块检测 高二数学(理科)参考答案一、选择题ACBAD BCDCA AB 二、填空题13.14.1315.-3. 16. 33 三、解答题17.解:由题意得,414(1)201a q S q-==-- ① ………………3分818(1)16401a q S q -==--,② ………………………………6分 由①②得:841821q q-=-, ……………………8分 3q ∴=±, ……………………………………9分∵公比0q <,∴3q =- …………………………10分将3q =-代入①式得41[1(3)]201(3)a --=---,解得11a =. ……11分 则111(3)n n n a a q--==- ……………………………………12分18.解: (I) 因为a =3,b ,∠B =2∠A .所以在△ABC 中,由正弦定理得3sin A =……………………2分所以2sin cos sin A A A =……………………4分故cos A =……………………………………6分 (II)(法1)余弦定理得2222cos a c b b c A =+-⋅⋅………8分又3,a b A ===∴2249c c +-=,…………………9分解得:3c =或5c =.……………………………10分 当3c =时,A C =,此时可得4A π=,△ABC 是以角B 为直角的等腰直角三角形.而此时222a cb +≠所以矛盾.则5c =. …………………12分 (法2)由 (I)知cos 3A =,则角A 为锐角, 所以sin 3A ==. ………………………7分 又因为∠B =2∠A , 所以 21cos 2cos 13B A =-=.则B 为锐角. 所以sin 3B ==. ……………9分 在△ABC 中,sin sin()sin cos cos sin 9C A B A B A B =+=+=. ………10分 所以 sin 5sin a Cc A==. ……………………………………12分19. 解:(Ⅰ)由题意知a>0且1,b 是方程ax 2-3x +2=0的根, …………2分则3121b a b a ⎧+=⎪⎪⎨⎪⨯=⎪⎩,………………………………4分解得12a b =⎧⎨=⎩. …………………………………………5分(Ⅱ)不等式可化为x 2-2(m+1)x +4m>0即(x -2m)(x -2)>0 …………6分当2m>2,即m>1时,不等式的解集为{x |x <2, 或x >2m}, …………8分 当2m=2, 即m=1时,不等式的解集为{x |x ≠2}, ………9分当2m<2,即m<1时,不等式的解集为{x |x <2m, 或x >2},………………11分综上,当m >1时,不等式的解集为{x |x <2, 或x >2m};当m=1时,不等式的解集为{x |x ≠2}; 当m<1时,不等式的解集为{x |x <2m, 或x 2>}.…………12分 20. 解:(Ⅰ)由题知2213(22)5a a a +=⋅,…………………………1分 又110a =,2131,2a a d a a d =+=+,则 2(222)105(102)d d +=⨯+…………………………3分 解得:41d d ==-或, …………………………4分当4d =时,10(1)446n a n n =+-⨯=+,…………………………5分当1d =-时,10(1)(1)11.n a n n =+-⨯-=-…………………………6分 (Ⅱ)由(Ⅰ)知,当0d<时, |||11|.n n b a n ==-由110n -≥得11n ≤,,11,12n n na nb a n ≤⎧∴=⎨-≥⎩,…………………………8分设数列{}n a 的前n 项和是n S .当11n ≤时, 2(1011)2122n n n n n n T S +--===…………………………9分 当12n ≥时,1112131111()()n n n T S a a a S S S =-+++=--=112n S S -=221111122⨯-⨯-2212n n -=2212202n n -+.…………………11分2221,11,22122012.2n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪≥⎪⎩,…………………12分21. 解:(Ⅰ)依题意,该车前n 年的维修保养费是(1)0.20.2(0.10.1)2n n n n n -+⋅=+,………………2分 则f (n ) =14.4+ (0.10.1)n n ++0.9n ,………………4分20.114.4n n =++ . ………………6分 (Ⅱ)设该车的年平均费用为S 万元,则有2()0.114.4f n n n S n n++==, …………………8分14.41110n n=++≥ 3.4=, …………………10分 仅当14.410n n =,即 n = 12 时,等号成立. …………………………11分答:汽车使用12年报废为宜. ………………………………12分 22.解:(Ⅰ)当1n =时,1111a S a λ==-,显然1λ≠,则111a λ=-,………1分 当2n ≥时,11(1)(1)n n n n n a S S a a λλ--=-=--- 则11n n a a λλ-=-,又0λ≠,……………………2分{}n a ∴是等比数列. 则11()11n n a λλλ-=--,…………………………3分 则2213a a a =,又223a a =,1111a λ==-,则2λ=.12n n a -∴=.…………………4分因为1n n n b a b +=+,所以111221211nn n n n n n n b a b a a b a a a b -------=+=++==++++23321221(2)22n n n n --+=++++=≥ .当1n =时,上式仍然成立.所以 21.2n n b +=. ……6分(Ⅱ) 22log (21)log 2,n nn c b n ∴=-==12.n n n a c n -∴= ……………………………………7分则01211222322n nT n -=⋅+⋅+⋅++⋅ ①12312122232(1)22n n n T n n -∴=⋅+⋅+⋅++-⋅+⋅ ,②………8分①-②得231122222n n n T n --=+++++-⋅122(1)2112nn n n n -=-⋅=-⋅--,……………………9分 (1)21n n T n ∴=-⋅+……………………10分(Ⅲ)()()()111122221121(21)212n n nnn n nn n na d ab ----×===+++++ . ()11121122()212121(21)n n n n n ---=?-++++, ……………12分所以12nn P c c c =+++211111112()22121212121n n -=-+-++-+++++22112121n n n -=-=++. …14分。

自贡蜀光中学高中二年级下理科数学期中考试理科数学_人教新课标

自贡蜀光中学高中二年级下理科数学期中考试理科数学_人教新课标

x 1 ,令
f ( x ) 2ln x x , f (x) 2 1 , 当 x (0,2) 时 , f (x) 0 , f (x) 为增函数 , 当 x (2, ) 时 ,
x
f (x) 0, f (x) 为减函数 ,所以 f (x) 的极大值为 f (2) 2ln 2 2 .
15 . 过抛物线 y 2=6 x 的焦点作直线 , 交抛物线于 A( x1 , y1), B(x2, y2) 两点 , 如果 x1+ x2=8 ,那么
C
y 2 4 x ⋯⋯⋯⋯⋯⋯⋯⋯5⋯分
所求的抛物线 的方程为
(2 ) 假设存在符合题意的直线 l , 其方程为 y

y2 4x , 消 x 得 y2 2 y 2t 0
y 2x t
2x t

l
C
因为直线 与抛物线 有公共点 , 所以得
4 8t 0 ,解得 t
1 2 .⋯⋯⋯⋯⋯⋯⋯⋯9⋯分
OA l
d
, 再利用积分知识可得正弦曲线 y=sinx 与 x 轴围成的
区域的面积 , 从而可求概率 . 解: 构成试验的全部区域为圆内的区域 , 面积为 π3, 正弦曲线 y=-sinx 与 x
π
轴围成的区域记为 M , 根据图形的对称性得 :面积为 S=2 0 sin xdx =-2cosx| 0 =4 , 由几何概率的计算公
在点( , 处的切线方程是
A. a 1,b 2 B.a 1,b 2 C.a 1,b -2 D.a 1,b 2
9. 设 f (x)
1 x3 1 x2 2ax, 若 f (x) 在 ( 2,
32
3
) 上存在单调递增区间
, 则实数 a 的取值范围为

2021-2022学年甘肃省兰州市第一中学高二下学期期中考试理科数学试题(解析版)

2021-2022学年甘肃省兰州市第一中学高二下学期期中考试理科数学试题(解析版)

甘肃省兰州市第一中学2021-2022学年高二下学期期中考试数学理科试题说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.〖答案〗写在答题卡上.交卷时只交答题卡.一.选择题(共12小题,满分60分,每小题5分)1. 复数2iz=-(i为虚数单位)的共轭复数的虚部为()A. -1B. 1C. i-D. i〖答案〗B〖解析〗由题意知:2iz=+,则虚部为1.故选:B.2. 在用反证法证明“已知x,y∈R,且x y+<,则x,y中至多有一个大于0”时,假设应为()A. x,y都小于0 B. x,y至少有一个大于0C. x,y都大于0 D. x,y至少有一个小于0〖答案〗C〖解析〗“至多有一个大于0”包括“都不大于0和有且仅有一个大于0”,故其对立面为“x,y都大于0”.故选:C.3. 函数y=x2cos 2x的导数为()A. y′=2x cos 2x-x2sin 2xB. y′=2x cos 2x-2x2sin 2xC. y′=x2cos 2x-2x sin 2xD. y′=2x cos 2x+2x2sin 2x〖答案〗B〖解析〗y′=(x2)′cos 2x+x2(cos 2x)′=2x cos 2x+x2(-sin 2x)·(2x)′=2x cos 2x-2x2sin 2x.故选:B.4. 函数21ln2y x x=-的单调递减区间为()A. ()1,1-B.()1,+∞C.()0,1D.()0,∞+〖答案〗C〖解 析〗函数21ln 2y x x=-的定义域为()0,∞+, ()()21111x x x y x x x x +--=-==′,()()1100x x x x ⎧+-<⎪⎨⎪>⎩,解得01x <<,所以函数21ln 2y x x=-的单调递减区间为()0,1. 故选:C.5. 用S 表示图中阴影部分的面积,则S 的值是( )A. ()d ca f x x⎰B. ()d caf x x⎰C.()d ()d bc abf x x f x x +⎰⎰D.()d ()d cb baf x x f x x-⎰⎰〖答 案〗D〖解 析〗由定积分的几何意义知区域内的曲线与x 轴的面积代数和. 即()d ()d cbbaf x x f x x-⎰⎰,选项D 正确.故选D .6. 把3封信投到4个信箱中,所有可能的投法共有( ) A. 7种 B. 12种C. 43种D. 34种〖答 案〗D〖解 析〗由题意可得,第1封信投到信箱中有4种投法,第2封信投到信箱中有4种投法,第3封信投到信箱中有4种投法,所以由分步乘法计数原理可得共有34444⨯⨯=种投法, 故选:D.7. 设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数y =f ′(x )的图象可能是( )A. B.C.D.〖答 案〗A 〖解 析〗根据()f x 的图像可知,函数从左到右,单调区间是:增、减、增、减,也即导数从左到右,是:正、负、正、负.结合选项可知,只有A 选项符合,故本题选A. 8. 已知函数()33f x x x m=-+只有一个零点,则实数m 的取值范围是( )A.[]22-, B.()(),22,-∞-+∞C.()2,2-D.(][),22,-∞-+∞〖答 案〗B 〖解 析〗由函数()33f x x x m=-+只有一个零点,等价于函数33y x x =-+的图像与y m =的图像只有一个交点,33y x x =-+,求导233y x '=-+,令0y '=,得1x =±当1x <-时,0y '<,函数在(),1-∞-上单调递减; 当11x -<<时,0y '>,函数在()1,1-上单调递增;当1x >时,0y '<,函数在()1,+∞上单调递减;故当1x =-时,函数取得极小值2y =-;当1x =时,函数取得极大值2y =; 作出函数图像,如图所示,由图可知,实数m 的取值范围是()(),22,-∞-+∞.故选:B.9. 将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A. 120种 B. 240种 C. 360种 D. 480种〖答 案〗B〖解 析〗先将5名志愿者分为4组,有25C 种分法, 然后再将4组分到4个项目,有44A 种分法,再根据分步乘法原理可得不同的分配方案共有2454C A 240⋅=种.故选:B. 10. (1+2x 2 )(1+x )4的展开式中x 3的系数为( ) A. 12B. 16C. 20D. 24〖答 案〗A〖解 析〗由题意得x 3的系数为3144C 2C 4812+=+=,故选A . 11. 下列说法正确的是( )①设函数()y f x =可导,则()()()11lim13x f x f f x →+-'=△△△;②过曲线()y f x =外一定点做该曲线的切线有且只有一条;③已知做匀加速运动的物体的运动方程是()2s t t t=+米,则该物体在时刻2t =秒的瞬时速度是5米/秒;④一物体以速度232v t t =+(米/秒)做直线运动,则它在0=t 到2t =秒时间段内的位移为12米;⑤已知可导函数()y f x =,对于任意(),x a b ∈时,()0f x '>是函数()y f x =在(),a b 上单调递增的充要条件. A. ①③ B. ③④C. ②③⑤D. ③⑤〖答 案〗B〖解 析〗对于选项①,设函数()f x ,则()()()()001(1)1111limlim 1333x x f x f f x f f xx →→+-+-==',故①错.对于选项②,过曲线()y f x =外一定点做该曲线的切线可以有多条,故②错.对于选项③,已知做匀速运动的物体的运动方程为()2S t t t=+,则()21S t t '=+,所以()25S '=,故③正确.对于选项④,一物体以速度232v t t =+做直线运动,则它在0=t 到2t =时间段内的位移为()223220032d (| 2)1tt t t t +=+=⎰,故④正确.对于选项⑤,已知可导函数()y f x =,对于任意(),x a b ∈时,()0f x '>是函数()y f x =在(),a b 上单调递增的充分不必要条件,例如()3,'()0f x x f x =≥,故⑤错.故选B . 12. 已知()2cos f x x x=+,x ∈R ,若()()1120f t f t ---≥成立,则实数t 的取值范围是( )A. 20,3⎛⎫ ⎪⎝⎭B. 20,3⎡⎤⎢⎥⎣⎦C.()2,0,3∞∞⎛⎫-⋃+⎪⎝⎭D. 23⎛⎤-∞ ⎥⎝⎦,〖答 案〗B 〖解 析〗函数()y f x =的定义域为R ,关于原点对称,()()()2cos 2cos f x x x x x f x -=-+-=+=,∴函数()y f x =为偶函数,当0x ≥时,()2cos f x x x=+,()2sin 0f x x '=->,则函数()y f x =在[)0,∞+上为增函数,由()()1120f t f t ---≥得()()112f t f t -≥-,由偶函数的性质得()()112f t f t -≥-,由于函数()y f x =在[)0,∞+上为增函数,则112t t-≥-,即()()22112t t -≥-,整理得2320t t -≤,解得203t ≤≤,因此,实数t 的取值范围是20,3⎡⎤⎢⎥⎣⎦. 故选:B.二.填空题(共5小题,满分25分,每小题5分)13.10d ⎤=⎦⎰x x ___________.〖答 案〗142π-〖解析〗11]d d =-⎰⎰⎰x x x x x ,根据定积分的几何意义可知,⎰x 表示以()1,0为圆心,1为半径的圆的四分之一面积,所以201144ππ=⋅⋅=⎰x ,而1210011d |22⎛⎫=+= ⎪⎝⎭⎰x x x c ,所以101]d 42π=-⎰x x .故〖答 案〗为:142π-.14. 在二项式214nx x ⎛⎫- ⎪⎝⎭的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为______. 〖答 案〗243〖解 析〗因为二项式214nx x ⎛⎫- ⎪⎝⎭的展开式中,所有二项式系数的和是32, 所以232n=,故5n =,取1x =可得二项式5214x x ⎛⎫- ⎪⎝⎭的展开式中各项系数和为53,即243.故〖答 案〗为:243.15. 若函数()y f x =在区间D 上是凸函数,则对于区间D 内的任意1x ,2x ,…,n x都有()()()12121n n x x x f x f x f x f n n ++⋅⋅⋅+⎛⎫++⋅⋅⋅+≤⎡⎤ ⎪⎣⎦⎝⎭,若函数()sin f x x =在区间(0,)π上是凸函数,则在△ABC 中,sin sin sin A B C ++的最大值是______.〖答案〗〖解析〗由题设知:1(sin sin sin )sin()sin 3332A B C A B C π++++≤==,∴sin sin sin 2A B C ++≤,当且仅当3A B C π===时等号成立.故〖答案〗为:2.16. 在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____. 〖答 案〗(e, 1).〖解 析〗设点()00,A x y ,则00ln y x =.又1y x '=,当0x x =时,01y x '=, 点A 在曲线ln y x =上的切线为0001()y y x x x -=-,即00ln 1x y x x -=-,代入点(),1e --,得001ln 1ex x ---=-,即00ln x x e =,考查函数()ln H x x x=,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()'ln 1H x x =+,当1x >时,()()'0,>H x H x 单调递增,注意到()H e e=,故00ln x x e=存在唯一的实数根0x e=,此时01y =,故点A 的坐标为(),1A e .17. 若函数()2ln f x ax x x=+有两个极值点,则实数a 的取值范围是__________.〖答 案〗12a -<<〖解 析〗2012f x xlnx ax x f x lnx ax =+'=++()(>),(). 令12g x lnx ax =++(),由于函数函数()2ln f x ax x x=+有两个极值点0g x ⇔=()在区间∞(0,+)上有两个实数根.1122axg x a x x +'=+=(),当0a ≥ 时,0g x '()> ,则函数g x () 在区间∞(0,+)单调递增,因此0g x =() 在区间∞(0,+)上不可能有两个实数根,应舍去. 当0a < 时,令0gx '=() ,解得12x a =-,令0gx '()> ,解得102x a <<-,此时函数g x ()单调递增;令0gx '()< ,解得12x a >-,此时函数g x ()单调递减.∴当12x a =-时,函数g x ()取得极大值.要使0g x =()在区间∞(0,+)上有两个实数根,则11022g ln a a ()>,⎛⎫-=- ⎪⎝⎭,解得102a -<<.∴实数a 的取值范围是(12a -<<.三.解答题(共5小题,满分65分) 18. 设i 为虚数单位,∈a R ,复数12iz a =+,243iz =-.(1)若12z z ⋅是实数,求a 的值;(2)若12z z 是纯虚数,求1z .解:(1)()()()()122i 43i 3846iz z a a a ⋅=+-=++-,因为12z z ⋅是实数,则460a -=,解得32a =.(2)()()()()122i 43i 2i 8346i 43i 43i 43i 2525a z a a a z +++-+===+--+,因为12z z 为纯虚数,则830460a a -=⎧⎨+≠⎩,解得83a =.所以1103z ==.19.>.>只要证22>,只要证1313+>+>,只要证4240>显然成立,故原结论成立.20. 数列{}n a 满足26a =,()*1111+--=∈+n n a n n a n N .(1)试求出1a ,3a ,4a ;(2)猜想数列{}n a 的通项公式并用数学归纳法证明.解:(1)26a =,()*1111+--=∈+n n a n n a n N 当1n =时,1211111a a --=+,11a ∴=,当2n =时,3212121a a --=+,315a ∴=,当3n =时,3413131a a --=+,428a ∴=,所以11a =,315a =,428a =.(2)猜想(21)n a n n =-下面用数学归纳法证明:假设n k =时,有(21)k a k k =-成立,则当1n k =+时,有()1211111112k k k a k a k k +++--+-==+++,()()()122111k k k a k a +++-=+-⎡⎤⎣⎦()()11211k a k k +∴=++-⎡⎤⎣⎦故对*,(21)=∈-n n a n n N 成立.21. 已知函数()e cos xf x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 解:(Ⅰ)因为()e cos x f x x x=-,所以()()()e cos sin 1,00x f x x x f -''=-=.又因为()01f =,所以曲线()y f x =在点()()0,0f 处的切线方程为1y =.(Ⅱ)设()()e cos sin 1x h x x x =--,则()()e cos sin sin cos 2e sin x x h x x x x x x=--=-'-.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,所以()h x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减. 所以对任意π0,2x ⎛⎤∈ ⎥⎝⎦有()()00h x h <=,即()0f x '<. 所以函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.因此()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为()01f =,最小值为22f ππ⎛⎫=-⎪⎝⎭. 22. 设函数()f x ()20x ax x aa e ++=>,e 为自然对数的底数.(1)求f (x )的单调区间:(2)若ax 2+x +a ﹣e x x +e x ln x ≤0成立,求正实数a 的取值范围.解:(1)函数()()20xax x af x a e ++=>,e 为自然对数的底数,则()()11xaa x xaf xe-⎛⎫---⎪⎝⎭'=,令()0f x'=可得11x=,21111axa a-==-<,∴当1,axa-⎛⎫∈-∞⎪⎝⎭,()1,+∞时,()0f x'<,()f x单调递减;当1,1axa-⎛⎫∈ ⎪⎝⎭时,()0f x'>,()f x单调递增;∴()f x的单调增区间为1,1axa-⎛⎫∈ ⎪⎝⎭,单调减区间为1,aa-⎛⎫-∞⎪⎝⎭,()1,+∞;(2)ax2+x+a﹣e x x+e x ln x≤0成立⇔2xax x ae++≤x﹣ln x,x∈(0,+∞),由(1)可得当x=1函数y2xax x ae++=取得极大值21ae+,令g(x)= x﹣ln x,(x>0),g′(x)= 11x -,可得x=1时,函数g(x)取得极小值即最小值.∴x﹣ln x≥g(1)=1,当(]0,1a∈时,21ae+即为函数y2xax x ae++=的最大值,∴2xax x ae++≤x﹣ln x成立⇔21ae+≤1,解得a12e-≤;当()1,a∈+∞时,211ae+>,不合题意;综上所述,0<a12e-≤.甘肃省兰州市第一中学2021-2022学年高二下学期期中考试数学理科试题说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.〖答 案〗写在答题卡上.交卷时只交答题卡. 一.选择题(共12小题,满分60分,每小题5分) 1. 复数2i z =-(i 为虚数单位)的共轭复数的虚部为( ) A. -1 B. 1C.i -D. i〖答 案〗B〖解 析〗由题意知:2i z=+,则虚部为1.故选:B.2. 在用反证法证明“已知x ,y ∈R ,且0x y +<,则x ,y 中至多有一个大于0”时,假设应为( ) A. x ,y 都小于0 B. x ,y 至少有一个大于0 C. x ,y 都大于0D. x ,y 至少有一个小于0〖答 案〗C〖解 析〗“至多有一个大于0”包括“都不大于0和有且仅有一个大于0”,故其对立面为“x ,y 都大于0”.故选:C.3. 函数y =x 2cos 2x 的导数为( ) A. y ′=2x cos 2x -x 2sin 2x B. y ′=2x cos 2x -2x 2sin 2x C. y ′=x 2cos 2x -2x sin 2xD. y ′=2x cos 2x +2x 2sin 2x〖答 案〗B〖解 析〗y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x . 故选:B.4. 函数21ln 2y x x =-的单调递减区间为( )A.()1,1- B.()1,+∞C.()0,1D.()0,∞+〖答 案〗C〖解 析〗函数21ln 2y x x=-的定义域为()0,∞+, ()()21111x x x y x x x x +--=-==′,()()1100x x x x ⎧+-<⎪⎨⎪>⎩,解得01x <<,所以函数21ln 2y x x=-的单调递减区间为()0,1. 故选:C.5. 用S 表示图中阴影部分的面积,则S 的值是( )A. ()d ca f x x⎰B. ()d caf x x⎰C.()d ()d bc abf x x f x x +⎰⎰D.()d ()d cb baf x x f x x-⎰⎰〖答 案〗D〖解 析〗由定积分的几何意义知区域内的曲线与x 轴的面积代数和. 即()d ()d cbbaf x x f x x-⎰⎰,选项D 正确.故选D .6. 把3封信投到4个信箱中,所有可能的投法共有( ) A. 7种 B. 12种C. 43种D. 34种〖答 案〗D〖解 析〗由题意可得,第1封信投到信箱中有4种投法,第2封信投到信箱中有4种投法,第3封信投到信箱中有4种投法,所以由分步乘法计数原理可得共有34444⨯⨯=种投法, 故选:D.7. 设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数y =f ′(x )的图象可能是( )A. B.C.D.〖答 案〗A 〖解 析〗根据()f x 的图像可知,函数从左到右,单调区间是:增、减、增、减,也即导数从左到右,是:正、负、正、负.结合选项可知,只有A 选项符合,故本题选A. 8. 已知函数()33f x x x m=-+只有一个零点,则实数m 的取值范围是( )A.[]22-, B.()(),22,-∞-+∞C.()2,2-D.(][),22,-∞-+∞〖答 案〗B 〖解 析〗由函数()33f x x x m=-+只有一个零点,等价于函数33y x x =-+的图像与y m =的图像只有一个交点, 33y x x =-+,求导233y x '=-+,令0y '=,得1x =±当1x <-时,0y '<,函数在(),1-∞-上单调递减; 当11x -<<时,0y '>,函数在()1,1-上单调递增;当1x >时,0y '<,函数在()1,+∞上单调递减;故当1x =-时,函数取得极小值2y =-;当1x =时,函数取得极大值2y =; 作出函数图像,如图所示,由图可知,实数m 的取值范围是()(),22,-∞-+∞.故选:B.9. 将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A. 120种 B. 240种 C. 360种 D. 480种〖答 案〗B〖解 析〗先将5名志愿者分为4组,有25C 种分法, 然后再将4组分到4个项目,有44A 种分法,再根据分步乘法原理可得不同的分配方案共有2454C A 240⋅=种.故选:B. 10. (1+2x 2 )(1+x )4的展开式中x 3的系数为( ) A. 12B. 16C. 20D. 24〖答 案〗A〖解 析〗由题意得x 3的系数为3144C 2C 4812+=+=,故选A . 11. 下列说法正确的是( )①设函数()y f x =可导,则()()()11lim13x f x f f x →+-'=△△△;②过曲线()y f x =外一定点做该曲线的切线有且只有一条;③已知做匀加速运动的物体的运动方程是()2s t t t=+米,则该物体在时刻2t =秒的瞬时速度是5米/秒;④一物体以速度232v t t =+(米/秒)做直线运动,则它在0=t 到2t =秒时间段内的位移为12米;⑤已知可导函数()y f x =,对于任意(),x a b ∈时,()0f x '>是函数()y f x =在(),a b 上单调递增的充要条件. A. ①③ B. ③④C. ②③⑤D. ③⑤〖答 案〗B〖解 析〗对于选项①,设函数()f x ,则()()()()001(1)1111limlim 1333x x f x f f x f f xx →→+-+-==',故①错.对于选项②,过曲线()y f x =外一定点做该曲线的切线可以有多条,故②错.对于选项③,已知做匀速运动的物体的运动方程为()2S t t t=+,则()21S t t '=+,所以()25S '=,故③正确.对于选项④,一物体以速度232v t t =+做直线运动,则它在0=t 到2t =时间段内的位移为()223220032d (| 2)1tt t t t +=+=⎰,故④正确.对于选项⑤,已知可导函数()y f x =,对于任意(),x a b ∈时,()0f x '>是函数()y f x =在(),a b 上单调递增的充分不必要条件,例如()3,'()0f x x f x =≥,故⑤错.故选B . 12. 已知()2cos f x x x=+,x ∈R ,若()()1120f t f t ---≥成立,则实数t 的取值范围是( )A. 20,3⎛⎫ ⎪⎝⎭B. 20,3⎡⎤⎢⎥⎣⎦C.()2,0,3∞∞⎛⎫-⋃+⎪⎝⎭D. 23⎛⎤-∞ ⎥⎝⎦,〖答 案〗B 〖解 析〗函数()y f x =的定义域为R ,关于原点对称,()()()2cos 2cos f x x x x x f x -=-+-=+=,∴函数()y f x =为偶函数,当0x ≥时,()2cos f x x x=+,()2sin 0f x x '=->,则函数()y f x =在[)0,∞+上为增函数,由()()1120f t f t ---≥得()()112f t f t -≥-,由偶函数的性质得()()112f t f t -≥-,由于函数()y f x =在[)0,∞+上为增函数,则112t t-≥-,即()()22112t t -≥-,整理得2320t t -≤,解得203t ≤≤,因此,实数t 的取值范围是20,3⎡⎤⎢⎥⎣⎦. 故选:B.二.填空题(共5小题,满分25分,每小题5分)13.10d ⎤=⎦⎰x x ___________.〖答 案〗142π-〖解析〗11]d d =-⎰⎰⎰x x x x x ,根据定积分的几何意义可知,⎰x 表示以()1,0为圆心,1为半径的圆的四分之一面积,所以201144ππ=⋅⋅=⎰x ,而1210011d |22⎛⎫=+= ⎪⎝⎭⎰x x x c ,所以101]d 42π=-⎰x x .故〖答 案〗为:142π-.14. 在二项式214nx x ⎛⎫- ⎪⎝⎭的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为______. 〖答 案〗243〖解 析〗因为二项式214nx x ⎛⎫- ⎪⎝⎭的展开式中,所有二项式系数的和是32, 所以232n=,故5n =,取1x =可得二项式5214x x ⎛⎫- ⎪⎝⎭的展开式中各项系数和为53,即243.故〖答 案〗为:243.15. 若函数()y f x =在区间D 上是凸函数,则对于区间D 内的任意1x ,2x ,…,n x都有()()()12121n n x x x f x f x f x f n n ++⋅⋅⋅+⎛⎫++⋅⋅⋅+≤⎡⎤ ⎪⎣⎦⎝⎭,若函数()sin f x x =在区间(0,)π上是凸函数,则在△ABC 中,sin sin sin A B C ++的最大值是______.〖答案〗〖解析〗由题设知:1(sin sin sin )sin()sin 3332A B C A B C π++++≤==,∴sin sin sin 2A B C ++≤,当且仅当3A B C π===时等号成立.故〖答案〗为:2.16. 在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____. 〖答 案〗(e, 1).〖解 析〗设点()00,A x y ,则00ln y x =.又1y x '=,当0x x =时,01y x '=, 点A 在曲线ln y x =上的切线为0001()y y x x x -=-,即00ln 1x y x x -=-,代入点(),1e --,得001ln 1ex x ---=-,即00ln x x e =,考查函数()ln H x x x=,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()'ln 1H x x =+,当1x >时,()()'0,>H x H x 单调递增,注意到()H e e=,故00ln x x e=存在唯一的实数根0x e=,此时01y =,故点A 的坐标为(),1A e .17. 若函数()2ln f x ax x x=+有两个极值点,则实数a 的取值范围是__________.〖答 案〗12a -<<〖解 析〗2012f x xlnx ax x f x lnx ax =+'=++()(>),(). 令12g x lnx ax =++(),由于函数函数()2ln f x ax x x=+有两个极值点0g x ⇔=()在区间∞(0,+)上有两个实数根.1122axg x a x x +'=+=(),当0a ≥ 时,0g x '()> ,则函数g x () 在区间∞(0,+)单调递增,因此0g x =() 在区间∞(0,+)上不可能有两个实数根,应舍去. 当0a < 时,令0gx '=() ,解得12x a =-,令0gx '()> ,解得102x a <<-,此时函数g x ()单调递增;令0gx '()< ,解得12x a >-,此时函数g x ()单调递减.∴当12x a =-时,函数g x ()取得极大值.要使0g x =()在区间∞(0,+)上有两个实数根,则11022g ln a a ()>,⎛⎫-=- ⎪⎝⎭,解得102a -<<.∴实数a 的取值范围是(12a -<<.三.解答题(共5小题,满分65分) 18. 设i 为虚数单位,∈a R ,复数12iz a =+,243iz =-.(1)若12z z ⋅是实数,求a 的值;(2)若12z z 是纯虚数,求1z .解:(1)()()()()122i 43i 3846iz z a a a ⋅=+-=++-,因为12z z ⋅是实数,则460a -=,解得32a =.(2)()()()()122i 43i 2i 8346i 43i 43i 43i 2525a z a a a z +++-+===+--+,因为12z z 为纯虚数,则830460a a -=⎧⎨+≠⎩,解得83a =.所以1103z ==.19.>.>只要证22>,只要证1313+>+>,只要证4240>显然成立,故原结论成立.20. 数列{}n a 满足26a =,()*1111+--=∈+n n a n n a n N .(1)试求出1a ,3a ,4a ;(2)猜想数列{}n a 的通项公式并用数学归纳法证明.解:(1)26a =,()*1111+--=∈+n n a n n a n N 当1n =时,1211111a a --=+,11a ∴=,当2n =时,3212121a a --=+,315a ∴=,当3n =时,3413131a a --=+,428a ∴=,所以11a =,315a =,428a =.(2)猜想(21)n a n n =-下面用数学归纳法证明:假设n k =时,有(21)k a k k =-成立,则当1n k =+时,有()1211111112k k k a k a k k +++--+-==+++, ()()()122111k k k a k a +++-=+-⎡⎤⎣⎦()()11211k a k k +∴=++-⎡⎤⎣⎦故对*,(21)=∈-n n a n n N 成立.21. 已知函数()e cos x f x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 解:(Ⅰ)因为()e cos x f x x x =-,所以()()()e cos sin 1,00x f x x x f -''=-=. 又因为()01f =,所以曲线()y f x =在点()()0,0f 处的切线方程为1y =.(Ⅱ)设()()e cos sin 1x h x x x =--,则()()e cos sin sin cos 2e sin x x h x x x x x x=--=-'-. 当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,所以()h x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减. 所以对任意π0,2x ⎛⎤∈ ⎥⎝⎦有()()00h x h <=,即()0f x '<. 所以函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.因此()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为()01f =,最小值为22f ππ⎛⎫=- ⎪⎝⎭. 22. 设函数()f x ()20x ax x a a e ++=>,e 为自然对数的底数.(1)求f (x )的单调区间:(2)若ax 2+x +a ﹣e x x +e x ln x ≤0成立,求正实数a 的取值范围.解:(1)函数()()20x ax x a f x a e ++=>,e 为自然对数的底数,则()()11xaa x xaf xe-⎛⎫---⎪⎝⎭'=,令()0f x'=可得11x=,21111axa a-==-<,∴当1,axa-⎛⎫∈-∞⎪⎝⎭,()1,+∞时,()0f x'<,()f x单调递减;当1,1axa-⎛⎫∈ ⎪⎝⎭时,()0f x'>,()f x单调递增;∴()f x的单调增区间为1,1axa-⎛⎫∈ ⎪⎝⎭,单调减区间为1,aa-⎛⎫-∞⎪⎝⎭,()1,+∞;(2)ax2+x+a﹣e x x+e x ln x≤0成立⇔2xax x ae++≤x﹣ln x,x∈(0,+∞),由(1)可得当x=1函数y2xax x ae++=取得极大值21ae+,令g(x)= x﹣ln x,(x>0),g′(x)= 11x -,可得x=1时,函数g(x)取得极小值即最小值.∴x﹣ln x≥g(1)=1,当(]0,1a∈时,21ae+即为函数y2xax x ae++=的最大值,∴2xax x ae++≤x﹣ln x成立⇔21ae+≤1,解得a12e-≤;当()1,a∈+∞时,211ae+>,不合题意;综上所述,0<a12e-≤.。

2023-2024学年四川省成都市高二下册期中考试数学(理)试题(含解析)

2023-2024学年四川省成都市高二下册期中考试数学(理)试题(含解析)

2023-2024学年四川省成都市高二下册期中考试数学(理)试题一、单选题(本大题共12小题,共60.0分.在每小题列出的选项中,选出符合题目的一项)1.已知集合{}{}220,0,1A xx x B =-≤=∣,则A B ⋂=()A.[]0,1B.{}0,1 C.[]0,2D.{}0,1,22.复数3i1iz +=+在复平面内表示的点的坐标为()A.()2,1- B.()1,1- C.()1,2 D.()2,23.函数()3,0ln ,0x e x f x x x +⎧≤=⎨>⎩,则()1f f ⎡⎤-=⎣⎦()A.-1B.0C.ln2D.24.在极坐标系中,圆2cos ρθ=-的圆心的极坐标是()A.1,2π⎛⎫ ⎪⎝⎭B.1,2π⎛⎫- ⎪⎝⎭ C.()1,0 D.()1,π5.下列函数中,在定义域内既是奇函数又是增函数的是()A.()323f x x x=+ B.()5tan f x x=C.()8f x x=-D.()f x x =+6.执行如图所示的程序框图,输出的结果是()A.13B.14C.15D.177.树立劳动观念对人的健康成长至关重要,某实践小组共有4名男生,2名女生,现从中选出4人参加校园植树活动,其中至少有一名女生的选法共有()A.8种B.14种C.12种D.9种8.收集一只棉铃虫的产卵数y 与温度x 的几组数据后发现两个变量有相关关系,按不同的曲线来拟合y 与x 之间的回归方程,并算出了对应的决定系数2如下表:则这组数据模型的回归方程的最好选择应是()A.ˆ19.8463.7yx =- B.0.273.84ˆx ye -=C.2ˆ0.367202yx =- D.ˆy =9.若443243210(1)x a x a x a x a x a -=++++,则4321a a a a -+-=()A.-1B.1C.15D.1610.函数2ln x x y x=的图象大致是()A. B.C.D.11.函数()3224f x x x x =--+,当[]3,3x ∈-时,有()214f x m m -恒成立,则实数m 的取值范围是()A.()3,11- B.()3,11 C.[]2,7D.[]3,1112.已知函数()22(1)sin 1x xf x x ++=+,其导函数记为()f x ',则()()()()2022202220222022f f f f ++--'-'=()A.-3B.3C.2D.-2二、填空题(本大题共4小题,共20.0分)13.复数()i 12i z =+的共轭复数为__________.14.10(1)x -的展开式的第6项系数是__________.15.已知甲,乙,丙三个人中,只有一个人会中国象棋.甲说:“我会”;乙说:“我不会”;丙说:“甲不会”.如果这三句话只有一句是真的,那么甲,乙,丙三个人中会中国象棋的是__________.16.已知,a b 为实数,不等式ln ax b x +≥恒成立,则ba的最小值为__________.三、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17.(本小题10.0分)在平面直角坐标系xOy 中,曲线22:1C x y +=所对应的图形经过伸缩变换2x x y =⎧⎪⎨=⎪'⎩'得到图形C '.(1)写出曲线C '的平面直角坐标方程;(2)点P 在曲线C '上,求点P到直线60l y +-=的距离的最小值及此时点P 的坐标.18.(本小题12.0分)已知函数()322f x x ax bx a =+++在1x =-处取得极大值1.(1)求,a b 的值;(2)当[]1,1x ∈-时,求()f x 的最大值.19.(本小题12.0分)随着2022年北京冬季奥运会的如火如茶地进行.2022年北京冬季奥运会吉祥物“冰墩墩”受到人们的青睐,现某特许商品专卖店每天均进货一次,卖一个吉祥物“冰墩墩”可获利50元,若供大于求,则每天剩余的吉祥物“冰墩墩”需交保管费10元/个;若供不应求,则可从其他商店调剂供应,此时调剂的每一个吉祥物“冰墩墩”该店仅获利20元.该店调查上届冬季奥运会吉祥物每天(共计20天)的需求量(单位:个),统计数据得到下表:每天需求量162163164165166频数24653以上述20天吉祥物的需求量的频率作为各需求量发生的概率.记X 表示每天吉祥物“冰墩墩”的需求量.(1)求X 的分布列;(2)若该店某一天购进164个吉祥物“冰墩墩”,则当天的平均利润为多少元.20.(本小题12.0分)光伏发电是利用太阳能电池及相关设备将太阳光能直接转化为电能.近几年在国内出台的光伏发电补贴政策的引导下,某地光伏发电装机量急剧上涨,如下表:年份2011年2012年2013年2014年2015年2016年2017年2018年年份代码x12345678新增光伏装机量y 兆瓦0.40.8 1.6 3.1 5.17.19.712.2某位同学分别用两种模型:①2ˆybx a =+,②ˆy dx c =+进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差等于ˆi i y y-)经过计算得()()()()()888211172.8,42,686.8iiii i i i i x x y y x x t ty y ===--=-=--=∑∑∑,()8213570ii tt =-=∑,其中8211,8i ii i t x t t ===∑.(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由.(2)根据(1)的判断结果及表中数据建立y 关于x 的回归方程,并预测该地区2020年新增光伏装机量是多少.(在计算回归系数时精确到0.01)附:回归直线的斜率和截距的最小二乘估计公式分别为.()()()121ˆˆˆ,niii ni i x x y y bay bx x x ==---==--∑∑21.(本小题12.0分)已知函数()11x f x eax a -=-+-.(1)讨论函数()f x 的单调性;(2)①若()0f x ≥恒成立,求实数a 的取值集合;②证明.()ln 20xe x -+>22.(本小题10.0分)在极坐标系中,点P 的极坐标是()1,π,曲线C 的极坐标方程为22cos 80ρρθ--=,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率为-1的直线l 经过点P .(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)若直线l 和曲线C 相交于两点,A B ,求PA PB PBPA+的值.答案和解析1.【正确答案】B解:集合{}{}{}22002,0,1A xx x x x B =-≤=≤≤=∣∣,则{}0,1A B ⋂=.2.【正确答案】A解.()()()()223i 1i 3i 33i i i 42i 2i 1i 1i 1i 1i 2z +-+-+--=====-++--则复数3i1iz +=+在复平面内表示的点的坐标为()2,1-.3.【正确答案】D解:根据题意,函数()3,0,ln ,0,x e x f x x x +⎧≤=⎨>⎩,则()210f e -=>,则()21ln 2ln 2f f e e ⎡⎤-===⎣⎦,4.【正确答案】D解:圆2cos ρθ=-即22cos ρρθ=-,即2220x y x ++=,即22(1)1x y ++=,表示以()1,0-为圆心,半径等于1的圆.而点()1,0-的极坐标为()1,π,5.【正确答案】A解:函数()323f x x x =+是奇函数,且在定义域内是增函数,A 正确;函数()5tan f x x =在定义域内不具有单调性,B 错误;函数()8f x x=-在定义域内不具有单调性,C 错误;函数()f x x =+[)0,∞+,不具有奇偶性,D 错误;综上,应选A .6.【正确答案】C解:模拟程序的运行,可得1a =执行循环体,3a =不满足条件10a >,执行循环体,7a =不满足条件10a >,执行循环体,15a =满足条件10a >,退出循环,输出a 的值为15.故选.C 7.【正确答案】B【分析】采用采用间接法,任意选有4615C =种,都是男生有1种,进而可得结果.【详解】任意选有4615C =种,都是男生有1种,则至少有一名女生有14种.故本题选B .8.【正确答案】B由决定系数2R 来刻画回归效果,2R 的值越大越接近1,说明模型的拟合效果最好.故选.B 9.【正确答案】C【分析】利用赋值法结合条件即得.【详解】因为443243210(1)x a x a x a x a x a -=++++,令0x =得,01a =,令1x =-得,443210(2)16a a a a a -+-+=-=,所以,432116115a a a a -+-=-=.故选:C.10.【正确答案】D解:当0x >时,ln ,1ln y x x y x ==+',即10x e <<时,函数y 单调递减,当1x e>,函数y 单调递增,又因为函数y 为偶函数,故排除ABC ,故选.D 11.【正确答案】D解:因为()3224f x x x x =--+,所以()2344f x x x =--+',令()0f x '=得23x =或2x =-,可知函数()f x 在[)3,2--上单调递减,在22,3⎛⎫- ⎪⎝⎭上单调递增,在2,33⎛⎤ ⎥⎝⎦上单调递减,而()()()24033,28,,333327f f f f ⎛⎫-=--=-==-⎪⎝⎭,所以函数()f x 在[]3,3-上的最小值为-33,因为当[]3,3x ∈-时,()214f x m m ≥-恒成立,只需2min 14()m m f x -≤,即21433m m -≤-,即214330m m -+≤,解得311m ≤≤.故选D .12.【正确答案】C【分析】利用求导法则求出()f x ',即可知道()()f x f x '='-,再利用()()2f x f x +-=,即可求解.【详解】由已知得()()2222(1)sin (1)sin 11x x x xf x x x -+----==++,则()()2222(1)sin (1)sin 211x x x xf x f x x x ++--+-=+=++,()()()()222221cos 12(1)sin 1x x x x x x f x x'⎡⎤⎡⎤+++-++⎣⎦⎣⎦=+()()()2222cos 12sin 1x x x xx ++-=+则()()()()2222cos 12sin 1x x x xf x x++--=+',即()()f x f x '='-,则()()()()2022202220222022f f f f ++-''--()()()()20222022202220222f f f f =+-+'-'-=,故选:C.13.【正确答案】2i --解:复数()i 12i 2i z =+=-+,其共轭复数为2i --.14.【正确答案】-252【分析】应用二项式定理写出第6项系数.【详解】由101011010C (1)(1)C rrr r r rr T xx --+=-=-,所以,第6项为5r =,则5555610(1)252T C x x =-=-,故第6项系数是-252.故-25215.【正确答案】乙解:假设甲会,那么甲、乙说的都是真话,与题意不符,所以甲不会;假设乙会,那么甲、乙说的都是假话,丙说的真话,符合题意;假设丙会,那么乙、丙说的都是真话,与题意不符,所以丙不会.综上可得:会中国象棋的是乙,16.【正确答案】-1【分析】先由ln ax b x +≥恒成立得出ln 1b a ≥--,进而ln 1b a a a--≥,构造函数()ln 1(0)a g a a a--=>求解.【详解】设()ln (0)f x x ax b x =-->,则不等式ln ax b x +≥恒成立等价于max ()0f x ≤成立,显然当0a ≤时不符合题意.当0a >时,()11(0)ax f x a x x x-=-=>',∴当10x a <<时,()0f x >,当1x a >时,()0f x '<,则()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ∞⎛⎫+⎪⎝⎭上单调递减,max 1()ln 1f x f a b a ⎛⎫∴==--- ⎪⎝⎭.由max ()0f x ≤得ln 1ln 1,b a b a a a --≥--∴≥.令()ln 1(0)a g a a a --=>,则()2ln ag a a=',当01a <<时,()()0,g a g a '<在()0,1上单调递减,当1a >时,()()0,g a g a '>在()1,∞+上单调递增,()min ()11g a g ∴==-,1ba ∴≥-,则min1b a ⎛⎫=- ⎪⎝⎭,此时1,1a b ==-.故-1.17.【正确答案】解:(1)由2x x y =⎧⎪⎨=⎪'⎩'得到2x x y ⎧=⎪⎪⎨'⎪=⎪⎩,代入到221x y +=中,得22()()143x y +=.即22143x y +=为曲线C '的直角坐标方程;(2)设()2cos P θθ,则点P到直线60l y +-=的距离为d ==其中255tan 2sin 55ϕϕϕ⎛=== ⎝⎭,当()sin 1θϕ+=时,即()22k k Z πθϕπ+=+∈,于是()sin sin 2cos 25k k Z πθπϕϕ⎛⎫=+-==∈ ⎪⎝⎭,同理25cos sin 5θϕ==,此时6152d =,即距离最小值为6152,此时点4515,55P ⎛ ⎝⎭.18.【正确答案】解:(1)已知函数()322f x x ax bx a =+++在1x =-处取得极大值1,()234f x x ax b =+'+ ,且函数()f x 在1x =-处有极值1,()()13401120f a b f a b a ⎧-=-+=⎪∴⎨-=-+-+='⎪⎩,解得1;1a b =⎧⎨=⎩又当1a b ==时,()()21341313f x x x x x ⎛⎫=++=++ ⎪⎝⎭',()f x ∴在(),1∞--和1,3∞⎛⎫-+ ⎪⎝⎭上单调递增,在11,3⎛⎫-- ⎪⎝⎭单调递减,故()f x 在1x =-处取得极大值,满足题意;综上,1a b ==;(2)当1,1a b ==时,()3221f x x x x =+++,则()()21341313f x x x x x ⎛⎫=++=++ ⎪⎝⎭',当x 变化时,()f x '与()f x 的变化情况如下表:x -111,3⎛⎫-- ⎪⎝⎭13-1,13⎛⎫- ⎪⎝⎭1()f x '-0+()f x 1单调递减极小值2327单调递增5所以[]1,1x ∈-时,()f x 的最大值为5.19.【正确答案】解:(1)X 可取162,163,164,165,166,()()()214163162,163,16420102052010P X P X P X =========,()()513165,16620420P X P X =====,所以分布列为:X162163164165166P 1101531014320(2)设Y 表示每天的利润,当162X =时,162502108080Y =⨯-⨯=,当163X =时,16350108140Y =⨯-=,当164X =时,164508200Y =⨯=,当165X =时,16450208220Y =⨯+=,当166X =时,164502208240Y =⨯+⨯=,所以平均利润为1131380808140820082208240818710510420⨯+⨯+⨯+⨯+⨯=(元).20.【正确答案】解:(1)选择模型①,理由如下:根据残差图可以看出,模型①残差对应点分布在以横轴为对称轴,宽度小于1的水平带状区域内,模型①的各项残差的绝对值要远远小于模型②的各项残差的绝对值,所以模型①的拟合效果相对较好.(2)由(1)知,y 关于x 的回归方程为2ˆˆˆy bx a =+,令2t x =,则ˆˆˆy bt a =+.由所给数据可得8111(1491625364964)25.588i i t t ===⨯+++++++=∑,8111(0.40.8 1.6 3.1 5.17.19.712.2)588i i y y ===⨯+++++++=∑,则()()()81821686.8ˆ0.193570i i i i i t t y y b t t ==--==≈-∑∑,ˆˆ50.1925.50.16ay bt =-≈-⨯≈.所以y 关于x 的回归方程为2ˆ0.190.16yx =+.预测该地区2020年新增光伏装机量为2ˆ0.19100.1619.16y=⨯+=(兆瓦).21.【正确答案】解:(1)因为()11x f x e ax a -=-+-,所以()1x f x e a -=-',①当0a ≤时,()0f x '>,函数()f x 在区间R 上单调递增;②当0a >时,令()0,ln 1f x x a >>+',令()0,ln 1f x x a <<+',所以()f x 在(),ln 1a ∞-+上单调递减,在()ln 1,a ∞++上单调递增.(2)①由(1)可得当0a ≤,函数()f x 在区间R 上单调递增,又()0110f e a a =-+-=,所以1x <,则()0f x <,与条件矛盾,当0a >时,()f x 在(),ln 1a ∞-+上单调递减,在()ln 1,a ∞++上单调递增,所以()()ln 1f x f a ≥+,由已知()ln 10f a +≥,所以aln 10a a --≥,设()ln 1g x x x x =--,则()1ln 1ln g x x x =--=-',所以当()0,1x ∈时,()0g x '>,函数()ln 1g x x x x =--单调递增,()1,x ∞∈+时,()0g x '<,函数()ln 1g x x x x =--单调递减,又()11ln110g =--=,所以不等式ln 10a a a --≥的解集为{}1.②证明:设()()1ln 2h x x x =+-+,则()11122x h x x x +=-=++',当()2,1x ∈--时,()0h x '<,函数()()1ln 2h x x x =+-+单调递减,()1,x ∞∈-+时,()0g x '>,函数()()1ln 2h x x x =+-+单调递增,又()10ln10h -=-=,所以()1ln 20x x +-+≥,当且仅当1x =-时取等号,由(1)1x e x ≥+,当且仅当0x =时取等号,所以()ln 20xe x -+>.22.【正确答案】解:(1)点P 的直角坐标是()1,0-,直线l 的倾斜角是34π,∴直线l 的参数方程为21222x t y t ⎧=--⎪⎪⎨⎪=⎪⎩,(t 为参数),由直角坐标与极坐标互化公式得曲线C 的直角坐标方程为22(1)9x y -+=.(2)将1222x t y t ⎧=--⎪⎪⎨⎪=⎪⎩代入22(1)9x y -+=,得250t +-=,设,A B 对应参数分别为12,t t,则12125t t t t +==-,根据直线参数方程t 的几何意义得:()()2222221212121212||2251855PA PB t t t t PAPBt t PB PA PA PB t t t t ++--⨯-++=====⋅⋅⋅-.。

高二第二学期期中考试数学试题(理科),DOC

高二第二学期期中考试数学试题(理科),DOC

高二第二学期期中考试数学试题(理科)一、选择题(每小题5分,共60分)1、复数1ii -的共轭复数的虚部为()A .1B .1-C .12D .12-2、若2133adx a a =-+⎰,则实数a =()A .2B .2-3、化简(为()4、函数),a b 内的A .1个B 56A .157A .0B 8、4 A .129A .2-10A.6011、已知函数()f x 是定义在R 上的奇函数,且当(],0x ∈-∞时,()2x f x e ex a -=-+,则函数()f x 在1x =处的切线的方程是()12、函数()f x 满足()00f =,其导函数()f x '的图象如右图 所示,则()f x 的图象与x 轴所围成的封闭图形的面积是()A.1B.43C.2D.83二、填空题(每小题5分,共20分)13、若()102100121021x a a x a x a x -=++++,则3a =.14、若()2120x i x i m ++++=有实数根,i 是虚数单位,则实数m 的值为. 15、若函数()()3261f x x ax a x =++++有极值,则实数a 的取值范围是 16、函数()()f x x R ∈满足()11,f =且()f x 在R 上的导函数()12f x '>,则不等式()12x f x +<的解集是.三、解答题(共计70分)17、(10n2倍.(1)求(218、(12(1)求(2)若19、(12((20、(12(1)求(2(321、(1222、(12分)已知a R ∈,函数()ln 1.af x x x =+-(1)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (2)求()f x 在区间(]0,e 上的最小值.高二第二学期期中考试数学试题(理科)答案一、选择题(每小题5分,共60分)CBCACADBADBB二、填空题(每小题5分,共20分)13、1680-;14、2-;15、36a a <->或16、(),1-∞ 三、解答题(共6个小题,总计70分) 17、(1)83n =分;01288888822565C C C C ++++==分.(2)848k k k --18、312分.19、6分;(212分. 20、(2)312x x =-令f '故(f 所以(33 ⎪⎝⎭3 ⎪⎝⎭故()f x 在223x x =-=或处取得最大值,又23f ⎛⎫-= ⎪⎝⎭2227c +,()22f c =+,所以()f x 的最大值为2c +.因为()2f x c <在[]1,2-上恒成立,所以22,c c >+所以12c c <->或12分.21、(1)若两名老师傅都不选派,则有44545C C =种;…3分(2)若两名老师傅只选派1人,则有13414325425460C C C C C C +=种;…7分 (3)若两名老师傅都选派,则有224242233254254254120C C C C C C A C C ++=种. 故共有5+60+120=185种选派方法.……………………………12分22、(1)当1a =时,()()1ln 1,0,,f x x x x=+-∈+∞所以()()22111,0,.x f x x x x x -'=-+=∈+∞又f (2令f 若a 7若],a e 时,若a e 时,函(]0,e 上分。

河南省洛阳市2022-2023学年高二上学期期中考试理科数学试卷(含答案)

河南省洛阳市2022-2023学年高二上学期期中考试理科数学试卷(含答案)
求直线被曲线 ′ 截得的最短的弦长;
(3) 已知点的坐标为(5,3),点在曲线 ′ 上运动,求线段的中点的轨迹方程.
22. (12 分)
如图,长方体 — 1 1 1 1 中, = 2 = 21 ,
点在棱上且1 丄平面1 1

(1)求 的值
21. ( 12 分)
已知两定点 (-4,0), (-1,0),动点 满足 | | = 2 ||,直线 :(2 + 1) + ( + 1) −
5 − 3 = 0.
(1) 求动点的轨迹方程,并说明轨迹的形状;
(2) 记动点的轨迹为曲线,把曲线向右平移 1 个单位长度,向上平移 1 个单位长度后得到曲线 ′ ,
反射光线所在直线的方程.
20. (12 分)
在直角梯形 中, //, = 2 = 2 =2 2,∠ = 900 如图(1). 把△沿
翻折,使得平面 ⊥平面,如图(2).
(1) 求证: ⊥ ;
(2) 若为线段的中点,求点到平面的距离.
所成角的余弦值为
A.
6
B.
3
3
C.
3
15
D.
5
10
5
12. 若圆 2 + 2 − 4 − 4 − 10 = 0至少有三个不同的点到直线: = 的距离为 2 2,则直线的倾斜角
的取值范围是



A.[ 12 , 4 ]
5
B. [ 12 , 12 ]


C. [ 6 , 3 ]
B. - 5
C. 10
D. -10
2.已知(4,1,9),(2,4,3),则线段的长为
A. 39
B.7

2024高二数学期中考试题及答案

2024高二数学期中考试题及答案

2024高二数学期中考试题及答案一、选择题(每小题3分,共计60分)1. 已知函数f(x)=2x^3-3x^2-12x+5,求f(-1)的值是多少?A) -9 B) -7 C) 7 D) 92. 若集合A={1,2,3,4},集合B={2,3,4,5},则A∪B的元素个数是多少?A) 4 B) 5 C) 7 D) 83. 设函数f(x)=4x-1,g(x)=2x+3,求满足f(g(x))=1的x的值。

A) 0 B) -1 C) 1 D) 24. 在等差数列an中,若a1=3,d=4,an=19,则n的值是多少?A) 4 B) 5 C) 6 D) 75. 已知直角三角形的两条直角边分别为3和4,求斜边的长度是多少?A) 5 B) 7 C) 25 D) 49二、填空题(每小题4分,共计40分)1. 若集合A={1,2,3,4,5},集合B={4,5,6,7},则A∩B的元素个数是_________。

2. 设函数f(x)=3x+2,则f(-1)的值是_________。

3. 在等差数列an中,若a1=2,d=3,an=23,则n的值是_________。

4. 男生与女生的比例是3:5,班级总人数为80,女生人数是_________。

5. 若正方形的边长为x+2,其面积是_________。

6. 已知平行四边形的底边长为5,高为3,其面积是_________。

7. 若正方形的对角线长为10,边长是_________。

8. 设函数f(x)=x^2+2x-1,g(x)=x-1,则f(g(2))的值是_________。

9. 若直角三角形的两条直角边分别为6和8,斜边的长度是_________。

10. 设集合A={a,b,c},集合B={c,d,e},则A×B的元素个数是_________。

三、解答题(共计40分)1. 若函数f(x)满足f(2x-1)=2x^2-2x,则求f(x)的表达式。

2. 已知数列{an}的通项公式为an=n^2-3n-4,求数列{an}的首项和前6项的和。

陕西省西安市鄠邑区2022-2023学年高二下学期期中模拟理科数学试题及参考答案

陕西省西安市鄠邑区2022-2023学年高二下学期期中模拟理科数学试题及参考答案

2022-2023学年度第二学期期中质量检测高二数学(理科)模拟试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.z 为复数,若216i z z -=+成立,则z 的虚部为( ) A .6- B .6i - C .2D .2i2.反证法证明命题“若a R ∈,则函数3y x ax b =++至少有一个零点”时,正确的反设为( )A .若a R ∈,则函数3y x ax b =++恰好有一个零点 B .若a R ∈,则函数3y x ax b =++至多有一个零点 C .若a R ∈,则函数3y x ax b =++至多有两个零点 D .若a R ∈,则函数3y x ax b =++没有零点3.已知函数()i f x 的导函数为()(1,2,3)i f x i '=,若123()()()f x f x f x 、、的图象如图所示,则( )A .123()()()f a f a f a '''>>B .132()()()f a f a f a '''>>C .213()()()f a f a f a '''>>D .312()()()f a f a f a '''>>4.若()y f x =是奇函数,则11()f x dx -=⎰( )A .1B .0C .012()f x dx -⎰D .102()f x dx ⎰5.下列计算不正确...的是( )A .()xxee--'= B .2(ln(21))21x x +=+' C .(cos )sin x x '=- D .1()2x x'=6.用数学归纳法证明“()22,4n nn N n *≥∈≥”时,第二步应假设( )A .当(),2n k k N k *=∈≥时,22kk ≥成立 B .当(),3n k k N k *=∈≥时,22k k ≥成立 C .当(),4n k k N k *=∈≥时,22k k ≥成立 D .当(),5n k k N k *=∈≥时,22k k ≥成立 7.若函数()y f x =的导函数()()y x f x ϕ=='图象如图所示,则( )A .3-是函数()f x 的极小值点B .1-是函数()y f x =的极小值点C .函数()f x 的单调递减区间为(2,1)-D .()0x ϕ'<的解集为(,3)-∞- 8.函数()2ln f x x x =-的单调递减区间是( ) A .(,2)-∞ B .(2,)+∞ C .(0,2)D .(,0)-∞和(0,2)9.函数()2()2xf x x x e =-的图象大致是( )A .B .C .D .10.函数()cos (1)sin 1,[0,2]f x x x x x π=+++∈在点x =( )处取得最小值. A .32π B .22π+ C .2 D .32π-11.已知函数()ln ()f x a x x a R =-∈在区间(,)e +∞内有最值,则实数a 的取值范围是( ) A .(,)e +∞ B .,2e ⎛⎫+∞ ⎪⎝⎭C .(,]e -∞D .(,)e -∞- 12.设2ln 21ln6,,412a b c e ===,则( ) A .a c b << B .a b c << C .b c a <<D .c a b <<第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,满分20分)13.已知0x >,观察下列不等式:①12x x +≥,②243x x +≥,③3274,x x+≥⋅⋅⋅,则第n 个不等式为_________.14.一个小球作简谐振动,其运动方程为()2sin 3x t t ππ⎛⎫=+⎪⎝⎭,其中()x t (单位:cm )是小球相对于平衡点的位移,t (单位:s )为运动时间,则小球在2t =时的瞬时速度为_________cm/s .15.设i 是虚数单位,复数z 的共轭复数为z ,下列关于复数的命题正确的有_________ ①z z =②若z 是非零复数,0z z +=,则||zi z = ③若12z z =,则2212z z =④若复数z 为纯虚数,则z i ⋅为实数16.如图:在平面直角坐标系xOy 中,将直线2xy =与直线1x =及x 轴所围成的图形绕x 轴旋转一周得到一个圆锥,圆锥的体积21130021212x V dx x πππ⎛⎫=== ⎪⎝⎭⎰圆锥. 据此类比:将曲线2y x =与直线2y =及y 轴所围成的图形绕y 轴旋转一周得到一个旋转体,该旋转体的体积V =_________.三、解答题(本大题共6小题,满分70分,解答应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知复数i z b =(b R ∈,i 是虚数单位),31iz +-是实数. (1)求b 的值;(2)若复数2()8m z m --在复平面内对应点在第二象限,求实数m 的取值范围. 18.(本小题满分12分)(1)已知b 克糖水中含有a 克糖,再添加m 克糖(0)m >(假设全部溶解),则糖水变甜了.将这一事实表示为不等式:当0,0b a m >>>时,有a a mb b m+<+,请证明这个不等式. (2)设ABC △的三边长分别为a ,b ,c ,请利用第(1)问已证不等式,证明:2c a b a b b c c a++<+++. 19.(本小题满分12分)已知函数432()8181f x x x x =-+-.(1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)求函数()f x 的极值. 20.(本小题满分12分)已知函数()sin x f x e a x =-(其中 2.71828e =⋅⋅⋅为自然对数的底数),0为()f x 的一个极值点. (1)求a 的值;(2)证明:()f x x >恒成立. 21.(本小题满分12分)如图,在区间[0,1]上给定曲线2y x =,左边阴影部分的面积为1S ,右边阴影部分的面积记为2S .(1)当12t =时,求1S 的值; (2)当01t ≤≤时,求12S S +的最小值. 22.(本小题满分12分) 已知函数21()ln ()2f x x x mx x m R =--∈. (1)若0m =时,求函数()f x 的单调区间;(2)若函数()f x 在(0,)+∞上是减函数,求实数m 的取值范围.2022-2023学年度第二学期期中质量检测 高二数学(理科)模拟试题参考答案一、选择题(共12小题,每小题5分,共60分.)二、填空题(共4小题,每小题5分,共20分.)13.当0x >时,()1n n n x n n N x*+≥+∈成立 14.π 15.①④ 16.2π三、解答题(共6小题,第17题满分10分,其余满分均为12分.)17.(本小题满分10分) 解:(1) 解法1:∵i z b = ∴33i (3i)(1i)(3)(3)i1i 1i (1i)(1i)2z b b b b ++++-++===---+ 因为31iz +-是实数,所以解集为30b +=,解得3b =- 解法2:因为31iz +-是实数,则令3()1i z k k R +=∈- 则有3i i b k k +=-由复数相等的概念得3k b k=⎧⎨=-⎩,解得3b =-(2)由(1)可知3i z =-∴()222()8(3i)8896i m z m m m m m m --=+-=--+ ∵复数2()8m z m --在复平面内对应点在第二象限∴289060m m m ⎧--<⎨>⎩,解得09m << 所以实数m 的取值范围为(0,9) 18.(本小题满分12分) 解:(1)()()()()()a a m ab m b a m m a b b b m b b m b b m ++-+--==+++ 由00b a a b >>⇒-< 又∵0,0m b >>∴()0()m a b b b m -<+,即a a m b b m+<+得证.(2)ABC △的三边长分别为a ,b ,c根据三边关系有a b c +>由(1)已证不等式可得:c c ca b a b c+<+++ 同理可得,a a a b b b b c b c a c a c a b++<<++++++也成立 将以上不等式左右两边分别相加可得:2()2c a b a b c a b b c c a a b c++++<=+++++成立. 即命题得证.19.(本小题满分12分)解:(1)()3222()424364694(3)f x x x x x x x x x =-+=-+=-' 切点为(0,1)-,切线的斜率为(0)0k f ='=切所以曲线()y f x =在点(0,(0))f 处的切线方程为10y += (2)令()0f x '=,解得0x =,或3x =当0x =时,函数()f x 取得极小值()01f =- 20.(本小题满分12分)解:(1)函数()f x 的导函数为()cos xf x e a x '=-0为()f x 的一个极值点,则有0(0)cos00f e a =-=' 解得1a =(2)要证()f x x >,即证sin xe x x >+ 因为sin 1x ≤ 下面先证1xe x ≥+ 构造函数()1xg x e x =--()10x g x e -'==解得0x =当(,0)x ∈-∞时,有()0g x '<,则()g x 在(,0)-∞上单调递减 当(0,)x ∈+∞时,有()0g x '>,则()g x 在(0,)+∞上单调递增 所以当0x =时,()g x 取得最小值(0)0g = 即1xe x ≥+成立(当且仅当0x =时等号成立) 又因为1sin x ≥(当且仅当2()2x k k Z ππ=+∈时等号成立)由于等号不具有传递性,所以有sin xe x x >+成立. 21.(本小题满分12分)解:(1)当12t =时,1221014S x dx ⎛⎫=- ⎪⎝⎭⎰12301143x x ⎛⎫=- ⎪⎝⎭111183812=-⨯= (2)1S 面积等于边长分别为t 与2t 的矩形面积减去曲线2y x =与x 轴、直线x t =所围成的面积,即2231023tS t t x dx t =⨯-=⎰ 2S 面积等于曲线2y x =与x 轴、直线1x t x ==、所围成的面积减去矩形边长分别为1t -与2t 的矩形面积,即12232221(1)33t S x dx t t t t =--=-+⎰所以阴影部分的面积321241()(01)33S t S S t t t =+=-+≤≤令2()422(21)0S t t t t t =-'=-= 解得0t =,或12t =解不等式()0S t '>得112t <<即()S t 在1,12⎛⎫⎪⎝⎭上单调递增 解不等式()0S t '<得102t <<即()S t 在10,2⎛⎫⎪⎝⎭上单调递减所以当12t =时,()S t 取得极小值,也是最小值为1422.(本小题满分12分)解:(1)当0m =时,()ln ,(0,)f x x x x x =-∈+∞()ln 0f x x =='解得1x =解()0f x '>得1x >,即函数()f x 的单调递增区间为()1,+∞ 解()0f x '<得01x <<,即函数()f x 的单调递减区间为(0,1) (2)由函数()f x 在(0,)+∞上是减函数,可知()ln 0f x x mx =-≤'对任意(0,)x ∈+∞恒成立 即对任意0x >,都有ln xm x≥恒成立 构造函数ln (),0xg x x x => 由21ln ()0xg x x-'==解得x e = 解()0g x '>得0x e <<,即函数()f x 的单调递增区间为(0,)e 解()0g x '<得x e >,即函数()f x 的单调递减区间为(,)e +∞ 所以max ln 1()e g x e e== 所以1m e≥.。

2022-2023学年四川省成都市高二下学期期中考试数学(理)试题2【含答案】

2022-2023学年四川省成都市高二下学期期中考试数学(理)试题2【含答案】

2022-2023学年四川省成都市高二下学期期中考试数学(理)试题一、单选题1.已知i 为虚数单位,复数1iiz -=,则z =()A .1B .2C .3D .2【答案】B【分析】由复数的四则运算可得1i z =--,再由复数模的计算公式求解即可.【详解】解:因为21i (1i)i(i i )1i i i iz --⋅===--=--⋅,所以22(1)(1)2z =-+-=.故选:B.2.如图茎叶图记录了甲乙两位射箭运动员的5次比赛成绩(单位:环),若两位运动员平均成绩相同,则运动员乙成绩的方差为()A .2B .3C .9D .16【答案】A【分析】根据甲、乙二人的平均成绩相同求出x 的值,再根据方差公式求出乙的方差即可.【详解】因为甲乙二人的平均成绩相同,所以8789909193888990919055x+++++++++=,解得2x =,故乙的平均成绩8889909192905++++=,则乙成绩的方差222222[(8890)(8990)(9090)(9190)(9290)]25s -+-+-+-+-==.故选:A.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线方程为20x y -=,则双曲线C 的离心率为()A .2B .2C .3D .5【答案】D 【分析】先求得ba,进而求得双曲线的离心率.【详解】依题意,双曲线的一条渐近线方程为20,2x y y x -==,所以2222222,15b c c a b b e a a a a a +⎛⎫=====+= ⎪⎝⎭.故选:D4.已知m ,n 表示两条不同的直线,α表示平面.下列说法正确的是()A .若m α ,n α∥,则m n ∥B .若m α⊥,n α⊥,则m n ∥C .若m α⊥,m n ⊥,则n α∥D .若m α ,m n ⊥,则n α⊥【答案】B【分析】根据空间直线与平面间的位置关系判断.【详解】对于A ,若m α ,n α∥,则m 与n 相交、平行或异面,故A 错误;对于B ,若m α⊥,n α⊥,由线面垂直的性质定理得m n ∥,故B 正确;对于C ,若m α⊥,m n ⊥,则n α∥或n ⊂α,故C 错误;对于D ,若m α ,m n ⊥,则n 与α相交、平行或n ⊂α,故D 错误.故选:B .5.“4m =”是“直线()34420m x y -+-=与直线220mx y +-=平行”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C【分析】由直线()34420m x y -+-=与直线220mx y +-=平行可求得m 的值,集合充分条件、必要条件的定义判断可得出结论.【详解】若直线()34420m x y -+-=与直线220mx y +-=平行,则()()23442342m mm m ⎧-=⎪⎨--≠-⎪⎩,解得4m =.因此,“4m =”是“直线()34420m x y -+-=与直线220mx y +-=平行”的充要条件.故选:C.6.执行该程序框图,若输入的a 、b 分别为35、28,则输出的=a ()A .1B .7C .14D .28【答案】B【分析】根据程序框图列举出循环的每一步,即可得出输出结果.【详解】第一次循环,35a =,28b =,a b ¹成立,a b >成立,则35287a =-=;第二次循环,7a =,28b =,a b ¹成立,a b >不成立,则28721b =-=;第三次循环,7a =,21b =,a b ¹成立,a b >不成立,则21714b =-=;第四次循环,7a =,14b =,a b ¹成立,a b >不成立,则1477b =-=.7a b ==,则a b ¹不成立,跳出循环体,输出a 的值为7.故选:B.7.函数()()22e xf x x x =-的图像大致是()A .B .C .D .【答案】B【分析】由函数()f x 有两个零点排除选项A ,C ;再借助导数探讨函数()f x 的单调性与极值情况即可判断作答.【详解】由()0f x =得,0x =或2x =,选项A ,C 不满足,即可排除A ,C由()()22e x f x x x =-求导得()()22e xx x f '=-,当2x <-或2x >时,()0f x ¢>,当22x -<<时,()0f x '<,于是得()f x 在(),2-∞-和()2,+∞上都单调递增,在()2,2-上单调递减,所以()f x 在2x =-处取极大值,在2x =处取极小值,D 不满足,B 满足.故选:B8.已知曲线1cos :sin x C y θθ=+⎧⎨=⎩(θ为参数).若直线323x y +=与曲线C 相交于不同的两点,A B ,则AB 的值为A .12B .32C .1D .3【答案】C【详解】分析:消参求出曲线C 的普通方程:22(1)1x y -+=,再求出圆心(1,0)到直线的距离d ,则弦长222AB r d =-.详解:根据22cos sin 1θθ+=,求出曲线C 的普通方程为22(1)1x y -+=,圆心(1,0)到直线的距离3233231d -==+,所以弦长222AB r d =-321=14=-,选C.点睛:本题主要考查将参数方程化为普通方程,直线与圆相交时,弦长的计算,属于中档题.9.过椭圆C :()222210x y a b a b +=>>右焦点F 的直线l :20x y --=交C 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12-,则椭圆C 的方程为()A .22184x y +=B .22195x y +=C .22173x y +=D .221106x y +=【答案】A【分析】由l 与x 轴交点横坐标可得半焦距c ,设出点A ,B 坐标,利用点差法求出22,a b 的关系即可计算作答.【详解】依题意,焦点(2,0)F ,即椭圆C 的半焦距2c =,设1122(,),(,)A x y B x y ,00(,)P x y ,则有2222221122222222b x a y a b b x a y a b⎧+=⎨+=⎩,两式相减得:2212121212()()a ()()0b x x x x y y y y +-++-=,而1201202,2x x x y y y +=+=,且0012y x =-,即有2212122()()0b x x a y y --+-=,又直线l 的斜率12121y y x x -=-,因此有222a b =,而2224a b c -==,解得228,4a b ==,经验证符合题意,所以椭圆C 的方程为22184x y +=.故选:A10.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设22DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是A .413B .21313C .926D .31326【答案】A【分析】根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.【详解】在ABD ∆中,3AD =,1BD =,120ADB ∠=︒,由余弦定理,得222cos12013AB AD BD AD BD =+-⋅︒=,所以213DF AB =.所以所求概率为224=1313DEF ABC S S ∆∆⎛⎫= ⎪⎝⎭.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题.11.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,2PA AB ==,4=AD ,E 为PC 的中点,则面PCD 与直线BE 所成角的余弦值为()A .35B .23015C .2515D .10515【答案】D【分析】以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法结合同角三角函数的基本关系可求得面PCD 与直线BE 所成角的余弦值.【详解】因为PA ⊥平面ABCD ,四边形ABCD 为矩形,以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z轴建立如下图所示的空间直角坐标系,则()2,0,0B 、()2,4,0C 、()0,4,0D 、()002P ,,、()1,2,1E ,设平面PCD 的法向量为(),,n x y z = ,()2,0,0DC =uuu r,()0,4,2DP =-uuu r ,则20420n DC x n DP y z ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,取1y =,可得()0,1,2n = ,()1,2,1BE =- ,所以,4230cos ,1565BE n BE n BE n⋅===⨯⋅,所以,22230105sin ,1cos ,11515BE n BE n ⎛⎫=-=-= ⎪ ⎪⎝⎭,因此,面PCD 与直线BE 所成角的余弦值为10515.故选:D.12.已知函数()ln 1f x x ax =+-有两个零点1x 、2x ,且12x x <,则下列命题正确的个数是()①01a <<;②122x x a +<;③121x x ⋅>;④2111x x a->-;A .1个B .2个C .3个D .4个【答案】C【分析】由()0f x =可得1ln xa x+=,设()ln 1x g x x +=,其中0x >,则直线y a =与函数()g x 的图象有两个交点,利用导数分析函数()g x 的单调性与极值,数形结合可判断①;构造函数()()2h x f x f x a ⎛⎫=-- ⎪⎝⎭,其中10x a <<,分析函数()h x 的单调性,可判断②③;分析出1211e x x <<<、1210x x a<<<,利用不等式的基本性质可判断④.【详解】由()0f x =可得ln 1x a x+=,令()ln 1x g x x +=,其中0x >,则直线y a =与函数()g x 的图象有两个交点,()2ln xg x x '=-,由()0g x '>可得01x <<,即函数()g x 的单调递增区间为()0,1,由()0g x '<可得1x >,即函数()g x 的单调递减区间为()1,+∞,且当10e x <<时,()ln 10x g x x+=<,当1e x >时,()ln 10x g x x +=>,如下图所示:由图可知,当01a <<时,直线y a =与函数()g x 的图象有两个交点,①对;对于②,由图可知,1211ex x <<<,因为()11ax f x a x x -'=-=,由()0f x ¢>可得10x a<<,由()0f x '<可得1x a >,所以,函数()f x 的增区间为10,a ⎛⎫⎪⎝⎭,减区间为1,a ⎛⎫+∞ ⎪⎝⎭,则必有1210x x a <<<,所以,110x a <<,则121x a a->,令()()222ln ln h x f x f x x a x x ax a a a ⎛⎫⎛⎫⎛⎫=--=----+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中10x a <<,则()212112022a x a h x a x x x x a a ⎛⎫- ⎪⎝⎭'=-+=<⎛⎫-- ⎪⎝⎭,则函数()h x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,所以,()110h x h a ⎛⎫>= ⎪⎝⎭,即()1120f x f x a ⎛⎫--> ⎪⎝⎭,即()112f x f x a ⎛⎫<- ⎪⎝⎭,又()20f x =,可得()212f x f x a ⎛⎫<- ⎪⎝⎭,因为函数()f x 的单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭,则212x x a >-,即122x x a +>,②错;对于③,由1122ln 1ln 1ax x ax x =+⎧⎨=+⎩,两式相加整理可得()1212ln 22x x x x a a ++=>,所以,()12ln 0x x >,可得121x x >,③对;对于④,由图可知1211ex x <<<,则11x ->-,又因为21x a >,所以,2111x x a->-,④对.故选;C.【点睛】证明极值点偏移的相关问题,一般有以下几种方法:(1)证明122x x a +<(或122x x a +>):①首先构造函数()()()2g x f x f a x =--,求导,确定函数()y f x =和函数()y g x =的单调性;②确定两个零点12x a x <<,且()()12f x f x =,由函数值()1g x 与()g a 的大小关系,得()()()()()1112122g x f x f a x f x f a x =--=--与零进行大小比较;③再由函数()y f x =在区间(),a +∞上的单调性得到2x 与12a x -的大小,从而证明相应问题;(2)证明212x x a <(或212x x a >)(1x 、2x 都为正数):①首先构造函数()()2a g x f x f x ⎛⎫=- ⎪⎝⎭,求导,确定函数()y f x =和函数()y g x =的单调性;②确定两个零点12x a x <<,且()()12f x f x =,由函数值()1g x 与()g a 的大小关系,得()()()2211211a a g x f x f f x f x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭与零进行大小比较;③再由函数()y f x =在区间(),a +∞上的单调性得到2x 与21a x 的大小,从而证明相应问题;(3)应用对数平均不等式12121212ln ln 2x x x xx x x x -+<<-证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.二、填空题13.已知函数()sin cos f x x x =+,则π4f ⎛⎫'= ⎪⎝⎭______.【答案】0【分析】求出()f x ',代值计算可得出π4f ⎛⎫' ⎪⎝⎭的值.【详解】因为()sin cos f x x x =+,则()cos sin f x x x '=-,故πππcos sin 0444f ⎛⎫'=-= ⎪⎝⎭.故答案为:0.14.天府绿道是成都人民朋友圈的热门打卡地,经统计,天府绿道旅游人数x (单位:万人)与天府绿道周边商家经济收入y (单位:万元)之间具有线性相关关系,且满足回归直线方程为ˆ12.60.6yx =+,对近五个月天府绿道旅游人数和周边商家经济收入统计如下表:x23 3.5 4.57y26384360a则表中a 的值为___________.【答案】88【分析】根据样本平均值满足回归直线方程求解.【详解】样本平均值满足回归直线方程,x 的平均值为23 3.5 4.5745++++=,则y 的平均值2638436012.640.65a++++=⨯+,解得88a =,故答案为:88.15.已知函数f (x )=e x +ax ﹣3(a ∈R ),若对于任意的x 1,x 2∈[1,+∞)且x 1<x 2,都有()()()211212x f x x f x a x x -<-成立,则a 的取值范围是__.【答案】(﹣∞,3]【分析】原不等式等价于()()1212f x a f x a x x ++<,构造()()f x ah x x+=,由函数单调性的定义可知,h (x )在[1,+∞)上单调递增,即有h '(x )≥0在[1,+∞)上恒成立,亦即a ﹣3≤xe x ﹣e x 在[1,+∞)上恒成立,构造g (x )=x e x ﹣e x ,由导数求解函数g (x )的最小值,即可得到a 的取值范围.【详解】原不等式等价于()()1212f x a f x a x x ++<,令()()f x ah x x+=,则不等式等价于h (x 1)<h (x 2)对于任意的x 1,x 2∈[1,+∞)且x 1<x 2都成立,故函数h (x )在[1,+∞)上单调递增,又函数f (x )=e x +ax ﹣3,则()e 3x ax a h x x +-+=,所以h '(x )2e e 30x x x ax -+-=≥在[1,+∞)上恒成立,即x e x﹣e x +3﹣a ≥0在[1,+∞)上恒成立,即a ﹣3≤x e x ﹣e x 在[1,+∞)上恒成立,令g (x )=x e x ﹣e x ,因为g '(x )=x e x >0在[1,+∞)上恒成立,所以g (x )在[1,+∞)上单调递增,则g (x )≥g (1)=0,所以a ﹣3≤0,解得a ≤3,所以实数a 的取值范围是(﹣∞,3].故答案为:(﹣∞,3].16.已知点F 为抛物线28y x =的焦点,()2,0M -,点N 为抛物线上一动点,当NFNM最小时,点N 恰好在以M 、F 为焦点的双曲线上,则该双曲线的渐近线的斜率的平方为______.【答案】222+【分析】作出图形,分析可知MN 与抛物线28y x =相切时,NFNM取最小值,设直线MN 的方程为2x my =-,将该直线的方程与抛物线的方程联立,求出m 的值,进而可求出点N 的坐标,利用双曲线的定义求出a 的值,结合c 的值可得出22221b ca a=-,即为所求.【详解】抛物线28y x =的焦点为()2,0F ,其准线为:2l x =-,如下图所示:过点N 作NE l ⊥,垂足为点E ,由抛物线的定义可得NF NE =,易知//EN x 轴,则NMF MNE ∠=∠,所以,cos cos NF NE MNE NMF MNMN==∠=∠,当NFNM取最小值时,NMF ∠取最大值,此时,MN 与抛物线28y x =相切,设直线MN 的方程为2x my =-,联立228x my y x=-⎧⎨=⎩可得28160y my -+=,则264640m ∆=-=,解得1m =±,由对称性,取1m =,代入28160y my -+=可得28160y y -+=,解得4y =,代入直线MN 的方程2x y =-可得2x =,即点()2,4N ,则224NF =+=,()2222442MN =++=,设双曲线的标准方程为()222210,0x y a b a b -=>>,由双曲线的定义可得2424a MN NF =-=-,所以,()221a =-,又因为2c =,则()221221c a ==+-,所以,()222221211222b c a a =-=+-=+.故答案为:222+.三、解答题17.在直角坐标系xOy 中,直线l 的参数方程为12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0ρθθ-=.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)已知直线l 与曲线C 交于A ,B 两点,设()2,0M ,求MA MB 的值.【答案】(1)3230x y --=,24y x=(2)323【分析】(1)根据直线参数方程消掉参数t 即可得到直线的普通方程;(2)由直线参数方程中t 的几何意义即可求解.【详解】(1)∵直线l 的参数方程为12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),∴消去t 可得直线l 的普通方程为:3230x y --=.∵曲线C 的极坐标方程为2sin 4cos 0ρθθ-=,即22sin 4cos 0ρθ-ρθ=,又∵cos x ρθ=,sin y ρθ=,∴曲线C 的直角坐标方程为24y x =.(2)将12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)代入24y x =,得238320t t --=,显然0∆>,即方程有两个不相等的实根,设点A ,B 在直线l 的参数方程中对应的参数分别是1t ,2t ,则1283t t +=,12323t t =-,∴12323MA MB t t ==.18.已知函数()32f x x x ax b =-++,若曲线()y f x =在()()0,0f 处的切线方程为1y x =-+.(1)求a ,b 的值;(2)求函数()y f x =在[]22-,上的最小值.【答案】(1)1a =-;1b =(2)9-【分析】(1)根据函数的切线方程即可求得参数值;(2)判断函数在[]22-,上单调性,进而可得最值.【详解】(1)由已知可得()01f b ==.又()232f x x x a '=-+,所以()01f a '==-.(2)由(1)可知()321f x x x x =--+,()2321f x x x '=--,令()0f x ¢>,解得13x <-或1x >,所以()f x 在12,3⎡⎫--⎪⎢⎣⎭和[]1,2上单调递增,在1,13⎡⎫⎪⎢⎣⎭上单调递减.又()29f -=-,()10f =,所以函数()y f x =在[]22-,上的最小值为9-.19.某校组织全体学生参加“数学以我为傲”知识竞赛,现从中随机抽取了100名学生的成绩组成样本,并将得分分成以下6组:[40,50),[50,60),[60,70),……,[90,100],统计结果如图所示:(1)试估计这100名学生得分的平均数(同一组中的数据用该组区间中点值代表);(2)现在按分层抽样的方法在[80,90)和[90,100]两组中抽取5人,再从这5人中随机抽取2人参加这次竞赛的交流会,求两人都在[90,100]的概率.【答案】(1)70.5(2)110【分析】(1)根据频率分布直方图直接代入平均数的计算公式即可求解;(2)根据分层抽样在[)80,90分组中抽取的人数为15531015⨯=+人,在[]90,100分组中抽取的人数为2人,利用古典概型的概率计算公式即可求解.【详解】(1)由频率分布直方图的数据,可得这100名学生得分的平均数:()450.01550.015650.02750.03850.015950.011070.5x =⨯+⨯+⨯+⨯+⨯+⨯⨯=分.(2)在[)80,90和[]90,100两组中的人数分别为:100×(0.015×10)=15人和100×(0.01×10)=10人,所以在[)80,90分组中抽取的人数为15531015⨯=+人,记为a ,b ,c ,在[]90,100分组中抽取的人数为2人,记为1,2,所以这5人中随机抽取2人的情况有:()()()()()()()()()(){},,,1,2,1,2,1,2,12ab ac bc a a b b c c Ω=,共10种取法,其中两人得分都在[]90,100的情况只有(){}12,共有1种,所以两人得分都在[]90,100的概率为110P =.20.在如图所示的几何体中,四边形ABCD 是边长为2的正方形,四边形ADPQ 是梯形,PD //QA ,PD ⊥平面ABCD ,且22PD QA ==.(1)求证:BC ⊥平面QAB ;(2)求平面PBQ 与平面PCD 所成锐二面角的余弦值.【答案】(1)证明见解析(2)66【分析】(1)由PD ⊥平面ABCD ,PD //QA ,可得QA ⊥平面ABCD ,进而得到QA BC ⊥,结合BC AB ⊥,进而得证;(2)以DA 为x 轴,DC 为y 轴,DP 为z 轴,D 为原点建立空间直角坐标系,找出平面PBQ 与平面PCD 的法向量,根据两面的法向量即可求解.【详解】(1)证明:∵PD ⊥平面ABCD ,PD //QA ,∴QA ⊥平面ABCD .∵BC ⊂平面ABCD ,∴QA BC ⊥.在正方形ABCD 中,BC AB ⊥,又AB QA A ⋂=,AB ,QA ⊂平面QAB ,∴BC ⊥平面QAB .(2)建立空间直角坐标系如图:以DA 为x 轴,DC 为y 轴,DP 为z 轴,D 为原点,则有()2,2,0B ,()002P ,,,()2,0,1Q ,()0,2,1QB =- ,()2,0,1PQ =- ,设平面PBQ 的一个法向量为(),,m x y z = ,则有00m QB m PQ ⎧⋅=⎪⎨⋅=⎪⎩ ,得2020y z x z -=⎧⎨-=⎩,令2z =,则1x =,1y =,()1,1,2m = ,易知平面PCD 的一个法向量为()1,0,0n =r ,设平面PBQ 与平面PCD 所成二面角的平面角为α,则16cos 616m n m n α⋅===⨯⋅ ,即平面PBQ 与平面PCD 所成锐二面角的余弦值66.21.已知椭圆()2222:10x y C a b a b +=>>的离心率为32,左、右焦点分别为1F 、2F ,P 为C 的上顶点,且12PF F △的周长为423+.(1)求椭圆C 的方程;(2)设过定点()0,2M 的直线l 与椭圆C 交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.【答案】(1)2214x y +=(2)332,,222⎛⎫⎛⎫--⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【分析】(1)由椭圆的定义以及离心率可得出a 、c 的值,进而可求得b 的值,由此可得出椭圆C 的方程;(2)分析可知直线l 的斜率存在,设直线l 的方程为2y kx =+,设()11,A x y 、()22,B x y ,将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由0∆>结合0OA OB ⋅> 可求得k 的取值范围.【详解】(1)设椭圆C 的半焦距为c .因为12PF F △的周长为121222423PF PF F F a c ++=+=+,①因为椭圆C 的离心率为32,所以32c a =,②由①②解得2a =,3c =.则221b a c =-=,所以椭圆C 的方程为2214x y +=.(2)若直线l x ⊥轴,此时,直线l 为y 轴,则A 、O 、B 三点共线,不合乎题意,设直线l 的方程为2y kx =+,设()11,A x y 、()22,B x y ,联立()22221141612042x y k x kx y kx ⎧+=⎪⇒+++=⎨⎪=+⎩,()()()222Δ164411216430k k k =-+⨯=->,解得234k >,由韦达定理可得1221641k x x k +=-+,1221241x x k =+,则()()()2121212122224y y kx kx k x x k x x =++=+++,又AOB ∠为锐角,A 、O 、B 不共线,则cos 0AOB ∠>,即()()()22221212121221213216412441k k k OA OB x x y y k x x k x x k +-++⋅=+=++++=+ 22164041k k -=>+,解得204k <<,所以,2344k <<,解得322k -<<-或322k <<,所以实数k 的取值范围为332,,222⎛⎫⎛⎫--⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.【点睛】方法点睛:圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.22.已知函数()2ln f x x x ax a =-+.(1)若()f x a ≤,求a 的取值范围;(2)若()f x 存在唯一的极小值点0x ,求a 的取值范围,并证明()0210a f x -<<.【答案】(1)1[,)e +∞(2)12a <;证明见解析;【分析】(1)可利用分离参数法,将问题转化为ln x a x ≥恒成立,然后研究ln ()x g x x=的单调性,求出最大值;(2)通过研究()f x '在()0,∞+内的变号零点,单调性情况确定唯一极小值点;若不能直接确定()f x '的零点范围及单调性,可以通过研究()g x '的零点、符号来确定()f x '的单调性,和特殊点(主要是能确定()f x '符号的点)处的函数值符号,从而确定()f x 的极值点的存在性和唯一性.【详解】(1)()f x 的定义域为()0,∞+.由()f x a ≤,得ln x a x ≥在()0,x ∈+∞恒成立,转化为max ln ()x a x ≥令ln ()x g x x =,则21ln ()x g x x -'=,∴ln ()x g x x=在()0,e 单调递增,在(),e +∞单调递减,∴()g x 的最大值为1(e)g e=,∴1a e ≥.∴a 的取值范围是1[,)e+∞.(2)设()()g x f x '=,则()ln 12g x x ax =+-,1()2g x a x'=-,0x >.①当a<0时,()0g x '>恒成立,()g x 在()0,∞+单调递增,又()1120g a =->,212121()21122(1)0a a a g e a ae a e ---=-+-=-<所以()g x 存在唯一零点()10,1x ∈.当()10,x x ∈时,()()0f x g x '=<,当()1,1x x ∈时,()()0f x g x '=>.所以()f x 存在唯一的极小值点01x x =.②当0a =时,()ln 1g x x =+,()g x 在()0,∞+单调递增,1()0g e =,所以()g x 在()0,∞+有唯一零点1e.当1(0,)∈x e时,()()0f x g x '=<,当1(,1)x e∈时,()()0f x g x '=>.所以()f x 存在唯一的极小值点01x e =.③当0a >时,令()0g x '>,得1(0,)2x a ∈;令()0g x '<,得1(,)2x a ∈+∞,∴()g x 在1(0,)2a 单调递增,在1(,)2a+∞单调递减,所以()g x 的最大值为1()ln(2)2g a a =-④当102a <<时,1()0g e<,()1120g a =->,1()02g a >,21212()212(1)10l 1n g a a aa a =-+-<--+-=-<(或用11111()20a a g eae a --=-<)由函数零点存在定理知:()g x 在区间()0,1,()1,+∞分别有一个零点2x ,3x 当()20,x x ∈时,()()0f x g x '=<;当()23,x x x ∈时,()()0f x g x '=>;所以()f x 存在唯一的极小值点02x x =,极大值点3x .⑤当12a ≥时,102g a ⎛⎫≤ ⎪⎝⎭,()()0f x g x '=≤所以()f x 在()0,∞+单调递减,无极值点.由①②④可知,a 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭,当()00,x x ∈时,()0f x '<;所以()f x 在()00,x 单调递减,()0,1x 单调递增.所以()0(1)0f x f <=.由()000ln 120f x x ax '=+-=,得00ln 21x ax =-.所以20000ln ()f x x ax ax =-+2000(21)x ax ax a=--+200ax a x =+-2000()(21)1f x a ax a x --=--+[]00(1)(1)1x a x =-+-,因为0(0,1)x ∈,1,2a ⎛⎫∈-∞ ⎪⎝⎭,所以010x -<,()01112102a x +-<⨯-=所以()0(21)0f x a -->,即()021f x a >-;所以()0210a f x -<<.【点睛】本题通过导数研究函数的零点、极值点的情况,一般是先研究导函数的零点、单调性,从而确定原函数的极值点存在性和个数.同时考查学生运用函数思想、转化思想解决问题的能力和逻辑推理、数学运算等数学素养.。

高二下学期期中考试理科数学试题(扫描版)(含答案)

高二下学期期中考试理科数学试题(扫描版)(含答案)

(m n) (m 2)i 1 i
于是
8分
m n 1, ( m 2) 1.
9分 10分 2分 4分
得 m 3, n 4 . 18,当 0 # t 当
3 时, V (t ) = 2t - 3 £ 0 2
3 # t 2
5 时, V (t ) = 2t - 3 ³ 0
所以,物体从时刻 t = 0 秒至时刻 t = 5 秒间运动的路程为
3 5 9 9 2 (3 - 2t ) dx + 3 (2t - 3) dx = S =蝌 + (10 + ) = 14.5(米) 0 4 4 2
10分 12分
答:物体运动的路程为14.5米。 19解:此命题是真命题. ∵a b c 0 , a b c ,∴a 0 , c 0 . 要证
由此猜想 an =
1 n(n +1) Nhomakorabea4分(2)证明(1) n = 1时, a1 =
5分
(2)假设当 n = k 成立,即 ak =
1 k (k +1)
则 ak +1 =
k 1 1 k = ak = k + 2 k (k +1) (k +1)(k + 2) k +2
7分
所以 n = k +1,猜想正确 综合(1) (2)对任何正整数 n 都有 an =
f ( x) = x 3 3x 在 [ - 1,1] 上 是 减 函 数 , 且 f ( x) 在 [ - 1,1] 上 的 最 大 值
第 6 页 共 6 页
b2 ac 3 成立,只需证 b2 ac 3a , a
2分

2021-2022年高二上学期期中二考试数学(理)试题word版含答案

2021-2022年高二上学期期中二考试数学(理)试题word版含答案

2021年高二上学期期中二考试数学(理)试题word 版含答案试卷共4页,满分150分,考试时间120分钟.请把答案写在答题纸上.第Ⅰ卷(共60分)一.选择题(每题5分,共60分)每小题给出的四个答案中,只有一个是正确的.1.若=( )A .B .C .D .2. 在3与27之间插入7个数, 使它们成为等差数列,则插入的7个数的第四个数是( )A. 18B. 9C. 12 D . 153.已知,则有( )A .最大值为-4B .最大值为0C .最小值为0D .最小值为-44. 已知Q(5,4),动点满足则的最小值是( )A. 5B.C. 2 D . 75. 下列命题中正确的是( )A .若,则 B.若,,则C. 若,,则D.若,,则6.在为则角中,若C A B B A ABC ,1cos 3sin 4,6cos 4sin 3=+=+∆( )A .B .C .D .7.若为等差数列的前n 项和,,则的等比中项为( )A . B. C .4 D.8. 等比数列的前n 项和为 ( )A .B .C .D .9.为测量某塔AB 的高度,在一幢与塔AB 相距20m 的楼顶处测得塔顶A 的仰角为,测得塔基B 的俯角为,那么塔AB 的高度是( )A .mB .mC .mD .m10. 已知的取值范围是,则实数的解集是)(a R x a x a 01)1(122<----( )A .B .C .D .11.设数列的通项公式=∈++=*2014),(,1)21sin(S N n S n n a n n 则项和为前ππ( ) A. B . C . D . 12 . 设等差数列的前n 项和为,若( )A .3 B. 4 C .5 D. 6第Ⅱ卷(共90分)二.填空题(每小题5分,共20分)13.已知不等式0122>++>-b ax x x 的解集与不等式的解集相同,则的值是 . 14 .已知函数)2(,4)1(2,2)1(1,)(2-≤≤≤-≤+=f f f bx ax x f 则且的取值范围是________.15. 已知,若所对的边分别为的内角C ab b a c c b a C B A ABC 2cos 2,,,,,222++<∆则C 的取值范围为__16. 已知函数,,且为偶数为奇数)1()()(,-)(,)(22++=⎩⎨⎧=n f n f a n n n n n f n 则 .三.解答题(共6小题,共70分)解答题应写出演算步骤.17. (本题满分10分)已知集合,{}R m R x m mx x x B ∈∈≤-+-=,,04222. (1)若,求实数m 的值;(2)若,求实数m 的取值范围。

陕西省西安市第一中学2022-2021学年高二上学期期中考试数学(理)试题 Word版含答案

陕西省西安市第一中学2022-2021学年高二上学期期中考试数学(理)试题 Word版含答案

市一中高校区2022—2021学年度第一学期期中考试高二数学试题(理科)命题人:袁芹芹一、选择题:(本大题共12小题,每小题3分,共36分) 1.已知向量a =(-1,1,-1),b =(2, 0,-3),则a b 等于( ) A.2 B. -4 C. -5 D.12.不等式021≥+-xx的解集为( )A .]1,2[-B .]1,2(-C .),1()2,(+∞--∞D .),1(]2,(+∞--∞ 3. 下列命题中是假命题的是( ) A .若a > 0,则2a>1 B .若x 2+y 2=0,则x =y =0 C .若b 2=ac ,则a ,b ,c 成等比数列D .若a+c=2b ,则a ,b ,c 成等差数列4.已知{}n a 是等比数列,1414,2a a ==,则公比q 等于 ( )A .21-B .-2C . 2D .215. 命题“任意x ∈R ,|x |+x 2≥0”的否定是 ( ) A .任意x ∈R ,|x |+x 2<0 B .存在x ∈R ,|x |+x 2≤0C .存在x 0∈R ,|x 0|+x 20<0 D .存在x 0∈R ,|x 0|+x 20≥0 6. 如图,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB =a ,AD =b ,1AA =c ,则用向量a ,b ,c 可表示向量1BD 等于( ) A .a +b +c B .a -b +c C .a +b -c D .-a +b +c7. 若,,a b c 为实数,则下列命题正确的是( )A .若a b >,则22ac bc >B .若0a b <<,则22a ab b >>C .若0a b <<,则11a b < D .若0a b <<,则b a a b >8. 若命题))((q p ⌝∨⌝为真命题,则p ,q 的真假状况为( )A .p 真,q 真B .p 真,q 假C .p 假,q 真D .p 假,q 假 9. 已知变量x ,y 满足条件,则目标函数z=2x+y( )A .有最小值3,最大值9B .有最小值9,无最大值C .有最小值8,无最大值D .有最小值3,最大值810.已知数列{}n a 的前n 项和12+=+n n S n ,则3=a ( )A. 321 B. 281 C. 241 D. 20111. 设2910n a n n =-++,则数列{}n a 前n 项和最大值时,n 的值为( )A .4B .5C .9或10D .4或512. 方程ax 2+2x +1=0至少有一个负实根的充要条件是 ( ).A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0二、填空题(本大题共4小题,每小题5分,共20分) 13. 已知0,0,0>>>n y x ,41,x y +=则yx 41+的最小值为 . 14. 若不等式22214x a x ax ->++对任意实数x 均成立,则实数a 的取值范围是________ 15.在数列{}n a 中,11a =,13(1)n n a S n +=≥,则数列{a n }的通项公式。

2022-2023学年宁夏石嘴山市平罗中学高二(重点班)上学期期中考试数学(理)试题【含答案】

2022-2023学年宁夏石嘴山市平罗中学高二(重点班)上学期期中考试数学(理)试题【含答案】

2022-2023学年宁夏石嘴山市平罗中学高二(重点班)上学期期中数学(理)试题一、单选题1.设全集U =R ,集合{|1}A x x =≥,{|22}B x x =-≤≤,则()U A ∩B =( )A .[2-,1]B .(2-,1)C .[2-,1)D .[1,2] C【分析】直接根据交集和补集的概念计算即可.【详解】由已知{|1}U A x x =<,则()U A ∩B =[){|1}{|22}=2,1x x x x <-≤≤-故选:C.2.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;②报告厅有32排,每排有40个座位. 有一次报告会恰好坐满了听众,报告会结束后,为了调查听众对报告会的意见,需要请32名听众进行座谈;③平罗中学共有360名教职工,其中专职教师300名,行政教辅人员36名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为60的样本.较为合理的抽样方法是( )A .①简单随机抽样,②系统抽样,③分层抽样B .①简单随机抽样,②分层抽样,③系统抽样C .①系统抽样,②简单随机抽样,③分层抽样D .①分层抽样,②系统抽样,③简单随机抽样A【分析】观察所给的四组数据,根据四组数据的特点,把所用的抽样选出来①简单随机抽样,②系统抽样,③分层抽样.【详解】观察所给的四组数据,①个体没有差异且总数不多可用随机抽样法,简单随机抽样,②将总体分成均衡的若干部分指的是将总体分段,在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号,所以选用系统抽样,③个体有了明显了差异,所以选用分层抽样法,故选:A .3.一个魔方的六个面分别是红、橙、蓝、绿、白、黄六种颜色,且红色面和橙色对、蓝色面和绿色对,白色面和黄色对,将这个魔方随意扔到桌面上,则事件“红色面朝上”和“绿色面朝下”( )A .是对立事件B .不是互斥事件C .既不是互斥事件也不是对立事件D .是互斥事件但不是对立事件D 【分析】根据互斥事件和对立事件的定义即可判断.【详解】将魔方随意扔到桌面上,则事件“红色面朝上”和“绿色面朝下”不能同时发生,但可以同时不发生,故“红色面朝上”和“绿色面朝下”是互斥事件但不是对立事件.故选:D4.《算法统宗》是由明代数学家程大位所著的一部应用数学著作,其完善了珠算口诀,确立了算盘用法,并完成了由筹算到珠算的彻底转变,该书清初又传入朝鲜、东南亚和欧洲,成为东方古代数学的名著.书中卷八有这样一个问题:“今有物靠壁,一面尖堆,底脚阔一十八个,问共若干?”如图所示的程序框图给出了解决该题的一个算法,执行该程序框图,输出的S 即为该物的总数S ,则总数S =( )A .136B .153C .171D .190C【分析】执行程序框图,计算S 【详解】由图可知,输出(118)181********S +⨯=++++== 故选:C5.关于直线m 、n 与平面α、β,有以下四个①若//m α,//n β且//αβ,则//m n ;②若m α⊥,n β⊥且αβ⊥,则m n ⊥;③若m α⊥,//n β且//αβ,则m n ⊥;④若//m α,n β⊥且αβ⊥,则//m n .其中真命题的序号是( )A .①②B .③④C .①④D .②③ D【分析】根据①②③④中的已知条件判断直线m 、n 的位置关系,可判断①②③④的正误.【详解】对于①,若//m α,//n β且//αβ,则m 与n 平行、相交或异面,①错误;对于②,如下图所示:设a αβ⋂=,因为αβ⊥,在平面β内作直线l a ⊥,由面面垂直的性质定理可知l α⊥, m α⊥,//m l ∴,n β⊥,l β⊂,n l ∴⊥,因此,m n ⊥,②正确;对于③,若m α⊥,//αβ,则m β⊥,因为//n β,过直线n 作平面γ使得a βγ=,由线面平行的性质定理可得//n a ,m β⊥,a β⊂,则m a ⊥,因此m n ⊥,③正确;对于④,若//m α,n β⊥且αβ⊥,则m 与n 平行、相交或异面,④错误.故选:D.方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.6.如图是甲、乙两名运动员在某赛季部分场次得分的茎叶图,据图可知( )A .甲的平均成绩大于乙的平均成绩,且甲发挥的比乙稳定B .甲的平均成绩大于乙的平均成绩,但乙发挥的比甲稳定C .乙的平均成绩大于甲的平均成绩,但甲发挥的比乙稳定D .乙的平均成绩大于甲的平均成绩,且乙发挥的比甲稳定A【分析】分别计算甲乙的平均分和方差,比较大小得到答案. 【详解】122233435373844444936.29x ++++++++=≈, 2812141721292933365225.110x +++++++++==, ()()()222212236.22336.24936.274.69S -+-++-=≈, ()()()22222825.11225.15225.1160.4910S -+-++-==,12x x >且2212S S <. 故选:A7.若x 、y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则2z x y =+的最大值为( )A .3B .7C .8D .10C【分析】作出不等式组所表示的可行域,平移直线2z x y =+,找出使得该直线在y 轴上截距最大时对应的最优解,代入目标函数即可得解. 【详解】作出不等式组50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩所表示的可行域如下图所示:联立21050x y x y -+=⎧⎨+-=⎩可得32x y =⎧⎨=⎩,即点()3,2A , 平移直线2z x y =+,当该直线经过可行域的顶点A 时,直线2z x y =+在y 轴上的截距最大, 此时z 取最大值,即max 2328z =⨯+=.故选:C.8.某校举行运动会期间,将学校600名学生编号为001,002,003,…,600,采用系统抽样方法抽取一个容量为50的样本,且在第一段中随机抽得的号码为009.将这600名学生分别安排在看台的A ,B ,C 三个区,001号到130号在A 区,131号到385号在B 区,386号到600号在C 区,则样本中属于A ,B ,C 三个区的人数分别为( )A .10,21,19B .10,20,20C .11,20,19D .11,21,18D 【分析】系统抽样是等间隔抽样,所以抽样间隔为6001250=,且第一段中随机抽得的号码为009,所以所有抽到的号码为()1290,1,2,,49k k +=⋅⋅⋅,根据条件列出不等式即可解得A ,B ,C 三个区的人数. 【详解】由题意知抽样间隔为6001250=, 因为在第一段中随机抽得的号码为009,故所有抽到的号码为()1290,1,2,,49k k +=⋅⋅⋅,根据条件得:A 区:1129130k <+<, 即121812k -<<, 所以k 可以取:0,1,2,3,4,5,6,7,8,9,10共11人,同理,可得B 区抽中21人,C 区抽中18人.故选:D .9.设数据1x ,2x ,3x ,……,n x 的平均数为m ,方差为5,数据124x +,224x +,324x +,……,24n x +的平均数为8,方差为n ,则m 、n 的值分别是( )A .4,14B .4,20C .2,36D .2,20D 【分析】根据平均数和方差的性质直接求解即可.【详解】因为数据1x ,2x ,3x ,……,n x 的平均数为m ,数据124x +,224x +,324x +,……,24n x +的平均数为8,248m ∴+=,解得2m =,数据1x ,2x ,3x ,……,n x 的方差为5,数据124x +,224x +,324x +,……,24n x +的方差为n ,22520n ∴=⨯=故选:D10.已知三棱锥-P ABC 的底面是正三角形,PA ⊥平面ABC ,且PA AB =,则直线PA 与平面PBC 所成角的正弦值为( )AB.7 CDB【分析】如图所示,连接各线段,证明⊥AE 平面PBC ,得到APD ∠即为直线PA 与平面PBC 所成角,再计算线段长度得到答案.【详解】如图所示:D 为BC 中点,连接AD ,PD ,作AE PD ⊥于E .PA ⊥平面ABC ,BC ⊂平面ABC ,故PA BC ⊥,BC AD ⊥,PA AD A ⋂=, 故BC ⊥平面PAD ,AE ⊂平面PAD ,故AE BC ⊥,又AE PD ⊥,PDBC D =,故⊥AE 平面PBC ,即APD ∠即为直线PA 与平面PBC 所成角.设PA AB a ==,则AD =,PD ,故sin AD APD PD ∠===. 故选:B11.已知实数x ,y 满足:22(1)3x y -+=,则1y x +的取值范围为( ) A .[3-,3]B .[23-,23]C .3[3-,3]3D .23[3-,23]3A【分析】确定圆心和半径,将题目转化为点(),x y 和点()1,0A -直线的斜率,画出图像,计算角度,计算斜率得到答案.【详解】22(1)3x y -+=表示圆心为()1,0M ,半径3R =的圆,1k y x =+表示点(),x y 和点()1,0A -直线的斜率, 如图所示:直角ADM △中2AM =,3DM R ==,故3sin 2DAM ∠=, π0,2DAM ⎛⎫∠∈ ⎪⎝⎭,故π3DAM ∠=,同理可得π3EAM ∠=,对应的斜率为3和3-. 故,313k y x ⎡⎤=∈-⎣+⎦, 故选:A12.已知三棱柱ABC —A 1B 1C 1的外接球的半径为R ,若AA 1⊥平面ABC ,△ABC 是等边三角形,则三棱柱ABC —A 1B 1C 1的侧面积的最大值为( )A .243RB .26RC .233RD .23R C【分析】设三棱柱的高为h ,底面三角形的边长为a ,根据勾股定理结合均值不等式得到23ah R ≤,再计算侧面积即可.【详解】设三棱柱的高为h ,底面三角形的边长为a ,如图所示:易知122333323AO AD a a ==⨯=, 在直角1AOO 中:222323h R a ⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,即222223243433h a h a R ah =+≥⨯=, 即23ah R ≤,当2243h a =,即3622a h R ==时等号成立. 侧面积2333S ah R =≤.故选:C二、填空题13.过点(1,2)P 且与直线21y x =+平行的直线的方程是__________________.2y x =【分析】设与直线21y x =+平行的直线的方程为2y x b =+,代点P 计算即可.【详解】设与直线21y x =+平行的直线的方程为()21y x b b =+≠,代入点(1,2)P 得22b =+,解得0b =所以过点(1,2)P 且与直线21y x =+平行的直线的方程是2y x =故2y x =14.已知(1,3)a =-,(3,1)b =,则2a b +=__________.25 【分析】根据向量坐标运算求出()223132a b +=-+,,进而根据向量模的坐标公式计算得解. 【详解】因为()223132a b +=-+,, 所以()()2222313225a b +=-+=+,故答案为.2515.三棱锥中-P ABC ,底面ABC 是锐角三角形,PC 垂直平面ABC ,若其三视图中主视图和左视图如图所示,则棱PB 的长为______42【分析】根据三视图,求得,BC PC 的长度,再利用勾股定理即可求得PB .【详解】根据主视图可知,4,PC B =点在AC 的投影位于AC 的中点,不妨设其为H ,故可得2AH HC ==,根据左视图可知:23BH =224BC BH HC +=,又PC ⊥面,ABC BC ⊂面ABC ,故可得PC BC ⊥,则2242PB PC BC +故答案为.4216.已知正方体1111ABCD A B C D -的棱长为2,点M 、N 在正方体的表面上运动,分别满足:2AM =,AN ∥平面1BDC ,设点M 、N 的运动轨迹的长度分别为m 、n ,则m n=_______________. 2π2 【分析】M 的轨迹为半径为2的球A 与正方体表面的交线,即3个半径为2的14圆弧,要满足AN ∥平面1BDC ,则N 在平行于平面1BDC 的平面与正方体表面的交线上,可证得为11AB D ,最后求值即可得m n 【详解】点M 、N 在正方体的表面上运动,由2AM =,则M 的轨迹为半径为2的球A 与正方体表面的交线,即3个半径为2的14圆弧,故132π23π4m =⨯⨯⨯=. 正方体中,11111111111,,,,AD BC AB DC AD AB A DC BC C AD AB ==⊂∥∥、平面11AB D ,11DC BC ⊂、平面1BDC ,故平面11AB D ∥平面1BDC ,当N 在11AB D 上时,即满足AN ∥平面1BDC 且N 在正方体的表面上,故32262n =⨯=,故3π2π462m n ==. 故2π4三、解答题17.学习了《高中数学必修3》的内容后,高二年级某学生认为:月考成绩与月考次数存在相关关系.于是他收集了自己进入高二以后的前5次月考成绩,列表如下:第x 次月考1 2 3 4 5 月考成绩y85 100 100 105 110经过进一步研究,他发现:月考成绩y 与月考的次数 x 具有线性相关关系.(1)求y 关于x 的线性回归方程ˆˆˆy bx a =+;(2)判断变量y 与x 之间是正相关还是负相关(只写出结论即可).(3)按计划,高二年级两学期共有8次月考,请你预测该同学高二最后一次月考的成绩(结果保留整数).(1)ˆ 5.583.5yx =+ (2)正相关 (3)128【分析】(1)根据已知数据直接计算回归方程即可; (2)结合回归方程x 的系数判断即可;(3)根据(1)中的方程计算8x =时的值,估计即可. 【详解】(1)解:根据已知可得()11234535x =++++=,()1851001001051101005y =++++=, 所以,()5214101410i i x x=-=++++=∑,()()()512150052055iii x x y y =--=-⨯-++++=∑,所以,()()()5152155ˆ 5.510iii i i x x y y x bx===---==∑∑,ˆˆ100 5.5383.5a y bx=-=-⨯=, 所以,y 关于x 的线性回归方程为ˆ 5.583.5yx =+ (2)解:因为y 关于x 的线性回归方程为ˆ 5.583.5yx =+, 所以,变量y 与x 之间是正相关.(3)解:结合(1)得y 关于x 的线性回归方程为ˆ 5.583.5y x =+, 所以,当8x =时,ˆ 5.5883.5127.5128y=⨯+=≈ 所以,高二最后一次月考的成绩大约为128分. 18.已知函数()2sin (cos )f x x x x =+(1)求函数()f x 的最小正周期; (2)求函数()f x 的单调区间和对称中心. (1)π(2)答案见解析【分析】(1)根据二倍角公式结合辅助角公式化简得()2sin(π2)3f x x =+,进而可得周期;(2)将π23x +代入sin y x =的单调增减区间,对称中心,求出x 即为所求. 【详解】(1)由已知()2sin (cos 3sin )3f x x x x =-+ sin 23(1cos 2)3x x =--+πsin 23cos22sin(2)3x x x =+=+则最小正周期2ππ2T ==; (2)令ππ3π2π22π,232k x k k Z +≤+≤+∈,得7πππ,1212πk x k k Z +≤≤+∈ 令πππ2π22π,232k x k k -+≤+≤+∈Z ,得5ππππ,1212k x k k -+≤≤+∈Z令π2π,3x k k +=∈Z ,得ππ,62k x k Z =-+∈,故函数()f x 的单调增区间为π5ππ,π,1212k k k Z ⎡⎤-++∈⎢⎥⎣⎦,单调减区间7ππ,π,π1212k k k Z ⎡⎤++∈⎢⎥⎣⎦, 对称中心ππ,0,62k k Z ⎛⎫-+∈ ⎪⎝⎭.19.当前,新冠肺炎疫情防控形势依然复杂严峻. 为进一步增强学生的防控意识,让全体学生充分了解新冠肺炎疫情的防护知识,提高防护能力,做到科学防护,平罗中学组织学生进行了新冠肺炎疫情防控科普知识线上问答,共有100人参加了这次问答,将他们的成绩(满分100分)分成六组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],制成如图所示的频率分布直方图.(1)求图中a 的值;(2)试估计这100人的问答成绩的中位数和平均数(结果保留整数);(3)用分层抽样的方法从问答成绩在[70,100]内的学生中抽取24人参加疫情防控知识宣讲,那么在[70,80),[80,90),[90,100]内应各抽取多少人? (1)0.015a =(2)中位数为73,平均数为72 (3)12,10,2【分析】(1)直接利用频率和为1计算得到答案. (2)直接利用平均数和中位数的公式计算即可. (3)根据分层抽样的比例关系计算得到答案.【详解】(1)()0.0050.0200.0300.0250.005101a +++++⨯=,解得0.015a =. (2)()0.0050.0150.020100.4++⨯=,故中位数为0.50.41070730.03010-⨯+=⨯.平均数为450.05550.15650.2750.3850.25950.0572⨯+⨯+⨯+⨯+⨯+⨯=. (3)0.03:0.025:0.056:5:1=,[70,80),[80,90),[90,100]内应各抽人数分别为: 6241212⨯=,5241012⨯=,124212⨯=. 20.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,cos cos b C c B a c -=-. (1)求B ;(2)若b =△ABC 22)a c +,求△ABC 的周长. (1)π3(2)3【分析】(1)先利用余弦定理角化边,整理后直接用余弦定理求角;(2)利用面积公式和题中面积相等构造一个方程,再用余弦定理构造一个方程,解方程组即可. 【详解】(1)cos cos b C c B a c -=-,由余弦定理可得22222222a b c a c b b c a c ab ac+-+-⨯-⨯=-, 整理得222a c b ac +-=,2221cos 222a cb ac B ac ac +-∴===,又()0,πB ∈π3B ∴=;(2)由已知221π)=sin 23ABCS a c ac +, 整理得2223a c ac +=①又222π2cos33b ac ac =+-=, 整理得223a c ac +-=②由①②得a c ⎧=⎪⎨=⎪⎩12a c =⎧⎨=⎩=123++=+∴△ABC 的周长为321.数列{}n a 的各项均为正数,11a =,当2n ≥时,1n n a a --(1)证明:是等差数列,并求数列{}n a 的通项公式; (2)设141n n b a =-,数列{}n b 前n 项和为n S ,证明:12n S <. (1)证明见解析;2n a n =(2)证明见解析【分析】(1)将递推式变形为=再根据等差数列的通项公式求解即可;(2)变形得11122121n b n n ⎛⎫=- ⎪-+⎝⎭,利用裂项相消法计算n S ,再观察即可得结果.【详解】(1)由1n n a a --=因为数列{}n a 0≠,1=1=所以是以1为首项,1为公差的等差数列.()1n n -=即2n a n =;(2)由(1)2n a n =得2141n b n =-,()()1111212122121n b n n n n ⎛⎫∴==- ⎪-+-+⎝⎭,1112111111111123355227211n S n n n ⎛⎫⎛⎫=-+-+-++=∴---++ ⎪ ⎪⎝⎭⎝⎭1021n >+, 则11121n -<+,11112212n ⎛⎫-< ⎪+⎝⎭,即12n S <. 22.如图1,在直角梯形ABCD 中,ABCD ,AB BC ⊥,224AB BC CD ===,E 是AB 的中点. 沿DE 将ADE 折起,使得AE BE ⊥,如图2所示. 在图2中,M 是AB 的中点,点N 在线段BC 上运动(与点B ,C 不重合).在图2中解答下列问题:(1)证明:平面EMN ⊥平面ABC ;(2)设二面角M EN B --的大小为θ,求tan θ的取值范围 (1)证明见解析 (2)()tan 2,θ∈+∞【分析】(1)证明⊥AE 平面BCDE ,BC ⊥平面AEB 得到EM ⊥平面ABC ,得到证明.(2)如图所示建立空间直角坐标系,计算各点坐标,计算平面EMN 的法向量为()1,2,n t t =--,平面EBN 的法向量为()20,0,1n =,根据向量的夹角公式得到224tan 1t θ=+,计算得到答案. 【详解】(1)AEB △中,AE EB =,M 时AB 中点,故EM AB ⊥, AE BE ⊥,AE DE ⊥,DE BE E ⋂=,故⊥AE 平面BCDE ,BC ⊂平面BCDE ,故AE BC ⊥,又BC BE ⊥,AE BE E =,故BC ⊥平面AEB ,EM ⊂平面AEB ,故EM BC ⊥,AB BC B ⋂=, 故EM ⊥平面ABC ,EM ⊂平面EMN ,故平面EMN ⊥平面ABC . (2)如图所示,分别以,,EB ED EA 分别为,,x y z 轴建立空间直角坐标系. 则()0,0,0E ,()2,0,0B ,()0,0,2A ,()1,0,1M ,()2,,0N t ,()0,2t ∈,设平面EMN 的法向量为()1,,n a b c =,则()()()()11,,1,0,10,,2,,020n EM a b c a c n EN a b c t a bt ⎧⋅=⋅=+=⎪⎨⋅=⋅=+=⎪⎩,取a t =,则()1,2,n t t =--.取平面EBN 的法向量为()20,0,1n =,二面角M EN B --的平面角为锐角,大小为θ,则12212cos 24n n t n n t θ⋅==⋅+222221244tan 111cos t t tθθ+=-=-=+,()0,2t ∈, 故()2tan 2,θ∈+∞,故()tan 2,θ∈+∞.。

理科高二年级数学上册期中考试卷

理科高二年级数学上册期中考试卷

理科高二年级数学上册期中考试卷想要学习好就一定不可以偷懒哦,今天小编就给大家分享一下高二数学,希望大家多多参考一下哦高二数学上期中理科联考试题第I卷共60分一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、若设,则一定有( )A. B. C. D.2、命题“对任意,都有”的否定为 ( ).对任意,都有 .不存在,使得.存在,使得 .存在,使得3、已知x1,x2∈R,则“x1>1且x2>1”是“x1+x2>2且x1x2>1”的( )A.充分且不必要条件B.必要且不充分条件C.充要条件D.既不充分也不必要条件4、等差数列的前项和为,且,,则公差等于 ( ).-2 . -1 . 1 . 25、原点和点(1,1)在直线x+y﹣a=0两侧,则a的取值范围是( )A.0≤a≤2B.026、钝角三角形的面积是,,,则 ( ). 1 . 2 . . 57、在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.若sin B•sin C=sin2A,则△ABC的形状是( )A.钝角三角形B.直角三角形C.等边三角形D.等腰直角三角形8、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为( )A. 尺B. 尺C. 尺D. 尺9、已知满足线性约束条件则的最大值为( )A、 B、 C、 D、10、若是等差数列,首项则使前n项和成立的最大自然数是( )A.2 012B.2 013C.2 014D.2 01511、已知函数f(x)=4x2﹣1,若数列前n项和为Sn,则S2015的值为( )A. B. C. D.12、若两个正实数x,y满足 + =1,且不等式x+A. B. C. D.第Ⅱ卷共90分二、填空题:本大题共4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上13、在中,角A,B,C所对边长分别为a,b,c,若1. 则c=14、中,角A,B,C成等差数列,则。

2021-2022年高二下学期期中考试数学(理科)试卷 含答案

2021-2022年高二下学期期中考试数学(理科)试卷 含答案

2021年高二下学期期中考试数学(理科)试卷 含答案程远见 丁勇数学试题共4页。

满分150分。

考试时间120分钟 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

一、选择题(本大题共12小题,每小题5分,共60分.每小题中只有一项符合题目要求)1. 设i 为虚数单位,则复数5-6ii等于A .6+5iB .6-5iC .-6+5iD .-6-5i2.用反证法证明命题:若系数为整数的一元二次方程ax 2+bx +c =0(a ≠0)有有理根,那么a ,b ,c 中至少有一个是偶数,下列假设中正确的是 A .假设a ,b ,c 都是偶数 B .假设a ,b ,c 都不是偶数C .假设a ,b ,c 至多有一个是偶数D .假设a ,b ,至多有两个是偶数3. 已知积分,则实数A .2B .C .1D .4. 已知函数的导函数如图所示,若为锐角三角形,则下列不等式一定成立的是( ) A. B. C. D.5. 某公司新招聘进8名员工,平均分给下属的甲、乙两个部门,其中两名英语翻译人员不能分给同一个部门;另三名电脑编程人员也不能分给同一个部门,则不同的分配方案种数是 A.18B.24C. 36D. 726.某个自然数有关的命题,如果当时,该命题不成立,那么可推得时,该命题不成立.现已知当时,该命题成立,那么,可推得A. 时,该命题成立B. 时,该命题成立C.时,该命题不成立D.时,该命题不成立 7.函数在区间上有最小值,则实数的取值范围是 A 、 B 、 C 、 D 、8. 记为函数的阶导函数,即.若且集合()*{|()sin ,,2013}m M m f x x m N m ==∈≤,则集合中元素的个数为(A ) (B ) (C ) (D )9. 某学校组织演讲比赛,准备从甲、乙等8名学生中选派4名学生参加,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加时,他们的演讲顺序不能相邻,那么不同的演讲顺序的种数为A .1860B .1140C .1320D .102010. 已知定义在上的单调函数,对,都有,则函数()()()1'13g x f x f x =----的零点所在区间是. B. C. .11. 已知函数的导函数为,满足,且,则函数的最大值为A .B .C .D .12.设函数=,其中a 1,若存在两个整数x 1,x 2,使得f(x 1),f(x 2)都小于0,则的取值范围是(A) (B)[-,) (C) (D) [,1)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中对应题号后的横线上.13、设复数(其中为虚数单位),则的虚部为 ▲14.如图所示的数阵叫“莱布尼兹调和三角形”,他们是由正整数的倒数组成的,第行有个数且两端的数均为,每个数是它下一行左右相邻两数的和,如:111111111,,1222363412=+=+=+…,则第行第3个数字是 ▲ .(用含的式子作答)15.如图,用五种不同的颜色给图中的A 、B 、C 、D 、E 、F 六个不同的点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,则不ABCDE F同的涂色方法共 ▲_ 种。

临川一中2019-2020高二数学期中理科试卷含答案

临川一中2019-2020高二数学期中理科试卷含答案

18.如图,四棱锥 S﹣ABCD 的底面是边长为 1 的正方形,则棱 SB 垂
直于底面.
(Ⅰ)求证:平面 SBD⊥平面 SAC; 2
(Ⅱ)若 SA 与平面 SCD 所成角的正弦值为 ,求 SB 的长. 5
19.设命题 p:函数 f (x) lg(ax2 x 16a) 的定义域为 R;命题 q:不等式
b
0,
y
0)
和部分抛
物线 C2 : y x2 1( y 0) 连接而成,C1 与 C2 的公共点为 A ,B ,其中
C1 所在椭圆的离心率为
3 2
.
(Ⅰ)求 a , b 的值;
(Ⅱ)过点 B 的直线 l 与 C1 ,C2 分别交于点 P ,Q ( P ,Q , A , B 中任意两点


13.命题“已知不共线向量 e1 ,e2 ,若 e1 e2 0 ,则 0 ”的等价命
题为__________.
14.在空间四边形 ABCD 中,连接 AC、BD,若 BCD 是正三角形,且 E 为其中心,

AB

1
BC

C.30°
D.0°
7.下列命题正确的是( )
高二数学(理科)试卷 共 4 页 第1页
(1)命题“ x R , 2x 0 ”的否定是“ x0 R , 2x0 0 ”;
(2)“若 ꄢ ᘻ,则 ꄢ ᘻ”的否命题是“若 ꄢ ᘻ,则 ᘻ”;
(3)给定命题 p,q,若“ p q 为真命题”,则 p 是假命题;
1 a
b
0 的左、右焦点分别为 F1、F2 ,其焦距为 2c ,

Q

c,
a 2

江西省南昌市第二中学2018-2019学年高二数学上学期期中试题 理(含解析)

江西省南昌市第二中学2018-2019学年高二数学上学期期中试题 理(含解析)
B为双曲线上一点,则BF2﹣BF1=2a,BF2=4a,F1F2=2c,
在△F1BF2中应用余弦定理得:4c2=4a2+16a2﹣2•2a•4a•cos120°,
得c2=7a2,
在双曲线中:c2=a2+b2,b2=24
∴a2=4
∴△BF1F2的面积为 = =2 ×4=8 .
故选:C.
【点睛】本题给出经过双曲线左焦点的直线被双曲线截得弦AB与右焦点构成等边三角形,求三角形的面积,着重考查了双曲线的定义和简单几何性质等知识,属于中档题.
考点:1。直线与抛物线 位置关系;2.抛物线和双曲线的定义与性质.
【名师点睛】本题考查直线与抛物线的位置关系、抛物线和双曲线的定义与性质,属中档题;解决抛物线弦长相关问题时,要注意抛物线定义的应用,即将到焦点的距离转化为到准线的距离,通过解方程组求解相关问题即可。
9.已知圆 是圆 上任意一点,过点 向 轴作垂线,垂足为 ,点 在线段 上,且 ,则点 的轨迹方程是( )
【详解】设点M(﹣1,1)关于直线l:x﹣y﹣1=0对称的点N的坐标(x,y)
则MN中点的坐标为( , ),
利用对称的性质得:KMN= =﹣1,且 ﹣ ﹣1=0,
解得:x=2,y=﹣2,
∴点N的坐标(2,﹣2),
故答案为(2,﹣2).
【点睛】本题考查求点关于直线 对称点的坐标的方法,利用垂直关系、中点在轴上两个条件以及待定系数法求对称点的坐标.
【答案】A
【解析】
试题分析:直线 的方程为 ,与双曲线渐近线 的交点为 ,与双曲线在第一象限的交点为 ,所以 , ,由 得 ,解之得 ,所以 , ,故选A。
考点:双曲线几何性质、向量运算.
二、填空题(每小题5分,共20分。)

哈尔滨第九中学校2020-2021学年高二上学期期中考试数学(理)答案

哈尔滨第九中学校2020-2021学年高二上学期期中考试数学(理)答案

数学(理)答案1--6 CAACBD 7--12 CABCBB13.4 14.3√24 15.√6+√2 16.()0,1-17. (1)AB 中点()3,3M ,21=CM K ,所以CM 方程为: x −2y +3=0 (2)31-=BC K ,所以3=AD K ,所以BC 边上高 AD 所在直线的方程为:3x −y −1=0.18. (1) 因为 PN =ND ,DM =MA ,所以 MN ∥PA ,且 PA ⊄平面MNC ,MN ⊂平面MNC ,则 PA ∥平面MNC .(2) 因为 PD ⊥CD ,PD ⊥AD ,且 AD ∩CD =D ,所以 PD ⊥平面ABCD ,则以点 D −xyz 为原点建立空间直角坐标系(如图),AD =2,可得 A (2,0,0),B (2,2,0),C (0,2,0),N (0,0,2),M (1,0,0),P (0,0,4).向量 PB ⃗⃗⃗⃗⃗ =(2,2,−4),NC ⃗⃗⃗⃗⃗ =(0,2,−2),MN⃗⃗⃗⃗⃗⃗⃗ =(−1,0,2). 设 n ⃗ =(x,y,z ) 为平面 MNC 的法向量,则 {NC ⃗⃗⃗⃗⃗ ⋅n ⃗ =0,MN ⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =0.即 {2y −2z =0,−x +2z =0. 不妨令 y =1,可得 n ⃗ =(2,1,1) 为平面 HFG 的一个法向量,设直线 PB 与平面 MNC 所成角为 α,于是有 sinα=cos⟨n ⃗ ,PB ⃗⃗⃗⃗⃗ ⟩=n ⃗ ⋅PB ⃗⃗⃗⃗⃗∣∣n ⃗ ∣∣⋅∣∣PB ⃗⃗⃗⃗⃗ ∣∣=16.19.(1)设圆()()222:r b y a x C =-+-由题意得 03=-b a ①,a r =②,2272r b a =+⎪⎪⎭⎫ ⎝⎛-③ 由①得b a 3=,②得b r 3=,待入③得12=b当1=b 时,3=a ,3=r ,所以圆()()913:22=-+-y x C ; 当1-=b 时,3,3=-=r a ,所以圆()()913:22++++y x C ; 所以圆:C (x −3)2+(y −1)2=9 或 (x +3)2+(y +1)2=9.(2)设()2,1--M 关于4+=x y 的对称点()y x M ,',有对称性知⎪⎪⎩⎪⎪⎨⎧+-=--=++42122112x y x y , 所以()3,6-'∴M ,所以反射光线方程为:3592+-=x y20.答案(1) 在左图中,△ABD 为等边三角形,E 为 AD 中点,所以 BE ⊥AD ,所以 BE ⊥AE ,因为 ∠AEG =90∘,所以 GE ⊥AE ,因为 GE ⊥AE ,BE ⊥AE ,GE ∩BE =E ,所以 AE ⊥平面EBHG ;AEB AE 平面⊂,所以EBHG AEB 平面平面⊥(2) 设菱形 ABCD 的边长为 2,由(Ⅰ)可知 GE ⊥AE ,BE ⊥AE ,GE ⊥BE .所以以 E 为原点,EA ,EB ,EG 所在直线分别为 x ,y ,z 轴,建立如图空间坐标系 可得 A (1,0,0),B(0,√3,0),G (0,0,1),H(0,√3,2),AG⃗⃗⃗⃗⃗ =(−1,0,1),AH ⃗⃗⃗⃗⃗⃗ =(−1,√3,2) 设平面 AGH 的法向量为 n ⃗ =(x,y,z )所以 {n ⃗ ⋅AG ⃗⃗⃗⃗⃗ =0,n ⃗ ⋅AH⃗⃗⃗⃗⃗⃗ =0, 即 {−x +z =0,−x +√3y +2z =0. 令 x =1,则 n ⃗ =(1,−√33,1), 平面 EBHG 的法向量为 EA⃗⃗⃗⃗⃗ =(1,0,0),设二面角 A −GH −B 的大小为 θ(θ<90∘),cosθ=∣∣cos⟨n ⃗ ,EA ⃗⃗⃗⃗⃗ ⟩∣∣=√217; (3) 由 AF⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,则 F(1−λ,√3λ,0) 所以 EF⃗⃗⃗⃗⃗ =(1−λ,√3λ,0) 因为 EF ∥平面AGH ,则 n ⃗ ⋅EF⃗⃗⃗⃗⃗ =0 即 1−2λ=0,所以 λ=12.21. (1)圆C 的方程为()()22139x y -+-=;(2)①设(,)M x y ,则:AM =(),A A x x y y --,()7,6MB x y =--, ∴142122A A x x x y y y -=-⎧⎨-=-⎩∴143123A A x x y y=-+⎧⎨=-+⎩ ∵点A 在圆C 上运动∴()()22314131239x y --+--=即:∴()()223153159x y -+-=∴()()22551x y -+-=所以点M 的轨迹方程为()()22551x y -+-=,它是一个以()5,5为圆心,以1为半径的圆;②假设存在一点(),D t t 满足PO PT λ=(其中λ为常数)设(),P x yλ= 整理化简得:()222222222x y x tx t y ty t λ+-++-+=, ∵P 在轨迹Γ上, ∴()()22551x y -+-=化简得:22101049x y x y +=+-,所以()22101049101292042x y x y tx ty tλ--+-+-=+ 整理得()()22222221010210102494920x t y t t λλλλλλ-++-+-+=-∴2222210102049249t t λλλλ⎧-+=⎨-⋅=⎩, 解得:4910t =; ∴存在4949,1010D ⎛⎫ ⎪⎝⎭满足题目条件.22答案.(1)见解析,(2)3[,]27-- (1)证明:作PH ⊥平面1111D C B A 于H ,则H 在圆弧EF 上,因为1PB =1HB 取最小值时,1PB 最小,由圆的对称性可知,1HB 的最小值为=所以PH ==如图,以D 为原点,以2,,DA DC DD 的方向分别为x 轴,y 轴, z 轴的正方向建立空间直角坐标系D xyz -,则21(0,0,0),(0,0,1(4,4,1)D D E F B +,12(4,4,1),(2,2,0),(2,0,4DB EF ED ==-=-,因为112424200,400DB EF DB ED ⋅=-++=⋅=-+=, 所以112,DB EF DB ED ⊥⊥,因为EF ⊂平面2D EF ,2ED ⊂平面2D EF ,2ED EF E =,所以DB 1⊥平面D 2EF ,(2)解:若D 1D 2=3,由(1)知()()()1114,0,1,0,4,1,4,4,1A C B , 设(,,4)P a b ,因为222,0,0a b a b +=≥≥,设,,[0,]2a b πθθθ==∈所以2sin()4a b πθ+=+∈,111(4,4,0),(4,,3)AC A P a b =-=-,设平面11PA C 的法向量为111(,,)n x y z =,则11111111440(4)30n AC x y n A P a x by z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩, 令11x =,则4(1,1,)3a b n --=, 取平面111A B C 的一个法向量(0,0,1)m =,设二面角111P AC B --的大小为θ,θ显然是钝角,则4cos cos ,2a b m nm nm n θ+-⋅=-=-=+, 0,sin 0,sinθπθθ≤≤∴>== 则3tan[]427a b θ=∈--+-, 所以二面角111P AC B --的正切值的取值范围为3[,]27--,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档