高二数学上学期期中考试模拟试卷-1
高二上学期数学期中考试模拟卷(范围:空间向量+直线与圆的方程)-【解析版】
2023-2024年高二上学期期中考试数学·全解全析一、单项选择题:本题共8小题每小题5分共40分.在每小题给出的四个选项中只有一个选项是符合题目要求的.1.直线x+y+2=0的倾斜角为()A.30°B.60°C.120°D.150°【解答】解:直线x+y+2=0可化为y=﹣x﹣∴直线的斜率为﹣设直线的倾斜角为α可得tanα=﹣∴α=150°故选:D.2.已知圆C与y轴相切于点(0 5)半径为5 则圆C的标准方程是()A.(x﹣5)2+(y﹣5)2=25B.(x+5)2+(y﹣5)2=25C.(x﹣5)2+(y﹣5)2=5或(x+5)2+(y﹣5)2=5D.(x﹣5)2+(y﹣5)2=25或(x+5)2+(y﹣5)2=25【解答】解:由题意得圆C的圆心为(5 5)或(﹣5 5)故圆C的标准方程为(x﹣5)2+(y﹣5)2=25 或(x+5)2+(y﹣5)2=25.故选:D.3.在正方体ABCD﹣A1B1C1D1中棱长为1 则•等于()A.0B.1C.D.﹣1【解答】解:如图所示建立空间直角坐标系.则A(0 0 0)C(1 1 0)D1(1 0 1).∴=(1 1 0)=(1 0 1).∴•=1+0+0=1.故选:B.4.若直线l1:mx+2y+1=0与直线l2:x+y﹣2=0互相垂直则实数m的值为()A.2B.﹣2C.D.﹣【解答】解:∵直线l1:mx+2y+1=0与直线l2:x+y﹣2=0互相垂直∴m×1+2×1=0 解得m=﹣2.故选:B.5.已知向量=(﹣2 ﹣3 1)=(2 0 4)=(﹣4 ﹣6 2)则下列结论正确的是()A.B.∥C.∥D.以上都不对【解答】解:∵=(﹣2 ﹣3 1)=(2 0 4)=(﹣4 ﹣6 2)∴∴.故选:C.6.过点P(1 2)引直线使A(2 3)B(4 ﹣5)两点到直线的距离相等则这条直线的方程是()A.3x+2y﹣7=0B.x+2y﹣5=0C.3x+2y﹣7=0或4x+y﹣6=0D.3x+2y﹣7=0或x+2y﹣5=0【解答】解:由题意可知直线的斜率存在故可设直线方程为y=kx+b∵过点P(1 2)引直线使A(2 3)B(4 ﹣5)两点到直线的距离相等∴解得或故直线l的方程为4x+y﹣6=0或3x+2y﹣7=0.故选:C.7.已知A B是圆M:(x﹣2)2+y2=1上不同的两个动点|AB|=O为坐标原点则的取值范围是()A.B.C.D.【解答】解:∵(x﹣2)2+y2=1 ∴圆M的圆心坐标M(2 0)半径R=1设圆心到直线l的距离为d由圆的弦长公式可得|AB|=2即2=解得d=设AB的中点为N |MN|=∴点N的轨迹表示以M(2 0)为圆心以为半径的圆∴点M的轨迹方程为(x﹣2)2+y2=根据向量的运算可得=2||又∵|OM|=2∴|OM|−≤||≤|OM|+即2﹣≤||≤2+即的取值范围为[4−4+].故选:C.8.在棱长为1的正方体ABCD﹣A1B1C1D1中点P满足λ∈[0 1] μ∈[0 1].在满足条件的P中随机取一点B1P与AD所成角小于等于的概率为()A.B.C.D.【解答】解:如图建立空间直角坐标系则C(0 1 0)C1(0 1 1)D(0 0 0)A(1 0 0)B2(1 1 1)所以因为λ∈[0 1] μ∈[0 1]所以=λ(0 ﹣1 0)+μ(0 0 1)=(0 ﹣λμ)所以=+=(﹣1 0 ﹣1)+(0 ﹣λμ)=(﹣1 ﹣λμ﹣1)设B1P与AD所成角为θ则=因为B1P与AD所成角小于等于则所以1+λ2+(μ﹣1)2≤2 即λ2+(μ﹣1)2≤1因为λ∈[0 1] μ∈[0 1] 目标式子为λ2+(μ﹣1)2≤1如下图所示满足λ2+(μ﹣1)2<1 的(λμ)为图中扇形COB中的点S OABC=1×1=1 所以P==.即在满足条件的P中随机取一点B1P与AD所成角小于等于的概率为.故选:D.二、多项选择题:本题共4小题每小题5分共20分.在每小题给出的选项中有多项符合题目要求全部选对的得5分部分选对的得2分有选错的得0分.9.已知圆C:x2+(y+3)2=4 则()A.点(1 ﹣2)在圆C的内部B.圆C的直径为2C.点(2 ﹣3)在圆C的外部D.直线y=x与圆C相离【解答】解:对于A点(1 ﹣2)与圆心(0 ﹣3)的距离为<2 故(1 ﹣2)在圆C的内部故A正确;对于B圆的半径为2 故圆C的直径为4 故B错误;于C点(2 ﹣3)与圆心(0 ﹣3)的距离为2 等于圆的半径故(2 ﹣3)在圆C上故C错误;对于D圆心到直线的距离为>2 故直线y=x与圆C相离故D正确.故选:AD.10.下列说法中正确的是()A.若直线斜率为则它的倾斜角为30°B.若A(1 ﹣3)B(1 3)则直线AB的倾斜角为90°C.若直线过点(1 2)且它的倾斜角为45°则这条直线必过点(3 4)D.若直线的斜率为则这条直线必过(1 1)与(5 4)两点【解答】解:对于A设直线的倾斜角为α(0°≤α<180°)则由题意得所以α=30°故A正确;对于B因为A(1 ﹣3)B(1 3)所以直线AB与x轴垂直则其斜率不存在故其倾斜角为90°故B 正确;对于C因为直线过定点(1 2)且斜率为tan45°=1 所以直线的方程为y﹣2=x﹣1 即y=x+1易知4=3+1 故直线必过(3 4)故C正确;对于D不妨取满足直线的斜率为但显然该直线不过(1 1)与(5 4)两点故D错误.故选:ABC.11.在矩形ABCD中AB=2 AD=2沿对角线AC将矩形折成一个大小为θ的二面角B﹣AC﹣D若cosθ=则()A.四面体ABCD外接球的表面积为16πB.点B与点D之间的距离为2C.四面体ABCD的体积为D.异面直线AC与BD所成的角为45°【解答】解:如图因为△ABC和△ADC都是以AC为斜边的直角三角形则AC为四面体ABCD外接球的直径.因为则2R=AC=4所以四面体ABCD外接球的表面积为S=4πR2=16π故A正确;分别作BE⊥AC DF⊥AC垂足为E F则.由已知可得.因为则=所以故B错误;因为CD2+BD2=12=BC2则CD⊥BD.同理AB⊥BD.又CD⊥AD AD∩BD=D AD BD⊂平面ABD则CD⊥平面ABD所以故C正确;由已知可得∠CAD =30°∠CAB=60°则则得所以异面直线AC与BD所成的角为45°故D正确故选:ACD.12.已知圆O:x2+y2=4 过直线l:x+y﹣6=0上一点P作圆O的两条切线切点分别为A B则()A.若点P(2 4)则直线AB的方程为x+2y﹣2=0B.四边形P AOB面积的最小值为C.线段AB的最小值为D.点O始终在以线段AB为直径的圆上【解答】解:对于A点P(2 4)连接OA OB则OA⊥P A OB⊥PB故A B在以O P为直径的圆上而则以O P为直径的圆的方程为(x﹣1)2+(y﹣2)2=5将方程(x﹣1)2+(y﹣2)2=5和x2+y2=4相减得2x+4y﹣4=0即直线AB的方程为x+2y﹣2=0 A正确;对于B由题意知|OA|=2 则P AOB的面积为而|PO|的最小值即为原点O到直线l:x+y﹣6=0的距离故P AOB的面积的最小值为B正确;对于C设P(a b)则以O P为直径的圆的方程为x(x﹣a)+y(y﹣b)=0和x2+y2=4相减即得直线AB的方程为ax+by=4又a+b﹣6=0 故ax+(6﹣a)y=4 即a(x﹣y)+6y﹣4=0令x﹣y=0 则6y﹣4=0 ∴即直线AB过定点设为E则当AB⊥OE时|AB|最小最小值为C正确;对于D在四边形P AOB中∠AOB不一定是直角故点O不一定在以线段AB为直径的圆上D错误.故选:ABC.三、填空题:本题共4小题每小题5分共20分.13.已知向量则=2.【解答】解:由向量可得.故答案为:2.14.过点(2 3)的直线l被两平行直线l1:2x﹣5y+9=0与l2:2x﹣5y﹣7=0所截线段AB的中点恰在直线x﹣4y﹣1=0上则直线l的方程是4x﹣5y+7=0.【解答】解:设线段AB的中点为M(4y0+1 y0)∵点M到l1与l2的距离相等故解得y0=﹣1则点M(﹣3 ﹣1)∴直线l的方程为即4x﹣5y+7=0.故答案为:4x﹣5y+7=0.15.已知圆x2+y2﹣4x﹣6y=0 则过点M(1 1)的最短弦所在的直线方程是x+2y﹣3=0.【解答】解:根据题意:弦最短时则圆心与点M的连线与直线l垂直∴圆x2+y2﹣4x﹣6y=0即(x﹣2)2+(y﹣3)2=13 圆心为:O(2 3)∴k l=﹣=﹣.由点斜式整理得直线方程为:x+2y﹣3=0.故答案为:x+2y﹣3=0.16.如图在矩形ABCD中AB=2 BC=4 沿AC将△ABC折起当三棱锥B﹣ACD的体积取得最大值时BD 与平面ACD所成角的正切值为.【解答】解:由题意知当三棱锥B﹣ACD的体积取最大值时平面ABC⊥平面ACD如图所示作BE⊥AC于E连接DE因为平面ABC⊥平面ACD平面ABC∩平面ACD=AC所以BE⊥平面ACD所以∠BDE就是BD与平面ACD所成角在Rt△ABC中因为AB=2 BC=4所以AC==2BE===AE==CE=AC﹣AE=在Rt△ACD中cos∠DAE=cos∠DAC=在△ADE中由余弦定理得所以因为BE⊥平面ACD且DE⊂平面ACD所以BE⊥DE在Rt△BDE中即当三棱锥B﹣ACD的体积取得最大值时BD与平面ACD所成角的正切值为.故答案为:.四、解答题:本题共6小题共70分.解答应写出文字说明、证明过程或演算步骤.17.已知四边形MNPQ的顶点M(1 1)N(3 ﹣1)P(4 0)Q(2 2)(1)求斜率k MN与斜率k PQ;(2)求证:四边形MNPQ为矩形.【解答】解:(1)四边形MNPQ的顶点M(1 1)N(3 ﹣1)P(4 0)Q(2 2)斜率k MN==﹣1斜率k PQ==﹣1.(2)证明:由(1)可知:k MN=k PQ;即有MN∥PQ斜率k MQ==1斜率k PN==1.可知PN∥MQ并且PQ⊥PN所以四边形MNPQ为矩形.18.在正四面体OABC中E F G H分别是OA AB BC OC的中点.设.(1)用表示;(2)求证:EF⊥FG;(3)求证:E F G H四点共面.【解答】(1)解:由题意=;=;(2)证明:设四面体的棱长为a则所以=故EF⊥FG;(3)证明:因为又所以故E F G H四点共面.19.已知圆E经过A(2 3)B(3 2)C(4 3)三点且交直线l:3x+4y﹣18=0于M N两点.(1)求圆E的标准方程;(2)求△CMN的面积.【解答】解:(1)设圆E:(x﹣a)2+(y﹣b)2=r2则∴圆E:(x﹣3)2+(y﹣3)2=1;(2)因为C(4 3)到直线l:3x+4y﹣18=0的距离为圆心E(3 3)到直线l:3x+4y﹣18=0的距离为故弦长所以.20.如图已知P A⊥平面ABCD底面ABCD为正方形P A=AD=AB=2 M N分别为AB PC的中点.(1)求线段MN的长;(2)求PD与平面PMC所成角的正弦值.【解答】解:(1)P A⊥平面ABCD底面ABCD为正方形则AB、AD、AP两两垂直则建立以A为原点的空间直角坐标系A﹣xyz如图所示:P A=AD=AB=2 则M(1 0 0)P(0 0 2)C(2 2 0)N(1 1 1)D(0 2 0)∴故线段MN的长为;(2)由(1)得设平面PMC的法向量为则取z=1 则x=2 y=﹣1∴平面PMC的法向量为设直线PD与平面PMC所成角为θ则故PD与平面PMC所成角的正弦值为.21.如图正三棱柱ABC﹣A1B1C1的所有棱长都为2.(1)求点B1到平面A1BC1的距离;(2)求平面AA1B与平面A1BC1夹角的余弦值.【解答】解:(1)如图所示取BC的中点D B1C1的中点E连接AD与DE因为三棱柱ABC﹣A1B1C1为正三棱柱所以AD⊥BC且平面ABC⊥平面BCC1B1所以AD⊥平面BCC1B1在矩形BCC1B1中D E分别为BC B1C1的中点所以DE⊥BC以D为原点以DB DE DA所在的直线分别为x轴、y轴和z轴建立如图所示的空间直角坐标系:因为正三棱柱ABC﹣A1B1C1的所有棱长都为2 可得则所以设平面A1BC1的法向量为则取则所以=(﹣1)所以B1到平面A1BC1的距离为d===.(2)由(1)中的空间直角坐标系可得可得设平面AA1B的法向量为则令则b=0 c=1所以又由平面A1BC1的一个法向量为=(﹣1)可得cos<>====所以平面A1BC1与平面AA1B的夹角的余弦值为.22.已知圆C经过坐标原点O圆心在x轴正半轴上且与直线3x+4y﹣8=0相切.(1)求圆C的标准方程;(2)直线l:y=kx+2与圆C交于A B两点.①求k的取值范围;②证明:直线OA与直线OB的斜率之和为定值.【解答】解:(1)设圆C的圆心坐标为C(a 0)其中a>0 半径为r∵圆C经过坐标原点O圆心在x轴正半轴上∴r=a又∵圆C与直线3x+4y﹣8=0相切∴解得a=1或a=﹣4(舍去)∴圆心C(1 0)r=1故圆C的标准方程为(x﹣1)2+y2=1.(2)①联立直线与圆的方程可得(k2+1)x2+(4k﹣2)x+4=0∵直线l交圆C与A B两点∴Δ=b2﹣4ac=(4k﹣2)2﹣16(k2+1)>0 解得故k的取值范围为.②证明:设A(x1y1)B(x2y2)由韦达定理可得又∵====2k﹣2k+1=1 ∴直线OA与直线OB的斜率之和为定值即得证.。
2024-2025学年高二上学期期中模拟考试数学试题含解析
2024-2025学年高二数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:沪教版2020必修第三册第十~十一章。
5.难度系数:0.72。
一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.不重合的两个平面最多有条公共直线【答案】1【解析】根据平面的位置关系可知,不重合两平面平行或相交,当相交时,有且只有一条公共直线.故答案为:12.已知球的表面积是16π,则该球的体积为.3.空间中一个角∠A的两边和另一个角∠B的两边分别平行,若∠A=,则∠B=;【答案】【解析】如图,若角∠A 的两边和角∠B 的两边分别平行,且方向相同,则∠A 与∠B 相等此时70B A ∠=∠=︒;②当角∠A 的两边和角∠B 的两边分别平行,且一边方向相同另一边方向相反,则∠A 与∠B 互补,此时180110B A ∠=︒-∠=︒.故答案为70︒或110︒.4.如图,正三棱柱的底面边长为2,高为1,则直线1B C 与底面ABC 所成的角的大小为(结果用反三角函数值表示).5.在空间中,给出下面四个命题,其中真命题为.(填序号)①过平面α外的两点,有且只有一个平面与平面α垂直;②若平面β内有不共线三点到平面α的距离都相等,则αβ∥;③若直线l 与平面α内的任意一条直线垂直,则l α⊥;④两条异面直线在同一平面内的射影一定是两条相交直线.【答案】③【解析】①过平面α外两点可确定一条直线,当这条直线垂直于平面α时,有无数个平面垂直于平面α,故①错误;②若三点在平面α同侧,则αβ∥;若三点在平面α两侧,则α与β相交,故②错误;③直线l 与平面α内的任意一条直线垂直,则l 垂直于平面α内两条相交直线,由线面垂直的判定定理可得l α⊥,故③正确;④两条异面直线在同一个平面内的射影有可能是两条相交直线,也可能是两条平行直线,还可能是一个点和一条直线,故④错误;故答案为:③6.正四棱锥P -ABCD 的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与P A 所成角的余弦值为.连接AC 交BD 于O 点,连接OE ,则OE 因为⊥PO 面ABCD ,所以PO DB ⊥,又因为所以直在角三角形EOB 中,设PA a =,则故答案为:33.7.如图,有一圆锥形粮堆,其轴截面是边长为6m 的正ABC V ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是m .【答案】35【解析】解:由题意得:圆锥的底面周长是6π,则66180n ππ=,解得:180n ︒=可知圆锥侧面展开图的圆心角是180︒,如图所示:则圆锥的侧面展开图中:()3m AP =,6(m)AB =,90BAP ︒∠=所以在圆锥侧面展开图中:()223635m BP =+=故答案为:358.已知一球体刚好和圆台的上、下底面及侧面都相切,且圆台上底面的半径为2,下底面的半径为1,则该圆台的侧面积为.【答案】9π【解析】圆台的轴截面如下图示:截面中圆为内切球的最大圆,且2AF DF AG DH ====,1BE CE BG CH ====,所以3AB CD ==,而上下底面周长分别为4π、2π,故该圆台的侧面积为13(2π4π)9π2⨯⨯+=.故答案为:9π9.如图,已知三棱柱111ABC A B C -的体积为3,P ,Q ,R 分别为侧棱1AA ,1BB ,1CC 上的点,且1AP CR AA +=,则Q ACRP V -=.则111332Q ACRP V d S d -=⋅⋅=⋅⋅⋅设三棱柱111ABC A B C -的体积故答案为:1.10.已知大小为π6的二面角的一个面内有一点,它到二面角的棱的距离为6,则这个点到另一个面的距离为.11.正方形ABCD 中,E ,F 分别为线段AB ,BC 的中点,连接DE ,DF ,EF ,将ADE V ,CDF V ,BEF △分别沿DE ,DF ,EF 折起,使A ,B ,C 三点重合,得到三棱锥O DEF -,则该三棱锥外接球半径R 与内切球半径r 的比值为.【答案】26【解析】在正方形ABCD 中,,AD AE CD ⊥12.空间给定不共面的A,B,C,D四个点,其中任意两点间的距离都不相同,考虑具有如下性质的平面α:A,B,C,D中有三个点到的距离相同,另一个点到α的距离是前三个点到α的距离的2倍,这样的平面α的个数是___________个【答案】32【解析】首先取3个点相等,不相等的那个点由4种取法;然后分3分个点到平面α的距离相等,有以下两种可能性:(1)全同侧,这样的平面有2个;(2)不同侧,必然2个点在一侧,另一个点在一侧,1个点的取法有3种,并且平面过三角形两个点边上的中位线,考虑不相等的点与单侧点是否同侧有两种可能,每种情况下都唯一确定一个平面,故共有6个,⨯=个,所有这两种情况共有8个,综上满足条件的这样的平面共有4832故答案为:32二、选择题(本题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分;每题有且只有一个正确选项)13.下列几何体中,多面体是()A.B.C.D.【答案】B【解析】A选项中的几何体是球,是旋转体;B选项中的几何体是三棱柱,是多面体;C 选项中的几何体是圆柱,旋转体;D 选项中的几何体是圆锥,是旋转体.故选B.14.已知两个平面α、β,在下列条件下,可以判定平面α与平面β平行的是().A .α、β都垂直于一个平面γB .平面α内有无数条直线与平面β平行C .l 、m 是α内两条直线,且l ∥β,m ∥βD .l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β【答案】D【解析】对于A ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B 都与平面ABCD 垂直,但这两个平面不平行,所以A 错误,对于B ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,平面11AAC C 中所有平行于交线1AA 的直线都与平面11AA B B 平行,但这两个平面不平行,所以B 错误,对于C ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,,M N 分别为11,A B AB 的中点,则1,MN BB 在平面11AA B B 内,且都与平面11AAC C 平行,但这两个平面不平行,所以C 错误.对于D ,因为l 、m 是两条异面直线,所以将这两条直线平移到共面α时,一定在α内形成两条相交直线,由面面平行的判定定理可知,该结论正确.故选:D15.将3个1212⨯的正方形沿邻边的中点剪开分成两部分(如图1);将这6部分接于一个边长为六边形边上(如图2),若拼接后的图形是一个多面体的表面展开图,则该多面体的体积是()A .17282B .864C .576D .2【答案】B【解析】折成的多面体如图①所示,将其补形为正方体,如图②,所求多面体体积为正方体的一半,又依题易求得正方体的边长为12,故3112864,2V =⨯=故选:B.16.如图,在正方体1111ABCD A B C D -中,E 是棱BC 的中点,F 是侧面11BCC B 上的动点,且1A F ∥平面1AD E .设1A F 与平面11BCC B 所成的角为1,A F α与1AD 所成的角为β,那么下列结论正确的是()A .α的最小值为arctan2,β的最小值为arctan3B .α的最小值为arctan3,β的最大值为2πC .α的最小值大于arctan2,β的最小值大于arctan3D .α的最大值小于arctan3,β的最大值小于2π设正方体的棱长为2,因为MN GE ∥,且MN ⊄MN ∴∥平面1AEGD ;同理1A N ∥平面1AEGD ,且∴平面1A MN ∥平面AEGD ∵11A B ⊥面11BB C C ,所以又1AD MN ,所以1A F 与1AD 所成的角为111tan A B B Fα∴=;当F 为MN 中点时,此时当F 与M 或N 重合时,此时2tan 22α∴≤≤,arctan2对于β,当F 为MN 中点时,当F 与M 或N 重合时,β()221252A F ⎛⎫∴=-= ⎪ ⎪⎝⎭tan 3β∴=,tan 3β∴≥,arctan 3β≤≤又arctan3 1.4≈,arctan2故选:A.三、解答题(本大题共有5题,满分78分,第17-19题每题14分,第20、21题每题18分.)17.如图,长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为1DD 的中点.(1)求证:直线1BD //平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.【解析】(1)设AC 和BD 交于点O ,则O 为BD 的中点,连接PO ,(1分)∵P 是1DD 的中点,∴1//PO BD ,(3分)又∵PO ⊂平面PAC ,1⊄BD 平面PAC ,∴直线1BD //平面PAC ;(6分)(2)由(1)知,1//PO BD ,∴APO ∠即为异面直线1BD 与AP 所成的角,(8分)∵PA PC =12AO AC ==且PO AO ⊥,∴1sin2AO APO AP ∠==.又(0,90]APO ∠∈︒︒,∴30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30︒.(14分)18.如图,在圆柱中,底面直径AB 等于母线AD ,点E 在底面的圆周上,且AF D E ⊥,F 是垂足.(1)求证:AF DB ⊥;(2)若圆柱与三棱锥D ABE -的体积的比等于3π,求直线DE 与平面ABD 所成角的大小.【解析】(1)证明:根据圆柱性质,DA ⊥平面ABE ,因为EB ⊂平面ABE ,所以DA EB ⊥,又因为AB 是圆柱底面的直径,点E 在圆周上,所以AE EB ⊥,因为AE DA A ⋂=且,AE DA ⊂平面DAE ,所以EB ⊥平面DAE ,(2分)又因为AF ⊂平面DAE ,所以EB AF ⊥,因为AF D E ⊥,且EB DE E =I ,且,EB DE ⊂平面DEB ,所以AF ⊥平面DEB ,又因为DB ⊂平面DEB ,所以AF DB ⊥.(6分)(2)解:过点E 作EH AB ⊥,H 是垂足,连接DH ,根据圆柱性质,平面ABD ⊥平面ABE ,且平面ABD ⋂平面ABE AB =,且EH ⊂平面ABE ,所以EH ⊥平面ABD ,因为DH ⊂平面ABD ,所以DH 是ED 在平面ABD 上的射影,从而EDH ∠是DE 与平面ABD 所成的角,(8分)设圆柱的底面半径为R ,则2DA AB R ==,所以圆柱的体积为32πV R =,且21233D ABEABE R V AD S EH -=⋅=⋅ ,由:3πD ABE V V -=,可得EH R =,可知H 是圆柱底面的圆心,且AH R =,且DH =,在直角EDH 中,可得tan EH EDH DH ∠==EDH ∠=(14分)19.如图,将边长为2的正方形ABCD 沿对角线BD 折叠,使得平面ABD ⊥平面CBD ,AE ⊥平面ABD ,且2AE(1)求证:直线EC 与平面ABD 没有公共点;(2)求点C 到平面BED 的距离.【解析】(1)取BD 的中点F ,连接CF 、AF ,如图,依题意,在BCD △中,,BC CD BC CD =⊥,则CF BD ⊥,而平面ABD ⊥平面CBD ,平面ABD ⋂平面CBD BD =,CF ⊂平面CBD ,于是得CF ⊥平面ABD ,且2CF =因为AE ⊥平面ABD ,且2AE =//AE CF ,且AE CF =,从而得四边形AFCE 为平行四边形,//EC AF ,(4分)又AF ⊂平面ABD ,EC ⊂/平面ABD ,则//EC 平面ABD ,所以直线EC 与平面ABD 没有公共点;(6分)(2)因为CF ⊥平面ABD ,AF ⊂平面ABD ,所以CF AF ⊥,因为BD AF ⊥,BD CF F = ,,BD CF ⊂平面,CBD 所以AF ⊥平面,CBD 因为//,EC AF ,于是得EC ⊥平面CBD ,因为AE ⊥平面ABD ,,AB AD ⊂平面ABD ,所以,AE AB AE AD ⊥⊥,(8分)因为EC AF ==EB ED =,则等腰BED 底边BD 上的高2h ==,12BED S BD h =⋅= ,而2BCD S =,设点C 到平面BED 的距离为d ,由C BED E BCD V V --=得1133BED BCD S d S EC ⋅=⋅ ,即2=,解得1d =,所以点C 到平面BED 的距离为1(14分)20.如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是菱形,底面,AC BD O PAC = △是边长为2的等边三角形,PB =PD ,AP =4AF(1)求证:PO ⊥底面ABCD (2)求直线CP 与OF 所成角的大小.(3)在线段PB 上是否存在点M ,使得//CM 平面BDF ?如果存在,求BMBP的值;如果不存在,请说明理由.【解析】(1)因为底面ABCD 是菱形,且AC BD O = ,所以O 为AC ,BD 中点,在PBD △中,PB =PD ,可得PO ⊥BD ,因为在PAC 中,PA =PC ,O 为AC ,BD 中点,所以PO ⊥AC ,(3分)又因为AC ⋂BD =O ,所以PO ⊥底面ABCD .(4分)(2)连接OF ,取AP 中点为E ,连接OE ,因为底面ABCD 是菱形,AC ⋂BD =O ,由O 为AC 中点,且E 为AP 中点,AP =4AF ,所以F 为AE 中点,所以CP //OE .,故∠EOF 为直线CP 与OF 所成的角,(8分)又由PAC 为等边三角形,且E 为中点,所以∠EOF =30o .(10分)(3)存在,13BM BP =,连接CE ,ME ,因为AP =4AF ,E 为AP 中点,所以13EF FP =,又因为13BM BP =,所以在PFB △中,EF BMFP BP =,即EM //BF ,(12分)因为EM ⊄平面BDF ,BF ⊂平面BDF ,所以EM //平面BDF ,由(2)知EC //OF ,因为EC ⊄平面BDF ,OF ⊂平面BDF ,所以EC //平面BDF ,因为EC ⋂EM =E ,所以平面EMC //平面BDF ,因为CM ⊂平面EMC ,所以CM //平面BDF .(18分)21.在棱长均为2的正三棱柱111ABC A B C -中,E 为11B C 的中点.过AE 的截面与棱111,BB AC 分别交于点F ,G.(1)若F 为1BB 的中点,试确定点G 的位置,并说明理由;(2)在(1)的条件下,求截面AGEF 与底面ABC 所成锐二面角的正切值;(3)设截面AFEG 的面积为0S ,AEG △面积为1S ,AEF △面积为2S ,当点F 在棱1BB 上变动时,求2012S S S 的取值范围.【解析】(1)在平面11BCC B 内延长1CC ,FE 相交于点P ,则P ∈平面AGEF ,又1P CC ∈⊂平面11ACC A ,则有平面AGEF 平面11ACC A AG =,P AG ∈,即A ,G ,P 三点共线.(2分)因为E 为11B C 的中点,F 为1BB 的中点,所以11112PC B F CC ==,所以113PC PC =,又因为1//GC AC ,所以1113GC PC AC PC ==,所以111112333GC AC A C ===,即点G 为棱11AC 上靠近点1C 的三等分点.(4分)(2)在平面11BCC B 内延长CB ,EF 相交于点Q ,连接AQ ,则平面AGEF 平面ABC AQ =,在平面11ACC A 内作GM AC ⊥于点M ,则GM ⊥平面ABC ,又AQ ⊂平面ABC ,所以G M AQ ⊥,在平面ABC 内作MN AQ ⊥于点N ,连接GN ,又,GM MN ⊂平面GMN ,GM MN M ⋂=,所以AQ ⊥平面GMN ,GN ⊂平面GMN ,所以AQ GN ⊥,所以GNM ∠为截面AGEF 与底面ABC 所成锐二面角的平面角.(6分)在AQC 中,作CH AQ ⊥于点H ,11BQ C E ==,2AC =,3CQ =,60AC B ∠= ,12222ABC S =⨯⨯⨯=△AQC S =由余弦定理2222cos 4967AQ AC CQ AC CQ ACQ =+-⋅⋅∠=+-=,则AQ122AQC S AQ CH ==⋅ ,可得3217CH =,所以237MN CH ==,又22G M AA ==,所以21tan 3GM GNM MN ∠==,故截面AGEF 与底面ABC (10分)(3)设1GC m =,则[]0,1m ∈,2PG mGA m=-.设PGE 的面积为S ,所以12S m S m=-,又因为21S S S =+,所以1222S m S -=,且1221,122S m S -⎡⎤=∈⎢⎥⎣⎦,故()22120121212212S S S S SS S S S S S +==++,令12S t S =,则1,12t ⎡⎤∈⎢⎥⎣⎦,(11分)设()112,12g t t t t ⎛⎫⎡⎤=++∈ ⎪⎢⎥⎣⎦⎝⎭,当12112t t ≤<≤时,()()()()121212121212111t t g t g t t t t t t t t t --=+--=-,120t t -<,120t t >,1210t t -<,则()()120g t g t ->,即()()12g t g t >,所以()12g t t t =++在1,12t ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()min 14g t g ==,()max 1922g t g ⎛⎫== ⎪,所以()94,2g t ⎡⎤∈⎢⎥,。
四川省成都市2023-2024学年高二上学期期中数学试题含解析
2023-2024学年度上期高2025届半期考试高二数学试卷(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第4页.注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色墨迹签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试卷上作答无效.5.考试结束后,只将答题卡收回.第Ⅰ卷(选择题,共60分)一.单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()(),2,2,3,4,2a x b =-=-,若a b ⊥,则x 的值为()A.1B.4- C.4D.1-【答案】C 【解析】【分析】根据向量垂直的坐标运算即可求解.【详解】由()(),2,2,3,4,2a x b =-=- 得3840a b x ⋅=--= ,所以4x =,故选:C2.已知直线1:3410l x y --=与2:3430l x y -+=,则1l 与2l 之间的距离是()A.45B.35C.25 D.15【答案】A 【解析】【分析】直接由两平行线之间的距离公式计算即可.【详解】因为已知直线1:3410l x y --=与2:3430l x y -+=,而()()34430⨯---⨯=,所以12l l //,所以由两平行线之间的距离公式可得1l 与2l 之间的距离是45d ==.故选:A.3.已知圆()()221:219C x y -++=与圆()()222:134C x y ++-=,则圆1C 与圆2C 的位置关系为()A.相交B.外切C.内切D.内含【答案】B 【解析】【分析】根据两圆圆心距与半径的关系即可求解.【详解】()()221:219C x y -++=的圆心为()2,1,3r -=,()()222:134C x y ++-=的圆心为()1,3,2R -=,由于125C C ==,125C C r =+=R ,所以1C 与圆2C 外切,故选:B4.若直线()1:410l x a y +-+=与2:20l bx y +-=垂直,则a b +的值为()A.2 B.45C.23D.4【答案】D 【解析】【分析】根据直线垂直的条件求解.【详解】由题意40b a +-=,∴4a b +=.故选:D .5.已知事件,A B 相互独立,且()()0.3,0.7P A P B ==,则()P AB =()A.1 B.0.79C.0.7D.0.21【答案】D 【解析】【分析】由独立事件的概率乘法公式计算.【详解】由题意()()()0.30.70.21P AB P A P B ==⨯=,故选:D .6.如图,空间四边形OABC 中,,,OA a OB b OC c ===,点M 为BC 中点,点N 在侧棱OA 上,且2ON NA =,则MN =()A.121232a b c--+B.211322a b c-++C.211322a b c --D.111222a b c +-【答案】C 【解析】【分析】由图形中线段关系,应用向量加减、数乘的几何意义用,,OA a OB b OC c === 表示出MN.【详解】1221()2332MN MB BO ON CB OB OA OA OB OC OB=++=-+=+-- 211211322322OA OB OC a b c =--=--.故选:C7.已知椭圆方程为()222210x y a b a b +=>>,长轴为12A A ,过椭圆上一点M 向x 轴作垂线,垂足为P ,若212||13MP A P A P =⋅,则该椭圆的离心率为()A.3B.3C.13D.23【答案】B 【解析】【分析】根据题意,设()00,M xy ,表示出12,A P A P ,结合椭圆方程,代入计算,再由离心率公式,即可得到结果.【详解】设()00,M x y ,则2200221x y a b+=,()()()120,0,,0,,0A a A a P x -,则10A P x a =+,20A P x a =-,0MP y =所以222002201200||13a y y MP A P A x x a P x a+⋅=-==⋅-,且22x a <,所以22213y a x =-,即222003a x y -=,代入椭圆方程可得222002231a y y a b-+=,化简可得223a b =,则离心率为63e ===.故选:B8.现有一组数据不知道其具体个数,只知道该组数据平方后的数据的平均值是a ,该组数据扩大m 倍后的数据的平均值是b ,则原数据的方差、平方后的数据的方差、扩大m 倍后的数据的方差三个量中,能用,,a b m 表示的量的个数是()A.0 B.1C.2D.3【答案】C 【解析】【分析】设出原始数据,逐个计算求解即可.【详解】设该组数据为123,,n x x x x ⋅⋅⋅,则12nx x x x n++⋅⋅⋅+=.所以22212n x x x a n++⋅⋅⋅+=,12n mx mx mx mx b n ++⋅⋅⋅+==,所以b x m =.原数据的方差()()()()2222221212221212n n n x x x x x x x x x x x x x s xnn n-+-+⋅⋅⋅+-++⋅⋅⋅+++⋅⋅⋅+==-+2222222b b a x x a x a a m m ⎛⎫=-+=-=-=- ⎪⎝⎭,可以用,,a b m 表示.扩大m 倍后的数据的方差:()()()()()()2222221212222n n mx mx mx mx mx mx x x x x x x s m nn ⎡⎤-+-+⋅⋅⋅+--+-+⋅⋅⋅+-==⎢⎥⎢⎥⎣⎦22222212b m s m a m a b m ⎛⎫==-=- ⎪⎝⎭,可以用,,a b m 表示.平方后的数据的方差:()()()()2222222224441212221232n n n x a x a x aa x x x x x x s a nn n-+-+⋅⋅⋅+-++⋅⋅⋅+++⋅⋅⋅+==-+44444422212122n n x x x x x x a a a n n++⋅⋅⋅+++⋅⋅⋅+=-+=-.不能用,,a b m 表示.故选:C.二.多选题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,全选对得5分,部分选对得2分,有错选得0分.9.我校举行党史知识竞赛,对全校参赛的1000名学生的得分情况进行了统计,把得分数据按照[)[)[)[)[]50,60,60,70,70,80,80,90,90,100分成5组,绘制了如图所示的频率分布直方图.根据图中信息,下列说法正确的是()A.图中的x 值为0.020B.这组数据的极差为50C.得分在80分及以上的人数为400D.这组数据的众数的估计值为82【答案】AC 【解析】【分析】根据频率值和为1即可判断A ;根据由频率分布直方图无法求出这组数据得极差,即可判断B ;求出得分在80分及以上的频率,再乘以总人数,即可判断C ;根据频率分布直方图中众数即可判断D .【详解】解:()100.0050.0350.0300.0101x ⨯++++=,解得0.020x =,故A 正确;因为由频率分布直方图无法求出这组数据得极差,故B 错误;得分在80分及以上的频率为()100.0300.0100.4⨯+=,所以得分在80分及以上的人数为10000.4400⨯=,故C 正确;这组数据的众数的估计值为75,故D 错误.故选:AC .10.下列说法正确的是()A.对任意向量,a b ,都有a b b a⋅=⋅B.若a b a c ⋅=⋅且0a ≠,则b c=C.对任意向量,,a b c,都有()()a b c a b c⋅⋅=⋅⋅ D.对任意向量,,a b c ,都有()+⋅=⋅+⋅ a b c a c b c【答案】AD 【解析】【分析】可由数量积的定义及运算律可逐一判定选项.【详解】cos ,a b a b a b ⋅=,cos ,b a a b a b ⋅= ,可得a b b a ⋅=⋅,故选项A 正确;由a b a c ⋅=⋅ 可得()0a b c ⋅-=,又0a ≠ ,可得b c = 或()a cb ⊥- ,故选项B 错误;()()cos ,R a b c a b a b c c λλ⋅⋅==∈,()()cos ,R a b c c b c b a a μμ⋅⋅==∈所以()()a b c a b c ⋅⋅=⋅⋅ 不一定成立,故选项C 错误;由向量数量积运算的分配律可知选项D 正确;故选:AD.11.甲、乙两支田径队队员的体重(单位:kg)信息如下:甲队体重的平均数为60,方差为200,乙队体重的平均数为68,方差为300,又已知甲、乙两队的队员人数之比为1:3,则关于甲、乙两队全部队员的体重的平均数和方差的说法正确的是()A.平均数为67B.平均数为66C.方差为296D.方差为287【答案】BD 【解析】【分析】先利用比重计算全部队员体重的平均值,再利用平均值计算方差即可.【详解】依题意,甲的平均数160x =,乙的平均数268x =,而甲、乙两队的队员人数之比为1:3,所以甲队队员在所有队员中所占比重为14,乙队队员在所有队员中所占比重为34故甲、乙两队全部队员的体重的平均数为:1360686644x =⨯+⨯=;甲、乙两队全部队员的体重的方差为:()()22213200606630068665922828744s ⎡⎤⎡⎤=⨯+-+⨯+-=+=⎣⎦⎣⎦.故选:BD.12.已知四面体中三组对棱的中点间的距离都相等,则下列说法正确的是()A.该四面体相对的棱两两垂直B.该四面体四个顶点在对面三角形的射影是对面三角形的外心C.该四面体的四条高线交于同一点(四面体的高线即为过顶点作底面的垂线)D.该四面体三组对棱平方和相等【答案】ACD 【解析】【分析】设,,AB b AC c AD d ===,利用向量法AD 选项,用几何法判断BC 选项.【详解】选项A ,如图,四面体ABCD 中,,,,,,E F G H I J 是所在棱中点,EF GH IJ ==,设,,AB b AC c AD d === ,则111()()222EF AF AE AD AB AC d b c =-=-+=-- ,111()()222GH AH AG AC AD AB c d b =-=+-=+- ,EF GH =,即EF GH = ,所以11()()22d b c c d b --=+-,所以222222222222d b c b d c d b c d b c c d b d b c++-⋅-⋅+⋅=+++⋅-⋅-⋅c d b c ⋅=⋅ ,即()0c b d ⋅-= ,所以()c b d ⊥- ,即AC DB ⊥,所以AC BD ⊥,同理,AB CD AD BC ⊥⊥,A 正确;选项B ,设1AH ⊥平面BCD ,1H 是垂足,CD ⊂平面BCD ,所以1AH CD ⊥,又AB CD ⊥,11,,AB AH A AB AH =⊂ 平面1ABH ,所以CD ⊥平面1ABH ,而1BH ⊂平面1ABH ,所以1CD BH ⊥,同理1BC DH ⊥,所以1H 是平面BCD 垂心,同理可得其它顶点在对面的射影是对面三角形的垂心,B 错;选项C ,如上图,1AH ⊥平面BCD ,2BH ⊥平面ACD ,3DH ⊥平面ABC ,123,,H H H 是垂足,先证明12,AH BH 相交,1AH ⊥平面BCD ,CD ⊂平面BCD ,所以1AH CD ⊥,又AB CD ⊥,11,,AB AH A AB AH =⊂ 平面1ABH ,所以CD ⊥平面1ABH ,同理CD ⊥平面2ABH ,所以平面1ABH 和平面2ABH 重合,即12,AH BH 共面,它们必相交,设12AH BH H ⋂=,下面证明DH ⊥平面ABC ,与证明CD ⊥平面1ABH 同理可证得BC ⊥平面1ADH ,又DH ⊂平面1ADH ,所以BC DH ⊥,同理由2BH ⊥平面ACD 可证得DH AC ⊥,而,AC BC 是平面ABC 内两相交直线,所以DH ⊥平面ABC ,因此DH 与3DH 重合,同理可证CH ⊥平面ABD ,C 正确;选项D ,由选项A 的讨论同理可得b c b d c d ⋅=⋅=⋅,222222222()2AB CD AB CD b d c b c d c d +=+=+-=++-⋅ ,222222222()2AC BD AC BD c d b b c d b d +=+=+-=++-⋅,所以2222AB CD AC BD +=+,同理222222AB CD AC BD AD BC +=+=+,D 正确.故选:ACD .第Ⅱ卷(非选择题,共90分)三.填空题:本大题共4小题,每小题5分,共20分.13.经过()()0,2,1,0A B -两点的直线的方向向量为()1,k ,则k =______.【答案】2【解析】【分析】方向向量与BA平行,由此可得.【详解】由已知(1,2)BA =,()1,k 是直线AB 的方向向量,则2k =,故答案为:2.14.在一次篮球比赛中,某支球队共进行了8场比赛,得分分别为25,29,30,32,37,38,40,42,那么这组数据的第65百分位数为______.【答案】38【解析】【分析】根据百分位数的定义即可求解.【详解】865% 5.2⨯=,故这组数据的第65百分位数为第6个数38,故答案为:3815.写出与圆221:(1)(3)1C x y +++=和222:(3)(1)9C x y -++=都相切的一条直线的方程__________.【答案】0x =##4y =-##430x y -=##34100x y ++=【解析】【分析】判断两个圆是相离的,得到应该有四条公切线,画出图形易得0x =或4y =-为公切线,设切线方程为y kx b =+,根据圆心到直线的距离等于半径列出关于,k b 方程组,求解.【详解】因为圆1C 的圆心为()11,3C --,半径11r =圆2C 的圆心为()23,1C -,半径23r =又因为124C C =所以圆1C 与圆2C 相离,所以有4条公切线.画图为:易得:0a x =或:4n y =-是圆221:(1)(3)1C x y +++=和222:(3)(1)9C x y -++=的公切线设另两条公切线方程为:y kx b =+圆1C 到直线y kxb =+的距离为1=圆2C 到直线y kxb =+3=所以3133k b b k ++=-+所以31339k b b k ++=-+或31339k b b k ++=-+-34k b =+或52b =-当52b =-1==所以34k =-,切线方程为34100x y ++=当34k b =+3==所以()()225249b b +=++所以240b b +=所以0b =或4b =-当0b =时43k =,切线方程为430x y -=当4b =-时0k =,切线方程为4y =-故答案为:0x =或4y =-或430x y -=或34100x y ++=16.已知P 为直线=2y -上一动点,过点P 作圆221x y +=的两条切线,切点分别为,B C ,则点()2,1A 到直线BC 的距离的最大值为______.【答案】52【解析】【分析】首先设点00(,)P x y ,求过点BC 的直线方程,并判断直线BC 过定点,再利用几何关系求最大值.【详解】设00(,)P x y ,过点P 引圆221x y +=的两条切线,切点分别为,B C ,则切点在以OP 为直径的圆上,圆心00,22x y ⎛⎫ ⎪⎝⎭,半径r =,则圆的方程是22220000224x y x y x y +⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭,整理为:22000x y x x y y +--=,又点,B C 在圆221x y +=上,两圆方程相减得到001x x y y +=,即直线BC 的方程是001x x y y +=,因为02y =-,代入001x x y y +=得021x x y -=,则直线BC 恒过定点10,2N ⎛⎫- ⎪⎝⎭,所以点()2,1A 到直线BC 的距离52d AN ≤==,所以点()2,1A 到直线BC 的距离的最大值为52.故答案为:52.【点睛】思路点睛:首先本题求以OP 为直径的圆,利用两圆相减,求得过两圆交点的直线方程,关键是发现直线BC 过定点,这样通过几何关系就容易求定点与动直线距离的最大值.四.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知ABC 的周长为()()14,3,0,3,0B C -.(1)求点A 的轨迹方程;(2)若AB AC ⊥,求ABC 的面积.【答案】(1)()2210167x y y +=≠(2)7【解析】【分析】(1)结合椭圆定义可得A 的轨迹方程.(2)利用AB AC ⊥及椭圆定义可列出方程,求解AC AB ⋅,即可算出ABC 的面积.【小问1详解】ABC 的周长为14且6,86BC AC AB BC =∴+=>=,根据椭圆的定义可知,点A 的轨迹是以()()3,0,3,0B C -为焦点,以8为长轴长的椭圆,即4,3,a c b ===A 的轨迹方程为221167x y+=,又A 为三角形的顶点,故所求的轨迹方程为()2210167x y y +=≠.【小问2详解】222,||||36AB AC AB AC BC ⊥∴+== ①.A 点在椭圆()2210167x y y +=≠上,且()()3,0,3,0B C -为焦点,8AC AB ∴+=,故22||264AC AB AC AB ++⋅=②.由①②可得,14AC AB ⋅=,故172S AC AB =⋅⋅=.ABC ∴ 的面积为7.18.如图,四面体OABC 的所有棱长都为1,,D E 分别是,OA BC 的中点,连接DE .(1)求DE 的长;(2)求点D 到平面ABC 的距离.【答案】18.219.3【解析】【分析】(1)利用基底,,OA OB OC 表示出向量DE,再根据向量数量积求长度的方法即可求出;(2)由该几何体特征可知,点O 在平面ABC 的射影为ABC 的中心,即可求出.【小问1详解】因为四面体OABC 的所有棱长都是1,所以该四面体为正四面体,()1111122222DE DA AB BE OA OB OA OC OB OA OB OC =++=+-+-=-++,而且12OA OB OB OC OA OC ⋅=⋅=⋅= ,所以()()2211131442DE OA OB OC =--=-=,即2DE =,所以DE 的长为2.【小问2详解】因为四面体OABC 为正四面体,所以点O 在平面ABC 的射影O '为ABC 的中心,ABC 的外接圆半径为11sin6023︒⨯=,所以点O 到平面ABC 的距离为3d ==,由于D 点为线段OA 的中点,所以点D 到平面ABC 的距离为3.19.现从学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155160,,第二组[)160,165,⋅⋅⋅,第八组[]190195,.右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率并估计该校的800名男生的身高的中位数;(2)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记事件A 表示随机抽取的两名男生不.在同一组....,求()P A .【答案】(1)第七组的频率为0.06,中位数为174.5cm(2)815【解析】【分析】(1)根据频率为和1,可得第七组的频率为0.06,设学校的800名男生的身高中位数为m ,根据中位数的定义可得()0040080217000405...m ..+++-⨯=,求解即可;(2)用列举法写出基本事件的总数和两名男生不在同一组所包含的基本事件,即可得解.【小问1详解】(1)由直方图的性质,易知第七组的频率为415(0.008+0.016+0.04+0.04+0.06++0.008)=0.06505-⨯⨯.由于0.040.080.20.320.5,0.040.080.20.20.520.5++=<+++=>,设学校的800名男生的身高中位数为m ,则170175m <<,由()0040080217000405...m ..+++-⨯=,得1745m .=,所以学校的800名男生的身高的中位数为174.5cm .【小问2详解】解:第六组[)180185,的人数为4,设为a b c d ,,,,第八组[]190195,的人数为0.0085502⨯⨯=,设为,A B ,则从中随机抽取两名男生有,,,,,,,,,,,,,dB,ab ac ad bc bd cd aA aB bA bB cA cB dA AB 共15种情况.事件A 表示随机抽取的两名男生不在同一组,所以事件A 包含的基本事件为,,,aA aB bA bB ,,,,cA cB dA dB 共8种情况.所以()815P A =.20.已知圆C 经过点()0,2A ,()6,4B ,且圆心在直线340x y --=上.(1)求圆C 的方程;(2)若平面上有两个点()6,0P -,()6,0Q ,点M 是圆C 上的点且满足2MP MQ=,求点M 的坐标.【答案】(1)()22420x y -+=(2)10,33⎛⎫ ⎪ ⎪⎝⎭或10,33⎛⎫-⎪ ⎪⎝⎭【解析】【分析】(1)设出圆心,利用点到直线的距离公式即可求得圆的方程.(2)根据已知条件求得M 满足的方程联立即可求得M 的坐标.【小问1详解】∵圆心在直线340x y --=上,设圆心()34,C a a +,已知圆C 经过点()0,2A ,()6,4B ,则由CA CB =,=解得0a =,所以圆心C 为()4,0,半径r CA ===所以圆C 的方程为()22420x y -+=;【小问2详解】设(),M x y ,∵M 在圆C 上,∴()22420x y -+=,又()6,0P -,()6,0Q ,由2MPMQ=可得:()()2222646x y x y ⎡⎤++=-+⎣⎦,化简得()221064x y -+=,联立()()22224201064x y x y ⎧-+=⎪⎨-+=⎪⎩解得10411,33M ⎛⎫ ⎪ ⎪⎝⎭或10411,33⎛⎫- ⎪ ⎪⎝⎭.21.如图,在直三棱柱111ABC A B C -中,1π,2,3,2BAC AB AC AA M ∠====是AB 的中点,N 是11B C 的中点,P 是1BC 与1B C 的交点,点Q 在线段1A N 上.(1)若//PQ 平面1A CM ,请确定点Q 的位置;(2)请在下列条件中任选一个,求11A QA N的值;①平面BPQ 与平面ABC的夹角余弦值为53;②直线AC 与平面BPQ所成角的正弦值为106.【答案】(1)Q 为1A N 靠近N 三等分点处(2)①1112A Q A N =;②1112A Q A N =【解析】【分析】(1)分别以1,,AC AB AA 所在直线为,,x y z 轴,建立空间直角坐标系,求出面1A CM 的法向量n,由//PQ 平面1A CM 得PQ n ⊥ ,即0PQ n ⋅= ,求解11A QA N即可;(2)设()1101A Q A Nλλ=<<,求出平面BPQ 的法向量为m,平面ABC 的法向量,若选择①,利用平面与平面的夹角的向量求法求解;若选择②,由直线与平面所成角的向量求法求解.【小问1详解】分别以1,,AC AB AA 所在直线为,,x y z轴,建立空间直角坐标系,()()()()()130,0,3,2,0,0,0,1,0,1,1,3,1,1,,,,32A C M N P Q a a ⎛⎫ ⎪⎝⎭,则()()1132,0,3,0,1,3,1,1,2A C A M PQ a a ⎛⎫=-=-=-- ⎪⎝⎭ .设面1A CM 的法向量(),,n x y z =r ,则110A C n A M n ⎧⋅=⎪⎨⋅=⎪⎩ ,即23030x z y z -=⎧⎨-=⎩.令2z =,得()3,6,2n =.因为//PQ 平面1A CM ,所以PQ n ⊥ ,即0PQ n ⋅=.所以()()316130a a -+-+=,得23a =,122,,033A Q ⎛⎫= ⎪⎝⎭,所以13A Q = .因为11123A Q A N A N ==,所以Q 为1A N 靠近N 三等分点处时,有//PQ 平面1A CM .【小问2详解】设()1101A QA Nλλ=<<,则()11,,0A Q A N λλλ== .所以1111331,1,,1,1,22PQ PA A Q PA A N PB λλλ⎛⎫⎛⎫=+=+=--=--⎪ ⎪⎝⎭⎝⎭.设平面BPQ 的法向量为()111,,m x y z =,则00PQ m PB m ⎧⋅=⎪⎨⋅=⎪⎩,即()()11111131102302x y z x y z λλ⎧-+-+=⎪⎪⎨⎪-+-=⎪⎩.令()141z λ=-,得()()()3,32,41m λλλ=--.注意到平面ABC 的法向量为()0,0,1,直线AC 的方向向量为()1,0,0,若选择①,平面BPQ 与平面ABC的夹角余弦值为53,则()10,0,1cos 53m mθ⋅==.即()2483001λλλ-+=<<,解得12λ=,即1112A Q A N =.若选择②,直线AC 与平面BPQ所成角的正弦值为106,则()21,0,0sin 106m mθ⋅==.即()2181713001λλλ+-=<<,解得12λ=,即1112A Q A N =.22.已知()()()2,3,2,0,2,0,A B C ABC -∠的内角平分线与y 轴相交于点E .(1)求ABC 的外接圆的方程;(2)求点E 的坐标;(3)若P 为ABC 的外接圆劣弧 BC 上一动点,ABC ∠的内角平分线与直线AP 相交于点D ,记直线CD 的斜率为1k ,直线CP 的斜率为2k ,当1275k k =-时,判断点E 与经过,,P D C 三点的圆的位置关系,并说明理由.【答案】(1)2232524x y ⎛⎫+-=⎪⎝⎭(2)20,3⎛⎫ ⎪⎝⎭(3)点E 在经过,,P D C 三点的圆上,理由见解析【解析】【分析】(1)根据直角三角形的性质即可求解圆心和半径,从而得解;(2)根据等面积法或者利用角平分线的性质可得AB AF BCCF=,即可求解长度得斜率,进而可求解直线方程,得解;(3)联立方程可得22223234,11k k k P k k ⎛⎫--- ⎪++⎝⎭,6743,3131k k D k k --⎛⎫ ⎪--⎝⎭,根据1275k k =-可得1k =,即可求解点的坐标,由点的坐标求解圆的方程,即可判定.【小问1详解】易知ABC 为C 为直角的直角三角形,故外接圆的圆心为斜边AB 边的中点30,2⎛⎫ ⎪⎝⎭,半径为52,所以外接圆的方程为2232524x y ⎛⎫+-= ⎪⎝⎭.【小问2详解】设ABC ∠的内角平分线交AC 于点F ,根据角平分线性质定理,可知AB AF BCCF=,(利用11sin 22211sin 222ABFBCFABC AB BF AF BC S ABC S BC BF FC BC ∠⋅⋅==∠⋅⋅ 可得AB AF BC CF =)由结合3AF CF +=,5AB ==,4,3BC AC ==所以4133BD CF CF k BC =⇒==所以,ABC ∠的内角平分线方程为()123y x =+,令0x =,即可得点E 坐标20,3⎛⎫⎪⎝⎭.【小问3详解】点E 在经过,,P D C 三点的圆上,理由如下:由题意可知直线AP 的斜率存在,故设直线AP 的直线方程为()32y k x -=-,联立直线与圆的方程()223232524y k x x y ⎧-=-⎪⎨⎛⎫+-=⎪ ⎪⎝⎭⎩,可得()()22221344640kx k k x kk ++-+--=注意到,A P 两点是直线与圆的交点,所以2246421P k k x k --⋅=+222321P k k x k --∴=+,故22223234,11k k k P k k ⎛⎫--- ⎪++⎝⎭.联立直线AP 与ABC ∠的内角平分线方程()321233y k x y x ⎧-=-⎪⎨=+⎪⎩,可得6731k x k -=-6743,3131k k D k k --⎛⎫∴ ⎪--⎝⎭.此时221222243433434003443313111,6753423253422313111k k k k k k k k k k k k k k k k k k k k k ----------++======------+----++,12343475,1435534k k k k k k k -+∴==-=-∴=-+.此时,点31,22P ⎛⎫-- ⎪⎝⎭,点11,.22D P ⎛⎫- ⎪⎝⎭点满足在劣弧 BC 上.设经过,,P D C 三点的圆的方程为()2222040x y mx ny t m n t ++++=+->,则4205320120m t m n t m n t ++=⎧⎪--+=⎨⎪-++=⎩,解得5617673m n t ⎧=-⎪⎪⎪=⎨⎪⎪=-⎪⎩.所以,经过,,P D C 三点的圆的方程为2251770663x y x y +-+-=.将点20,3E ⎛⎫ ⎪⎝⎭代入圆的方程成立,所以点E 在经过,,P D C 三点的圆上.。
山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)
山东省实验中学2024~2025学年第一学期期中高二数学试题 2024.11(选择性必修—检测)说明:本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。
考试时间120分钟。
第Ⅰ卷(共58分)一、单选题(本题包括8小题,每小题5分,共40分。
每小题只有一个选项符合题意)1.已知空间向量,,,若,,共面,则实数( )A.1B.2C.3D.42.“”是“直线与直线平行”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.给出下列说法,其中不正确的是()A.若,则,与空间中其它任何向量都不能构成空间的一个基底向量B.若,则点是线段的中点C.若,则,,,四点共面D.若平面,的法向量分别为,,且,则3.若三条直线,,不能围成三角形,则实数的取值最多有( )A.2个B.3个C.4个D.5个4.实数,满足,则的最小值为( )A. B.7C. D.36.若直线与曲线有两个不同的交点,则实数的取值范围是( )A.()1,2,0a = ()0,1,1b =- ()2,3,c m = a b cm =1m =-()1:2310l mx m y +++=2:30l x my ++=a b ∥a b c2PM PA PB =+M AB 2OA OB OC OD =+-A B C D αβ()12,1,1n =- ()21,,1n t =-αβ⊥3t =1:43l x y +=2:0l x y +=3:2l x my -=m x y 2222x y x y +=-3x y -+3+:20l kx y --=:1C x =-k k >5k <≤k <<1k <≤7.在三棱锥中,为的重心,,,,,,若交平面于点,且,则的最小值为( )A.B.C.1D.8.已知椭圆的左、右焦点分别为,,点在上且位于第一象限,圆与线段的延长线,线段以及轴均相切,的内切圆为圆.若圆与圆外切,且圆与圆的面积之比为4,则的离心率为( )A.C.二.多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.)9.下列说法正确的是()A.若直线的倾斜角越大,则直线的斜率就越大B.圆与直线必有两个交点C.在轴、轴上的截距分别为,的直线方程为D.设,,若直线与线段有交点,则实数的取值范围是10.已知椭圆的离心率为,长轴长为6,,分别是椭圆的左、右焦点,是一个定点,是椭圆上的动点,则下列说法正确的是( )A.焦距为2B.椭圆的标准方程为P ABC -G ABC △PD PA λ= PE PB μ= 12PF PC =λ()0,1μ∈PG DEF M 12PM PG =λμ+122343()2222:10x y C a b a b+=>>1F 2F P C 1O 1F P 2PF x 12PF F △2O 1O 2O 1O 2O C 123522:4O x y +=10mx y m +--=x y a b 1x y a b+=()2,2A -()1,1B :10l ax y ++=AB a (]322⎡⎫-∞-+∞⎪⎢⎣⎭,,()2222:10x y E a b a b +=>>23F F '()1,1A P E E 22195x y +=C.D.的最大值为11.立体几何中有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数24,棱长为的半正多面体,它所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得的,下列结论正确的有()A.平面B.,,,四点共面C.点到平面的距离为D.若为线段上的动点,则直线与直线所成角的余弦值范围为第Ⅱ卷(非选择题,共92分)三、填空题(本题共3小题,每小题5分,共15分,其中14题第一空2分,第二空3分.)12.已知直线的倾斜角,则直线的斜率的取值范围为______.13.如图,已知点,,从点射出的光线经直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程是______.14.杭州第19届亚运会的主会场——杭州奥体中心体育场,又称“大莲花”(如图1所示).会场造型取意于杭州丝绸纹理与纺织体系,建筑体态源于钱塘江水的动态,其简笔画如图2所示.一同学初学简笔画,先AF '=PA PF +6AG ⊥BCDG A F C D B ACD E BC DE AF 12⎡⎢⎣l 2,43ππθ⎛⎫∈⎪⎝⎭l ()8,0A ()0,4B -()3,0P AB OB OB P画了一个椭圆与圆弧的线稿,如图3所示.若椭圆的方程为,下顶点为,为坐标原点,为圆上任意一点,满足,则点的坐标为______;若为椭圆上一动点,当取最大值时,点恰好有两个,则的取值范围为______.图1 图2 图3四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知两直线和的交点为.(1)直线过点且与直线平行,求直线的一般式方程;(2)圆过点且与相切于点,求圆的一般方程.16.(15分)已知椭圆,且过点.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,且点在第一象限,点,分别为椭圆的右顶点和上顶点,求四边形面积的最大值.17.(15分)在梯形中,,,,为的中点,线段与交于点(如图1).将沿折起到位置,使得(如图2).图1 图2(1)求证:平面平面;(2)线段上是否存在点,使得与平面的值;若不存在,请说明理由.E()222210x ya ba b+=>>10,2A⎛⎫-⎪⎝⎭O P C2PO PA=C Q QC Q a1:20l x y++=2:3210l x y-+=Pl P310x y++=lC()1,01l P C()2222:10x yC a ba b+=>>⎛⎝C12l C M N M A B CAMBN SABCD AB CD∥3BADπ∠=224AB AD CD===P AB AC DP O ACD△AC ACD'△D O OP'⊥D AC'⊥ABCPD'Q CQ BCD'PQPD'18.(17分)已知直线,半径为2的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)直线与圆交于不同的,两点,且,求直线的斜率;(3)过点的直线与圆交于,两点(在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标:若不存在,请说明理由.19.(17分)已知点,是平面内不同的两点,若点满足(,且),则点的轨迹是以有序点对为“稳点”的-阿波罗尼斯圆.若点满足,则点的轨迹是以为“稳点”的-卡西尼卵形线.已知在平面直角坐标系中,,.(1)若以为“稳点”的-阿波罗尼斯圆的方程为,求,,的值;(2)在(1)的条件下,若点在以为“稳点”的5-卡西尼卵形线上,求(为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若,,求证:不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称.:40l x ++=C l C x l C 2y kx =-C M N 120MCN ︒∠=2y kx =-()0,1M C A B A x y N y ANB ∠N A B P PAPBλ=0λ>1λ≠P (),A B λQ ()0QA QB μμ⋅=>Q (),A B μ()2,0A -()(),2B a b a ≠-(),A B λ221240x y x +-+=a b λQ (),A B OQ O 0b =λ=a μ(),A B μ山东省实验中学2024~2025学年第一学期期中高二数学试题参考答案 2024.11选择题1234567891011ABCBDDCCBDBCDABD填空题12..13.,.解答题15.【答案】(1)(2).【详解】(1)直线与直线平行,故设直线为,……1分联立方程组,解得.直线和的交点.……3分又直线过点,则,解得,即直线的方程为.……5分(2)设所求圆的标准方程为,的斜率为,故直线的斜率为1,由题意可得,……8分解得,……11分故所求圆的方程为.(()1,-∞-+∞ ,20,3⎛⎫-⎪⎝⎭a >340x y ++=221140333x y x y +++-=l 310x y ++=l 130x y C ++=203210x y x y ++=⎧⎨-+=⎩11x y =-⎧⎨=-⎩∴1:20l x y ++=2:3210l x y -+=()1,1P --l P 1130C --+=14C =l 340x y ++=()()222x a y b r -+-=1:20l x y ++=1-CP ()()()()2222221110111a b r a b r b a ⎧--+--=⎪⎪-+-=⎨⎪+⎪=+⎩216162518a b r ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩2211256618x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭化为一般式:.……13分16.【答案】(1)(2)【详解】(1)由椭圆,解得,……2分由椭圆过点,得,联立解得,,……4分所以椭圆的方程为.……5分(2)由题意可设,点在第一象限,,……6分设,,点,到直线的距离分别为,,由,消可得,,,……8分10分,,直线的一般式方程:,,,,……12分14分当时,有最大值为……15分17.【答案】(1)证明见解析(2)存在,【详解】(1)证明:在梯形中,,22114333x y x y+++-=2214xy+=2222:1x yCa b+==2a b= C⎛⎝221314a b+=2a=1b=C2214xy+=1:2l y x m=+M11m∴-<<()11,M x y()22,N x y A B l1d2d221412xyy x m⎧+=⎪⎪⎨⎪=+⎪⎩y222220x mx m++-=122x x m∴+=-21222x x m=-MN∴===()2,0A()0,1B l220x y m-+=1d∴=2d=12d d∴+=()121122AMN BMNS S S MN d d∴=+=⋅+==△△m=S13ABCD AB CD∥,,为的中点,,,,……1分是正三角形,四边形为菱形,,,……3分,,又,,平面,平面,……5分平面,平面平面.……6分(2)存在,,理由如下:……8分平面,,,,两两互相垂直,如图,以点为坐标原点,,,所在直线为,,轴建立空间直角坐标系.则,,,,,,设平面的一个法向量为,则,即,令,则,,,……11分设,,,, (12)分设与平面所成角为,则,即,,解得,224AB AD CD ===3BAD π∠=P AB CD PB ∴∥CD PB =BC DP =ADP ∴△DPBC AC BC ∴⊥AC DP ⊥AC D O ⊥' D O OP '⊥AC OP O = AC OP ⊂ABC D O ∴'⊥ABC D O ⊂' D AC '∴D AC '⊥ABC 13PQ PD '=D O ⊥' BAC OP AC ⊥OA ∴OP OD 'O OA OP OD 'x y z ()C ()2,0B ()0,0,1D '()0,1,0P )2,1BD ∴'=- )CD '=CBD '(),,n x y z =00n BD n CD ⎧⋅=⎪⎨⋅=⎪⎩'' 200y z z -+=+=⎪⎩1x =0y =z =(1,0,n ∴=()01PQ PD λλ'=≤≤)CP =()0,1,1PD =-'),CQ CP PQ CP PD λλλ∴=+=+=- CQ BCD 'θsin cos ,CQ n CQ n CQ n θ⋅====23720λλ-+=01λ≤≤ 13λ=线段上存在点,且,使得与平面……15分18.【答案】(1)(2)(3)【详解】(1)设圆心,则,……2分解得或(舍),故圆的方程为.……4分(2)由题意可知圆心到直线的距离为,……6分,解得.……8分(3)当直线的斜率存在时,设直线的方程为,,,,由得,……10分,……12分若轴平分,则,即,即,即,即,即,……14分当时,上式恒成立,即;……15分当直线的斜率不存在或斜率为0时,易知满足题意;综上,当点的坐标为时,轴平分.……17分19.【答案】(1),,(2)(3)证明见解析【详解】(1)因为以为“稳点”的—阿波罗尼斯圆的方程为,设是该圆上任意一点,则,……1分所以,……3分∴PD 'Q 13PQ PD '=CQ BCD '224x y +=k =()0,4N ()(),04C a a >-422a +=0a =8a =-C 224x y +=C 2y kx =-2sin 301︒=1=k =AB AB ()10y kx k =+≠()()0,0N t t >()11,A x y ()22,B x y 224,1x y y kx ⎧+=⎨=+⎩()221230k x kx ++-=12221k x x k -∴+=+12231x x k -=+y ANB ∠AN BN k k =-12120y t y t x x --+=1212110kx t kx tx x +-+-+=()()1212210kx x t x x +-+=()()22126011t k k k k -⨯--+=++40k kt -+=4t =()0,4N AB ()0,4N N ()0,4y ANB ∠2a =0b =λ=[]1,3(),A B λ221240x y x +-+=(),P x y 22124x y x +=-()()()()22222222222222244162212224PA x y x y x x x y ax by a b a x by a bx a y b PB+++++===+--++--+-+-+-因为为常数,所以,,且,……5分所以,,.……6分(2)解:由(1)知,,设,由,所以,……7分,整理得,即,所以,……9分,……10分由,得,即的取值范围是.……12分(3)证明:若,则以—阿波罗尼斯圆的方程为,整理得,该圆关于点对称.……15分由点,关于点对称及,可得—卡西尼卵形线关于点对称,令,解得,与矛盾,所以不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称……17分22PA PB2λ2240a b -+=0b =2a ≠-2a =0b =λ==()2,0A -()2,0B (),Q x y 5QA QB ⋅=5=()222242516x y x ++=+2240y x =--≥42890x x --≤()()22190x x +-≤209x ≤≤OQ ==209x ≤≤13OQ ≤≤OQ []1,30b =(),A B ()()222222x y x a y ⎡⎤++=-+⎣⎦()22244240x y a x a +-++-=()22,0a +()2,0A -(),0B a 2,02a -⎛⎫⎪⎝⎭QA QB μ⋅=μ2,02a -⎛⎫⎪⎝⎭2222a a -+=2a =-2a ≠=-a μ(),A B μ。
江苏省扬州市扬州中学2024-2025学年高二上学期11月期中考试数学试题(含答案)
江苏省扬州中学2024-2025学年第一学期期中试卷高 二 数 学 2024.11一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆的圆心和半径分别是( )A .,1B .,3C .,2D .,22.经过两点,的直线的斜率为( )A .B .C .D .3.椭圆x 225+y 216=1的焦点为为椭圆上一点,若,则( )A .B .C .D .4.已知双曲线的离心率大于实轴长,则的取值范围是( )A .B .C .D.5.两平行直线与之间的距离为( )ABCD6.已知圆关于直线对称,则实数( )A .1或B .1C .3D .或37.已知抛物线C :y 2=2px (p >0)的焦点为,若抛物线上一点满足|MF |=2,∠OFM =60°,则( )A .3B .4C .6D .88.如图,双曲线的左右焦点分别为、,过的直线与该双曲线的两支分别交于、两点(在线段上),⊙与⊙分别为与的内切圆,其半径分别为、,则的取值范围是( )A .B .C .D .(0,+∞)二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.下列说法正确的是( )A .若,且直线不经过第二象限,则,.()()22232x y +++=()2,3-()2,3-()2,3--()2.3-(2,7)A (4,6)B 12-2-12212,,F F P 13PF =2PF =435722:1y C x m -=m (3,)+∞)+∞(0,3)320mx y --=4670x y --=22:330C x y mx y +-++=:0l mx y m +-=m =3-1-F M p =2218y x -=1F 2F 1F l A B A 1F B 1O 2O 12AF F △2ABF △1r 2r 12r r 1132⎛⎫ ⎪⎝⎭,1233⎛⎫⎪⎝⎭,1223⎛⎫ ⎪⎝⎭,0abc ≠0ax by c ++=0ab >0bc <B .方程()表示的直线都经过点.C .,直线不可能与轴垂直.D .直线的横、纵截距相等.10.已知曲线.点,,则以下说法正确的是( )A .曲线C 关于原点对称B .曲线C 存在点P,使得C .直线与曲线C 没有交点D .点Q 是曲线C 上在第三象限内的一点,过点Q 向作垂线,垂足分别为A ,B ,则.11.已知集合.由集合中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”.给出下列结论,正确的有( )A .白色“水滴”区域(含边界)任意两点间距离的最大值为B .在阴影部分任取一点,则到坐标轴的距离小于等于3.C .阴影部分的面积为.D .阴影部分的内外边界曲线长为.三、填空题:本题共3小题,每小题5分,共15分.12.若双曲线的离心率为2,则其两条渐近线所成的锐角的大小为 .13.已知椭圆的左、右焦点分别为F 1、F 2,过点的直线交椭圆于A 、B 两点,若,则该椭圆的离心率为 .14.已知为曲线y =1+4―x 2上的动点,则的最大值为 .四、解答题:本题共5小题,共77分.解答题写出文字说明、证明过程或演算步骤.15.已知△ABC 的顶点坐标是为的中点.(1)求中线的方程;(2)求经过点且与直线平行的直线方程.16.已知双曲线C :x 2a2―y 2b 2=1(a >0,b >0)的离心率为为双曲线的右焦点,且点到直线的()()21250x y λλ++--=R λ∈()2,1m ∈R 220m x y ++=y 3310x y +-=:44C x x y y =-1F 2(0,F 124PF PF -=2y x =2y x =±45QA QB ⋅=(){}22,(cos )(sin )4,0πP x y x y θθθ=-+-=≤≤∣P 1M M 8π8π()222210,0y x a b a b -=>>22221(0)x y a b a b+=>>2F 1AB F B ⊥,14sin 5F AB ∠=(),P a b 223a b a b --++()()()2,0,6,2,2,3,A B C M --AB CM B AC ()5,,03F c F 2a x c=距离为.(1)求双曲线的方程;(2)若点,点为双曲线左支上一点,求的最小值.17.已知,是抛物线:上的两点.(1)求抛物线的方程;(2)若斜率为的直线经过的焦点,且与交于,两点,求的最小值.18.椭圆与椭圆:有相同的焦点,且经过点.(1)求椭圆的方程;(2)椭圆的右焦点为,设动直线与坐标轴不垂直,与椭圆交于不同的,两点,且直线和的斜率互为相反数.①证明:动直线恒过轴上的某个定点,并求出该定点的坐标.②求△OMN 面积的最大值.19.定义:M 是圆C 上一动点,N 是圆C 外一点,记的最大值为m ,的最小值为n ,若,则称N 为圆C 的“黄金点”;若G 同时是圆E 和圆F 的“黄金点”,则称G 为圆“”的“钻石点”.已知圆165C ()12,0A P C PA PF +()6,2A m +()24,8B m +C ()221y px p =>C ()0k k ≠l C C P Q 2PQ k +C 1C 2212x y +=31,2Q ⎛⎫ ⎪⎝⎭C C B l l C M N BM BN l x MN MN 2m n =E F -A :,P 为圆A 的“黄金点”(1)求点P 所在曲线的方程.(2)已知圆B :,P ,Q 均为圆“”的“钻石点”.①求直线的方程.②若圆H 是以线段为直径的圆,直线l :与圆H 交于I ,J 两点,对于任意的实数k ,在y 轴上是否存在一点W ,使得y 轴平分?若存在,求出点W 的坐标;若不存在,请说明理由.()()221113x y +++=()()22221x y -+-=A B -PQ PQ 13y kx =+IWJ ∠江苏省扬州中学2024-2025学年第一学期期中试卷高二数学(参考答案)2024.11参考答案:题号12345678910答案C A D A C C A C BD CD 题号11 答案ABD8.【详解】设,∴S △AF 1F 2=12r 1(8+2m )=(4+m )r 1,S △ABF 2=12r 2(2m +2p )=(m +p )r 2,.在△与△中:,即,,当双曲线的斜率为正的渐近线时,取最大,此时,,当与轴重合时,取最小,此时,经上述分析得:,.故选:C.10.【详解】当时,曲线,即;当时,曲线,即;不存在;时,曲线,即;时,曲线,即;画出图形如右:对于A ,由图可得A 错误,故A 错误;对于B ,方程是以为上下焦点的双曲线,当时,曲线C 存在点P ,使得,故B 错误;对于C ,一三象限曲线的渐近线方程为,所以直线与曲线C 没有交点,故C 正确;对于D ,设,设点在直线上,点在直线,11222,,6,2,2AF m BA p F F AF m BF m p ====+=+-()()11224m r S m S p m p r +∴==+12AF F 2AF B 122cos cos F AF F AB ∠=-∠()()()()()2222222262222224m m m p m p m p m m m pm++-++-+-=-⇒=⋅⋅+⋅+⋅-32212324444444m m r m mp m m m r p mp m m m++-∴===+++--//l m p →+∞404m m ∴-=⇒=l x m 2m =()2,4m ∈1212,23r r ⎛⎫∴∈ ⎪⎝⎭0,0x y ≥>22:44C x y =-2214y x -=0,0x y ≥<22:44C x y =--2214y x +=-0,0x y ≤≥22:44C x y -=-2214y x +=0,0x y <≤22:44C x y -=--2214y x -=2214y x -=12,F F 0,0x y ≥>214PF PF -=2y x =2y x =()00,Q x y A 2y x =B 2y x =-又点Q 是曲线C 上在第三象限内的一点,代入曲线方程可得,故D 正确;故选:CD.11.【详解】对于A ,由于,令时,整理得,解得,“水滴”图形与轴相交,最高点记为A ,则点A 的坐标为,点,白色“水滴”区域(含边界)任意两点间距离的最大值为,故A 正确;对于B ,由于,整理得:,所以,所以到坐标轴的距离为或,因为,所以,,所以到坐标轴的距离小于等于3,故B正确;对于C ,由于,令时,整理得,解得,因为表示以为圆心,半径为的圆,则,且,则在x 轴上以及x 轴上方,故白色“水滴”的下半部分的边界为以为圆心,半径为1的半圆,阴影的上半部分的外边界是以为圆心,半径为3的半圆,根据对称可知:白色“水滴”在第一象限的边界是以以为圆心,半径为2的圆弧,设,则,即AN 所对的圆心角为,同理AM 所在圆的半径为2,所对的圆心角为,阴影部分在第四象限的外边界为以为圆心,半径为2的圆弧,设,可得,DG 所对的圆心角为,同理DH 所在圆的半径为2,所对的圆心角为,故白色“水滴”图形由一个等腰三角形,两个全等的弓形,和一个半圆组成,22004455x y QA QB -⋅==22(cos )(sin )4x y θθ-+-=0x =[]32sin 0,2y yθ=-∈[1]y ∈- y (0,1)B -||1AB =22(cos )(sin )4x y θθ-+-=2cos cos 2sin sin x y αθαθ=+⎧⎨=+⎩2cos cos ,2sin sin )(M αθαθ++M ||2cos cos αθ+|2sin sin |αθ+cos [1,1],sin [0,1]θθ∈-∈2cos cos ||2cos ||cos |213|αθαθ+≤+≤+=|2sin sin ||2sin ||sin |213αθαθ+≤+≤+=M 22(cos )(sin )4x y θθ-+-=0y =[]32cos 2,2y yθ=-∈-[3,1][1,3]x ∈-- 22(cos )(sin )4x y -+-=θθ()cos ,sin Q θθ2r =13r OQ OP OQ r =-≤≤+=0πθ≤≤()cos ,sin Q θθO O ()1,0M -()1,0N 2AN AM MN ===π3π3()1,0N ()()3,0,3,0G H -π1,3ON OD OND ==∠=2π32π3所以它的面积是.轴上方的半圆(包含阴影和水滴的上半部分)的面积为,第四象限的阴影和水滴部分面积可以看作是一个直角三角形和一个扇形的面积的和,且等于所以阴影部分的面积为C 错误;对于D ,轴上方的阴影部分的内外边界曲线长为,轴下方的阴影部分的内外边界曲线长为,所以阴影部分的内外边界曲线长为,故D 正确.故选:ABD.12.13【详解】如图,设,因为,所以.由椭圆定义可知,,由,可得,所以.在Rt △F 1BF 2中,由,可得,即得,故得14.【详解】曲线,由于在曲线上,令,则,(其中),,又,,当时取得最大值15.【详解】(1)因为,所以,212π111π2π1222326S S S S ⎛=++=⨯⨯+⨯+⨯=⎝V 弓形半圆x 219π3π22⨯=2114π21π323⨯⨯+=941116π2(πππ2363++-=+x 1π4132π3223πππ2333⨯⨯+⨯⨯=+=x 111112π1(2π2π2)2π2233⨯⨯+⨯⨯-⨯⨯=13π11π8π33+=π314BF t =1AB F B ⊥,14sin 5F AB ∠=15,3AF t AB t ==21212=25,224AF a AF a t BF a BF a t =--=-=-22493AB AF BF a t t =+=-=13t a =1242,33BF a BF a ==2221212||||||F F BF BF =+222424(()33a a c =+2295c a =c e a ==9+1y =()()22141x y y +-=≥(),P a b ()2cos ,0π12sin a b θθθ=⎧≤≤⎨=+⎩()()222232cos 12sin 32cos 12sin a b a b θθθθ--++=---+++2cos 2sin 454sin 42sin 2cos 54sin θθθθθθ=--++=+-++()96sin 2cos 9θθθϕ=+-=+-sin ϕ=cos ϕ=π0,2ϕ⎛⎫∈ ⎪⎝⎭[][]0,π,πθθϕϕϕ∈∴-∈-- π,02ϕ⎛⎫-∈- ⎪⎝⎭ππ,π2ϕ⎛⎫-∈ ⎪⎝⎭∴π2θϕ-=223a b a b --++9+()()2,0,6,2A B -()4,1M -故的方程是,即;(2)因为直线的斜率,所以经过点且与直线平行的直线方程为,即.16.【详解】(1)由题意知,解得,则,所以双曲线的方程为.(2)记双曲线的左焦点为,则,可得,当三点共线时,最小,且最小值为.故的最小值为.17.【详解】(1)∵,是抛物线C :上的两点,∴,则,整理得,解得, 当时,,解得,不合题意;当时,,解得.故抛物线C 方程为y 2=6x .(2)由(1)知C 的焦点为,故直线l 的方程为,联立,得,必有,设,,则,∴, ∴,即所以的最小值为18.【详解】(1)椭圆:的焦点坐标为,所以椭圆的焦点坐标也为,即得焦距为,∵椭圆过点,∴,CM 143124y x +-=+--2350x y +-=AC 303224ACk -==---B AC ()3264y x +=--34100x y +-=253165c a a c c ⎧=⎪⎪⎨⎪-=⎪⎩35a c =⎧⎨=⎩4b ==C 221916x y -=C 0F ()05,0F -0026PA PF PA PF a PA PF +=++=++0,,P F A 0PA PF +017AF =PA PF +17623+=()6,2A m +()24,8B m +()221y px p =>()()22212,848m p m p⎧+=⎪⎨+=⎪⎩()()22842m m +=+216m =4m =±4m =-()21224p m =+=113p =<4m =()212236p m =+=31p =>3,02⎛⎫⎪⎝⎭32y k x ⎛⎫=- ⎪⎝⎭2632y xy k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩()222293604k x k x k -++=0∆>()11,P x y ()22,Q x y 212236k x x k ++=2122236636k PQ x x p k k+=++=+=+222666PQ k k k +=++≥+226k k=2k =2PQ k +6+1C 2212x y +=()1,0±C ()1,0±22c =C 31,2Q ⎛⎫⎪⎝⎭24a +=∴,,∴椭圆的标准方程为.(2)①设直线:(),由,得,设M (x 1,y 1),N (x 2,y 2),所以,,所以,因为直线和的斜率互为相反数,所以,所以,所以,所以.即,所以,因为,所以,所以动直线恒过轴上的定点②由①知,,且,即,又S △OMN =12⋅|OT |⋅|y 1―y 2|=12⋅4⋅(y 1+y 2)2―4y1y 2令,则,∴S △OMN=24⋅n (3n +16)2≤24⋅n (2⋅3n⋅16)2=24⋅n 4⋅3n ⋅16=3(当且仅当时取“=”)∴(S △OMN )max =3.19.【详解】(1)因为点P 为圆A 的“黄金点”,即,所以点P的轨迹是以AP 所在曲线的方程为(2)①因为P 为圆B 的“黄金点”,则所以,即点P 在圆上,则P 是圆和的交点.因为P ,Q 均为圆“”的“钻石点”,所以直线即为圆和的公共弦所在直线,2a =b =22143x y +=l x my t =+0m ≠223412x my t x y =+⎧⎨+=⎩()2223463120m y mty t +++-=122634mt y y m +=-+212231234t y y m -=+()()()()1221121212111111MF NF y x y x y yk k x x x x -+-+=+=----()()()()1221121111y my t y my t x x +-++-=--BM BN 0MB NB k k =+()()()()12211211011y my t y my t x x +-++-=--()()1221110y my t y my t +-++-=()()1212210my y t y y +-+=()22231262103434t mtm t m m --⨯+-⨯=++()640m t -=0m ≠4t =l x ()4,0T 1222434m y y m +=-+1223634y y m =+()()22Δ24434360m m =-+⋅>24m >224==240n m =->24m n =+316n ==PA =()()2211 3.x y +++=()121PB PB +=-||3PB =()()22229x y -+-=()()22113x y +++=()()22229x y -+-=A B -PQ ()()22113x y +++=()()22229x y -+-=两圆方程相减可得,故直线的方程为.②设的圆心为的圆心为,半径为.直线的方程为,得的中点坐标为,点S 到直线,则,所以圆H 的方程为.假设轴上存在点满足题意,设,.若轴平分,则,即,整理得又,所以代入上式可得,整理得①,由可得,所以x 1+x 2=―23k k 2+1,x 1x 2=―89k 2+1,代入①并整理得,此式对任意的都成立,所以.故轴上存在点,使得轴平分.0x y +=PQ 0x y +=22(1)(1)3x y +++=(11),S --()()22229x y -+-=(2,2)T 3ST y x =PQ (0,0)0x y +==12PQ ==221x y +=y (0),W t ()()1122,,,I x y J x y 120x x ≠y IWJ ∠0IM JW k k +=12120y t y tx x --+=()()21120.x y t x y t -+-=11223,113y kx y kx =+=+211211)33(()0x kx t x kx t +-++-=()12121203kx x t x x ⎛⎫+-+= ⎪⎝⎭22131y kx x y ⎧=+⎪⎨⎪+=⎩()22281039k x kx ++-=2203k kt -+=k 3t =y ()0,3W y IWJ ∠。
2023-2024学年黄冈市高二数学上学期期中考试卷附答案解析
2023-2024学年黄冈市高二数学上学期期中考试卷(试卷满分150分,考试时间120分钟)2023.11一、单选题(本大题共8小题,共40.0分.在每小题列出的选项中,选出符合题目的一项)1.容量为8的样本:3.5,3.8,4.2,4.8,5,5,5.5,6.3,其第75百分数是()A .6B .5.25C .5D .5.52.在抛掷硬币试验中,记事件A 为“正面朝上”,则下列说法正确的()A .抛掷两枚硬币,事件“一枚正面,一枚反面”发生的概率为13B .抛掷十枚硬币,事件B 为“抛掷十枚硬币,正面都朝上”没有发生,说明()0P B =C .抛掷100次硬币,事件A 发生的频率比抛掷50次硬币发生的频率更接近于0.5D .当抛掷次数足够大时,事件A 发生的频率接近于0.53.已知点()2,6,2A -在平面α内,()3,1,2=n 是平面α的一个法向量,则下列点P 中,在平面α内的是()A .()1,1,1P -B .31,3,2P ⎛⎫ ⎪⎝⎭C .31,3,2P ⎛⎫- ⎪⎝⎭D .31,3,4P ⎛⎫--- ⎪⎝⎭4.已知点P (a ,b )与点()1,1Q b a +-关于直线l 对称,则直线l 的方程是()A .1y x =-B .1y x =+C .1y x =-+D .=1y x --5.在三棱柱111ABC A B C -中,E 是棱AC 的三等分点,且3AC AE =,F 是棱11B C 的中点,若1,,AB a AC b AA c →→→→→→===,则EF →=()A .6112a b c →→→-+B .3611a b c →→→++C .3611a b c →→→-+D .6112a b c →→→++6.一条光线从点(-2,-3)射出,经y 轴反射后与圆()()22321x y ++-=相切,则反射光线所在直线的斜率为()A .53-或53B .35-或32-C .23-或23D .34-或43-7.已知椭圆221369x y +=与x 轴交于点A ,B ,把线段AB 分成6等份,过每个分点作x 轴的垂线交椭圆的上半部分于点1P ,2P ,3P ,4P ,5P ,F 是椭圆C 的右焦点,则12345P F P F P F P F P F ++++=()A .20B .C .36D .308.曲线1y =y =k(x -2)+4有两个交点,则实数k 的取值范围是()A .5012⎛⎫ ⎪⎝⎭,B .5+12⎛⎫∞ ⎪⎝⎭,C .1334⎛⎤ ⎥⎝⎦,D .53124纟çúçú棼,二、多选题(本大题共4小题,共20.0分.在每小题有多项符合题目要求)9.有一道数学难题,学生甲解出的概率为12,学生乙解出的概率为13,学生丙解出的概率为14.若甲,乙,丙三人独立去解答此题,则()A .恰有一人解出的概率为1124B .没有人能解出的概率为124C .至多一人解出的概率为1724D .至少两个人解出的概率为232410.给出下列命题,其中正确的是()A .若{},,a b c是空间的一个基底,则{},,a b b c +r r r r 也是空间的一个基底B .在空间直角坐标系中,点()2,4,3P -关于坐标平面yOz 的对称点是()2,4,3---C .若空间四个点P ,A ,B ,C 满足1344PC PA PB=+,则A ,B ,C 三点共线D .平面α的一个法向量为()1,3,4m =-u r ,平面β的一个法向量为()2,6,n k =--r .若//αβ,则8k =11.下列说法正确的是()A .直线sin 10x a y -+=的倾斜角的取值范围为30,,)44[πππ⎡⎤⋃⎢⎥⎣⎦B .“5c =”是“点()2,1到直线340x y c ++=距离为3”的充要条件C .直线:3(0)l x y R λλλ+-=∈恒过定点()3,0D .直线25y x =-+与直线210x y ++=平行,且与圆225x y +=相切12.在正三棱柱111ABC A B C -中,1AB =,12AA =,1BC 与1B C 交于点F ,点E 是线段11A B 上的动点,则下列结论正确的是()A .1111222AF AB AC AA =++ B .存在点E ,使得AF BE ⊥C .三棱锥B AEF -的体积为12D .直线AF 与平面11BCC B所成角的余弦值为7三、填空题(本大题共4小题,共20.0分)13.已知基底{},,i j k,4a i j k λμ=++ ,23b i j k μ=++ ,若a b ∥ ,则μ=.14.如图,电路中A 、B 、C 三个电子元件正常工作的概率分别为()0.8P A =,()()0.6P B P C ==,则该电路正常工作的概率.15.椭圆的一焦点与两顶点为等边三角形的三个顶点,则椭圆的离心率等于.16.若直线0x y m ++=上存在点P 可作圆:O 221x y +=的两条切线PA PB 、,切点为A B 、,且60APB ︒∠=,则实数m 的取值范围为.四、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17.已知()1,4,2a =- ,()2,2,4b =-.(1)若12c b=,求cos ,a c <> 的值;(2)若()()3ka b a b +-∥ ,求实数k 的值.18.已知直线1:260l x y -+=和2:10l x y -+=的交点为P .(1)若直线l 经过点P 且与直线343:50x y l --=平行,求直线l 的方程;(2)若直线m 经过点P 且与两坐标轴围成的三角形的面积为5,求直线m 的方程.19.已知圆C 经过点(2,5),(5,2),(2,1)-.(1)求圆C 的方程;(2)设点(,)P x y 在圆C 上运动,求22(2)(1)x y +++的最大值与最小值.20.为庆祝建校115周年,某校举行了校史知识竞赛.在必答题环节,甲、乙两位选手分别从3道选择题、2道填空题中随机抽取2道题作答.已知甲每道题答对的概率为12,乙每道题答对的概率为23,且甲乙答对与否互不影响,各题的结果也互不影响.(1)求甲恰好抽到1道填空题的概率;(2)求甲比乙恰好多答对1道题的概率.21.如图,在四棱锥P ABCD -中,AC BD O = ,底面ABCD 为菱形,边长为2,,PC BD PA PC ⊥=,且60ABC ∠=︒,异面直线PB 与CD 所成的角为60︒,(1)求证:;PO ABCD ⊥平面(2)若E 是线段OC 的中点,求点E 到直线BP 的距离.(3)求平面APB 与平面PBC 夹角的余弦值.22.已知椭圆()2222:10x y E a b a b +=>>的离心率为,上顶点为()0,1A .(1)求椭圆E 的方程;(2)过点(P 且斜率为k 的直线与椭圆E 交于不同的两点M ,N ,且827MN =,求k 的值.1.B【分析】根据百分位数的定义运算求解.【详解】因为875%6⨯=,所以第75百分数是第6位数和第7位数的平均数,即为5 5.55.252+=.故选:B.2.D【分析】根据古典概型判断AB ,利用概率与频率的关系判断CD.【详解】抛掷两枚硬币,出现的基本事件为(正,反),(正,正),(反,正),(反,反),所以事件“一枚正面,一枚反面”发生的概率为12P =,故A 错误;“抛掷十枚硬币,正面都朝上”没有发生,不能说明()0P B =,应有101()2P B =,故B 错误;抛掷100次硬币,事件A 发生的频率与抛掷50次硬币A 发生的频率不能判断谁更接近于0.5,故C 错误;根据频率与概率的关系知,当抛掷次数足够大时,事件A 发生的频率接近于0.5,故D 正确.故选:D 3.A【分析】根据每个选项中P 点的坐标,求出AP的坐标,计算AP n ⋅ ,根据结果是否等于0,结合线面垂直的性质,即可判断点P 是否在平面α内.【详解】对于选项A ,()1,5,1AP =--,所以1351120AP n ⋅=-⨯+⨯-⨯= ,根据线面垂直的性质可知AP α⊂,故()1,1,1P -在平面α内;对于选项B ,11,9,2AP ⎛⎫=-- ⎪⎝⎭ ,则11391202AP n ⋅=-⨯+⨯+⨯≠ ,()2,6,2A -在平面α内,根据线面垂直的性质可知AP α⊄,故31,3,2P ⎛⎫ ⎪⎝⎭不在平面α内;对于选项C ,11,3,2AP ⎛⎫=-- ⎪⎝⎭ ,则11331202AP n ⋅=-⨯+⨯-⨯≠ ,()2,6,2A -在平面α内,根据线面垂直的性质可知AP α⊄,故31,3,2P ⎛⎫- ⎪⎝⎭不在平面α内;对于选项D ,113,3,4AP ⎛⎫=-- ⎪⎝⎭ ,则113331204AP n ⋅=-⨯+⨯-⨯≠ ,()2,6,2A -在平面α内,根据线面垂直的性质可知AP α⊄,故31,3,4P ⎛⎫--- ⎪⎝⎭不在平面α内;故选:A 4.A【分析】根据P (a ,b )与点()1,1Q b a +-关于直线l 对称可求出直线l 的斜率,再由PQ 中点验证即可求解.【详解】 点P (a ,b )与点()1,1Q b a +-关于直l 对称111PQ a bk b a --∴==-+-,1l k ∴=,又PQ 的中点坐标为11,22a b a b +++-⎛⎫⎪⎝⎭,所以直线l 的方程为1y x =-.故选:A5.D【分析】取BC 的中点D ,连接,,AD AF DF ,进而表示AF →,再根据EF AF AE →→→=-求解即可.【详解】取BC 的中点D ,连接,,AD AF DF .所以111112222AF AD DF AB AC AA a b c→→→→→→→→→=+=++=++.因为1133AE AC b→→→==,所以1111122326EF AF AE a b c b a b c →→→→→→→→→→=-=++-=++.故选:D6.D【分析】求出点(2,3)--关于y 轴的对称点,由对称点作圆的切线,即为反射光线所在直线,求出切线斜率即得.【详解】圆()()22321x y ++-=的圆心为(3,2)-,半径为1,根据光的反射原理知,反射光线的反向延长线必过点(2,3)--关于y 轴的对称点(2,3)-,易知反射光线所在直线的斜率存在,设为k ,则反射光线所在直线的方程为()32y k x +=-,即230kx y k ---=,由反射光线与圆()()22321x y ++-=相切,1=,整理得21225120k k ++=,解得43k =-或34k =-.故选:D .7.D 【分析】由题意知1P 与5P ,2P 与4P 分别关于y 轴对称,设椭圆的左焦点为1F ,从而15111||||||||2PF P F PF PF a +=+=,523||||2,||P F P F a P F a +==,利用12345||||||||||5PF P F P F P F P F a ++++=即可求解.【详解】由题意,知1P 与5P ,2P 与4P 分别关于y 轴对称设椭圆的左焦点为1F ,由已知a=6,则15111||||||||2PFP F PF PF a +=+=,同时523||||2,||P F P F a P F a +==∴12345||||||||||530PFP F P F P F P F a ++++==故选:D.8.D【分析】要求的实数k 的取值范围即为直线l斜率的取值范围,主要求出斜率的取值范围,方法为:曲线1y =(0,1)为圆心,2为半径的半圆,在坐标系中画出相应的图形,直线l 与半圆有不同的交点,故抓住两个关键点:当直线l 与半圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关于k 的方程,求出方程的解得到k 的值;当直线l 过B 点时,由A 和B 的坐标求出此时直线l 的斜率,根据两种情况求出的斜率得出k 的取值范围.【详解】解:根据题意画出图形,如图所示:由题意可得:直线l 过(2,4)A ,(2,1)B -,又曲线1y =(0,1)为圆心,2为半径的半圆,当直线l 与半圆相切,C 为切点时,圆心到直线l 的距离d r =2=,解得:512k =;当直线l 过B 点时,直线l 的斜率为4132(2)4-=--,则直线l 与半圆有两个不同的交点时,实数k 的范围为53(,]124.故选:D.9.AC【分析】利用独立事件的乘法公式、互斥事件的加法公式,求各选项对应事件的概率即可.【详解】A :恰有一人解出的概率为11111111111(1)(1)(1)(1)(1(1)23423423424⨯-⨯-+-⨯⨯-+-⨯-⨯=,正确;B :没有人能解出的概率为1111(1)(1)(12344-⨯-⨯-=,错误;C :由A 、B 知:至多一人解出的概率为1111724424+=,正确;D :至少两个人解出的概率为1111111111117(1)(1)(123423423423424⨯⨯-+-⨯⨯+⨯-⨯+⨯⨯=,错误;故选:AC10.ACD【分析】根据三个向量是否共面判断A ,由点关于坐标面的对称判断B ,由向量的运算确定三点共线可判断C ,根据向量共线求参数可判断D 。
2023-2024学年人大附中高二数学上学期期中考试卷附答案解析
2023-2024学年人大附中高二数学上学期期中考试卷(试卷满分150分,考试时间120分钟)2023.11第I 卷(共18题,满分100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1.已知平面//α平面β,直线a α⊂,直线b β⊂,则a 与b 的位置关系是()A .平行B .平行或异面C .异面D .异面或相交2.已知点()3,1,0A -,若向量()2,5,3AB =-,则点B 的坐标是().A .()1,6,3-B .()5,4,3-C .()1,6,3--D .()2,5,3-3.一个水平放置的平面图形OAB 用斜二测画法作出的直观图是如图所示的等腰直角O A B '''△,其中A B ''=,则平面图形OAB 的面积为()A .B .C .D .4.已知1cos ,3a b 〈〉=-,则下列说法错误的是()A .若,a b分别是直线12,l l 的方向向量,则12,l l所成角余弦值是13B .若,a b分别是直线l 的方向向量与平面α的法向量,则l 与α所成角正弦值是13C .若,a b分别是平面ABC 、平面BCD 的法向量,则二面角A BC D --的余弦值是13D .若,a b分别是直线l 的方向向量与平面α的法向量,则l 与α所成角余弦值是223.5.一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切,过一条侧棱和对边的中点作三棱锥的截面,所得截面图形是A .B .C .D .6.如图,平行六面体1111ABCD A B C D -的底面ABCD 是矩形,其中2AB =,4=AD ,13AA =,且1160A AD A AB ∠=∠=︒,则线段1AC 的长为()A .9B C D .7.如图,已知大小为60︒的二面角l αβ--棱上有两点A ,B ,,AC AC l α⊂⊥,,BD BD l β⊂⊥,若3,3,7AC BD CD ===,则AB 的长度()A .22B .40C .D 8.鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根完全一样的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器(容器壁的厚度忽略不计),则该球形容器表面积的最小值为A .41πB .42πC .43πD .44π9.如图,1111ABCD A B C D -是棱长为4的正方体,P QRH -是棱长为4的正四面体,底面ABCD ,QRH 在同一个平面内,//BC QH ,则正方体中过AD 且与平面PHQ 平行的截面面积是A ..C ..10.《九章算术·商功》中有这样一段话:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.”意思是:如图,沿正方体对角面11A B CD 截正方体可得两个壍堵,再沿平面11B C D 截壍堵可得一个阳马(四棱锥1111D A B C D -),一个鳖臑(三个棱锥11D B C C -),若P 为线段CD 上一动点,平面α过点P ,CD ⊥平面α,设正方体棱长为1,PD x =,α与图中鳖臑截面面积为S ,则点P 从点D 移动到点C 的过程中,S 关于x 的函数图象大致是()A .B .C .D .二、填空题(本大题共5小题,每小题5分,共25分.请把结果填在答题纸上的相应位置.)11.已知正方形ABCD 的边长为2,则AB AC =+ .12.已知圆锥的轴截面是边长为2的等边三角形,则此圆锥的表面积为.13.平面与平面垂直的判定定理符号语言为:.14.在移动通信中,总是有很多用户希望能够同享一个发射媒介,进行无线通信,这种通信方式称为多址通信.多址通信的理论基础是:若用户之间的信号可以做到正交,这些用户就可以同享一个发射媒介.在n 维空间中,正交的定义是两个n 维向量()()1212,,,,,,,n n a x x x b y y y =⋯=⋯满足11220n n x y x y x y ++⋯+=.已知某通信方式中用户的信号是4维非平向量,有四个用户同享一个发射媒介,已知前三个用户的信号向量为22(0,0,0,1),(0,0,1,0),,,0,022⎫⎪⎪⎝⎭.写出一个满足条件的第四个用户的信号向量.15.一个三棱锥的三个侧面中有一个是边长为2的正三角形,另两个是等腰直角三角形,则该三棱锥的体积可能为.三、解答题(本大题共3小题,共35分.解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)16.已知空间直角坐标系中四个点的坐标分别为:(1,1,1),(1,2,3),(4,5,6),(7,8,)A B C D x .(1)求||AC ;(2)若AB CD ⊥ ,求x 的值;(3)若D 点在平面ABC 上,直接写出x 的值.17.如图所示,在四棱锥P ABCD -中,BC 平面PAD ,12BC AD =,E 是PD 的中点.(1)求证:BC AD ∥;(2)求证:CE 平面PAB ;(3)若M 是线段CE 上一动点,则线段AD 上是否存在点N ,使MN 平面PAB ?说明理由.18.如图所标,已知四棱锥E ABCD -中,ABCD 是直角梯形,90ABC BAD ∠=∠=︒,平面EAB ⊥平面ABCD ,63AB BC BE AD AE =====,,(1)证明:BE ⊥平面ABCD ;(2)求B 到平面ADE 的距离;(3)求二面角A DE C --的余弦值.第Ⅱ卷(共8道题,满分50分)一、选择题(共4小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)19.关于空间中的角,下列说法中正确的个数是()①空间中两条直线所成角的取值范围是π0,2⎡⎤⎢⎣⎦②空间中直线与平面所成角的取值范围是π0,2⎡⎤⎢⎥⎣⎦③空间中二面角的平面角的取值范围是π0,2⎡⎤⎢⎣⎦④空间中平面与平面所成角的取值范围是π0,2⎡⎤⎢⎥⎣⎦A .1B .2C .3D .420..如图,在正方形ABCD 中,点E 、F 分别为边BC ,AD 的中点.将ABF △沿BF 所在直线进行翻折,将CDE 沿DE 所在直线进行翻折,在翻折的过程中,下列说法正确的是()A .点A 与点C 在某一位置可能重合B .点A 与点C 3ABC .直线AB 与直线DE 可能垂直D .直线AF 与直线CE 可能垂直21.在正方体ABCD A B C D -''''中,P 为棱AA '上一动点,Q 为底面ABCD 上一动点,M 是PQ 的中点,若点,P Q 都运动时,点M 构成的点集是一个空间几何体,则这个几何体是()A .棱柱B .棱台C .棱锥D .球的一部分22.如图,在棱长为2的正方体1111ABCD A B C D -中,P 为线段11A C 的中点,Q 为线段1BC 上的动点,则下列结论正确的是()A .存在点Q ,使得//PQ BDB .存在点Q ,使得PQ ⊥平面11AB C DC .三棱锥Q APD -的体积是定值D .存在点Q ,使得PQ 与AD 所成的角为π6二、填空题(共3小题,每小题5分,共15分.把答案填在答题纸上的相应位置.)23.如图,在边长为2正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在正方体表面上移动,且满足11B P D E ⊥,则点1B 和满足条件的所有点P 构成的图形的周长是.24.已知正三棱柱111ABC A B C -的所有侧棱长及底面边长都为2,D 是1CC 的中点,则直线AD 与平面1A BD所成角的正弦值为.25.点O 是正四面体1234A A A A 的中心,()11,2,3,4i OA i ==.若11223344OP OA OA OA OA λλλλ=+++ ,其中()011,2,3,4i i λ≤≤=,则动点P 扫过的区域的体积为.三、解答题(本小题15分,解答应写出文字说明过程或演算步骤.请将答案写在答题纸上的相应位置.)26.已知自然数集()*{1,2,3,,}N A n n =∈ ,非空集合{}()*12,,,N m E e e e A m =⊆∈ .若集合E 满足:对任意a A ∈,存在,(1)i j e e E i j m ∈≤≤≤,使得,,{1,0,1}i j a xe ye x y =+∈-,称集合E 为集合A 的一组m 元基底.(1)分别判断下列集合E 是否为集合A 的一组二元基底,并说明理由:①{1,2},{1,2,3,4,5}E A ==;②{2,3},{1,2,3,4,5,6}E A ==.(2)若集合E 是集合A 的一组m 元基底,证明:(1)n m m ≤+;(3)若集合E 为集合{1,2,3,,19}A = 的一组m 元基底,求m 的最小值.1.B【分析】利用直线与平面的位置关系判断即可.【详解】因为平面//α平面β,直线a α⊂,直线b β⊂,所以a 与b 没有交点,即a 与b 可能平行,也可能异面.故选:B.2.B【分析】根据空间向量的坐标表示可得.【详解】由空间向量的坐标表示可知,AB OB OA =-,所以()()()2,5,33,1,05,4,3OB AB OA =+=-+-=-,所以点B 的坐标为()5,4,3-.故选:B 3.B【分析】先求得原图形三角形的底与高的值,进而求得原图形的面积【详解】因为在直观图中,O A A B ''''=O B ''==,,高为2⨯=故原图形的面积为12=.故选:B4.C【分析】根据向量法逐一判断即可.【详解】对于A :因为直线与直线所成角范围为0,2π⎡⎤⎢⎥⎣⎦,所以12,l l 所成角余弦值为1cos ,3a b 〈〉= ,故A 正确;对于B :因为直线与平面所成角范围为0,2π⎡⎤⎢⎥⎣⎦,所以l 与α所成角正弦值3s n 1cos ,i a b θ〈=〉= ,l 与α所成223=,故BD 正确;对于C :因为二面角的平面角所成角范围为[)0,p,所以二面角A BC D --的余弦值可能为负值,故C 错误;故选:C 5.B【分析】设三棱锥S ABC -的各棱长均相等,由,SC SH 确定的平面,得到截面SCD ∆,再由正四面体的性质和图象的对称性加以分析,同时对照选项,即可求解.【详解】如图所示,设三棱锥S ABC -的各棱长均相等,球O 是它的内切球,设H 为底面ABC ∆的中心,根据对称性可得内切球的球心O 在三棱锥的高SH 上,由,SC SH 确定的平面交AB 于D ,连接,AD CD ,得到截面SCD ∆,截面SCD 就是经过侧棱SC 与AB 中点的截面,平面SCD 与内切球相交,截得的球大圆如图所示,因为SCD ∆中,圆O 分别与,AD CE 相切于点,E H ,且SD CD =,圆O 与SC 相离,所对照各个选项,可得只有B 项的截面符合题意,故选B.【点睛】本题主要考查了正四面体的内切球的截面问题,其中解答中正确理解组合体的结构特征是解答的关键,着重考查了正四面体的性质,球的性质的应用,属于中档试题.6.C【分析】由11AC AC CC =+ ,两边平方,利用勾股定理以及数量积的定义求出2211,,2AC AC CC CC ⋅ 的值,进而可得答案【详解】由11AC AC CC =+ ,2222211111()2AC AC AC CC AC AC CC CC ==+=+⋅+ .因为底面ABCD 是矩形,2AB =,4=AD ,13AA =,所以2241620=AC AC =+= ,219CC = ,因为1160A AB A AD ∠=∠=,所以1123cos 603,43cos 606AB CC BC CC ⋅=⨯⨯=⋅=⨯⨯=所以()1111822()2()=23+6=1AC CC AB BC CC AB CC BC CC ⋅=+⋅=⋅+⋅,2112018947,47AC AC =++==故选:C.7.C【分析】过A 作AE BD 且AE BD =,连接,CE DE ,易得60CAE ︒∠=,通过线面垂直的判定定理可得ED ⊥平面AEC ,继而得到ED EC ⊥,由勾股定理即可求出答案.【详解】解:过A 作AE BD 且AE BD =,连接,CE DE ,则四边形ABDE 是平行四边形,因为BD AB ⊥,所以平行四边形ABDE 是矩形,因为BD l ⊥,即AE l ⊥,而AC l ⊥,则CAE ∠是二面角l αβ--的平面角,即60CAE ︒∠=,因为3BD AE AC ===,即ACE △为正三角形,所以3CE =,因为,ED AE l AC ⊥⊥,即ED AC ⊥,,,AE AC A AE AC ⋂=⊂平面AEC ,所以ED ⊥平面AEC ,因为EC ⊂平面AEC ,所以ED EC ⊥,所以在Rt EDC中,ED =AB ED ==故选:C8.A【解析】由于图形的对称性,只要求出一组正四棱柱的体对角线,即是外接圆的直径.【详解】由题意,该球形容器的半径的最小值为并在一起的两个长方体体对角线的一半,即为14122=,∴该球形容器体积的最小值为:42π⨯=41π.故选:A.【点睛】本题考查了几何体的外接球问题,考查了空间想象能力,考查了转化思想,该类问题的一个主要方法是通过空间想象,把实际问题抽象成空间几何问题,属于中档题.9.C【分析】首先要根据面面平行的性质定理确定截面的形状,再根据正四面体的性质、等角定理等确定点,E F 的具体位置、AE 的长度,从而求出截面面积.【详解】设截面与1111,A B D C 分别相交于点,E F 则//EF AD ,过点P 作平面QRH 的垂线,垂足为O ,则O 是底面QRH的中心.设OR HQ G ⋂=,则EAB PGO ∠=∠,又因为4323RG RO OG ===,3PO ==,所以22sin sin 3PO EAB PGO PG ∠=∠==,所以43EA EA =⇒=,所以四边形AEFD的面积4S =⨯=选C.【点睛】本题考查正棱锥的平行关系、等角定理,考查空间想象能力,突显了直观想象的考查.属中档题.10.B【分析】分析得出11PMN CB C △△,可得出1PNxCC =,求出PMN S △关于x 的函数关系式,由此可得出合适的选项.【详解】设M 、N 分别为截面与1DB 、1DC 的交点,DP x =,01x ≤≤,CD ⊥ 平面PMN ,CD ⊥平面11B CC ,所以,平面//PMN 平面11B CC ,因为平面1DCC 平面PMN PN =,平面1DCC 平面111B CC CC =,所以,1//PN CC ,同理可得11//MN B C ,1//PM B C ,所以,111111PN DN MN DM PM DP x CC DC B C DB B C DC ======,所以,11PMN CB C △△,易知111111122CB C S B C CC =⋅=△,因此,112212PMN CB C S x S x ==△△.故选:B.【点睛】关键点点睛:本题考查函数图象的辨别,解题的关键就是充分分析图形的几何特征,以此求出函数解析式,结合解析式进行判断.11.【分析】根据向量数量积以及模长公式即可求解.【详解】由题意可知π2,,4AB AC AB AC ===,24,2AB AC ∴=⋅=⨯故AB AC +===故答案为:12.3π【分析】由轴截面可确定圆锥底面半径和母线长,代入圆锥表面积公式即可.【详解】 圆锥轴截面是边长为2的等边三角形,∴圆锥底面半径1r =,圆锥母线长2l =,∴圆锥的表面积2ππ2ππ3πS rl r =+=+=.故答案为:3π.13.,a a αβαβ⊂⊥⇒⊥(答案不唯一)【分析】根据“平面与平面垂直的判定定理”写出正确答案.【详解】平面与平面垂直的判定定理:,a a αβαβ⊂⊥⇒⊥.故答案为:,a a αβαβ⊂⊥⇒⊥(答案不唯一)14.()1,1,0,0(答案不唯一)【分析】根据“正交”的定义列方程,从而求得正确答案.【详解】设满足条件的第四个用户的信号向量是(),,,x y z u ,则()()()(0,0,0,1),,,0(0,0,1,0),,,0,,,,022x y z u x y z u x y z u ⎧⎪⋅=⎪⎪⋅=⎨⎪⎛⎫⎪-⋅=⎪ ⎪⎪⎝⎭⎩,则00022u z x y ⎧⎪=⎪⎪=⎨⎪-=⎪⎩,则0,u z x y ===,故一个满足条件的信号向量是()1,1,0,0.故答案为:()1,1,0,0(答案不唯一)15.(或3或,答案不唯一)【分析】根据已知条件进行分类讨论,结合三棱锥的体积公式求得正确答案.【详解】(1)BCD △是等边三角形,且,AB AC AD AC ⊥⊥,如下图所示,由于,,AB AD A AB AD =⊂ 平面ABD ,所以AC ⊥平面ABD,2,BC BD CD AB AD AC ======222,AB AD BD AB AD +=⊥,则1132A BCD V -=⨯.(2)BCD △是等边三角形,且,AB BD AB BC ⊥⊥,如下图所示,由于,,BD BC B BD BC ⋂=⊂平面BCD ,所以AB ⊥平面BCD ,2BC BD CD AB ====,所以112322sin 602323A BCD V -=⨯⨯⨯⨯︒⨯=.(3)BCD △是等边三角形,且,AB BD CD AC ⊥⊥,如下图所示,取AD 的中点O ,连接,OB OC ,则2BC BD CD AB ====,22AD =122OB OC AD ===222,OB OC BC OB OC +=⊥,,,,,AD OB AD OC OB OC O OB OC ⊥⊥⋂=⊂平面OBC ,所以AD ⊥平面OBC .所以112222232A BCD V -⎛=⨯⨯ ⎝.故答案为:23(或23或23,答案不唯一).16.(1)92x =(3)9x =【分析】(1)根据空间向量的模求得正确答案.(2)根据向量垂直列方程,化简求得x 的值.(3)根据向量共面列方程,从而求得x 的值.【详解】(1)()3,4,5,AC AC ===(2)()()0,1,2,3,3,6AB CD x ==-,由于AB CD ⊥ ,所以3212290AB CD x x ⋅=+-=-= ,解得92x =.(3)()()0,1,2,3,4,5AB AC ==,设AD aAB bAC =+ ,即()()()()6,7,10,,23,4,53,4,25x a a b b b b a b a b -=+=++,所以6374125ba b x a b =⎧⎪=+⎨⎪-=+⎩,解得1,2,9a b x =-==.17.(1)证明见解析(2)证明见解析(3)存在,证明见解析【分析】(1)根据线面平行的性质定理即可证明;(2)由中位线、线面平行的性质可得四边形BCEF 为平行四边形,再根据线面平行的判定即可证明;(3)根据线面、面面平行的性质定理和判断定理即可判断存在性.【详解】(1)在四棱锥P ABCD -中,BC 平面PAD ,BC ⊂平面ABCD ,AD ⊂平面PAD ,平面ABCD ⋂平面PAD AD =,所以BC AD ∥;(2)如下图,取F 为AP 中点,连接,EF BF ,由E 是PD 的中点,所以EF AD ∥且12EF AD =,由(1)知BC AD ∥,又12BC AD =,所以EF BC ∥且EF BC =,所以四边形BCEF 为平行四边形,故CE BF ∥,而CE ⊂平面PAB ,BF ⊄平面PAB ,则CE 平面PAB .(3)取AD 中点N ,连接CN ,EN ,因为E ,N 分别为PD ,AD 的中点,所以EN PA ∥,因为EN ⊄平面PAB ,PA ⊂平面PAB ,所以EN 平面PAB ,线段AD 存在点N ,使得MN 平面PAB ,理由如下:由(2)知:CE 平面PAB ,又CE EN E = ,CE ⊂平面CEN ,EN ⊂平面CEN ,所以平面CEN 平面PAB ,又M 是CE 上的动点,MN ⊂平面CEN ,所以MN 平面PAB ,所以线段AD 存在点N ,使得MN 平面PAB .18.(1)证明详见解析(2)3222-【分析】(1)通过证明BE AB ⊥,结合面面垂直的性质定理证得BE ⊥平面ABCD.(2)建立空间直角坐标系,利用向量法求得B 到平面ADE 的距离.(3)利用向量法求得二面角A DE C --的余弦值.【详解】(1)由于222AB BE AE +=,所以BE AB ⊥,由于平面EAB ⊥平面ABCD ,且交线为AB ,BE ⊂平面EAB ,所以BE ⊥平面ABCD .(2)由于BC ⊂平面ABCD ,所以BE BC ⊥,所以,,BC AB BE 两两相互垂直,由此建立如图所示空间直角坐标系,则()()()()6,0,0,0,6,0,0,0,6,3,6,0C A E D,故()()3,0,0,0,6,6AD AE==-,设平面ADE的法向量为(),,m x y z=,则30660m AD xm AE y z⎧⋅==⎪⎨⋅=-+=⎪⎩,故可设()0,1,1m=,又()0,6,0BA=,所以B到平面ADE的距离为m BAm⋅==.(3)由(2)得平面ADE的法向量为()0,1,1 m=.而()()3,6,0,3,6,6CD ED=-=-,设平面CDE的法向量为(),,n a b c=,则3603660n CD a bn ED a b c⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,故可设()2,1,2n=,由图可知二面角A DE C--为钝角,设为θ,则cos2m nm nθ⋅=-==-⋅.19.C【分析】由空间中直线与直线、直线与平面、平面与平面所成角范围判断即可.【详解】对于①:由空间中两条直线所成角的取值范围是π0,2⎡⎤⎢⎣⎦,可知①正确;对于②:由空间中直线与平面所成角的取值范围是π0,2⎡⎤⎢⎥⎣⎦,可知②正确;对于③:空间中二面角的平面角的取值范围是[]0,π,可知③错误;对于④:空间中平面与平面所成角的取值范围是π0,2⎡⎤⎢⎣⎦,可知④正确;故选:C20.D【分析】将ABF△沿BF所在直线进行翻折,将CDE沿DE所在直线进行翻折,在翻折过程中A,C的运动轨迹分别是圆,AB,AF是以BF为旋转轴的圆锥侧面;CE,CD是以DE为旋转轴的圆锥侧面;【详解】由题意,在翻折过程中A,C的运动轨迹分别是两个平行的圆,所以点A与点C不可能重合,故选项A错误;点A与点C的最大距离为正方形的对角线AC=,故选项B错误;由题易知直线BF与直线DE平行,所以直线AB与直线DE所成角和直线AB与直线BF所成角相等,显然直线AB与直线BF不垂直,故选项C错误;由题在正方形中直线AF 与直线CE 平行,设翻折后点A 为1A ,由题易知初始位置ππ,42AFB ⎛⎫∠∈ ⎪⎝⎭,当ABF △沿BF 所在直线翻折到与平面BEDF 重合时,1π2,π2A FA AFB ⎛⎫∠=∠∈ ⎪⎝⎭所以在此连续变化过程中必存在1π2A FA ∠=,即1A F AF ⊥,所以1A F CE ⊥,所以翻折过程中,直线AF 与直线CE 可能垂直,故选项D 正确.故选:D.21.A【分析】先讨论P 点与A 点重合,M 点的轨迹,再分析把P 点从A 点向上沿1AA 移动,在移动的过程中M 点的轨迹,从而可得出结论.【详解】解:若P 点与A 点重合,设,AB AD 的中点分别为,E F ,移动Q 点,则此时M 点的轨迹为以,AE AF 邻边的正方形,再将P 点从A 点向上沿1AA 移动,在移动的过程中可得M 点的轨迹是将以,AE AF 邻边的正方形沿1AA 向上移动,最后当点P 与1A 重合时,得到最后一个正方形,故所得的几何体为棱柱.故选:A.22.B【分析】A 由11//BD B D 、11B D PQ P = 即可判断;B 若Q 为1BC 中点,根据正方体、线面的性质及判定即可判断;C 只需求证1BC 与面APD 是否平行;D 利用空间向量求直线夹角的范围即可判断.【详解】A :正方体中11//BD B D ,而P 为线段11A C 的中点,即为11B D 的中点,所以11B D PQ P = ,故,BD PQ 不可能平行,错;B :若Q 为1BC 中点,则1//PQ A B ,而11A B AB ⊥,故1PQ AB ⊥,又AD ⊥面11ABB A ,1A B ⊂面11ABB A ,则1A B AD ⊥,故PQ AD ⊥,1AB AD A ⋂=,1,AB AD ⊂面11AB C D ,则PQ ⊥面11AB C D ,所以存在Q 使得PQ ⊥平面11AB C D ,对;C :由正方体性质知:11//BC AD ,而1AD 面APD A =,故1BC 与面APD 不平行,所以Q 在线段1BC 上运动时,到面APD 的距离不一定相等,故三棱锥Q APD -的体积不是定值,错;D :构建如下图示空间直角坐标系D xyz -,则(2,0,0)A ,(1,1,2)P ,(2,2,)Q a a -且02a ≤≤,所以(2,0,0)DA = ,(1,1,2)PQ a a =--,若它们夹角为θ,则2222(1)|1|cos 2(1)1(2)233a a a a θ=⨯-++-⋅-+令1[1,1]t a =-∈-,则cos θ==,当(0,1]t ∈,则[)11,t ∈+∞,cos θ∈;当0=t 则cos 0θ=;当[1,0)t ∈-,则(]1,1t ∞∈--,2cos (0,]2θ∈;所以πcos 6=不在上述范围内,错.故选:B23.【分析】以点D 为坐标原点,建立如下图所示的空间直角坐标系,由坐标法证明11,D E MN D E AM ⊥⊥,从而得出满足条件的所有点P 构成的图形,进而得出周长.【详解】以点D 为坐标原点,建立如下图所示的空间直角坐标系,如图,取1,CC CD 的中点分别为,N M ,连接11,,,AM MN B N AB ,由于1AB MN ∥,所以1,,,A B N M 四点共面,且四边形1AB NM 为梯形,()()()()()12,0,0,0,1,0,0,2,1,0,0,2,1,2,0A M N D E ,()()()12,1,0,0,1,1,1,2,2AM MN D E =-==- ,因为11220,220AM D E MN D E ⋅=-+=⋅=-= 所以11,D E MN D E AM ⊥⊥,所以由线面垂直的判定可知1D E ⊥平面1AB NM ,即满足条件的所有点P 构成的图形为1AB NM ,由于11NM AB AM B N ===,则满足条件的所有点P构成的图形的周长为.故答案为:3225+24.10【分析】以A 为原点,建立空间直角坐标系,求得向量(0,2,1)AD = 和平面1A BD 的一个法向量为(3,1,2)n = ,结合向量的夹角公式,即可求解.【详解】如图所示,以A 为原点,过点A 垂直于AC 的直线为x 轴,以AC 和1AA 所在的直线分别为y 轴和z 轴,建立空间直角坐标系,因为正四棱柱111ABC A B C -的所有侧棱长及底面边长都为2,可得1(0,0,0),(0,0,2),(3,1,0),(0,2,1)A A B D ,则11(0,2,1),(3,1,2),(0,2,1)AD A B A D ==-=- ,设平面1A BD 的法向量为(,,)n x y z = ,则1132020n A B y z n A D y z ⎧⋅=+-=⎪⎨⋅=-=⎪⎩ ,令1y =,可得3,2x z ==,所以(3,1,2)n =,设直线AD 与平面1A BD 所成的角为θ,可得410sin cos ,5522AD n AD n AD n θ⋅====⨯ ,所以直线AD 与平面1A BD 所成的角的正弦值为105.故答案为:105.25.16391639【分析】将正四面体1234A A A A 放入正方体中,得到正方体的体对角线是12OA ,从而得到该正方体的边长,再根据条件得到P 扫过的区域的体积即可.【详解】图,作出正四面体1234A A A A ,将正四面体1234A A A A 放入正方体中,如下图所示:则O 是该正方体的中心,设该正方体的棱长为a ,则22212a a a ++=⨯,解得:233a =,又11223344OP OA OA OA OA λλλλ=+++ ,()011,2,3,4i i λ≤≤=,则知P 扫过的区域的边界是以该正方体的六个面作延伸的六个全等的正方体的中心为顶点的正方体,其中两个面如下图所示:可得动点P 扫过的区域的体积为该正方体体积的2倍,即动点P 扫过的区域的体积3233239V ⎛=⨯= ⎝⎭.故答案为:163.26.(1)①不是;②是(2)证明见解析(3)5【分析】(1)根据题干信息,利用二元基底的定义加以验证即可;(2)首先设12m e e e <<⋅⋅⋅<,计算出i j a xe ye =+的各种情况下的正整数个数并求出它们的和,结合题意可得:22C C m m m m n +++≥,即可得证:()1n m m ≤+;(3)由(2)可知()119m m +≥,所以4m ≥,并且得到结论“基底中元素表示出的数最多重复一个”,再讨论当4m =时,集合E 的所有情况均不可能是A 的4元基底,而当5m =时,A 的一个基底{}1,3,5,9,16E =,由此可得m 的最小值为5.【详解】(1){}1,2E =不是{}1,2,3,4,5A =的一个二元基底理由是{}()412,1,0,1x y x y ≠⋅+⋅∈-{}2,3E =是{}1,2,3,4,5,6A =的一个二元基底理由是11213=-⨯+⨯;21203=⨯+⨯;30213=⨯+⨯;41212=⨯+⨯,51213=⨯+⨯,61313=⨯+⨯.(2)不妨设12m e e e <<⋅⋅⋅<,则形如()101i j e e i j m ⋅+⋅≤<≤的正整数共有m 个;形如()111i i e e i m ⋅+⋅≤≤的正整数共有m 个;形如()111i j e e i j m ⋅+⋅≤<≤的正整数至多有2C m 个;形如()()111i j e e i j m -+⋅≤<≤的正整数至多有2C m 个;又集合{}1,2,3,,A n =⋅⋅⋅含有n 个不同的正整数,E 为集合A 的一个m 元基底.故22C C m m m m n +++≥,即()1m m n +≥.(3)由(2)可知()119m m +≥,所以4m ≥.当4m =时,()1191m m +-=,即用基底中元素表示出的数最多重复一个.假设{}1234,,,E e e e e =为{}1,2,3,,19A =⋅⋅⋅的一个4元基底,不妨设1234e e e e <<<,则410e ≥.当410e =时,有39e =,这时28e =或27e =.如果28e =,则1109=-,198=-,1899=+,18108=+,重复元素超出一个,不符合条件;如果27e =,则16e =或15e =,易知{}6,7,9,10E =和{}5,7,9,10E =都不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当411e =时,有38e =,这时27e =,16e =,易知{}6,7,8,11E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当412e =时,有37e =,这时26e =,15e =,易知{}5,6,7,12E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当413e =时,有36e =,这时25e =,14e =,易知{}4,5,6,13E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当414e =时,有35e =,这时24e =,13e =,易知{}3,4,5,14E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当415e =时,有34e =,这时23e =,12=e ,易知{}2,3,4,15E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当416e =时,有33e =,这时22e =,11e =,易知{}1,2,3,16E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当417e ≥时,E 均不可能是A 的4元基底.当5m =时,易验证A 的一个基底{}1,3,5,9,16E =,理由:11101=⨯+⨯;21111=⨯+⨯;31301=⨯+⨯;41113=⨯+⨯;51501=⨯+⨯;61313=⨯+⨯;719116=-⨯+⨯;81315=⨯+⨯;91901=⨯+⨯;101515=⨯+⨯;1115116=-⨯+⨯;121319=⨯+⨯;1313116=-⨯+⨯;141519=⨯+⨯;1511116=-⨯+⨯;1611601=⨯+⨯;1711611=⨯+⨯;181919=⨯+⨯;1911613=⨯+⨯.综上所述,m 的最小值为5.【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的:遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,照章办事,逐条分析、验证、运算,使问题得以解决.。
高二上学期数学期中考试试卷第1套真题
高二上学期数学期中考试试卷一、单选题1. 在空间直角坐标系中,点关于平面对称的点的坐标为()A .B .C .D .2. 由下列主体建筑物抽象得出的空间几何体中为旋转体的是()A .B .C .D .3. 已知,则直线AB的倾斜角为()A . 0°B . 90°C . 180°D . 不存在4. 下列四面体中,直线EF与MN可能平行的是()A .B .C .D .5. 已知点在直线上,若,则直线的斜率为()A . 2B . ﹣2C .D .6. 设为三条不同的直线,为三个不同的平面,则下列结论成立的是()A . 若且,则B . 若且,则 C . 若且,则D . 若且,则7. 已知圆C的一条直径的端点坐标分别是和,则圆C的方程是()A .B .C .D .8. 一个长方体由同一顶点出发的三条棱的长度分别为2,2,3,则其外接球的表面积为()A .B .C .D .9. 已知满足不等式组,则的最大值为()A . 12B . 16C . 18D . 2010. 直线与直线在同一坐标系中的图象可能是()A .B .C .D .11. 如图,在正方体中,平面,垂足为H,给出下面结论:①直线与该正方体各棱所成角相等;②直线与该正方体各面所成角相等;③过直线的平面截该正方体所得截面为平行四边形;④垂直于直线的平面截该正方体,所得截面可能为五边形,其中正确结论的序号为()A . ①③B . ②④C . ①②④D . ①②③12. 一条光线从点射出,经直线反射后与圆相切,则反射光线所在直线的方程是()A .B .C .D .二、填空题13. 已知点,则线段AB的中点坐标是________.14. 已知直线.若,则实数m=________.15. 某三棱锥的三视图如图所示,图中三个三角形均为直角三角形,则________.16. 中,,,,M为AB中点,将沿CM折叠,当平面平面AMC时,A,B两点之间的距离为________.三、解答题17. 已知的三个顶点的坐标是.(1)求BC边所在直线的方程;(2)求的面积.18. 已知正方体.(1)求证:平面;(2)求证:平面.19. 已知圆C的方程为.(1)设O为坐标原点求直线OC的方程;(2)设直线与圆C交于A,B两点,若,求实数t的值.20. 如图,在四棱锥中,平面ABCD,底面ABCD为矩形,且,垂足为E.(1)求PD与平面ABCD所成角的大小;(2)求三棱锥的休积.21. 如图,在四棱锥中,平面ABCD,,E为棱PC上不与点C重合的点.(1)求证:平面平而PAC;(2)若,且二面角的平面角为45°,求三棱锥的体积.22. 已知圆,圆(1)证明圆与圆相交;(2)若圆经过圆与圆的交点以及坐标原点,求圆的方程.23. 已知圆,圆.(1)试判断圆与圆是否相交,若相交,求两圆公共弦所在直线的方程,若不相交,说明理由;(2)若直线与圆交于A,B两点,且,求实数k的值.。
南京师范大学附属中学2023-2024学年高二上学期期中考试数学试卷(解析版)
南京师大附中2023—2024学年度第1学期高二年级期中考试数学试卷注意事项:1.本试卷共4页,包括单选题(第1题~第8题)、多选题(第9题~第12题)、填空题(第13题~第16题)、解答题(第17题~第22题)四部分.本试卷满分为150分,考试时间为120分钟.2.答题前,请务必将自己的姓名、班级、学号写在答题纸的密封线内.试题的答案写在答题纸上相应题目的答题区域内.考试结束后,交回答题纸.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若连续抛两次骰子得到的点数分别是m ,n ,则点(),P m n 在直线26x y −=上的概率是()A.13B.14C.112 D.118【答案】C 【解析】【分析】利用古典概型及直线方程计算即可.【详解】由题意可知抛掷两次骰子得出的点数有()()()()()()()()1,1,1,2,1,3,1,4,1,5,1,6,2,1,2,2,()()()()()()()()()()()()()()2,3,2,4,2,5,2,6,3,1,3,2,3,3,3,4,3,5,3,6,4,1,4,2,4,3,4,4,()()()()()()()()()()()()()()4,5,4,6,5,1,5,2,5,3,5,4,5,5,5,6,6,1,6,2,6,3,6,4,6.5,6,6共36种结果,即点(),P m n 有36个.而满足在26x y −=上的有()()()4,2,5,4,6,63种,故其概率为313612=.故选:C2.设m 为实数,已知直线1l :220mx y +−=,2l :()5350x m y +−−=,若12//l l ,则m =( )A.5− B.2C.2或5− D.5或2−【答案】D 【解析】【分析】根据两直线平行的充要条件得到方程,求出m 的值,再代入检验即可.【详解】因为直线1l :220mx y +−=与直线2l :()5350x m y +−−=平行, 所以()325m m −=×,解得2m =−或5m =,当2m =−时直线1l :10x y −+=与直线2l :10x y −−=平行,符合题意; 当5m =时直线1l :5220x y +−=与直线2l :5250x y +−=平行,符合题意. 综上可得:2m =−或5m =. 故选:D3. 若双曲线22221x y a b −=(0a >,0b >)的右焦点(),0F c,则b c =( )A.B.C.D.【答案】A 【解析】【分析】利用点到直线的距离公式及双曲线的性质计算即可.【详解】易知双曲线22221x y a b−=的一条渐近线为b y x a =,故(),0F c到其距离为d b ==,所以b c =. 故选:A4. 在平面直角坐标系xOy 中,已知点()3,0A ,动点(),P x y 满足2PA PO=,则动点P 的轨迹与圆()()22111x y −+−=的位置关系是( )A. 外离B. 外切C. 相交D. 内切【答案】C 【解析】【分析】利用已知条件列出方程,化简可得点P 的轨迹方程为圆,再判断圆心距和半径的关系即可得解.【详解】由2PAPO=,得2PA PO =,()2214x y ++=, 表示圆心为(1,0)−,半径为2R =的圆,圆()()22111x y −+−=的圆心为(1,1)为圆心,半径1r =,,满足2121−<<+,所以两个圆相交. 故选:C.5. 设等差数列{}n a 的前n 项和为n S ,若634S S =,则96S S =( ) A.32B. 4C.94D.116【答案】C 【解析】【分析】由已知条件利用等差数列前n 项和公式推导出12d a =,由此能求出96S S 的值 【详解】设等差数列{}n a 的首项为1a ,公差为d , ∵等差数列{}n a 前n 项和为n S ,634S S =, ∴11656243232a d a d×+=×+,整理得12d a =, ∴1916119899369265615462a d S a d S a d a d ×++===×++.故选:C .6. 已知抛物线C 的顶点是原点O ,焦点F 在x 轴的正半轴上,经过点F 的直线与抛物线C 交于A ,B 两点,若12OA OB ⋅=−,则抛物线C 的方程为( ) A. x 2=8y B. x 2=4y C. y 2=8xD. y 2=4x的【答案】C 【解析】 【分析】设抛物线方程为22,(0)y px p =>,直线方程为2px my =+再联立,利用韦达定理表示12OA OB ⋅=− 进而求得抛物线方程即可.【详解】由题意,设抛物线方程为22,(0)y px p =>,直线方程为2p x my =+,联立222y px p x my ==+消去x 得2220y pmy p −−=,显然方程有两个不等实根.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2pm ,y 1y 2=-p 2,得222221212121223444y y p OA OB x x y y y y p p p ⋅=+=+=−=− , 故23124p −=−得p =4(舍负),即抛物线C 的方程为y 2=8x . 故选:C【点睛】本题主要考查了联立直线与抛物线方程利用韦达定理求解平面向量数量积的问题,属于中等题型.7. 设m 为正实数,椭圆C :22213x y m+=长轴的两个端点是1A ,2A ,若椭圆C 上存在点P 满足12012A PA ∠=°,则m 的取值范围是( ) A. ][()0,19,∞∪+ B. (][)0,13,∪+∞C. ([)4,+∞D. ([)9,+∞【答案】B 【解析】【分析】当P 位于短轴的端点时,12A PA ∠取最大值,要使椭圆上存在点P 满足12012A PA ∠=°,则此时12120A PA ∠≥°,则160A PO ∠≥°,讨论焦点在x 轴和在y 轴上两种情况即可求解.【详解】因为m 为正实数,则若椭圆焦点在x 轴上,即203m <<,即0m <<则当P 位于短轴的端点时,12A PA ∠取最大值,要使椭圆上存在点P 满足12012A PA ∠=°,则此时12120A PA ∠≥°,则160A PO ∠≥°,则1tan tan 60A PO ∠≥ ,解得01m <≤;若椭圆焦点在y 轴上,即23m >,即m >时,则当P 位于短轴的端点时,12A PA ∠取最大值,要使椭圆上存在点M 满足12012A PA ∠=°,则此时12120A PA ∠≥°,则160A PO ∠≥°,则1tan tan 60A PO ∠≥ ,解得3m ≥, 综上,m 的取值范围是(][)0,13,∪+∞ 故选:B.8. 瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,这条直线被后人称为三角形的“欧拉线”.在平面直角坐标系中作ABC ,满足5AB AC ==且()1,3B −,()4,2C −,若ABC 的“欧拉线”与圆M :()2223x y r −+=(0r >)相切,则下列结论正确的是( )A. 圆M 上点到直线10x y −+=的最小距离为B. 圆M 上点到直线10x y −+=的最大距离为C. 点P 在圆M 上,当PBA ∠最小时,PB =D. 点P 在圆M 上,当PBA ∠最大时,PB =【答案】C 【解析】【分析】先根据定义确定ABC 的“欧拉线”方程,再根据直线与圆相切求出圆M ,由圆与直线的位置关系及平行线的距离一一判定选项即可.【详解】由题意可知BC =所以ABC 是以A 为顶点的等腰三角形,则其欧拉线为BC 的中垂线,易知32114BC k +==−−−,BC 的中点为31,22,故ABC 的“欧拉线”方程为:13122y x y x −=−⇒=−,可设(),1A a a −,由51AB AC a ==⇒=−或4a =, 即()1,2−−A 或()4,3A ,又圆M :()2223x y r −+=,可知圆心()3,0M ,根据圆M 与欧拉线相切可得()3,0M 到1y x =−的距离为d r ==,即圆M :()2232x y −+=,对于A 、B 选项,显然10x y −+=与1y x =−平行,两平行线的距离为d ,故圆M 上的点到10x y −+=的距离最大为2r d +,最小值为d =故A 、B 均错误;对于C 、D 选项,易知当点P 为直线PB 与圆M 的切点时PBA ∠取得最值,此时PB =,故D 错误,C 正确.故选:C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知一组样本数据2,4,4,5,7,8,则这组数据的( ) A. 极差为6 B. 众数为4C. 方差为4D. 中位数为5【答案】ABC 【解析】【分析】根据平均数、方差、众数、中位数的定义计算可得. 【详解】依题意这组数据的众数为4,极差为826−=,中位数为454.52+=,平均数为()124457856+++++=, 所以方差为()()()()()()222222125454555758546−+−+−+−+−+−=. 故选:ABC10. 下列化简正确的是( )A. 1sin75cos754°°=B.1cos 4040sin 802°+°=°C. 1sin10cos 20cos 408°°°= D. tan1052°=−【答案】ACD 【解析】【分析】利用二倍角公式、诱导公式、两角和的正切公式,结合特殊角的三角函数值依次判断即可. 【详解】对于A ,根据二倍角的正弦公式可得111sin75cos752sin75cos75sin150224°°=⋅°°=°=,A 正确;对于B ,1cos 4040sin 30cos 40cos30sin 40sin 70sin 802°+°=°°+°°=°≠°, 所以B 错误;对于C ,8cos10sin10cos 20cos 40sin 801sin10cos 20cos 408cos108sin 808°°°°°°°°===°°,所以C 正确;对于D ,()tan 60tan 45tan105tan 604521tan 60tan 45+°=+°===−−, 所以D 正确; 故选:ACD11. 若抛物线22y px =(0p >)的焦点为F ,其准线与x 轴交于点A .过点F 作直线l 与抛物线交于点,M N ,且MF FN λ=(1λ>),直线AM 与抛物线的另一交点为E (点E 在点M 的左边).下列结论正确的是( ) A. 直线lB. tan MAF ∠C. MAF NAF ∠=∠D. AE AN =【答案】CD 【解析】【分析】设直线l 的方程为2px my =+,()()1122,,,M x y N x y ,根据MF FN λ= (1λ>),可得12,y y 的关系,联立方程,利用韦达定理求出1212,y y y y +,进而可求出12,y y ,从而可求出m ,即可判断A ;求出M 点的坐标即可判断B ;根据0AM AN k k +=是否成立即可判断C ;根据C 选项结合抛物线的对称性即可判断D. 【详解】,0,,022p p F A−, 设直线l 的方程为2px my =+,()()1122,,,M x y N x y , 则1122,,,22p p MF x y FN x y=−−=−,因为MF FN λ=(1λ>),所以121222p p x x y y λλ −=− −= ,所以()121212p x x y y λλλ=+−=− , 联立222p x my y px=+ = 得2220y pmy p −−=,则21212,2y y pm y y p +==−, 所以()12212y y y pm λ+=−=,所以2122,11pm pm y y λλλ==−−−, 所以2122211pm pm y y p λλλ=−⋅=−−−,解得1m =即直线l的斜率为,故A 错误; 由121pm y λλ=−−,得()()()()222222222112241212422211p m p y pm p x ppλλλλλλλλλ−⋅−=====−−,由1m =,得121p y λλ =−⋅=± −即,2p M λ ±,所以MA k ==,故B 错误;1212121222AM AN y y y y k k pp my p my p x x +=+=+++++()()()()()22121212122220my y p y y mp mp my p my p my p my p ++−+==++++, 所以AM AN k k =−,所以直线,AM AN 关于x 轴对称,所以MAF NAF ∠=∠,故C 正确;由题意可得,E N 都在M 的左侧,且直线,AM AN 关于x 轴对称, 根据抛物线的对称性可得AE AN =,故D 正确. 故选:CD.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解12. 已知曲线C:12yx +是双曲线,下列说法正确的是( ) A. 直线0x =是曲线C 的一条渐近线 B. 曲线CC. (为曲线C 的其中一个焦点D. 当t 为任意实数时,直线l :yx t =+与曲线C 恒有两个交点【答案】ACD 【解析】【分析】A 选项,根据对勾函数的性质判断;B选项根据对勾函数的性质得到y x =是双曲线的另外一条渐近线,然后联立123y x yx ==+得到顶点坐标,即可得到实轴长;C选项,根据渐近线的特点得.到虚轴长,即可得到焦距,然后求焦点坐标即可;D 选项,根据渐近线的性质判断.【详解】根据对勾函数的性质可得0x =是双曲线的一条渐近线,故A 正确; 当x →+∞时,双曲线的方程趋近于y x =,所以y x =是双曲线的另外一条渐近线,倾斜角为30°,所以y =是双曲线的一条对称轴,联立123y x y x ==+得32x y = =或32x y==−,所以点32和32−,故B 错; 如图,设双曲线的一个焦点为F ,过双曲线的一个顶点A 作AB垂直y =交0x =于点B , 30AOB ∠=°,OA =2,焦距为4,即2OF =,所以(F ,故C 正确;因为y x =,0x =为渐近线方程,所以yx t =+与双曲线有两个交点,故D 正确.故选:ACD.【点睛】结论点睛:对勾函数(),0by ax a b x=+>的渐近线方程:0x =;y bx =. 三、填空题:本题共4小题,每小题5分,共20分.13. 过直线4250x y ++=与3290x y −+=的交点,且垂直于直线210x y ++=的直线方程是______. 【答案】11202x y −+= 【解析】【分析】首先求出两直线的交点坐标,设所求直线方程为20x y n −+=,代入交点坐标求出n 的值,即可得解.【详解】由42503290x y x y ++= −+= ,解得232x y =− =,所以直线4250x y ++=与3290x y −+=的交点为32,2−, 设所求直线方程为20x y n −+=,则()32202n ×−−+=,解得112n =, 所以所求直线方程为11202x y −+=. 故答案为:11202x y −+= 14. 已知椭圆2212516x y +=的右焦点为F ,点P 在椭圆上且在x 轴上方.若线段PF 的中点M 在以原点O 为圆心,||OF 为半径的圆上,则直线PF 的斜率是_______________.【答案】−. 【解析】【分析】设椭圆得左焦点为F ′,连接,OM PF ′,根据线段PF 的中点M 在以原点O 为圆心,||OF 为半径的圆上,可得OMOF c ==,从而可求得,PF PF ′,在PFF ′ ,利用余弦定理求得PFF ′∠的余弦值,从而可得出答案.【详解】解:设椭圆得左焦点F ′,连接,OM PF ′,由椭圆2212516x y +=得,5,4,3a b c ===, 则()()3,0,3,0F F ′−,26FF c ′==,210PF PF a ′+==, 因为点M 在以原点O 为圆心,||OF 为半径的圆上, 所以3OM OF c ===,因为,O M 分别为,FF PF ′得中点,所以26PF OF ′==,所以104PF PF ′=−=, 所以1636361cos 2463PFF+−′∠==××,则sin PFF ′∠ 为所以tan PFF =′∠,因为点P 在椭圆上且在x 轴上方,则直线PF 的倾斜角与PFF ′∠互补,所以直线PF 的斜率−.故答案为:−.15. 设ω是正实数,已知函数()sin cos f x x x ωω=−在区间()0,π上恰有两个零点,则ω的取值范围是______. 【答案】59,44【解析】【分析】先用辅助角公式化简函数式,再根据三角函数的性质计算即可.【详解】由()πsin cos 4f x x x x ωωω=−−,由()πππ0,π,π444x x ωω∈⇒−∈−−, 因为函数()sin cos f x x x ωω=−在区间()0,π上恰有两个零点, 则π59ππ2π,444ωω <−≤⇒∈ 故答案为:59,4416. 双曲线具有如下光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.已知双曲线22:14x C y −=的左焦点为F ,过双曲线C 右支上任意一点作其切线l ,过点F 作直线l 的垂线,垂足为H ,则点H 的轨迹方程为______.【答案】224(x y +=其中x > 【解析】【分析】由双曲线的光学性质,得到AH 为12F AF ∠的平分线,延长FH 交2AF 于点E ,根据中位线的性质,得到222111()()222OH F E AE AF AF AF a ==−=−=,结合圆的定义和双曲线的几何性质,即可求解.【详解】由双曲线22:14x C y −=,可得2a =,其右焦点为2F ,且渐近线方程为12y x =±,设双曲线C 右支上任意一点A ,过点F 作直线l 的垂线,垂足为H , 则过点A 的切线为AH ,根据双曲线的光学性质,可得AH 为12F AF ∠的平分线,延长FH ,设FH 的延长线与2AF 的延长线交于点E ,如图所示, 则AH 垂直平分FE ,即点H 为FE 的中点,又因为O 的中点,所以222111()()2222OH F E AE AF AF AF a ==−=−==, 可得点H 2为半径的圆, 可得点H 的轨迹方程为224x y +=,联立方程组22124y x x y =± +=,可得x =, 因为A 在双曲线的右支上,且AH 为双曲线的切线,则12AH k ≥, 所以点H 的轨迹方程为224(x y +=其中x >. 故答案为:224(x y +=其中x >.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 某中学举办科技文化节活动,报名参加数学史知识竞赛的同学需要通过两轮选拔.第一轮为笔试,若笔试不合格则不能进入下一轮选拔;若笔试合格,则进入第二轮现场面试.最终由面试合格者代表年级组参加全校的决赛,两轮选拔之间相互独立.现有甲、乙、丙三名学生报名参加本次知识竞赛,假设甲、乙、丙三名考生笔试合格的概率分别是23,12,34,面试合格的概率分别是12,23,13. (1)求甲、乙两位考生中有且只有一位学生获得决赛资格的概率; (2)求三人中至少有一人获得决赛资格的概率. 【答案】(1)49. (2)23. 【解析】【分析】(1)设事件A 表示“甲考生获得决赛资格”,设事件B 表示“乙考生获得决赛资格”,根据题意可判断两事件相互独立.先根据两轮选拔之间相互独立求出()P A 、()P B ;再根据互斥事件概率加法公式和相互独立事件概率计算公式即可求出结果.(2)设事件C 表示“丙考生获得决赛资格”,由题意可知事件A 、B 、C 相互独立.借助对立事件的概率计算公式可得结果. 【小问1详解】设事件A 表示“甲考生获得决赛资格”,设事件B 表示“乙考生获得决赛资格”,由题意可知事件A 、B 相互独立.因为两轮选拔之间相互独立 所以()211323P A =×=,()121233P B =×=. 则甲、乙两位考生中有且只有一位学生获得决赛资格的概率为:()()()()()()()111141133339P P AB AB P AB P AB P A P B P A P B =+=+=+=×−+−×=所以甲、乙两位考生中有且只有一位学生获得决赛资格的概率49. 【小问2详解】设事件C 表示“丙考生获得决赛资格”,由题意可知事件A 、B 、C 相互独立. 则()314431P C =×=. 因为事件“三人中至少有一人获得决赛资格”的对立事件是“三人都没有获得决赛资格” 所以三人中至少有一人获得决赛资格的概率为()()()()11121111113343P P ABC P A P B P C =−=−=−−−−= 所以三人中至少有一人获得决赛资格的概率23. 18. 设等差数列{}n a 前n 项和为n S .已知262a a +=,918S =−. (1)求n a ;(2)当n 为何值时,n S 最小?并求此最小值.【答案】(1)133na n =− (2)8,4 【解析】【分析】(1)设等差数列{}n a 的公差为d ,由262a a +=,918S =−求解; (2)由()()()1233,71223312323,82nn n n S n n n n n −≤ =−= −≥ ,分7n ≤,8n ≥,利用二次函数的性质求解. 【小问1详解】解:设等差数列{}n a 的公差为d ,又262a a +=,918S =−, 所以11262,93618a d a d +=+=−, 解得110,3a d ==−,所以()11133n a a n d n =+−=−;的【小问2详解】由(1)得()()()1233,71223312323,82nn n n S n n n n n −≤ =−= −≥ , 当7n ≤时,()2132352923322624n T n n n =−=−−+, 当13,N n n ≤≤∈时,n T 递增,当47,N n n ≤≤∈时,n T 递减,又1710,7T T ==, 所以n T 的最小值为7;当8n ≥时,()2132352932322624n T n n n =−=−−,n T 在[8,)+∞上递增,又84T =, 所以n T 的最小值为4, 综上:n S 的最小值为4.19. 在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 且满足()sin sin sin sin b B C a A c C −=−. (1)求角A 的值;(2)若a =,且ABC的面积为ABC 的周长. 【答案】(1)π3(2)6+ 【解析】【分析】(1)利用正弦定理进行边角互换,然后利用余弦定理求A ;(2)根据三角形面积公式得到8bc =,根据余弦定理得到2220b c +=,然后求周长即可. 【小问1详解】由正弦定理得()22b bc a c −=−,整理得222b c a bc +−=,所以2221cos 222b c a bc A bc bc +−===, 因为()0,πA ∈,所以π3A =. 【小问2详解】因为ABC的面积为1sin 2bc A=,则8bc =, 由余弦定理得22112cos 22b c A bc+−==,则2220b c +=, 所以()222236b c b c bc +=++=,则6b c +=, 所以ABC的周长为6+.20. 已知抛物线C :22y px =()0p >的焦点为F ,点()2,A a 在抛物线C 上,且3AF =. (1)求抛物线C 的方程,并写出焦点坐标;(2)过焦点F 的直线l 与抛物线C 交于M ,N 两点,若点()1,1B −满足90MBN ∠=°,求直线l 的方程.【答案】(1)24y x =,焦点为()1,0F(2)220x y −−=【解析】【分析】(1)首先表示出抛物线的准线方程,根据抛物线的定义及焦半径公式求出p ,即可求出抛物线方程;(2)设直线l 的方程为1x my =+,()11,M x y 、()22,N x y ,联立直线与抛物线方程,消元、列出韦达定理,由0BM BN ⋅=得到方程,解得即可. 【小问1详解】抛物线C :22y px =()0p >准线方程为2px =−, 因为点()2,A a 在抛物线C 上,且3AF =, 所以232pAF =+=,解得2p =, 所以抛物线方程为24y x =,焦点为()1,0F . 【小问2详解】由(1)可知抛物线的焦点()1,0F ,显然直线l 的斜率不为0,设直线l 的方程为1x my =+,()11,M x y 、()22,N x y , 的由214x my y x =+ =,消去x 整理得2440y my −−=,所以216160m ∆=+>,则124y y m +=,124y y =−, 所以()21212242x x m y y m +=++=+,()()()2121212121111x x my my m y y m y y =++=+++=,又()1,1B −,所以()111,1BM x y =+− 、()221,1BN x y =+− , 因为90MBN ∠=°,所以()()()()211211110BM BN x x y y ⋅=+++−−=,即()()12121212110x x x x y y y y ++++−++=, 即214214410m m +++−−+=,解得12m =, 所以直线l 的方程为112x y =+,即220x y −−=.21. 已知椭圆C :22154x y +=和圆O :229x y +=,点P 是圆O 上的动点,过点P 作椭圆的切线1l ,2l 交圆O 于A ,B .(1)若点P 的坐标为()0,3,证明:直线12l l ⊥; (2)求线段AB 的长. 【答案】(1)证明见解析 (2)6 【解析】【分析】(1)设切线方程为3ytx =+,联立方程,再根据Δ0=结合韦达定理证明121t t =−即可; (2)分过点P 的一条切线斜率不存在和斜率存在两种情况讨论,联立方程,再根据Δ0=结合韦达定理证明12l l ⊥即可得出答案. 【小问1详解】由题意切线的斜率存在,设切线方程为3ytx =+, 联立223154ytx x y =+ +=,消y 得(225430250t x tx +++=, 则()222900100544004000t t t ∆=−+=−=, 所以121t t =−,即121l l k k ⋅=−, 所以12l l ⊥; 【小问2详解】设(),P m n ,则229m n +=,椭圆C :22154x y +=2,当过点P的一条切线斜率不存在时,不妨取这条切线方程为x =此时m =229n +=,解得2n =±,而直线2y =±与椭圆C 相切,所以当过点P 的一条切线斜率不存在时,12l l ⊥,当过点P的切线斜率存在时,则m ≠,设切线方程为()y nk x m −=−, 联立()22154y n k x m x y −=− += ,消y 得()()()22254105200k x k n km x n km ++−+−−=, 则()()()2222100205440k n km k n km ∆=−−+−−= , 化简得()2225240m k mnk n −++−=, 所以()2221222249451555m n m k k m m m−−−−====−−−−, 所以12l l ⊥,综上所述,12l l ⊥,所以线段AB 为圆O 的直径, 所以6AB =.【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22. 已知点()2,1A ,()2,1B −在双曲线C :2212x y −=上,过点()0,3D −作直线l 交双曲线于点E ,F (不与点A ,B 重合).证明:(1)记点(0,2P +,当直线l 平行于x 轴,且与双曲线的右支交点为E 时,P ,A ,E 三点共线; (2)直线AE 与直线BF 的交点在定圆上,并求出该圆的方程.【答案】(1)证明见解析.(2)证明见解析;()2225x y +−=.【解析】【分析】(1)根据题意求出点E 坐标,求出直线AE 、AP 的斜率相等,得证.(2)根据题意可求出BGA ∠为定值,AB 也为定值,所以G 在过,A B 的圆上,根据条件确定圆心和半径即可.【小问1详解】由题意,当直线l 平行于x 轴时,l 方程为=3y −,且与双曲线的右支交点为E ,则()22313)2x E −−=⇒−, AE的斜率AE k == AP的斜率AP AE k k =, 所以P ,A ,E 三点共线.【小问2详解】由题知直线EF 斜率存在,且过()0,3D −,设:3EF y kx =−,()()1122,,,E x y F x y 与双曲线2212x y −=联立得: ()221212200k x kx −+−=,2120−≠k 且280160k ∆=−> 则1212222012,2121k x x x x k k =+=−−, 设直线AE 与直线BF 的交点为G ,斜率分别为12,k k , 则()()()()()211212121221121212121114281622tan 111124412122y y k x x x k k x x BGA y y k k k x x k x x x x x −−−−+−+−+−∠===−−++−+++++⋅+−2122128481681224248412k k x k k k x k −−+−−==−+−+−,tan 2sin BGA BGA ∠=−⇒∠ 在BGA △中,sin BGA ∠,AB 4=, 由正弦定理得BGA △外接圆半径2sin AB R BGA ==∠,所以G 在过,A BH , 因为()2,1A ,()2,1B −,H 在线段AB 的中垂线上, 所以H 在y 轴上,设(0,),1H t t >, 则由()()2222151132AB R t t t =+−⇒=+−⇒=或0=t 舍, 所以定圆方程为()2225x y +−=.。
2022-2023学年天津市耀华中学高二上学期期中考试数学试卷含详解
天津市耀华中学2022-2023学年度第一学期期中学情调研高二年级数学学科试卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共100分.考试用时100分钟.祝同学们考试顺利!第I 卷(选择题共48分)一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,有且只有一项是符合题目要求的,请把正确答案填涂在答题卡上.1.已知直线l 与直线1:230l x y -+=和2:210l x y --=平行且距离相等,则直线l 的方程为()A.210x y -+=B.210x y ++=C.220x y -+= D.220x y ++=2.已知直线()1:13l ax a y +-=与2:22l x ay +=互相垂直,则实数=a ()A.0a =或3a =-B.0a =或3a =C.0a = D.3a =3.过点()2,3的直线l 与圆C :22430x y x +++=交于A ,B 两点,当弦AB 取最大值时,直线l 的方程为()A.3460x y -+= B.3460x y --= C.4380x y -+= D.4380x y +-=4.如图,在四面体OABC 中,,,OA a OB b OC c === ,且11,24OE EA BF BC == ,则EF =()A.131344a b c -+B.131344a b c ++C.131344a b c --+D.131344a b c -++5.已知圆M 的半径为1,若此圆同时与x 轴和直线y =相切,则圆M 的标准方程可能是()A.22((1)1x y -+-= B.22(1)(1x y -+=C .22(1)(1x y -++= D.22((1)1x y ++=6.如图,在正方体1111ABCD A B C D -中,点,M N 分别是111,BC CC 的中点,直线DN 与1A M 所成角的余弦值为()A.45-B.45C.35-D.357.已知22:(2)2C x y -+=,过点()1,3P 的直线l 交圆C 于,A B 两点,且2AB =,则直线l 的方程是()A.43130x y +-=B.34130x y +-=C.1x =或43130x y +-=D.1y =或34130x y +-=8.曲线221259x y +=与221(09)925x y k k k+=<<--的关系是()A.有相等的焦距,相同的焦点B.有不等的焦距,相同的焦点C.有不等的焦距,不同的焦点D.有相等的焦距,不同的焦点9.已知圆222:()0O x y r r +=>,直线:34150l x y --=,圆O 上有且只有两个点到直线l 的距离为1,则圆O 半径r 的取值范围为()A.[]2,4 B.()2,4 C.(]2,3 D.[)3,410.已知()4,0A ,()0,4B ,从点()2,0P 射出的光线经直线AB 反射后,再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是()A.B.6C. D.11.已知正方体1111ABCD A B C D -的棱长为2,E ,F 分别为上底面1111D C B A 和侧面11CDD C 的中心,则点C 到平面AEF 的距离为()A.41111B.4C.1111D.2111112.已知椭圆2222:1(0),x y C a b C a b +=>>的上顶点为A ,左右焦点为12,F F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于,D E 两点,6DE =,则ADE V 的周长是()A.19B.14C.252D.13第II 卷(非选择题共52分)二、填空题:本大题共6小题,每小题4分,共计24分.不需写出解答过程,请把答案填在答案纸上的定位置.13.已知实数x ,y 满足22650x y x +++=,则1yx -的最大值为__________.14.过点()1,1P 且截距相等的直线方程为__________.15.在平面直角坐标系中,椭圆22221(0)x y a b a b +=>>的焦距为2c ,以O 为圆心,a 为半径作圆,过点2(,0)a c作圆的两切线互相垂直,则离心率e =_________.16.两圆22440x y x y ++-=和22280x y x ++-=相交于两点,M N ,则公共弦MN 的长为__________.17.如图,在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60 ,则对角线1AC 的长为__________.18.已知EF 是棱长为8的正方体外接球的一条直径,点M 在正方体表面上运动,则ME MF ⋅的最小值为__________.三.解答题:本大题共2小题,共28分,解答应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答案纸上.19.如图:在直三棱柱111ABC A B C -中,190,1ACB CA CB CC ∠==== ,D 是棱1BB 的中点,P 是1C D 的延长线与CB 的延长线的交点.(1)求证:AP 平面1A CD ;(2)求平面1A CD 与平面11AC D 的夹角的余弦值;(3)若点E 在线段AP 上,且直线1A E 与平面1A CD 所成的角的正弦值为147,求线段AE 的长.20.设椭圆2222:1(0)x y C a b a b +=>>的离心率为22,且经过点61,2⎛⎫ ⎪ ⎪⎝⎭.(1)求椭圆C 的标准方程;(2)设直线l 与椭圆C 交于,A B 两点,O 是坐标原点,OA OB OD +=,点D 刚好在椭圆C 上,已知点()0,1,P PAB,求直线l 的方程.天津市耀华中学2022-2023学年度第一学期期中学情调研高二年级数学学科试卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共100分.考试用时100分钟.祝同学们考试顺利!第I 卷(选择题共48分)一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,有且只有一项是符合题目要求的,请把正确答案填涂在答题卡上.1.已知直线l 与直线1:230l x y -+=和2:210l x y --=平行且距离相等,则直线l 的方程为()A.210x y -+=B.210x y ++=C.220x y -+=D.220x y ++=A【分析】设直线l 的方程为20(3,1)x y c c c -+=≠≠,然后利用两平行线间的距离公式列方程求解即可.【详解】设直线l 的方程为20(3,1)x y c c c -+=≠≠,=,解得:1c =,所以直线l 的方程为210x y -+=,故选:A .2.已知直线()1:13l ax a y +-=与2:22l x ay +=互相垂直,则实数=a ()A.0a =或3a =-B.0a =或3a =C.0a =D.3a =B【分析】直线()1:13l ax a y +-=与2:22l x ay +=互相垂直,若斜率不存在,则0a =或1a =,显然当0a =时两直线垂直;若两直线斜率存在时,则斜率积为1,-求出3a =.【详解】当0a =时,1:3l y =,2:1l x =,此时两直线垂直,当1a =时,1:3l x =,22:2l x y +=,此时两直线不垂直,当0,1a ≠时,两条直线分别化为:13:11a l y x a a =+--,222:l y x a a=-+, 直线()1:13l ax a y +-=与2:22l x ay +=互相垂直,211,a a a ⎛⎫-=- ⎪⎝⎭∴⨯-解得:3a =或0a =(舍去),综上可知:3a =或0a =.故选:B3.过点()2,3的直线l 与圆C :22430x y x +++=交于A ,B 两点,当弦AB 取最大值时,直线l 的方程为()A.3460x y -+=B.3460x y --= C.4380x y -+= D.4380x y +-=A【分析】要使过点()2,3的直线l 被圆C 所截得的弦AB 取最大值时,则直线过圆心,然后根据直线的两点式方程写出答案即可【详解】圆C :22430x y x +++=化为22(2)1x y ++=所以圆心坐标(2,0)-要使过点()2,3的直线l 被圆C 所截得的弦AB 取最大值时,则直线过圆心由直线方程的两点式得:023022y x -+=-+,即3460x y -+=故选:A4.如图,在四面体OABC 中,,,OA a OB b OC c === ,且11,24OE EA BF BC == ,则EF =()A.131344a b c -+B.131344a b c ++C.131344a b c --+D.131344a b c -++D【分析】利用空间向量基本定理求解出3144OF b c =+ ,从而求出131344EF OF OE a b c =-=-++ .【详解】因为14BF BC = ,所以1131()4444OF OB BF OB BC OB OC OB b c =+=+=+-=+,又1123OE EA a == ,所以131344EF OF OE a b c =-=-++ .故选:D5.已知圆M 的半径为1,若此圆同时与x轴和直线y =相切,则圆M 的标准方程可能是()A.22((1)1x y -+-=B.22(1)(1x y -+=C.22(1)(1x y -++=D.22((1)1x y ++=A【分析】设圆的方程为()()221x a y b -+-=,依题意利用圆心到直线的距离等于半径得到方程组,解得即可;【详解】解:设圆的方程为()()221x a y b -+-=,圆心为(),a b ,半径1r =,依题意11b ⎧==,解得1b a =⎧⎪⎨=⎪⎩或13b a =⎧⎪⎨=-⎪⎩或1b a =-⎧⎪⎨=⎪⎩或13b a =-⎧⎪⎨=⎪⎩,所以圆的方程为22((1)1x y-+-=或22((1)1xy +++=或22((1)13x y-++=或22((1)13x y ++-=;故选:A6.如图,在正方体1111ABCD A B C D -中,点,M N 分别是111,BCCC 的中点,直线DN 与1A M 所成角的余弦值为()A.45- B.45C.35-D.35B【分析】设正方体棱长为2,以D 为原点建立空间直角坐标系,写出向量1A M ,DN的坐标,利用数量积计算向量夹角的余弦值,其绝对值即直线DN 与1A M 所成角的余弦值.【详解】设正方体棱长为2,以D 为原点,DA ,DC ,1DD 分别为x 轴,y 轴,z 轴建立空间直角坐标系.则1(2,0,2)A ,()1,2,2M ,()0,0,0D ,()0,2,1N ,所以()11,2,0A M =- ,()0,2,1DN =,设直线DN 与1A M 所成角为θ,则114cos 5A M DNA M DNθ⋅===.故选:B.7.已知22:(2)2C x y -+=,过点()1,3P 的直线l 交圆C 于,A B 两点,且2AB =,则直线l 的方程是()A.43130x y +-=B.34130x y +-=C.1x =或43130x y +-=D.1y =或34130x y +-=C【分析】过点()1,3P 的直线l 与圆C 相交,弦长2AB=,有斜率存在与斜率不存在两种情况,故分类讨论即可.【详解】由题意可知圆心(2,0)C ,半径r =当直线斜率不存在时,此时1,x =将1x =代入圆的方程可得21y =,解得1y =±,所以弦长2AB =,符合条件,当直线斜率存在时,设直线方程为:3(1)y k x -=-即30kx y k --+=,圆心到直线的距离d ==由弦长公式可得2AB ===解得:43k =-,所以直线方程为:43(1)3y x -=--,即:43130x y +-=,综上可知直线l 的方程为:1x =或43130x y +-=.故选:C8.曲线221259x y +=与221(09)925x y k k k+=<<--的关系是()A.有相等的焦距,相同的焦点B.有不等的焦距,相同的焦点C.有不等的焦距,不同的焦点D.有相等的焦距,不同的焦点D【分析】根据椭圆标准方程的特点及焦距的定义即可求解.【详解】由题意可知,椭圆221259x y +=的焦点在x 轴上,且225916c =-=,所以4c =,焦距为2248c =⨯=,焦点坐标为()4,0±,椭圆221(09)925x y k k k+=<<--的焦点在y 轴上,且()()225916c k k =---=,所以4c =,焦距为2248c =⨯=,焦点坐标为()0,4±,所以两椭圆有相等的焦距,不同的焦点.故选:D.9.已知圆222:()0O x y r r +=>,直线:34150l x y --=,圆O 上有且只有两个点到直线l 的距离为1,则圆O 半径r 的取值范围为()A.[]2,4 B.()2,4 C.(]2,3 D.[)3,4B【分析】求出圆心到直线的距离,再由条件列出不等式|3|1r -<求解即可.【详解】圆心(0,0)到直线:34150l x y --=3=,又圆O 上有且只有两个点到直线l 的距离为1,所以|3|1r -<,解得24r <<.故选:B10.已知()4,0A ,()0,4B ,从点()2,0P 射出的光线经直线AB 反射后,再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是()A.B.6C.D.C【分析】求出P 关于直线AB 的对称点Q 和它关于y 轴的对称点T ,则QT 的长就是所求路程.【详解】由题意直线AB 方程为4x y +=,设P 关于直线AB 的对称点(,)Q a b ,则122422ba ab ⎧=⎪⎪-⎨+⎪+=⎪⎩,解得42a b =⎧⎨=⎩,即(4,2)Q ,又P 关于y 轴的对称点为(2,0)T -,QT ==.故选:C11.已知正方体1111ABCD A B C D -的棱长为2,E ,F 分别为上底面1111D C B A 和侧面11CDD C 的中心,则点C 到平面AEF 的距离为()A.41111B.114C.1111D.21111A【分析】建立空间直角坐标系,求出平面AEF 的法向量,按照距离的向量求法求解即可.【详解】如图,以A 为原点,1,,AB AD AA 所在直线为,,x y z 轴建立空间直角坐标系,易知(0,0,0),(1,1,2),(1,2,1),(2,2,0)A E F C ,设平面AEF 的法向量(,,)n x y z = ,则2020n AE x y z n AF x y z ⎧⋅=++=⎨⋅=++=⎩ ,令1y =-,解得(3,1,1)n =-- ,故点C 到平面AEF 的距离为6241111911n AC n⋅==++ .故选:A.12.已知椭圆2222:1(0),x y C a b C a b +=>>的上顶点为A ,左右焦点为12,F F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于,D E 两点,6DE =,则ADE V 的周长是()A.19B.14C.252D.13D【分析】由离心率为12,得到a ,b ,c 之间的关系,做出简图,分析可得直线DE 的方程为:3()3y x c =+,且直线DE 垂直平分2AF ,所以ADE V 的周长等于2F DE △的周长,等于4a ,将直线方程与椭圆方程2222143x y c c+=联立,利用弦长公式求出c ,a 的值.【详解】因为椭圆的离心率为12c e a ==,所以2a c =,b ==,如图,12122AF AF F F c ===,所以12AF F △为正三角形,又因为直线DE 过1F 且垂直于2AF ,所以1230DFF ∠=︒,直线DE 的方程为:3()3y x c =+,设点D 坐标()11,x y ,点E 坐标()22,x y ,将直线方程与椭圆方程2222143x y c c +=联立,得22138320x cx c +-=,则12813c x x +=-,2123213c x x =-,所以48613c DE ===,得138c =,134a =.由图,直线DE 垂直平分2AF ,所以ADE V 的周长等于2F DE △的周长,等于413a =.故选:D.第II 卷(非选择题共52分)二、填空题:本大题共6小题,每小题4分,共计24分.不需写出解答过程,请把答案填在答案纸上的定位置.13.已知实数x ,y 满足22650x y x +++=,则1yx -的最大值为__________.3【分析】由1yx -的几何意义为圆上的点与(1,0)连线的斜率,利用点线距离公式求过(1,0)与圆相切直线的斜率,即可得最大值.【详解】1yx -可看作圆上的点与(1,0)连线的斜率,当直线与圆相切时斜率取最值,∴设直线方程(1)y k x =-,圆心(3,0)-,半径2r =,圆心到直线距离2d ==,∴33k =±,故最大值为33.故答案为:33.14.过点()1,1P 且截距相等的直线方程为__________.0x y -=或20x y +-=【分析】求过点()1,1P 且截距相等的直线方程,分为过原点与不过原点两种情况讨论即可.【详解】当直线经过原点时,设直线方程,y kx =代入()1,1P 得1k =,所以直线方程为:y x =,即0,x y -=当直线不经过原点时,设直线方程为,x y a +=代入()1,1P 得112a =+=,所以直线方程为:2x y +=,即20x y +-=,综上所求直线方程为:0x y -=或20x y +-=.故答案为:0x y -=或20x y +-=15.在平面直角坐标系中,椭圆22221(0)x y a b a b +=>>的焦距为2c ,以O 为圆心,a 为半径作圆,过点2(,0)a c作圆的两切线互相垂直,则离心率e =_________.22【分析】根据圆的性质,结合椭圆离心率公式进行求解即可.【详解】由题意可知:圆的方程为222x y a +=,设两切点为,A B ,由圆的性质和题意可知:4POA π∠=,且OA PA ⊥,因此POA 是直角三角形,故222cos422OA a c e a OP a cπ=⇒=⇒==,故答案为:2216.两圆22440x y x y ++-=和22280x y x ++-=相交于两点,M N ,则公共弦MN 的长为__________.12551255【分析】根据已知条件联立方程组,求出交点坐标,利用两点间的距离公式即可求解.【详解】由2222440280x y x y x y x ⎧++-=⎨++-=⎩,解得40x y =-⎧⎨=⎩,或45125x y ⎧=⎪⎪⎨⎪=⎪⎩,所以不妨取两圆的交点为()4124,0,,55M N ⎛⎫- ⎪⎝⎭,所以2241212540555MN ⎛⎫⎛⎫=--+-= ⎪ ⎪⎝⎭⎝⎭.故答案为:1255.17.如图,在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60 ,则对角线1AC 的长为__________.【分析】由11AC AB BC CC =++,结合数量积向量运算即可求【详解】由题,11AC AB BC CC =++,则()2222211111222AC AB BC CC AB BC CC AB BC BC CC AB CC =++=+++⋅+⋅+⋅ 2363266cos 60216=⨯+⨯⨯⨯⨯︒=,故1AC ==故答案为:18.已知EF 是棱长为8的正方体外接球的一条直径,点M 在正方体表面上运动,则ME MF ⋅的最小值为__________.32-【分析】根据已知条件及正方体的体对角线为正方体外接球的直径,再利用平面向量的数量积的运算,结合平面向量的线性运算即可求解.【详解】由题意可知,EF 为棱长为8的正方体外接球的一条直径,O 为球心,M 为正方体表面上的任意一点,如图所示则球心O 也就是正方体的中心,所以正方体的中心O 到正方体表面任意一点M 的距离的最小值为正方体的内切球半径,它等于棱长的一半为4,EF=.()()()()22ME MF MO OE MO OF MO OE MO OE OM OE⋅=+⋅+=+⋅-=-222482OM OM ⎛⎫=-=- ⎪ ⎪⎝⎭所以ME MF ⋅的最小值为244832-=-.故答案为:32-.三.解答题:本大题共2小题,共28分,解答应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答案纸上.19.如图:在直三棱柱111ABC A B C -中,190,1ACB CA CB CC ∠==== ,D 是棱1BB 的中点,P 是1C D 的延长线与CB 的延长线的交点.(1)求证:AP 平面1A CD ;(2)求平面1A CD 与平面11AC D 的夹角的余弦值;(3)若点E 在线段AP 上,且直线1A E 与平面1A CD 所成的角的正弦值为147,求线段AE 的长.(1)证明见解析(2)55(3)53【分析】(1)连接1AC 交1AC 于O ,连接DO ,则O 是1AC 的中点,由三角形中位线得AP DO ∥,再由线面平行的判定定理即可证明.(2)建立坐标系,求出平面1A CD 与平面11AC D 的法向量,利用空间向量求出夹角的余弦值.(3)先设出E 点位置AE AP λ=,再利用直线1A E 与平面1A CD 所成的角的正弦值为147求出λ,即可求出AE 的长.【小问1详解】连接1AC 交1AC 于O ,连接DO ,则O 是1AC 的中点,D 是棱1BB 的中点,1B D BD ∴=,1111,90B DC BDP C B D PBD ︒∠=∠∠=∠= ,11B DC BDP ∴ ≌,1C D PD ∴=,D ∴是1C P 的中点,AP DO ∴∥,DO ⊂ 平面1A CD ,AP ⊄平面1A CD ,AP ∴ 平面1A CD .【小问2详解】以C 为坐标原点,以1,,CA CB CC 为坐标轴建立空间直角坐标系,C xyz -则111(0,0,0),(1,0,1),(0,1,(0,0,1),2C AD C 111111(1,0,1),=01(1,0,0),(0,1,22CA CD C A C D ∴===- (,,),设平面1A CD 的法向量为111(,,)m x y z = ,平面11AC D 的法向量为222(,,)n x y z = ,则111100,,00n C A m CA n C D m CD ⎧⎧⋅=⋅=⎪⎪⎨⎨⋅=⋅=⎪⎪⎩⎩即112112200,,110022x z x y z y z +==⎧⎧⎪⎪⎨⎨+=-=⎪⎪⎩⎩令12z =得(2,1,2),m =--令22z =得(0,1,2),n =cos,,5m nm nm n⋅∴===⋅由图可知平面1A CD与平面11AC D的夹角为锐角,所以平面1ACD 与平面11AC D 的夹角的余弦值为55.【小问3详解】1(1,2,0),(0,0,1),AP AA=-=设(,2,0)(01AE APλλλλ==-≤≤),则11(,2,1),A E AE AAλλ=-=--则111sin,A E mA E mA E m⋅===⋅,直线1A E与平面1A CD所成的角的正弦值为7,147=,解得1,3λ=AP,1533AE AP∴==.20.设椭圆2222:1(0)x yC a ba b+=>>的离心率为22,且经过点61,2⎛⎫⎪⎪⎝⎭.(1)求椭圆C的标准方程;(2)设直线l与椭圆C交于,A B两点,O是坐标原点,OA OB OD+=,点D刚好在椭圆C上,已知点()0,1,P PAB,求直线l的方程.(1)22142x y+=(2)212y x=-或212y x=--.【分析】(1)由离心率结合222a b c=+,可得a b,关系.后代入所过点可得方程.(2)考虑直线斜率存在与不存在两种情况,先由OA OB OD+=,求出D点坐标,后通过已知三角形面积得出答案.【小问1详解】设椭圆C 的半焦距为c ,因为椭圆C 的离心率为22,所以22c a =.结合222a b c =+,则2222222112c a b b a a a -==-=,得2212b a =,即222a b=.又椭圆C 经过点61,2⎛ ⎝⎭,则22222266221112a b b b ⎛⎛ ⎝⎭⎝⎭+=+=.解得2a b c ===,.故椭圆C 的标准方程为:22142x y +=.【小问2详解】①当直线l 的斜率不存在时,不妨将其设为0x x =,其中00x >.则A B ,两点关于x 轴对称,设为()()0000,,A x y B x y -,则OA OB OD +==()02,0x ,又D 在椭圆上,故022x =,得01x =取点1,1,22A B ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,.则16122PAB S ==≠ l 的斜率不存在与题意不符.②当直线l 的斜率存在时,设直线的方程()()1122,,y kx m A x y B x y =+,,.联立方程:22142y kx mx y =+⎧⎪⎨+=⎪⎩.消去y ,得()222214240k x kmx m +++-=.由题意()28420k m ∆=+->.则21212224242121km m x x x x k k -+=-=++,,121222()221m y y k x x m k +=++=+.因OA OB OD +=,故点D 的坐标为2242(,)2121km mk k -++.因为点D 刚好在椭圆C 上,所以222242()()2121142km m k k -+++=()()()()()2222222222222821421164240212121m k k k m m k k k +-+⇒+⋅-==+++.即22212k m +=.此时()22284224k m m ∆=+-=.则AB ===6m设点P到直线l 的距离为d ,则d =则1122PAB S AB d =⋅⋅=⋅ ()22221413210m m m m m m ⇒=-⇒=-⇒+-=,解得1m =-或13m =.当13m =时,由22212k m +=,算得20k <,故13m =不合题意.当1m =-时,由22212k m +=,算得212k =,解得2k =或2k =-.故直线方程为:12y x =-或12y x =--.【点睛】关键点点睛:本题(1)考查求椭圆标准方程,关键为通过离心率找到a b c ,,关系.(2)为直线与椭圆关系综合题,需注意考虑直线斜率存在与不存在两种情况.其次是对于斜率存在的情况,关键为通过OA OB OD +=及D 点在椭圆上,利用方程联立及韦达定理找到所设直线中未知量k 和m 的关系.考查了学生的分析计算能力,属于难题.。
高二数学上学期期中模拟卷(空间向量与立体几何+直线与圆的方程+椭圆)(解析版
2023-2024学年高二数学上学期期中考试一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.“lg 0m >”是“方程()2211m x y m -+=-表示椭圆”的()A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件【答案】B【分析】根据充分条件和必要条件的定义判断即可.【详解】lg 0m >等价于1m >.若2m =,则方程()2211m x y m -+=-表示单位圆.若方程()2211m x y m -+=-表示椭圆,则椭圆方程可化为2211y x m +=-,则1m >且2m ≠.故“lg 0m >”是“方程()2211m x y m -+=-表示椭圆”的必要不充分条件.故选:B.2.直线()()()2212:110,:120l a x ay l a x a a y -+-=-+++=,若12//l l ,则实数a 的值不可能是()A .1-B .0C .1D .2-【答案】A【分析】根据平行列式,求得a 的值,进而确定正确答案.【详解】由于12//l l ,所以()()()2211a a a a a -⨯+=⨯-,()()()21110a a a a a +---=,()()()()()()22211112120a a a a a a a a a a ⎡⎤-+-=-+=-+=⎣⎦,解得0a =或1a =或2a =-.当0a =时,12:10,:20l x l x --=-+=,即12:1,:2l x l x =-=,两直线平行,符合题意.当1a =时,12:10,:220l y l y -=+=,即12:1,:1l y l y ==-,两直线平行,符合题意.当2a =-时,12:3210,:3220l x y l x y --=-++=,即12:3210,:3220l x y l x y --=--=,两直线平行,符合题意.所以a 的值不可能是1-.故选:A3.如图,在四面体OABC 中,,,OA a OB b OC c ===.点M 在OA 上,且2,OM MA N =为BC 中点,则MN等于()A .121232a b c-+ B .211322a b c-++C .111222a b c+- D .221332a b c+-【答案】B【分析】连接ON ,利用空间向量基本定理可得答案.【详解】连接()12211,23322ON MN ON OM OB OC OA a b c =-=+-=-++.故选:B.4.如图,已知正方体1111ABCD A B C D -的棱长为4,P 是1AA 的中点,若1AM AB AA λμ=+,[]0,1λ∈,[]0,1μ∈,若1D M CP ⊥,则BCM 面积的最小值为()A .4B .8C .855D .82【答案】C【分析】由题意知点M 在平面11ABB A 内,建立如图空间直角坐标系A xyz -,设(,0,)M a b ,根据空间向量的数量积的坐标表示可得24b a =-,取AB 的中点N ,连接1B N ,则点M 的轨迹为线段1B N ,过点B 作1BQ B N ⊥,结合线面垂直的性质即可求解.【详解】由1,[0,1]AM AB AA λμλμ=+∈、,知点M 在平面11ABB A 内,以1,,AB AD AA 所在直线为坐标轴建立如图空间直角坐标系A xyz -,则1(0,0,2),(4,4,0),(0,4,4)P C D ,设(,0,)M a b ,则1(,4,4),(4,4,2)D M a b CP =--=-- ,由1D M CP ⊥,得1416280D M CP a b ⋅=-++-=,即24b a =-,取AB 的中点N ,连接1B N ,则点M 的轨迹为线段1B N ,过点B 作1BQ B N ⊥,则4245525BQ ⨯==,又BC ⊥平面11ABB A ,故BC BQ ⊥,所以BCM S △的最小值为145854255QBC S =⨯⨯= .故选:C.5.在平面直角坐标系中,设军营所在区域为221x y +≤,将军从点()2,0A 出发,河岸线所在直线方程为4x y +=,假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程()A .101-B .251-C .25D .10【答案】B【分析】根据题意作出图形,然后求出()2,0A 关于直线4x y +=的对称点A ',进而根据圆的性质求出A '到圆上的点的最短距离即可.【详解】若军营所在区域为22:1x y Ω+≤,圆:221x y +=的圆心为原点,半径为1,作图如下:设将军饮马点为P ,到达营区点为B ,设(),A x y '为A 关于直线4x y +=的对称点,因为()2,0A ,所以线段AA '的中点为2,22x y +⎛⎫⎪⎝⎭,则2422x y ++=即60x y +-=,又12AA yk x '==-,联立解得:42x y =⎧⎨=⎩,即()4,2A ',所以总路程||||||||PB PA PB PA '+=+,要使得总路程最短,只需要||||PB PA '+最短,即点A '到圆22=1x y +上的点的最短距离,即为11OA OB OA ''-=-=.故选:B.6.在等腰直角三角形ABC 中,4AB AC ==,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图).若光线QR 经过ABC 的重心,则QR 的长度等于()AB.9C.9D.9【答案】B【分析】建立平面直角坐标系,得出ABC 各顶点以及重心的坐标,设(),0P a ,04a <<.求出直线BC 的方程,根据光的反射原理得出点P 关于BC 以及y 轴的对称点的坐标,表示出RQ 的方程,代入重心坐标,求出a 的值,得出RQ 的方程.进而求出,R Q 的坐标,即可根据两点间的距离公式得出答案.【详解】如图,建立平面直角坐标系,则()0,0A ,()4,0B ,()0,4C ,ABC 的重心坐标为44,33⎛⎫⎪⎝⎭,BC 方程为40x y +-=,设(),0P a ,04a <<.根据光的反射原理以及已知可知,点P 关于BC 的对称点1P 在QR 的反向延长线上,点P 关于y 轴的对称点2P 在QR 的延长线上,即12,,,P P Q R 四点共线.由已知可得点()111,P x y 满足()11110422011a x y y x a++⎧+=⎪⎪⎨-⎪⨯-=--⎪⎩,解得1144x y a =⎧⎨=-⎩,所以()14,4P a -.易知()2,0P a -.因为12,,,P P Q R 四点共线,所以有直线QR 的斜率为()40444a ak a a ---==--+,所以,直线QR 的方程为()44ay x a a-=++.由于直线QR 过重心44,33⎛⎫⎪⎝⎭,所以有444343a a a -⎛⎫=+ ⎪+⎝⎭,整理可得2340a a -=,解得43a =或0a =(舍去),所以直线QR 的方程为44434343y x -⎛⎫=+⎪⎝⎭+,整理可得3640x y -+=.所以,R 点坐标为20,3⎛⎫⎪⎝⎭.联立QR 与BC 的方程364040x y x y -+=⎧⎨+-=⎩,解得209169x y ⎧=⎪⎪⎨⎪=⎪⎩,即2016,99Q ⎛⎫ ⎪⎝⎭,所以,QR ==.故选:B.7.正四面体的棱长为3,点M ,N 是它内切球球面上的两点,P 为正四面体表面上的动点,当线段MN 最长时,PM PN ⋅的最大值为()A .2B .94C .3D .52【答案】C【分析】设四面体ABCD 的内切球球心为O ,G 为BCD △的中心,E 为CD 的中点,连接,AG BE ,则O 在AG 上,连接BO ,根据题意求出内切球的半径,当MN 为内切球的直径时,MN 最长,再化简()()PM PN PO OM PO ON ⋅=+⋅+可求得其最大值.【详解】设正四面体ABCD 的内切球球心为O ,G 为BCD △的中心,E 为CD 的中点,连接,AG BE ,则O 在AG 上,连接BO ,则AO BO =.因为正四面体的棱长为3,所以22333BG BE ==所以AG ===r ,则()222AG r r BG -=+,)22rr =+,解得4r =,当MN 为内切球的直径时MN 最长,此时0+= OM ON,238OM ON ⋅=-=-⎝⎭ ,()()PM PN PO OM PO ON⋅=+⋅+()2238PO PO OM ON OM ON PO =+⋅++⋅=- ,因为P 为正四面体表面上的动点,所以当P 为正四体的顶点时,PO 最长,POPM PN ⋅的最大值为23348⎛⎫-= ⎪ ⎪⎝⎭.故选:C8.已知M 为椭圆:()222210x y a b a b+=>>上一点,1F ,2F 为左右焦点,设12MF F α∠=,21MF F β∠=,若sin sin cos 1sin cos sin 3ααββαβ-=+,则离心率e =()A .12B .13C .12D .23【答案】C【分析】设12||,||MF m MF n ==,12||2F F c =,结合三角恒等变换以及正余弦定理将sin sin cos 1sin cos sin 3ααββαβ-=+化为22243224c n m n m m c cm+--⋅=+,继而推出,,a b c 的关系,求得答案.【详解】设12||,||MF m MF n ==,12||2F F c =,则2m n a +=,由sin sin cos 1sin cos sin 3ααββαβ-=+得3sin 3sin cos sin cos sin ααββαβ-=+,即3sin 2sin cos sin sin cos cos sin sin sin()ααββαβαββαβ-=++=++,在12MF F △中,由正弦定理得1222sin sin sin sin()n m c cF MF αβαβ===∠+,故32cos 2n m m c β-=+,又2224cos 4c n mcmβ+-=,故22243224c n m n m m c cm+--⋅=+,即282(3)()()0c c m n m n n m +-++-=,即[4()][2()]0c m n c n m -+--=,即4c m n =+或2c n m =-,结合椭圆定义可知2m n c +>且||2m c -<,故4c m n =+,即142,2c c a e a =∴==,故选:C【点睛】关键点睛:本题是椭圆的离心率的求解问题,即求,,a b c 之间的关系,解答的关键是对于已知等式的化简,即利用三角恒等变换结合正余弦定理将sin sin cos 1sin cos sin 3ααββαβ-=+转化为三角形边之间的关系式,进而化简可得,,a b c 的关系,即可求解答案.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.直线20x y ++=分别与x 轴,y 轴交于,A B 两点,点P 在圆()2222x y -+=上,则ABP 面积可能是()A .1B .3C .4D .7【答案】BC【分析】根据给定条件,求出线段AB 长,点P 到直线AB 的距离范围,再利用三角形面积公式求解即得.【详解】依题意,点(2,0),(0,2)A B --,则||AB =圆()2222x y -+=的圆心(2,0)C ,半径2r =,则点C 到直线AB 的距离4222r =>,因此点P 到直线AB 的距离[2,32]d ∈,ABP 的面积1||2[2,6]2S AB d d =⋅=∈,显然BC 满足,AD 不满足.故选:BC10.已知圆2221:2100C x y mx y m ++-+=,圆222:450C x y y ++-=,则下列说法正确的是()A .若点()1,1在圆1C 的内部,则24m -<<B .若2m =,则圆12,C C 的公共弦所在的直线方程是41490x y -+=C .若圆12,C C 外切,则15m =±D .过点()3,2作圆2C 的切线l ,则l 的方程是3x =或724270x y -+=【答案】BCD【分析】根据点在圆的内部解不等式2112100m m ++-<+即可判断A 错误;将两圆方程相减可得公共弦所在的直线方程可知B 正确;利用圆与圆外切,由圆心距和两半径之和相等即可知C 正确;对直线l 的斜率是否存在进行分类讨论,由点到直线距离公式即可得D 正确.【详解】对于A ,由点(1,1)在圆1C 的内部,得2112100m m ++-<+,解得42m -<<,故A 错误;对于B ,若2m =,则圆221:41040C x y x y ++-+=,将两圆方程相减可得公共弦所在的直线方程是41490x y -+=,故B 正确;对于C ,圆1C 的标准方程为22()(5)25x m y ++-=,圆心为()1,5C m -,半径15r =,圆2C 的标准方程为22(2)9x y ++=,圆心为()20,2C -,半径23r =,若圆12,C C 外切,则1212C C r r =+,即24953m +=+,解得15m =±,故C 正确;对于D ,当l 的斜率不存在时,l 的方程是3x =,圆心2C 到l 的距离23d r ==,满足要求,当l 的斜率存在时,设l 的方程为()32y k x =-+,圆心2C 到l 的距离224331k d r k -===+,解得724k =,所以l 的方程是724270x y -+=,故D 正确.故选:BCD.11.如图,正方体1111ABCD A B C D -的棱长为2,E 为11A B 的中点,P 为棱BC 上的动点(包含端点),则下列结论正确的是()A .存在点P ,使11D P AC ⊥B .存在点P ,使1PE D E =C .四面体11EPCD 的体积为定值83D .二面角11P DE C --的余弦值的取值范围是23⎡⎢⎣⎦【答案】AB【分析】利用向量法,根据线面垂直,两点间的距离,几何体的体积,二面角等知识对选项进行分析,从而确定正确答案.【详解】建立如图所示空间直角坐标系,设()02CP a a =≤≤,则(),2,0P a ,()2,1,2E ,()()12,0,0,0,2,2A C ,()10,0,2D ,则()12,2,2AC =- ,()1,2,2D P a =-,112442D AC a a P ⋅=-+-=-,当0a =时,即P 点与C 点重合时,11D P AC ⊥,故A 正确.由1PE D E =2a =,此时P 点与B 点重合,故B 正确.111111111422223323E PC D P C D E C D E V V S --==⨯⋅=⨯⨯⨯⨯= 为定值,故C 错误.又()12,1,0D E = ,()1,2,2D P a =-,设平面1D EP 的法向量()1,,n x y z = ,由11112002200D E n x y D P n ax y z ⎧⋅=+==⎪⎨⋅=+-==⎪⎩,令1x =则=2y -,22a z =-,11,2,22a n ⎛⎫∴=-- ⎪⎝⎭ ,又平面11D EC 的法向量()20,0,2n =,12cos ,22n an ∴=-又02a ≤≤,122cos ,3n n ⎤∴∈⎣⎦,故D 错误.故选:AB12.已知椭圆222:12x y C m+=的焦点分别为()10,2F ,()20,2F -,设直线l 与椭圆C 交于M ,N 两点,且点11,22P ⎛⎫ ⎪⎝⎭为线段MN 的中点,则下列说法正确的是()A .26m =B.椭圆C C .直线l 的方程为320x y +-=D .2F MN的周长为【答案】AC【分析】先由题意求出2m 即可判断A ;再根据离心率公式即可判断B ;由点差法可以求出直线l 的斜率,由直线的点斜式化简即可判断C ;由焦点三角形的周长公式即可判断D.【详解】如图所示:根据题意,因为焦点在y 轴上,所以224m -=,则26m =,故选项A 正确;椭圆C的离心率为2636c e a ===,故选项B 不正确;不妨设()()1122,,,M x y N x y ,则2211126x y +=,2222126x y +=,两式相减得()()()()1212121226x x x x y y y y +-+-=-,变形得121212123y y x x x x y y -+=-⨯-+,又注意到点11,22P ⎛⎫⎪⎝⎭为线段MN 的中点,所以121212121221122P P x x x x x y y y y y ++====++,所以直线l 的斜率为121212123313l y y x k xx x y y ⨯=-+⨯--=-+=-=,所以直线l 的方程为11322y x ⎛⎫-=-- ⎪⎝⎭,即320x y +-=,故选项C 正确;因为直线l 过1F ,所以2F MN 的周长为()()22212122446F M F N MN F M F M F N F N a a a ++=+++=+==,故选项D 不正确.故选:AC .三、填空题:本题共4小题,每小题5分,共20分.13.在三棱锥-P ABC 中,PC ⊥底面,90,4,45ABC BAC AB AC PBC ∠∠==== ,则点C 到平面PAB 的距离是.【答案】463/463【分析】建立空间直角坐标系,设平面PAB 的一个法向量为(),,m x y z =,由点C 到平面PAB 的距离为PC m d m⋅=求解.【详解】解:建立如图所示的空间直角坐标系,则()()()()0,0,0,4,0,0,0,4,0,0,4,42A B C P ,所以()()()0,4,42,4,0,0,0,0,42AP AB PC ===-.设平面PAB 的一个法向量为(),,m x y z =,则0,0,m AP m AB ⎧⋅=⎪⎨⋅=⎪⎩ 即4420,40,y z x ⎧+=⎪⎨=⎪⎩令y 1z =-,所以()1m =-,所以点C 到平面PAB的距离为PC m d m⋅==14.若非零实数对(),a b满足关系式1771a b a b ++=-+=,则a b=.【答案】34-或43【分析】化简转化为点到直线的距离,利用直线的位置关系即可求解.【详解】由1771a b a b ++=-+=5==,()1,1A 到直线10ax by ++=的距离1d,()7,7B -到直线10ax by ++=的距离2d ,5==,所以125d d ==.因为10AB =,1210d d +=,所以当点A ,B 在直线10ax by ++=同侧时,直线AB 与直线10ax by ++=平行,当点A ,B 在直线10ax by ++=异侧时,A ,B 关于直线10ax by ++=对称,因为直线AB 的斜率174173k +==--,直线10ax by ++=的斜率为ab-,所以43a b -=-或413a b ⎛⎫⎛⎫-⨯-=- ⎪ ⎪⎝⎭⎝⎭,所以43a b =或34ab=-.故答案为:34-或43.15.过椭圆2222:1(0)x y C a b a b+=>>的右焦点F且与长轴垂直的弦的长为(2,1)P 且斜率为1-的直线与C 相交于,A B 两点,若P 恰好是AB 的中点,则椭圆C 上一点M 到F 的距离的最大值为.【答案】3/3+【分析】利用点差法可求基本量的关系,再结合通径的长可求基本量,故可求焦半径的最大值.我们也可以联立直线方程和椭圆方程,从而可用基本量表示中点,从而得到基本量的一个关系式,同样结合通径长可取基本量,故可求焦半径的最大值.【详解】法一:将x c =代入椭圆C 的方程得2b y a =±,所以22ba=,设()11,A x y ,()22,B x y ,则2222112222221,1x y x y a b a b+=+=,两式相减得()()()()12121212220x x x x y y y y a b -+-++=,又124x x +=,1212122,1y y y y x x -+==--,所以22210a b-=②,解①②得3a b ==,所以3c =,所以C 上的点M 到焦点F的距离的最大值为3a c +=.法二:将x c =代入椭圆C 的方程得2by a=±,所以22b a =,直线AB 的方程是1(2)y x -=--,即3y x =-,代入椭圆的方程并消去y 整理得()2222222690a b x a x a a b +-+-=,则()()()()22222222222490694a a b a a b a b a b ∆=--++-->=,设()11,A x y ,()22,B x y ,则2122264a x x a b+==+,即222a b =②,解①②得3a b ==,满足0∆>,所以3c =,所以C 上的点M 到焦点F的距离的最大值为3a c +=.故答案为:3.16.在平面直角坐标系xOy 中,已知()1,1A --,圆22:1O x y +=,在直线AO 上存在异于A 的定点Q ,使得对圆O 上任意一点P ,都有(PA PQλλ=为常数),则Q 的坐标为.【答案】11,22⎛⎫-- ⎪⎝⎭【分析】设00(,)Q x y ,(,)P x yλ=对圆O 上任意点(,)P x y 恒成立,从而得到202202(22)()320x x y x λλλ+++--=对任意[x y +∈恒成立,从而得到202220220320x x λλλ⎧+=⎨--=⎩,即可求出λ与0x ,从而得解.【详解】设00(,)Q x y ,(,)P x y ,则PA =PQ =若在直线AO 上存在异于A 的定点Q ,使得对圆O 上任意一点P ,都有(PA PQλλ=为常数),λ=对圆O 上任意点(,)P x y 恒成立,即22222200(1)(1)()()x y x x y y λλ+++=-+-,整理得222222022000(1)()(22)(22)2()0x y x x y y x y λλλλ-++++++-+=,因为点Q 在直线AO 上,所以00x y =,由于P 在圆O 上,所以221x y +=,故202202(22)()320x x y x λλλ+++--=恒成立,其中点(),P x y 在圆22:1O x y +=上,令x y m +=,则0x y m +-=,所以直线0x y m +-=与圆有交点,所以圆心到直线的距离小于等于半径,即1d ≤,解得m ≤≤[x y +∈,所以202220220320x x λλλ⎧+=⎨--=⎩,显然0λ≠,所以021x λ=-,故22230λλ--=,因为0λ>,解得λ=1λ=.当1λ=时,(1,1)Q --,此时,Q A 重合,舍去.当λ=11,22Q ⎛⎫-- ⎪⎝⎭,综上,存在满足条件的定点11,22Q ⎛⎫-- ⎪⎝⎭,此时λ=故答案为:11,22⎛⎫-- ⎪⎝⎭【点睛】关键点睛:本题解决的关键是利用题设条件,结合221x y +=与00x y =化简得202202(22)()320x x y x λλλ+++--=恒成立,从而得到关于0,x λ的方程组,由此得解.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD DC =,E ,F 分别是AB ,PB 的中点.(1)求证:EF CD ⊥.(2)已知点G 在平面PAD 内,且GF ⊥平面PCB ,试确定点G 的位置.【答案】(1)证明见解析(2)点G 为AD 的中点【分析】(1)以D 为坐标原点,DA ,DC ,DP 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,设AD a =,再根据0EF DC ⋅= 即可证明.(2)设(,0,)G x z ,根据GF ⊥平面PCB 得到0FG CB ⋅= ,0FG CP ⋅= ,即可得到答案.【详解】(1)以D 为坐标原点,DA ,DC ,DP 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系(如图),设AD a =,则(0,0,0)D ,(,,0)B a a ,(0,,0)C a ,,,02a E a ⎛⎫ ⎪⎝⎭,(0,0,)P a ,,,222a a a F ⎛⎫ ⎪⎝⎭,所以,0,22a a EF ⎛⎫=- ⎪⎝⎭ ,(0),,0DC a = ,所以,0,(0,,0)022a a EF DC a ⎛⎫⋅=-⋅= ⎪⎝⎭ ,所以EF CD ⊥.(2)因为∈G 平面PAD ,设(,0,)G x z ,所以,,222a a a FG x z ⎛⎫=--- ⎪⎝⎭ .由(1),知(,0,0)CB a = ,(0,),CP a a =- .因为GF ⊥平面PCB ,所以,,(,0,0)()02222a a a a FG CB x z a a x ⎛⎫⋅=---⋅=-= ⎪⎝⎭ ,2,,(0,,)022222a a a a a FG CP x z a a a z ⎛⎫⎛⎫⋅=---⋅-=+-= ⎪ ⎪⎝⎭⎝⎭ ,所以2a x =,0z =,所以点G 的坐标为,0,02a ⎛⎫ ⎪⎝⎭,即点G 为AD 的中点.18.(12分)已知直线:1l y kx k =+-.(1)求证:直线l 过定点;(2)若当44x -<<时,直线l 上的点都在x 轴下方,求k 的取值范围;(3)若直线l 与x 轴、y 轴形成的三角形面积为1,求直线l 的方程.【答案】(1)证明见解析(2)11[,]35-(3)(21y x =+++(21y x =+【分析】(1)由直线方程观察得定点坐标即证;(2)由4x =±时对应点的纵坐标不小于0可得;(3)求出直线与坐标轴的交点坐标,再计算三角形面积从而得直线的斜率,即得直线方程.【详解】(1)由1y kx k =+-,得1(1)y k x +=+.由直线方程的点斜式可知,直线l 过定点(1,1)--;(2)若当44x -<<时,直线l 上的点都在x 轴下方,则410,410,k k k k -+-≤⎧⎨+-≤⎩解得1135k -≤≤,所以k 的取值范围是11[,35-;(3)设直线l 与x 轴的交点为A ,与y 轴的交点为B ,坐标原点为O .当0x =时,得||||1|OB k =-,当0y =时,得|1|||||k OA k -=,所以11|1||||||1|22||AOB k S OA OB k k -==-⨯△,即211|1|12||k k -⨯=,解得2k =2,所以直线l 的方程为(21y x =+(21y x =+19.(12分)如图所示,第九届亚洲机器人锦标赛VEX 中国选拔赛永州赛区中,主办方设计了一个矩形坐标场地ABCD (包含边界和内部,A 为坐标原点),AD 10米,在AB 边上距离A 点4米的F 处放置一只电子狗,在距离A 点2米的E v ,电子狗行走速度为2v ,若电子狗和机器人在场地内沿直线方向同时到达场地内某点M ,那么电子狗将被机器人捕获,点M 叫成功点.(1)求在这个矩形场地内成功点M 的轨迹方程;(2)若P 为矩形场地AD 边上的一点,若电子狗在线段FP 上都能逃脱,问:P 点应在何处?【答案】(1)2241640393x y x ⎛⎫⎛⎫+-=≤≤ ⎪ ⎪⎝⎭⎝⎭(2)P 的横坐标范围为⎤⎥⎝⎦即可逃脱.【分析】(1)分别以,AD AB 为,x y 轴,建立平面直角坐标系,由题意2MF ME v v =,利用两点间的距离公式可得答案.(2)利用三角函数得到极端情况时P 点的横坐标即可得到答案.【详解】(1)分别以AD ,AB 为x ,y 轴,建立平面直角坐标系,则()0,2E ,()0,4F ,设成功点(),M x y ,可得2MF ME v v ==化简得2241639x y ⎛⎫+-= ⎪⎝⎭,因为点M 需在矩形场地内,所以403x ≤≤,故所求轨迹方程为2241640393x y x ⎛⎫⎛⎫+-=≤≤ ⎪ ⎪⎝⎭⎝⎭.(2)当线段FP 与(1)中圆相切时,则413sin 4243AFP ∠==-,所以30AFP ∠=︒,所以4tan 30AP =︒=,若电子狗在线段FP 上都能逃脱,P点的横坐标取值范围是⎤⎥⎝⎦.20.(12分).如图,//AD BC 且2,,//AD BC AD CD EG AD =⊥且,//EG AD CD FG =且2,CD FG DG =⊥平面,2ABCD DA DC DG ===.(1)若M 为CF 的中点,N 为EG 的中点,求证://MN 平面CDE ;(2)求平面BCE 和平面BCF 夹角的正弦值;(3)若点P 在线段DG 上,且直线与平面ADGE 所成的角为45︒,求点P 到平面CDE 的距离.【答案】(1)证明见解析;(2)10;(3)2.【分析】(1)取GD 中点为Q ,连接NQ ,MQ ,通过证明平面//MQN 平面CDE ,可得//MN 平面CDE ;(2)如图,建立以D 为原点的空间直角坐标系,分别求出平面BCE 和平面BCF 夹角的法向量,即可得答案;(3)由(2),设()0,0,P t ,直线BP 与平面ADGE 所成的角为45︒可得点P 坐标,可得点P 到平面CDE 的距离.【详解】(1)取GD 中点为Q ,连接NQ ,MQ .因M 为CF 的中点,N 为EG 的中点,Q 为GD 中点,由三角形及梯形中位线定理,可得,NQ ED MQ DC .又注意到,,ED DC ⊂平面EDC ,,NQ MQ ⊄平面EDC ,,NQ MQ ⊂平面MNQ ,∩NQ MQ Q =,则平面//MQN 平面CDE .又MN ⊂平面MQN ,则//MN 平面CDE .(2)因DG ⊥平面ABCD ,,⊂DA DC 平面ABCD ,则,DG DC DG DA ⊥⊥,又AD DC ⊥,则如图建立以D 为原点的空间坐标系.则()()()()()()()000200020002120202012,,,,,,,,,,,,,,,,,,,,D A C G B E F .()()()100122112,,,,,,,,BC BE BF =-=-=--.设平面BCE 和平面BCF 的法向量分别为()()11112222,,,,,n x y z n x y z == .则1111110220BC n x BE n x y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ ,取()10,1,1n = ;222222020BC n x BF n x y z ⎧⋅=-=⎪⎨⋅=--+=⎪⎩ ,取()20,2,1n = .设平面BCE 和平面BCF 夹角为θ,则1210cos cos ,θn n === .则平面BCE 和平面BCF夹角的正弦值为sin θ=(3)由(2),设()0,0,P t ,其中[]0,2t ∈,则()12,,BP t =-- 又由题可得,平面ADGE 的一个法向量可取()30,1,0n = .结合直线BP 与平面ADGE 所成的角为45︒,则32cos ,n BP t ==⇒=则(DP = ,()()020202,,,,,DC DE == .设平面CDE 法向量为()4444,,n x y z = ,则4444420220DC n y DE n x z ⎧⋅==⎪⎨⋅=+=⎪⎩ .取()4101,,n =- ,则点P 到平面CDE的距离442n DP d n ⋅=== .21.(12分)已知在平面直角坐标系xOy 中,已知A 、B 是圆O :228x y +=上的两个动点,P 是弦AB 的中点,且90AOB ∠=︒;(1)求点P 的轨迹方程;(2)点P 轨迹记为曲线τ,若C ,D 是曲线τ与x 轴的交点,E 为直线l :4x =上的动点,直线CE ,DE 与曲线τ的另一个交点分别为M ,N ,判断直线MN 是否过定点,若是,求出定点的坐标,若不是,请说明理由.【答案】(1)224x y +=(2)过定点()1,0Q .【分析】(1)设点(),P x y 为曲线上任意一点,根据几何关系得到2OP =,得到轨迹方程.(2)设()4,E t ()0t ≠,分别计算CE ,DE 的直线方程,联立圆方程得到交点坐标,考虑直线MN 斜率存在和不存在两种情况,计算直线方程得到答案.【详解】(1)设点(),P x y 为曲线上任意一点,P 是弦AB 的中点,且90AOB ∠=︒,圆O :228x y +=的半径r =122OP AB ===,故点P 的轨迹方程为:224x y +=.(2)不妨取()2,0C -,()2,0D ,设()4,E t ()0t ≠,则直线CE 的方程为()26t y x =+,直线DE 的方程为()22t y x =-,联立()22264t y x x y ⎧=+⎪⎨⎪+=⎩,得2222364440363636t t t x x +++-=,则224236M t x t -=-+,即2272236M t x t -=+,()2242636M M t t y x t =+=+,所以22272224,3636t t M t t ⎛⎫- ⎪++⎝⎭.联立()22224t y x x y ⎧=-⎪⎨⎪+=⎩,得22224404t x t x t +-+-=,则22424N t x t +=+,即22284N t x t -=+,()28224N N t t y x t -=-=+,所以222288,44t t N t t ⎛⎫-- ⎪++⎝⎭.①当t ≠±MN 的斜率222222224883647222812364MNt t t t t k t t t t t --++==----++,则直线MN 的方程为222288284124t t t y x t t t ⎛⎫---=- ⎪+-+⎝⎭,即()28112t y x t =--,直线过定点()1,0,所以()1,0Q ;②当t =±MN 垂直于x 轴,方程为1x =,也过定点()1,0Q .综上所述:直线MN 恒过定点()1,0Q .【点睛】关键点睛:本题考查了圆的轨迹方程,定点问题,意在考查学生的计算能力,转化能力和综合应用能力,其中设出E 的坐标,分别计算,M N 坐标再计算直线方程是解题的关键.22.(12分)如图所示,已知椭圆2219x y +=中()3,0A ,()0,1B ;P 在椭圆上且为第一象限内的点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N(1)求证:①||||AN BM ⋅为定值;②PMN 与PAB 面积之差为定值;(2)求MON △面积的最小值.【答案】(1)①证明见解析;②证明见解析(2)92+【分析】(1)①设00(,)P x y ,利用直线方程求出点,M N 坐标,从而可得||||AN BM ⋅的表达式,结合点在椭圆上化简,即可证明结论;②利用PMN 与PAB 面积之差为MAN BAN S S - ,利用三角形面积公式,结合①的定值即可证明结论;(2)利用三角形面积公式表示出MON △面积的表达式,利用(1)的定值结合基本不等式,即可求得答案.【详解】(1)证明:①设00(,)P x y ,()001,030x y <<<<,则220019x y +=,即220099x y +=,直线()0033:y PA y x x =--,令0x =,则0033M y y x =--,故003|||1|3y BM x =+-;直线0011:y PB y x x =+-,令0y =,则001N x x y -=-,故00|||3|1x AN y =+-;所以00000000003|||||3||1||33|||133331x y x y x y AN BM y x y x ⋅=+⋅+⋅-+----+()()()2220000000000000033996618||||3133x y x y x y x y x y x y x y +-+++--==----+000000001666183|38x y x y x y x y --++-==-,即||||AN BM ⋅为定值6;②PMN 与PAB 面积之差为11||||||||22MAN BAN S S AN OM AN OB -=⋅-⨯⋅ 1||||32AN BM =⨯⋅=,即PMN 与PAB 面积之差为定值3;(2)MON △面积()()11||||3||1||22OMN S ON OM AN BM =⋅=++ ()1||||||3||32AN BM AN BM =⋅+++()1966322+≥+=,当且仅当||3||AN BM =,结合||||6AN BM ⋅=,即|||AN BM ==时取等号,即MON △面积的最小值为92+.【点睛】关键点睛:解答本题的关键在于证明||||AN BM ⋅为定值,解答时要利用直线方程表示出||,||AN BM ,从而求得||||AN BM ⋅表达式,结合点在椭圆上化简即可证明结论.。
福建省福州市山海联盟校教学协作体2024-2025学年高二上学期期中考试数学试卷
福建省福州市山海联盟校教学协作体2024-2025学年高二上学期期中考试数学试卷一、单选题110++=的倾斜角为()A .30︒B .60︒C .120︒D .150︒2.(2,1,3),(1,4,2),(3,2,)a b c λ=-=-=- ,若,,a b c三向量共面,则实数λ等于()A .5B .4C .3D .23.椭圆的面积等于圆周率与椭圆的长半轴长与短半轴长的乘积.已知椭圆2222:1x y C a b+=()0a b >>的面积为6π,两个焦点分别为12,F F ,直线y kx =与椭圆C 交于,A B 两点,若四边形12AF BF 的周长为12,则椭圆C 的短半轴长为()A .2B .3C .4D .64.如图,在三棱锥O ABC -中,点P ,Q 分别是OA ,BC 的中点,点D 为线段PQ 上一点,且4PQ DQ = ,若记,,OA a OB b OC c === ,则OD =()A .133888a b c++ B .313888a b c++C .331888a b c++ D .113888a b c++ 5.已知圆2221:220C x y ax y a +-++=与圆222:46230C x y x y ++--=的公切线有且只有一条,则实数a 的值为()A .1B .1-C .1或5-D .1-或56.已知二面角l αβ--棱上有两点,,,,A B AC AC l BD αβ⊂⊥⊂,BD l ⊥,若3,AC BD AB CD ===的长为7,异面直线AC 与BD 所成的角大小为()A .π6B .π4C .π3D .5π127.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河”,诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在的位置为(2,0)B -,若将军从山脚下的点(1,0)A 处出发,河岸线所在直线的方程为2x y +=,则“将军饮马”的最短总路程为()AB .5CD 8.已知椭圆2222:1(0)x y M a b a b+=>>的左、右焦点分别为12,F F ,点P 在M 上,Q 为2PF 的中点,且121,FQ PF FQ b ⊥=,则M 的离心率为()A B .13C .12D .2二、多选题9.已知圆22(1)(2)4x y -+-=与直线20x my m +--=,下列选项正确的是()A .直线过定点()2,1-B .圆的圆心坐标为()1,2C .直线与圆必相交D .直线与圆相交所截最短弦长为10.正四棱锥P ABCD -中,各棱长均为12121,,,,2325PM PA PN PB PQ PC PS PD ====,则()A .A ,N ,D ,Q 四点共面B .点S 到平面PMQ 的距离为25C .平面MNQ 与平面ABCDD .点N 到PA 的距离为311.月光石不能频繁遇水,因为其主要成分是钾钠硅酸盐.一块斯里兰卡月光石的截面可近似看成由半圆和半椭圆组成,如图所示,在平面直角坐标系,半圆的圆心在坐标原点,半圆所在的圆过椭圆的右焦点(30)F ,,椭圆的短轴与半圆的直径重合.若直线()0y t t =>与半圆交于点A ,与半椭圆交于点B ,则下列结论正确的是()A B .OAB △的周长存在最大值C .线段AB 长度的取值范围是(0,3+D .ABF △面积的最大值是)914三、填空题12.已知空间向量()()2,3,2,1,2,2a b ==- ,则向量a在向量b 上投影向量的坐标是.13.已知ABC V 的周长为24,且顶点(0,4),(0,4)B C -,则顶点A 的轨迹方程是.14.已知圆2216x y +=,直线:l y x b =+,圆上至少有三个点到直线l 的距离都等于2,则b 的范围是.四、解答题15.ABC V 中,顶点(3,4),(5,2),B C AC 边所在直线方程为2120,x y AB +-=边上的高所在直线方程为23160x y +-=.(1)求AB 边所在直线的方程;(2)求AC 边的中线所在直线的方程.16.如图,在直三棱柱111ABC A B C -中,ACB ∠为直角,侧面11ACC A 为正方形,2,,AC BC D E ==分别为1,AB AC 的中点.(1)求证://DE 平面11BB C C ;(2)求证:AC DE ⊥;(3)求直线AC 与平面1B DE 所成角的正弦值.17.已知12,F F 分别为椭圆2222:1(0)x y C a b a b +=>>B 为椭圆上的一动点,且12BF F △(1)求椭圆C 的方程;(2)过椭圆的左焦点1F 且斜率为2的直线l 交椭圆于A ,B 两点,求2ABF △的面积.18.已知半径为2的圆C 的圆心在x 轴的正半轴上,且直线:3440l x y -+=与圆C 相切.(1)求圆C 的标准方程;(2)若Q 的坐标为(2, 4)-,过点Q 作圆C 的两条切线,切点分别为, M N ,求直线MN 的方程;(3)过点()1,0A 任作一条不与y 轴垂直的直线与圆C 相交于, E F 两点,在x 非正半轴上是否存在点B ,使得ABE ABF ∠=∠?若存在,求点B 的坐标;若不存在,请说明理由.19.在空间直角坐标系Oxyz 中,过点()000,,P x y z 且以(),,u a b c =为方向向量的直线方程可表示为()0000x x y y z z abc a b c---==≠,过点()000,,P x y z 且以(),,u a b c = 为法向量的平面方程可表示为000ax by cz ax by cz ++=++.(1)若直线()11:12x l y z -==--与()21:142y z l x ---==都在平面α内,求平面α的方程;(2)在三棱柱111ABC A B C -中,点C 与坐标原点O 重合,点A 在平面Oxz 内,平面ABC 以()1,1,3m =--为法向量,平面11ABB A 的方程为38x y z +-=,求点A 的坐标;(3)若集合(){},,2M x y z x y z =++=中所有的点构成了多面体Ω的各个面,求Ω的体积和相邻两个面所在平面的夹角的余弦值.。
陕西省商洛市洛南中学2024-2025学年高二上学期期中考试数学试题
陕西省商洛市洛南中学2024-2025学年高二上学期期中考试数学试题一、单选题1.直线:20l x +=的倾斜角为A .30°B .60°C .120°D .150°2.抛物线214y x =的焦点坐标为()A .1,016⎛⎫ ⎪⎝⎭B .1,016⎛-⎫ ⎪⎝⎭C .(0,1)D .(0,1)-3.圆221:2O x y +=和圆222:430O x y y +++=的位置关系是()A .相离B .外切C .内切D .相交4.在空间四边形ABCD 中,F ,E 分别为AB ,CD 的中点,2EM MF = ,BC a =,BD b = ,BA c = ,则AM =()A .111663a b c ---B .112663a b c --+C .112663a b c ++D .112663a b c+- 5.已知点P 是双曲线E :2213y x -=的渐近线上在第一象限内的一点,F 为E 的左焦点,则直线PF 斜率的取值范围为()A .(B .(3),-∞C .)+∞D .⎡⎣6.在直三棱柱111ABC A B C -中,AC BC ⊥,14AC AA ==,2BC =,则异面直线1AC 与1B C 所成角的余弦值为()A B C D 7.已知点(,)P x y 在直线250x y ++=上,那么22x y +的最小值为()AB .C .5D .8.已知1F ,2F 为椭圆22:1164x y C +=的两个焦点,P 、Q 为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为()A .10B .8C .24D .二、多选题9.如图,已知正方体1111ABCD A B C D -的棱长为1,则()A .1ACB D ⊥B .11//AC 平面1B CDC .平面11A B CD 与平面ABCD 的夹角为45D .点1C 到平面1B CD 10.已知方程22196x y t t +=--表示的曲线为C ,则()A .当69t <<时,曲线C 表示椭圆B .存在R t ∈,使得C 表示圆C .当9t >或6t <时,曲线C 表示双曲线D .若曲线C 表示焦点在x轴上的椭圆,则焦距为11.已知圆22:4O x y +=,点()00,P x y 是圆O 上的点,直线:0l x y -+,则()A .直线l 与圆OB .004y x -C .圆O 上恰有3个点到直线l 的距离等于1D .过点P 向圆()()22:341M x y -+-=引切线,A 为切点,则PA 最小值为三、填空题12.平行线250x y +-=与2450x y +-=间的距离为.13.设x 、y 、z ∈R ,()1,1,1a = ,()1,,b y z = ,(),4,2c x =- ,且a c ⊥ ,//b c,则a b += .14.如图,双曲线C :()222210,0x y a b a b-=>>的左、右焦点()1,0F c -,()2,0F c ,A 为双曲线C 右支上一点,且OA c =,1AF 与y 轴交于点B ,若2F B 是21AF F ∠的角平分线,则双曲线C 的离心率是.四、解答题15.(1)求过点()10y ++=平行的直线的一般式方程;(2)求点()2,0A 关于直线:220l x y ++=的对称点B 的坐标.16.在①过点()20C ,,②圆E 恒被直线()0R mx y m m --=∈平分,③与y 轴相切这三个条件中任选一个,补充在下面问题中,并解答.已知圆E 经过点()()0011A B ,,,,且______.(1)求圆E 的一般方程;(2)设P 是圆E 上的动点,求线段AP 的中点M 的轨迹方程.17.在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥.(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.18.已知中心在原点,焦点在x 轴上的椭圆1C 与双曲线2C 有共同的焦点1F 、2F ,12F F =,1C 的长半轴与2C 的实半轴之差为4,离心率之比为3:7.(1)求这两条曲线的方程;(2)求曲线2C 以点()4,2M 为中点的弦所在直线的方程;(3)若P 为两条曲线的交点,求12F PF ∠的余弦值.19.已知椭圆()2222:10x y C a b a b+=>>的离心率为12,焦距为2.(1)求椭圆的标准方程;(2)若直线():,l y kx m k m =+∈R 与椭圆C 相交于A 、B 两点,且34OA OB k k ⋅=-.(i )试求k 、m 的关系式;(ii )证明:AOB V 的面积为定值.。
高二上学期期中考试数学试卷含答案(共5套)
高二上学期期中考试数学试题本卷分Ⅰ(选择题)、Ⅱ卷(非选择题)两部分,其中Ⅰ卷1至2页,第二卷2至4页,共150分,考试时间120分钟。
第Ⅰ卷(选择题,共60分)一、单选题:本题共12个小题,每小题5分1.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.有下列四个命题:(1)“若,则,互为倒数”的逆命题;(2)“面积相等的三角形全等”的否命题;(3)“若,则有实数解”的逆否命题;(4)“若,则”的逆否命题.其中真命题为()A.(1)(2)B.(2)(3)C.(4)D.(1)(2)(3)3.若则为()A.等边三角形 B.等腰直角三角形C.有一个内角为30°的直角三角形 D.有一个内角为30°的等腰三角形4.已知.若“”是真命题,则实数a的取值范围是A.(1,+∞)B.(-∞,3)C.(1,3)D.5.的内角,,的对边分别为,,,若,,,则的面积为A.B.C.D.6.已知中,,则等于()A.B.或C.D.或7.等差数列的前项和为,若,则等于()A.58B.54C.56D.528.已知等比数列中,,,则()A.2B.C.D.49.已知,则z=22x+y的最小值是A.1 B.16 C.8 D.410.若关于的不等式的解集为,则的取值范围是()A.B.C.D.11.当a>0,关于代数式,下列说法正确的是()A.有最小值无最大值B.有最大值无最小值C.有最小值也有最大值D.无最小值也无最大值12.在△ABC中,AB=2,C=,则AC+BC的最大值为A.B.3C.4D.2第Ⅱ卷(非选择题,共90分)二、填空题:共4个小题,每小题5分,共20分13.命题的否定是______________.14.已知的三边长构成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长为________.15.已知数列{a n}的前n项和为S n,a1=1,当n≥2时,a n+2S n-1=n,则S2 017的值____ ___ 16.已知变量满足约束条件若目标函数的最小值为2,则的最小值为__________.三、解答题:共6题,共70分,解答应写出必要的文字说明、证明过程或演算步骤。
南京市南师附中2024-2025学年高二上学期期中考试数学试卷及答案
南京师大附中2024—2025学年度第1学期高二年级期中考试数学试卷命题人:高二数学备课组 审阅人:高二数学备课组一.选择题1.过两点()2,4-和()4,1-的直线在x 轴上的截距为( )A .145B .145-C .73D .73-2.过圆225x y +=上一点()2,1M --作圆的切线l ,则直线l 的方程为( ) A .230x y -+=B .250x y ++=C .250x y --=D .250x y +-=3.若k ∈R ,则“22k -<<”是“方程221362x y k k+=+-表示椭圆”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.若抛物线24y x =上的一点M 到坐标原点O M 到该抛物线焦点的距离为( ) A .5B .3C .2D .15.设直线l 的方程为()sin 10x y θθ+-=∈R ,则直线l 的倾斜角α的范围是( ) A .()0,πB .πππ3π,,4224⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦C .π3π,44⎡⎤⎢⎥⎣⎦D .ππ,42⎡⎫⎪⎢⎣⎭6.若直线上存在到曲线T 上一点的距离为d 的点,则称该直线为曲线T 的d 距离可相邻直线.已知直线:430l x y m +-=为圆()()22:2716C x y -++=的3距离可相邻直线,则m 的取值范围是( )A .[]48,22-B .[]18,8--C .(][),4822,-∞-+∞D .(][),188,-∞--+∞7.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,M 为双曲线右支上的一点.若M 在以12F F 为直径的圆上,且12π5π,312MF F ⎛⎫∠∈ ⎪⎝⎭,则该双曲线离心率的取值范围为( )A .(B .)+∞C .()1D .)18.已知A ,B 分别是椭圆2214x y +=的左、右顶点,P 是椭圆在第一象限内一点.若2PBA PAB ∠=∠,则PA PB的值是( )A .5BC .5D .5二.多选题9.已知椭圆22:143x y C +=的左、右焦点分别为1F ,2F ,P 为椭圆C 上一点.则下列说法错误的是( )A .椭圆CB .12PF F △的周长为5C .1290F PF ∠<︒D .113PF ≤≤10.已知()0,2M ,()0,3N ,在下列方程表示的曲线上,存在点P 满足2MP NP =的有( ) A .370x -=B .4320x y +-=C .221x y +=D .2222140x y x y +-+-=11.天文学家卡西尼在研究土星及其卫星的运行规律时发现:同一平面内到两个定点的距离之积为常数的点的轨迹是卡西尼卵形线.已知定点()1,0F c -,()2,0F c ,动点P 满足212PF PF a ⋅=(a ,0c >且均为常数).设动点P 的轨迹为曲线E .则下列说法正确的是( ) A .曲线C 既是轴对称图形,又是中心对称图形B .12PF PF +的最小值为2aC .曲线E 与x 轴可能有三个交点D .2ca ≥时,曲线E 上存在Q 点,使得12QF QF ⊥ 三.填空题12.与双曲线2212x y -=有公共渐近线,且过点的双曲线的方程为______.13.若直线l 过抛物线24y x =的焦点.与抛物线交于A ,B 两点.且线段AB 中点的横坐标为2.则弦AB 的长为______.14.已知点()5,4P ,点F 为抛物线2:8C y x =的焦点.若以点P ,F 为焦点的椭圆与抛物线有公共点,则椭圆的离心率的最大值为______.四.解答题15.已知直线1:220l ax y +-=与直线2:220l x ay +-=.(1)当12l l ⊥时,求a 的值;(2)当12l l ∥时,求1l 与2l 之间的距离.16.已知点()1,2A ,()1,2B --,点P 满足4PA PB ⋅=. (1)求点P 的轨迹Γ的方程;(2)过点()2,0Q -分别作直线MN ,RS ,交曲线Γ于M ,N ,R ,S 四点,且MN RS ⊥,求四边形MRNS 面积的最大值与最小值.17.已知椭圆()2222:10x y E a b a b +=>>的一个焦点坐标为()2,0,离心率为23.(1)求椭圆E 的标准方程;(2)设动圆22211:C x y t +=与椭圆E 交于A ,B ,C ,D 四点.动圆()222222212:C x y t t t +=≠与椭圆E 交于A ',B ',C ',D '四点.若矩形ABCD 与矩形A B C D ''''的面积相等,证明:2212t t +为定值.18.已知椭圆()2222:10x y C a b a b+=>>和抛物线()2:20E y px p =>.从两条曲线上各取两个点,将其坐标混合记录如下:(1P -,(22,P,)31P -,()49,3P .(1)求椭圆C 和抛物线E 的方程;(2)设m 为实数,已知点()3,0T -,直线3x my =+与抛物线E 交于A ,B 两点.记直线TA ,TB 的斜率分别为1k ,2k ,判断2121m k k +是否为定值,并说明理由. 19.设a 为实数,点()2,3在双曲线2222:12x y C a a -=+上. (1)求双曲线C 的方程; (2)过点1,12P ⎛⎫⎪⎝⎭作斜率为k 的动直线l 与双曲线右支交于不同的两点M ,N ,在线段MN 上取异于点M ,N 的点H ,满足PM MHPN HN=. (ⅰ)求斜率k 的取值范围;(ⅱ)证明:点H 恒在一条定直线上.南京师大附中2024—2025学年度第1学期高二年级期中考试数学试卷命题人:高二数学备课组 审阅人:高二数学备课组一.选择题1.【答案】A【解析】直线的斜率()415246k --==---,∴直线的方程为()5426y x -=-+,即5763y x =-+, ∴直线在x 轴上的截距为145,故选A . 2.【答案】B【解析】00525xx yy x y +=⇒--=,故选B . 3.【答案】B【解析】方程221362x y k k +=+-表示椭圆3602021362k k k k k+>⎧⎪⇒->⇒-<<-⎨⎪+≠-⎩或12k -<<,故选B . 4.【答案】C【解析】设点2,4y M y ⎛⎫⎪⎝⎭,由MO =()2220054y y ⎛⎫-+-= ⎪⎝⎭, ∴24y =或220y =-(舍去),即214y x ==, ∴M 到抛物线24y x =的准线1x =-的距离()112d =--=,根据抛物线定义得选项C .5.【答案】C【解析】当sin 0θ=时,则直线的斜率不存在,即直线的倾斜角为π2, 当sin 0θ≠时,则直线的斜率(][)1,11,sin k θ=-∈-∞-+∞,即直线倾斜角为πππ3π,,4224⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦, 综上所述,直线的倾斜角的范围为π3π,44⎡⎤⎢⎥⎣⎦.故选C . 6.【答案】A【解析】圆C 的半径为4,直线l 上存在到圆C 上一点的距离为3的点, 故圆心()2,7C -到直线l 的距离7d ≤,即()423775m⨯+⨯--≤,解得[]48,22m ∈-,故选A .7.【答案】D【解析】设21MF F θ∠=,则12sin MF c θ=,22cos MF c θ=, 根据双曲线定义122sin 2cos 2MF MF c c a θθ-=-=,1π4c aθ=⎛⎫- ⎪⎝⎭,π5π,312θ⎛⎫∈ ⎪⎝⎭,故πππ,4126θ⎛⎫-∈ ⎪⎝⎭1c e a =<,故选D . 8.【答案】C【法一】由题意知()2,0A -,()2,0B ,设()00,P x y , 直线P A ,PB 的斜率分别为1k ,2k ,则1214k k =-, 由正弦定理得sin 2cos sin PA PBAPAB PB PAB∠==∠∠, 又22tan tan tan 21tan PABPBA PAB PAB∠∠=∠=-∠,则122121k k k -=-, 联立解得2119k =,即22211cos tan 9cos PAB PAB PAB -∠=∠=∠,所以cos PAB ∠=,即5PA PB =, 【法二】设()00,P x y ,则00tan 2y PAB x ∠=+,00tan 2y PBA x ∠=--, 0000200022102tan tan 221312y y x PBA PAB PBA PAB x x y x +∠=∠⇒-=∠=∠=⇒=-⎛⎫- ⎪+⎝⎭,20144169y =5PAPB==二.多选题9.【答案】AB对于选项A :由题意可知2a =,1c ===,∴离心率12c e a ==,故选项A 错误, 对于选项B :由椭圆的定义1224PF PF a +==,1222F F c ==, ∴12PF F △的周长为426+=,故选项B 错误,对于选项C :当点P 为椭圆短轴端点时,12tan23F PF c b ∠==, 又∵120902F PF ∠︒<<︒,∴12302F PF∠=︒,即1260F PF ∠=︒, ∴1290F PF ∠<︒,故选项C 正确, 对于选项D :由椭圆的几何性质可知1a c PF a c -≤≤+,∴113PF ≤≤,故选项D 正确.10.【答案】BC【解析】()2254,39P x y x y ⎛⎫⇒=+-= ⎪⎝⎭对于A ,7233d R -=>=,所以直线与圆相离,不存在点P ; 对于B ,5232553d R -==<=,所以直线与圆相交,存在点P ; 对于C ,121252133C C R R ==+=+,所以两圆外切,存在点P ;对于D ,()()22121221116433x y C C R R -++=⇒=<-=-,所以两圆内含,不存在点P . 11.【答案】ACD【解析】212a PF PF =⋅==对于A ,用x -代x 得222x y c ++=y 轴对称,用y -代y 得222x y c ++=x 轴对称,用x -代x ,y -代y 得222x y c ++=所以曲线C 既是中心对称图形,又是轴对称图形,所以A 正确;对于B ,当0a >时,122PF PF a +≥=,当0a =时,显然P 与1F 或2F 重合,此时122PF PF c +=,所以B 错误; 对于C ,根据对称性可得,曲线E 与x 轴可能有三个交点,所以C 正确; 对于D ,若存在点P ,使得12PF PF ⊥,则12PF PF ⊥,因为()1,PF c x y =---,()2,PF c x y =--,所以222x y c +=,由222x y c ++=22c =222c a ≥,所以D 正确.三.填空题12.【答案】2212x y -= 【解析】设所求双曲线方程为()2202x y λλ-=≠,将点代入双曲线方程得121λ=-=-,故方程为2212x y -=.13.【答案】6【解析】设A 、B 两点横坐标分别为1x ,2x , 线段AB 中点的横坐标为2,则1222x x +=,故12426AB x x p =++=+=. 14.【答案】57【解析】由抛物线方程得()2,0F ,准线方程为2x =-, 又点()5,4P ,则25c PF ==,在抛物线上取点H ,过H 作HG 垂直直线2x =-,交直线2x =-于点G , 过P 作PM 垂直直线1x =-,交直线1x =-于点M ,由椭圆和抛物线定义得()2527a HF HP HG HP PM =+=+≥=--=,故椭圆离心率2527c e a =≤.四.解答题15.【解析】(1)由12l l ⊥,则20a a +=,解得0a =.(2)由12l l ∥得22244a a ⎧=⎨-≠-⎩,解得1a =-,直线2l 的方程为220x y -+-=,即220x y -+=, 直线1l 的方程为220x y --=, 因此,1l 与2l 之间的距离为d ==. 16.【解析】(1)设(),P x y ,则()()41,21,2PA PB x y x y =⋅=--⋅----,故轨迹方程为229x y +=. (2)假设点O 到MN 的距离为m ,到RS 的距离为n,则12S MN RS == 因为MN RS ⊥,所以224m n +=,所以)204S m ==≤≤,所以S ⎡⎤∈⎣⎦,所以四边形MRNS 面积的最大值14,最小值17.【解析】(1) 222249253a b a b e ⎧-=⎧=⎪⎪⇒⇒⎨⎨=⎪==⎩⎪⎩椭圆22:195x y E += (2)设()33,A x y ',矩形ABCD 与矩形A B C D ''''的面积相等 ∴331144x y x y =,即22221133x y x y=∵A ,A '均在椭圆上,∴22223113515199x x x x ⎛⎫⎛⎫⨯-=⨯- ⎪ ⎪⎝⎭⎝⎭,即22139x x +=,222231135151599x x y y ⎛⎫⎛⎫+=-+-= ⎪ ⎪⎝⎭⎝⎭ 故()()()()()22222222222212113313131314t t x y x y x x x x y y +=+++=+=+++=为定值. 18.【解析】(1)将四个点带入抛物线方程解得12p =-,12,2,12,故抛物线E 方程为2y x =故(1P -,)31P -为椭圆上的点22222242186141a a b b a b ⎧+=⎪⎧=⎪⎪⇒⇒⇒⎨⎨=⎪⎩⎪+=⎪⎩椭圆C 方程22184x y += (2)设()12,A x x ,()22,B x y ,则1222123303x my y y m y my y y y x =++=⎧⎧⇒--=⇒⎨⎨=-=⎩⎩()()()121222212121212666136212my my m y y m m m k k y y y y y y ++++=+=++=-为定值. 19.【解析】(1)因为点()2,3在双曲线C 上,所以22222312a a -=+,整理得42780a a +-=, 即()()22180a a -+=,解得21a =,则双曲线C 的方程为2213y x -=; (2)(ⅰ)易知直线l 的方程为112y k x ⎛⎫=-+ ⎪⎝⎭,即112y kx k =+-, 联立2211213y kx k y x ⎧=+-⎪⎪⎨⎪-=⎪⎩,消去y 并整理得()()222132404k x k k x k k ⎛⎫-+---+= ⎪⎝⎭, 设()11,M x y ,()22,N x y ,因为直线l 与双曲线的右支有两个不同的交点M ,N , 所以关于x 的方程()()222132404kxk k x k k ⎛⎫-+---+= ⎪⎝⎭有两个不同的正数根1x ,2x ,()()()()()()()()()22222222212434033416043202301303404k k k k k k k k k k k k k k k k k ⎧⎛⎫-+--+> ⎪⎪⎧-+->⎝⎭⎪⎪⎪⎪--<⇒-->⎨⎨⎪⎪-<⎛⎫⎪⎪⎩---+> ⎪⎪⎝⎭⎩,解得k ∈⎝则斜率k的取值范围为⎝; (ⅱ)设()00,H x y ,由(ⅰ)得()()12222233k k k k x x k k --+=-=--,()222122221144416443343k k k k k k x x k k k ⎛⎫--+-+ ⎪-+⎝⎭===---, 因为1112x a ≥=>,2112x a ≥=>,()()01020x x x x --<, 又P ,M ,N ,H 在同一直线l 上,所以111222112122112122x x PM x PN x x x ---===---,0120MH x x HN x x -=-, 由PM MH PN HN=得0112202121x x x x x x --=--,即()()()()1202012121x x x x x x --=--, 化简得()()()1201212214x x x x x x x +-=-+,所以()()202222241621333k k k k k k x k k k --⎛⎫-+-=- ⎪---⎝⎭, 整理得()()()2202234162k k k x k k k k --+=-+--,解得0832kx k -=-,即003821x k x -=- 又点()00,H x y 在直线112y k x ⎛⎫=-+ ⎪⎝⎭上,所以()001136911223264k k y k x k k +⎛⎫=-+=+= ⎪--⎝⎭ 即00000386921386421x x y x x -+⋅-=--⋅-,故点H 恒在定直线3260x y --=上.。
湖南省长沙市2024-2025学年高二上学期期中考试数学试卷(含解析)
湖南省长沙市2024-2025学年高二上学期期中考试数学试卷时量:120分钟满分:150分得分______一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数,则在复平面对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限2.设直线的倾斜角为,则A. B. C. D.3.如图,在平行六面体中,为与的交点.若,则下列向量中与相等的是A.B. C. D.4.已知数列为等差数列,.设甲:;乙:,则甲是乙的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.假设一水渠的横截面曲线是抛物线形,如图所示,它的渠口宽AB 为2m ,渠深OC 为1.5m ,水面EF 距AB 为0.5m ,则截面图中水面的宽度EF)A.0.816mB.1.33mC.1.50mD.1.63m6.已知圆.与圆外切,则ab 的最大值为A.2B.C.D.37.若函数在区间上只有一个零点,则的1i2iz -=+z :80l x -+=αα=30︒60︒120︒150︒1111ABCD A B C D -M 11A C 11B D AB 1,,a AD b AA c ===BM1122a b c ++1122a b c -++1122a b c --+1122a b c -+{}n a *,,,p q s t ∈N p q s t +=+p q s t a a a a +=+ 2.448≈≈≈221:()(3)9C x a y -++=222:()(1)1C x b y +++=52)44()2sin cos sin cos (0)f x x x x x ωωωωω=+->π0,2⎛⎫⎪⎝⎭ω取值范围为A. B. C. D.8.已知分别为椭圆的左、右焦点,椭圆上存在两点A ,B 使得梯形的高为(为该椭圆的半焦距),且,则椭圆的离心率为B.D.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是A.用简单随机抽样从含有50个个体的总体中抽取一个容量为10的样本,某个个体被抽到的概率是0.2B.已知一组数据1,2,m ,6,7的平均数为4,则这组数据的方差是5C.数据27,12,14,30,15,17,19,23的分位数是18D.若样本数据的平均值为8,则数据的平均值为1510.下列四个命题中正确的是A.过定点,且在轴和轴上的截距互为相反数的直线方程为B.过定点的直线与以为端点的线段相交,则直线的斜率的取值范围为或C.定点到圆D.过定点且与圆相切的直线方程为或11.在棱长为2的正方体中,点满足,则A.当时,点到平面B.当时,点到平面C.当时,存在点,使得D.当时,存在点,使得平面PCD 选择题答题卡题号1234567891011得分答案三、填空题:本题共3小题,每小题5分,共15分.12.假设,且与相互独立,则______.14,33⎛⎤ ⎥⎝⎦14,33⎡⎫⎪⎢⎣⎭17,66⎛⎤⎥⎝⎦17,66⎡⎫⎪⎢⎣⎭12,F F 2222:1(0)x y E a b a b+=>>E 12AF F B c c 124AF BF =E 4556m 50%1210,,,x x x 121021,21,,21x x x --- (1,1)P -x y 20x y --=(1,1)P -(3,1),(3,2)M N -k 12k - (32)k …(1,0)Q 22(1)(3)4x y ++-=2-(1,0)Q 22(1)(3)4x y ++-=51250x y +-=1x =1111ABCD A B C D -P 1,,[0,1]AP AC AD λμλμ=+∈0λ=P 11A BC 0μ=P 11A BC 34μ=P 1BP PC ⊥34λ=P 1BC ⊥()0.3,()0.4P A P B ==A B ()P AB =13.斜率为1的直线与椭圆相交于A ,B 两点,AB 的中点为,则______.14.已知公差不为0的等差数列的前项和为,若,则的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知的三个内角A ,B ,C 的对边分别为a ,b ,c ,且.(1)求角;(2)若,点满足,且,求的面积.16.(15分)在四棱锥中,底面ABCD 是正方形,若.(1)求证:平面平面ABCD ;(2)求平面ABQ 与平面BDQ 所成夹角的余弦值.17.(15分)已知双曲线的左、右焦点分别为的一条渐近线方程为,且.(1)求的方程;(2)A ,B 为双曲线右支上两个不同的点,线段AB 的中垂线过点,求直线AB 的斜率的取值范围.18.(17分)已知是数列的前项和,若.(1)求证:数列为等差数列.(2)若,数列的前项和为.(ⅰ)求取最大值时的值;22143x y +=(,1)M m m ={}n a n n S 457,,{5,0}a S S ∈-n S ABC π22sin 6b aA c+⎛⎫+=⎪⎝⎭C 1a =D 2AD DB = ||CD = ABC Q ABCD -2,3AD QD QA QC ====QAD ⊥2222:1(0,0)x y E a b a b-=>>12,,F F E y =2c =E E (0,4)C n S {}n a n 1112n n n n S S a a ++-={}n a 12,13n n a c a =-=+{}n c n n T n T n(ⅱ)若是偶数,且,求.19.(17分)直线族是指具有某种共同性质的直线的全体,例如表示过点的直线,直线的包络曲线定义为:直线族中的每一条直线都是该曲线上某点处的切线,且该曲线上的每一点处的切线都是该直线族中的某条直线.(1)若圆是直线族的包络曲线,则m ,n 满足的关系式是什么?(2)若点不在直线族的任意一条直线上,求的取值范围和直线族的包络曲线.(3)在(2)的条件下,过曲线上A ,B 两点作曲线的切线,其交点为.若且,B ,C 不共线,探究是否成立?请说明理由.m 2(1)nn n b a=-21mi i b =∑1x ty =+(1,0)221:1C x y +=1(,)mx ny m n +=∈R ()00P x y ,2:(24)4(2)0()a x y a a Ω-++-=∈R 0y ΩE E E 12,l l P (0,1)C A PCA PCB ∠=∠长沙市2024-2025学年度高二第一学期期中考试数学参考答案一、二、选择题题号1234567891011答案DABADDACACDBDBD1.D 【解析】因为,对应点为,在第四象限.故选D.2.A【解析】由直线,可得直线的斜率为设直线的倾斜角为,其中,可得.故选A.3.B 【解析】.故选B.4.A 【解析】甲是乙的充分条件;若为常数列,则乙成立推不出甲成立.5.D 【解析】以为原点,OC 为轴,建立如图所示的平面直角坐标系,设扡物线的标准方程为,由题意可得,代入得,得,故抛物线的标准方程为,设,则,则,所以截面图中水面的宽度EF 约为,故选D.6.D 【解析】圆的圆心,半径,1i (1i)(2i)13i 2i (2i)(2i)55z ---===-++-13,55⎛⎫- ⎪⎝⎭:80l x +=l k =l α0180α︒︒<…tan α=30α︒=11111111111111222222BM BB B M AA B A B C AA AB AD a b c =+=++=-+=-++ {}n a O y 22(0)x py p =>(1,1.5)B 22x py =13p =13p =223x y =()()0000,0,0F x y x y >>0 1.50.51y =-=200221,0.81633x x =⨯===≈0.8162 1.63m ⨯≈221:()(3)9C x a y -++=1(,3)C a -13r =圆的圆心,半径,依题意,,于是,即,因此,当且仅当时取等号,所以ab 的最大值为3.故选D.7.A 【解析】由,令,则由题意知.8.C 【解析】如图,由,得,则为梯形的两条底边,作于点,由梯形的高为,得,在Rt 中,,则有,即,在中,设,则,,即,解得在中,,同理,又,所以,即,所以离心率.故选C.9.ACD 【解析】对于A ,一个总体含有50个个体,以简单随机抽样方式从该总体中抽取一个容量为10的样本,222:()(1)1C x b y +++=2(,1)C b --21r =12124C C r r =+=222()24a b ++=22122224a b ab ab ab ab =+++=…3ab …a b =)22π()sin 2sin cos sin 222sin 23f x x x x x x x ωωωωωω⎛⎫=-==-⎪⎝⎭πππ2π362k x k x ωωω-=⇒=+ππππ14,626233ωωωω⎛⎤<+⇒∈ ⎥⎝⎦…214AF BF =12//AF BF 12,AF BF 12AF F B 21F P AF ⊥P 12AF F B c 2PF c =12F PF 122F F c =1230PF F ︒∠=1230AF F ︒∠=12AF F 1AF x =22AF a x =-22221121122cos30AF AF F F AF F F ︒=+-222(2)4a x x c -=+-1AF x ==12BF F 21150BF F ︒∠=2BF =214AF BF = 4=3a =c e a ==则指定的某个个体被抽到的概率为,故A 正确;对于B ,数据1,2,m ,6,7的平均数是,这组数据的方差是,故B 错误;对于C ,,第50百分位数为,故C 正确;对于D ,依题意,,则,故D 正确;故选ACD.10.BD 【解析】对于A ,过点且在轴和轴上的截距互为相反数的直线还有过原点的直线,其方程为错误;对于B ,直线PM ,PN 的斜率分别为,依题意,或,即或,B 正确;对于C ,圆的圆心,半径,定点到圆C 错误;对于D ,圆的圆心,半径,过点斜率不存在的直线与圆相切,当切线斜率存在时,设切线方程为,解得,此切线方程为,所以过点且与圆相切的直线方程为或,D 正确;故选BD.11.BD 【解析】在棱长为2的正方体中,建立如图所示的空间直角坐标系,11100.2505⨯== 4,4512674m =⨯----=222222126(14)(24)(44)(64)(74)55s ⎡⎤=-+-+-+-+-=⎣⎦850%4⨯=1719182+=8x =2116115x -=-=(1,1)-x y ,A y x =-2(1)31(1)1,312312PN FM k k ----====----PMk k ...FN k k ...12k - (3)2k …22:(1)(3)4C x y ++-=(1,3)C -2r =(1,0)Q 2(1)x +2(3)4y +-=22,+=+22:(1)(3)4C x y ++-=(1,3)C -2r =(1,0)1x =C (1)y k x =-2=512k =-51250x y +-=(1,0)22(1)(3)4x y ++-=51250x y +-=1x =1111ABCD A B C D -则,,设平面的法向是为,则令,得,对于,当时,,点到平面的距离A 错误;对于B ,当时,,点到平面的距离B 正确;对于C ,当时,,则,当时,显然,方程无实根,即BP 与不垂直,C 错误;对于D ,当时,,则,显然,即,由,得,即当时,,而平面PCD ,因此平面PCD ,D 正确.故选BD.三、填空题12.0.12【解析】由,且与相互独立,得,13.【解析】设直线AB 的方程为,代入椭圆方程,1111(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,0,2),(2,0,2),(2,2;2),(0,2,2)A B C D A B C D 11(2,0,2),(0,2,2)BA BC =-=11A BC (,,)n x y z = 11220,220,n BA x z n BC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩1z =(1,1,1)n =- A 0λ=11(0,2,2),(0,2,2),(0,2,22)AP AD P A P μμμμμμμ===-P 11A BC 11||n A P d n ⋅=== 0μ=(2,2,0),(2,2;0),(22,2,0)AP AC P BP λλλλλλλ===-P 11A BC 2||||n BP d n ⋅===34μ=133333(2,2,0)0,,2,2,42222AP AC AD λλλλλ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭ 13333112,2,,22,2,,22,2,222222P BP C P λλλλλλ⎛⎫⎛⎫⎛⎫+=-+=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2213135(22)228602242BP C P λλλλλ⎛⎫⎛⎫⋅=-++--=-+= ⎪⎪⎝⎭⎝⎭ 2564802∆=-⨯⨯<1PC 34λ=133333,,0(0,2,2),2,242222AP AC AD μμμμμ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭ 3331,2,2,,2,2,(2,0,0),(0,2,2)2222P DP DC BC μμμμ⎛⎫⎛⎫+=-== ⎪ ⎪⎝⎭⎝⎭10DC BC ⋅= 1BC DC ⊥1122402DP BC μμ⎛⎫⋅=-+= ⎪⎝⎭ 18μ=18μ=1BC DP ⊥,,DC DP D DC DP ⋂=⊂1BC ⊥()0.3,()0.4P A P B ==A B ()()()0.12P AB P A P B ==43-y x b =+22143x y +=可得,由韦达定理可得,则,则,则,所以.14.-6【解析】取得最小值,则公差或,①当时,,所以,又,所以,所以,故,令,得,所以的最小值为.②当,不合题意.综上所述:的最小值为-6.四、解答题15.【解析】(1),,,,,.…………………………………………………………………………………6分(2)由,,,分16.【解析】(1)证明:中,,22784120x bx b ++-=1287b x x +=-()121427M b x x x =+=-43177M M b y x b b b =+=-+==73b =474733M m x ==-⨯=-n S 40,5d a >=-10a =40a =7470S a ==55S =-535S a =31a =-4310a a d -==>4n a n =-0n a …4n …n S 346S S ==-4745,735a S a =-==-4570,5,0,n a S S S ==-=π2πsin 2sin 2sin 2sin 66sin b a B A A A c C ++⎛⎫⎛⎫+=⇒+=⎪ ⎪⎝⎭⎝⎭cos )sin sin()2sin A A C A C A ∴+=++sin cos sin sin cos cos sin 2sin A C A C A C A C A +=++sin sin cos 2sin ,(0,π),sin 0A C A C A A A =+∈∴≠ πππ5πcos 2sin 1,,6666C C C C ⎛⎫⎛⎫=+⇒-=-∈- ⎪ ⎪⎝⎭⎝⎭ ππ2π,623C C ∴-=∴=222()33AD DB CD CA AD CA AB CA CB CA =⇒=+=+=+-1212,||3333CD CA CB CD CA CB ∴=+∴=+== 22214474272b a ab b b ⎛⎫∴++⋅-=⇒+-= ⎪⎝⎭211230(1)(3)03,sin 1322b b b b b S ab C ∴--=⇒+-=⇒=∴==⨯⨯=QCD 2,3CD AD QD QC ====所以,所以.又平面平面QAD ,所以平面QAD.又平面ABCD ,所以平面平面ABCD .……………………………………………………5分(2)取AD 的中点,因为,所以,且,因为,平面平面ABCD ,平面平面,所以平面ABCD .在平面ABCD 内作,以OD 为轴,OQ 为轴,建立空间直角坐标系,如图所示,则,设平面ABQ 的法向量为,由,得令,得,所以平面ABQ 的一个法向量.设平西BDQ 的法向量为,由,得令,得,所以平面BDQ 的一个法向量.所以222CD QD QC +=CD QD ⊥,,CD AD AD QD D AD ⊥⋂=⊂QAD QD ⊂,CD ⊥CD ⊂QAD ⊥O QD QA =OQ AD ⊥2OQ ==OQ AD ⊥QAD ⊥QAD ⋂ABCD AD =OQ ⊥Ox AD ⊥y z O xyz -(0,0,0),(0,1,0),(2,1,0),(2,1,0),(0,1,0),(0,0,2)O A B C D Q --()111,,x y z α=(2,0,0),(0,1,2)AB AQ ==11120,20,AB x AQ y z αα⎧⋅==⎪⎨⋅=+=⎪⎩ 11z =-112,0y x ==(0,2,1)α=-()222,,x y x β=(2,2,0),(0,1,2)BD DQ =-=-2222220,20,BD x y DQ y x ββ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 21z =222,2y x ==(2,2,1)β=|cos ,αβ〈〉所以平面ABQ 与平面BDQ分17.【解析】(1)由题得推出所以双曲线的方程为.……………………………………………………………………4分(2)由题意可知直线AB 斜率存在且,设,设AB 的中点为.由消去并整理得,则,即,,于是点为.由中垂线知,所以,解得:.所以由A ,B 在双曲线的右支上可得:,且,且或,所以,即,综上可得,.…………………………………………………………………………15分18.【解析】(1)因为,所以是以为首项,以为公差的等差数列,所以,即①,2222,,b a c c a b ⎧=⎪⎪=⎨⎪=+⎪⎩1,a b ==E 2213y x -=k ≠()()1122:,,,,AB y kx m A x y B x y =+M 22,33y kx m x y =+⎧⎨-=⎩y ()22223230,30k x kmx m k ----=-≠()()()22222(2)4331230km k m m k ∆-+-+-+-=223m k >-()21212121222222326,,223333km m km m x x x x y y k x x m k m k k k k ++==-+=++=⋅+=----M 2222234331243,,333M C MC M m y y km m m k k k km k k x kmk ---+⎛⎫-=== ⎪--⎝⎭-1MC AB k k ⋅=-231241m k km k-+=-23m k =-22221223303033m m x x m k k k m++=-=->⇒=-<⇒>-12222003km x x k k k +==>⇒>-()()()()()222222221230333403m k k k k k k ∆=+->⇒-+-=-->⇒<24k >24k >2k >(2,)k ∈+∞1112n n n n S S a a ++-=n n S a ⎧⎫⎨⎬⎩⎭111a a =12111(1)22n n S n n a +=+-=12n n n S a +=所以②,由②-①可得,即,所以,所以,所以数列为等差数列.………………………………………………………7分(2)(Ⅰ)由题意知在等差数列中,,故.可得,当时,取最大值.………………………………………………………………………………12分(Ⅱ).………………………………………………………………17分19.【解析】(1)由定义可知,与相切,则圆的圆心到直线的距离等于1,则,即.……………………………………………………4分(2)点不在直线族的任意一条直线上,所以无论取何值时,4)无解.将整理成关于的一元二次方程:.1122n n n S a +++=1122n n n n a a ++=11111n n a a a a n n +====+ 111(1),n n a n a a na +=+=11n n a a a +-={}n a {}n a 1(1)2n a a n d n =+-=-132n c n =-22(1)11(2)12(6)362n n n T n n n n -=+⨯-=-=--+∴6n =n T 222222212321234521m i m mi bb b b b a a a a a a ==++++=-+-+-++∑ ()()()()22222222123456212m m a a a a a a a a -=-++-++-+++-+ ()21232284m a a a a m m =-++++=+ 1mx ny +=221x y +=1C (0,0)1mx ny +=d 1==221m n +=()00,P x y 2:(24)4(2)0(R)a x y a a Ω-++-=∈a (2a -2004(2)0x y a ++-=200(24)4(2)0a x y a -++-=a ()()2000244440a x a y x +-++-=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类型一:已知切点,求曲线的切线方程
例1 曲线3231y x x =-+在点(1
1)-,处的切线方程为( ) A.34y x =- B.32y x =-+
C.43y x =-+
D.45y x =-
类型二:已知斜率,求曲线的切线方程
例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( )
A.230x y -+=
B.230x y --= C.210x y -+=
D.210x y --=
类型三:已知过曲线上一点,求切线方程
例3 求过曲线32y x x =-上的点(11)-,的切线方程.
类型四:已知过曲线外一点,求切线方程
例4 求过点(20),且与曲线1y x
=相切的直线方程.
例5 已知函数33y x x =-,过点(016)A ,
作曲线()y f x =的切线,求此切线方程.
1.已知曲线3
:2S y x x =-
(1)求曲线S 在点(1,1)A 处的切线方程;
(2)求过点(2,0)B 并与曲线S 相切的直线方程.
2设函数2()ln(23)f x x x =++
(1)讨论()f x 的单调性;
(2)求()f x 在区间3144
⎡⎤-⎢⎥⎣⎦,的最大值和最小值
3.已知()()3211ln ,32
f x x
g x x x mx n ==
+++,直线l 与函数()(),f x g x 的图象都相切于点()1,0
(1)求直线l 的方程及()g x 的解析式;
(2)若()()()'h x f x g x =-(其中()'g x 是()g x 的导函数),求函数()h x 的值域.
4.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.
(1)求a 、b 的值; (2)若对于任意的[03]x ∈,
,都有2
()f x c <成立,求c 的取值范围
5.设0t ≠, 点P )0,t ( 是函数3()f x x ax =+2()g x bx c =+与的图象的一个公共点, 两函数的图象在点P 处有相同的切线.
(1) 用t 表示a , b , c ;
(2) 若函数()()y f x g x =-在)3,1( -上单调递减,求t 的取值范围.
题型一:恒成立问题→最值问题→导数
1.设函数22()21(0)f x tx t x t x t =++-∈>R ,.
(1)求()f x 的最小值()h t ;
(2)若()2h t t m <-+对(02)t ∈,
恒成立,求实数m 的取值范围
2.已知函数c bx x ax x f -+=44ln )((x >0)在x =1处取得极值c --3,其中a,b,c 为常数
(1)试确定a ,b 的值;
(2)讨论函数f(x)的单调区间;
(3)若对任意x >0,不等式22)(c x f -≥恒成立,求c 的取值范围。
题型二:单调性问题
3.(安徽卷理)已知函数2()(2ln ),(0)f x x a x a x
=-
+->,讨论()f x 的单调性.
4.(北京理)设函数()(0)kx f x xe k =≠
(1)求曲线()y f x =在点(0,(0))f 处的切线方程;
(2)求函数()f x 的单调区间;
(3)若函数()f x 在区间(1,1)-内单调递增,求k 的取值范围.
5.(全国19)已知函数32()1f x x ax x =+++,a ∈R .
(1)讨论函数()f x 的单调区间;
(2)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围.
题型一:恒成立问题(及不等式证明问题)
1.(安徽卷20)设函数1()(01)ln f x x x x x
=>≠且 (1)求函数()f x 的单调区间;
(2)已知12a
x x >对任意(0,1)x ∈成立,求实数a 的取值范围。
2.(湖北理 20)已知定义在正实数集上的函数21()22
f x x ax =+,2()3ln
g x a x b =+,其中0a >.设两曲线()y f x =,()y g x =有公共点,且在该点处的切线相同.
(1)用a 表示b ,并求b 的最大值;
(2)求证:()()f x g x ≥(0x >).
题型二:单调性问题
3.已知函数2x f (x)ax lnx e
=+- (1)任取两个不等的正数21x x 、,0x x )x (f )x (f 2
121<--恒成立,求:a 的取值范围; (2)当0a >时,求证:0)x (f =没有实数解.
4.(全国卷I )设a 为实数,函数()()
3221f x x ax a x =-+-在(),0-∞和()1,+∞都是增函数,求a 的取值范围。