两因素实验设计SPSS操作技巧

合集下载

SPSS双因素方差分析

SPSS双因素方差分析

SPSS双因素方差分析双因素方差分析是一种用于研究两个或多个自变量对因变量之间是否存在影响的统计方法。

在本文中,我们将讨论SPSS中如何进行双因素方差分析,并对其结果进行解释。

首先,我们需要首先导入我们的数据集,并确保数据集中包含我们要研究的因变量和两个自变量。

在SPSS中,我们可以通过依次点击"文件"->"导入"->"数据"来加载数据集。

一旦我们成功加载数据集,我们可以开始进行双因素方差分析。

在SPSS中,我们可以通过依次点击"分析"->"一般线性模型"->"一元方差分析"来进行。

在进行方差分析之前,我们需要将自变量添加到"因子"的列表中。

我们可以使用鼠标将自变量拖拽到"因子"列表中,或者通过点击"添加"按钮手动将其添加。

在添加完自变量后,我们可以点击"模型"选项卡,选择我们感兴趣的方差分析模型。

在双因素方差分析中,共有三种模型可供选择:主效应模型、交互作用模型和自由模型。

-主效应模型:计算每个自变量的主效应,并忽略它们之间是否存在交互作用。

-交互作用模型:计算自变量之间是否存在交互作用,并同时计算每个自变量的主效应。

-自由模型:不计算任何主效应或交互作用,仅用于比较不同模型之间的显著性。

选择适当的模型后,我们可以点击"可选"选项卡,设置其他参数,比如显著性水平、效应大小等。

一旦我们完成了所有设置,可以点击"确定"开始进行方差分析。

SPSS将会自动生成方差分析的结果报告。

在报告中,我们可以找到各个自变量的主效应、交互作用以及整体模型的显著性等信息。

一般来说,我们关注的主要结果包括:组间方差、组内方差、平方和、均方、F统计值、显著性水平等。

双因素重复测量方差分析spss

双因素重复测量方差分析spss

双因素重复测量方差分析spss今天,在社会科学研究中,双因素重复测量方差分析(又称双因素实验设计)是许多研究者经常使用的一种统计分析方法。

本文旨在介绍双因素重复测量方差分析的概念、框架及其在社会科学研究中的应用,并就双因素重复测量方差分析的数据分析工具:spss(统计分析系统)的使用方法及注意事项作出详细介绍。

首先,本文将对双因素重复测量方差分析的概念和框架进行介绍。

双因素重复测量方差分析是一种统计分析方法,主要用于研究具有两个因素的实验中,旨在检验两个因素之间是否存在交互作用,以及它们对被试的反应是否有显著的影响。

双因素重复测量方差分析的框架主要包括实验设计、变量定义、数据分析和分析结果四个部分。

其中,实验设计主要涉及实验条件、处理组构成、实验时序和抽样等;变量定义涉及双因素、因变量定义以及潜在参数的定义;数据分析主要涉及从数据中提取模式和信息、建立模型、利用模型进行预测和主观判断等;分析结果是指从实验数据解释得出的结论,它包括实验效应的分析和检验,以及实验结果的解释。

其次,本文将介绍在社会科学研究中双因素重复测量方差分析的应用。

一般而言,双因素重复测量方差分析可用于量化两个相关因素之间的交互作用,并从中推断哪个因素对整体结果的影响更大,以及这些因素的比例,从而帮助研究者更好地解决研究问题。

具体而言,双因素重复测量方差分析可用于社会科学研究的诸多领域,如社会心理学中的心理实验研究和个体差异研究、社会学研究中的社会状况研究、组织心理学研究中的组织文化研究等,旨在从多维度研究和探索社会心理状态和社会状况,以及它们对社会变量的影响。

最后,本文将介绍双因素重复测量方差分析的数据分析工具:spss的使用方法及注意事项。

spss(统计分析系统)是一款专业的统计分析软件,可用于双因素重复测量方差分析及其他统计分析。

spss操作简单方便,可以实现数据收集、数据清理、数据探索、数据分析以及图形分析等,可以有效地运用统计学原理,以正确分析双因素重复测量实验数据。

两因素实验设计spss操作技巧

两因素实验设计spss操作技巧

两因素重复测量实验设计SPSS操作
简单效应检验
GLM 无标记短句 无标记中句 无标记长句 有标记短句 有标记中句 有标记长句 /WSFACTOR=标记类型 2 Polynomial 句长类型 3 Polynomial /METHOD=SSTYPE(3) /PLOT=PROFILE(标记类型*句长类型) /EMMEANS=TABLES(标记类型*句长类型) COMPARE(标记类型) ADJ(LSD) /EMMEANS=TABLES(标记类型*句长类型) COMPARE(句长类型) ADJ(LSD) /PRINT=DESCRIPTIVE /CRITERIA=ALPHA(.05) /WSDESIGN=标记类型 句长类型 标记类型*句长类型.
一元方差分析结果表明: ① 标记类型主效应显著, F=37.022,P=.009 ② 句长类型主效应检验。因 其满足球形假设,故参见每项检 验的第一行Sphericity Assumed的结果,即, F=47.79,P=.000,表明b变量 主效应极其显著。 ③ a与b的交互效应检验。因 其满足球形假设,故参见标准一 元方差分析的结果,即, F=34.02,P=.001,表明a与b 的交互效应极显著。
对标记类型,赋值时,分别设定: 1=“无标记” 2=“有标记”
对句子类型赋值时,分别设定: 1=“短句子” 2=“中句子” 3=“长句子”
两因素完全随机实验设计SPSS操作
Data View,进入数据输入窗口, 将原始数据输入SPSS表格区域
两因素完全随机实验设计SPSS操作
第二步:Analyze→General Linear Model → Unvariate
❖ 因变量:句子阅读理解成绩 ❖ 随机抽取24名被试,分配到各实验组。

两因素重复测量方差分析,史上最详细SPSS教程!

两因素重复测量方差分析,史上最详细SPSS教程!

两因素重复测量方差分析,史上最详细SPSS教程!一、问题与数据研究者想知道短期(2周)高强度锻炼是否会减少C反应蛋白(C-Reactive Protein, CRP)的浓度。

研究者招募了12名研究对象,并让研究对象参与两组试验:对照试验和干预试验。

在对照试验中,研究对象照常进行日常活动;在干预试验中,研究对象每天进行45分钟的高强度锻炼,每组试验持续2周,两组试验中间间隔足够的时间。

CRP的浓度在每组试验中共测量了3次:试验开始时的CRP浓度、试验中的CRP浓度(1周)和试验结束时的CRP浓度(2周)。

这三个时间点代表了受试者内因素“时间”的三个水平,因变量是CRP的浓度,单位是mg/L。

con_1、con_2和con_3分别代表对照试验开始时、对照试验中和对照试验结束时研究对象的CRP浓度,int_1、int_2和int_3分别代表干预试验开始时、干预试验中和结束时研究对象的CRP浓度。

部分数据如下:二、对问题的分析使用两因素重复测量方差分析(Two-way Repeated Measures Anova)进行分析时,需要考虑5个假设。

对研究设计的假设:假设1:因变量唯一,且为连续变量;假设2:有两个受试者内因素(Within-Subject Factor),每个受试者内因素有2个或以上的水平。

注:在重复测量的方差分析模型中,对同一个体相同变量的不同次观测结果被视为一组,用于区分重复测量次数的变量被称为受试者内因素,受试者内因素实际上是自变量。

对数据的假设:假设3:受试者内因素的各个水平,因变量没有极端异常值;假设4:受试者内因素的各个水平,因变量需服从近似正态分布;假设5:对于受试者内因素的各个水平组合而言,因变量的方差协方差矩阵相等,也称为球形假设。

三、思维导图(点击图片看清晰大图)四、SPSS操作两因素重复测量方差分析的操作1. 在主菜单下点击Analyze > General Linear Model > Repeated measures...,如下图所示:2. 出现Repeated Measures Define Factor(s)对话框,如下图所示:3. 在Within-Subject Factor Name:中将“factor1”更改为treatment,因为研究对象共进行了2组试验,在Number of Levels:中填入2;4. 点击Add,出现下图:5. 在Within-Subject Factor Name:中填入time,因为研究对象的CRP水平在每组试验中共测量了3次,在Number of Levels:中填入3,点击Add;6. 点击Define,出现下图Repeated Measures对话框;7. 如下图所示,Within-Subjects Variables后面的括号内是受试者内因素的名字,将左侧六个变量均选入右侧框中,如下图所示:8. 点击Plots,出现Repeated Measures: Profile Plots 对话框,如下图所示:9. 将time选入Horizontal Axis:框中,将treatment选入Separate Lines:框中;10. 点击Add,出现下图,点击Continue;11. 点击Save,出现Repeated Measures: Save对话框;12. 在Residuals下方选择Studentized,如下图所示,点击Continue;13. 点击Options,出现Repeated Measures: Options对话框;14. 将treatment、time和treatment*time选入Display Means for:中,下方Compare main effects为勾选状态,在Confidence interval adjustment:下选择Bonferroni,在Display下方勾选Descriptive statistics 和Estimates of effect size,点击Continue,点击OK。

用spss20进行可重复单因素随机区组、两因素随机区组、两因素裂区试验设计的方差分析

用spss20进行可重复单因素随机区组、两因素随机区组、两因素裂区试验设计的方差分析

一、可重复单因素随机区组试验设计8个小麦品种的产比试验,采用随机区组设计,3次重复,计产面积25平米,产量结果如下,进行方差分析和多重比较。

表1 小麦品比试验产量结果(公斤)4 3 10.15 3 16.86 3 11.87 3 14.18 3 14.41、打开程序把上述数据输入进去。

2、执行:分析-一般线性模型-单变量。

3、将产量放进因变量,品种和区组放进固定因子。

4、单击模型,选择设定单选框,将品种和区组放进模型中,只分析主效应。

5、在两两比较中进行多重比较,这里只用分析品种。

可以选择多种比较方法。

6、分析结果。

主体间效应的检验因变量: 产量源III 型平方和df 均方 F Sig. 校正模型61.641a 9 6.849 4.174 .009 截距3220.167 1 3220.167 1962.448 .000 区组27.561 2 13.780 8.398 .004 品种34.080 7 4.869 2.967 .040 误差22.972 14 1.641总计3304.780 24校正的总计84.613 23a. R 方 = .729(调整 R 方 = .554)这里只须看区组和品种两行,两者均达到显著水平,说明土壤肥力和品种均影响产量结果。

下面是多重比较,只有方差分析达到显著差异才进行多重比较。

二、两因素可重复随机区组试验设计下面是水稻品种和密度对产量的影响,采用随机区组试验设计,3次重复,品种3个水平,密度3个水平,共27个观测值。

小区计产面积20平米。

表2 水稻品种与密度产比试验1、输入数据,执行:分析-一般线性模型-单变量。

注意区组作为随机因子。

2、选择模型。

注意模型中有三者的主效和品种与密度的交互。

3、分析结果。

注意自由度的分解。

使用一个误差(0.486)计算F值。

主体间效应的检验因变量: 产量源III 型平方和df 均方 F Sig. 截距假设1496.333 1 1496.333 1035.923 .0014、语句。

spssau方差分析之双因素方差分析操作

spssau方差分析之双因素方差分析操作

双因素方差
双因素方差分析,用于分析定类数据(2个)与定量数据之间的关系情况.例如研究人员性别,学历对于网购满意度的差异性;以及男性或者女性时,不同学历是否有着网购满意度差异性;或者同一学历时,不同性别是否有着网购满意度差异性.
双因素方差分析是相对于单因素方差分析而言;区别在于X(定类数据)的个数;如果仅为一个称为单因素方差;两个为双因素方差;单因素方差分析(即方差分析)的使用非常普遍;但双因素方差更多用于实验研究.
首先判断p值是否呈现出显著性,如果呈现出显著性,则说明X或者交互项对于Y有着差异(影响)关系.
分析结果表格示例如下(SPSSAU同时会生成拆线图):
备注:双因素方差分析基本上仅用于实验研究中,请谨慎使用。

SPSSAU操作截图如下:。

双因素方差分析spss实例

双因素方差分析spss实例

双因素方差分析spss实例双因素方差分析(ANOVA)是一种统计分析方法,它可以比较不同的组之间的投票者的结果,以确定两个或更多因素是否有显著的影响。

换句话说,它可以测量实验中的不同影响因素,以确定它们之间是否有显著的差异。

本文将介绍如何使用SPSS进行双因素方差分析,以确定两个因素之间是否有显著差异。

首先,需要准备你的数据,将其输入到SPSS程序中。

将你的数据文件保存为.csv格式,确保它的每列的标题是充分描述性的,并包括所有你所需要的因素。

一旦你的数据文件被保存到SPSS中,可以创建一个新的SPSS文件,然后将数据文件拖放到新的SPSS文件中即可。

接下来,在SPSS中,找到“统计”工具栏,点击进入“分析”选项卡。

找到“方差分析”,双击它,以进入“方差分析-双因素方差分析”窗口。

在“自变量”框中输入你要比较的两个因素,即你的实验的两个因素。

然后在“因子”菜单中选择“应变量的每个因子的水平”。

此时,SPSS将自动映射每个因素的水平,可以在“水平”窗口中查看。

现在,可以单击“方差分析”按钮,运行双因素方差分析。

SPSS 将给出结果表,该表显示在多个水平上,因素间是否存在显著差异。

在结果表中,F值说明了实验变量之间的差异。

当F值大于1时,实验变量存在显著差异,说明变量对结果有显著影响;反之,F值小于1时,实验变量没有显著差异,则表明变量对结果没有显著影响。

最后,你可以使用SPSS输出图表,根据结果表中的数据来分析两个因素之间的关系。

这也可以帮助你更好地理解实验结果,并更好地控制你的实验因素。

总之,SPSS双因素方差分析是一种很有用的统计工具,可以帮助研究者测量不同因素之间的关系,并确定它们之间是否存在显著差异。

上面介绍了如何使用SPSS进行双因素方差分析,并介绍了如何分析结果,希望对你有所帮助。

spss操作-双因素方差分析(无重复)精品PPT课件

spss操作-双因素方差分析(无重复)精品PPT课件

2)将“含量比”设置为变量,将“PH值”、 “浓度”设置为因素
3)单击Model → 单击Custom选择只含主效应的双因 素方差分析模型 ,单击Con将两个因素设置为需要进行多重比 较的因素,选择 Tukey 法进行多重比较;
5)单击Continue,返回上一级菜单,单击Option,选择 需显示描述性统计量的因素 ,单击Continue返回上一级菜单 单击OK。
结论:…..
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
谢谢大家
荣幸这一路,与你同行
蒸馏水PH值
硫酸铜浓度
B1
B2
B3
A1
3.5
2.3
2.0
A2
2.6
2.0
1.9
A3
2.0
1.5
1.2
A4
1.4
0.8
0.3
使用SPSS软件进行分析
1. 单击 “开始” → “程序” → SPSS for windows → SPSS10.0 for windows → type in data → OK → 单击 “Variable View”( 在第 一列输入因变量( 含量比 ) 、因素A( PH值 )因素 B( 浓度 ) ;单击“ Data View ”。
(I) PH值 (J) PH值
1
2
Mean Difference
(I-J)
.433
Std. Error .169
95% Confidence Interval

SPSS双因素方差分析

SPSS双因素方差分析

SPSS双因素方差分析例1 对小白鼠喂以三种不同的营养素,目的是了解不同营养素增重的效果。

采用随机区组设计方法,以窝别作为划分区组的特征,以消除遗传因素对体重增长的影响。

现将同品系同体重的24只小白鼠分为8个区组,每个区组3只小白鼠。

三周后体重增量结果(克)列于下表,问小白鼠经三种不同营养素喂养后所增体重有无差别?这可以认为是无重复实验的双因素方差分析,SPSS软件版本:18.0中文版。

1、建立数据文件变量视图:建立3个变量,如下图数据视图:如下图:区组号用1-8表示,营养素号用1-3表示。

数据文件见“小白鼠喂3种不同的营养素增重数量.sav”,可以直接使用。

2、统计分析菜单选择:分析-> 一般线性模型-> 单变量点击进入“单变量”对话框将“体重”选入“因变量”框,“区组”、“营养素”选入固定因子框点击右边“模型”按钮,进入“单变量:模型对话框”点击“设定”单选按钮(无重复双因素方差分析不能选全因子!),在“构建项”下拉菜单中选择“主效应”(只能选主效应)把左边的因子与协变量框中区组和营养素均选入右边的模型框中其余选项取默认值就行,点击“继续”按钮,回到“单变量”界面点击“两两比较”按钮,进入下面对话框将左边框中“区组”、“营养素”均选入右边框中再选择两两比较的方法,LSD、S-N-K,Duncan为常用的三种方法,点击“继续”按钮回到“单变量”主界面。

点击“选项”按钮勾选“统计描述”及“方差齐性检验”,设置显著性水平,点击“继续”按钮,回到“单变量”主界面点击下方“确定”按钮,开始分析。

3、结果解读这是一个所分析因素的取值情况列表。

变量的描述性分析这是一个典型的方差分析表,有2个因素“营养素”和“区组”,首先是所用方差分析模型的检验,F值为11.517,P小于0.05,因此所用的模型有统计学意义,即认为至少有一个因素对体重增长有显著影响,可以用它来判断模型中系数有无统计学意义;第二行是截距,它在我们的分析中没有实际意义,忽略即可;第三行是变量是区组,P<0.001,可见有统计学意义(即认为区组对体重增长有显著影响),不过通常我们关心的也不是他;第四行是我们真正要分析的营养素,非常遗憾,它的P值为0.084,没有统计学意义(即认为营养素对体重增长没有显著影响)。

SPSS超详细操作:两因素多元方差分析(Two

SPSS超详细操作:两因素多元方差分析(Two

SPSS超详细操作:两因素多元方差分析(Two医咖会在之前的推文中,推送过多篇方差分析相关的文章,包括:单因素方差分析(One-Way ANOVA)双因素方差分析(Two-way ANOVA)三因素方差分析(Three-way ANOVA)单因素重复测量方差分析两因素重复测量方差分析三因素重复测量方差分析单因素多元方差分析(One-way MANOVA)每种方差分析的应用场景,以及该如何进行SPSS操作和解读结果,各位伙伴请点击相应的文章链接查看~~今天,我们再来介绍一种统计方法:两因素多元方差分析(Two-way Manova)。

一、问题与数据某研究者想研究三种干预方式(regular—常规干预;rote—死记硬背式干预;reasoning—推理式干预)对学生学习成绩的影响。

研究者记录了学生两门考试的成绩:文科成绩(humanities_score)和理科成绩(science_score)。

另外,基于之前的知识,研究者假设干预方式对男女两种性别学生的效果可能不同。

换言之,研究者想知道不同干预方式对学习成绩的影响在男女学生中是否不同。

也就是说,干预方式和性别两个自变量之间是否存在交互作用(interaction effect)。

注:交互作用是指某一自变量对因变量的效应在另一个自变量的不同水平会不同。

在本例中,就是要比较①男性中干预方式对学习成绩的影响和②女性中干预方式对学习成绩的影响。

这两个效应就成为单独效应(simple main effects),也就是说,单独效应是指在一个自变量的某一水平,另一个自变量对因变量的影响。

因此,交互作用也可以看做是对单独效应间是否存在差异的检验。

在本研究中,共有三个效应:性别的主效应;干预方式的主效应;性别和干预方式的交互作用。

研究者选取30名男学生和30名女学生,并将其随机分配到三个干预组中,每个干预组中共有10名男学生和10名女学生。

部分数据如下:二、对问题的分析使用两因素多元方差分析法进行分析时,需要考虑10个假设。

双因素方差分析spss步骤

双因素方差分析spss步骤

双因素方差分析spss步骤双因素方差分析SPSS步骤导言:双因素方差分析是一种常用的统计分析方法,用于分析两个或两个以上因素对于研究对象的影响是否存在差异。

在实际研究中,我们通常使用SPSS软件来进行双因素方差分析的计算和结果呈现。

本文将介绍使用SPSS软件进行双因素方差分析的步骤和注意事项。

一、准备数据在进行双因素方差分析之前,我们首先需要准备好所需的数据。

数据应该是一个二维矩阵,其中行代表不同的观测对象,列代表不同的变量。

变量可以分为两个因素,分别是因素A和因素B。

确保数据的格式正确,并且每一列都应该有对应的变量名称。

二、导入数据到SPSS打开SPSS软件,选择“文件”-“打开”-“数据”,然后选择包含你准备好的数据的文件。

在打开数据之后,你将看到数据被加载到SPSS软件的数据编辑器中。

三、设置变量属性在SPSS软件的数据编辑器中,右键点击每个变量的列,然后选择“变量视图”。

在变量视图中,你可以设置每个变量的属性,包括变量的名称、标签、测量尺度等。

对于因素A和因素B,你可以将它们设为分类变量。

四、进行双因素方差分析在SPSS软件中,选择“分析”-“一般线性模型”-“单因素”。

在对话框中,将因变量添加到“因变量”框中,将因素A和因素B 添加到“因子”框中。

确保选择双因素方差分析选项,并点击“确定”按钮。

五、检查假设条件在进行双因素方差分析之前,我们需要确保满足一些假设条件。

首先,各个观测值是彼此独立的,且满足正态分布假设。

其次,各个因子水平的方差相等。

可以使用一些统计方法,如Shapiro-Wilk 检验和Levene检验,来验证这些假设条件。

六、解读结果SPSS软件将为我们提供双因素方差分析的结果。

主要包括因素A 和因素B的主效应、交互效应以及误差项。

对于主效应,我们可以通过检查P值来决定该因素是否对因变量有显著影响。

对于交互效应,我们可以通过检查因素A和因素B的交互作用项的P值来判断是否存在显著交互效应。

spss操作--双因素方差分析(无重复)

spss操作--双因素方差分析(无重复)

2
3
4
Total
2)多重比较
Mul tiple Compa rison s Dependent Variable: 含量比 Tukey HSD Mean Difference (I) PH值 (J) PH值 (I-J) Std. 1 2 .433 3 1.033* 4 1.767* 2 1 -.433 3 .600* 4 1.333* 3 1 -1.033* 2 -.600* 4 .733* 4 1 -1.767* 2 -1.333* 3 -.733* Based on observed means. *. The mean difference is significant 95% Confidence Interval Lower Bound Upper Bound -.153 1.020 .447 1.620 1.180 2.353 -1.020 .153 1.350E-02 1.187 .747 1.920 -1.620 -.447 -1.187 -1.350E-02 .147 1.320 -2.353 -1.180 -1.920 -.747 -1.320 -.147
Mul tiple Compa rison s Dependent Variable: 含量比 Tukey HSD Mean Difference (I) 浓度 (J) 浓度 (I-J) Std. 1 2 .725* 3 1.025* 2 1 -.725* 3 .300 3 1 -1.025* 2 -.300 Based on observed means. *. The mean difference is significant 95% Confidence Interval Lower Bound Upper Bound .275 1.175 .575 1.475 -1.175 -.275 -.150 .750 -1.475 -.575 -.750 .150

二因素方差分析spss操作流程

二因素方差分析spss操作流程

二因素方差分析spss操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 打开 spss 软件,点击“文件”菜单,选择“打开”,在弹出的对话框中选择需要分析的数据文件,点击“打开”按钮。

利用SPSS进行因素分析

利用SPSS进行因素分析

——在Coefficient Display Format(系数显示格式)栏中选
择Sorted by size(依据因素负荷量排序)项;
——在Coefficient Display Format(系数显示格式)
勾选“Suppress absolute values less than”,其后空
格内的数字不用修改,默认为0.1。
-. 19 4
. 28 7
A6
. 87 4
-. 20 6
. 24 5
A7
. 82 3
. 47 4
-. 12 9
A9
. 81 3
. 40 1
-. 37 7
A 10
. 75 3
. 49 5
-. 35 8
A2
-. 57 4
. 60 5
. 20 6
A3
-. 16 4
. 63 3
. 68 7
Ex traction Method: Principa l Co mponent A na lys is.
5
4
5
4
4
4
3
5
2
2
13
3
5
5
2
2
2
1
3
1
1
14
5
3
4
3
3
3
2
5
2
2
15
4
5
5
3
3
3
2
5
2
2
16
4
4
4
4
3
5
1
4
1
1
17
5
4
4

科研实务两因素重复测量数据方差分析的SPSS操作

科研实务两因素重复测量数据方差分析的SPSS操作

科研实务两因素重复测量数据方差分析的SPSS操作一.问题与数据将手术要求基本相同的15名患者随机分成3组,在手术过程中分别采用A、B、C三种麻醉剂诱导方法,在T0(诱导前)、T1、T2、T3、T4五个时相测量患者的收缩压,数据记录如表1,试进行方差分析。

二.分析问题该问题涉及三组研究对象,并且对每组对象进行了多次测量,与我们之间见过的完全随机设计(受试者被随机分配到各处理组,并且只对结局指标进行一次测量)是不同的,这就是常见的重复测量设计。

重复测量设计是在科研工作中常见的设计方法,常用来分析在不同时间点上该指标的差异。

三.SPSS操作1.操作步骤将主体内因子名改为时间(可以默认不改),在级别数框输入5,点击添加,然后再点击定义。

将各诱导时相放入主体内变量,将分组放入主体间因子。

点击模型,出现如下对话框,指定模型栏选择全因子。

点击事后比较,因为本题有三组,所以可以进行多重比较,将组别放入下列各项的事后比较,选用LSD法。

点击选项,出现如下对话框,选择描述统计和齐性检验。

2. 结果解读2.1多变量检验上述表格为多变量检验结果,只有数据不符合球形性检验时才采取此结果。

2.2球形检验由结果得:P=0.178>0.05,因此不能拒绝原假设,认为数据是符合球形性检验的,所以不采用2.1的结果。

2.3主体内效性检验由结果可以看出:时间行的显著性为0.000,即不同测量时间的收缩压是存在显著性差异的;时间与组别的交互项显著性为0.000,即不同的麻醉诱导法与时间之间存在交互作用。

2.4方差齐性检验由结果得:任一时相的P值都是大于0.05的,因此都不能拒绝原假设,认为数据是方差齐性的。

2.5主体间效应比较由结果得:组别间的显著性为0.017<0.05,应该拒绝原假设,认为三种麻醉诱导方法对收缩压的影响是有差异的。

2.6多重比较由结果得:A与C之间是存在显著性差异的,A与B、B与C之间不存在显著性差异,所以只有麻醉诱导A与麻醉诱导C对舒张压的影响是不同的。

用spss20进行二因素设计的简单效应分析

用spss20进行二因素设计的简单效应分析

用SPSS20进行二因素设计的简单效应分析两因素试验要检验互作效应,如果互作显著则应进一步做简单效应分析。

SPSS20图形界面无法简单效应分析,其实SPSS大多数功能均无法利用图形界面实现。

所以SPSS的优点并不是其易用性,而重点在于输出结果丰富、编排合理。

比较SAS、和R软件均能利用图形界面进行简单的统计分析,但其输出结果简单,无法直接发布。

我们用一个两因素裂区试验的产量数据进行简单的说明。

这个试验是一个品种密度试验,品种为主区,种植密度为副区,三次重复,籽粒产量为每公顷公斤产量。

其分析语法为:UNIANOVA 单产BY a b r/RANDOM=r/METHOD=SSTYPE(3)/INTERCEPT=INCLUDE/CRITERIA=ALPHA(0.05)/POSTHOC=a b(DUNCAN LSD)/DESIGN=a b r r(a) a*b/EMMEANS = TABLES(a*b) COMPARE (b) ADJ(LSD)/EMMEANS = TABLES(a*b) COMPARE (a) ADJ(LSD).注意最后两句,采用EMMEANS进行简单效应分析,其选项ADJ表示均值检验方法,有3种方法可供选择,常用的是LSD。

运行该语句(Ctrl+r)的下列结果。

注意,该语句前面还有数据集设置(DATASET ACTIVATE 数据集1.),不能写错数据集的名称。

表1 主体间效应的检验因变量: 单产源III 型平方和df 均方 F Sig.截距假设1524883353.546 1 1524883353.546 41177.914 .000误差74063.167 2 37031.584aa假设5090978.401 2 2545489.201 257.340 .000误差39566.096 4 9891.524bb假设2253126.736 2 1126563.368 79.838 .000误差169326.808 12 14110.567cr假设74063.167 2 37031.584 3.744 .121误差39566.096 4 9891.524br(a)假设39566.096 4 9891.524 .701 .606误差169326.808 12 14110.567ca * b假设836244.524 4 209061.131 14.816 .000误差169326.808 12 14110.567ca. MS(r)b. MS(r(a))c. MS(错误) 主区a 副区b 重复r 籽粒产量xm26 10万 1 6942 xm26 10万 2 6725.3 xm26 10万 3 6692 xm26 15万 1 7658.7 xm26 15万 2 7467 xm26 15万 3 7375.4xm26 20万1 7642 xm26 20万 2 7683.7 xm26 20万3 7467 9398 10万 1 6775.3 9398 10万 2 6900.3 9398 10万 3 6748.7 9398 15万 1 6950.3 9398 15万 2 6825.3 9398 15万 3 6775.3 9398 20万 1 7725.4 9398 20万 2 7575.4 9398 20万 3 7883.7 ts28 10万 1 8167.1 ts28 10万 2 8033.7 ts28 10万 3 7858.7 ts28 15万 1 7975.4 ts28 15万 2 8025.4 ts28 15万 3 7908.7 ts28 20万 1 8450.4 ts28 20万 2 8200.4 ts28 20万 3 8475.4表1显示互作显著,因此有必要进行简单效应分析。

SPSS分析:嵌套式两因素方差分析(单变量)-学生 王露实验数据分析

SPSS分析:嵌套式两因素方差分析(单变量)-学生 王露实验数据分析

SPSS分析:嵌套式两因素方差分析(单变量)1、数据输入格式⑴定义变量:国家品种最大光能转换效率注意:对圈红色的部分进行设定⑵输入数据:在Excel中编制下列格式数据,复制粘贴到SPSS中美国M56 0.842美国M56 0.829美国M56 0.83美国M56 0.834美国M49 0.849美国M49 0.844美国M49 0.851美国M49 0.839美国M5 0.822美国M5 0.82美国M5 0.822美国M5 0.817美国M34 0.849美国M34 0.852美国M34 0.853美国M34 0.844美国M64 0.865美国M64 0.855美国M64 0.862美国M64 0.852美国M73 0.853美国M73 0.856美国M73 0.851中国红运0.849中国红运0.849中国红运0.853中国香妃0.859 中国香妃0.856 中国香妃0.859 中国香妃0.86 中国新铁0.845 中国新铁0.844 中国新铁0.84 中国新铁0.859中国新重瓣红0.837中国新重瓣红0.848中国新重瓣红0.854中国新重瓣红0.855中国新重瓣红0.856中国新重瓣红0.854中国交5 0.839 中国交5 0.834 中国交5 0.832 中国交5 0.834中国泽州1号0.845中国泽州1号0.832中国泽州1号0.835中国泽州1号0.8512、命令顺序:按下面图示选择后按“继续”键,进行其它设定选择继续后,按“确定”键即可弹出结果页面,导出为word文档即可。

UNIANOVA 最大光能转换效率 BY 国家品种 /METHOD=SSTYPE(1) /INTERCEPT=EXCLUDE /POSTHOC=国家品种(SNK DUNCAN LSD) /CRITERIA=ALPHA(0.05) /DESIGN=国家品种.方差的单变量分析[数据集0]警告没有对国家执行"在此之后"检验,原因是组的数量小于 3。

熟练使用SPSS进行双因素方差分析

熟练使用SPSS进行双因素方差分析

熟练使用SPSS进行双因素方差分析试验内容: [试验]1. 数据录入。

以变量x 表示尿氟浓度,变量g 表示时间(工前、工中或工后),可设1 为工前,2 为工中,3 为工后。

变量id表示工人(以编号代表不同工人),如编号为1 的工人工前尿氟浓度为90.53,则录入数据时x为90.53,g 为1,id 为1,数据录入格式如下图。

图1 数据输入界面2. 统计分析。

依次选取“Analyze”、“General Linear Model”、“Univariate” 。

图2 选择分析工具展开对话框如下图,将x选入Dependent Variable(因变量框),g、id 选入Fixed Factors(固定因素框)。

图3 选择变量进入右侧的分析列表对话框右边有一排按钮Mode、Contrasts 、Plots、Post Hoc、Save 和Options,下面分别对其子对话框选项作一简单介绍:Model:指定不同的模型,除方差分析外General Linear Model可作其他统计分析;Contrasts:指定一种要用t 检验来检验的priori 对比;Plots:指定作某种图;Post Hoc:指定两两比较的方法;Save:指定将产生的一些指标保存为新的变量;Options:指定要输出的一些选项,如数据的描述方差齐性检等单击Model 展开其子对话框如下图,最上方Specify Model 定义模型,有两个选项:Full factorial(全因子)和Custom,选取Custom(自定义),Build Terms (选取模型中各项)下方有一选项,单击下拉箭头将其展开,选择Main Effects(主效应因)(本例不考虑交互作用),再将Factors 框中的g、 id 选入Model:框,按Continue返回主对话框,单击Post Hoc 按钮展开其子对话框,将g 选入Post Hoc Test for,即要做两两比较的因素框,选取SNK 即q检验,返回主对话框,单击OK 键提交执行。

双重条件选择数据spss

双重条件选择数据spss

双重条件选择数据spss
1. 打开SPSS软件并导入需要进行条件选择的数据文件。

2. 在菜单栏中选择“数据”(Data)选项,然后选择“选择数据”(Select Cases)。

3. 在弹出的对话框中,选择“如果条件是真”(If condition is satisfied)选项。

在文本框中输入第一个条件的表达式,例如 "变量名1=某个值"。

4. 点击“继续”(Continue)按钮,然后输入第二个条件的表达式,例如 "变量名2=某个值"。

5. 点击“确定”(OK)按钮,系统将根据两个条件来选择数据,符合条件的数据将被保留下来,而不符合条件的数据将被过滤掉。

需要注意的是,在输入条件表达式时,需要按照SPSS语法的要求进行书写,例如使用等号(=)表示等于,使用逻辑运算符如与(&)和或(|)来连接多个条件。

另外,还可以使用其他函数和操作符来进行更复杂的条件选择。

请注意,SPSS在双重条件选择时不会修改原始数据文件,而是会创建一个新的数据视图。

如果需要对筛选后的数据进行进一步分析或保存,请单独执行这些操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 因变量:句子阅读理解成绩 ❖ 随机抽取24名被试,分配到各实验组。
两因素完全随机实验设计SPSS操作
分析思路
• 检验A因素的主效应。即在不考虑B因素效应的前提下,因变量在A因
1
素各水平上的均值是否存在显著差异。
• 检验B因素的主效应。即在不考虑A因素效应的前提下,因变量在B因
2
素各水平上的均值是否存在显著性差异。
两因素完全随机实验设计SPSS操作
第五步:点击Post Hoc按钮,对句长类型(被试间变量)的三个水平进行多重比 较。在方差齐性假设前提条件下可选用Tukey法;在方差非齐性假设前提条件下可 选用Dunnett’s C法。
两因素完全随机实验设计SPSS操作
第六步:绘制均值图。 在主对话框中点击Plots 横坐标Horizontal Axis 纵坐标Separate Lines 单击Add完成操作。
对标记类型,赋值时,分别设定: 1=“无标记” 2=“有标记”
对句子类型赋值时,分别设定: 1=“短句子” 2=“中句子” 3=“长句子”
两因素完全随机实验设计SPSS操作
Data View,进入数据输入窗口, 将原始数据输入SPSS表格区域
两因素完全随机实验设计SPSS操作
第二步:Analyze→General Linear Model → Unvariate
两因素重复测量实验设计SPSS操作
简单效应检验
GLM 无标记短句 无标记中句 无标记长句 有标记短句 有标记中句 有标记长句 /WSFACTOR=标记类型 2 Polynomial 句长类型 3 Polynomial /METHOD=SSTYPE(3) /PLOT=PROFILE(标记类型*句长类型) /EMMEANS=TABLES(标记类型*句长类型) COMPARE(标记类型) ADJ(LSD) /EMMEANS=TABLES(标记类型*句长类型) COMPARE(句长类型) ADJ(LSD) /PRINT=DESCRIPTIVE /CRITERIA=ALPHA(.05) /WSDESIGN=标记类型 句长类型 标记类型*句长类型.
两因素完全随机实验设计SPSS操作
简单效应检验
交互作用显著时,通常需要进行简单效应分析,如果某因素在另一因素的某一个水 平内简单效应显著,还需要进行多重比较,以发现具体的差异所在。
(1)检验方法 SPSS没有提供进行简单效应检验的菜单,必须通过编写语句来实现。 (2)编写语句 Univariate主对话框,上述进行方差分析时所作的一切设置不变,单击Paste,SPSS 会把全部操作转换成为语句并粘贴到新打开的程序语句窗口中,添加EMMEANS引导的语 句。 (3)运行 单击菜单Run-All运行程序。
两因素完全随机实验设计SPSS操作 简单效应检验 -输出结果
两因素完全随机实验设计SPSS操作
简单效应检验
简单效应后的多重比较
两因素重复测量实验设计SPSS操作
❖ 案例 有一项“文章标记类型与句子长度对聋生句子 理解的实验研究”:
❖ 自变量:
▪ 标记类型(A)
• 无标记(a1) • 有标记(a2)
两因素完全随机实验设计SPSS操作
简单效应检验
UNIANOVA 成绩 BY 标记类型 句长类型 /METHOD=SSTYPE(3) /INTERCEPT=INCLUDE /POSTHOC=句长类型(TUKEY C) /PLOT=PROFILE(标记类型*句长类型) /EMMEANS=TABLES(标记类型*句长类型)COMPARE(标记类型)ADJ(SIDAK) /EMMEANS=TABLES(标记类型*句长类型)COMPARE(句长类型)ADJ(SIDAK) /PRINT=HOMOGENEITY DESCRIPTIVE /CRITERIA=ALPHA(.05) /DESIGN=标记类型 句长类型 标记类型*句长类型.
输出结果
(5)均值显示图
三条直线都不平行,有交叉的趋势。因此,大致可以判断两个因素之 间存在交互效应。
两因素重复测量实验设计SPSS操作
简单效应检验
交互作用显著时,通常需要进行简单效应(Simple effect)分析,如果某因素在 另一因素的某一个水平内简单效应显著,还需要进行多重比较,以发现具体的差异 所在。
(1)描述统计结果
均值(Mean) 标准差(S.D) 被试数(N)
两因素重复测量实验设计SPSS操作 输出结果
(2)多元方差分析结果
多因变量方差分析结果表明: 标记类型的主效应极其显著(P=.009) 句长类型的主效应极其显著(P=.002) 标记类型与句长类型的交互作用显著(P=.036)
两因素重复测量实验设计SPSS操作
输出结果
(3)球形假设检验结果
说明: ① 变量a只有2个水平,其自由度为0,不能进行球形假设检验。 ② 变量b有三个水平,球形假设检验结果:P=.568,满足球形假设。 ③ a * b交互效应球形假设检验结果:P=.229,满足球形假设。
两因素重复测量实验设计SPSS操作
输出结果
(4)一元方差分析结果
a1b1
1
3.00
2
6.00
3
4.00
4
3.00
a1b2 4.00 6.00 4.00 2.00
数据结构
a1b3
a2b1
5.00
4.00
7.00
5.00
5.00
3.00
2.00
3.00
a2b2 8.00 9.00 8.00 7.00
a2b3 12.00 13.00 12.00 14.00
两因素重复测量实验设计SPSS操作
检验b变量不同水平差异的显著性。如,在a1上看,b1、b2与 b3之间的差异。 第三,上述两个语句是从两个纬度来进行检验的。实际应用中,可根据研究的需要,选择其中的一个。 第四,如果被检验变量超过2个水平,且简单效应显著。则还需做多重比较。
两因素完全随机实验设计SPSS操作 简单效应检验 -输出结果
两因素重复测量实验设计SPSS操作
第六步:绘图。在主对话框中,点击Plots按纽打开对话框,选定a为横坐标 (Horizontal Axis),选定b为独立折线(Seperate Lines),单击Add按钮完成。 定义过程(同前两因素完全随机实验设计)
第七步:点击OK,执行程序。
两因素重复测量实验设计SPSS操作 输出结果
两因素重复测量实验设计SPSS操作
第四步:按定义键(Define),进入主对话框,将a1b1,a1b2,a1b3,a2b1, a2b2和a2b3分别键入被试内变量(Winthin-Subjects Variables)方框中
两因素重复测量实验设计SPSS操作
第五步:点击选项Options,进行如下操作:
内容框架
1 两因素完全随机实验设计操作 2 两因素重复测量实验设计操作 3 两因素混合实验设计实验操作
两因素完全随机实验设计SPSS操作
❖ 案例 有一项“文章标记类型与句子长度对聋生句子 理解的实验研究”:
❖ 自变量:
▪ 标记类型(A)
• 无标记(a1) • 有标记(a2)
▪ 句子长度(B)
• 短句(b1) • 中句(b2) • 长句(b3)
(1)检验方法 SPSS没有提供进行简单效应检验的菜单,必须通过编写语句来实现。 (2)编写语句 打开重复测量(Repeated measure)主对话框,前面进行方差分析时的一切设置不 变,单击Paste按钮,SPSS会把全部操作转换成语句并粘贴到程序语句窗口中。保留前 四行和后三行语句,改写EMMEANS引导的语句。 (3)运行 最后单击菜单Run-All运行程序。
一元方差分析结果表明: ① 标记类型主效应显著, F=37.022,P=.009 ② 句长类型主效应检验。因 其满足球形假设,故参见每项检 验的第一行Sphericity Assumed的结果,即, F=47.79,P=.000,表明b变量 主效应极其显著。 ③ a与b的交互效应检验。因 其满足球形假设,故参见标准一 元方差分析的结果,即, F=34.02,P=.001,表明a与b 的交互效应极显著。
• 检验A与B的交互效应。因变量在A因素各水平上的均值差异是否是B
因素各水平的变异函数,也就是说,在两个因素共同作用下,因变量
3
在因素各水平上的差异是否显著。
主效应显著
交互作用显著
多重比较(水平≥3)
简单效应分析
多重比较(水平≥3)
两因素完全随机实验设计SPSS操作 SPSS数据处理操作步骤
第一步:分别定义标记类型、句子类型、阅读分数三个变量。 输入数据,建立数据文件。
本例方差齐性检验结果表明,三组方差是齐的。因此,进行多重比较时,应该看用Tukey法进行多重比较的结果。 比较结果为:短句与中句的差异不显著(P=.171)
短句与长句的差异不显著(P=.107) 中句与长句的差异是显著的(P=.002)
两因素完全随机实验设计SPSS操作
输出结果
(5)均值显示图
代表中句和长句的两 条直线大体平行,而代表 短句的直线与两条直线交 叉。因此,大致可以判断 两个因素之间存在交互效 应。
第二步:Analyze → General Linear Model → Repeated Measures
两因素重复测(Within-Subject Factor Name)的方框中,设置被试内变量
标记类型,在定义其水平(Number of Level)的对框中,输入2,表示有两个水平,然后按 填加(Add)钮。用同样的方法,设置被试内变量句长类型,在定义其水平(Number of Level)的对框中,输入3,表示有三个水平,最后按填加(Add)。
①将被试内变量b(三个水平)键入到右边的方框中,采用[LSD(none)]法进行多重比较, 由于被试内变量a只有两个水平,因此不需要进行多重比较。 ②选择Descriptive statistics命令,对数据进行描述性统计。
相关文档
最新文档