2017版高考物理一轮复习:分层限时跟踪练18含解析

合集下载

2017版高考物理一轮复习(通用版)分层限时跟踪练2含解析

2017版高考物理一轮复习(通用版)分层限时跟踪练2含解析

分层限时跟踪练(二)(限时40分钟)一、单项选择题1.(2016·青岛模拟)钢球a 自塔顶自由落下2 m 时,钢球b 自离塔顶6 m 距离处自由落下,两钢球同时到达地面,不计空气阻力,则塔高为( )A .24 mB .16 mC .12 mD .8 m【解析】 根据x =12gt 2得a 球下落2 m 所需时间为t =2xg =2×210 s =0.210 s.设塔高h ,则b 球下落的时间为t b =2(h -6 m )g ① 对a 球有:h =12g (t +t b )2 ②联立①②解得h =8 m ,D 正确.【答案】 D2.物体以速度v 匀速通过直线上的A 、B 两点,所用时间为t .现在物体从A 点由静止出发,先做匀加速直线运动(加速度为a 1)到某一最大速度v m ,然后立即做匀减速直线运动(加速度大小为a 2)至B 点速度恰好减为0,所用时间仍为t .则物体的( )A .v m 可为许多值,与a 1、a 2的大小有关B .v m 可为许多值,与a 1、a 2的大小无关C .a 1、a 2必须满足a 1a 2a 1+a 2=2v tD .a 1、a 2必须是一定的【解析】 由v m 2t =v t 解得v m =2v .由v 2m 2a 1+v 2m 2a 2=v t 和v m =2v ,解得a 1a 2a 1+a 2=2v t ,选项C 正确.【答案】 C3.(2016·长沙模拟)为了探究匀变速直线运动,某同学将一小球以一定的初速度射入一粗糙的水平面,如图1-2-8中的A 、B 、C 、D 为每隔1 s 记录的小球所在的位置,AB 、BC 、CD 依次为第1 s 、第2 s 、第3 s 小球通过的位移,经测量可知AB =8.0 m 、CD =0.5 m .假设小球的运动可视为匀减速直线运动,则下列描述正确的是( )图1-2-8A .小球匀减速运动时的加速度大小一定为3.75 m/s 2B .小球匀减速运动时的加速度大小可能为3.75 m/sC .0.5 s 末小球的速度为8 m/sD .2.5 s 末小球的速度为0.5 m/s【解析】 由题意假设小球在第3 s 内未停止运动,由匀变速直线运动的规律Δx =aT 2,得x 3-x 1=2aT 2,可知a =3.75 m/s 2,此情况下,小球在2.5 s 末的速度为0.5 m/s ,由运动学公式得v D =0.5 m/s -3.75 m/s 2×0.5 s <0,因此A 、B 、D 错误;由匀变速直线运动规律可知,小球在0.5 s 末的速度为第1 s 内的平均速度,由v =v t 2=x 1T=8 m/s ,C 正确. 【答案】 C4.四川灾后重建中,在某工地上一卡车以速度10 m/s 匀速行驶,刹车后第1个2 s 内的位移与最后一个2 s 内的位移之比为3∶2,设卡车做匀减速直线运动,则刹车后4 s 内卡车通过的距离是( )A .2.5 mB .4 mC .12 mD .12.5 m【解析】 设加速度大小为a ,则刹车后第1个2 s 内位移大小x 1=10×2-12a ×22=20-2a (m),最后一个2 s 内位移大小x 2=12a ×22=2a (m),因为x 1∶x 2=3∶2,所以20-2a =3a ,即a =4 m/s 2,所以汽车刹车后经过t =104 s =2.5 s就停止运动了,汽车刹车后4 s 内卡车通过的距离是x =v 22a =1022×4m =12.5 m. 【答案】 D5.某乘客用手表估测火车的加速度,他先观测3分钟,发现火车前进540 m ,隔3分钟后又观测1分钟,发现火车前进了360 m ,若火车在这7分钟内做匀加速运动,则这列火车的加速度大小为( )A .0.03 m/s 2B .0.01 m/s 2C .0.5 m/s 2D .0.6 m/s 2【解析】 利用平均速度等于中间时刻的瞬时速度计算.t 1时间段的中间时刻的瞬时速度v 1=x 1t 1=540180 m/s =3 m/s t 3时间段的中间时刻的瞬时速度v 3=x 3t 3=36060m/s =6 m/s 则v 3=v 1+a Δt ,其中Δt =t 12+t 32+t 2=300 s.代入数据得a =0.01 m/s 2.【答案】 B二、多项选择题6.一物体以初速度v 0做匀减速运动,第1 s 内通过的位移为x 1=3 m ,第2 s 内通过的位移为x 2=2 m ,又经过位移x 3物体的速度减小为0,则下列说法中正确的是( )A .初速度v 0的大小为2.5 m/sB .加速度a 的大小为1 m/s 2C .位移x 3的大小为1.125 mD .位移x 3内的平均速度大小为0.75 m/s【解析】 由Δx =aT 2可得加速度的大小a =1 m/s 2,则B 正确;第1 s 末的速度v 1=x 1+x 22T =2.5 m/s ,则A 错误;物体的速度由2.5 m/s 减速到0所需时间t =Δv -a=2.5 s ,经过位移x 3的时间t ′为1.5 s ,故x 3=12at ′2=1.125 m ,C 正确;位移x 3内的平均速度v =x 3t ′=0.75 m/s ,则D 正确. 【答案】 BCD7.在塔顶上将一物体竖直向上抛出,抛出点为A ,物体上升的最大高度为20 m .不计空气阻力,设塔足够高.则物体位移大小为10 m 时,物体通过的路程可能为()A.10 m B.20 mC.30 m D.50 m【解析】物体从塔顶上的A点抛出,位移大小为10 m的位置有两处,如图所示,一处在A点之上,另一处在A点之下.在A点之上时,位移为10 m又有上升和下降两种过程.上升通过时,物体的路程L1等于位移x1的大小,即L1=x1=10 m;下落通过时,路程L2=2H-x1=2×20 m-10 m=30 m.在A点之下时,通过的路程L3=2H+x2=2×20 m+10 m=50 m.【答案】ACD8.如图1-2-9所示,物体自O点由静止开始做匀加速直线运动,A、B、C、D为其运动轨迹上的四点,测得AB=2 m,BC=3 m.且物体通过AB、BC、CD 所用时间相等,则下列说法正确的是()图1-2-9A.可以求出物体加速度的大小B.可以求得CD=4 mC.可求得OA之间的距离为1.125 mD.可求得OA之间的距离为1.5 m【解析】设加速度为a,时间为T,则有Δx=aT2=1 m,可以求得CD=4m,而B点的瞬时速度v B=x AC2T,所以OB之间的距离为x OB=v2B2a=3.125 m,OA之间的距离为x OA=x OB-x AB=1.125 m,即B、C选项正确.【答案】BC9.一辆汽车沿着一条平直的公路行驶,公路旁边有与公路平行的一行电线杆,相邻电线杆间的距离均为50 m,取汽车驶过某一根电线杆的时刻为零时刻,此电线杆作为第1根电线杆,此时汽车行驶的速度大小为v 0=5 m/s ,假设汽车的运动为匀加速直线运动,10 s 末汽车恰好经过第3根电线杆,则下列说法中正确的是( )A .汽车运动的加速度大小为1 m/s 2B .汽车继续行驶,经过第7根电线杆时的瞬时速度大小为25 m/sC .汽车从第3根电线杆运动到第7根电线杆经历的时间为20 sD .汽车在第3根至第7根电线杆间运动的平均速度为20 m/s【解析】 由匀加速直线运动的位移公式x =v 0t +12at 2知汽车运动的加速度大小为1 m/s 2,选项A 正确;由v 2-v 20=2ax 知汽车经过第7根电线杆时的瞬时速度大小为25 m/s ,选项B 正确;由v =v 0+at 知汽车从第1根电线杆运动至第7根电线杆用时20 s ,所以从第3根电线杆运动至第7根电线杆用时为10 s ,选项C 错误;由v =x t 知汽车在第3根至第7根电线杆间运动的平均速度为20 m/s ,选项D 正确.【答案】 ABD二、非选择题10.现在,汽车已走进千家万户,行车安全非常重要,严格遵守交通法规是每一个公民的义务.现某人开车从南向北以8 m/s 的速度匀速行驶到某十字路口,如图1-2-10所示,已知直行绿灯还有2 s 将转为红灯,此时汽车距离停车线20 m .若该车加速时最大加速度大小为3 m/s 2,问:图1-2-10(1)若该人这时驾驶汽车以最大加速度加速行驶,会闯红灯吗?(2)若该人这时驾驶汽车做匀减速运动,要想紧靠停车线停下,其制动的加速度大小应为多少?【解析】 (1)若汽车以最大加速度加速行驶,根据位移时间公式得x =v 0t +12at 2代入数据解得t ≈1.85 s <2 s故不会闯红灯.(2)若汽车匀减速运动,根据速度位移公式0-v 20=-2a ′x得a ′=v 202x =1.6 m/s 2.【答案】 (1)不会 (2)1.6 m/s 211.甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变.在第一段时间间隔内,两辆汽车的加速度大小不变,汽车乙的加速度大小是甲的两倍;在接下来的相同时间间隔内,汽车甲的加速度大小增加为原来的两倍,汽车乙的加速度大小减小为原来的一半.求甲乙两车各自在这两段时间间隔内走过的总路程之比.【解析】 设汽车甲在第一段时间间隔末(时刻t 0)的速度为v ,第一段时间间隔内行驶的路程为s 1,加速度为a ;在第二段时间间隔内行驶的路程为s 2.由运动学公式得v =at 0s 1=12at 20s 2=v t 0+12(2a )t 20设汽车乙在时刻t 0的速度为v ′,在第一、二段时间间隔内行驶的路程分别为s 1′、s 2′.同样有v ′=(2a )t 0s 1′=12(2a )t 20s 2′=v ′t 0+12at 20设甲乙两车行驶的总路程分别为s 、s ′,则有s =s 1+s 2s ′=s 1′+s 2′联立以上各式解得,甲、乙两车各自行驶的总路程之比为s s ′=57.【答案】 5712.(2016·长沙模拟)如图1-2-11所示,水平地面O 点的正上方的装置M 每隔相等的时间由静止释放一小球,当某小球离开M 的同时,O 点右侧一长为L =1.2 m 的平板车开始以a =6.0 m/s 2的恒定加速度从静止开始向左运动,该小球恰好落在平板车的左端,已知平板车上表面距离M 的竖直高度为h =0.45 m .忽略空气的阻力,重力加速度g 取10 m/s 2.图1-2-11(1)求小车左端离O 点的水平距离;(2)若至少有2个小球落在平板车上,则释放小球的时间间隔Δt 应满足什么条件?【解析】 (1)设小球自由下落至平板车上表面历时t 0,在该时间段内,对小球有:h =12gt 20① 对平板车有:s =12at 20 ②联立①②式并代入数据可得s =0.27 m.(2)从释放第1个小球至第2个小球下落到平板车上表面高度处历时Δt +t 0,设平板车在该时间段内的位移为s 1,由运动学方程有s 1=12a (Δt +t 0)2要让至少2个小球落在平板上必须满足s 1≤s +L ④联立①~④式解得Δt ≤0.4 s.【答案】 (1)0.27 m (2)Δt ≤0.4 s。

2017-2018学年高考物理(课标版)一轮课时跟踪训练18 Word版含解析

2017-2018学年高考物理(课标版)一轮课时跟踪训练18 Word版含解析

2017-2018学年课时跟踪训练(十八)一、选择题1.如图所示,两个互相垂直的力F1与F2作用在同一物体上,使物体通过一段位移的过程中,力F1对物体做功4 J,力F2对物体做功3 J,则力F1与F2的合力对物体做功为()A.7 J B.1 JC.5 J D.3.5 J答案:A2.(多选)汽车在平直的公路上以恒定的功率启动,设阻力恒定,则图中关于汽车运动过程中加速度、速度随时间变化的关系,以下判断正确的是()A.汽车的加速度—时间图象可用图乙描述B.汽车的速度—时间图象可用图甲描述C.汽车的加速度—时间图象可用图丁描述D.汽车的速度—时间图象可用图丙描述解析:由牛顿第二定律得F-F f=ma,F=Pv,即Pv-F f=ma,随着v的增大,物体做加速度减小的加速运动,在v-t图象上斜率应越来越小,故甲为汽车的速度—时间图象,B对D错;因速度增加得越来越慢,由a=Pm v-F fm知,加速度减小得越来越慢,最后趋于零,故图乙为汽车加速度—时间图象,A对C错.答案:AB3.如图所示,长为L的长木板水平放置,在木板的A端放置一个质量为m的小物体.现缓慢抬高A端,使木板以左端为轴转动. 当木板转到跟水平面的夹角为α时,小物体开始滑动,此时停止转动木板,小物体滑到底端的速度为v,则在整个过程中()A.木板对小物体做功为12m v2B.摩擦力对小物体做功为mgL sinαC.支持力对小物体做功为零D.克服摩擦力做功为mgL cosα-12m v2解析:以小物体作为研究对象,利用动能定理可知木板对小物体做功为小物体动能的增量12m v2,A正确;从水平位置到木板转到与水平面的夹角为α时,根据功的定义可判断,重力做负功,支持力做正功,由动能定理得:W N-mgL sinα=0-0,则W N=mgL sinα,C错误;小物体下滑过程中摩擦力做负功,则整个过程利用动能定理,W G -W f 克=12m v 2-0,即W f 克=mgL sin α-12m v 2,D 错误. 答案:A 4.(多选)(2014·杭州教学质检)测定运动员体能的一种装置如右图所示,运动员的质量为M ,绳拴在腰间沿水平方向跨过滑轮(不计滑轮摩擦和质量),绳的另一端悬吊物的质量为m . 人用力后蹬传送带而人的重心不动,传送带以速度v 向后匀速运动(速度大小可调),最后可用m M v 的值作为被测运动员的体能参数. 则( )A .人对传送带不做功B .人对传送带做功的功率为mg vC .人对传送带做的功和传送带对人做的功大小相等,但正、负相反D .被测运动员的m M v 值越大,表示其体能越好解析:人能平衡,则人对皮带的水平方向作用力F =mg ,故人对皮带做功的功率P =mg ·v ,B 对. 而人对地位移为0,故皮带对人不做功. 体能参数实际上是人做功功率与体重之比,即mg v Mg =m v M ,D正确.答案:BD 5.质量为m 的物体静止在粗糙的水平地面上.现用一水平拉力使物体从静止开始运动,其运动的v -t 图象如图所示.下列关于物体运动过程,分析正确的是( )A .0~t 1内拉力逐渐减小B .0~t 1内拉力对物体做负功C .在t 1~t 2时间内拉力的功率为零D .在t 1~t 2时间内合外力做功12m v 2 解析:由运动的v -t 图象可知,物体运动的加速度越来越小,水平拉力越来越小,所以0~t 1内拉力逐渐减小,选项A 正确;由于拉力与运动方向相同,所以0~t 1内拉力对物体做正功,选项B 错误;由P =F v 可知,在t 1~t 2时间内拉力等于摩擦力,速度不为零,所以拉力的功率大于零,选项C 错误;由于在t 1~t 2时间内物体速度不变,合外力做功为零,选项D 错误.答案:A6.(2014·福州市八县高三期末)如图所示,卡车通过定滑轮以恒定的功率P 0拉绳,牵引河中的小船沿水面运动,已知小船的质量为m ,沿水面运动时所受的阻力为f 且保持不变,当绳AO 段与水平面夹角为θ时,小船的速度为v ,不计绳子与滑轮的摩擦,则此时小船的加速度等于( )A.P 0m v -f mB.P 0m v cos 2θ-f mC.f mD.P 0m v解析:假设卡车速度是v 0,对小船运动分解,小船的速度v 的沿绳分量与卡车速度相同,如图1:由几何关系可知,v 0=v cos θ,此时卡车的牵引力为F =P 0v 0=P 0v cos θ,再对小船受力分析如图2:由牛顿第二定律可知,小船加速度为a=F cosθ-fm=P0m v-fm,A正确.答案:A7.如图所示,相同材料制成的粗糙程度相同的两个物块A、B中间用一不可伸长的轻绳连接,用一相同大小的恒力F作用在A物体上,使两物块沿力的方向一起运动.①恒力F水平,两物块在光滑水平面上运动②恒力F水平,两物块在粗糙的水平面上运动③恒力F沿斜面向下,两物块沿光滑斜面向下运动④恒力F沿斜面向上,两物块沿与②中水平面粗糙程度相同的斜面向上运动在上面四种运动过程中经过的位移大小相等.则下列说法正确的是()A.在③中恒力F做功最少B.在④中恒力F做功最多C.轻绳对物块B的拉力在①中最小,在④中最大D.轻绳的拉力对物块B做的功在①④中大小相同解析:设动摩擦因数为μ,质量为m,则对于1有:F-μ2mg=2ma再用隔离法分析有:T-μmg=ma,联立解得:T=mF2m=F2;则说明绳子的拉力与动摩擦力无关,同理应与重力的分力无关;故四种情况下,绳子的拉力相同;故C错误;因物体经过的位移相等,拉力相等,故四种情况下轻绳的拉力做功相等;故D正确;AB错误;本题为连接体中重要的结论之一,在解题时应灵活应用其规律可以加快解题速度.答案:D8.(多选)(2015·山东乳山一中)质量为2千克的物体,放在动摩擦因数μ=0.1的水平面上,在水平拉力的作用下,由静止开始运动,水平拉力做的功W和物体发生的位移s之间的关系如图所示,则()A.此物体在AB段做匀加速直线运动B.此物体在AB段做匀速直线运动C.此物体在OA段做匀加速直线运动D.此物体在OA段做匀速直线运动解析:物体在水平面上运动,水平拉力与物体运动方向相同,物体受到的摩擦力大小f=μmg=2 N,图像的斜率表示拉力大小所以物体在OA段受到的水平拉力大小等于F1=W1S1=153N=5 N,可见,水平拉力大于摩擦力,则物体在OA段做匀加速直线运动.物体在AB段受到的水平拉力大小等于F2=W2s2=27-156N=2 N,水平拉力等于摩擦力,则物体在AB段做匀速直线运动,故BC正确.答案:BC9.(多选)(2014·四川省成都石室中学高三“一诊”)有一辆质量为170 kg、额定功率为1440 W的太阳能试验汽车,安装有约6 m2的太阳能电池板和蓄能电池,该电池板在有效光(垂直照射在电池板上的太阳光)照射条件下单位面积输出的电功率为30 W/m2.若驾驶员的质量为70 kg,汽车最大行驶速度为90 km/h.假设汽车行驶时受到的空气阻力与其速度成正比,则汽车()A.以最大速度行驶时牵引力大小为57.6 NB.以额定功率启动时的加速度大小为0.24 m/s2C.保持最大速度行驶1 h至少需要有效光照8 hD.直接用太阳能电池板提供的功率可获得3.13 m/s的最大行驶速度解析:根据P=F v,当F=f时汽车行驶速度最大,由题意知v m =25 m/s,将f=k v带入得P=k v2m,解得k=2.304 Ws2/m2,当以最大速度行驶时牵引力大小F=f=k v m=57.6 N,A选项正确;以额定功率启动时,由牛顿第二定律知:Pv-f=ma,汽车的加速度a随v的增大而减小,故B选项错误;保持最大速度行驶1 h至少需要能量E=Pt=1.44 kWh,太阳能电池板输出的电功率P出=0.18 kW,至少需要有效光照时间t=EP出=8 h,故C选项正确;若直接用太阳能电池板提供的功率,则P出=f v1=k v21,得v1=P出k=8.84 m/s,故D选项错误.答案:AC10.(多选)(2014·成都七中高三期中)一质量为m的物体静止在水平地面上,在水平拉力F的作用下开始运动,在0~6 s内其速度与时间关系图象和拉力的功率与时间关系图象如图所示,取g=10 m/s2,下列判断正确的是()A.拉力F的大小为4 N,且保持不变B.物体的质量m为2 kgC.0~6 s内物体克服摩擦力做功24 JD.0~6 s内拉力做的功为156 J解析:由图象可知,t=2 s后物体做匀速直线运动,则F2=f,速度v=6 m/s,P2=F2v,得f=F2=P2v=4 N,由速度图象知,物体在0~2 s内做匀加速直线运动,加速度a=ΔvΔt=3 m/s2,由于t=2 s时,v=6 m/s,P1=60 W,此时拉力F1=P1v=10 N,在0~2 s内,由牛顿第二定律F1-f=ma可得,m=2 kg,选项A错误、B正确;由速度图象可知物体在前2 s内的位移x1=6 m,在后4 s内的位移为x 2=24 m,6 s 内物体克服摩擦力做功W f =f (x 1+x 2)=120 J,6 s 内拉力做的功为W F =F 1x 1+F 2x 2=156 J ,选项C 错误、D 正确,所以本题选择BD.答案:BD二、非选择题11.(2014·重庆市名校联盟联考)一质量m =2.0 kg 的小物块以一定的初速度冲上一足够长的斜面,斜面的倾角θ=37°.某同学利用传感器测出了小物块从一开始冲上斜面上滑过程中多个时刻的瞬时速度,并用计算机作出了小物块上滑过程的速度—时间图线,如图所示.(已知重力加速度g =10 m/s 2,sin37°=0.6,cos37°=0.8)求:(1)小物块冲上斜面过程中加速度的大小a ;(2)小物块与斜面间的动摩擦因数μ;(3)小物块沿斜面上滑的过程中克服摩擦阻力做的功W .解析:(1)由小物块上滑过程的速度—时间图线,可得小物块冲上斜面过程中加速度的大小为a =v t -v 0t =0-0.81.0m/s 2=-8 m/s 2 即加速度大小为8 m/s 2.(2)对小物块进行受力分析如图所示:有mg sin θ+f =maN -mg cos θ=0f =μN代入数据解得:μ=0.25.(3)速度—时间图象中面积表示位移,所以小物块沿斜面滑行距离为:s =v 02t =4.0 m 则小物块沿斜面上滑的过程中克服摩擦阻力做的功W =μmgs ·cos θ=16 J.答案:(1)8 m/s 2 (2)0.25 (3)16 J12.(2014·北京市石景山区高三一模)一辆汽车的质量为m ,其发动机的额定功率为P 0.从某时刻起汽车以速度v 0在水平公路上沿直线匀速行驶,此时汽车发动机的输出功率为 P 04,接着汽车开始沿直线匀加速行驶,当速度增加到8v 05时,发动机的输出功率恰好为P 0.如果汽车在水平公路上沿直线行驶中所受到的阻力与行驶速率成正比,求:(1)汽车在水平公路上沿直线行驶所能达到的最大速率v m ;(2)汽车匀加速行驶所经历的时间和通过的距离;(3)为提高汽车行驶的最大速率,请至少提出两条在设计汽车时应考虑的建议.解析:(1)汽车以速度v 0在水平公路上沿直线匀速行驶时发动机的输出功率为P 04P 04=k v 0·v 0 汽车在水平公路上沿直线行驶所能达到的最大速率v mP 0=k v m ·v m解得v m =2v 0(2)当汽车速度增加到8v 05时,设牵引力为F ,汽车的加速度为a P 0=F ·8v 05F -k ·8v 05=ma 汽车匀加速行驶所经历的时间t =8v 05-v 0a解得 t =8m v 203P 0汽车匀加速行驶通过的距离x =v 0t +12at 2 解得x =52m v 3015P 0(3)增大发动机额定功率,减小阻力等答案:(1)2v 0(2)8m v 203P 0 52m v 3015P 0(3)增大发动机额定功率,减小阻力等.。

2017版高考物理一轮复习(通用版)分层限时跟踪练7含解析

2017版高考物理一轮复习(通用版)分层限时跟踪练7含解析

分层限时跟踪练(七)(限时40分钟)一、单项选择题1.就一些实际生活中的现象,某同学试图从惯性角度加以解释,其中正确的是()A.采用了大功率的发动机后,某些一级方程式赛车的速度甚至能超过某些老式螺旋桨飞机,这表明可以通过科学进步使小质量的物体获得大惯性B.射出枪膛的子弹在运动相当长一段距离后连一件棉衣也穿不透,这表明它的惯性变小了C.货运列车运行到不同的车站时,经常要摘下或加挂一些车厢,这会改变它的惯性D.摩托车转弯时,车手一方面要控制适当的速度,另一方面要将身体稍微向里倾斜,通过调控人和车的惯性达到转弯的目的【解析】采用了大功率的发动机后,可以提高车速,但功率的大小与惯性无关,只要质量不变,惯性就不变,故A错;惯性与运动距离无关,故B错;摘下或加挂车厢,会使列车的质量减小或增大,惯性发生变化,故C对;摩托车转弯时,身体稍微向里倾斜是改变其受力情况,惯性与力无关,故D错.【答案】 C2.(2016·襄阳检测)跳水一直是我国的优势项目,如图3-1-8所示,一运动员站在3 m跳板上,图中F1表示人对跳板的弹力,F2表示跳板对人的弹力,则()图3-1-8A.F1和F2是一对平衡力B.F1和F2是一对作用力和反作用力C.先有力F1后有力F2D .F 1和F 2方向相反,大小不相等【解析】 F 1和F 2是一对作用力和反作用力,同时产生,同时消失,大小相等,方向相反,故B 项正确.【答案】 B3.(2015·镇江诊断)一个物体在绳的拉力作用下由静止开始前进,先做加速运动,然后改做匀速运动,再改做减速运动,则下列说法中正确的是( )A .加速前进时,绳拉物体的力大于物体拉绳的力B .减速前进时,绳拉物体的力小于物体拉绳的力C .只有匀速前进时,绳拉物体的力与物体拉绳的力大小才相等D .不管物体如何前进,绳拉物体的力与物体拉绳的力大小总相等【解析】 本题主要考查作用力与反作用力的大小关系.绳拉物体的力与物体拉绳的力是一对作用力与反作用力,不管物体间的相互作用力性质如何,物体的运动状态如何,物体间的相互作用都应遵循牛顿第三定律,即作用力和反作用力总是大小相等、方向相反、作用在同一条直线上.【答案】 D4.如图3-1-9所示,A 、B 两小球分别连在轻绳两端,B 球另一端用弹簧固定在倾角为30°的光滑斜面上.A 、B 两小球的质量分别为m A 、m B ,重力加速度为g ,若不计弹簧质量,在绳被剪断瞬间,A 、B 两球的加速度大小分别为( )图3-1-9A .都等于g 2B ..g 2和0 C.g 2和m A m B ·g 2 D .m A m B·g 2和g 2 【解析】 当A 、B 球静止时,弹簧弹力F =(m A +m B )g sin θ,当绳被剪断的瞬间,弹簧弹力F 不变,对B 分析,则F -m B g sin θ=m B a B ,可解得a B =m A m B·g 2,当绳被剪断后,球A 受的合力为重力沿斜面向下的分力,F 合=m A g sin θ=m A a A ,所以a A =g 2,综上所述选项C 正确.【答案】 C5.如图3-1-10所示为杂技“顶竿”表演的示意图,一人站在地上,肩上扛一质量为M的竖直竹竿,当竿上一质量为m的人以加速度a加速下滑时,竿对“底人”的压力大小为()图3-1-10A.(M+m)g B.(M+m)g-maC.(M+m)g+ma D.(M-m)g【解析】对竿上的人进行受力分析:其受重力mg、摩擦为F f,有mg-F f=ma,则F f=m(g-a).竿对人有摩擦力,人对竿也有反作用力——摩擦力,且大小相等,方向相反.对竿进行受力分析:其受重力Mg、竿上的人对竿向下的摩擦力F f′、“底人”对竿的支持力F N,有Mg+F f′=F N,又因为竿对“底人”的压力和“底人”对竿的支持力是一对作用力和反作用力,由牛顿第三定律,得到F N′=Mg+F f′=(M+m)g-ma.故选项B正确.【答案】 B二、多项选择题6.(2013·山东高考)伽利略开创了实验研究和逻辑推理相结合探索自然规律的科学方法,利用这种方法伽利略发现的规律有()A.力不是维持物体运动的原因B.物体之间普遍存在相互吸引力C.忽略空气阻力,重物与轻物下落得同样快D.物体间的相互作用力总是大小相等、方向相反【解析】伽利略通过实验研究和逻辑推理得到了力不是维持物体运动的原因及在忽略空气阻力时,轻、重物体下落一样快,都做自由落体运动,而B选项考查的是万有引力定律,D选项是牛顿第三定律,因此只有选项A、C正确.【答案】AC7.17世纪,意大利物理学家伽利略根据“伽利略斜面实验”指出:在水平面上运动的物体之所以会停下来,是因为受到摩擦阻力,你认为下列陈述正确的是()A.该实验是一理想实验,是在思维中进行的,无真实的实验基础,故其结果是荒谬的B.该实验是以可靠的事实为基础,经过抽象思维,抓住主要因素,忽略次要因素,从而更深刻地反映自然规律C.该实验证实了亚里士多德“力是维持物体运动的原因”的结论D.该实验为牛顿第一定律的提出提供了有力的实验依据【解析】伽利略的斜面实验是以可靠的事实为基础,经过抽象思维,抓住主要因素,忽略次要因素,推理得出的结论,选项A错误、B正确;伽利略由此推翻了亚里士多德的观点,认为力不是维持物体运动的原因,而是改变物体运动状态的原因,选项C错误;牛顿总结了前人的经验,提出了牛顿第一定律,选项D正确.【答案】BD8.如图3-1-11所示,在水平面上运动的小车里用两根轻绳连着一质量为m 的小球,绳子都处于拉直状态,BC绳水平,AC绳与竖直方向的夹角为θ,小车处于加速运动中,则下列说法正确的是()图3-1-11A.小车一定向左运动B.小车的加速度一定为g tan θC.AC绳对球的拉力一定是mgcos θD.BC绳的拉力一定小于AC绳的拉力【解析】由于小车处于加速运动中,由球的受力情况可知,球的加速度一定向左,A项正确;只有当BC绳的拉力为零时,小车的加速度才是g tan θ,B 项错误;AC绳的拉力在竖直方向上的分力等于球的重力,C项正确;AC绳的拉力恒定,而BC绳的拉力与小车的加速度大小有关,有可能大于AC绳的拉力,D项错误.【答案】AC9.乘坐“空中缆车”饱览大自然的美景是旅游者绝妙的选择.若某一缆车沿着坡度为30 °的山坡以加速度a上行,如图3-1-12所示.在缆车中放一个与山坡表面平行的斜面,斜面上放一个质量为m的小物块,小物块相对斜面静止(设缆车保持竖直状态运行).则()图3-1-12A.小物块受到的摩擦力方向平行斜面向上B.小物块受到的摩擦力方向平行斜面向下C.小物块受到的滑动摩擦力为12mg+maD.小物块受到的静摩擦力为12mg+ma【解析】小物块相对斜面静止,因此小物块与斜面间的摩擦力是静摩擦力,缆车以加速度a上行,小物块的加速度也为a,以物块为研究对象,则有f-mg sin30 °=ma,f=12mg+ma,方向平行斜面向上.【答案】AD三、非选择题10.如图3-1-13所示,将质量m=0.1 kg的圆环套在固定的水平直杆上.环的直径略大于杆的截面直径.环与杆间动摩擦因数μ=0.8.对环施加一位于竖直平面内斜向上且与杆夹角θ=53°的拉力F,使圆环以a=4.4 m/s2的加速度沿杆运动,求F的大小.(取sin 53°=0.8,cos 53°=0.6,g=10 m/s2)图3-1-13【解析】令F sin 53°-mg=0,F=1.25 N.当F<1.25 N时,环与杆的上部接触,受力如图甲.由牛顿第二定律得F cos θ-μF N=ma,F N+F sin θ=mg,解得F=1 N当F>1.25 N时,环与杆的下部接触,受力如图乙.由牛顿第二定律得F cos θ-μF N=maF sin θ=mg+F N解得F=9 N.【答案】 1 N或9 N11.如图3-1-14所示,一辆卡车后面用轻绳拖着质量为m的物体A,A与地面的摩擦不计.图3-1-14(1)当卡车以a1=12g的加速度运动时,绳的拉力为56mg,则A对地面的压力为多大?(2)当卡车的加速度a2=g时,绳的拉力为多大?【解析】(1)卡车和A的加速度一致.由图知绳的拉力的分力使A产生了加速度,故有:56mg cos α=m·12g解得cos α=35,sinα=45.设地面对A的支持力为F N,则有F N=mg-56mg sinα=13mg由牛顿第三定律得:A对地面的压力为13mg.(2)设地面对A弹力为零时,物体的临界加速度为a0,则a0=g cot α=34g,故当a2=g>a0时,物体已飘起.此时物体所受合力为mg,则由三角形知识可知,拉力F2=(mg)2+(mg)2=2mg.【答案】(1)13mg(2)2mg12.如图3-1-15所示,一条轻绳上端系在车的左上角的A点,另一条轻绳一端系在车左端B点,B点在A点正下方,A、B距离为b,两条轻绳另一端在C 点相结并系一个质量为m的小球,轻绳AC长度为2b,轻绳BC长度为b.两条轻绳能够承受的最大拉力均为2mg.图3-1-15(1)轻绳BC刚好被拉直时,车的加速度是多大?(要求画出受力图)(2)在不拉断轻绳的前提下,求车向左运动的最大加速度是多大.(要求画出受力图)【解析】(1)轻绳BC刚好被拉直时,小球受力如图甲所示.因为AB=BC=b,AC=2b,故轻绳BC与轻绳AB垂直,cos θ=22,θ=45°.由牛顿第二定律,得mg tan θ=ma.可得a=g.(2)小车向左的加速度增大,AB、BC绳方向不变,所以AC轻绳拉力不变,BC轻绳拉力变大,BC轻绳拉力最大时,小车向左的加速度最大,小球受力如图乙所示.由牛顿第二定律,得T m+mg tan θ=ma m.因这时T m=2mg,所以最大加速度为a m=3g.【答案】(1)g(2)3g。

2017版高考物理一轮复习(通用版)分层限时跟踪练28 Word版含解析

2017版高考物理一轮复习(通用版)分层限时跟踪练28 Word版含解析

分层限时跟踪练(二十八)(限时40分钟)一、单项选择题1.(2015·焦作一模)如图9-3-10所示,两根足够长的光滑金属导轨水平平行放置,间距为l=1 m,cd间、de间、cf间分别接着阻值R=10 Ω的电阻.一阻值R=10 Ω的导体棒ab以速度v=4 m/s匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小B=0.5 T、方向竖直向下的匀强磁场.下列说法中正确的是()图9-3-10A.导体棒ab中电流的流向为由b到aB.cd两端的电压为1 VC.de两端的电压为1 VD.fe两端的电压为2 V【解析】由右手定则可知ab中电流方向为a→b,A错误.导体棒ab切割磁感线产生的感应电动势E=Bl v,ab为电源,cd间电阻R为外电路负载,de和cf间电阻中无电流,de间无电压,因此cd和fe两端电压相等,即U=E2R×R =1 V,B正确,C、D错误.=Bl v2【答案】B2.(2015·贵阳检测)一矩形线圈位于一个方向垂直线圈平面向里的磁场中,如图9-3-11甲所示,磁感应强度B随t的变化规律如图乙所示.以i表示线圈中的感应电流,以图甲线圈上箭头所示方向的电流为正,则以下的i-t图中正确的是()图9-3-11【解析】 在0~1 s 内,据E =ΔBΔt S 可知感应电动势恒定,感应电流恒定,且电流为逆时针方向,在图象中方向为负;1 s ~2 s 内,B 不变,i =0;2 s ~3 s 内,同理,由E =ΔBΔtS 知i 恒定,方向为正.综合分析可知A 项正确.【答案】 A3.(2015·安徽高考)如图9-3-12所示,abcd 为水平放置的平行“”形光滑金属导轨,间距为l ,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B ,导轨电阻不计,已知金属杆MN 倾斜放置,与导轨成θ角,单位长度的电阻为r ,保持金属杆以速度v 沿平行于cd 的方向滑动(金属杆滑动过程中与导轨接触良好).则( )图9-3-12A .电路中感应电动势的大小为Bl vsin θB .电路中感应电流的大小为B v sin θrC .金属杆所受安培力的大小为B 2l v sin θrD .金属杆的热功率为B 2l v 2r sin θ【解析】 金属杆的运动方向与金属杆不垂直,电路中感应电动势的大小为E =Bl v (l 为切割磁感线的有效长度),选项A 错误;电路中感应电流的大小为I =ER =Bl v l sin θr =B v sin θr,选项B 正确;金属杆所受安培力的大小为F =BIl ′=B ·B v sin θr ·l sin θ=B 2l v r ,选项C 错误;金属杆的热功率为P =I 2R =B 2v 2sin 2θr 2·lr sin θ=B 2l v 2sin θr,选项D 错误.【答案】 B4.如图9-3-13所示,直角三角形导线框abc 固定在匀强磁场中,ab 是一段长为l 、电阻为R 的均匀导线,ac 和bc 的电阻可不计,ac 长度为l2.磁场的磁感应强度为B ,方向垂直于纸面向里.现有一段长度为l 2、电阻为R2的均匀导体杆MN 架在导线框上,开始时紧靠ac ,然后沿ab 方向以恒定速度v 向b 端滑动,滑动中始终与ac 平行并与导线框保持良好接触.当MN 滑过的距离为l3时,导线ac 中的电流为( )图9-3-13A.5Bl v 2RB.Bl v 5RC.2Bl v5R D.4Bl v5R【解析】MN滑过的距离为l3时,它与bc的接触点设为P,由几何关系可知MP长度为l3,MP段的电阻r=13R,MP产生的感应电动势E=13Bl v,等效电路如图所示,MacP和MbP两电路的并联电阻为r并=13×2313+23R=29R,由欧姆定律,PM中的电流I=Er+r并,I ac=23I,解得I ac=2Bl v5R.根据右手定则,MP中的感应电流的方向由P流向M,所以电流I ac的方向由a流向c,C项正确.【答案】C5.(2016·黄冈模拟)如图9-3-14所示,一导体圆环位于纸面内,O为圆心.环内两个圆心角为90°的扇形区域内分别有匀强磁场,两磁场的磁感应强度的大小相等,方向相反且均与纸面垂直.导体杆OM可绕O转动,M端通过滑动触点与圆环良好接触.在圆心和圆环间连有电阻R.杆OM以角速度ω逆时针匀速转动,t=0时恰好在图示位置.规定从a到b流经电阻R的电流方向为正,圆环和导体杆的电阻忽略不计,则杆从t=0开始转动一周的过程中,电流随ωt变化的图象是()图9-3-14【解析】 依据右手定则,可知在0~π2内,导体杆中电流方向由M 到O ,流经电阻R 的电流方向则是由b 到a ,为负值,且大小为I =12BL 2ωR 为一定值,在π2~π内没有感应电流,在π~3π2内电流的方向相反,即沿正方向,在3π2~2π内没有感应电流,因此C 项正确.【答案】 C 二、多项选择题6.如图9-3-15所示,有一个磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里,一半径为r 、电阻为2R 的金属圆环放置在磁场中,金属圆环所在的平面与磁场垂直.金属杆Oa 一端可绕环的圆心O 旋转,另一端a 搁在环上,电阻值为R ;另一金属杆Ob 一端固定在O 点,另一端b 固定在环上,电阻值也是R .已知Oa 杆以角速度ω匀速旋转,所有接触点接触良好,Ob 不影响Oa 的转动,则下列说法正确的是()图9-3-15A .流过Oa 的电流可能为Bωr 25RB .流过Oa 的电流可能为6Bωr 225RC .Oa 旋转时产生的感应电动势的大小为Bωr 2D .Oa 旋转时产生的感应电动势的大小为12Bωr 2图甲 图乙【解析】 Oa 旋转时产生的感应电动势的大小为E =12Bωr 2,D 正确,C 错误;当Oa 旋转到与Ob 共线但不重合时,等效电路如图甲所示,此时有I min =E2.5R =Bωr 25R ,当Oa 与Ob 重合时,环的电阻为0,等效电路如图乙所示,此时有I max =E 2R =Bωr 24R ,所以Bωr 25R ≤I ≤Bωr 24R ,A 、B 正确.【答案】 ABD7.如图9-3-16所示为一圆环发电装置,用电阻R =4 Ω的导体棒弯成半径L =0.2 m 的闭合圆环,圆心为O ,COD 是一条直径,在O 、D 间接有负载电阻R 1=1 Ω.整个圆环中均有B =0.5 T 的匀强磁场垂直穿过环面.电阻r =1 Ω的导体棒OA 贴着圆环做匀速运动,角速度ω=300 rad/s ,则当OA 到达OC 处时( )图9-3-16A .圆环的电功率为1 WB .圆环的电功率为2 WC .全电路的电功率最小,为3 WD .全电路的电功率最大,为4.5 W【解析】 OA 切割磁感线产生感应电动势,E OA =BL ωL2=3 V .当OA 转到OC 时,R 总=r +R 1+R 4=3 Ω,圆环电功率为P 环=I 2R 环=I 2·R 4=E 2R 2总×R 4=1 W ,A 项正确,B 项错误;全电路功率P =EI =3 W ,并且,此时圆环电阻最大,感应电流最小,全电路功率最小,C 正确,D 错误.【答案】 AC8.(2016·黄冈市十校联考)如图9-3-17所示,MN 、PQ 为竖直放置的光滑平行金属导轨,在M 点和P 点间接一个电阻,在两导轨间某一矩形区域内有垂直导轨平面的匀强磁场,一导体棒ab 垂直搁在导轨上.现将ab 棒由静止开始释放,棒ab 在离开磁场前已经做匀速直线运动(棒ab 与导轨始终保持良好的接触),则下列描述棒ab 运动的v -t 图象中可能正确的是(其中v 0是ab 进入磁场时的速度,v 是最后匀速运动的速度)( )图9-3-17【解析】 导体棒ab 在进入磁场前只受重力作用而做自由落体运动,进入磁场后受到重力和安培力作用,安培力F =B 2L 2v R ,当安培力F =B 2L 2v 0R =mg 时,导体棒做匀速运动;当F =B 2L 2v 0R >mg 时,导体棒做减速运动,随着速度的减小,加速度减小,直到做匀速运动;当F =B 2L 2v 0R <mg 时,导体棒做加速运动,随着速度的增大,加速度减小,直到做匀速运动.【答案】 ABC9.如图9-3-18所示,在“日”字形导线框中,ae 与bf 的电阻不计,ab 、cd 、ef 的电阻均为R ,当导线框以恒定的速度向右进入匀强磁场中,比较ab 进入(cd 尚未进入)与cd 进入(ef 尚未进入)磁场时,下列说法中正确的是( )图9-3-18A .ab 中的电流强度相等B .cd 中的电流强度相等C .ef 中消耗的电功率相等D .导线框消耗的总电功率相等【解析】 当导线框以恒定速度v 水平向右运动,ab 边进入磁场时,ab 切割磁感线产生的感应电动势为E =BL v ,外电路是cd 与ef 并联,ab 中的电流I 1=E R 2+R =2E 3R ,cd 中的电流I 1′=I 12=E3R ;当cd 边进入磁场时,ab 与cd 都切割磁感线,产生的感应电动势都为E =BL v ,内电路是ab 与dc 并联,ab 两端的电势差等于ef 两端的电压,ab 中的电流I 2=E 3R ,cd 中的电流I 2′=E3R ,故A 错误,B 正确;ab 边进入磁场时,ef 中消耗的电功率P 1=I ′21R =E 29R ,导线框消耗的总功率P =EI 1=2E 23R ,当cd 边进入磁场时,ef 中消耗的电功率P 2=I 21R =4E 29R ,导线框消耗的总电功率P ′=EI 1=2E 23R ,故C 错误,D 正确.【答案】 BD 三、非选择题10.如图9-3-19甲所示,一对平行光滑轨道放置在水平面上,两轨道间距为l =0.20 m ,电阻R =1 Ω;有一导体杆静止放在轨道上,与两轨道垂直,杆及轨道的电阻均忽略不计,整个装置处于磁感应强度B =0.50 T 的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F 沿轨道方向拉杆,使之做匀加速运动,测得外力F 与时间t 的关系如图乙所示.求:(1)杆的质量m 和加速度a 的大小;(2)杆开始运动后的时间t 内,通过电阻R 的电荷量的表达式(用B 、l 、R 、a 、t 表示).图9-3-19【解析】 (1)以金属杆为研究对象,由 v =at ,E =Bl v ,I =E R =Bl vR ,F -IBl =ma 解得F =ma +B 2l 2R at由图线上取两点坐标(0,0.1 N)和(10 s ,0.2 N)代入方程解得a =1 m/s 2,m =0.1 kg.(2)杆从静止开始运动的时间t 内,杆的位移为x =12at 2 穿过回路的磁通量的变化量ΔΦ=B ΔS =Blx 所以通过电阻R 的电荷量为q =It =E R t =ΔΦR =Balt 22R .【答案】 (1)0.1 kg 1 m/s 2(2)Balt 22R11.如图9-3-20甲所示,两根足够长的平行光滑金属导轨MN 、PQ 被固定在水平面上,导轨间距l =0.6 m ,两导轨的左端用导线连接电阻R 1及理想电压表,电阻r =2 Ω的金属棒垂直于导轨静止在AB 处;右端用导线连接电阻R 2,已知R 1=2 Ω,R 2=1 Ω,导轨及导线电阻均不计.在矩形区域CDFE 内有竖直向上的磁场,CE=0.2 m,磁感应强度随时间的变化如图乙所示.开始时电压表有示数,当电压表示数变为零后,对金属棒施加一水平向右的恒力F,使金属棒刚进入磁场区域时电压表的示数又变为原来的值,金属棒在磁场运动过程中电压表的示数始终保持不变.求:甲乙图9-3-20(1)t=0.1 s时电压表的读数;(2)恒力F的大小;(3)从t=0时刻到金属棒运动出磁场过程中整个电路产生的热量.【解析】(1)设磁场宽度为d=CE.在0~0.2 s时间内,有E=ΔΦΔt=ΔBΔtld=0.6 V,此时,R1与金属棒并联,再与R2串联R=R并+R2=1 Ω+1 Ω=2 Ω.U=ER R并=0.3 V.(2)金属棒进入磁场后,此时磁场稳定,金属棒切割磁感线,相当于电源,而外电路中R1与R2并联,则有I′=UR1+UR2=0.45 A.F 安=BI ′l =1×0.45×0.6 N =0.27 N.由于金属棒进入磁场后电压表示数始终不变,所以金属棒做匀速运动,有F =F 安=0.27 N.(3)金属棒在0~0.2 s 时间内,有Q =E 2R t =0.036 J ,金属棒进入磁场后,有R ′=R 1R 2R 1+R 2+r =83 Ω. E ′=I ′R ′=1.2 V ,已知E ′=Bl v ,得v =2 m/s ,t ′=d v =0.22s =0.1 s ,Q ′=E ′I ′t ′=0.054 J ,(计算Q ′时,可用Q ′=Fd =0.054 J)Q 总=Q +Q ′=0.036 J +0.054 J =0.09 J.【答案】 (1)0.3 V (2)0.27 N (3)0.09 J。

2017版高考物理一轮复习:分层限时跟踪练2含解析

2017版高考物理一轮复习:分层限时跟踪练2含解析

分层限时跟踪练(二).(限时40分钟).一、单项选择题..1.(2016·青岛模拟)钢球a 自塔顶自由落下2 m 时,钢球b 自离塔顶6 m 距离处自由落下,两钢球同时到达地面,不计空气阻力,则塔高为( )..A .24 mB .16 mC .12 mD .8 m【解析】 根据x =12gt 2得a 球下落2 m 所需时间为..t =2xg =2×210 s =0.210 s.设塔高h ,则b 球下落的时间为t b =2(h -6 m )g ① 对a 球有:h =12g (t +t b )2 ②联立①②解得h =8 m ,D 正确..【答案】 D.2.物体以速度v 匀速通过直线上的A 、B 两点,所用时间为t .现在物体从A 点由静止出发,先做匀加速直线运动(加速度为a 1)到某一最大速度v m ,然后立即做匀减速直线运动(加速度大小为a 2)至B 点速度恰好减为0,所用时间仍为t .则物体的( )A .v m 可为许多值,与a 1、a 2的大小有关B .v m 可为许多值,与a 1、a 2的大小无关C .a 1、a 2必须满足a 1a 2a 1+a 2=2v tD .a 1、a 2必须是一定的【解析】 由v m 2t =v t 解得v m =2v .由v 2m 2a 1+v 2m 2a 2=v t 和v m =2v ,解得a 1a 2a 1+a 2=2v t ,选项C 正确.【答案】 C3.(2016·长沙模拟)为了探究匀变速直线运动,某同学将一小球以一定的初速度射入一粗糙的水平面,如图1-2-8中的A 、B 、C 、D 为每隔1 s 记录的小球所在的位置,AB 、BC 、CD 依次为第1 s 、第2 s 、第3 s 小球通过的位移,经测量可知AB =8.0 m 、CD =0.5 m .假设小球的运动可视为匀减速直线运动,则下列描述正确的是( )图1-2-8A .小球匀减速运动时的加速度大小一定为3.75 m/s 2B .小球匀减速运动时的加速度大小可能为3.75 m/sC .0.5 s 末小球的速度为8 m/sD .2.5 s 末小球的速度为0.5 m/s【解析】 由题意假设小球在第3 s 内未停止运动,由匀变速直线运动的规律Δx =aT 2,得x 3-x 1=2aT 2,可知a =3.75 m/s 2,此情况下,小球在2.5 s 末的速度为0.5 m/s ,由运动学公式得v D =0.5 m/s -3.75 m/s 2×0.5 s <0,因此A 、B 、D 错误;由匀变速直线运动规律可知,小球在0.5 s 末的速度为第1 s 内的平均速度,由v =v t 2=x 1T=8 m/s ,C 正确.【答案】 C4.四川灾后重建中,在某工地上一卡车以速度10 m/s 匀速行驶,刹车后第1个2 s 内的位移与最后一个2 s 内的位移之比为3∶2,设卡车做匀减速直线运动,则刹车后4 s 内卡车通过的距离是( )A .2.5 mB .4 mC .12 mD .12.5 m【解析】 设加速度大小为a ,则刹车后第1个2 s 内位移大小x 1=10×2-12a ×22=20-2a (m),最后一个2 s 内位移大小x 2=12a ×22=2a (m),因为x 1∶x 2=3∶2,所以20-2a =3a ,即a =4 m/s 2,所以汽车刹车后经过t =104 s =2.5 s 就停止运动了,汽车刹车后4 s 内卡车通过的距离是x =v 22a =1022×4m =12.5 m. 【答案】 D5.某乘客用手表估测火车的加速度,他先观测3分钟,发现火车前进540 m ,隔3分钟后又观测1分钟,发现火车前进了360 m ,若火车在这7分钟内做匀加速运动,则这列火车的加速度大小为( )A .0.03 m/s 2B .0.01 m/s 2C .0.5 m/s 2D .0.6 m/s 2【解析】 利用平均速度等于中间时刻的瞬时速度计算.t 1时间段的中间时刻的瞬时速度v 1=x 1t 1=540180 m/s =3 m/s t 3时间段的中间时刻的瞬时速度v 3=x 3t 3=36060 m/s =6 m/s 则v 3=v 1+a Δt ,其中Δt =t 12+t 32+t 2=300 s.代入数据得a =0.01 m/s 2.【答案】 B二、多项选择题6.一物体以初速度v 0做匀减速运动,第1 s 内通过的位移为x 1=3 m ,第2 s 内通过的位移为x 2=2 m ,又经过位移x 3物体的速度减小为0,则下列说法中正确的是( )A .初速度v 0的大小为2.5 m/sB .加速度a 的大小为1 m/s 2C .位移x 3的大小为1.125 mD .位移x 3内的平均速度大小为0.75 m/s【解析】 由Δx =aT 2可得加速度的大小a =1 m/s 2,则B 正确;第1 s 末的速度v 1=x 1+x 22T =2.5 m/s ,则A 错误;物体的速度由2.5 m/s 减速到0所需时间t =Δv -a=2.5 s ,经过位移x 3的时间t ′为1.5 s ,故x 3=12at ′2=1.125 m ,C 正确;位移x 3内的平均速度v =x 3t ′=0.75 m/s ,则D 正确. 【答案】 BCD7.在塔顶上将一物体竖直向上抛出,抛出点为A ,物体上升的最大高度为20 m .不计空气阻力,设塔足够高.则物体位移大小为10 m 时,物体通过的路程可能为( )A.10 m B.20 mC.30 m D.50 m【解析】物体从塔顶上的A点抛出,位移大小为10 m的位置有两处,如图所示,一处在A点之上,另一处在A点之下.在A点之上时,位移为10 m又有上升和下降两种过程.上升通过时,物体的路程L1等于位移x1的大小,即L1=x1=10 m;下落通过时,路程L2=2H-x1=2×20 m-10 m=30 m.在A点之下时,通过的路程L3=2H+x2=2×20 m+10 m=50 m.【答案】ACD8.如图1-2-9所示,物体自O点由静止开始做匀加速直线运动,A、B、C、D 为其运动轨迹上的四点,测得AB=2 m,BC=3 m.且物体通过AB、BC、CD所用时间相等,则下列说法正确的是()图1-2-9A.可以求出物体加速度的大小B.可以求得CD=4 mC.可求得OA之间的距离为1.125 mD.可求得OA之间的距离为1.5 m【解析】设加速度为a,时间为T,则有Δx=aT2=1 m,可以求得CD=4 m,而B点的瞬时速度v B=x AC2T,所以OB之间的距离为x OB=v2B2a=3.125 m,OA之间的距离为x OA=x OB-x AB=1.125 m,即B、C选项正确.【答案】BC9.一辆汽车沿着一条平直的公路行驶,公路旁边有与公路平行的一行电线杆,相邻电线杆间的距离均为50 m,取汽车驶过某一根电线杆的时刻为零时刻,此电线杆作为第1根电线杆,此时汽车行驶的速度大小为v0=5 m/s,假设汽车的运动为匀加速直线运动,10 s末汽车恰好经过第3根电线杆,则下列说法中正确的是()A .汽车运动的加速度大小为1 m/s 2B .汽车继续行驶,经过第7根电线杆时的瞬时速度大小为25 m/sC .汽车从第3根电线杆运动到第7根电线杆经历的时间为20 sD .汽车在第3根至第7根电线杆间运动的平均速度为20 m/s【解析】 由匀加速直线运动的位移公式x =v 0t +12at 2知汽车运动的加速度大小为1 m/s 2,选项A 正确;由v 2-v 20=2ax 知汽车经过第7根电线杆时的瞬时速度大小为25 m/s ,选项B 正确;由v =v 0+at 知汽车从第1根电线杆运动至第7根电线杆用时20 s ,所以从第3根电线杆运动至第7根电线杆用时为10 s ,选项C 错误;由v =x t 知汽车在第3根至第7根电线杆间运动的平均速度为20 m/s ,选项D 正确.【答案】 ABD二、非选择题10.现在,汽车已走进千家万户,行车安全非常重要,严格遵守交通法规是每一个公民的义务.现某人开车从南向北以8 m/s 的速度匀速行驶到某十字路口,如图1-2-10所示,已知直行绿灯还有2 s 将转为红灯,此时汽车距离停车线20 m .若该车加速时最大加速度大小为3 m/s 2,问:图1-2-10(1)若该人这时驾驶汽车以最大加速度加速行驶,会闯红灯吗?(2)若该人这时驾驶汽车做匀减速运动,要想紧靠停车线停下,其制动的加速度大小应为多少?【解析】 (1)若汽车以最大加速度加速行驶,根据位移时间公式得x =v 0t +12at 2代入数据解得t ≈1.85 s <2 s故不会闯红灯.(2)若汽车匀减速运动,根据速度位移公式0-v 20=-2a ′x得a ′=v 202x =1.6 m/s 2.【答案】 (1)不会 (2)1.6 m/s 211.甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变.在第一段时间间隔内,两辆汽车的加速度大小不变,汽车乙的加速度大小是甲的两倍;在接下来的相同时间间隔内,汽车甲的加速度大小增加为原来的两倍,汽车乙的加速度大小减小为原来的一半.求甲乙两车各自在这两段时间间隔内走过的总路程之比.【解析】 设汽车甲在第一段时间间隔末(时刻t 0)的速度为v ,第一段时间间隔内行驶的路程为s 1,加速度为a ;在第二段时间间隔内行驶的路程为s 2.由运动学公式得v =at 0s 1=12at 20s 2=v t 0+12(2a )t 20设汽车乙在时刻t 0的速度为v ′,在第一、二段时间间隔内行驶的路程分别为s 1′、s 2′.同样有v ′=(2a )t 0s 1′=12(2a )t 20s 2′=v ′t 0+12at 20设甲乙两车行驶的总路程分别为s 、s ′,则有s =s 1+s 2s ′=s 1′+s 2′联立以上各式解得,甲、乙两车各自行驶的总路程之比为s s ′=57.【答案】 5712.(2016·长沙模拟)如图1-2-11所示,水平地面O 点的正上方的装置M 每隔相等的时间由静止释放一小球,当某小球离开M 的同时,O 点右侧一长为L =1.2 m 的平板车开始以a =6.0 m/s 2的恒定加速度从静止开始向左运动,该小球恰好落在平板车的左端,已知平板车上表面距离M 的竖直高度为h =0.45 m .忽略空气的阻力,重力加速度g 取10 m/s 2.图1-2-11(1)求小车左端离O 点的水平距离;(2)若至少有2个小球落在平板车上,则释放小球的时间间隔Δt 应满足什么条件?【解析】 (1)设小球自由下落至平板车上表面历时t 0,在该时间段内,对小球有:h =12gt 20① 对平板车有:s =12at 20 ②联立①②式并代入数据可得s =0.27 m.(2)从释放第1个小球至第2个小球下落到平板车上表面高度处历时Δt +t 0,设平板车在该时间段内的位移为s 1,由运动学方程有s 1=12a (Δt +t 0)2要让至少2个小球落在平板上必须满足s 1≤s +L ④联立①~④式解得Δt ≤0.4 s.【答案】 (1)0.27 m (2)Δt ≤0.4 s。

2017版高考物理一轮复习(通用版)分层限时跟踪练3含解析

2017版高考物理一轮复习(通用版)分层限时跟踪练3含解析

分层限时跟踪练(三)(限时40分钟)一、单项选择题1.(2016·哈尔滨模拟)某次实验中,一同学利用打点计时器测出了某物体不同时刻的速度,并在坐标纸上画出了其速度随时间变化的图象,由此可知()图1-3-9A.物体做曲线运动B.物体运动的最大速度约为0.8 m/sC.物体运动的平均速度约为0.4 m/sD.物体的最大位移约是6 m【解析】由题图可知物体的速度先增大后减小,最大约为0.8 m/s,做加速度先减小后增大的直线运动,故A错误,B正确;因速度一直沿正方向,故物体的位移越来越大,由图线与时间轴围成的图形的面积表示位移知位移约为7.5 m,根据v=xt=7.515m/s=0.5 m/s,故C、D错误.【答案】 B2.(2014·大纲全国卷)一质点沿x轴做直线运动,其v-t图象如图1-3-10所示.质点在t=0时位于x=5 m处,开始沿x轴正向运动.当t=8 s时,质点在x轴上的位置为()图1-3-10A.x=3 m B.x=8mC.x=9 m D.x=14 m【解析】由题图知,质点在8 s内的位移Δx=12×(2+4)×2 m-12×(2+4)×1 m=3 m.t=0时,质点位于x0=5 m处,故8 s末质点在x轴上的位置x =x0+Δx=8 m,B正确.【答案】 B3.在平直公路上行驶的a车和b车,其位移—时间图象分别为图1-3-11中直线a和曲线b,由图可知,下列说法正确的是()图1-3-11A.b车运动方向始终不变B.在t1时刻a车的位移大于b车C.t1到t2时间内,a车与b车的平均速度相等D.a车做匀加速直线运动【解析】x-t图象的斜率表示运动的速度,b车的运动方向发生改变,选项A错误;t1和t2两时刻两车相遇,所以t1~t2时间内,两车的位移相等,平均速度也相等,选项B错误,C正确;a车做匀速直线运动,选项D错误.【答案】 C4.(2016·杭州模拟)a、b、c三个物体在同一条直线上运动,其x -t图象如图1-3-12所示,图线c是一条抛物线,坐标原点是该抛物线的顶点,下列说法中正确的是()图1-3-12A.a、b两物体都做匀速直线运动,两个物体的速度相同B .a 、b 两物体都做匀变速直线运动,两个物体的加速度大小相等C .在0~5 s 的时间内,t =5 s 时a 、b 两个物体相距最远D .物体c 做变加速运动,加速度逐渐增大【解析】 x -t 图象中倾斜的直线表示物体做匀速直线运动,则知a 、b 两物体都做匀速直线运动,由图看出a 、b 两图线的斜率大小相等,正负相反,说明两物体的速度大小相等、方向相反,选项A 、B 均错误;a 物体沿正方向运动,b 物体沿负方向运动,则在0~5 s 时间内当t =5 s 时,a 、b 两个物体相距最远,故C 正确.根据匀加速运动位移公式x =v 0t +12at 2可知,x ­t 图象是抛物线,所以物体c 一定做匀加速运动,选项D 错误.【答案】 C5.据英国《每日邮报》2014年8月10日报道:27名跳水运动员参加了科索沃年度高空跳水比赛.自某运动员离开跳台开始计时,在t 2时刻运动员以速度v 2落水,选向下为正方向,其速度随时间变化的规律如图1-3-13所示,下列结论正确的是( )图1-3-13A .该运动员在0~t 2时间内加速度大小先减小后增大,加速度的方向不变B .该运动员在t 2~t 3时间内加速度大小逐渐减小,处于失重状态C .在0~t 2时间内,平均速度v 1=v 1+v 22D .在t 2~t 3时间内,平均速度v 2=0+v 22【解析】 由图象可知,在0~t 2时间内运动员的加速度一直不变,A 项错误;在t 2~t 3时间内图线上各点切线的斜率的大小逐渐减小,则加速度大小逐渐减小,运动员减速下落处于超重状态,B 项错误;由图象可知,在0~t 2时间内为匀变速直线运动,所以平均速度v 1=v 1+v 22,C 项正确;在t 2~t 3时间内,由图线与t 轴所围面积表示位移可知,此时间内的平均速度v 2<0+v 22,D 项错误.【答案】 C二、多项选择题6.(2015·辽宁沈阳市郊联体二模)某时刻,两车从同一地点、沿同一方向做直线运动,下列关于两车的位移x 、速度v 随时间t 变化的图象中,能反映t 1时刻两车相遇的是( )【解析】 x -t 图象中两图线的交点表示两物体相遇,A 错误,B 正确;v -t 图象与时间轴围成的图形的面积表示位移,同时同地出发的两车,位移相等时相遇,所以C 错误,D 正确.【答案】 BD7.如图1-3-14所示,汽车以10 m/s 的速度匀速驶向路口,当行驶至距路口停车线20 m 处时,绿灯还有3 s 熄灭.而该汽车在绿灯熄灭时刚好停在停车线处,则汽车运动的速度(v )-时间(t )图象可能是( )图1-3-14【解析】 理解v -t 图象中“面积”的物理意义,A 、D 图中v -t 图象中“面积”不等于20 m ;B 中v -t 图象的“面积”可能等于20 m ;C 中v -t 图象的“面积”正好等于20 m .B 、C 两项正确,A 、D 两项错误.【答案】 BC8.将甲、乙两小球先后以同样的速度在距地面不同高度处竖直向上抛出,抛出时间相隔2 s ,它们运动的v -t 图象分别如图1-3-15中直线甲、乙所示.则( )图1-3-15A .t =2 s 时,两球高度相差一定为40 mB .t =4 s 时,两球相对于各自抛出点的位移相等C .两球从抛出至落到地面所用的时间间隔相等D .甲球从抛出至达到最高点的时间间隔与乙球的相等【解析】 由于两球的抛出点未知,则A 、C 均错;由图象可知4 s 时两球上升的高度均为40 m ,则距各自出发点的位移相等,则B 正确;由于两球的初速度都为30 m/s ,则上升到最高点的时间均为t =v 0g ,则D 正确.【答案】 BD9.a 、b 两辆摩托车在一笔直的公路上同时由同一地点开始同向行驶,两车的运动均可视为匀变速直线运动.由t =0时刻开始每间隔Δt =1 s 将测量的摩托车a 、b 的速度记录在下表中.则由表中的数据分析可知A.摩托车a B .前4 s 内摩托车a 的平均速度小C .前4 s 内两摩托车的相对位移为56 mD .在第5 s 末两摩托车间距最大【解析】 由于两车做匀变速直线运动,根据表中数据求得a a =-2 m/s 2,a b =1 m/s 2,则a 的速度变化快,A 正确;利用匀变速直线运动的规律求得0~4 s内摩托车a 的平均速度v a =18+102 m/s =14 m/s ,摩托车b 的平均速度v b =3+72m/s =5 m/s ,B 选项错误;在0~4 s 内两车的位移分别为x a =14×4 m =56 m ,x b =5×4 m =20 m ,a 相对b 的位移为Δx =56 m -20 m =36 m ,C 错;当两车的速度相等时,两车相距最远,在第5 s 末两车速度相等,D 正确.【答案】 AD三、非选择题10.某人驾驶汽车在平直公路上以72 km/h 的速度匀速行驶,某时刻看到前方路上有障碍物,立即进行刹车,从看到障碍物到刹车做匀减速运动停下,位移随速度变化的关系如图1-3-16所示,图象由一段平行于x 轴的直线与一段曲线组成.求:图1-3-16(1)该人刹车的反应时间;(2)刹车的加速度大小及刹车的时间.【解析】 (1)汽车在反应时间内做匀速直线运动,由图可知,反应时间内的位移x 1=12 m ,速度v =72 km/h =20 m/s ,反应时间t 1=x 1v =1220 s =0.6 s.(2)开始刹车时,速度v =72 km/h =20 m/s ,刹车过程的位移x 2=(37-12) m =25 m ,根据匀变速直线运动的速度位移关系为v 2=2ax 2,可得刹车时的加速度大小a =v 22x 2=2022×25m/s 2=8 m/s 2, 根据速度时间关系知,刹车的时间t 2=v a =208 s =2.5 s.【答案】 (1)0.6 s (2)8 m/s 2 2.5 s11.汽车由静止开始在平直的公路上行驶,0~60 s 内汽车的加速度随时间变化的图线如图1-3-17所示.图1-3-17(1)画出汽车在0~60 s 内的v -t 图线;(2)求在这60 s 内汽车行驶的路程.【解析】 (1)设汽车在t =10 s 、40 s 、60 s 时刻的速度分别为v 1、v 2、v 3,由题图知:0~10 s 内汽车匀加速行驶,加速度大小为2 m/s 2,由运动学公式得:v 1=2×10 m/s =20 m/s①10~40 s 内汽车匀速行驶,则:v 2=20 m/s② 40~60 s 内汽车匀减速行驶,加速度大小为1 m/s 2,由运动学公式得:v 3=v 2-at =(20-1×20) m/s =0 ③根据①②③式,可画出汽车在0~60 s 内的v -t 图线,如图所示.(2)由第(1)问中的v -t 图可知,在这60 s 内汽车行驶的路程为:s =30+602×20m =900 m.【答案】 (1)见解析图 (2)900 m12.减速带是交叉路口上常见的一种交通设施,通常设置在学校、医院等行人较多的公共场所前的马路上.为了保障过往行人的安全,汽车驶过减速带都要减速.在某中学门口有一橡胶减速带,一警用巡逻车正以最大速度20 m/s 从中学门口经过,在离减速带还有50 m 时警察发现一逃犯正以8 m/s 的速度骑自行车匀速通过减速带,而此时巡逻车要匀减速到5 m/s 通过减速带,过减速带后以2.5 m/s 2的加速度继续追赶,设在整个追及过程中,巡逻车与逃犯均在水平直道上运动,求从警察发现逃犯到追上逃犯需要的时间.【解析】 设巡逻车从发现逃犯到行驶到减速带所用时间为t 1,加速度大小为a 1,由运动学公式有v 2m -v 21=2a 1x 1 解得a 1=3.75 m/s 2减速所用时间为t 1=v m -v 1a 1=4 s而此时逃犯离开减速带距离为x 2=v t 1=32 m 从此时刻起到巡逻车达到最大速度所用时间为t 2=v m -v 1a 2s =6 s 这段时间内巡逻车的加速位移为x 3=v 2m -v 212a 2=75 m 而逃犯又行驶的位移为x 4=v t 2=48 m又x 2+x 4-x 3=5 m ,这说明巡逻车在达到最大速度时离逃犯还有5 m 设巡逻车以最大速度追赶,再用时t 3追上逃犯,则有 v m t 3=5 m +v t 3解得t 3=0.42 s综上分析知,巡逻车从发现逃犯到追赶上共需时间 t =t 1+t 2+t 3=10.42 s.【答案】 10.42 s。

(通用版)2017版高考物理一轮复习 分层限时跟踪练1 运动的描述

(通用版)2017版高考物理一轮复习 分层限时跟踪练1 运动的描述

分层限时跟踪练1 运动的描述(限时40分钟)一、单项选择题1.以下说法中正确的是( )A .做匀变速直线运动的物体,t s 内通过的路程与位移的大小一定相等B .质点一定是体积和质量都极小的物体C .速度的定义式和平均速度公式都是v =ΔxΔt ,因此速度就是指平均速度D .速度不变的运动是匀速直线运动【解析】 往复的匀变速直线运动中,路程不等于位移大小,A 错;质点不一定是体积小、质量小的物体,B 错;速度分为平均速度和瞬时速度,C 错;速度不变是指速度的大小和方向均不变,故做匀速直线运动,D 对.【答案】 D2.(2016·黄冈模拟)如图1­1­10所示为武汉至上海的和谐号动车车厢内可实时显示相关信息的显示屏示意图,图中甲、乙两处的数据分别表示了两个物理量.下列说法中正确的是( )图1­1­10A .甲处表示时间,乙处表示平均速度B .甲处表示时间,乙处表示瞬时速度C .甲处表示时刻,乙处表示平均速度D .甲处表示时刻,乙处表示瞬时速度【解析】 甲处表盘显示时刻,乙处表盘显示动车行进过程中的瞬时速度,故D 正确. 【答案】 D3.如图1­1­11所示哈大高铁运营里程921公里,设计时速350公里.某列车到达大连北站时做匀减速直线运动,开始刹车后第5 s 内的位移是57.5 m ,第10 s 内的位移是32.5 m ,则下列说法正确的有( )图1­1­11A .在研究列车从哈尔滨到大连所用时间时不能把列车看成质点B .时速350公里是指平均速度,921公里是指位移C .列车做匀减速直线运动时的加速度大小为6.25 m/s 2D .列车在开始减速时的速度为80 m/s【解析】 因列车的大小远小于哈尔滨到大连的距离,研究列车行驶该路程所用时间时可以把列车视为质点,A 错;由时间、时刻、位移与路程的意义知时速350公里是指平均速率,921公里是指路程,B 错;由等时位移差公式x n -x m =(n -m )aT 2可知加速度大小为a =57.5-32.55 m/s 2=5 m/s 2,C 错;由题意可知第4.5 s 末列车速度为57.5 m/s ,由加速度公式知v 0=80 m/s ,D 对.【答案】 D4.某质点以20 m/s 的初速度竖直向上运动.其加速度保持不变,经2 s 到达最高点,上升高度为20 m ,又经过2 s 回到出发点时,速度大小仍为20 m/s ,关于这一运动过程,下列说法中正确的是( )A .质点运动的加速度大小为10 m/s 2,方向竖直向下 B .质点在这段时间内的平均速度大小为10 m/s C .质点在最高点时加速度为零D .质点在落回抛出点时的速度与开始离开抛出点时的速度相等 【解析】 以初速度方向为正方向,则a =Δv Δt =v -v 0t =-20-204m/s 2=-10 m/s 2“-”号表示与初速度反向,即竖直向下,A 正确;质点在这段时间内的平均速度为零,B 错误;在最高点时速度为零,加速度不为零,C 错误;初速度和末速度大小相等,方向相反,D 错误.【答案】 A5.(2016·长沙模拟)一个朝着某一方向做直线运动的物体,在时间t 内的平均速度是v ,紧接着t 2内的平均速度是v2,则物体在这段时间内的平均速度是( )A .v B.23v C.43v D.56v【解析】 根据平均速度的定义可得:v =vt +14vtt +t 2=56v ,即D 项正确. 【答案】 D 二、多项选择题6.甲、乙、丙三人各乘一艘飞艇,甲看到楼房匀速上升,乙看到甲艇匀速上升、丙看到乙艇匀速下降,甲看到丙艇匀速上升,则甲、乙、丙艇相对于地球的运动情况可能是( ) A.甲和乙匀速下降,且v乙>v甲,丙静止B.甲和乙匀速下降,且v乙>v甲,丙匀速上升C.甲和乙匀速下降,且v乙>v甲,丙匀速下降D.甲匀速下降,乙匀速上升,丙静止不动【解析】甲看到楼房匀速上升,以地球为参考系,说明甲艇在匀速下降.乙看到甲艇匀速上升,说明乙艇也在匀速下降,且乙艇下降的速度大于甲艇下降的速度,即v乙>v甲.丙看到乙艇匀速下降,丙的运动相对地球可能有三种情况:①丙静止;②丙匀速下降,但v丙<v乙;③丙匀速上升.甲看到丙艇匀速上升,丙同样可能有三种情况:①丙静止;②丙匀速下降,但v丙<v甲;③丙匀速上升.综上分析,该题答案为A、B、C.【答案】ABC7.下面描述的几个速度中,属于瞬时速度的是( )A.子弹以790 m/s的速度击中目标B.信号沿动物神经传播的速度大约为10 m/sC.汽车上速度计的示数为80 km/hD.台风以360 m/s的速度向东北方向移动【解析】790 m/s是击中目标时刻的瞬时速度;信号沿动物神经传播是在一个过程内的平均速度;汽车速度计上显示的是瞬时速度;台风移动过程中速度的变化是很大的,360 m/s是平均速度.【答案】AC8.在下面所说的物体运动情况中,可能出现的是( )A.物体在某时刻运动速度很大,而加速度为零B.物体在某时刻运动速度很小,而加速度很大C.运动的物体在某时刻速度为零,而其加速度不为零D.做变速直线运动的物体,加速度方向与运动方向相同,当物体加速度减小时,它的速度也减小【解析】物体以很大的速度匀速运动时,加速度为零,A可能;火箭开始发射时速度很小,而加速度很大,B可能;竖直上抛到最高点的物体速度为零,而其加速度不为零,C 可能;物体加速度方向与运动方向相同时,物体做加速运动,D不可能.故选A、B、C.【答案】ABC9.某质点沿一边长为2 m的正方形轨道运动,每秒钟匀速移动1 m,初始位置在bc边的中点A,由b向c运动,如图1­1­12所示,A、B、C、D分别是bc、cd、da、ab边的中点,则下列说法正确的是( )图1­1­12A .第2 s 末的瞬时速度为1 m/sB .前2 s 内的平均速度为22m/s C .前4 s 内的平均速率为0.5 m/s D .前2 s 内的平均速度为2 m/s【解析】 由题意知,质点运动的速率为1 m/s ,即在每一时刻的瞬时速率均为1 m/s ,每段时间内的平均速率也均为1 m/s ,C 错误;在前2 s 内质点通过的路程为2 m ,由A 运动到cd 边的中点B ,在第2 s 末瞬时速度大小为1 m/s ,方向由B 指向d ,A 正确;前2 s 内的位移大小为x 1=AB = 2 m ,平均速度v =x 1t 1=22m/s ,方向由A 指向B ,B 正确,D 错误.【答案】 AB 二、非选择题10.天空有近似等高的浓云层.为了测量云层的高度,在水平地面上与观测者的距离为d =3.0 km 处进行一次爆炸,观测者听到由空气直接传来的爆炸声和由云层反射来的爆炸声时间上相差Δt =6.0 s .试估算云层下表面的高度.已知空气中的声速v =13km/s.【解析】 如图所示,O 表示爆炸处,A 表示观测者所在处,h 表示云层下表面的高度.用t 1表示爆炸声直接传到A 处所经时间.则有d =vt 1,用t 2表示爆炸声经云层反射到A 处所经时间,因为入射角等于反射角,故有2(d2)2+h 2=vt 2,又知t 2-t 1=Δt ,联立可得h =12(v Δt )2+2dv Δt ,代入数值得h =2.0×103m =2 km. 【答案】 2 km11.如图1­1­13所示,高速公路的安全工程师会建造软隔离带,使汽车撞到它们后能够安全地慢下来.已知系上安全带的乘客可以经受的加速度为-3.0×102m/s 2.安全隔离带应该多厚,才能安全地阻挡以110 km/h 的速度行驶的汽车的撞击?该汽车停下来用多长时间?图1­1­13【解析】 汽车撞击过程可视为匀减速过程,a =-3.0×102m/s 2v 0=110 km/h =30.6 m/sΔv =0-v 0=-30.6 m/s 由a =Δv Δt 可得Δt =Δv a=-30.6-3.0×102 s =0.1 s安全隔离带的厚度为:x =v ·t =v 02·Δt=1.5 m.【答案】 1.5 m 0.1 s12.每年全国由于行人不遵守交通规则而引发的交通事故上万起,死亡上千人.只有科学设置交通管制,人人遵守交通规则,才能保证行人的生命安全.如图1­1­14所示,停车线AB 与前方斑马线边界CD 间的距离为23 m .质量8 t 、车长7 m 的卡车以54 km/h 的速度向北匀速行驶,当车前端刚驶过停车线AB ,该车前方的机动车交通信号灯由绿灯变黄灯.为确保行人安全,D 处人行横道信号灯应该在南北向机动车信号灯变黄灯后至少多久变为绿灯?图1­1­14【解析】 已知卡车初速度v 0=54 km/h =15 m/s.车长l =7 m ,AB 与CD 的距离为s 0=23 m .设卡车驶过的距离为s 2,D 处人行横道信号灯至少需经过时间Δt 后变灯,有s2=s0+l,①s2=v0Δt,②联立①②式,代入数据解得Δt=2 s.③【答案】 2 s。

2017版高考物理一轮复习(通用版)分层限时跟踪练5 Word版含解析

2017版高考物理一轮复习(通用版)分层限时跟踪练5 Word版含解析

分层限时跟踪练(五)(限时40分钟)一、单项选择题1.如图所示,F1、F2、F3恰好构成封闭的直角三角形,这三个力的合力最大的是()【答案】 C2.某物体同时受到同一平面内的三个共点力作用,在如图2-2-11所示的四种情况中(坐标纸中每格边长表示1 N大小的力),该物体所受的合外力大小正确的是()图2-2-11A.甲图中物体所受的合外力大小等于4 NB.乙图中物体所受的合外力大小等于2 NC.丙图中物体所受的合外力大小等于0D.丁图中物体所受的合外力大小等于0【解析】题图甲,先将F1与F3直接合成,再以3 N和4 N为边画平行四边形,并结合勾股定理知合力的大小为5 N,A项错误;题图乙,先将F1与F3正交分解,再合成,求得合力的大小等于5 N,B项错误;题图丙,可将F3正交分解,求得合力的大小等于6 N,C项错误;根据三角形法则,题图丁中合力的大小等于0,D项正确.【答案】 D3.如图2-2-12所示,一轻绳上端固定,下端系一个质量为m的小球.现对小球施加一个F=mg的水平拉力,使小球偏离竖直位置并保持静止,则轻绳与竖直方向的夹角为()图2-2-12A.30°B.37°C.45°D.60°【解析】以小球为研究对象,受力分析如图所示,因为tan α=F mg,所以tan α=1,故α=45°,C正确.【答案】 C4.如图2-2-13所示,力F垂直作用在物块A上,两物块A、B保持静止,则物块受到地面的静摩擦力的大小为()图2-2-13A.0 B.F cos αC.F sin αD.F tan α【解析】整体受力如图,由水平方向合力为零可知F f=F sin α,C正确.【答案】 C5.如图2-2-14所示,由轻杆AB和BC构成的三角形支架固定在墙壁上,A、B、C各固定点均用铰链连接.在B处挂一重物,以F1、F2分别表示轻杆AB、BC对B点的弹力,则以下说法中正确的是()图2-2-14A.F1沿AB延长线方向,F2沿BC方向B.F1沿BA方向,F2沿CB延长线方向C.F1沿BA方向,F2沿BC方向D.F1沿AB延长线方向,F2沿CB延长线方向【解析】关键要弄清轻杆AB和BC分别是受拉还是受压.考虑到绳子只能受拉,不能受压,所以可假设将本题中的轻杆换成绳子进行分析.若将AB杆换成绳子,则在重物的作用下绳子将被拉紧,可见AB杆受拉;若将BC杆换成绳子,则在重物的作用下绳子将被压缩,可见BC杆受压,再由弹力跟引起物体形变的外力方向相反可知,F1沿BA方向,F2沿CB延长线方向,选项B正确.【答案】 B6.两物体M、m用跨过光滑定滑轮的轻绳相连,如图2-2-15所示,OA、OB与水平面的夹角分别为30°、60°,M、m均处于静止状态.则()图2-2-15A.绳OA对M的拉力大于绳OB对M的拉力B.绳OA对M的拉力等于绳OB对M的拉力C.m受到水平面的静摩擦力大小为零D.m受到水平面的静摩擦力的方向水平向左【解析】取O点为研究对象进行受力分析,如图,F T A<F T B,再对物体m 进行受力分析知,m受水平面的静摩擦力的方向水平向左,D正确.【答案】 D7.风洞是进行空气动力学实验的一种重要设备.一次检验飞机性能的风洞实验示意图如图2-2-16所示,AB 代表飞机模型的截面,OL 是拉住飞机模型的绳.已知飞机模型重为G ,当飞机模型静止在空中时,绳恰好水平,此时飞机模型截面与水平面的夹角为θ,则作用于飞机模型上的风力大小为( )图2-2-16A .G /cos θB .G cos θC .G /sin θD .G sin θ【解析】 作用于飞机模型上的风力F 的方向垂直于AB 向上,由平衡条件可知,风力F 在竖直方向的分力与飞机模型重力G 平衡,即F cos θ=G ,解得:F =G cos θ,A 正确. 【答案】 A8.如图2-2-17所示,在水平天花板的A 点处固定一根轻杆a ,杆与天花板保持垂直.杆的下端有一个轻滑轮O .另一根细线上端固定在该天花板的B 点处,细线跨过滑轮O ,下端系一个重力为G 的物体,BO 段细线与天花板的夹角为θ=30°.系统保持静止,不计一切摩擦.下列说法中正确的是( )图2-2-17A .细线BO 对天花板的拉力大小是G 2B.a杆对滑轮的作用力大小是G 2C.a杆和细线对滑轮的合力大小是GD.a杆对滑轮的作用力大小是G【解析】绳子上的弹力处处相等,因此细线BO对天花板的拉力大小是G,选项A错误;两段绳子上弹力均为G,构成菱形,合力为2G sin 30°=G,大小等于a杆对滑轮的作用力,选项B错误、D正确;a杆和细线对滑轮的合力大小是0,选项C错误.【答案】 D9.如图2-2-18所示,斜面顶端固定有半径为R的轻质滑轮,用不可伸长的轻质细绳将半径为r的球沿斜面缓慢拉升.不计各处摩擦,且R>r.设绳对球的拉力为F,斜面对球的支持力为F N,则关于F和F N的变化情况,下列说法正确的是()图2-2-18A.F一直增大,F N一直减小B.F一直增大,F N先减小后增大C.F一直减小,F N保持不变D.F一直减小,F N一直增大【解析】小球受到三个力作用,重力G为恒力,斜面的支持力F N方向垂直斜面向上,当球沿斜面上升时,细绳的拉力F与竖直方向的夹角减小,画出受力的矢量三角形如图,F N减小,F增大,A正确.【答案】 A10.如图2-2-19所示,A、B都是重物,A被绕过小滑轮P的细线悬挂着,B放在粗糙的水平桌面上;小滑轮P被一根斜短线系于天花板上的O点;O′是三根线的结点,bO′水平拉着B物体,cO′沿竖直方向拉着弹簧;弹簧、细线、小滑轮的重力和细线与滑轮间的摩擦力均可忽略,整个装置处于平衡状态.若悬挂小滑轮的斜线OP的张力大小是20 3 N,g取10 m/s2,则下列说法中错误的是()图2-2-19A.弹簧的弹力为10 NB.重物A的质量为2 kgC.桌面对B物体的摩擦力为10 3 ND.OP与竖直方向的夹角为60°【解析】O′a与aA两细线拉力的合力与OP线的张力大小相等.由几何=F aA=20 N,且斜线OP与竖直方向的夹角为30°,D错误;重知识可知F O′a物A的重力G A=F aA,所以m A=2 kg,B正确;桌面对B的摩擦力F f=F O′b=F O′cos 30°=10 3 N,C正确;弹簧的弹力F弹=F O′a sin 30°=10 N,故A正确.a【答案】 D二、多项选择题11.如图2-2-20所示,质量为10 kg的物体静止在平面直角坐标系xOy的坐标原点,某时刻只受到F1和F2的作用,且F1=10 N,F2=10 2 N,则物体的加速度()图2-2-20A.方向沿x轴正方向B.方向沿y轴负方向C.大小等于1 m/s2D.大小等于 2 m/s2【解析】将F2沿x轴、y轴正交分解,得F2x=10 N,F2y=10 N,因F2y与F1等大反向,故物体受到沿水平面的合力F合=F2x=10 N,由F合=ma可得,物体加速度的大小为1 m/s2,C正确、D错误;方向沿x轴正方向,B错误、A 正确.【答案】AC12.如图2-2-21所示,晾晒衣服的绳子轻且光滑,悬挂衣服的衣架的挂钩也是光滑的,轻绳两端分别固定在两根竖直杆上的A、B两点,衣服处于静止状态.如果保持绳子A端位置不变,将B端分别移动到不同的位置.下列判断正确的是()图2-2-21A.B端移到B1位置时,绳子张力不变B.B端移到B2位置时,绳子张力变小C.B端在杆上位置不动,将杆移动到虚线位置时,绳子张力变大D.B端在杆上位置不动,将杆移动到虚线位置时,绳子张力变小【解析】设绳子间的夹角为2α,绳子总长为L,两杆间距离为S,由几何关系得:L1sin α+L2sin α=S,得:sin α=SL1+L2=SL.当B端移到B1位置时,S、L都不变,则α也不变,由平衡条件可知,2F cos α=mg,F=mg2cos α,可见,绳子张力F也不变.故A正确,B错误.B端在杆上位置不动,将杆移动到虚线位置时,S减小,L不变,则α减小,cos α增大,则F减小.故C错误,D正确.故选AD.【答案】AD13.如图2-2-22所示,物体G用两根绳子悬挂,开始时绳OA水平,现将两绳同时沿顺时针方向转过90°,且保持两绳之间的夹角α不变(α>90°),物体保持静止状态.在旋转过程中,设绳OA的拉力为T1,绳OB的拉力为T2,则()图2-2-22A.T1先减小后增大B.T1先增大后减小C.T2逐渐减小D.T2最终变为零【解析】以结点O为研究对象,分析受力情况,作出受力图:竖直悬绳的拉力大小等于重力G、绳OA的拉力T1,绳OB的拉力T2,根据平衡条件得知:拉力T1和拉力T2的合力与重力G大小相等、方向相反,如图.作出三个不同位置力的合成图,由图看出,T1先增大后减小,T2逐渐减小,最终减小到零,A错误,BCD正确.【答案】BCD14.在如图2-2-23所示装置中,m1由轻质滑轮悬挂在绳间,两物体质量分别为m1、m2,悬点a、b间的距离远大于滑轮的直径,不计一切摩擦,整个装置处于静止状态,则()图2-2-23A.α一定等于βB.m1一定大于m2C.m1可能等于2m2D.m1可能等于m2【解析】拉滑轮的两个力是同一条绳的张力,因此两力相等,这两力的合力与重力等大反向,作出的平行四边形为菱形,因此合力方向为角平分线,α=β,A正确;对m2由平衡条件F T=m2g,而对滑轮两个拉力F T与m1g是合力与分力的关系,根据互成角度的两个力与合力的关系,即任意一个力大于另外两力之差、小于两力之和,故0<m1<2m2,B、C错,D正确.【答案】AD15.如图2-2-24所示,两根光滑细棒在同一竖直平面内,两棒与水平面成37°角,棒上各穿有一个质量为m的相同小球,两球用轻质弹簧连接,两小球在图中位置处于静止状态,此时弹簧与水平面平行,则下列判断正确的是()图2-2-24A.弹簧处于拉伸状态B.弹簧处于压缩状态C.弹簧的弹力大小为34mgD.弹簧的弹力大小为38mg【解析】若弹簧处于压缩状态,右侧小球受到竖直向下的重力,水平向右的弹簧弹力和垂直细杆斜向左下方的弹力,小球不可能平衡,所以弹簧处于拉伸状态,对左侧小球受力分析如图所示,由平衡条件知F=mg tan 37°=34mg,则A、C对,B、D错.【答案】AC。

2017版高考物理一轮复习:分层限时跟踪练17含解析

2017版高考物理一轮复习:分层限时跟踪练17含解析

分层限时跟踪练(十七).(限时40分钟).一、单项选择题1.(2016·孝感模拟)质量为50 kg的某中学生参加学校运动会立定跳远项目比赛,起跳直至着地过程如简图5-4-12,经实际测量得知上升的最大高度是0.8 m,在最高点的速度为3 m/s,则起跳过程该同学所做功最接近(取g=10. m/s2)().图5-4-12A.225 J B.400 JC.625 J D.850 J【解析】运动员做抛体运动,从起跳到达到最大高度的过程中,竖直方向做加速度为g的匀减速直线运动,则t=2hg=2×0.810s=0.4 s,竖直方向初速度v y=gt=4 m/s,..水平方向做匀速直线运动,则v0=3 m/s,则起跳时的速度v=v20+v2y=32+42m/s=5 m/s.运动员的质量为50 kg,根据动能定理得W=12m v2=625 J,故C正确,A、B、D错误.【答案】 C2.(2014·广东高考)如图5-4-13是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦,在车厢相互撞击使弹簧压缩的过程中()..图5-4-13A.缓冲器的机械能守恒B.摩擦力做功消耗机械能C.垫板的动能全部转化为内能D.弹簧的弹性势能全部转化为动能【解析】本题考查能量转化和守恒定律.由于车厢相互撞击弹簧压缩的过程中存在克服摩擦力做功,所以缓冲器的机械能减少,选项A错误、B正确;弹簧压缩的过程中,垫板的动能转化为内能和弹簧的弹性势能,选项C、D错误.【答案】 B3.如图5-4-14所示,木块B在光滑的水平桌面上,子弹A沿水平方向射入木块并留在木块内,将弹簧压缩到最短.则从子弹开始射入木块到弹簧压缩到最短的过程中()图5-4-14A.A、B与弹簧组成的系统机械能守恒B.A的动能减少量等于B的动能增加量C.A对B做的功等于B的动能增加量D.B对A做的功等于A的动能减少量【解析】A与B之间因摩擦而生热,故A错误;A动能的减少量等于B的动能增加量、弹簧的弹性势能增加量、A与B之间因摩擦而产生的热量三者之和,B错误;A对B做的功和弹簧对B做的功的和等于B动能的变化量,C错误;B对A做的功等于A的动能变化量,D正确.【答案】 D4.起跳摸高是学生经常进行的一项体育活动.一质量为m的同学弯曲两腿向下蹲,然后用力蹬地起跳,从该同学用力蹬地到刚离开地面的起跳过程中,他的重心上升了h,离地时他的速度大小为v.对于起跳过程,下列说法正确的是() A.该同学机械能增加了mghB.该同学机械能增加量为mgh+12m v2C .地面的支持力对该同学做功为mgh +12m v 2D .该同学所受的合外力对其做功为12m v 2+mgh【解析】 该同学从蹬地到刚离开地面过程中,重力势能增加了mgh ,动能增加了12m v 2,故机械能增加了mgh +12m v 2,A 项错,B 项正确;地面对人的支持力的作用点无位移,故对人不做功,C 项错;由动能定理可知,该同学所受合外力对其做功等于其动能的增加量即12m v 2,D 项错.【答案】 B5.(2015·大庆质检)如图5-4-15所示,半径为R 的金属环竖直放置,环上套有一质量为m 的小球,小球开始时静止于最低点.现使小球以初速度v 0=6Rg 沿环上滑,小球运动到环的最高点时与环恰无作用力,则小球从最低点运动到最高点的过程中( )图5-4-15A .小球机械能守恒B .小球在最低点时对金属环的压力是6 mgC .小球在最高点时,重力的功率是mg gRD .小球机械能不守恒,且克服摩擦力所做的功是0.5mgR【解析】 小球运动到环的最高点时与环恰无作用力,设此时的速度为v ,由向心力公式可得mg =m v 2R ;小球从最低点到最高点的过程中,由动能定理可得-W f -2mgR =12m v 2-12m v 20,联立可得W f =12m v 20-12m v 2-2mgR =12mgR ,可见此过程中小球机械能不守恒,克服摩擦力做功为12mgR ,选项D 正确,选项A 错误;小球在最高点时,速度v 的方向和重力的方向垂直,二者间的夹角为90°,功率P =0,选项C 错误;小球在最低点,由向心力公式可得F -mg =m v 20R ,F =mg +m v 20R =7mg ,选项B 错误.【答案】 D二、多项选择题6.(2016·南昌模拟)一升降机在底部装有若干弹簧,如图5-4-16所示,设在某次事故中,升降机吊索在空中断裂,忽略摩擦阻力,则升降机在从弹簧下端触地后直到最低点的一段运动过程中()图5-4-16A.先处于失重状态然后再处于超重状态B.重力功率不断减小C.机械能不断减小D.机械能保持不变【解析】升降机在下落过程中,受到竖直向下的重力和竖直向上的弹簧的弹力作用,且弹力逐渐增大,则升降机先向下加速,后减速,故升降机先处于失重状态然后处于超重状态,选项A正确;升降机的重力功率P=mg v,其先增加后减小,选项B错误;除重力做功外,弹簧的弹力对其做负功,机械能减小,选项C正确,选项D错误.【答案】AC7.山东电视台“快乐向前冲”栏目最后一关,选手需要抓住固定在支架上的绳子向上攀登,才可冲上领奖台,如图5-4-17所示.如果某选手刚刚匀速攀爬到绳子顶端时,突然因抓不住绳子而加速滑下,对该过程进行分析(不考虑脚蹬墙壁的作用),下述说法正确的是()图5-4-17A.上行时,人受到绳子的拉力与重力和摩擦力平衡B.上行时,绳子拉力对人做的功等于人重力势能的增加C.下滑时,人受到的重力大于摩擦力,加速度小于gD.下滑时,重力势能的减小大于动能的增加,机械能的减少量等于克服摩擦力做的功【解析】人匀速上升时,绳子对人的摩擦力等于人的重力,A错误;人上升过程中,人拉绳子,对自身做功,绳子并不对人做功,B错误;人下滑时,由mg-f =ma,可知,F f<mg,a<g,C正确;人下滑时,重力势能的减小量有一部分用于克服摩擦力做功,故其动能的增加量一定小于重力势能的减少量,D正确.【答案】CD8.(2014·海南高考)如图5-4-18所示,质量相同的两物体a、b,用不可伸长的轻绳跨接在同一光滑的轻质定滑轮两侧,a在水平桌面的上方,b在水平粗糙桌面上.初始时用力压住b使a、b静止,撤去此压力后,a开始运动,在a下降的过程中,b 始终未离开桌面.在此过程中()图5-4-18A.a的动能小于b的动能B.两物体机械能的变化量相等C.a的重力势能的减小量等于两物体总动能的增加量D.绳的拉力对a所做的功与对b所做的功的代数和为零【解析】轻绳两端沿绳方向的速度分量大小相等,故可知a的速度等于b的速度沿绳方向的分量,a的动能比b的动能小,A对;因为b与地面有摩擦力,运动时有热量产生,所以该系统机械能减少,而B、C两项均为系统机械能守恒的表现,故B、C错误;轻绳不可伸长,两端分别对a、b做功大小相等,符号相反,D正确.【答案】AD9.如图5-4-19甲所示,倾角为θ的足够长的传送带以恒定的速率v0沿逆时针方向运行.t=0时,将质量m=1 kg的物体(可视为质点)轻放在传送带上,物体相对地面的v -t 图象如图乙所示.设沿传送带向下为正方向,取重力加速度g =10 m/s 2.则( )图5-4-19A .传送带的速率v 0=10 m/sB .传送带的倾角θ=30°C .物体与传送带之间的动摩擦因数μ=0.5D .0~2.0 s 内摩擦力对物体做功W f =-24 J【解析】 由v -t 图象可知,物体在传送带上先以a 1=10 m/s 2的加速度加速运动,再以a 2=2 m/s 2的加速度继续加速;t =1.0 s 时物体获得与传送带相同的速度v 共=v 0=10 m/s ,选项A 正确.由牛顿第二定律得:mg sin θ+μmg cos θ=ma 1① mg sin θ-μmg cos θ=ma 2 ②联立①②得:θ=37°,μ=0.5,选项C 正确,B 错误.0~2.0 s 内摩擦力做功W f =μmg cos 37°·x 1-μmg cos 37°·x 2,由v -t 图象可求,x 1=12×1×10 m =5 m ,x 2=12×(10+12)×1 m =11 m ,解得W f =-24 J ,故选项D 正确.【答案】 ACD三、非选择题10.如图5-4-20所示,质量为m =2 kg 的小物块从斜面顶端A 由静止滑下,从B 点进入光滑水平滑道时无机械能损失,将轻弹簧的一端固定在水平滑道左端C 处的墙上,另一端恰位于水平滑道的中点D .已知斜面的倾角θ=30°,物块与斜面间的动摩擦因数为μ=35,其余各处的摩擦不计,斜面顶端距水平面高度为h =0.5 m ,重力加速度g =10 m/s 2,弹簧处于原长时弹性势能为零.图5-4-20(1)求小物块沿斜面向下滑动时其加速度大小和滑到B点时的速度大小;(2)求轻弹簧压缩到最短时的弹性势能;(3)若小物块能够被弹回到原来的斜面上,则它能够上升的最大高度是多少?【解析】(1)由牛顿第二定律得mg sin θ-μmg cos θ=ma解得a=2 m/s2设斜面长为L,则sin θ=hL,滑到B点时的速度大小为v=2aL=2 m/s.(2)物块从斜面顶端A开始运动到弹簧压缩到最短,由动能定理得mgh-μmg cos θ·hsin θ-E p=0则轻弹簧压缩到最短时的弹性势能E p=mgh-μmg cos θh sin θ解得E p=4 J.(3)物块第一次被弹回时上升的高度最大,设上升的最大高度为H,由动能定理得mg(h-H)-μmg cos θ·hsin θ-μmg cos θ·Hsin θ=0解得H=0.125 m.【答案】(1)2 m/s2 2 m/s(2)4 J(3)0.125 m11.如图5-4-21所示,半径R=1.0 m的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B和圆心O的连线与水平方向间的夹角θ=37°,另一端点C为轨道的最低点.C点右侧的水平路面上紧挨C点放置一木板,木板质量M=1 kg,上表面与C点等高.质量m=1 kg的物块(可视为质点)从空中A点以v0=1.2 m/s的速度水平抛出,恰好从轨道的B端沿切线方向进入轨道.已知物块与木板间的动摩擦因数μ1=0.2,木板与路面间的动摩擦因数μ2=0.05,取g=10 m/s2.(sin 37°=0.6,cos 37°=0.8)试求:图5-4-21(1)物块经过B 端时速度的大小;(2)物块经过轨道上的C 点时对轨道的压力大小;(3)若木板足够长,请问从开始平抛至最终木板、物块都静止,整个过程产生的热量是多少?【解析】 (1)v B =v 0sin θ=2 m/s. (2)物体从B 到C 应用动能定理,有mg (R +R sin θ)=12m v 2C -12m v 2B ,解得v C =6 m/s.在C 点:F -mg =m v 2C R ,解得F =46 N.由牛顿第三定律知物块经过圆弧轨道上的C 点时对轨道的压力为46 N.(3)物块从A 到C 过程中无能量损失,所以整个过程产生的热量就是从C 到最终木板、物块都静止这一过程中产生的热量,应用能量守恒定律得Q =12m v 2C =18 J.【答案】 (1)2 m/s (2)46 N (3)18 J12.如图5-4-22所示,质量为M 的小车静止在光滑水平面上,小车AB 段是半径为R 的四分之一圆弧光滑轨道,BC 段是长为L 的水平粗糙轨道,两段轨道相切于B 点.一质量为m 的滑块在小车上从A 点由静止开始沿轨道滑下,重力加速度为g .图5-4-22(1)若固定小车,求滑块运动过程中对小车的最大压力.(2)若不固定小车,滑块仍从A 点由静止下滑,然后滑入BC 轨道,最后从C 点滑出小车.已知滑块质量m =M 2,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道BC 间的动摩擦因数为μ,求:①滑块运动过程中,小车的最大速度大小v m ;②滑块从B 到C 运动过程中,小车的位移大小s .【解析】 (1)滑块滑到B 点时对小车压力最大,从A 到B 机械能守恒mgR =12m v 2B ①滑块在B 点处,由牛顿第二定律得N -mg =m v 2B R② 解得F N =3mg ③由牛顿第三定律得F N ′=3mg .④(2)①滑块下滑到达B 点时,小车速度最大.由机械能守恒得mgR =12M v 2m +12m (2v m )2 ⑤ 解得v m = gR3 ⑥②设滑块运动到C 点时,小车速度大小为v C ,由功能关系得mgR -μmgL =12M v 2C +12m (2v C )2 ⑦设滑块从B 到C 过程中,小车运动加速度大小为a ,由牛顿第二定律得 μmg =Ma⑧ 由运动学规律得v 2C -v 2m =-2as ⑨解得s =13L . ⑩【答案】 (1)3mg (2)① gR 3 ②13L。

2017届高考一轮总复习课标版物理课时跟踪训练18含答案

2017届高考一轮总复习课标版物理课时跟踪训练18含答案

课时跟踪训练(十八)..一、选择题..1.(2015·商丘模拟)自然现象中蕴藏着许多物理知识,如图所示为一个盛水袋,某人从侧面缓慢推袋壁使它变形,则水的重力势能()A.增大B.变小C.不变D.不能确定..[解析]人对水做正功,则水的机械能增大,由于水的动能仍为0,故重力势能增大,A对...[答案] A2.(2014·广东卷)如图是安装在列车车厢之间的摩擦缓冲器结构图.图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦.在车厢相互撞击使弹簧压缩的过程中()..A.缓冲器的机械能守恒B.摩擦力做功消耗机械能C.垫板的动能全部转化为内能D.弹簧的弹性势能全部转化为动能[解析]在车厢相互撞击使弹簧压缩过程中,由于要克服摩擦力做功,且缓冲器所受合外力做功不为零,因此机械能不守恒,A项错误;克服摩擦力做功消耗机械能,B项正确;撞击以后垫板和车厢有相同的速度,因此动能并不为零,C项错误;压缩弹簧过程弹簧的弹性势能增加,并没有减小,D项错误.[答案] B3.(2016·云南第一次检测)起跳摸高是学生经常进行的一项体育活动.一质量为m的同学弯曲两腿向下蹲,然后用力蹬地起跳,从该同学用力蹬地到刚离开地面的起跳过程中,他的重心上升了h,离地时他的速度大小为v.下列说法正确的是() A.该同学机械能增加了mghB.起跳过程中该同学机械能增量为mgh+12m v2C.地面的支持力对该同学做功为mgh+12m v2D.该同学所受的合外力对其做功为12m v2+mgh[解析]学生重心升高h,重力势能增大了mgh,又知离地时获得动能为12m v2,则机械能增加了mgh+12m v2,A错,B对;人与地面作用过程中,支持力对人做功为零,C错;学生受合外力做功等于动能增量,则W合=12m v2,D错.[答案] B4.(多选)足够长的水平传送带始终以速度v匀速运动.某时刻,一质量为m、速度大小为v,方向与传送带运动方向相反的物体在传送带上运动,最后物体与传送带相对静止.物体在传送带上相对滑动的过程中,滑动摩擦力对物体做的功为W1,传送带克服滑动摩擦力做的功为W2,物体与传送带间摩擦产生的热量为Q,则()A.W1=12m v2B.W1=2m v2C.W2=m v2D.Q=2m v2[解析]设小物体速度由v减到零过程对地位移大小为x,则该过程传送带对地位移为2x,两者相对移动的路程为3x,当小物体速度由零增加到v过程,小物体和传送带对地位移分别为x和2x,两者相对移动的路程为x,因此全过程两者相对移动的路程为4x,摩擦生热Q=4F f x,而F f x=12m v2,所以Q=2m v2.滑动摩擦力对物体做的功W1=12m v2,物体相对传送带滑动的过程中,传送带克服摩擦力做的功W2=4F f x=2m v2,选项A、D正确.[答案]AD5.(2015·潍坊模拟)如右图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,B 、C 在水平线上,其距离d =0.50 m .盆边缘的高度为h =0.30 m .在A 处放一个质量为m 的小物块并让其从静止出发下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停下的位置到B 的距离为( )A .0.50 mB .0.25 mC .0.10 mD .0[解析] 设小物块在盆内水平面上来回运动的总路程为x ,由能量守恒定律可得:mgh =μmgx ,解得x =3.0 m =6d ,故小物块最终停在B 点,D 正确.[答案] D6.(2014·山东卷)2013年我国相继完成“神十”与“天宫”对接、“嫦娥”携“玉兔”落月两大航天工程.某航天爱好者提出“玉兔”回家的设想:如右图,将携带“玉兔”的返回系统由月球表面发射到h 高度的轨道上,与在该轨道绕月球做圆周运动的飞船对接,然后由飞船送“玉兔”返回地球.设“玉兔”质量为m ,月球半径为R ,月面的重力加速度为g 月.以月面为零势能面,“玉兔”在h 高度的引力势能可表示为E p =GMmh R (R +h ),其中G 为引力常量,M 为月球质量.若忽略月球的自转,从开始发射到对接完成需要对“玉兔”做的功为( )A.mg 月R R +h (h +2R ) B.mg 月R R +h (h +2R ) C.mg 月R R +h ⎝ ⎛⎭⎪⎫h +22R D.mg 月R R +h ⎝ ⎛⎭⎪⎫h +12R [解析] 根据题意可知,要使“玉兔”和飞船在距离月球表面高为h 的轨道上对接,若不考虑月球的自转影响,从开始发射到完成对接需要对“玉兔”做的功应为克服月球的万有引力做的功与在该轨道做圆周运动的动能之和,所以W =E p +E k ,E p =GMmh R (R +h ),再根据:GMm (R +h )2=m v 2R +h ,据此可求得需要的动能为:E k =GMm 2(R +h ),再联系:GM =g 月R 2,由以上三式可求得,从开始发射到完成对接需要对“玉兔”做的功应为:W =mg 月R R +h ⎝⎛⎭⎪⎫h +12R ,所以该题正确选项为D. [答案] D7.(2015·黑龙江齐齐哈尔模拟)如图所示,质量相等、材料相同的两个小球A 、B 间用一劲度系数为k 的轻质弹簧相连组成系统,系统穿过一粗糙的水平滑杆,在作用在B 上的水平外力F 的作用下由静止开始运动,一段时间后一起做匀加速运动,当它们的总动能为4E k 时撤去外力F ,最后停止运动.不计空气阻力,认为最大静摩擦力等于滑动摩擦力.则在从撤去外力F 到停止运动的过程中,下列说法正确的是( )A .撤去外力F 的瞬间,弹簧的压缩量为F 2kB .撤去外力F 的瞬间,弹簧的伸长量为F kC .系统克服摩擦力所做的功小于系统机械能的减少量D .A 克服外力所做的总功等于2E k[解析] 撤去F 瞬间,弹簧处于拉伸状态,对系统,在F 作用下一起匀加速运动时,由牛顿第二定律有F -2μmg =2ma ,对A 有kΔx -μmg =ma ,求得拉伸量Δx =F 2k ,则A 、B 两项错误;撤去F 之后,系统运动过程中,克服摩擦力所做的功等于机械能的减少量,则C 错误;对A 利用动能定理W 合=0-E k A ,又有E k A =E k B =2E k ,则知A 克服外力做的总功等于2E k ,则D 项正确.[答案] D8.(2015·山西太原一模)将小球以10 m/s 的初速度从地面竖直向上抛出,取地面为零势能面,小球在上升过程中的动能E k 、重力势能E p 与上升高度h 间的关系分别如图中两直线所示.取g =10 m/s 2,下列说法正确的是( )A .小球的质量为0.2 kgB .小球受到的阻力(不包括重力)大小为0.20 NC .小球动能与重力势能相等时的高度为2013 mD .小球上升到2 m 时,动能与重力势能之差为0.5 J[解析] 在最高点,E p =mgh 得m =0.1 kg ,A 项错误;由除重力以外其他力做功E 其=ΔE 可知:-fh =E 高-E 低,E 为机械能,解得f =0.25 N ,B 项错误;设小球动能和重力势能相等时的高度为H ,此时有mgH =12m v 2,由动能定理:-fH -mgH=12m v 2-12m v 20得H =209m ,故C 项错;当上升h ′=2 m 时,由动能定理,-fh ′-mgh ′=E k2-12m v 20得E k2=2.5 J ,E p2=mgh ′=2 J ,所以动能与重力势能之差为0.5 J ,故D 项正确.[答案] D9.(2016·湖北襄阳调研)如图所示,质量为m 的滑块从斜面底端以平行于斜面的初速度v 0冲上固定斜面,沿斜面上升的最大高度为h .已知斜面倾角为α,斜面与滑块间的动摩擦因数为μ,且μ<tan α,最大静摩擦力等于滑动摩擦力,取斜面底端为零势能面,则能表示滑块,在斜面上运动的机械能E 、动能E k 、势能E p 与上升高度h 之间关系的图象是( )[解析]势能先随高度增加而变大,后随高度减小而变小,上行与下行图线重合为一条第一象限内过原点的倾斜线段,A选项错误;机械能变化参考摩擦力做功,上行和下行过程中摩擦力随高度变化均匀做功,机械能随高度变化均匀减小,应为直线,B选项错误;动能变化参考合外力做功,上行过程的合外力大于下行过程的合外力,且合外力在运动过程中大小恒定,随高度变化均匀做功,应为直线,D选项正确,C选项错误.[答案] D10.(多选)(2015·四川资阳模拟)如图甲所示,足够长的固定光滑细杆与地面成一定夹角,在杆上套有一个光滑小环,沿杆方向给环施加一个拉力F,使环由静止开始运动,已知拉力F及小环速度v随时间t变化的规律如图乙所示,重力加速度g取10 m/s2.则以下判断正确的是()A.小环的质量是1 kgB.细杆与地面间的夹角是30°C.前3 s内拉力F的最大功率是2.5 WD.前3 s内小环机械能的增加量是6.25 J[解析]在第1 s内拉力F1=5 N,加速度a1=0.5 m/s2,在第2 s和第3 s内拉力F2=4.5 N,加速度a2=0,设夹角为α,根据牛顿第二定律,F1-mg sinθ=ma1,F2-mg sinα=ma2,可得m=1 kg,α=arcsin0.45,选项A正确,B错误;前3 s内拉力F的最大功率是P m=F1v m=5 N×0.5 m/s=2.5 W,选项C正确;前3 s内小环机械能的增加量等于拉力F做的功,即ΔE=F1x1+F2x2=5×12×1×0.5 J+4.5×2×0.5 J=5.75 J,选项D错误.[答案]AC二、非选择题11.(2015·山西太原模拟)如图所示,在水平地面上固定一个半径为R的半圆形轨道,其中圆弧部分光滑,水平段长为L,一质量为m的小物块紧靠一根被压缩的固定在水平轨道的最右端的弹簧,小物块与水平轨道间的动摩擦因数为μ,现突然释放小物块,小物块被弹出,恰好能够到达圆弧轨道的最高点A,取g=10 m/s2,且弹簧长度忽略不计,求:(1)小物块的落点距O′的距离;(2)小物块释放前弹簧具有的弹性势能.[解析]设小物块被弹簧弹出时的速度大小为v1,到达圆弧轨道的最低点时速度大小为v2,到达圆弧轨道的最高点时速度大小为v3.(1)因为小物块恰好能到达圆弧轨道的最高点,故向心力刚好由重力提供,有m v23R=mg①小物块由A飞出后做平抛运动,由平抛运动的规律有x=v3t②2R=12gt2③联立①②③解得:x=2R,即小物块的落点距O′的距离为2R.(2)小物块在圆弧轨道上从最低点运动到最高点的过程中,由机械能守恒定律得12m v 22=mg·2R+12m v23④小物块被弹簧弹出至运动到圆弧轨道的最低点的过程,由功能关系得:12m v 21=12m v22+μmgL⑤小物块释放前弹簧具有的弹性势能就等于小物块被弹出时的动能,故有E p =12m v 21⑥由①④⑤⑥联立解得:E p =52mgR +μmgL .[答案] (1)2R (2)52mgR +μmgL12.一质量为M =2 kg 的小物块随足够长的水平传送带一起运动,被一水平向左飞来的子弹击中,子弹从物块中穿过,如下图甲所示,地面观察者记录了小物块被击穿后的速度随时间的变化关系,如图乙所示(图中取向右运动的方向为正方向),已知传送带的速度保持不变,g 取10 m/s 2.(1)指出传送带的速度v 的方向及大小,说明理由.(2)计算物块与传送带间的动摩擦因数.(3)计算物块对传送带总共做了多少功?系统有多少能量转化为内能?[解析] (1)由题图可知,物块被击穿后先向左做匀减速运动,速度为零后,又向右做匀加速运动,当速度等于2 m/s 以后随传送带一起匀速运动,所以传送带的速度方向向右,大小为2 m/s.(2)由题图可知,a =Δv Δt =42 m/s 2=2 m/s 2由牛顿第二定律得,滑动摩擦力F f =Ma ,其中F f =μF N ,F N =Mg ,所以物块与传送带间的动摩擦因数μ=Ma Mg =210=0.2.(3)由题图可知,传送带与物块存在摩擦力的时间只有3 s ,传送带在这段时间内的位移x =v t =2×3 m =6 m所以物块对传送带所做的功为W =-F f x =-4×6 J =-24 J选传送带为参考系,物块相对于传送带向左做匀减速直线运动相对初速度为v ′=6 m/s ,相对传送带通过的路程x ′=v ′2t =62×3 m =9 m ,所以转化为内能E Q =F f x ′=4×9 J =36 J.[答案] (1)2 m/s 方向向右,理由见解析 (2)0.2 (3)-24 J 36 J。

2017版高考物理一轮复习(通用版)分层限时跟踪练16

2017版高考物理一轮复习(通用版)分层限时跟踪练16

分层限时跟踪练(十六)(限时40分钟)一、单项选择题1.关于机械能是否守恒,下列说法正确的是( )A .做匀速直线运动的物体机械能一定守恒B .做匀速圆周运动的物体机械能一定守恒C .做变速运动的物体机械能可能守恒D .合外力对物体做功不为零,机械能一定不守恒【解析】 做匀速直线运动的物体与做匀速圆周运动的物体,如果是在竖直平面内则机械能不守恒,A 、B 错误;合外力做功不为零,机械能可能守恒,D 错误、C 正确.【答案】 C2.如图5-3-9所示,光滑斜面的顶端固定一弹簧,一质量为m 的小球向右滑行,并冲上固定在地面上的斜面.设物体在斜面最低点A 的速度为v ,压缩弹簧至C 点时弹簧最短,C 点距地面的高度为h ,不计小球与弹簧碰撞过程中的能量损失,则小球在C 点时弹簧的弹性势能为( )图5-3-9A .mgh -12m v 2B.12m v 2-mgh C .mgh +12m v 2 D .mgh【解析】 由题意可知,在小球运动过程中,小球与弹簧整体的机械能守恒,由机械能守恒定律可得12m v 2=E p +mgh ,对比各选项可知,答案选B.【答案】 B3.如图5-3-10所示,有一光滑轨道ABC ,AB 部分为半径为R 的14圆弧,BC部分水平,质量均为m 的小球a 、b 固定在竖直轻杆的两端,轻杆长为R ,不计小球大小.开始时a 球处在圆弧上端A 点,由静止释放小球和轻杆,使其沿光滑轨道下滑,则下列说法正确的是( )图5-3-10A .a 球下滑过程中机械能保持不变B .b 球下滑过程中机械能保持不变C .a 、b 球滑到水平轨道上时速度大小为2gRD .从释放a 、b 球到a 、b 球滑到水平轨道上,整个过程中轻杆对a 球做的功为mgR 2【解析】 a 、b 球和轻杆组成的系统机械能守恒,A 、B 错误;由系统机械能守恒有mgR +2mgR =12×2m v 2,解得a 、b 球滑到水平轨道上时速度大小为v =3gR ,C 错误;从释放a 、b 球到a 、b 球滑到水平轨道上,对a 球,由动能定理有W +mgR =12m v 2,解得轻杆对a 球做的功为W =mgR 2,D 正确.【答案】 D4.(2015·唐山模拟)如图5-3-11所示,A 、B 两物体用一根跨过定滑轮的轻绳相连,B 物体置于固定斜面体的光滑斜面上,斜面倾角为30°,当A 、B 两物体静止时处于相同高度.现剪断轻绳后,下列说法中正确的是( )图5-3-11A .A 、B 物体同时着地B .A 、B 物体着地时的动能一定相同C.A、B物体着地时的机械能一定不同D.A、B物体着地时所受重力的功率一定不同【解析】剪断轻绳后,A做自由落体运动,B沿斜面下滑,加速度a<g,且A的位移小于B的位移,由位移公式x=12at2可知,A的时间较短,A项错;开始时,A、B静止,对A、B受力分析,由平衡条件可知m B g sin 30°=m A g,可见m B=2m A,设落地的平面为零势能面,由机械能守恒定律可知,开始时两物体的动能相同,势能不相同,则落地时,势能相同,动能一定不相同,机械能始终不相同,B项错,C项正确;由机械能守恒定律可知,两物体落地时速度大小相同,而重力的功率P A=m A g v,P B=m B g v sin 30°=m A g v,D项错误.【答案】 C5.(2016·无锡模拟)如图5-3-12所示,固定在地面的斜面体上开有凹槽,槽内紧挨放置六个半径均为r的相同小球,各球编号如图.斜面与水平轨道OA平滑连接,OA长度为6r.现将六个小球由静止同时释放,小球离开A点后均做平抛运动,不计一切摩擦.则在各小球运动过程中,下列说法正确的是()图5-3­12A.球1的机械能守恒B.球6在OA段机械能不变C.球6的水平射程最小D.六个球落地点各不相同【解析】当所有球都在斜面上运动时机械能守恒,当有球在水平面上运动时,后面球要对前面的球做功,前面的小球机械能不守恒,选项A错误;球6在OA段由于球5的推力对其做正功,其机械能增大,选项B错误;由于球6离开A点的速度最小,所以其水平射程最小,选项C正确;当1、2、3小球均在OA段时,三球的速度相同,故从A点抛出后,三球落地点也相同,选项D 错误.【答案】 C二、多项选择题6.(2015·舟山模拟)如图5-3-13所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动.小环从最高点A 滑到最低点B 的过程中,小环线速度大小的平方v 2随下落高度h 的变化图象可能是( )图5-3-13【解析】 对小环由机械能守恒定律得mgh =12m v 2-12m v 20,则v 2=2gh +v 20,当v 0=0时,B 正确;当v 0≠0时,A 正确.【答案】 AB7.如图5-3-14所示,在离地面高为H 处以水平速度v 0抛出一质量为m 的小球,经时间t ,小球离水平地面的高度变为h ,此时小球的动能为E k ,重力势能为E p (选水平地面为零势能参考面).下列图象中大致能反映小球动能E k 、势能E p 变化规律的是( )图5-3-14【解析】 由动能定理可知,mg (H -h )=E k -E k0,即E k =E k0+mgH -mgh ,E k ­h 图象为一次函数图象,B 项错;又E k =E k0+12mg 2t 2可知,E k ­t 图象为开口向上的抛物线,A 项正确;由重力势能定义式有E p =mgh ,E p ­h 为正比例函数,所以D 项正确;由平抛运动规律有H -h =12gt 2,所以E p =mg (H -12gt 2),所以E p­t 图象不是直线,C 项错.【答案】 AD8.如图5-3-15所示轨道是由一直轨道和一半圆轨道组成的,一个小滑块从距轨道最低点B 为h 高度的A 处由静止开始运动,滑块质量为m ,不计一切摩擦.则( )图5-3-15A .若滑块能通过圆轨道最高点D ,h 的最小值为2.5RB .若h =2R ,当滑块到达与圆心等高的C 点时,对轨道的压力为3mgC .若h =2R ,滑块会从C 、D 之间的某个位置离开圆轨道做斜抛运动D .若要使滑块能返回到A 点,则h ≤R【解析】 要使滑块能通过最高点D ,则应满足mg =m v 2R ,可得v =gR ,即若在最高点D 时滑块的速度小于gR ,滑块无法达到最高点;若滑块速度大于等于gR ,则可以通过最高点做平抛运动.由机械能守恒定律可知,mg (h -2R )=12m v 2,解得h =2.5R ,A 正确;若h =2R ,由A 至C 过程由机械能守恒可得mg (2R -R )=12m v 2C ,在C 点,由牛顿第二定律有F N =m v 2C R ,解得F N =2mg ,由牛顿第三定律可知B 错误;h =2R 时小滑块不能通过D 点,将在C 、D 之间某一位置离开圆轨道做斜上抛运动,故C 正确;由机械能守恒可知D 正确.【答案】 ACD9.(2016·廊坊模拟)如图5-3-16所示,半径为R 的光滑细圆环轨道被固定在竖直平面上,轨道正上方和正下方分别有质量为2m 和m 的静止小球A 、B ,它们由长为2R 的轻杆固定连接,圆环轨道内壁开有环形小槽,可使细杆无摩擦、无障碍地绕其中心点转动.今对上方小球A 施加微小扰动,两球开始运动后,下列说法正确的是( )图5-3-16A .轻杆转到水平位置时两球的加速度大小相等B .轻杆转到竖直位置时两球的加速度大小不相等C .运动过程中A 球速度的最大值为4gR3D .当A 球运动到最低点时,两小球对轨道作用力的合力大小为133mg【解析】 两球做圆周运动,在任意位置角速度相等,则线速度和向心加速度大小相等,选项A 正确,B 错误;A 、B 球组成的系统机械能守恒,当系统重力势能最小(即A 在最低点)时,线速度最大,则mg ·2R =12·3m v 2,最大速度v =4gR3,选项C 正确;A 在最低点时,分别对A 、B 受力分析,F N A -2mg =2m v 2R ,F N B +mg =m v 2R ,则F N A -F N B =13mg 3,选项D 正确.【答案】 ACD三、非选择题10.(2015·泉州模拟)如图5-3-17是检验某种平板承受冲击能力的装置,MN为半径R =0.8 m 、固定于竖直平面内的14光滑圆弧轨道,轨道上端切线水平,O为圆心,OP 为待检验平板,M 、O 、P 三点在同一水平线上,M 的下端与轨道相切处放置竖直向上的弹簧枪,可发射速度不同但质量均为m =0.01 kg 的小钢珠,小钢珠每次都在M 点离开弹簧枪.某次发射的小钢珠沿轨道经过N 点时恰好与轨道无作用力,水平飞出后落到P 上的Q 点,不计空气阻力,取g =10 m/s 2.求:图5-3-17(1)小钢珠经过N 点时速度的大小v N ;(2)小钢珠离开弹簧枪时的动能E k ;(3)小钢珠在平板上的落点Q 与圆心O 点的距离s .【解析】 (1)在N 点,由牛顿第二定律有mg =m v 2N R ,解得v N =gR =2 2 m/s.(2)从M 到N 由功能关系有E k =mgR +12m v 2N ,解得E k =0.12 J.(3)小钢珠从N 到Q 做平抛运动,设运动时间为t ,水平方向有s =v N t ,竖直方向有R =12gt 2,解得s =425 m.【答案】 (1)2 2 m/s (2)0.12 J (3)425 m11.(2015·邵阳模拟)半径R =0.50 m 的光滑圆环固定在竖直平面内,轻质弹簧的一端固定在环的最高点A 处,另一端系一个质量m =0.20 kg 的小球,小球套在圆环上,已知弹簧的原长为L 0=0.50 m ,劲度系数k =4.8 N/m.将小球从如图5-3-18所示的位置由静止开始释放,小球将沿圆环滑动并通过最低点C ,在C 点时弹簧的弹性势能E p C =0.6 J .(g 取10 m/s 2),求:图5-3-18(1)小球经过C 点时的速度v C 的大小;(2)小球经过C 点时对环的作用力的大小和方向.【解析】 由题图知初始时刻弹簧处于原长.(1)小球从B 到C ,根据机械能守恒定律有mg (R +R cos 60°)=E p C +12m v 2C代入数据求出v C =3 m/s.(2)小球经过C 点时受到三个力作用,即重力G 、弹簧弹力F 、环的作用力F N ,设环对小球的作用力方向向上,根据牛顿第二定律有F +F N -mg =m v 2C RF =kxx =R所以F N =m v 2C R +mg -FF N =3.2 N ,方向竖直向上根据牛顿第三定律得出,小球对环的作用力大小为3.2 N ,方向竖直向下.【答案】 (1)3 m/s (2)3.2 N ,方向竖直向下12.如图5-3-19所示,在同一竖直平面内,一轻质弹簧一端固定,另一自由端恰好与水平线AB 平齐,静止放于倾角为53°的光滑斜面上.一长为L =9 cm 的轻质细绳一端固定在O 点,另一端系一质量为m =1 kg 的小球,将细绳拉至水平,使小球从位置C 由静止释放,小球到达最低点D 时,细绳刚好被拉断.之后小球在运动过程中恰好沿斜面方向将弹簧压缩,最大压缩量为x =5 cm.(取g =10 m/s 2,sin 53°=0.8,cos 53°=0.6)求:图5-3-19(1)细绳受到的拉力的最大值;(2)D 点到水平线AB 的高度h ;(3)弹簧所获得的最大弹性势能E p .【解析】 (1)小球由C 到D ,由机械能守恒定律得:mgL =12m v 21,解得v 1=2gL ①在D点,由牛顿第二定律得F-mg=m v21L②由①②解得F=30 N由牛顿第三定律知细绳所能承受的最大拉力为30 N.(2)由D到A,小球做平抛运动v2y=2gh ③tan 53°=v yv1④联立解得h=16 cm.(3)小球从C点到将弹簧压缩至最短的过程中,小球与弹簧系统的机械能守恒,即E p=mg(L+h+x sin 53°),代入数据解得:E p=2.9 J.【答案】(1)30 N(2)16 cm(3)2.9 J。

2017版高考物理一轮复习(通用版)分层限时跟踪练27含解析

2017版高考物理一轮复习(通用版)分层限时跟踪练27含解析

分层限时跟踪练(二十七)(限时40分钟)一、单项选择题1.新一代炊具——电磁炉,无烟、无明火、无污染、不产生有害气体、无微波辐射、高效节能等是电磁炉的优势所在.电磁炉是利用电流通过线圈产生磁场,当磁场的磁感线通过含铁质锅底部时,即会产生无数小涡流,使锅体本身自行高速发热,然后再加热锅内食物.下列相关说法中正确的是( )A .锅体中的涡流是由恒定的磁场产生的B .恒定磁场越强,电磁炉的加热效果越好C .锅体中的涡流是由变化的磁场产生的D .提高磁场变化的频率,对电磁炉的加热效果无影响【解析】 由电磁感应原理可知,锅体中的涡流是由变化的磁场产生的,提高磁场变化的频率,产生的感应电动势变大,可提高电磁炉的加热效果,C 正确.【答案】 C2.粗细均匀的导线绕成匝数为n 、半径为r 的圆形闭合线圈.线圈放在磁场中,磁场的磁感应强度随时间均匀增大,线圈中产生的电流为I ,下列说法正确的是( )图9-2-11A .电流I 与匝数n 成正比B .电流I 与线圈半径r 成反比C .电流I 与线圈面积S 成反比D .电流I 与导线横截面积S 0成正比【解析】 由题给条件可知感应电动势为E =n πr 2ΔB Δt ,电阻为R =ρn 2πr S 0,电流I=ER,联立以上各式得I=S0r2ρ·ΔBΔt,则可知D项正确,A、B、C项错误.【答案】D3.如图9-2-12所示,电路中A、B是两个完全相同的灯泡,L是一个自感系数很大、电阻可忽略的自感线圈,C是电容很大的电容器.当S闭合与断开时.A、B灯泡的发光情况是()图9-2-12A.S刚闭合后,A亮一下又逐渐熄灭,B逐渐变亮B.S刚闭合后,B亮一下又逐渐变暗,A逐惭变亮C.S闭合足够长时间后,A和B一样亮D.S闭合足够长时间后,A、B都熄灭【解析】S刚闭合后,A、B都变亮,且A比B亮,之后A逐渐熄灭,B 逐渐变亮,选项A正确、B错误.S闭合足够长时间后,A熄灭,B一直都是亮的,选项C、D错误.【答案】A4.如图9-2-13所示,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨上以速度v向右匀速滑动,MN中产生的感应电动势为E1;若磁感应强度增大为2B,其他条件不变,MN中产生的感应电动势变为E2,则通过电阻R的电流方向及E1∶E2分别为()图9-2-13A.c→a,2∶1 B.a→c,2∶1C.a→c,1∶2 D.c→a,1∶2【解析】用右手定则判断出两次滑动中金属棒MN中的电流方向均为N →M ,所以电阻R 中的电流方向为a →c .由感应电动势公式E =Bl v 可知:E 1E 2=Bl v 2Bl v =12,故选项C 正确.【答案】 C5.(2015·衡阳模拟)A 、B 两闭合圆形导线环用相同规格的导线制成,它们的半径之比r A ∶r B =2∶1,在两导线环包围的空间内存在一正方形边界的匀强磁场区域,磁场方向垂直于两导线环的平面,如图9-2-14所示.当磁场的磁感应强度随时间均匀增大的过程中,流过两导线环的感应电流大小之比为( )图9-2-14A.I A I B =1B.I A I B=2 C.I A I B =14 D.I A I B=12 【解析】 匀强磁场的磁感应强度随时间均匀变化,设t 时刻的磁感应强度为B t ,则B t =B 0+kt ,其中B 0为t =0时的磁感应强度,k 为一常数,A 、B 两导线环的半径不同,它们所包围的面积不同,但任一时刻穿过它们的磁通量均为穿过磁场所在区域面积上的磁通量,设磁场区域的面积为S ,则Φt =B t ·S ,即在任一时刻穿过两导线环包围面上的磁通量是相等的,所以两导线环上的磁通量变化率是相等的.E =ΔΦΔt =ΔB Δt·S (S 为磁场区域面积).对A 、B 两导线环,由于ΔB Δt 及S 均相同,得E A E B =1,I =E R ,R =ρl S 1(S 1为导线的横截面积).l =2πr ,所以I A I B =E A r B E B r A ,代入数值得I A I B =r B r A=12. 【答案】 D二、多项选择题6.将一条形磁铁从相同位置插入到闭合线圈中的同一位置,第一次缓慢插入,第二次快速插入,两次插入过程中不发生变化的物理量是( )A .磁通量的变化量B .磁通量的变化率C .感应电流的大小D .流过导体某横截面的电荷量【解析】 将一条形磁铁从相同位置插入到闭合线圈中的同一位置,第一次缓慢插入线圈时,磁通量增加慢,第二次迅速插入线圈时,磁通量增加快,但磁通量变化量相同,A 正确;根据法拉第电磁感应定律第二次线圈中产生的感应电动势大,则磁通量变化率也大,B 错误;根据欧姆定律可知第二次感应电流大,即I 2>I 1,C 错误;流过导体某横截面的电荷量q =I Δt =E R Δt =ΔΦΔt R Δt =ΔΦR ,由于磁通量变化量相同,电阻不变,所以通过导体横截面的电荷量不变,D 正确.【答案】 AD7.如图9-2-15所示,先后以速度v 1和v 2匀速把一矩形线圈拉出有界匀强磁场区域,v 1=2v 2,在先后两种情况下()图9-2-15A .线圈中的感应电流之比I 1∶I 2=2∶1B .线圈中的感应电流之比I 1∶I 2=1∶2C .线圈中产生的焦耳热之比Q 1∶Q 2=4∶1D .通过线圈某截面的电荷量之比q 1∶q 2=1∶1【解析】 由于v 1=2v 2,根据E =BL v 得感应电动势之比E 1E 2=21,感应电流I =E R ,则感应电流之比为I 1I 2=21,A 正确,B 错误;线圈出磁场所用的时间t =L ′v 则时间比为t 1t 2=12,根据Q =I 2Rt 可知热量之比为Q 1Q 2=21,C 错误;根据q =I Δt =E R Δt =ΔΦΔt R Δt =ΔΦR 得q 1q 2=11,D 正确.【答案】AD8.(2014·山东高考)如图9-2-16所示,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好.在向右匀速通过M、N两区的过程中,导体棒所受安培力分别用F M、F N表示.不计轨道电阻.以下叙述正确的是()图9-2-16A.F M向右B.F N向左C.F M逐渐增大D.F N逐渐减小【解析】根据直线电流产生磁场的分布情况知,M区的磁场方向垂直纸面向外,N区的磁场方向垂直纸面向里,离导线越远,磁感应强度越小.当导体棒匀速通过M、N两区时,感应电流的效果总是阻碍引起感应电流的原因,故导体棒在M、N两区运动时,受到的安培力均向左,故选项A错误,选项B正确;导体棒在M区运动时,磁感应强度B变大,根据E=Bl v,I=ER及F=BIl可知,F M逐渐变大,故选项C正确;导体棒在N区运动时,磁感应强度B变小,根据E=Bl v,I=ER及F=BIl可知,F N逐渐变小,故选项D正确.【答案】BCD9.如图9-2-17所示,两根等高光滑的14圆弧轨道,半径为r、间距为L,轨道电阻不计.在轨道顶端连有一阻值为R的电阻,整个装置处在一竖直向上的匀强磁场中,磁感应强度为B.现有一根长度稍大于L、电阻不计的金属棒从轨道最低位置cd开始,在拉力作用下以初速度v0向右沿轨道做匀速圆周运动至ab 处,则该过程中()图9-2-17 A.通过R的电流方向由外向内B.通过R的电流方向由内向外C.R上产生的热量为πrB2L2v04RD.通过R的电荷量为πBLr 2R【解析】cd棒运动至ab处的过程中,闭合回路中的磁通量减小,再由楞次定律及安培定则可知,回路中电流方向为逆时针方向(从上向下看),则通过R的电流为由外向内,故A对,B错.通过R的电荷量为q=ΔΦR=BrLR,D错.R上产生的热量为Q=U2R t=(BL v0/2)2R·πr2v0=πrB2L2v04R,C对.【答案】AC三、非选择题10. (2015·江苏高考)做磁共振(MRI)检查时,对人体施加的磁场发生变化时会在肌肉组织中产生感应电流.某同学为了估算该感应电流对肌肉组织的影响,将包裹在骨骼上的一圈肌肉组织等效成单匝线圈,线圈的半径r=5.0 cm,线圈导线的截面积A=0.80 cm2,电阻率ρ=1.5 Ω·m.如图9-2-18所示,匀强磁场方向与线圈平面垂直,若磁感应强度B在0.3 s内从1.5 T均匀地减为零,求:(计算结果保留一位有效数字)图9-2-18(1)该圈肌肉组织的电阻R;(2)该圈肌肉组织中的感应电动势E;(3)0.3 s内该圈肌肉组织中产生的热量Q.【解析】(1)由电阻定律得R=ρ2πr A代入数据得R≈6×103Ω.(2)感应电动势E=ΔB·πr2Δt代入数据得E≈4×10-2 V.(3)由焦耳定律得Q=E2RΔt代入数据得Q=8×10-8 J.【答案】(1)6×103Ω(2)4×10-2 V(3)8×10-8 J11.(2015·北京高考改编)如图9-2-19所示,足够长的平行光滑金属导轨水平放置,宽度L=0.4 m,一端连接R=1 Ω的电阻,导轨所在空间存在竖直向下的匀强磁场,磁感应强度B=1 T.导体棒MN放在导轨上,其长度恰好等于导轨间距,与导轨接触良好.导轨和导体棒的电阻均可忽略不计.在平行于导轨的拉力F作用下,导体棒沿导轨向右匀速运动,速度v=5 m/s.求:图9-2-19(1)求感应电动势E和感应电流I;(2)求在0.1 s时间内,拉力的大小;(3)若将MN换为电阻r=1 Ω的导体棒,其他条件不变,求导体棒两端的电压U.【解析】(1)由法拉第电磁感应定律可得,感应电动势E=BL v=1×0.4×5 V=2 V,感应电流I=ER=21A=2 A.(2)拉力大小等于安培力大小F=BIL=1×2×0.4 N=0.8 N,(3)由闭合电路欧姆定律可得,电路中电流I′=ER+r=22A=1 A,由欧姆定律可得,导体棒两端的电压U=I′R=1 V.【答案】 (1)2 V 2 A (2)0.8 N (3)1 V12.(2015·万州模拟)如图9-2-20甲所示,光滑导轨宽0.4 m ,ab 为金属棒,均匀变化的磁场垂直穿过轨道平面,磁场的变化情况如图乙所示,金属棒ab 的电阻为1 Ω,导轨电阻不计.t =0时刻,ab 棒从导轨最左端,以v =1 m/s 的速度向右匀速运动,求1 s 末回路中的感应电流及金属棒ab 受到的安培力.图9-2-20【解析】 Φ的变化有两个原因,一是B 的变化,二是面积S 的变化,显然这两个因素都应当考虑在内,所以有E =ΔΦΔt =ΔB ΔtS +Bl v 又ΔB Δt =2 T/s , 在1 s 末,B =2 T ,S =l v t =0.4×1×1 m 2=0.4 m 2所以1 s 末,E =ΔB ΔtS +Bl v =1.6 V , 此时回路中的电流I =E R =1.6 A根据楞次定律与右手定则可判断出电流方向为逆时针方向,金属棒ab 受到的安培力为F =BIl =2×1.6×0.4 N =1.28 N ,方向向左.【答案】 1.6 A 1.28 N ,方向向左。

2017版高考物理一轮复习(通用版)分层限时跟踪练26含解析

2017版高考物理一轮复习(通用版)分层限时跟踪练26含解析

分层限时跟踪练(二十六)(限时40分钟)一、单项选择题1.物理课上,老师做了一个奇妙的“跳环实验”.如图9-1-10所示,她把一个带铁芯的线圈L、开关S和电源用导线连接起来后,将一金属套环置于线圈L上,且使铁芯穿过套环.闭合开关S的瞬间,套环立刻跳起.某同学另找来器材再探究此实验.他连接好电路,经重复试验,线圈上的套环均未动.对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是()图9-1-10A.线圈接在了直流电源上B.电源电压过高C.所选线圈的匝数过多D.所用套环的材料与老师的不同【解析】金属套环跳起的原因是开关S闭合时,套环上产生感应电流与通电螺线管上的电流相互作用而引起的.线圈接在直流电源上,S闭合时,金属套环也会跳起.电压越高,线圈匝数越多,S闭合时,金属套环跳起越剧烈.若套环是非导体材料,则套环不会跳起.故选项A、B、C错误,选项D正确.【答案】D2.(2016·成都检测)法拉第在同一软铁环上绕两个线圈,一个与电池相连,另一个与电流计相连,则()A.接通电池后,电流计指针一直保持偏转B.接通电池时,电流计指针没有偏转C.接通电池后再断开时,电流计指针没有偏转D.接通电池时,电流计指针偏转,但不久又回复到零【解析】接通电池的瞬间穿过线圈的磁通量变化,产生感应电流,电流计指针偏转,过一段时间后磁通量不发生变化,没有感应电流,电流计指针不偏转,选项A、B错误,D正确;接通电池后再断开时的瞬间,穿过线圈的磁通量发生变化,产生感应电流,电流计指针偏转,选项C错误.【答案】D3.如图9-1-11所示,在水平光滑桌面上,两相同的矩形刚性小线圈分别叠放在固定的绝缘矩形金属框的左右两边上,且每个小线圈都各有一半面积在金属框内,在金属框接通逆时针方向电流的瞬间()图9-1-11A.两小线圈会有相互靠拢的趋势B.两小线圈会有相互远离的趋势C.两小线圈中感应电流都沿逆针方向D.左边小线圈中感应电流沿顺时针方向,右边小线圈中感应电流沿逆时针方向【解析】接通电流瞬间,通过线圈的磁通量都增大,根据楞决定律,易知感应电流都沿顺时针方向.【答案】B4.(2015·汕头检测)如图9-1-12所示,两个同心圆线圈a、b在同一平面内,半径R a<R b,一条形磁铁穿过圆心垂直于圆面,穿过两个线圈的磁通量分别为Φa和Φb,则()图9-1-12A.Φa>Φb B.Φa=Φb C.Φa<Φb D.无法确定【解析】磁通量是指穿过平面的磁感线的净条数;因为每条磁感线都穿过磁体内部,故可知A项正确.【答案】A5.如图9-1-13所示,正方形闭合导线框处在磁感应强度恒定的匀强磁场中,C、E、D、F为线框中的四个顶点,图甲中的线框绕E点转动,图乙中的线框向右平动,磁场足够大.下列判断正确的是()图9-1-13A.图甲线框中有感应电流产生,C点电势比D点低B.图甲线框中无感应电流产生,C、D两点电势相等C.图乙线框中有感应电流产生,C点电势比D点低D.图乙线框中无感应电流产生,C、D两点电势相等【解析】线框绕E点转动和向右平动,都没有磁通量的变化,无感应电流产生,由右手定则可知,图甲线框中C,D两点电势相等,则A项错,B项对;图乙线框中C点电势比D点高,则C、D两项都错.【答案】B二、多项选择题6.(2016·天津模拟)如图9-1-14所示,圆环形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成如图所示的电路.若将滑动变阻器的滑片P向下滑动,下列表述正确的是()图9-1-14A.线圈a中将产生俯视顺时针方向的感应电流B.穿过线圈a的磁通量变大C.线圈a有扩张的趋势D.线圈a对水平桌面的压力F N将增大【解析】若将滑动变阻器的滑片P向下滑动,螺线管b中的电流增大,根据楞次定律,线圈a中将产生俯视逆时针方向的感应电流,穿过线圈a的磁通量变大,线圈a有缩小的趋势,线圈a对水平桌面的压力F N将变大,B、D项正确.【答案】BD7.(2015·全国卷Ⅰ)1824年,法国科学家阿拉果完成了著名的“圆盘实验”,实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图9-1-15所示.实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是()图9-1-15A.圆盘上产生了感应电动势B.圆盘内的涡电流产生的磁场导致磁针转动C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动【解析】当圆盘转动时,圆盘的半径切割磁针产生的磁场的磁感线,产生感应电动势,选项A正确;如图所示,铜圆盘上存在许多小的闭合回路,当圆盘转动时,穿过小的闭合回路的磁通量发生变化,回路中产生感应电流,根据楞次定律,感应电流阻碍其相对运动,但抗拒不了相对运动,故磁针会随圆盘一起转动,但略有滞后,选项B正确;在圆盘转动过程中,磁针的磁场穿过整个圆盘的磁通量始终为零,选项C错误;圆盘中的自由电子随圆盘一起运动形成的电流的磁场方向沿圆盘轴线方向,会使磁针沿轴线方向偏转,选项D错误.【答案】AB8.如图9-1-16所示,金属导轨上的导体棒ab在匀强磁场中沿导轨做下列哪种运动时,铜制线圈c中将有感应电流产生且被螺线管吸引()图9-1-16A.向右做匀速运动B.向左做减速运C.向右做减速运动D.向右做加速运【解析】当导体棒向右匀速运动时产生恒定的电流,线圈中的磁通量恒定不变,无感应电流出现,A错;当导体棒向左做减速运动时,由右手定则可判定回路中出现从b→a的感应电流且减小,由安培定则知螺线管中感应电流的磁场向左在减弱,由楞次定律知c中出现顺时针方向的感应电流(从右向左看)且被螺线管吸引,B对;同理可判定C对,D错.【答案】BC9.如图9-1-17所示,一个闭合三角形导线框ABC位于竖直平面内,其下方(略靠前)固定—根与导线框平面平行的水平直导线,导线中通以图示方向的恒定电流.释放导线框,它由实线位置下落到虚线位置未发生转动,在此过程中()图9-1-17A.导线框中感应电流的方向依次为ACBA→ABCA→ACBAB.导线框的磁通量为零时,感应电流却不为零C.导线框所受安培力的合力方向依次为向上→向下→向上D.导线框所受安培力的合力为零,做自由落体运动【解析】根据安培定则可知导线上方的磁场方向垂直于纸面向外,下方的磁场方向垂直于纸面向里,而且越靠近导线磁场越强,所以闭合导线框ABC在下降过程中,导线框内垂直于纸面向外的磁通量先增大,当增大到BC边与导线重合时,达到最大,再向下运动,导线框内垂直于纸面向外的磁通量逐渐减小至零,然后随导线框的下降,导线框内垂直于纸面向里的磁通量增大,达到最大后,继续下降时由于导线框逐渐远离导线,使导线框内垂直于纸面向里的磁通量再逐渐减小,根据楞次定律可知,感应电流的磁场总是阻碍内部磁通量的变化,所以感应电流的磁场先向内,再向外,最后向内,所以导线框中感应电流的方向依次为ACBA→ABCA→ACBA,A正确;当导线框内的磁通量为零时,磁通量仍然在变化,磁通量的变化率不为零,有感应电动势产生,所以感应电流不为零,B正确;根据对愣次定律的理解,感应电流的效果总是阻碍导体间的相对运动,由于导线框一直向下运动,所以导线框所受安培力的合力方向一直向上.不为零,C、D错误.【答案】AB三、非选择题10.为判断线圈绕向,可将灵敏电流计G与线圈L连接,如图9-1-18所示.已知线圈由a端开始绕至b端;当电流从电流计G左端流入时,指针向左偏转.图9-1-18(1)将磁铁N极向下从线圈上方竖直插入L时,发现指针向左偏转.俯视线圈,其绕向为(填“顺时针”或“逆时针”).(2)当条形磁铁从图中虚线位置向右远离L时,指针向右偏转.俯视线圈,其绕向为(填“顺时针”或“逆时针”).【解析】(1)将磁铁N极向下插入L时,根据楞次定律L的上方应为N极.由电流计指针向左偏转,可确定L中电流由b端流入,根据安培定则,俯视线圈,电流为逆时针,线圈绕向为顺时针.(2)将磁铁远离L,由楞次定律,线圈L上方仍为N 极,由于此时电流计指针向右偏转,可确定L 中电流由a 端流入.根据安培定则,俯视线圈,电流为逆时针,线圈绕向也为逆时针.【答案】 (1)顺时针 (2)逆时针11.磁感应强度为B 的匀强磁场仅存在于边长为2l 的正方形范围内,有一个电阻为R 、边长为l 的正方形导线框abcd ,沿垂直于磁感线方向,以速度v 匀速通过磁场,如图9-1-19所示,从ab 进入磁场时开始计时,到线框离开磁场为止.图9-1-19(1)画出穿过线框的磁通量随时间变化的图象;(2)判断线框中有无感应电流.若有,说明感应电流的方向.【解析】 (1)当ab 边进入磁场时,穿过线框的磁通量均匀增加,在t 1=l v 时线框全部进入磁场,磁通量Φ=Bl 2不变化;当在t 2=2l v 时,ab 边离开磁场,穿过线框的磁通量均匀减少到零,所以该过程的Φ-t 图象如图所示.(2)ab 边进入磁场时有感应电流,根据右手定则可判知感应电流方向为逆时针;ab 边离开磁场时有感应电流,根据右手定则可判知感应电流方向为顺时针;中间过程t 1~t 2磁通量不变化,没有感应电流.【答案】 见解析12.如图9-1-20所示,固定于水平面上的金属架CDEF 处在竖直向下的匀强磁场中,金属棒MN 沿框架以速度v 向右做匀速运动.t =0时,磁感应强度为B 0,此时MN 到达的位置使MDEN 构成一个边长为l 的正方形.为使MN 棒中不产生感应电流,从t =0开始,磁感应强度B 应怎样随时间t 变化?请推导出这种情况下B 与t 的关系式.图9-1-20【解析】要使MN棒中不产生感应电流,应使穿过线圈平面的磁通量不发生变化在t=0时刻,穿过线圈平面的磁通量Φ1=B0S=B0l2设t时刻的磁感应强度为B,此时磁通量为Φ2=Bl(l+v t)由Φ1=Φ2得B=B0ll+v t.【答案】B=B0l l+v t。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分层限时跟踪练(十八..)..(限时40分钟)..一、单项选择题..1.摩擦可以产生静电,原来甲、乙、丙三物体都不带电,今使甲、乙两物体相互摩擦后,乙物体再与丙物体接触,最后,得知甲物体带正电1.6×10-15 C,丙物体带电8×10-16 C.则对于最后乙、丙两物体的带电情况,下列说法中正确的是() A.乙物体一定带有负电荷8×10-16 C.B.乙物体可能带有负电荷2.4×10-15 CC.丙物体一定带有正电荷8×10-16 CD.丙物体一定带有负电荷2.4×10-15 C【解析】由于甲、乙、丙原来都不带电,即都没有净电荷;甲、乙摩擦导致甲失去电子1.6×10-15 C而带正电,乙物体得到电子而.带1.6×10-15 C的负电荷;乙物体与不带电的丙物体接触,从而使一部分负电荷转移到丙物体上,故可知乙、丙两物体都带负电荷,由电荷守恒定律可知,乙最终所带负电荷为1.6×10-15 C-8×10-16 C=8×10-16 C.选项B、C、D错误,选项A正确.【答案】 A2.(2015·浙江高考)如图6-1-14所示为静电力演示仪,两金属极板分别固定于绝缘支架上,且正对平行放置.工作时两板分别接高压直流电源的正负极,表面镀铝的乒乓球用绝缘细线悬挂在两金属极板中间,则()图6-1-14A.乒乓球的左侧感应出负电荷B.乒乓球受到扰动后,会被吸在左极板上C.乒乓球共受到电场力、重力和库仑力三个力的作用D .用绝缘棒将乒乓球拨到与右极板接触,放开后乒乓球会在两极板间来回碰撞【解析】 两极板间电场由正极板指向负极板,镀铝乒乓球内电子向正极板一侧聚集,故乒乓球的右侧感应出负电荷,选项A 错误;乒乓球受到重力、细线拉力和电场力三个力的作用,选项C 错误;乒乓球与任一金属极板接触后会带上与这一金属极板同种性质的电荷,而相互排斥,不会吸在金属极板上,到达另一侧接触另一金属极板时也会发生同样的现象,所以乒乓球会在两极板间来回碰撞,选项B 错误、D 正确.【答案】 D3.下列选项中的各绝缘直杆大小相同,所带电荷量已在图中标出,且电荷均匀分布,各直杆间彼此绝缘.坐标原点O 处电场强度最大的是( )【解析】 设带电荷量为q 的直杆在原点O 处产生的场强大小为E ,则题中A 图场强大小为E ,根据场强的合成满足平行四边形定则,B 图场强大小为2E ,C 图场强大小为E ,D 图场强大小为零,选B.【答案】 B4.均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场.如图6-1-15所示,在半球面AB 上均匀分布着正电荷,半球面总电荷量为q ,球面半径为R ,CD 为通过半球顶点与球心O 的轴线,在轴线上有M 、N 两点,OM =ON =2R .已知M 点的场强大小为E ,则N 点的场强大小为( )图6-1-15A.kq 2R 2B .kq 2R 2-E C.kq 4R 2-E D .kq 4R 2+E【解析】 假设将带电荷量为2q 的球面放在O 处,均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场.则在M 、N 点所产生的电场为E=k ·2q (2R )2=kq 2R 2,由题知当半球面如题图所示在M 点产生的场强为E ,则N 点的场强为E ′=kq 2R 2-E ,选项B 正确.【答案】 B5.(2016·东营检测)如图6-1-16所示,点电荷q 1、q 2、q 3处于同一条直线上,q 2与q 3的距离是q 1与q 2距离的2倍,每个电荷所受静电力的合力均为零,由此可以判定,三个电荷的电荷量q 1∶q 2∶q 3之比为( )图6-1-16A .(-9)∶4∶(-36)B .9∶4∶36C .(-3)∶2∶6D .3∶2∶6【解析】 若q 2为负电荷,假设q 1带负电,要使q 2平衡,则q 3也应带负电,但此时q 1、q 3因都受斥力而不平衡,故q 1带正电,同理分析q 3带正电.也可能足q 1、q 3带负电,q 2带正电.由于三个电荷均处于平衡状态,所以对q 1有k |q 1q 2|l 21=k |q 1q 3|(l 1+l 2)2 ① 对q 2有k |q 1q 2|l 21=k |q 3q 2|l 22 ②有q 3有k |q 1q 3|(l 1+l 2)2=k |q 3q 2|l 22③ 联立①②③可解得|q 1|∶|q 2|∶|q 3|=(l 1+l 2l 2)2∶1∶(l 1+l 2l 1)2. 根据题意可知l 2=2l 1,所以|q 1|∶|q 2|∶|q 3|=94∶1∶9=9∶4∶36. 由于q 1、q 3是同种电荷,故q 1∶q 2∶q 3=(-9)∶4∶(-36)或q 1∶q 2∶q 3=9∶(-4)∶36,故A 正确,B 、C 、D 错误.【答案】 A二、多项选择题6.用电场线能很直观、很方便地比较电场中各点处场强的强弱.如图6-1-17甲是等量异种点电荷形成电场的电场线,图乙是场中的一些点:O 是电荷连线的中点,E、F是连线中垂线上关于O对称的两点,B、C和A、D也关于O对称.则()甲乙图6-1-17A.B、C两点场强大小和方向都相同B.A、D两点场强大小相等,方向相反C.E、O、F三点比较,O的场强最强D.B、O、C三点比较,O点场强最弱【解析】由对称性可知,B、C两点场强大小和方向均相同,A正确;A、D 两点场强大小相同,方向也相同,B错误;在两电荷连线的中垂线上,O点场强最强,在两点电荷连线上,O点场强最弱,C、D正确.【答案】ACD7.如图6-1-18所示,点电荷+4Q与+Q分别固定在A、B两点,C、D两点将AB连线三等分,现使一个带负电的粒子从C点开始以某一初速度向右运动,不计粒子的重力,则该粒子在CD之间运动的速度大小v与时间t的关系图象可能是()图6-1-18【解析】负电荷从C→D运动过程中受A点电荷吸引力F1和B点电荷吸引力F2,由已知的电荷电量和距离条件结合库仑定律,可知F1>F2,故减速运动,可能一直减速,也可能先减速到零然后反向加速,但库仑力是变化的、不可能匀减速,所以选项A、D错误,BC正确.【答案】BC8.(2014·广东高考)如图6-1-19所示,光滑绝缘的水平桌面上,固定着一个带电荷量为+Q 的小球P ,带电量分别为-q 和+2q 的小球M 和N ,由绝缘细杆相连,静止在桌面上,P 与M 相距L ,M 和N 视为点电荷,下列说法正确的是( )图6-1-19A .M 与N 的距离大于LB .P 、M 和N 在同一直线上C .在P 产生的电场中,M 、N 处的电势相同D .M 、N 及细杆组成的系统所受合力为零【解析】 假设P 、M 和N 不在同一直线上,对M 受力分析可知M 不可能处于静止状态,所以选项B 正确;M 、N 和杆组成的系统,处于静止状态,则系统所受合外力为零,故k Qq L 2=k Q ·2q (L +x )2,解得x =(2-1)L ,所以选项A 错误,D 正确;在正点电荷产生的电场中,离场源电荷越近,电势越高,φM >φN ,所以选项C 错误.【答案】 BD9.如图6-1-20所示,MON 是固定的光滑绝缘直角杆,MO 沿水平方向,NO 沿竖直方向,A 、B 为两个套在此杆上的带有同种电荷的小球,用一指向竖直杆的水平力F 作用在A 小球上,使两球均处于静止状态.现将A 小球向NO 方向缓慢拉动一小段距离后,A 、B 两小球可以重新平衡.则后一种平衡状态与前一种平衡状态相比较,下列说法正确的是( )图6-1-20A .A 、B 两小球间的库仑力变大B .A 、B 两小球间的库仑力变小C .A 小球对MO 杆的压力变大D .A 小球对MO 杆的压力肯定不变【解析】 A 、B 两小球间的连线与竖直方向的夹角减小,对B 小球研究,库仑力在竖直方向的分力与重力等大反向,因此库仑力减小,故选项A 错误,选项B 正确;由整体法可知,MO 杆对A 小球的支持力(大小等于A 小球对MO 杆的压力)等于A 、B 两小球的重力之和,肯定不变,故选项C 错误,选项D 正确.【答案】 BD三、非选择题10.如图6-1-21所示,在A 点固定一正电荷,电荷量为Q ,在A 点正上方离A高度为h 的B 点由静止释放某带电的液珠,液珠开始运动的瞬间加速度大小为g 2(g 为重力加速度).已知静电力常量为k ,两带电物体均可看成点电荷,液珠只能沿竖直方向运动,不计空气阻力,求:图6-1-21(1)液珠的比荷(电荷量与质量的比值);(2)若液珠开始释放时的加速度方向向上,要使液珠释放后保持静止,需加一竖直方向的匀强电场,则所加匀强电场的方向如何?电场强度的大小为多少?【解析】 (1)加速度的方向分两种情况①加速度向下时,因为mg -k Qq h 2=m (12g )所以q m =gh 22kQ②加速度向上时,因为k Qq h 2-mg =m (12g )所以q m =3gh 22kQ .(2)因为液珠开始释放时的加速度方向向上,所以液珠带正电.要使液珠释放后保持静止,必须加一方向竖直向下的匀强电场.因为qE -12mg =0所以E=mq·g2=kQ3h2.【答案】(1)见解析(2)竖直向下kQ 3h211.如图6-1-22所示,质量为m的小球A放在绝缘斜面上,斜面的倾角为α.小球A带正电,电荷量为q.在斜面上B点处固定一个电荷量为Q的正电荷,将小球A 由距B点竖直高度为H处无初速度释放.小球A下滑过程中电荷量不变.不计A与斜面间的摩擦,整个装置处在真空中.已知静电力常量k和重力加速度g.图6-1-22(1)A球刚释放时的加速度是多大;(2)当A球的动能最大时,求此时A球与B点的距离.【解析】(1)根据牛顿第二定律mg sin α-F=ma根据库仑定律:F=k Qqr2,r=Hsin α联立以上各式解得a=g sin α-kQq sin2αmH2.(2)当A球受到合力为零时,速度最大,即动能最大.设此时A球与B点间的距离为R,则mg sin α=kQqR2,解得R=kQqmg sin α.【答案】(1)g sin α-kQq sin2αmH2(2)kQqmg sin α12.如图6-1-23所示,光滑绝缘的细圆管弯成半径为R的半圆形,固定在竖直面内,管口B、C的连线水平.质量为m的带正电小球从B点正上方的A点自由下落,A、B两点间距离为4R.从小球(小球直径小于细圆管直径)进入管口开始,整个空间中突然加上一个斜向左上方的匀强电场,小球所受电场力在竖直方向上的分力方向向上,大小与重力相等,结果小球从管口C处离开圆管后,又能经过A点.设小球运动过程中电荷量没有改变,重力加速度为g,求:图6-1-23(1)小球到达B点时的速度大小;(2)小球受到的电场力大小;(3)小球经过管口C处时对圆管壁的压力.【解析】(1)小球从开始自由下落至到达管口B的过程中机械能守恒,故有:mg·4R=12m v2B到达B点时速度大小为v B=8gR.(2)设电场力的竖直分力为F y,水平分力为F x,则F y=mg,小球从B运动到C 的过程中,由动能定理得:-F x·2R=12m v2C-12m v2B小球从管口C处离开圆管后,做类平抛运动,由于经过A点,有y=4R=v C t,x=2R=12a x t2=F x2m t2联立解得:F x=mg电场力的大小为F=qE=F2x+F2y=2mg.(3)小球经过管口C处时,向心力由F x和圆管的弹力F N的合力提供,设弹力F N 的方向向左,则F x+F N=m v2CR,解得:F N=3mg.根据牛顿第三定律可知,小球经过管口C处时对圆管的压力为F N′=F N=3mg,方向水平向右.【答案】(1)8gR(2)2mg(3)3mg,方向水平向右。

相关文档
最新文档