解直角三角形提高与拓展综合复习
中考解直角三角形知识点整理复习
中考解直角三角形知识点整理复习解直角三角形是中考数学中的一个重要内容,考查学生对于三角函数的理解和运用能力。
下面是对于中考解直角三角形知识点的整理复习。
一、基本概念1.直角三角形:一个内角为直角(90°)的三角形。
2.角的三要素:角的名称、角的度数、角的符号(顺时针为负,逆时针为正)。
二、特殊角度的三角函数值1.0°和90°的三角函数值:正弦函数sin:sin0° = 0,sin90° = 1;余弦函数cos:cos0° = 1,cos90° = 0;正切函数tan:tan0° = 0,tan90° 不存在。
2.30°和60°的三角函数值:正弦函数sin:sin30° = 1/2,sin60° = √3/2;余弦函数cos:cos30° = √3/2,cos60° = 1/2;正切函数tan:tan30° = 1/√3,tan60° = √3三、三角函数在特定角度的性质1. 正弦函数sin的性质:当角A的终边经过点(x,y)时sinA = y/r其中r是点(x,y)到原点(0,0)的距离。
2. 余弦函数cos的性质:当角A的终边经过点(x,y)时cosA = x/r其中r是点(x,y)到原点(0,0)的距离。
3. 正切函数tan的性质:当角A的终边经过点(x,y)时tanA = y/x其中x不等于0。
4.三角函数的周期性:三角函数sin、cos、tan均是周期函数,其中sin和cos的周期是360°或2π弧度,tan的周期是180°或π弧度。
四、特殊角的三角函数值的计算1.特殊角度的三角函数值:根据三角函数在标准位置上的定义,可以计算出不同角度的三角函数值。
2.夹角的三角函数值:两个夹角相等的三角函数值相等,例如sin(A+B)=sinC。
解直角三角形——复习课
解直角三角形复习课教案富顺县怀德镇大城九年制学校—王甸健教学目标1、复习解直角三角形的有关概念、依据和分类。
2、灵活运用勾股定理、直角三角形中两锐角互余、锐角三角函数及恰当的添加辅助线解直角三角形。
使学生会用解直角三角形的有关知识解决实际问题。
3、通过解题活动提高学生分析问题、解决问题的能力以及计算能力,增强数学应用意识。
教学重难点1、重点:把实际问题中的已知条件和未知元素,化归到某个直角三角形中解决。
2、难点:把实际问题转化为解直角三角形的数学问题。
教学过程一、复习回顾,知识梳理1、定义:什么是解直角三角形?由直角三角形中除直角外的已知元素,求未知元素的过程,叫做解直角三角形.2、单元知识网络3、解直角三角形4、30°,45°,60°的三角函数值5、在解直角三角形中,经常接触的名称:23112160︒45︒45︒30︒二、例题精讲 运用提升例1 已知:如图,在△ABC 中,AB=6,∠B=60°,∠C=45°,AD ⊥BC 于点D ,求BC 的长.练习1: 将已知条件改变,不给AD ⊥BC 于点D 。
已知:如图,在△ABC 中,AB=6,∠B=60°,∠C=45°,求BC 的长.例2 已知:如图,在△ABC 中,AB=6,∠ABE=60°,∠C=45°,求BC的长.练习2: 已知:如图,AD ⊥BC 于点D ,BC=4,∠C=45°,∠ABD=60°,求AD 的长.练习3:若把练习1图形再次变形,将已知条件改为:如图:BC=4,∠C=45°,∠ABE=60°.求点A 到BC 的距离.你能求解吗?三、课堂小结1、本节课我们复习了解直角三角形的方法及应用它解决一些实际问题。
2、解直角三角形要熟练运用三角函数的定义和勾股定理. 要观察图形,了解直角三角形边、角之间的关系,还要注意挖掘隐含条件。
九年级数学《解直角三角形-复习课》教案
第28章解直角三角形(单元复习课)教学任务分析问题1:在Rt △ABC 中,∠C=90°则(1)∠A 、∠B 的关系是_________, (2)_____,,的关系是c b a(3)边角关系是________________________________________________________________________________问题2:你能根据上述边角关系得到30°、45°、60°角的三角函数值吗?填写下表。
问题3:同角的三角函数之间有什么关系?互余的两角呢?问题4:锐角的正弦值是怎样随着角度数的变化而变化的?余弦、正切呢?其锐角三角函数值的范围分别是什么? 2、组织交流,总结要点;3、板书教师总结知识结构图(多媒体展示)。
【学生活动】 1、学生反思回顾知识点,回答和完成导学案中的问题及三个表格;2、绘制出自己总结的知识结构图;3、交流展示自己总结的知识结构图及自主学习的成果;4、看听记教师的总结。
用数学的意识。
帮助学生学会用数学的思考方法解决实际问题,引发认知冲突,激发学生学习兴趣。
【媒体应用】1、展示反思回顾的问题;2、展示导学案中提出的问题;3、展示师生共同总结的本章本章要点和本章知识结构图。
活动三 基础训练,查补缺漏: 【基础闯关】1、Rt △ABC 中,∠C=90°若SinA= 时,tanA= 。
2、Rt △ABC 中,∠C=90°,若AC=3BC ,则CosA= 。
3、菱形ABCD 中对角线AC 交BD 于点O ,且AC=8,BD=6,则下列结论中正确的为( )A 、Sin ∠ADB=B 、Cos ∠DAB=C 、tan ∠DBA =D 、tan ∠ADB=4、计算: (1)(2)丨Sin45°- 1丨-【教师活动】 1、操作多媒体出示问题。
2、组织学生交流和点评,得出正确答案。
【学生活动】 1、尝试完成练习,有困难的同学可以合作完成; 2、参与交流展示及点评。
中考数学复习《解直角三角形的应用解答题》专题提升训练
数学中考复习《解直角三角形的应用解答题》专题提升训练1.如图,某小区A栋楼在B栋楼的南侧,两楼高度均为90m,楼间距为MN.春分日正午,太阳光线与水平面所成的角为55.7°,A栋楼在B栋楼墙面上的影高为DM;冬至日正午,太阳光线与水平面所成的角为30°,A栋楼在B栋楼墙面上的影高为CM,已知CD =45m.求楼间距MN(参考数据:tan30°≈0.58,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)2.图①是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,托板长AB =115mm,支撑板长CD=70mm,且CB=35mm,托板AB可绕点C转动.(1)当∠CDE=60°时,①求点C到直线DE的距离;(计算结果保留根号)②若∠DCB=70°时,求点A到直线DE的距离(计算结果精确到个位);(2)为了观看舒适,把(1)中∠DCB=70°调整为90°,再将CD绕点D逆时针旋转,使点B落在DE上,则CD旋转的角度为.(直接写出结果)(参考数据:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2.sin26.6°≈0.4,cos26.6°≈0.9,tan26.6°≈0.5,≈1.7)3.美丽的徒骇河穿城而过,成为市民休闲娱乐的风景带.某数学兴趣小组在一次课外活动中,测量徒骇河某段河的宽CD.如图所示,小组成员选取的点A,B是桥上的两点,点A,E,C在河岸的同一直线上,且AB⊥AC.若,AE间的距离80米,在B点处测得BD与平行于AC的直线间的夹角为30°,在点E处测得ED与直线AC之间的夹角为60°,求这段河的宽度CD.(结果保留根号)4.我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿AB摆成如图1所示.已知AB=4.8m,鱼竿尾端A离岸边0.4m,即AD=0.4m.海面与地面AD 平行且相距1.2m,即DH=1.2m.(1)如图1,在无鱼上钩时,海面上方的鱼线BC与海面HC的夹角∠BCH=37°,海面下方的鱼线CO与海面HC垂直,鱼竿AB与地面AD的夹角∠BAD=22°.求点O到岸边DH的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角∠BAD=53°,此时鱼线被拉直,鱼线BO=5.46m,点O恰好位于海面.求点O到岸边DH的距离.(参考数据:sin37°=cos53°≈,cos37°=sin53°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈)5.如图1,将一个直角三角形状的楔子(Rt△ABC)从木桩的底端点P沿水平方向打入木桩台底下,可以使木桩向上运动.如果楔子底面的倾斜角∠ABC为10°,其高度AC为1.8厘米,楔子沿水平方向前进一段距离(如箭头所示),如图2,留在外面的楔子长度HC为3厘米.(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)(1)求BH的长.(2)木桩上升了多少厘米?6.筒车是我国古代利用水力驱动的灌溉工具,车轮缚以竹筒,旋转时低则舀水,高则泻水.如图,水力驱动筒车按逆时针方向转动,竹筒把水引至A处,水沿射线AD方向泻至水渠DE,水渠DE所在直线与水面PQ平行.设筒车为⊙O,⊙O与直线PQ交于P,Q两点,与直线DE交于B,C两点,恰有AD2=BD•CD,连接AB,AC.(1)求证:AD为⊙O的切线;(2)筒车的半径为3m,AC=BC,∠C=30°.当水面上升,A,O,Q三点恰好共线时,求筒车在水面下的最大深度(精确到0.1m,参考值:≈1.4,≈1.7).7.如图,一扇窗户垂直打开,即打开到OM⊥OP的状态,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向向内旋转45°到达ON位置,此时,点A、C的对应位置分别是点B、D.测出此时∠ODB为30°,BO的长为20cm.求滑动支架AC的长.(精确到1cm,≈1.41,≈1.73).8.如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)9.图1是疫情期间测温员用“额温枪”对学生测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直,量得胳膊MN=30cm,MB=44cm,肘关节M与枪身端点A之间的水平宽度为26.1cm(即MP的长度),∠ABM =113.6°.(1)求枪身BA的长度;(2)测温时规定枪身端点A与额头距离范围为3cm~5cm.在图2中,若测得∠BMN=68.6°,学生与测温员之间距离为50cm.问此时枪身端点A与学生额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据sin66.4°≈0.92,cos66.4°≈0.4,tan66.4°≈2.29,)10.动感单车是一种新型的运动器械.图①是一辆动感单车的实物图,图②是其侧面示意图.△BCD为主车架,AB为调节管,点A,B,C在同一直线上.已知BC长为70cm,∠BCD的度数为58°.当AB长度调至34cm时,求点A到CD的距离AE的长度(结果精确到1cm).(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)11.某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)12.小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN,MN与墙面AB所成的角∠MNB=118°,厂房高AB=8m,房顶AM与水平地面平行,小强在点M的正下方C处从平面镜观察,能看到的水平地面上最远处D CD是多少?(结果精确到0.1m,参考数据:sin34°≈0.56,tan34°≈0.68,tan56°≈1.48)13.如图①是大家熟悉的柜式空调,关闭时叶片竖直向下.如图②,当启动时,出风口叶片会同步开始逆时针旋转到最大旋转角90°时返回,旋转速度是每秒10°,同时空调风从叶片口直线吹出.AB由5个叶片组成的出风口,经过测量,A点、B点距地面高度分别是170cm、145cm在空调正前方100cm处站着一个高70cm的小朋友(线段EF表示).(1)从启动开始,多长时间小朋友头顶E处感受到空调风;(2)若叶片从闭合旋转到最大角度的过程中,小朋友的头顶E处有多长时间感受到空调风;(3)当选择上下扫风模式时,叶片会旋转到最大角度后原速返回.从启动到第一次返回起始位的过程中,该小朋友头顶E处从第一次感受到空调风到再次感受到空调风中间间隔了多长时间.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).14.第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图1),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图2是其示意图,已知:助滑坡道AF=50米,弧形跳台的跨度FG=7米,顶端E到BD的距离为40米,HG∥BC,∠AFH=40°,∠EFG=25°,∠ECB=36°.求此大跳台最高点A距地面BD的距离是多少米(结果保留整数).(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)15.一种可折叠的医疗器械放置在水平地面上,这种医疗器械的侧面结构如图实线所示,底座为△ABC,点B,C,D在同一条直线上,测得∠ACB=90°,∠ABC=60°,AB=32cm,∠BDE=75°,其中一段支撑杆CD=84cm,另一段支撑杆DE=70cm.(1)求BD的长.(2)求支撑杆上的点E到水平地面的距离EF是多少?(结果均取整数,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.732)16.图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知AB∥CD∥FG,A,D,H,G四点在同一直线上,测得∠FEC=∠A=72.9°,AD=1.6m,EF=6.2m.(结果保留小数点后一位)(1)求证:四边形DEFG为平行四边形;(2)求雕塑的高(即点G到AB的距离).(参考数据:sin72.9°≈0.96,cos72.9°≈0.29,tan72.9°≈3.25)17.如图①是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图②所示,已知晾衣臂OA=OB=120cm,支撑脚OC=OD=120cm,展开角∠COD=60°,晾衣臂支架PQ=MN=80cm,且OP=OM=40cm.(1)当晾衣臂OA与支撑脚OD垂直时,求点A距离地面的高度;(2)当晾衣臂OB从水平状态绕点O旋转到OB'(D、O、B'在同一条直线上)时,点N 也随之旋转到OB'上的点N'处,求点N在晾衣臂OB上滑动的距离.18.如图1是某小区门口的门禁自动识别系统,主要有可旋转高清摄像机和其下方固定的显示屏.图2是其结构示意图,摄像机长AB=20cm,点O是摄像机旋转轴心,O为AB的中点,显示屏的上沿CD与AB平行,CD=15cm,AB与CD连接杆OE⊥AB,OE=10cm,CE=2ED,点C到地面的距离为60cm.若AB与水平地面所成的角的度数为35°.(1)求显示屏所在部分的宽度;(2)求镜头A到地面的距离.(参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700,结果保留一位小数)19.图1是一种可折叠台灯,它放置在水平桌面上,将其抽象成图2,其中点B,E,D均为可转动点,现测得AB=BE=ED=CD=20cm,经多次调试发现当点B,E都在CD的垂直平分线上时(如图3所示)放置最平稳.(1)求放置最平稳时灯座DC与灯杆DE的夹角的大小;(2)当A点到水平桌面(CD所在直线)的距离为42cm﹣43cm时,台灯光线最佳,能更好的保护视力.若台灯放置最平稳时,将∠ABE调节到105°,试通过计算说明此时光线是否为最佳.(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.73)20.为测量水城河两岸的宽度,某数学研究小组设计了三种不同的方案,他们在河岸边A 处测得河对岸的同学B恰好在正北方向,测量方案及数据如下表:.(1)哪一种方案无法计算出河两岸的宽度;(2)请选择其中一种方案计算出河两岸的宽度(精确到0.1m).(参考数据:≈1.73)参考答案1.解:如图,过点C、D分别作CE⊥PN,DF⊥PN,垂足分别为E、F,则,PN=90m,MB=DF=CE,DM=FN,CD=EF=45m,设MN=xm,在Rt△PDF中,∠PDF=55.7°,DF=MN=xm,∴PF=tan55.7°•DF≈1.47x(m),在Rt△PCE中,∠PCE=30°,CE=xm,∴PE=tan30°•CE≈0.58x(m),∵EF=PF﹣PE,即CD=PF﹣PE,∴1.47x﹣0.58x=45,解得x≈50.56(m),即MN=50.56m.2.解:(1)①如图,过点C作CF⊥DE于F,过点C、A分别作DE的平行线和垂线相交于点G,在Rt△CDF中,∠CDF=60°,CD=70mm,∴CF=CD•sin60°=70×=35(mm),即点C到直线DE的距离为35mm;②当∠DCB=70°时,∵CG∥DE,∴∠GCD=∠CDF=60°,又∵∠DCB=70°,∴∠ACG=180°﹣70°﹣60°=50°,在Rt△ACG中,AC=AC﹣BC=115﹣35=80(mm),∠ACG=50°∴AG=AC•sin50°≈80×0.8=64(mm),∴点A到直线DE的距离为AG+CF=64+35≈124(mm);(2)把(1)中∠DCB=70°调整为90°,再将CD绕点D逆时针旋转,使点B落在DE上,旋转后的图形如图③所示,在Rt△B′C′D中,B′C′=35mm,C′D=CD=70mm,∴tan∠C′DB′==0.5,又∵tan26.6°≈0.5,∴∠C′DB′=26.6°,∴∠CDC′=60°﹣26.6°=33.4°,故答案为:33.4°.3.解:如图,过点B作BF⊥CD于F,则AB=CF,AC=BF,∵,AE=80米,∴AB=20米=CF,在Rt△BDF中,∠DBF=30°,设DF=x,则BF=x=AC,∴EC=AC﹣AE=(x﹣80)米,在Rt△CDE中,∠DEC=60°,CD=(20+x)米,EC=(x﹣80)米,∵tan60°=,∴=,解得,x=40+10,经检验,x=40+10是原方程的根,∴DF=(40+10)米,∴CD=CF+DF=(40+30)米,答:这段河的宽度CD的长为(40+30)米.4.解:(1)过点B作BF⊥CH,垂足为F,延长AD交BF于E,垂足为E,则AE⊥BF,由cos∠BAE=,∴cos22°=,∴,即AE=4.5m,∴DE=AE﹣AD=4.5﹣0.4=4.1(m),由sin∠BAE=,∴,∴,即BE=1.8m,∴BF=BE+EF=1.8+1.2=3(m),又,∴,即CF=4m,∴CH=CF+HF=CF+DE=4+4.1=8.1(m),即点O到岸边DH的距离为8.1m;(2)过点B作BN⊥OH,垂足为N,延长AD交BN于点M,垂足为M,由cos∠BAM=,∴,∴,即AM=2.88m,∴DM=AM﹣AD=2.88﹣0.4=2.48(m),由sin∠BAM=,∴,∴,即BM=3.84m,∴BN=BM+MN=3.84+1.2=5.04(m),∴=(m),∴OH=ON+HN=ON+DM=4.58(m),即点O到岸边的距离为4.58m.5.解:(1)在Rt△ABC中,∠ABC=10°,tan∠ABC=,则BC=≈=10(厘米),∴BH=BC﹣HC=7(厘米);(2)在Rt△ABC中,∠ABC=10°,tan∠ABC=,则PH=BH•tan∠ABC≈7×0.18≈1.26(厘米),答:木桩上升了大约1.26厘米.6.(1)证明:连接AO,并延长交⊙O于G,连接BG,∴∠ACB=∠AGB,∵AG是直径,∴∠ABG=90°,∴∠BAG+∠AGB=90°,∵AD2=BD•CD,∴,∵∠ADB=∠CDA,∴△DAB∽△DCA,∴∠DAB=∠ACB,∴∠DAB=∠AGB,∴∠DAB+∠BAG=90°,∴AD⊥AO,∵OA是半径,∴AD为⊙O的切线;(2)解:当水面到GH时,作OM⊥GH于M,∵CA=CB,∠C=30°,∴∠ABC=75°,∵AG是直径,∴∠ABG=90°,∴∠CBG=15°,∵BC∥GH,∴∠BGH=∠CBG=15°,∴∠AGM=45°,∴OM=OG=,∴筒车在水面下的最大深度为3﹣≈0.9(m).7.解:由题意可知:∠BOE=45°,BO=20cm,BE⊥OD,∴BE=OE=BO•sin45°=10(cm),在Rt△BDE中,∠BDE=30°,∴sin∠BDE=,∴BD=20cm,∵BD=AC,∴AC=20≈28(cm),答滑动支架AC的长约为28cm.8.解:(1)过点A作AE⊥l,垂足为E,设CE=x米,∵CD=60米,∴DE=CE+CD=(x+60)米,∵∠ACB=15°,∠BCD=120°,∴∠ACE=180°﹣∠ACB﹣∠BCD=45°,在Rt△AEC中,AE=CE•tan45°=x(米),在Rt△ADE中,∠ADE=30°,∴tan30°===,∴x=30+30,经检验:x=30+30是原方程的根,∴AE=(30+30)米,∴河的宽度为(30+30)米;(2)过点B作BF⊥l,垂足为F,则CE=AE=BF=(30+30)米,AB=EF,∵∠BCD=120°,∴∠BCF=180°﹣∠BCD=60°,在Rt△BCF中,CF===(30+10)米,∴AB=EF=CE﹣CF=30+30﹣(30+10)=20(米),∴古树A、B之间的距离为20米.9.解:(1)过点B作BH⊥MQ,垂足为H,则BA=HP,AB∥MQ,∵∠ABM=113.6°,∴∠BMH=180°﹣∠ABM=66.4°,在Rt△BMH中,∠BMH=66.4°,BM=44cm,∴MH=BM•cos66.4°≈44×0.4=17.6(cm),∵MP=26.1cm,∴BA=HP=MP﹣MH=26.1﹣=8.5(cm),∴枪身BA的长度约为8.5cm;(2)此时枪身端点A与学生额头的距离不在规定范围内,理由:延长QM交FG于点K,则KQ=50cm,∠NKM=90°,∵∠BMN=68.6°,∠BMH=66.4°,∴∠NMK=180°﹣∠BMN﹣∠BMH=45°,在Rt△MNK中,MN=30cm,∴KM=MN•cos45°=30×=15(cm),∵KQ=50cm,∴PQ=KQ﹣KM﹣MP=50﹣15﹣26.1≈2.7(cm),∵测温时规定枪身端点A与额头距离范围为3cm~5cm,∴此时枪身端点A与学生额头的距离不在规定范围内.10.解:∵AB=34cm,BC=70cm,∴AC=AB+BC=104cm,在Rt△ACE中,sin∠BCD=,∴AE=AC•sin∠BCD≈104×0.85≈88cm.答:点A到CD的距离AE的长度约88cm.11.解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.512.解:连接MC,过点M作HM⊥NM,由题意得:∠DMC=2∠CMH,∠MCD=∠HMN=90°,AB=MC=8m,AB∥MC,∴∠CMN=180°﹣∠MNB=180°﹣118°=62°,∴∠CMH=∠HMN﹣∠CMN=28°,∴∠DMC=2∠CMH=56°,在Rt△CMD中,CD=CM•tan56°≈8×1.48≈11.8(米),∴能看到的水平地面上最远处D到他的距离CD约为11.8米.13.解:(1)如图,连接AE,过点E作EM⊥AC于M,由题意可知,CF=100cm=ME,AC=170cm,BC=145cm,EF=70cm=MC,∴AM=170﹣70=100(cm),在Rt△AEM中,AM=100cm,ME=100cm,∴∠MAE=∠AEM=45°,∴从启动开始,到小朋友头顶E处感受到空调风所用的时间为45÷10=4.5(s),答:从启动开始,4.5s小朋友头顶E处感受到空调风;(2)如图,连接BE,则BM=145﹣70=75(cm),在Rt△BEM中,∵tan∠BEM==0.75,∴∠BEM=37°,∴∠MBE=90°﹣37°=53°∴小朋友的头顶E处感受到空调风的时长为﹣=0.8(s),答:小朋友的头顶E处有0.8s的时间感受到空调风;(3)如图,当BE绕着点B旋转到BE′时,所用时间为=3.7(s),所以该小朋友头顶E处从第一次感受到空调风到再次感受到空调风中间间隔了时长为0.8+3.7×2=8.2(s),答:该小朋友头顶E处从第一次感受到空调风到再次感受到空调风中间间隔了8.2s.14.解:如图,过点E作EN⊥BC于点N,交HG于点M,则AB=AH﹣EM+EN.根据题意可知,∠AHF=∠EMF=∠EMG=90°,EN=40(米),∵HG∥BC,∴∠EGM=∠ECB=36°,在Rt△AHF中,∠AFH=40°,AF=50,∴AH=AF•sin∠AFH≈50×0.64=32(米),在Rt△FEM和Rt△EMG中,设MG=m米,则FM=(7﹣m)米,∴EM=MG•tan∠EGM=MG•tan36°≈0.73m,EM=FM•tan∠EFM=FM•tan25°≈0.47(7﹣m),∴0.73m=0.47(7﹣m),解得m≈2.7(米),∴EM≈0.47(7﹣m)=2.021(米),∴AB=AH﹣EM+EN≈32﹣2.021+40≈70(米).∴此大跳台最高点A距地面BD的距离约是70米.15.解:(1)在Rt△ABC中,∠ABC=60°,AB=32cm,∴BC=AB=16cm,∴BD=BC+CD=16+84=100(cm).(2)作DM⊥BA于点M,DN⊥EF于点N,在Rt△DBM中,sin∠DBM=,即=,∴DM=50,∵∠F=∠M=∠DNF=90°,∴四边形NFMD为矩形,∴NF=DM=50,DN∥FM,∴∠NDB=∠DBM=60°,∵∠BDE=75°,∴∠EDN=∠BDE﹣∠NDB=15°,∴在Rt△DEN中,sin∠EDN=,即sin15°=,∴EN=70sin15°,∴EF=EN+NF=50+70sin15°≈105(cm).16.(1)证明:∵AB∥CD,∴∠CDG=∠A,∵∠FEC=∠A,∴∠FEC=∠CDG,∴EF∥DG,∵FG∥CD,∴四边形DEFG为平行四边形;(2)解:如图,过点G作GP⊥AB于P,∵四边形DEFG为平行四边形,∴DG=EF=6.2,∵AD=1.6,∴AG=DG+AD=6.2+1.6=7.8,Rt△APG中,sin A=,∴=0.96,∴PG=7.8×0.96=7.488≈7.5.答:雕塑的高为7.5m.17.解:(1)过点O作OE⊥CD,垂足为E,过点A作AG⊥CD,垂足为G,过点O作OF ⊥AG,垂足为F,则OE=FG,∠FOE=90°,∵OC=OD=120cm,∠COD60°,∴∠DOE=∠COD=30°,∴OE=OD•cos30°=120×=60(cm),∴FG=OE=60cm,∵OA⊥OD,∴∠AOD=90°,∴∠AOD﹣∠DOF=∠EOF﹣∠DOF,∴∠AOF=∠DOE=30°,在Rt△AOF中,OA=120cm,∴AF=OA=60(cm),∴AG=AF+FG=(60+60)cm,∴点A距离地面的高度为(60+60)cm;(2)过点M作MK⊥OB,垂足为K,过点M作ML⊥OD,垂足为L,∵OC=OD=120cm,∠COD=60°,∴△COD是等边三角形,∴∠OCD=60°,∵OB∥CD,∴∠BOC=∠OCD=60°,在Rt△MKO中,OM=40cm,∴KO=OM•cos60°=40×=20(cm),MK=OM•sin60°=40×=20(cm),在Rt△MNK中,MN=80cm,∴NK===20(cm),∵OB=120cm,∴BN=OB﹣OK﹣NK=120﹣20﹣20=(100﹣20)cm,在Rt△OML中,∠COD=60°,∴ML=OM•sin60°=40×=20(cm),OL=OM•cos60°=40×=20(cm),在Rt△MN′L中,MN′=MN=80cm,∴N′L===20(cm),∴ON′=N′L﹣OL=(20﹣20)cm,∵OB′=OB=120cm,∴B′N′=OB′﹣ON′=(140﹣20)cm,∴B′N′﹣BN=140﹣20﹣(100﹣20)=40(cm),∴点N在晾衣臂OB上滑动的距离为40cm.18.解:(1)过点C作CM⊥DF,垂足为F,∵CD∥AB,AB与水平地面所成的角的度数为35°,∴CD与水平地面所成的角的度数为35°,∴∠DCM=35°,在Rt△DCM中,DC=15cm,∴CM=DC•cos35°≈15×0.819≈12.3(cm),∴显示屏所在部分的宽度约为12.3cm;(2)连接AC,过点A作AH⊥CM,交MC的延长线于点H,∵CE=2ED,DC=15cm,∴CE=CD=10(cm),∵O为AB的中点,∴OA=AB=10(cm),∴OA=CE=10cm,∵OA∥CE,∴四边形ACEO是平行四边形,∵OE⊥AB,∴∠AOE=90°,∴四边形ACEO是矩形,∴∠ACE=90°,AC=OE=10cm,∵∠DCM=53°,∴∠ACH=180°﹣∠ACE﹣∠DCM=55°,∴∠HAC=90°﹣∠ACH=35°,在Rt△AHC中,AH=AC•cos35°≈10×0.819=8.19(cm),∵点C到地面的距离为60cm,∴镜头A到地面的距离=8.19+60≈68.2(cm),∴镜头A到地面的距离约为68.2cm.19.解:(1)延长BE交DC于点F,由题意得:EF⊥CD,FD=CD=CD=10cm,在Rt△DEF中,DE=20cm,∴cos D===,∴∠D=60°,∴灯座DC与灯杆DE的夹角为60°;(2)过点A作AM⊥DC,交DC的延长线于点M,过点B作BG⊥AM,垂足为G,则GM=BF,∠GBF=90°,在Rt△DEF中,DE=20cm,DF=10cm,∴EF===10(cm),则GM=BF=BE+EF=(20+10)cm,∵∠ABE=105°,∴∠ABG=∠ABF﹣∠GBF=15°,在Rt△ABG中,AB=20cm,∴AG=AB⋅sin15°≈20×0.26=5.2(cm),∴AM=AG+GM=20+10+5.2≈42.5(cm),∴A点到水平桌面(CD所在直线)的距离约为42.5cm,∴此时光线最佳.20.解:(1)第一个小组的数据无法计算河宽,理由如下:∵第一小组给出的数据为BD的长,△ABC和△CDE无法建立联系,无法得到△ABC的任何一边长度,∴第二小组的数据无法计算河宽;(2)第二个小组的解法:∵∠ACB=∠ADB+∠CBD,∠ACB=60°,∠ADB=30°,∴∠ADB=∠CBD=30°,∴BC=CD=11.8m,∴AB=BC•sin60°=11.8×≈10.2(m).第三个小组的解法:设AB=xm,则AC=,AD=,∴+=23.5,解得x≈10.2.答:河宽约10.2m.。
辅导解直角三角形概念及复习教案及习题附答案
解直角三角形一、知识点讲解:1.解直角三角形的依据在直角三角形ABC中,如果∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,那么(1)三边之间的关系为(勾股定理)(2)锐角之间的关系为∠A+∠B=90°(3)边角之间的关系为2.其他有关公式面积公式:(hc为c边上的高)3.解直角三角形的条件在除直角C外的五个元素中,只要已知其中两个元素(至少有一个是边)就可以求出其余三个元素。
4.解直角三角形的关键是正确选择关系式在直角三角形中,锐角三角函数是勾通三角形边角关系的结合部,只要题目中已知加未知的三个元素中有边,有角,则一定使用锐角三角函数,应如何从三角函数的八个公式中迅速而准确地优选出所需要的公式呢?(1)若求边:一般用未知边比已知边,去寻找已知角的某三角函数(2)若求角:一般用已知边比已知边(斜边放在分母),去寻找未知角的某三角函数。
(3)在优选公式时,尽量利用已知数据,避免“一错再错”和“累积误差”。
5.解直角三角形时需要注意的几个问题(1)在解直角三角形时,是用三角知识,通过数值计算,去求出图形中的某些边的长度或角的大小,这是数形结合为一种形式,所以在分析问题时,一般先根据已知条件画出它的平面或截面示意图,按照图中边角之间的关系去进行计算,这样可以帮助思考,防止出错。
(2)有些图形虽然不是直角三角形,但可添加适当的辅助线把它们分割成一些直角三角形和矩形,从而把它们转化为直角三角形的问题来解决。
(3)按照题目中已知数据的精确度进行近似计算二、例题解析:例1、已知直角三角形的斜边与一条直角边的和是16cm,另一条直角边为8cm,求它的面积,解:设斜边为c,一条直角边为a,另一条直角边b=8cm,由勾股定理可得,由题意,有c+a=16 ,b=8例2、在△ABC中,求:a、b、c的值及∠A。
解:,由直角三角形的边角关系,得,即又∵a+b=3+例3、已知△ABC中,∠C=90°,若△ABC的周长为30,它的面积等于30,求三边长。
解直角三角形复习课
5、计算 () 30 (tan 45 ) 1 cos 2 45 (cos 60 1) 2 1 2sin
a, b, c.由下列条件解直角三角形 ()已知c =30,A=60,求a 1
3
6、已知△ABC中,C =90,A,B, C的对边分别为
15 3
2 7、在Rt △ABC中,C =90 ,b 5, 若 sin A= , 3 求边a, c的长 2 a 2
4、在正方形网格中,△ABC的位置如图所示, 则cosB的值为( ) B 1 2 3 3 A、 B、 C、 D、 2 2 2 3
5、如图所示,在△ABC中∠B=45°, ∠ACB=75°,AC=2,求BC的长.
C
A
D
B
1、锐角三角比的值。 2、解直角三角形。 3、锐角三角比在解直角三角比中的应用。
解: sin A= 3 c 3 设a =2 x, 则c =3x
2 2
在Rt △ABC中,a =2 x, b 5, c =3 x 由勾股定理得:(2 x) 5 =(3 x)
2
解得:x = 5 a =2 5,c =3 5
1、在△ABC中,C 90,B =30,AD是BAC的平分线,
复习学案课后提升
1、复习锐角三角比,掌握30°, 45°,60°角的三角比。
2、能用锐角三角比解直角三角形。
3、培养学生运用数学知识分析和解 决问题的能力,增强学生的应用意 识。
1.特殊角的三角函数值
三角函数
角度 30°
45° 60°
正弦
1 2
2 2
余弦
3 2 2 2
正切
3 3
1
3 2
1 2
3
2.解直角三角形
(完整)【解直角三角形】专题复习(知识点+考点+测试)(2),推荐文档
一、直角三角形的性质《解直角三角形》专题复习1、直角三角形的两个锐角互余A几何表示:【∵∠C=90°∴∠A+∠B=90°】2、在直角三角形中,30°角所对的直角边等于斜边的一半。
1D几何表示:【∵∠C=90°∠A=30°∴BC= AB 】23、直角三角形斜边上的中线等于斜边的一半。
几何表示:【∵∠ACB=90° D 为 AB 的中点 ∴ CD= 1 AB=BD=AD 】2C B4、勾股定理:直角三角形两直角边的平方和等于斜边的平方 几何表示:【在 Rt△ABC 中∵∠ACB=90° ∴ a 2 + b 2 = c 2 】5、射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项, 每条直角边是它们在斜边上的射影和斜边的比例中项。
即:【∵∠ACB=90°CD⊥AB∴ CD 2 = AD • BDAC 2 = AD • AB BC 2 = BD • AB 】6、等积法:直角三角形中,两直角边之积等于斜边乘以斜边上的高。
( a • b = c • h )由上图可得:AB • CD=AC • BC二、锐角三角函数的概念如图,在△ABC 中,∠C=90°sin A = ∠A 的对边 =a斜边 c cos A = ∠A 的邻边 =b斜边 c tan A = ∠A 的对边 =a∠A 的邻边 b cot A = ∠A 的邻边 =b ∠A 的对边 a锐角 A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数锐角三角函数的取值范围:0≤sinα≤1,0≤cosα≤1,tanα≥0,cotα≥0.三、锐角三角函数之间的关系(1) 平方关系(同一锐角的正弦和余弦值的平方和等于 1) sin 2 A + cos 2 A = 1 (2) 倒数关系(互为余角的两个角,它们的切函数互为倒数) tanA • tan(90°—A)=1; cotA • cot(90°—A)=1; (3) 弦切关系tanA= sin A cos A cotA= cos Asin A (4) 互余关系(互为余角的两个角,它们相反函数名的值相等) sinA=cos(90°—A),cosA=sin(90°—A)30°23 60°C仰角俯角北东南iα1tanA=cot(90°—A),cotA=tan(90°—A)四、特殊角的三角函数值A说明:锐角三角函数的增减性,当角度在 0°~90°之间变化时. (1) 正弦值随着角度的增大(或减小)而增大(或减小) B(2)余弦值随着角度的增大(或减小)而减小(或增大) A(3) 正切值随着角度的增大(或减小)而增大(或减小) (4) 余切值随着角度的增大(或减小)而减小(或增大)2五、 解直角三角形2 在 Rt△中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三 角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
中考解直角三角形知识点整理复习
中考解直角三角形知识点整理复习解直角三角形知识点复习一、定义直角三角形是指其中一个角是直角的三角形。
直角指的是一个角度为90°的角。
二、性质1.直角三角形的两条直角边的平方和等于斜边的平方,即勾股定理。
设直角三角形的两条直角边分别为a和b,斜边为c,则有a^2+b^2=c^22.直角三角形的斜边是两个直角边中最长的边,而且直角三角形中的直角边是两个锐角的对边。
3.直角三角形中的两个锐角互余。
4.在直角三角形中,两个锐角的正弦、余弦和正切值互为倒数。
三、特殊直角三角形1.等腰直角三角形:定义:顶角为90°的等腰三角形。
性质:两个直角边相等,斜边为直角边的根号2倍。
2.30°-60°-90°直角三角形:定义:一个锐角为30°,一个锐角为60°的直角三角形。
性质:-斜边是短直角边的2倍;-长直角边是短直角边的根号3倍;-高(垂直于短直角边的线段)是短直角边的根号3倍的一半。
3.45°-45°-90°直角三角形:定义:两个锐角都为45°的直角三角形。
性质:-斜边是任意一个直角边的根号2倍;-高(垂直于底边的线段)是底边的一半。
四、解直角三角形问题的步骤1.已知两条边,求第三条边。
a)如果已知两条直角边a和b,可以直接使用勾股定理求解斜边c:c=√(a^2+b^2)。
b)如果已知一条直角边a和斜边c,可以使用勾股定理求解另一条直角边b:b=√(c^2-a^2)。
2.已知一条直角边和一个锐角,求另一条直角边和斜边。
a) 如果已知一条直角边a和一个锐角θ,可以求出另一条直角边b:b = a * tanθ。
b)如果已知一条直角边a和斜边c,可以求出另一条直角边b:b=√(c^2-a^2)。
c) 如果已知一条直角边a和一个锐角θ,可以求出斜边c:c = a / cosθ。
3.已知两条直角边之间的比例,求两个直角边和斜边的长度。
中考数学复习《解直角三角形》 知识讲解
《解直角三角形》全章复习与巩固(提高) 知识讲解【学习目标】1.了解锐角三角函数的概念,能够正确应用sinA 、cosA 、tanA 、cotA 表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦、正切和余切的三角函数值,并能由一个特殊角的三角函数值说出这个角的度数.2.能够正确地使用计算器,由已知锐角求出它的三角函数值,由已知三角函数值求出相应的锐角;3.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、直角三角形斜边上中线等于斜边的一半,以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题.4.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想;5.通过解直角三角形的学习,体会数学在解决实际问题中的作用.【知识网络】【要点梳理】要点一、直角三角形的性质(1) 直角三角形的两个锐角互余.(2) 直角三角形两直角边的平方和等于斜边的平方.(勾股定理)如果直角三角形的两直角边长分别为,斜边长为,那么.(3) 直角三角形斜边上的中线等于斜边的一半. 要点二、锐角三角函数1.正弦、余弦、正切、余切的定义如右图,在Rt △ABC 中,∠C=900,如果锐角A 确定:(1)∠A 的对边与斜边的比值是∠A 的正弦,记作sinA= ∠A 的对边斜边(2)∠A 的邻边与斜边的比值是∠A 的余弦,记作cosA = ∠A 的邻边斜边(3)∠A 的对边与邻边的比值是∠A 的正切,记作tanA = ∠A 的对边∠A 的邻边a b ,c 222a b c +=(4)∠A 的邻边与对边的比值是∠A 的余切,记作cotA = ∠A 的邻边∠A 的对边要点诠释:(1)正弦、余弦、正切、余切是在一个直角三角形中定义的,其本质是两条线段的比值,它只是一个数值,其大小只与锐角的大小有关,而与所在直角三角形的大小无关.(2)sinA 、cosA 、tanA 、cotA 是一个整体符号,即表示∠A 四个三角函数值,书写时习惯上省略符号“∠”,但不能写成sin ·A ,对于用三个大写字母表示一个角时,其三角函数中符号“∠”不能省略,应写成sin ∠BAC ,而不能写出sinBAC.(3)sin 2A 表示(sinA)2,而不能写成sinA 2. (4)三角函数有时还可以表示成等.2.锐角三角函数的定义锐角∠A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数. 要点诠释:1. 函数值的取值范围对于锐角A 的每一个确定的值,sinA 有唯一确定的值与它对应,所以sinA 是∠A 的函数.同样,cosA 、tanA 、cotA 也是∠A 的函数,其中∠A 是自变量,sinA 、cosA 、tanA 、cotA 分别是对应的函数.其中自变量∠A 的取值范围是0°<∠A <90°,函数值的取值范围是0<sinA <1,0<cosA <1,tanA >0,cotA >0.2.锐角三角函数之间的关系:余角三角函数关系:“正余互化公式” 如∠A+∠B=90°,那么:sinA=cosB ; cosA=sinB ; tanA=cotB, cotA=tanB. 同角三角函数关系:sin 2A +cos 2A=1;3.30°、45°、60°角的三角函数值∠A 30°45°60°sinAcosAtanA1cotA1在直角三角形中,如果一个角等于30°,那么它所对的直角边等于斜边的一半.sin cos 1tanA=,cot ,tan .cos sin cot A A A A A A A==30°、45°、60°角的三角函数值和解含30°、60°角的直角三角形、含45°角的直角三角形为本章的重中之重,是几何计算题的基本工具. 要点三、解直角三角形在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形. 解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如图:角角关系:两锐角互余,即∠A+∠B=90°; 边边关系:勾股定理,即;边角关系:锐角三角函数,即要点诠释:解直角三角形,可能出现的情况归纳起来只有下列两种情形: (1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边.Rt △ABC由求∠A ,∠B=90°-∠A ,由求∠A ,∠B=90°-∠A ,sin ,cos ,tan ,cot a b a b A A A A c c b a====sin ,cos ,tan ,cot b a b a B B B B c c a b====,∠B=90°-∠A,,∠B=90°-∠A,,要点四、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.1.解这类问题的一般过程(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.2.常见的应用问题类型(1) 仰角与俯角:(2)坡度:;坡角:.(3)方向角:要点诠释:1.用解直角三角形的知识解决实际问题的基本方法是:把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系.借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题.当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解.2.锐角三角函数的应用用相似三角形边的比的计算具有一般性,适用于所有形状的三角形,而三角函数的计算是在直角三角形中解决问题,所以在直角三角形中先考虑三角函数,可以使过程简洁。
《解直角三角形》全章复习与巩固(基础篇)九年级数学下册基础知识专项讲练
专题1.17《解直角三角形》全章复习与巩固(基础篇)(专项练习)一、单选题1.2sin60°的值等于()A .12B .3C .2D 2.如图,在Rt ABC △中,90B ∠=︒,下列结论中正确的是()A .sin BC A AB=B .cos BC A AC=C .tan AB C BC=D .cos AC C BC=3.如图,在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为6米,那么相邻两树在坡面上的距离AB 为()A .6cos αB .6cos αC .6sin αD .6sin α4.如图,为了测量河岸A 、B 两地间的距离,在与AB 垂直的方向上取点C ,测得AC =a ,ABC α∠=,那么A 、B 两地的距离等于()A .tan a αB .tan a α⋅C .sin a α⋅D .cos a α⋅5.点()sin 60,cos30︒︒关于y 轴对称的点的坐标是().A .12⎛- ⎝⎭B .1,2⎛ ⎝⎭C .22⎛⎫- ⎪ ⎪⎝⎭D .⎝⎭6.如图,在平面直角坐标系中,点A 的坐标为(﹣1,2),以点O 为圆心,将线段OA 逆时针旋转,使点A 落在x 轴的负半轴上点B 处,则点B 的横坐标为()AB C D7.已知,斜坡的坡度i =1:2,小明沿斜坡的坡面走了100米,则小明上升的距离是()A .B .20米C .D .1003米8.为扩大网络信号的辐射范围,某通信公司在一座小山上新建了一座大型的网络信号发射塔.如图,在高为12米的建筑物DE 的顶部测得信号发射塔AB 顶端的仰角∠FEA =56°,建筑物DE 的底部D 到山脚底部C 的距离DC =16米,小山坡面BC 的坡度(或坡比)i =1:0.75,坡长BC =40米(建筑物DE 、小山坡BC 和网络信号发射塔AB 的剖面图在同一平面内,信号发射塔AB 与水平线DC 垂直),则信号发射塔AB 的高约为()(参考数据:sin56°≈0.83,cos56°≈0.56,tan56°≈1.48)A .71.4米B .59.2米C .48.2米D .39.2米9.如图,在ABC ∆中,90ACB ∠=︒.边BC 在x 轴上,顶点,A B 的坐标分别为()2,6-和()7,0.将正方形OCDE 沿x 轴向右平移当点E 落在AB 边上时,点D 的坐标为()A .3,22⎛⎫ ⎪⎝⎭B .()2,2C .11,24⎛⎫ ⎪⎝⎭D .()4,210.某车库出口安装的栏杆如图所示,点A 是栏杆转动的支点,点E 是栏杆两段的联结点.当车辆经过时,栏杆AEF 最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB ⊥BC ,EF ∥BC ,∠AEF =143°,AB =1.18米,AE =1.2米,那么适合该地下车库的车辆限高标志牌为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A .B .C .D .二、填空题11.在Rt △ABC 中,∠C =90°,AB =2,BC sin2A=_____.12.若关于x 的方程x 2+sin α=0有两个相等的实数根,则锐角α的度数为___.13.如图,P (12,a )在反比例函数60y x=图象上,PH ⊥x 轴于H ,则tan ∠POH 的值为_____.14.如图,在矩形ABCD 中,DE AC ⊥,垂足为点E .若4sin 5ADE ∠=,4=AD ,则AB 的长为______.15.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=_____.16.如图,在ABC ∆中,1sin 3B =,tan C =3AB =,则AC 的长为_____.17.如图,ABC 的顶点B C 、的坐标分别是(1,0)、,且90,30ABC A ∠=︒∠=︒,则顶点A 的坐标是_____.18.如图,在菱形ABCD 中,∠A =60°,AB =6.折叠该菱形,使点A 落在边BC 上的点M 处,折痕分别与边AB ,AD 交于点E ,F .当点M 与点B 重合时,EF 的长为________;当点M 的位置变化时,DF 长的最大值为________.三、解答题19.计算:(1sin 602︒;(2)26tan 30cos30tan 602sin 45cos 60︒-︒︒-︒+︒ .20.如图,在Rt △ABC 中,∠C =90°,D 是BC 边上一点,AC =2,CD =1,设∠CAD =α.(1)求sin α、cos α、tan α的值;(2)若∠B =∠CAD ,求BD 的长.21.如图,为了测得旗杆AB 的高度,小明在D 处用高为1m 的测角仪CD ,测得旗杆顶点A 的仰角为45°,再向旗杆方向前进10m ,又测得旗杆顶点A 的仰角为60°,求旗杆AB 的高度.22.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的12,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.23.如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D 处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)24.如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°.根据有关部门的规定,∠α≤39°时,才能避免滑坡危险.学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin 39°≈0.63,cos 39°≈0.78,tan 39°≈0.81,≈1.41)参考答案1.D【分析】根据特殊锐角三角函数值代入计算即可.解:2sin60°=故选:D .【点拨】本题考查特殊角三角函数值,熟知sin60°的值是正确计算的关键.2.C【分析】根据锐角三角函数的定义解答.解:在Rt △ABC 中,∠B =90°,则sin ,cos ,tan ,cos BC AB AB BCA A C C AC AC BC AC====.故选:C .【点拨】本题考查锐角三角函数,熟练掌握锐角三角函数的定义是解题关键.3.B【分析】根据余弦的定义计算,判断即可.解:在Rt △ABC 中,6BC =米,ABC α∠=,∵cos BCABC AB∠=,∴6cos BC AB ABC coa α==∠,故选:B .【点拨】本题考查的是解直角三角形的应用坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.4.A【分析】根据正切的定义计算选择即可.解:∵tanα=ACAB,∴AB =tan tan AC aαα=,故选A .【点拨】本题考查了正切的定义即对边比邻边,熟练掌握正切的定义是解题的关键.5.C【分析】先利用特殊角的三角函数值得出点的坐标,再写出其关于y 轴对称的坐标即可.解:∵sin60°cos30°,)关于y 轴对称的点的坐标是(.故选:C .【点拨】本题考查了特殊角的三角函数值和关于坐标轴对称的点的特征,掌握特殊角的三角函数值是解决本题的关键.6.C【分析】利用勾股定理求出OA ,可得结论.解:∵A (﹣1,2),∴OA由旋转的性质可知,OB =OA∴B 0).故选:C .【点拨】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是利用勾股定理求出OA 即可.7.A【分析】根据坡度意思可知1tan 2A ∠=,设BC h =米,则2AC h =米,由勾股定理可得:222AB AC BC =+,即2221004h h =+,求出h 即可.解:如图:由题意可知:1tan 2A ∠=,100AB =米,设BC h =米,则2AC h =米,由勾股定理可得:222AB AC BC =+,即2221004h h =+,解得:h =米,h =-.故选:A【点拨】本题考查勾股定理,坡度坡比问题,解题的关键是理解坡度的意思,找出BC ,AC之间的关系.8.D【分析】延长EF交AB于点H,DC⊥AB于点G,可得四边形EDGH是矩形,根据小山坡面BC的坡度i=1:0.75,即43BGCG=,求得BG=32,CG=24,再根据三角函数即可求出信号发射塔AB的高.解:如图,延长EF交AB于点H,DC⊥AB于点G,∵ED⊥DG,∴四边形EDGH是矩形,∴GH=ED=12,∵小山坡面BC的坡度i=1:0.75,即43 BGCG=,设BG=4x,CG=3x,则BC x,∵BC=40,∴5x=40,解得x=8,∴BG=32,CG=24,∴EH=DG=DC+CG=16+24=40,BH=BG﹣GH=32﹣12=20,在Rt△AEH中,∠AEH=56°,∴AH=EH•tan56°≈40×1.48≈59.2,∴AB=AH﹣BH=59.2﹣20=39.2(米).答:信号发射塔AB的高约为39.2米.故选:D.【点拨】本题主要考查解直角三角形,熟练掌握三角函数是解题的关键.9.B【分析】先画出E 落在AB 上的示意图,如图,根据锐角三角函数求解O B '的长度,结合正方形的性质,从而可得答案.解:由题意知:()2,0,C - 四边形COED 为正方形,,CO CD OE ∴==90,DCO ∠=︒()()2,2,0,2,D E ∴-如图,当E 落在AB 上时,()()2,6,7,0,A B - 6,9,AC BC ∴==由tan ,AC EO ABC BC O B'∠=='62,9O B∴='3,O B '∴=734,2,OO OC ''∴=-==()2,2.D ∴故选.B 【点拨】本题考查的是平移的性质的应用,同时考查了正方形的性质,图形与坐标,锐角三角函数,掌握以上知识是解题的关键.10.A【分析】延长BA 、FE ,交于点D ,根据AB ⊥BC ,EF ∥BC 知∠ADE =90°,由∠AEF =143°知∠AED =37°,根据sin ∠AED AD AE=,AE =1.2米求出AD 的长,继而可得BD 的值,从而得出答案.解:如图,延长BA 、FE ,交于点D .∵AB ⊥BC ,EF ∥BC ,∴BD ⊥DF ,即∠ADE =90°.∵∠AEF =143°,∴∠AED =37°.在Rt △ADE 中,∵sin ∠AED AD AE=,AE =1.2米,∴AD =AE •sin ∠AED =1.2×sin37°≈0.72(米),则BD =AB +AD =1.18+0.72=1.9(米).故选:A .【点拨】本题考查了解直角三角形的应用,解题的关键是结合题意构建直角三角形,并熟练掌握正弦函数的概念.11.12【分析】根据∠A 的正弦求出∠A =60°,再根据30°的正弦值求解即可.解:∵sin BC A AB ==∴∠A =60°,∴1sin sin 3022A ︒==.故答案为12.【点拨】本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.12.30°##30度解:∵关于x 的方程2sin 0x α+=有两个相等的实数根,∴(241sin 0 ,α=-⨯⨯=解得:1sin 2α=∴锐角α的度数为30°.故答案为∶30°13.512解:∵P (12,a )在反比例函数60y x =图象上,∴a=6012=5,∵PH ⊥x 轴于H ,∴PH=5,OH=12,∴tan ∠POH=512,故答案为512.14.3【分析】在Rt ADE △中,由正弦定义解得165AE =,再由勾股定理解得DE 的长,根据同角的余角相等,得到sin sin ADE ECD ∠=∠,最后根据正弦定义解得CD 的长即可解题.解:在Rt ADE △中,4sin 5AE ADE AD ∠==4AD = 165AE ∴=125DE ∴===DE AC⊥ 90ADE EDC EDC ECD ∴∠+∠=∠+∠=︒ADE ECD∴∠=∠4sin sin 5DE ADE ECD CD ∴∠=∠==534CD DE ∴=⋅=在矩形ABCD 中,3AB CD ==故答案为:3.【点拨】本题考查矩形的性质、正弦、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.15.45°【分析】根据等角的正切值相等得出∠1=∠3,再根据特殊角的三角函数值即可得出答案.解:如图所示:由题意可得:11tan 3,tan 122BC CF AB EF ∠==∠==∴∠1=∠3,tan 1FM FAM AM∠== 122345FAM ∴∠+∠=∠+∠=∠=︒故答案为:45°.【点拨】本题考查了特殊角的三角函数以及等角三角函数关系,由图得出∠1=∠3是解题的关键.16【分析】过A 作AD 垂直于BC ,在直角三角形ABD 中,利用锐角三角函数定义求出AD 的长,在直角三角形ACD 中,利用锐角三角函数定义求出CD 的长,再利用勾股定理求出AC 的长即可.解:过A 作AD BC ⊥,在Rt ABD ∆中,1sin 3B =,3AB =,∴sin 1AD AB B =⋅=,在Rt ACD ∆中,tan 2C =,∴AD CD =CD ,根据勾股定理得:AC =.【点拨】此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,以及勾股定理,熟练掌握各自的性质是解本题的关键.17.【分析】根据B C 、的坐标求得BC 的长度,60CBO ∠=︒,利用30度角所对的直角边等于斜边的一半,求得AC 的长度,即点A 的横坐标,易得//AC x 轴,则C 的纵坐标即A 的纵坐标.解:B C 、的坐标分别是(1,0)、2BC ∴=tan OC CBOOB∴∠==60CBO ∴∠=︒90,30ABC A ∠=︒∠=︒60,24ACB AC BC ∴∠=︒==//AC x ∴轴A ∴.故答案为:.【点拨】本题考查了含30°角的直角三角形,用到的知识点有特殊角的三角函数,在直角三角形中,30度角所对的直角边等于斜边的一半,熟记特殊角的三角函数是解题的关键.18.6-【分析】当点M 与点B 重合时,EF 垂直平分AB ,利用三角函数即可求得EF 的长;根据折叠的性质可知,AF =FM ,若DF 取最大值,则FM 取最小值,即为边AD 与BC 的距离DG ,即可求解.解:当点M 与点B 重合时,由折叠的性质知EF 垂直平分AB ,∴AE =EB =12AB =3,在Rt △AEF 中,∠A =60°,AE =3,tan60°=EF AB,∴EF当AF 长取得最小值时,DF 长取得最大值,由折叠的性质知EF 垂直平分AM ,则AF =FM ,∴FM ⊥BC 时,FM 长取得最小值,此时DF 长取得最大值,过点D 作DG ⊥BC 于点C ,则四边形DGMF 为矩形,∴FM =DG ,在Rt △DGC 中,∠C =∠A =60°,DC =AB =6,∴DG =DC∴DF 长的最大值为AD -AF =AD -FM =AD -DG故答案为:【点拨】本题考查了菱形的性质,折叠的性质,解直角三角形,解题的关键是灵活运用所学知识解决问题.19.(1(2)1【分析】(1)根据二次根式与特殊角的三角函数值即可求解;(2)根据特殊角的三角函数值即可求解.解:(1)原式=11232-=16(2)原式21316221222=⨯-⨯=--=-【定睛】此题主要考查实数的运算。
2024年中考数学总复习专题18解直角三角形复习划重点 学霸炼技法
叫做坡度(或坡比),用字母 i 表示;
比)、坡角
坡面与水平面的夹角 α 叫坡角,i=
h
tan α= .如图(3)
l
第16页
返回目录
专题十八
解直角三角形
中考·数学
一般指以观测者的位置为中心,将正
北或正南方向作为起始方向旋转到目
方向角
标方向所成的角(一般指锐角),通常
表达成北(南)偏东(西)××度.如图
专题十八
解直角三角形
中考·数学
(2)sin ∠ADC的值.
∵AD 是△ABC 的中线,
1
∴CD= BC=2,∴DE=CD-CE=1.
2
∵AE⊥BC,DE=AE,∴∠ADC=45°,
AE
2
∴sin ∠ADC=
=
.
DE
2
第25页
返回目录
专题十八
解直角三角形
中考·数学
[规律方法]
解此类题的一般方法
(1)构造直角三角形.
(2)理清直角三角形的边、角关系.
(3)利用特殊角的三角函数值解答问题.
第26页
返回目录
专题十八
研究4
解题模型分析
解直角三角形
中考·数学
常见解直角三角形模型
■命题角度1:母子型
基本
模型
AB=AB;BD+DC=BC
第27页
BC=BC;AD+DB=AB
返回目录
专题十八
解直角三角形
中考·数学
演变
模型
BC=EF;
解直角三角形
中考·数学
[对接教材]
人教:九下P60~P84;
北师:九下P2~P27;
中考专题复习:《解直角三角形》
N
A
Q
如图所示,在坡角为 30°的楼梯表面铺地毯,地毯的长 度至少需 ( D ) A.4m B.6m C.(6+2 )m D.(2+2 )m
1.如图所示,某地下车库的入口处有斜坡AB,其 坡度i=1∶1.5,且AB= 13 m.
0
2,山坡与地面成30
则他上升
30
的倾斜角,某人上坡走60米, 3 米,坡度是____________ 3
在Rt△ABC中,∠C=90°:
c sin A c cos A 。 ⑴已知∠A、 c, 则a=__________;b=_________
b cos A 。 b tan A ⑵已知∠A、 b, 则a=__________;c=_________
a a sin A 。 tan A ⑶已知∠A、 a,则b=__________;c=_________ 斜边
1
1 2
┌
3
BHale Waihona Puke A B53 3
在解直角三角形及应用时经常接触到的一些概念
(1)仰角和俯角
(2)坡度
tan α =
视线
h l
铅 垂 线
仰角 水平线
俯角
北
α为坡角
视线
h α
A
(3)方位角
西
30°
l
B
O 45°
南
东
链接中考
C
D A B
C
D
C
E
A
链接中考3
一副直角三角板如图放置,点C在FD的延长线上, AB∥CF,∠F=∠ACB=90°, ∠E=45°,∠A=60°, AC=10,试求CD的长.
c a
2
解直角三角形(复习课)
AC
例2、在直角三角形ABC中,∠C=90o,∠A=60o两直角 边的 和为14,求这两条直角边的长。
A
解:依题意画图 1,设AC x,则BC 3x.
AC BC 14
C
图1
B
x 3x 14
解得 x 7 3 7, 3x 21 7 3
两条直角边分别长 7 3 7, 21 7 3。
第六章 解直角三角形 (复习课)
教学目标:
1、增强对本章的基本概念 和关系式的记忆和理解。
2、能熟练地运用本章知识解
决有关问题。 3、加深对本章的解题方法和解题
思路的体会。
一、知识结构框图:
锐角三角函 数的值
锐角三角函数
同角锐角三 角函数之间 的关系
解直角 三角形
应 用
互为余角的 锐角三角函 数之间的关 系
三、例题讲解:
例1、已知 Rt ABC
12 中,∠C=Rt∠,sinA= 13 ,
求角A的
其它锐角三角函数值。 解:Rt ቤተ መጻሕፍቲ ባይዱABC 中,C Rt , 12 BC sin A 13 AB 设BC 12 t , AB 13t. 由勾股定理,得
AB BC 5t, AC 5t 5 cos A , AB 13t 13 BC 12 t 12 tgA , AC 5t 5 AC 5t ctgA 。 BC 12 t
2 2 2 2 2
2
思考题:在山顶上处D有一铁塔,在塔顶B处测得地面上一 点A的俯角α=60o,在塔底D测得点A的俯角β=45o, 已知塔高BD=30米,求山高CD。(广东省1990中 考试题) B α D β C A
解直角三角形(复习课)
例3一段河坝的横断面为等腰三角形ABCD,试根据下图
中的数据求出坡角α和坝底宽AD。(单位是米,结果保
留根号)
解:过C作CFAD于F AB CD,BC // AD,i 1: 3, A
B 4
C
i 1: 3
6
α
EF
D
CF BE 6,EF BC 4,
AE FD 3CF 6 3.
例2、在直角三角形ABC中,∠C=90o,∠A=60o两直角
边的 和为14,求这两条直角边的长。 A
解:依题意画图1,设AC x,则BC 3x.
AC BC 14
C 图1 B
x 3x 14
解得 x 7 3 7, 3x 21 7 3
两条直角边分别长 7 3 7, 21 7 3。
cos A AC 5t 5 , AB 13t 13
tgA BC 12t 12, AC 5t 5
ctgA AC 5t 。 BC 12t
; 财务管理培训/html/hometopfenlei/topduanqipeixun/duanqipeixun4/
;
赴成吉思汗陵。第二天早上,成陵的主殿上野鸽子翻飞环绕,它们喜欢这里,老祖宗也喜欢它们。主殿穹隆高大,色调是蓝白这样的纯色,蒙古人喜欢的两种色彩。后来,我从远近很多角度看成陵的主殿,它安详,和山势草木土地天空和谐一体,肃穆,但没有凌驾天地的威势。从陵园往 下面看,河床边上有一排餐饮的蒙古包,门口拴马。天低荒漠,平林如织。此时心情如同唱歌的心情,不是唱“草原上升起不落的太阳”,而如“四季”—— 春天来了,风儿到处吹,土地苏醒过来。本想留在春营地,可是路途太远,我们催马投入故乡怀抱。 民歌有意思,留在春营地和 路途太远有什么关系呢?让不矛盾的矛
【解直角三角形】专题复习
【解直角三角形】专题复习考点一、直角三角形的性质 1、直角三角形的两个锐角互余∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°, ∠C=90° ⇒BC=21AB 3、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°,D 为AB 的中点⇒CD=21AB=BD=AD 4、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 5、射影定理(可利用相似证明):在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项, 每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90°CD ⊥AB ⇒ BD AD CD ∙=2 AB AD AC ∙=2 AB BD BC ∙=2 6、常用关系式:由三角形面积公式可得: AB ∙CD=AC ∙BC考点二、直角三角形的判定1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
考点三、锐角三角函数的概念1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即c asin =∠=斜边的对边A A②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即c bcos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即batan =∠∠=的邻边的对边A A A④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA ,即abcot =∠∠=的对边的邻边A A A2、锐角三角函数的概念:锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数3、一些特殊角的三角函数值三角函数 0° 30°45°60°90° sinα212223 1cos α 123 2221 0tan α 033 13不存在cot α 不存在31 33 04、各锐角三角函数之间的关系 (1)互余关系 sinA=cos(90°—A),cosA=sin(90°—A) ,tanA=cot(90°—A),cotA=tan(90°—A) (2)平方关系 1cos sin 22=+A A (3)倒数关系 tanA ∙tan(90°—A)=1 (4)弦切关系 tanA=AAcos sin 5、锐角三角函数的增减性 当角度在0°~90°之间变化时,(1)正弦(或正切)值随着角度的增大(或减小)而增大(或减小) (2)余弦(或余切)值随着角度的增大(或减小)而减小(或增大)考点四、解直角三角形 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
解直角三角形(复习课)课件
结合勾股定理和三角函数计算直角三 角形中的未知量。
利用给定的条件,设计合理的方案解 决实际问题,如设计桥梁、建筑等结 构的支撑体系。
06
复习与总结
重点回顾
直角三角形的定义与性质
回顾直角三角形的定义、性质和判定条件,理解其在几何图形中 的重要地位。
求解角度。
常见错误分析
混淆边和角
在解题过程中,有时会混淆边和角,导致计算错误。
忽视勾股定理的条件
在使用勾股定理时,需要确保三角形是直角三角形,否则会导致错 误。
角度范围错误
在计算角度时,需要注意角度的范围,避免出现负角度或超过180 度的角度。
解题方法总结
勾股定理法
适用于已知两边长度, 求第三边长度的情况。
船只安全航行。
物理实验
测量角度
在物理实验中,经常需要测量各 种角度。解直角三角形的方法可 以用来计算这些角度,确保实验
结果的准确性。
计算力的大小
在物理实验中,经常需要计算力的 大小。通过解直角三角形,可以精 确地计算出力的大小,确保实验结 果的可靠性。
确定物体的位置
在物理实验中,物体的位置是非常 重要的。通过解直角三角形,可以 计算出物体的位置,确保实验的准 确性和可靠性。
04
解题技巧与策略
解题思路
01
02
03
04
明确问题要求
首先需要理解题目的要求,确 定需要求解的是什么。
选择合适的三角形
根据问题描述,选择一个合适 的直角三角形来解决问题。
利用勾股定理
在直角三角形中,勾股定理是 一个重要的工具,可以帮助我
们求解边长。
解直角三角形的整理和复习
学习难点:把实际问题转化为解直角三角形的数学问题。
1.解直角三角形的定义 由直角三角形中除直角外的已知元素,求出所有 未知元素的过程,叫做解直角三角形(直角三角形中, 除直角外,一共有 5 个元素,即 3 条边和 2 个锐角).
2、解直角三角形的依据
三边之间的关系: a2+b2=c2(勾股定理);
D.16 5
3、如图,Rt△ABC 中,∠A=90°,AD⊥BC 于点 D,
若 BD∶CD=3∶2,则 tan∠ B=( D )
3
2
6
6
A. 2
B. 3
C. 2
D. 3
4、(2014·安顺)如图,在 Rt△ABC 中,∠C=90°,∠A=30°,
E 为线段 AB 上一点且 AE∶EB=4∶1,EF⊥AC 于 F,连接 FB,
B.cot∠AED D.cos∠AED
.
4.如图,某地下车库的入口处有斜坡AB, 其坡度
i=1:1.5, 则AB= 13 m.
5. 计算:
(2012年南宁市) (1).2 sin
60°
3 tan
30°
1 3
0
(1)2009
(2011年青海) 12 4sin 600 (3 π)0 ( 1)1 3
大楼的顶部和底部测得飞机的仰角为30°和45°,
求飞机的高度PO .
P
C
30° A
45°
200米
O
B
3、如图,海岛A四周20海里周围内为暗礁区,小亮 乘坐的一艘货轮由东向西航行,在B处见岛A在北偏 西60˚,航行24海里到C处,见岛A在北偏西30˚,货 轮继续向西航行,有无触礁的危险?
A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CD=1AB=BD=AD
2
D
4、勾股定理
为AB的中点丿
直角三角形两直角边a,b的平方和等于斜边c的平方,即
ZACB=90J
-CD2
AC2
AD ?BD
AD ?AB
CD! AB」
LBC2
BD ?AB
6、常用关系式
由三角形面积公式可得:
AB?CD=A(?BC
考点二、直角三角形的判定
(3~5分)
(2
(3)倒数关系:
(4)弦切关系:
5、锐角三角函数的 当角度在0 ~90°之1
tan A?ta n(90—A)=1
丄asin AtanA=—
cos A
增减性
间变化时,
(1)正弦值随着角度的增大(或减小)而增大(或
减小)
(2)
余弦值随着角度的增大
(或减小)
而减小(或
增大)
(3)
正切值随着角度的增大
(或减小)
AC=a,BD=3,试求四边形ABCD勺面积(用含,a,b的代数式表示).
例4.(2010重庆)已知:如图,在RtAABC中,
上一点,且BD 2AD,ADC60•求△ABC周长.(结果保留根号)
考点三、锐角三角函数的概念(3~8分)
1、如图,在△ABC中,/C=90°
①锐角A的对边与斜边的比叫做/A的正弦,记为
③锐角A的对边与邻边的比叫做/A的正切,记为tanA,即tan A
④锐角A的邻边与对边的比叫做/A的余切,记为cotA,即cotA
2、锐角三角函数的概念
锐角A的正弦、余弦、正切、余切都叫做/A的锐角三角函数
5、射影定理
在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比 例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项
b
1、有一个角是直角 的三角形是直角三角形。
2、 如果三角形一边上的中线等于这边的一半 ,那么这个三角形是直角三角形。
3、勾股定理的逆定理
如果三角形的三边长a,b,c有关系a2b2c2
3、一些特殊角的三角函数值
三角函数0°30
sina
0
1
2
3
cosa
1
2
tana
0
3
cota
不存在
•、3
4、各锐角三角函数之间的
关系
(1)互余关系
sinA=cos(90°—A)
cotA=ta n(90—A)
45°
60°பைடு நூலகம்
90°
二
1
2
2
2
1
0
2
2
1
.3
不存在
1
..3
0
3
,cosA=sin(90—A)tanA=cot(90°—A),
解直角三角形提高与拓展(学案)
基础知识精讲
考点一、直角三角形的性质
1、直角三角形的 两个锐角互余
可表示如下:/C=90°/A+ZB=90°
2、 在直角三角形中,30°角所对的直角边等于斜边的一半。
ZA=30°
(3~5分)
可表示如下:
BC=1AB
2
3、直角三角形
/C=90°
斜边上的中线等于斜边的一半
/ACB=90、
而增大(或
减小)
(4)
余切值随着角度的增大
(或减小)
而减小(或
增大)
考点四、解直角三角形(3~5)
1、解直角三角形的概念
2、解直角三角形的 理论依据
在RtAABC中,/C=90°,ZA,ZB,ZC所对的边分别为a,b,c
AC恰好平分ZA,AB=21,AD=9,BC= CD=10,试求AC
的长.
例2、一艘船向正东方先航行,上午10点在灯塔的西南方向k海里处,到下午2点时航行
到灯塔的东偏南60°的方向,画出船的航行方位图,并求出船的航行速度.
例3.(2010甘肃兰州)(本题满分10分)已知平行四边形 于点O AC=1Q BD=8.
若AC丄BD试求四边形ABCD勺面积;
(2)若AC与BD的夹角ZAOD=60,求四边形ABCD勺面积;
(3) 试讨论:若把题目中“平行四边形ABCD改为“四边形ABCD,且ZAOD=