发光二极管压降
发光二极管的简易测试(精)
发光二极管的简易测试发光二极管,简称LED,是一种能把电能转换成光能的半导体器件,当管子上通过一定的正向电流时,便可以光的形式将能量释放出来,发光强度与正向电流近似成正比,发光颜色与管子的材料有关。
一、LED的主要特点(1)工作电压低,有的仅需1.5 - 1.7V即能导通发光;(2)工作电流小,典型值约1OmA;(3)具有和普通二极管相似的单向导电特性,只是死区电压略高些;(4)具有和硅稳压二极管相似的稳压特性;(5)响应时间快、从加电压到发出光的时间仅1一1Oms,响应频率可达100Hz;则使用寿命长,一般可达10万小时以上。
目前常用的发光二极管有发红光和绿光的磷化稼(GaP)LED,其正向压降V F=2.3V;发红光的磷砷化稼(GaASP) LED,其正向压降V F= 1.5 - 1.7V;以及采用碳化硅和蓝宝石材料的黄色、蓝色LED,其正向压降V F=6V。
由于LED的正向伏安曲线较陡,故在应用时,必须串接限流电阻,以免烧坏管子。
在直流电路中,限流电阻R可用下式估算:R=(E-V F)/I F在交流电路中,限流电阻R可用下式估算:R= (e-V F )/2I F,式中e为交流电源电压的有效值。
二、发光二极管的测试在无专用仪器的情况下,LED也可用万用表估测(这里以MF30型万用表为例)。
首先,将万用表置于Rx1k档或Rx100档,测量LED的正反向电阻,若正向电阻小于50kΩ,反向电阻无穷大,表明管子正常。
若正、反向均为零或均为无穷大,或正反向电阻值比较接近,均说明管子有问题。
然后,还须测量LED的发光情况。
因其正向压降为1.5V以上,故无法用Rx1, Rx1O, Rx1k档直接测量,R x1Ok档虽然使用15V电池;但内阻太高,也不能使管子导通发光。
但可采用双表法测试。
将两块万用表串联起来,均置于Rx1档,这样电池总电压为3V,总内阻为50Ω,则提供给L印的工作电流大于1OmA,足以使管子导通发光。
二极管全面分析
二极管全面分析1 二极管1 二极管的管压降:硅二极管(不发光类型)正向管压降0.7V,发光二极管正向管压降为随不同发光颜色而不同。
二极管的电压与电流不是线性关系,所以在将不同的二极管并联的时候要接相适应的电阻。
2 二极管的应用1、整流二极管利用二极管单向导电性,可以把方向交替变化的交流电变换成单一方向的脉冲直流电。
2、开关元件二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。
利用二极管的开关特性,可以组成各种逻辑电路。
3、限幅元件二极管正向导通后,它的正向压降基本保持不变(硅管为0.7V,锗管为0.3V)。
利用这一特性,在电路中作为限幅元件,可以把信号幅度限制在一定范围内。
4、继流二极管在开关电源的电感中和继电器等感性负载中起继流作用。
5、检波二极管在收音机中起检波作用。
6、变容二极管使用于电视机的高频头中。
7、显示元件用于VCD、DVD、计算器等显示器上。
8、稳压二极管反向击穿电压恒定,且击穿后可恢复,利用这一特性可以实现稳压电路。
3 二极管的工作原理12二极管实物3晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。
当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。
当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。
当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。
当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。
p-n结的反向击穿有齐纳击穿和雪崩击穿之分。
4 二极管的导电特性二极管最重要的特性就是单方向导电性。
发光二极管参数
二极管参数普通发光二极管的正向饱和压降为1.6V~2.1V,正向工作电流为5~20mALED的特性1.极限参数的意义(1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。
超过此值,LED发热、损坏。
(2)最大正向直流电流IFm:允许加的最大的正向直流电流。
超过此值可损坏二极管。
(3)最大反向电压VRm:所允许加的最大反向电压。
超过此值,发光二极管可能被击穿损坏。
(4)工作环境topm:发光二极管可正常工作的环境温度范围。
低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。
2.电参数的意义(1)正向工作电流If:它是指发光二极管正常发光时的正向电流值。
在实际使用中应根据需要选择IF在0.6·IFm以下。
(2)正向工作电压VF:参数表中给出的工作电压是在给定的正向电流下得到的。
一般是在IF=20mA时测得的。
发光二极管正向工作电压VF在1.4~3V。
在外界温度升高时,VF将下降。
(3)V-I特性:发光二极管的电压与电流的关系在正向电压正小于某一值(叫阈值)时,电流极小,不发光。
当电压超过某一值后,正向电流随电压迅速增加,发光。
由V-I曲线可以得出发光管的正向电压,反向电流及反向电压等参数。
正向的发光管反向漏电流IR<10μA 以下。
LED的分类1.按发光管发光颜色分按发光管发光颜色分,可分成红色、橙色、绿色(又细分黄绿、标准绿和纯绿)、蓝光等。
另外,有的发光二极管中包含二种或三种颜色的芯片。
根据发光二极管出光处掺或不掺散射剂、有色还是无色,上述各种颜色的发光二极管还可分成有色透明、无色透明、有色散射和无色散射四种类型。
散射型发光二极管和达于做指示灯用。
2.按发光管出光面特征分按发光管出光面特征分圆灯、方灯、矩形、面发光管、侧向管、表面安装用微型管等。
圆形灯按直径分为φ2mm、φ4.4mm、φ5mm、φ8mm、φ10mm 及φ20mm等。
国外通常把φ3mm的发光二极管记作T-1;把φ5mm的记作T-1(3/4);把φ4.4mm的记作T-1(1/4)。
不同颜色的LED压降及电流
不同颜色的LED压降及电流不同颜色的LED压降及电流使用电话线电源,直接将电话线接在上面就可以实现家中永久照明,灯泡亮度对于一般的照明绝对够用了,光线柔和明亮照明区域广,对周边环境无任何影响,LED灯泡寿命超长,可达10万小时以上。
购买十个高亮LED发光二极管,二个串联为一组,共分为5组将其并联,总电压5V电流20毫安,电话线电压48V,余下的48V-5V=43V,再用电阻48V/20MA=2.4K、1/8瓦电阻降压,因此可用5K可变电阻调整,此时拎起电话时LED灯应熄灭,来电时,LED灯应闪亮,电话功能不能受影响(LED根据需求可调整数量).--LED压降及电流1)黄绿(565-575nm))黄(585-595nm))红(600-650nm)led的压降在1.8-2.4v(平均2.0v),工作电流20ma=(5.0-2.0)v/150Ω2)蓝(465-475nm))绿(500-535nm))白光led的压降在2.8-4.0v(平均3.3v),工作电流20ma=(5.0-3.3)v/85Ω3.1) 5.0指led和限流电阻两端的输入电压, 3.2)被减去的压降是led的压降, 3.3)阻值是根据led 20ma工作时,电阻需要承担的压降计算得知的以上计算都是根据led的20ma工作平均压降计算的1/11页LED的正向压降:不同光(波长),会不同.最大工作电流:30mA/25?:一般亮度的可见光;50-300mA/?:高亮度的可见光LED电话灯实做法并不可取,是电信部门禁止的~大大地增加了电信交换机的负荷,亮度低的话实用性不大,加大电流增大亮度会使交换机误认为摘机,同时,还可能会造成连接在同一条线上的其他设备工作不正常。
所谓的'电话灯'并不复杂,主要是根据LED亮时特有的固定压降(白LED约3V),将它串联到压降大于摘机电压,简单的只要一整流桥+限流电阻+几个白色LED串联。
也可以采用整流桥+稳压二极管+三极管扩流+限流电阻+几个白色LED。
LED参数详解
LED参数详解普通发光二极管的正向饱和压降为1.6V~2.1V, 正向工作电流为5~20mALED的特性1.极限参数的意义(1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。
超过此值,LED发热、损坏。
(2)最大正向直流电流IFm:允许加的最大的正向直流电流。
超过此值可损坏二极管。
(3)最大反向电压VRm:所允许加的最大反向电压。
超过此值,发光二极管可能被击穿损坏。
(4)工作环境topm:发光二极管可正常工作的环境温度范围。
低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。
2.电参数的意义(1)正向工作电流If:它是指发光二极管正常发光时的正向电流值。
在实际使用中应根据需要选择IF在0.6·IFm以下。
(2)正向工作电压VF:参数表中给出的工作电压是在给定的正向电流下得到的。
一般是在IF=20mA时测得的。
发光二极管正向工作电压VF在1.4~3V。
在外界温度升高时,VF将下降。
(3)V-I特性:发光二极管的电压与电流的关系在正向电压正小于某一值(叫阈值)时,电流极小,不发光。
当电压超过某一值后,正向电流随电压迅速增加,发光。
由V-I曲线可以得出发光管的正向电压,反向电流及反向电压等参数。
正向的发光管反向漏电流IR<10μA以下。
LED的分类1.按发光管发光颜色分按发光管发光颜色分,可分成红色、橙色、绿色(又细分黄绿、标准绿和纯绿)、蓝光等。
另外,有的发光二极管中包含二种或三种颜色的芯片。
根据发光二极管出光处掺或不掺散射剂、有色还是无色,上述各种颜色的发光二极管还可分成有色透明、无色透明、有色散射和无色散射四种类型。
散射型发光二极管和达于做指示灯用。
2.按发光管出光面特征分按发光管出光面特征分圆灯、方灯、矩形、面发光管、侧向管、表面安装用微型管等。
圆形灯按直径分为φ2mm、φ4.4mm、φ5mm、φ8mm、φ10mm及φ20mm等。
国外通常把φ3mm的发光二极管记作T-1;把φ5mm的记作T-1(3/4);把φ4.4mm的记作T-1(1/4)。
七段数码显示器
七段数码显示器七段数码显示器是微机系统常用的输出设备。
发光二极管,即LED是由半导体材料制成的PN结,在正向偏置时会发光,具有工作电压低、体积小、寿命长、响应快等优点。
常用的颜色有红、绿、黄。
发光二极管的正向压降为2.2V~2.6V,工作电流为5~10mA,其发光亮度基本与工作电流成正比。
因此在使用发光二极管时,必需串限流电阻。
发光二极管可工作于脉冲状态,在平均电流相同的状况下,脉冲工作状态比直流工作状态的亮度增加约20%。
发光二极管可以单个的形式使用,也可将几个发光二极管封装在一起,依据封装的外形有七段数码显示器、米字型显示器和点阵式显示器等不同的形式。
当发光二极管导通时,点亮相应的笔划或点。
掌握这些发光二极管的亮与暗,即可显示不同的字符或符号。
多个发光二极管封装在一起的七段数码显示器按其连接形式可分为共阳显示器和共阴显示器。
图1所示为共阳和共阴的七段显示器,在显示器中除了显示数字必需的七段笔画外,还供应了小数点。
共阳显示器的阳极连接在一起,此时对阳极供应一正电压,通过限流电阻掌握其阴极为高电平或是低电平来打算其暗或是亮。
共阴显示器的阴极连在一起,此时可将阴极接地,通过限流电阻掌握其阳极为高电平或是低电平来打算其亮或是暗。
图1七段数码显示器采纳七段数码显示器显示的字型受到显示器本身结构的限制。
因此,在显示比较简单的字符、汉字或图形时,可采纳点陈显示的方法。
点阵显示器将发光二极管排列成肯定的矩阵,由这些发光二极管的亮与暗来产生字符或图形。
图2为一个5 X 7的发光二极营点阵,它有5列、7行。
每一列的阴极连在一起。
同时每一行的阳极连在一起,掌握行列信号的电平可显示不同的字符,甚至汉字和图形。
图2点阵显示器。
发光二极管技术参数集
发光二极管技术参数集发光二极管技术参数电路图220V除以20mA等于电阻11K左右,取20K流过发光二极管电流为10mA技术类别:单片机普通发光二极管的正向饱和压降为1.6V~2.1V发光二极管串20K电阻用在交流220V做指示灯正向工作电流为5~20mALED的特性1.极限参数的意义(1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。
超过此值,LED发热、损坏。
(2)最大正向直流电流IFm:允许加的最大的正向直流电流。
超过此值可损坏二极管。
(3)最大反向电压VRm:所允许加的最大反向电压。
超过此值,发光二极管可能被击穿损坏。
(4)工作环境topm:发光二极管可正常工作的环境温度范围。
低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。
2.电参数的意义(1)正向工作电流If:它是指发光二极管正常发光时的正向电流值。
在实际使用中应根据需要选择IF在0.6·IFm以下。
(2)正向工作电压VF:参数表中给出的工作电压是在给定的正向电流下得到的。
一般是在IF=20mA时测得的。
发光二极管正向工作电压VF在1.4~3V。
在外界温度升高时,VF将下降。
(3)V-I特性:发光二极管的电压与电流的关系在正向电压正小于某一值(叫阈值)时,电流极小,不发光。
当电压超过某一值后,正向电流随电压迅速增加,发光。
由V-I曲线可以得出发光管的正向电压,反向电流及反向电压等参数。
正向的发光管反向漏电流IR<10μA以下。
LED的分类1.按发光管发光颜色分按发光管发光颜色分,可分成红色、橙色、绿色(又细分黄绿、标准绿和纯绿)、蓝光等。
另外,有的发光二极管中包含二种或三种颜色的芯片。
根据发光二极管出光处掺或不掺散射剂、有色还是无色,上述各种颜色的发光二极管还可分成有色透明、无色透明、有色散射和无色散射四种类型。
散射型发光二极管和达于做指示灯用。
2.按发光管出光面特征分按发光管出光面特征分圆灯、方灯、矩形、面发光管、侧向管、表面安装用微型管等。
发光二极管压降
基本情况是:LED的亮度(专业上称之为:IV),LED电压降(专业上称之为:VF)VF跟IV没有什么必然的联系。
VF主要与发光晶片有关!绿光一般为2.5到3.5V,蓝光为:2.3到3.2V,红光为:1.5到2.5V一般选择绿3V,蓝3V,红2V。
一般相同规格红色小于绿色小于蓝色。
可以串一个很小的电阻(几欧到几十欧),或者干脆不用用脉冲点亮,这样LED的寿命会长些亮度也会高些哦,这是因为LED的非线性造成的用数字万用表的二极管档位就可以测出二极管的发光状态,数字万用表二极管的档位提供2.8V左右电压和1.6MA左右的电流,白光和蓝光多数情况下是点不亮的,二极管档位提供的电压不够3V......在直流电路中串联电阻限流作用,两个等值电阻串联后再并联则能起1/2分压作用;串联电感是为了在电路开关接通与断开的瞬间,避免电流突变(因为在瞬间接通或断开电流时,电感会产生反向的感生电动势来阻止电流突变)。
在开关合上之后,电感线圈对直流就是导线,其电阻很小,压降也很小。
在直流电路中串联一个电阻和一个电感起到限流和防止开关通断瞬间电流突变。
在大电流通断时,可避免开关触点产生电弧。
引脚9:该脚是内部7个续流二极管负极的公共端,各二极管的正极分别接各达林顿管的集电极。
用于感性负载时,该脚接负载电源正极,实现续流作用。
如果该脚接地,实际上就是达林顿管的集电极对地接通。
ULN2003驱动器输出端的二极管作用ULN2003的输出端可达500mA/50V.输出端的二极管学名续流二极管,英文freewheel diode。
如果ULN2003的达林顿管输入端输入低电平使其截止,其驱动的元件是感性元件,则电流不能突变,此时会产生一个高压;如果没有二极管,达林顿管会被击穿,所以这个二极管主要起保护作用。
由于ULN2003是集电极开路输出,为了让这个二极管起到续流作用,必须将COM引脚(pin9)接在负载的供电电源上,只有这样才能够形成续流回路。
初中发光二极管知识点总结
初中发光二极管知识点总结一、发光二极管的基本原理1、半导体的能带结构半导体是介于导体和绝缘体之间的材料,它的能带结构决定了其导电性质。
半导体材料中存在价带和导带两个能带,其中价带中的电子填满,并且能量较低,而导带中的电子较少,且能量较高,当半导体受到激发时,价带中的电子可以跃迁到导带中成为自由电子,从而形成导电。
2、PN 结的形成当p型半导体和n型半导体直接相接触时,形成的结构称为PN结,形成PN结的过程叫做PN结的形成。
在PN结中,p型半导体的空穴向n型半导体扩散,n型半导体的自由电子向p型半导体扩散,形成内电场,使得p区和n区的电荷分布产生变化,形成耗尽层。
二、发光二极管的结构1、普通二极管结构普通二极管是由p型半导体和n型半导体直接接触而成,通常由硅、锗等半导体材料制成。
2、发光二极管结构发光二极管由p型半导体和n型半导体直接接触而成,具有普通二极管的PN结结构,同时还有一层发光层,当PN结正向导通时,电流通过发光层时,发光层发生发光现象,从而实现LED的发光功能。
三、发光二极管的工作特性1、正向导通和反向截止当PN结两侧的电压为正向电压时,即p区连接正电压,n区连接负电压,PN结导通,此时LED处于正向导通状态,电流流过PN结且LED发光。
当PN结两侧的电压为反向电压时,即p区连接负电压,n区连接正电压,PN结截止,此时LED处于反向截止状态,电流不流过PN结,LED不发光。
2、正向压降正向压降是指在PN结导通时,PN结两侧的电压差,当电压差达到LED的工作电压时,LED开始工作,电流流过PN结,LED发光。
一般LED的正向电压为1.5V~3.5V。
四、发光二极管的应用1、指示灯发光二极管具有发光、能耗低、寿命长等特点,因此广泛应用于各种电子产品的指示灯中,如电视机、空调、冰箱等家用电器的指示灯。
2、显示屏发光二极管还可以组成数码管、点阵屏等显示屏,用于显示数字、字母、符号等信息,广泛应用于计算机、手机、电子表等设备的显示屏上。
发光二极管参数
二极管参数普通发光二极管的正向饱和压降为1.6V~2.1V,正向工作电流为5~20mALED的特性1.极限参数的意义(1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。
超过此值,LED发热、损坏。
(2)最大正向直流电流IFm:允许加的最大的正向直流电流。
超过此值可损坏二极管。
(3)最大反向电压VRm:所允许加的最大反向电压。
超过此值,发光二极管可能被击穿损坏。
(4)工作环境topm:发光二极管可正常工作的环境温度范围。
低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。
2.电参数的意义(1)正向工作电流If:它是指发光二极管正常发光时的正向电流值。
在实际使用中应根据需要选择IF在0.6·IFm以下。
(2)正向工作电压VF:参数表中给出的工作电压是在给定的正向电流下得到的。
一般是在IF=20mA时测得的。
发光二极管正向工作电压VF在1.4~3V。
在外界温度升高时,VF将下降。
(3)V-I特性:发光二极管的电压与电流的关系在正向电压正小于某一值(叫阈值)时,电流极小,不发光。
当电压超过某一值后,正向电流随电压迅速增加,发光。
由V-I曲线可以得出发光管的正向电压,反向电流及反向电压等参数。
正向的发光管反向漏电流IR<10μA 以下。
LED的分类1.按发光管发光颜色分按发光管发光颜色分,可分成红色、橙色、绿色(又细分黄绿、标准绿和纯绿)、蓝光等。
另外,有的发光二极管中包含二种或三种颜色的芯片。
根据发光二极管出光处掺或不掺散射剂、有色还是无色,上述各种颜色的发光二极管还可分成有色透明、无色透明、有色散射和无色散射四种类型。
散射型发光二极管和达于做指示灯用。
2.按发光管出光面特征分按发光管出光面特征分圆灯、方灯、矩形、面发光管、侧向管、表面安装用微型管等。
圆形灯按直径分为φ2mm、φ4.4mm、φ5mm、φ8mm、φ10mm 及φ20mm等。
国外通常把φ3mm的发光二极管记作T-1;把φ5mm的记作T-1(3/4);把φ4.4mm的记作T-1(1/4)。
发光二极管压降
发光二极管压降
1. 直插超亮发光二极管压降
主要有三种颜色,然而三种发光二极管的压降都不相同,具体压降参考值如下:
红色发光二极管的压降为2.0--2.2V
黄色发光二极管的压降为1.8—2.0V
绿色发光二极管的压降为3.0—3.2V
正常发光时的额定电流约为20mA。
2. 贴片LED压降
红色的压降为1.82-1.88V,电流5-8mA
绿色的压降为1.75-1.82V,电流3-5mA
橙色的压降为1.7-1.8V,电流3-5mA
兰色的压降为3.1-3.3V,电流8-10mA
白色的压降为3-3.2V,电流10-15mA.
 
超亮发光二极管主要有三种颜色,然而三种发光二极管的压降都不相同,具体压降参考值如下:红色发光二极管的压降为2.0--2.2V 黄色发光二极管的压降为1.8—2.0V 绿色发光二极管的压降为3.0—3.2V 正常发光时的额定电流约为20mA。
红色1.5-1.8v,绿色1.6-2.0v 黄色1.6-2.0v 兰色2.2v白色3.2-3.6v 红色LED是1.6V,黄色约1.7V,绿色约
1.8V,蓝色白色紫色都是3V到3.2V,全部采用恒流驱动,其中直径3毫米的红绿黄5毫安,白蓝紫10毫安,直径5毫米的翻倍。
其中白色的有大功率的1W2W3W都有,但是要加散热片。
锂电池的最低工作电压是3.6V,充满为
4.2V,铅电池单个2V,极限充电电压2.3V,最低放电电压1.7V,镍镉、镍氢电池单电压1.2V,终止放电电压1V,极限充电电压1.42V。
一次性锂电池3V电压。
太阳能电池单体电压0.8V左右,电流根据面积和材料决定。
发光二极管的反向耐压一般都不高
发光二极管的反向耐压一般都不高,即使是串联了限流分压电阻,应用于220~市电电路中用作电源指示,也容易损坏。
因为当交流电反向时,二极管上所承受的反向电压将是380V 左右【即220V交流电的峰值电压绝对值】,简单地串联限流分压电阻在此时无济于事。
比较可靠的就是在发光管上反向并联一个普通二极管,这样,无论电源电压极性如何,各二极管所承受的反向电压都将被另一个二极管钳制在该二极管正向压降值范围内。
LED(LightEmitti ng Diode),发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。
LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。
半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。
但这两种半导体连接起来的时候,它们之间就形成一个P-N结。
当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。
而光的波长也就是光的颜色,是由形成P-N结的材料决定的。
50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。
LED是英文l ight emitti ng diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。
发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为p-n结。
在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。
红、黄、绿、蓝LED的正常工作电压,和电流
发光二极管
LED(Light Emitting Diode),发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个P-N结。当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。而光的波长也就是光的颜色,是由形成P-N结的材料决定的。
(3)散射型。这是视角较大的指示灯,半值角为45°~90°或更大,散射剂的量较大。
3. 按发光二极管的结构分
按发光二极管的结构分有全环氧包封、金属底座环氧封装、陶瓷底座环氧封装及玻璃封装等结构。
4. 按发光强度和工作电流分
按发光强度和工作电流分有普通亮度的LED(发光强度100mcd);把发光强度在10~100mcd间的叫高亮度发光二极管。一般LED的工作电流在十几mA至几十mA,而低电流LED的工作电流在2mA以下(亮度与普通发光管相同)。
上个世纪60年代,科技工作者利用半导体PN结发光的原理,研制成了LED发光二极管。当时研制的LED,所用的材料是GaASP,其发光颜色为红色。经过近30年的发展,现在大家十分熟悉的LED,已能发出红、橙、黄、绿、蓝等多种色光。然而照明需用的白色光LED仅在近年才发展起来,这里向读者介绍有关照明用白光LED。
2. 白光LED的工艺结构和白色光源。 对于一般照明,在工艺结构上,白光LED通常采用两种方法形成,第一种是利用“蓝光技术”与荧光粉配合形成白光;第二种是多种单色光混合方法。这两种方法都已能成功产生白光器件。第一种方法产生白光的系统如图1所示,图中LED GaM芯片发蓝光(λp=465nm),它和YAG(钇铝石榴石)荧光粉封装在一起,当荧光粉受蓝光激发后发出黄色光,结果,蓝光和黄光混合形成白光(构成LED的结构如图2所示)。第二种方法采用不同色光的芯片封装在一起,通过各色光混合而产生白光。
12v直流电源接发光二极管怎么降压!
12v直流电源接发光二极管!怎么降压!
我有一个12v的直流电源!我要接到发光二极管上!发光二极管的工作电压一般都在3v左右!我的问题就是怎么把12v电压降到3v左右!我知道串联电阻可以做到!但中间需要串联多大电阻?怎么计算?还有用7805三极管可以得到5v!但5v再到3v怎么变!再有就是用7805是不是复杂了啊!还要考虑散热!求高人指点简便方法!谢谢!
两位网友一个算的是4.5k另一个才1k!你们最好给我公式我自己去算!我现在的问题就是不知道用什么公式计算!
串一个电阻,一般的红、绿、黄光LED的压降是1.8~2V之间,蓝、白光LED是3V,而且一般的小功率LED正常发光时电流大概就10mA,因为电阻跟LED是串联,所以电流一样都是10mA,LED工作时两端电压基本不变,这里为3V,所以电阻分到的电压为(12-3)=9V,所以要串联的电阻阻值为:(12V-3V)/10mA=0.9K,所以可以选用1K的电阻。
这样够清楚了吧。
楼上说20mA应该用450欧姆,而不是4.5K。
没必要用7805,这是浪费,而且本来就有3V的稳压器,例如1117、HT7130、HT7530
12-3是电阻上的压降,假设LED以20毫安电流点亮,电阻就是4.5k。
但电子系列中无此阻值,选最接近的就是4.7k。
另外还要算一下功率,你该用1/4瓦或1/2瓦的电阻比较好。
补充:
mokama说得对,我算错了,就照他给你的公式计算。
至于电流到底用20还是10毫安,要看你的亮度要求。
如果你是在设备上作电源指示用,随你选,没多大关系。
串上一个4.7K的电阻就行了,如果觉得太亮,改用10K也行。
发光二极管的测试方法
发光二极管的测试方法发光二极管(LED)是一种半导体器件,广泛应用于照明、显示、通信等领域。
测试LED的特性和性能是确保其质量和可靠性的关键步骤。
下面是发光二极管的测试方法,可分为外观检查、静态电参数测试和光电参数测试三部分。
一、外观检查1.外观检查是发光二极管最基本的一个测试。
用肉眼或显微镜检查LED是否有裂纹、杂质、污染等缺陷。
2.外观检查还包括引线的焊接是否齐全、导电是否可靠。
二、静态电参数测试1.正向电压-电流特性测试*在限制电流下,应用逐步增大的正向电压,记录电流的变化。
绘制LED的电流-电压曲线,可以得到正向击穿电压、正向导通电阻、正向压降等参数。
*正向电压一般范围是0.2V到5V,根据不同的LED型号和应用需求可能有所差异。
2.反向电压测试*在限制电流下,应用逐步增大的反向电压,记录电流的变化。
根据电流的大小和反向电压的极限,可以判断LED对反向电压的抗性。
3.反向漏电流测试*测量未加正向电压时,LED器件上的反向漏电流。
使用特定的测试电路和仪器,精确测量反向电流的大小,一般单位是微安(μA)级别。
4.导通压降测试*测量在给定的正向电流条件下,LED两端的电压降。
通常用万用表或电源仪表进行测量。
三、光电参数测试1.亮度测试* 使用亮度计,将LED表面与亮度计接触,测量出LED的亮度。
常用的亮度单位是流明(lm)或坎德拉(cd)。
2.发光效率测试* 测量LED发出的光功率和输入的电功率,通过光电功率比可以计算出发光效率。
常见的单位是lm/W。
3.光谱测试*使用光谱仪测量LED发光的光谱分布。
通过测量不同波长下的辐射功率,可以得到LED的光谱特性。
4.色度坐标测试*使用色差仪或分光光度仪来测量LED发光的色度坐标,通常使用CIE1931色度坐标系或CIE1976色度坐标系。
5.显色性测试*使用光谱仪配合专用测试软件,测量LED发光的光谱以及色容差等参数,评估其显色性能。
6.角度测试*使用专用光度计或光强计,测量LED的发光角度。
发光二极管配电阻公式
发光二极管配电阻公式嘿,咱今天来聊聊发光二极管配电阻这个事儿!发光二极管,这小东西在咱们生活里可常见啦。
比如说,那些漂亮的电子招牌、家里的小夜灯,都有它的身影。
先来说说为啥要给发光二极管配电阻呢。
这就好比一个小孩子要去参加比赛,得根据他的能力给他配上合适的装备。
发光二极管也一样,它有自己能承受的电流和电压范围,如果电流或者电压太大了,它可就受不了,直接“罢工”,甚至有可能就坏掉啦。
那怎么给它配上合适的电阻呢?这就得用到一个公式啦。
一般来说,我们用这个公式:R = (U - Uf) / I 。
这里的 R 就是我们要找的电阻值,U 是电源电压,Uf 是发光二极管的正向压降,I 是通过发光二极管的电流。
给您举个例子哈。
假如咱们有一个 5V 的电源,要用一个正向压降为 2V ,工作电流为 20mA 的发光二极管。
那咱们就可以这样算:电阻R = (5 - 2)÷ 0.02 = 150 欧姆。
有一次我自己在家做小制作,就碰到了这个问题。
我满心欢喜地把发光二极管和电池接起来,结果它亮了一下就不亮了。
我当时就懵了,这是咋回事呢?后来仔细一琢磨,才发现是没配电阻。
我赶紧找来合适的电阻给它接上,嘿,这小家伙就欢快地亮起来了,那一瞬间,我心里可美啦,特有成就感。
在实际应用中,咱们还得考虑电阻的功率。
如果电阻功率太小,它可能会发热过度,甚至被烧坏。
所以选电阻的时候,不光要看阻值,还得留意功率。
另外,不同颜色的发光二极管,它们的正向压降也不太一样。
红色的、绿色的、蓝色的,各有各的特点。
这就要求咱们在计算电阻的时候,要把这些因素都考虑进去,可不能马虎。
总之,给发光二极管配电阻,看起来简单,实际上里面的学问还不少呢。
咱们得多琢磨、多实践,才能让这些小小的发光二极管在咱们的手中发挥出最大的作用,为咱们的生活增添更多的光彩!不知道您在自己动手的时候,有没有遇到过类似的问题呢?希望今天讲的这些能对您有所帮助,让您在摆弄发光二极管的时候更加得心应手!。
发光二极管工作电压参数,红色发光二极管的工作电压和电流是多少?
发光⼆极管⼯作电压参数,红⾊发光⼆极管的⼯作电压和电流是多少?发光⼆极管⼯作电压参数,红⾊发光⼆极管的⼯作电压和电流是多少?你知道吗?在LED灯珠的⽇常选型中,有很多咨询发光⼆极管⼯作电压参数,红⾊发光⼆极管的⼯作电压和电流是多少的伙伴。
那么,发光⼆极管⼯作电压参数呢?红光、黄发光⼆极管⼀般是1.8V⾄2.2V蓝光、绿光发光⼆极管⼀般是3.0V⾄3.4V当然,这些发光⼆极管是⼩功率的,电流都控制在20MA以内的⽐较多。
另外,做指⽰灯⽤的LED发光⼆极管⽤20毫安以下较好,⼀般⽤到10毫安就⽐较亮了。
除了蓝⾊和⽩⾊的LED发光⼆极管正向电压是3-3.4伏,其他⾊的⽐如红光和普绿光都是1.8-2.2V居多。
普通的发光⼆极管正偏压降红⾊为1.6V,黄⾊为1.4-1.6V,蓝⽩为⾄少2.5V 。
⼯作电流5-20mA。
超亮发光⼆极管主要有三种颜⾊,然⽽三种发光⼆极管的压降也不尽相同。
具体压降参考值如下:红⾊发光⼆极管的压降为2.0--2.2V黄⾊发光⼆极管的压降为1.8—2.2V绿⾊发光⼆极管的压降为3.0—3.3V正常发光⼆极管指⽰类灯珠发光时的额定电流约为20mA。
— 1 —⼩功率发光⼆极管⼯作电压参数指⽰类⼩功率发光⼆极管的电压⼀般是⽐较固定的,特别是对于常⽤的⼏毫⽶⼤⼩的发光⼆极管,其⼯作电流⼀般在5毫安⾄20毫安之间,电流越⼤亮度越⾼。
以下是常规电流20MA以内的发光⼆极管电压:红⾊光⼩功率LED:1.8-2.4V (常规⼩功率电压)黄⾊光⼩功率LED:1.8-2.4V(常规⼩功率电压)普绿光⼩功率LED:1.8-2.4V(常规⼩功率电压)橙⾊光⼩功率LED:1.8-2.4V(常规⼩功率电压)蓝⾊光⼩功率LED:2.8-3.4V(常规⼩功率电压)翠绿光⼩功率LED:2.8-3.4V(常规⼩功率电压)⽩光⼩功率LED:2.8-3.4V (包括正⽩、中性⽩、暖⽩和冷⽩光)上⾯是⼩功率LED发光⼆极管电压参考值,⼀般这类发光⼆极管的⼯作电流在20MA以内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 直插超亮发光二极管压降
主要有三种颜色,然而三种发光二极管的压降都不相同,具体压降参考值如下:
红色发光二极管的压降为2.0--2.2V
黄色发光二极管的压降为1.8—2.0V
绿色发光二极管的压降为3.0—3.2V
正常发光时的额定电流约为20mA。
2. 贴片LED压降
红色的压降为1.82-1.88V,电流5-8mA
绿色的压降为1.75-1.82V,电流3-5mA
橙色的压降为1.7-1.8V,电流3-5mA
兰色的压降为3.1-3.3V,电流8-10mA
白色的压降为3-3.2V,电流10-15mA.
超亮发光二极管主要有三种颜色,然而三种发光二极管的压降都不相同,具体压降参考值如下:红色发光二极管的压降为2.0--2.2V 黄色发光二极管的压降为1.8—2.0V 绿色发光二极管的压降为3.0—3.2V 正常发光时的额定电流约为20mA。
红色1.5-1.8v,绿色1.6-2.0v 黄色1.6-2.0v 兰色2.2v 白色3.2-3.6v 红色LED是1.6V,黄色约1.7V,绿色约1.8V,蓝色白色紫色都是3V到3.2V,全部采用恒流驱动,其中直径3毫米的红绿黄5毫安,白蓝紫10毫安,直径5毫米的翻倍。
其中白色的有大功率的1W2W3W都有,但是要加散热片。
锂电池的最低工作电压是3.6V,充满为4.2V,铅电池单个2V,极限充电电压2.3V,最低放电电压1.7V,镍镉、镍氢电池单电压1.2V,终止放电电压1V,极限充电电压1.42V。
一次性锂电池3V电压。
太阳能电池单体电压0.8V左右,电流根据面积和材料决定。