高中数学:2.2.2椭圆及其简单几何性质(2)学案(人教A版选修2-1)

合集下载

高中数学 椭圆的简单几何性质教案(2) 新人教A版选修2-1

高中数学 椭圆的简单几何性质教案(2) 新人教A版选修2-1

§2.2.2 椭圆的简单几何性质(2)●教学目标1.熟悉椭圆的几何性质;2.利用椭圆几何性质求椭圆标准方程; 3.了解椭圆在科学研究中的应用. ●教学重点:椭圆的几何性质应用 ●教学过程:Ⅰ、复习回顾:利用椭圆的标准方程研究了椭圆的几何性质. Ⅱ、讲授新课:例6.点 ),(y x M 与定点 )0,4(F 的距离和它到定直线 425:=x l 的距离的比是常数54,求点的轨迹.解:设 是点 直线 的距离,根据题意,如图所求轨迹就是集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==54d MF M P 由此得54425)4(22=-+-x y x .将上式两边平方,并化简得 22525922=+y x即192522=+y x所以,点M 的轨迹是长轴、短轴分别是10、6的椭圆说明:椭圆的一个重要性质:椭圆上任意一点与焦点的距离和它到定直线的距离的比是常数(e 为椭圆的离心率)。

其中定直线叫做椭圆的准线。

对于椭圆 ,相应于焦点 的准线方程是 .根据椭圆的对称性,相应于焦点 的准线方程是,所以椭圆有两条准线.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.【典例剖析】 [例1]已知椭圆2222by a x +=1(a >b >0)的焦点坐标是F 1(-c ,0)和F 2(c ,0),P (x 0,y 0)是椭圆上的任一点,求证:|PF 1|=a +ex 0,|PF 2|=a -ex 0,其中e 是椭圆的离心率.[例2]已知点A (1,2)在椭圆121622y x +=1内,F 的坐标为(2,0),在椭圆上求一点P 使|PA |+2|PF |最小.[例3]在椭圆92522y x +=1上求一点P ,使它到左焦点的距离是它到右焦点距离的两倍. Ⅲ、课堂练习: 课本P52,练习 5 再练习:已知椭圆上一点 到其左、右焦点距离的比为1:3,求 点到两条准线的距离.(答案: 到左准线的距离为 ,到右准线的距离为.)思考: 已知椭圆 内有一点 ,是椭圆的右焦点,在椭圆上有一点 ,使的值最小,求的坐标.(如图)分析:若设,求出 ,再计算最小值是很繁的.由于 是椭圆上一点到焦点的距离,由此联想到椭圆的第二定义,它与到相应准线的距离有关.故有如下解法. 解:设在右准线 上的射影为.由椭圆方程可知,,.根据椭圆的第二定义,有 即.∴.显然,当 、、 三点共线时,有最小值.过 作准线的垂线.由方程组 解得 .即 的坐标为.【随堂训练】1.椭圆2222ay b x +=1(a >b >0)的准线方程是( )A .y =±222b a a + B.y =±222b a a -C.y =±222ba b - D.x =±222ba a -2.椭圆4922y x +=1的焦点到准线的距离是( )A .554和559 B .559和5514 C .554和5514 D .5514 3.已知椭圆2222by a x +=1(a >b >0)的两准线间的距离为3316,离心率为23,则椭圆方程为( ) A .3422y x +=1 B .31622y x +=1 C .121622y x +=1 D .41622y x +=14.两对称轴都与坐标轴重合,离心率e =0.8,焦点与相应准线的距离等于49的椭圆的方程是( )A .92522y x +=1或92522x y +=1B .92522y x +=1或162522y x +=1C .162x +92y =1 D .162522x y +=15.已知椭圆2222by a x +=1(a >b >0)的左焦点到右准线的距离为337,中心到准线的距离为334,则椭圆的方程为( ) A .42x +y 2=1 B .22x +y 2=1C .42x +22y =1D .82x +42y =16.椭圆22)2()2(-+-y x =25843++y x 的离心率为( )A .251 B .51 C .101 D .无法确定【强化训练】1.椭圆2222by a x +=1和2222by a x +=k (k >0)具有( )A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴2.椭圆92522y x +=1上点P 到右焦点的最值为( )A .最大值为5,最小值为4B .最大值为10,最小值为8C .最大值为10,最小值为6D .最大值为9,最小值为13.椭圆的一个顶点与两个焦点构成等边三角形,则此椭圆的离心率是( )A .51 B .43 C .33 D .214.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为( )A .41 B .22 C .42 D .215.椭圆m y m x 21322++=1的准线平行于x 轴,则m 的取值范围是( )A .m >0B .0<m <1C .m >1D .m >0且m ≠16.椭圆92522y x +=1上的点P 到左准线的距离是2.5,则P 到右焦点的距离是________.7.椭圆103334)1()1(22--=-++y x y x 的长轴长是______.8.AB是过椭圆4522y x +=1的一个焦点F 的弦,若AB 的倾斜角为3π,求弦AB 的长.9.已知椭圆的一个焦点是F (1,1),与它相对应的准线是x +y -4=0,离心率为22,求椭圆的方程.10.已知点P在椭圆2222bx a y +=1上(a >b >0),F 1、F 2为椭圆的两个焦点,求|PF 1|·|PF 2|的取值范围.【学后反思】椭圆的离心率是焦距与长轴的比,椭圆上任意一点到焦点的距离与这点到相应..准线的距离的比也是离心率,这也是离心率的一个几何性质.椭圆的离心率反映了椭圆的扁平程度,它也沟通了椭圆上的点的焦半径|PF|与到相应准线距离d之间的关系.左焦半径公式是|PF1|=a+ex0,右焦半径公式是|PF2|=a-ex0.焦半径公式除计算有关距离问题外还证明了椭圆上离焦点距离最远(近)点实a2,但必须注意这是椭圆的为长轴端点.椭圆的准线方程为x=±c中心在原点,焦点在x轴上时的结论.。

2017-2018学年高中数学选修2-1学案:2.2.2 椭圆的简单几何性质(二)

2017-2018学年高中数学选修2-1学案:2.2.2 椭圆的简单几何性质(二)

2.2.2椭圆的简单几何性质(二)学习目标 1.进一步巩固椭圆的简单几何性质.2.掌握直线与椭圆位置关系等相关知识.知识点一点与椭圆的位置关系思考1判断点P(1,2)与椭圆x24+y2=1的位置关系.思考2类比点与圆的位置关系的判定,你能给出点P(x0,y0)与椭圆x2a2+y2b2=1(a>b>0)的位置关系的判定吗?梳理设P(x0,y0),椭圆x2a2+y2b2=1(a>b>0),则点P与椭圆的位置关系如下表所示:知识点二直线与椭圆的位置关系思考1直线与椭圆有几种位置关系?思考2如何判断y=kx+m与椭圆x2a2+y2b2=1(a>b>0)的位置关系?梳理 (1)判断直线和椭圆位置关系的方法将直线的方程和椭圆的方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线和椭圆________;若Δ=0,则直线和椭圆________;若Δ<0,则直线和椭圆________. (2)根与系数的关系及弦长公式设直线l :y =kx +m (k ≠0,m 为常数)与椭圆x 2a 2+y 2b 2=1(a >b >0)相交,两个交点为A (x 1,y 1)、B (x 2,y 2),则线段AB 叫做直线l 截椭圆所得的弦,线段AB 的长度叫做________.下面我们推导弦长公式:由两点间的距离公式,得|AB |=(x 1-x 2)2+(y 1-y 2)2,将y 1=kx 1+m ,y 2=kx 2+m 代入上式,得|AB |=(x 1-x 2)2+(kx 1-kx 2)2=(x 1-x 2)2+k 2(x 1-x 2)2=1+k 2|x 1-x 2|,而|x 1-x 2|=(x 1+x 2)2-4x 1x 2,所以|AB |=1+k 2·(x 1+x 2)2-4x 1x 2,其中x 1+x 2与x 1x 2均可由根与系数的关系得到.(3)直线和椭圆相交是三种位置关系中最重要的,判断直线和椭圆相交可利用Δ>0.例如,直线l :y =k (x -2)+1和椭圆x 216+y 29=1.无论k 取何值,直线l 恒过定点(2,1),而定点(2,1)在椭圆内部,所以直线l 必与椭圆相交.类型一 点、直线与椭圆位置关系的判断 命题角度1 点与椭圆位置关系的判断 引申探究若将本例中P 点坐标改为“P (1,k )”呢?例1 已知点P (k,1),椭圆x 29+y 24=1,点在椭圆外,则实数k 的取值范围为____________.反思与感悟 处理点与椭圆位置关系问题时,紧扣判定条件,然后转化为解不等式等问题,注意求解过程与结果的准确性.跟踪训练1 已知点(3,2)在椭圆x 2a 2+y 2b 2=1(a >b >0)上,则( )A .点(-3,-2)不在椭圆上B .点(3,-2)不在椭圆上C .点(-3,2)在椭圆上D .以上都不正确命题角度2 直线与椭圆位置关系的判断例2 (1)直线y =kx -k +1与椭圆x 22+y 23=1的位置关系是( )A .相交B .相切C .相离D .不确定(2)在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .求k 的取值范围.反思与感悟 直线与椭圆的位置关系判别方法(代数法) 联立直线与椭圆的方程,消元得到一元二次方程 (1)Δ>0⇔直线与椭圆相交⇔有两个公共点. (2)Δ=0⇔直线与椭圆相切⇔有且只有一个公共点. (3)Δ<0⇔直线与椭圆相离⇔无公共点.跟踪训练2 (1)已知直线l 过点(3,-1),且椭圆C :x 225+y 236=1,则直线l 与椭圆C 的公共点的个数为( )A .1B .1或2C .2D .0(2)若直线y =kx +2与椭圆x 23+y 22=1相切,则斜率k 的值是( )A.63 B .-63 C .±63 D .±33类型二 弦长及中点问题例3 已知椭圆x 216+y 24=1的弦AB 的中点M 的坐标为(2,1),求直线AB 的方程.引申探究在本例中求弦AB 的长.反思与感悟 直线与椭圆的交点问题,一般考虑直线方程与椭圆方程组成的方程组的解的问题,即判断消元后所得的一元二次方程的根的判别式Δ.解决弦长问题,一般应用弦长公式.而用弦长公式时,若能结合根与系数的关系“设而不求”,可大大简化运算过程. 跟踪训练3 已知椭圆x 236+y 29=1和点P (4,2),直线l 经过点P 且与椭圆交于A 、B 两点.(1)当直线l 的斜率为12时,求线段AB 的长度;(2)当点P 恰好为线段AB 的中点时,求l 的方程.类型三 椭圆中的最值(或范围)问题 例4 已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围; (2)求被椭圆截得的最长弦所在的直线方程.反思与感悟 求最值问题的基本策略(1)求解形如|P A |+|PB |的最值问题,一般通过椭圆的定义把折线转化为直线,当且仅当三点共线时|P A |+|PB |取得最值.(2)求解形如|P A |的最值问题,一般通过二次函数的最值求解,此时一定要注意自变量的取值范围.(3)求解形如ax +by 的最值问题,一般通过数形结合的方法转化为直线问题解决. (4)利用不等式,尤其是基本不等式求最值或取值范围.跟踪训练4 已知动点P (x ,y )在椭圆x 225+y 216=1上,若点A 的坐标为(3,0),|AM →|=1,且PM →·AM→=0,求|PM →|的最小值.1.点A (a,1)在椭圆x 24+y 22=1的内部,则a 的取值范围是( )A .-2<a < 2B .a <-2或a > 2C .-2<a <2D .-1<a <12.已知直线l :x +y -3=0,椭圆x 24+y 2=1,则直线与椭圆的位置关系是( )A .相交B .相切C .相离D .相切或相交3.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个公共点,则椭圆的长轴长为________.4.若直线y =kx +b 与椭圆x 29+y 24=1恒有两个公共点,则b 的取值范围为________.5.直线l :y =kx +1与椭圆x 22+y 2=1交于M ,N 两点,且|MN |=423,求直线l 的方程.1.直线与椭圆相交弦长的有关问题(1)当弦的两端点的坐标易求时,可直接求出交点坐标,再用两点间距离公式求弦长. (2)当弦的两端点的坐标不易求时,可用弦长公式.设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点,则有|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)(x 1-x 2)2=1+k 2·(x 1+x 2)2-4x 1x 2= (1+1k2)(y 1-y 2)2=1+1k2·(y 1+y 2)2-4y 1y 2(k 为直线斜率).(3)如果直线方程涉及斜率,要注意斜率不存在的情况. 2.解决椭圆中点弦问题的三种方法(1)根与系数的关系法:联立直线方程和椭圆方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决.(2)点差法:利用端点在曲线上,坐标满足方程,将端点坐标分别代入椭圆方程,然后作差,构造出中点坐标和斜率的关系.(3)共线法:利用中点坐标公式,如果弦的中点为P (x 0,y 0),设其一交点为A (x ,y ), 则另一交点为B (2x 0-x,2y 0-y ),则⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,(2x 0-x )2a 2+(2y 0-y )2b 2=1,两式作差即得所求直线方程.特别提醒:利用公式计算弦长时,要注意这两个公式的区别,切勿记错.答案精析问题导学 知识点一思考1 当x =1时,得y 2=34,故y =±32,而2>32,故点在椭圆外.思考2 当P 在椭圆外时,x 20a 2+y 20b 2>1;当P 在椭圆上时,x 20a 2+y 20b 2=1;当P 在椭圆内时,x 20a 2+y 20b 2<1.知识点二思考1 有三种位置关系,分别有相交、相切、相离. 思考2 联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b2=1,消去y 得关于x 的一元二次方程梳理 (1)相交 相切 题型探究例1 (-∞,-332)∪(332,+∞)解析 据题知k 29+14>1,解得k <-332或k >332.引申探究(-∞,-423)∪(423,+∞)解析 依题19+k 24>1,解得k 2>329,即k <-423或k >423.跟踪训练1 C [由已知得9a 2+4b2=1,只有选项C 符合该条件.]例2 (1)A [直线y =kx -k +1=k (x -1)+1过定点(1,1),且该点在椭圆内部,因此必与椭圆相交.](2)解 由已知条件知直线l 的方程为y =kx +2,代入椭圆方程得x 22+(kx +2)2=1.整理得⎝⎛⎭⎫12+k 2x 2+22kx +1=0.直线l 与椭圆有两个不同的交点P 和Q 等价于Δ=8k 2-4⎝⎛⎭⎫12+k 2=4k 2-2>0,解得k <-22或k >22. 即k 的取值范围为⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞.跟踪训练2 (1)C (2)C例3 解 方法一 根与系数的关系、中点坐标公式法 由椭圆的对称性,知直线AB 的斜率存在, 设直线AB 的方程为y -1=k (x -2). 将其代入椭圆方程并整理,得(4k 2+1)x 2-8(2k 2-k )x +4(2k -1)2-16=0.设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两根, 于是x 1+x 2=8(2k 2-k )4k 2+1.又M 为线段AB 的中点, ∴x 1+x 22=4(2k 2-k )4k 2+1=2,解得k =-12.故所求直线的方程为x +2y -4=0. 方法二 点差法设A (x 1,y 1),B (x 2,y 2),x 1≠x 2.∵M (2,1)为线段AB 的中点, ∴x 1+x 2=4,y 1+y 2=2. 又A ,B 两点在椭圆上,则x 21+4y 21=16,x 22+4y 22=16, 两式相减,得(x 21-x 22)+4(y 21-y 22)=0,于是(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0. ∴y 1-y 2x 1-x 2=-x 1+x 24(y 1+y 2)=-44×2=-12,即k AB =-12.故所求直线的方程为x +2y -4=0. 方法三 对称点法(或共线法)设所求直线与椭圆的一个交点为A (x ,y ), 由于点M (2,1)为线段AB 的中点, 则另一个交点为B (4-x,2-y ). ∵A ,B 两点都在椭圆上,∴⎩⎪⎨⎪⎧x 2+4y 2=16, ①(4-x )2+4(2-y )2=16. ②①-②,得x +2y -4=0.即点A 的坐标满足这个方程,根据对称性,点B 的坐标也满足这个方程,而过A ,B 两点的直线只有一条,故所求直线的方程为x +2y -4=0. 引申探究解 由上例得直线AB 方程为x +2y -4=0.联立方程组⎩⎪⎨⎪⎧x +2y -4=0,x 216+y 24=1,消去y 并整理,得x (x -4)=0,得x =0或x =4,得两交点坐标A (0,2),B (4,0), 故|AB |=(0-4)2+(2-0)2=2 5.跟踪训练3 解 (1)由已知可得直线l 的方程为y -2=12(x -4),即y =12x .由⎩⎨⎧y =12x ,x 236+y 29=1,消去y 可得x 2-18=0,若设A (x 1,y 1),B (x 2,y 2). 则x 1+x 2=0,x 1x 2=-18. 于是|AB |=(x 1-x 2)2+(y 1-y 2)2= (x 1-x 2)2+14(x 1-x 2)2=52(x 1+x 2)2-4x 1x 2=52×62=310. 所以线段AB 的长度为310. (2)设A (x 1,y 1),B (x 2,y 2),则有⎩⎨⎧x 2136+y 219=1,x 2236+y229=1,两式相减得x 22-x 2136+y 22-y 219=0,整理得k AB =y 2-y 1x 2-x 1=-9(x 2+x 1)36(y 2+y 1),由于P (4,2)是AB 的中点, ∴x 1+x 2=8,y 1+y 2=4, 于是k AB =-9×836×4=-12,于是直线AB 的方程为y -2=-12(x -4),即x +2y -8=0. 例4 解 (1)由⎩⎪⎨⎪⎧4x 2+y 2=1,y =x +m 得5x 2+2mx +m 2-1=0,因为直线与椭圆有公共点, 所以Δ=4m 2-20(m 2-1)≥0,解得-52≤m ≤52. (2)设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点,由(1)知:5x 2+2mx +m 2-1=0,所以x 1+x 2=-2m 5,x 1x 2=15(m 2-1), 所以|AB |=(x 1-x 2)2+(y 1-y 2)2 =2(x 1-x 2)2 =2[(x 1+x 2)2-4x 1x 2] = 2⎣⎡⎦⎤4m 225-45(m 2-1) =25 10-8m 2. 所以当m =0时,|AB |最大,此时直线方程为y =x .跟踪训练4 解 由|AM →|=1,A (3,0),知点M 在以A (3,0)为圆心,1为半径的圆上运动, ∵PM →·AM →=0且P 在椭圆上运动,∴PM ⊥AM ,即PM 为⊙A 的切线,连接P A (如图),则|PM →|=|P A →|2-|AM →|2 =|P A →|2-1, ∴当|P A →|min =a -c =5-3=2时,|PM →|min = 3.当堂训练1.A 2.C 3.27 4.(-2,2)5.解 设直线l 与椭圆的交点为M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +1,x 22+y 2=1,消去y 并化简, 得(1+2k 2)x 2+4kx =0,所以x 1+x 2=-4k 1+2k 2,x 1x 2=0. 由|MN |=423,得 (x 1-x 2)2+(y 1-y 2)2=329, 所以(1+k 2)(x 1-x 2)2=329, 所以(1+k 2)[(x 1+x 2)2-4x 1x 2]=329, 即(1+k 2)(-4k1+2k 2)2=329, 化简得k 4+k 2-2=0,所以k 2=1,所以k =±1.所以所求直线l 的方程是y =x +1或y =-x +1.。

高中数学选修2-1理科2.2.2椭圆的简单几何性质公开课导学案

高中数学选修2-1理科2.2.2椭圆的简单几何性质公开课导学案

2.2.2椭圆的简单几何性质学习目标1.掌握椭圆的范围、对称性、离心率等几何性质.2.会根据椭圆的标准方程画出它的几何图形,能根据几何性质解决一些简单问题.3.掌握直线和椭圆位置关系的相关知识.学习重难点1. 重点是椭圆的简单几何性质;2难点是椭圆性质的综合应用.一.自主预习1.椭圆的简单几何性质1212心O的距离最远.2.椭圆的离心率由a、c确定其范围是.3.当椭圆的离心率越,则椭圆越扁;当椭圆离心率越,则椭圆越接近于圆问题探究:你认为椭圆上到焦点的距离取最大值和最小值各是何值?要点一利用椭圆方程研究其几何性质例1求椭圆25x2+y2=25的长轴和短轴的长及其焦点和顶点坐标变式练习1.求椭圆4x 2+9y 2=36的长轴长和焦距、焦点坐标、顶点坐标和离心率.要点二 利用椭圆的几何性质求标准方程 例2 求适合下列条件的椭圆的标准方程.(1)椭圆过(3,0),离心率e =63; (2)在x 轴上的一个焦点,与短轴两个端点的连线互相垂直,且焦距为8. 变式练习2.顶点是(0,2),离心率e =12,对称轴为坐标轴的椭圆的标准方程是( )A.3x 216+y 24=1或y 24+x 23=1B.y 24+x 23=1 C.3x 216+y 24=1 D.x 28+y 24=1或x 24+y 23=1 要点三 求椭圆的离心率例3 若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.45B.35C.25D.15变式练习3如图所示,F 1、F 2分别为椭圆的左、右焦点,M 为椭圆上一点,且MF 2⊥F 1F 2,∠MF 1F 2=30°.试求椭圆的离心率.要点四 直线与椭圆的位置关系例4 如图所示,已知斜率为1的直线l 过椭圆x 24+y 2=1的右焦点,交椭圆于A 、B 两点,求弦AB 的长.变式训练已知椭圆x 236+y 29=1和点P (4,2),直线l 经过点P 且与椭圆交于A 、B 两点.(1)当直线l 的斜率为12时,求线段AB 的长度;(2)当P 点恰好为线段AB 的中点时,求l 的方程. 当堂检测1.已知椭圆中心在原点,一个焦点为(-3,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是( )A.x 24+y 2=1 B .x 2+y 24=1 C.x 23+y 2=1 D .x 2+y 23=1 2.若焦点在x 轴上的椭圆x 22+y 2m =1的离心率为12,则m 等于( )A. 3B.32C.83D.233.在一椭圆中,以焦点F 1、F 2为直径两端点的圆,恰好过短轴的两个端点,则此椭圆的离心率e 等于( ) A.12 B.22 C.32 D.25 4.直线y =x +1被椭圆x 24+y 22=1所截得的弦的中点坐标是( )A .(23,53)B .(43,73)C .(-23,13)D .(-132,-172)5.椭圆的短轴长等于2,长轴端点与短轴端点间的距离等于5,则此椭圆的标准方程是________.。

高二数学选修2-1§2.2.2椭圆及其简单几何性质(2)导学案设计

高二数学选修2-1§2.2.2椭圆及其简单几何性质(2)导学案设计

§2.2.2 椭圆及其简单几何性质(2)导学案撰稿:陈娟 审核:张海军 时间:姓名: 班级: 级别: 组名:【教学目标】1.根据椭圆的方程研究曲线的几何性质;2.椭圆与直线的关系.【重点难点】▲重点:椭圆与直线的关系▲难点:根据椭圆的方程研究曲线的几何性质【学法指导】以自学为主,教师讲授为辅【知识链接】(预习教材理P 46~ P 48,文P 40~ P 41找出疑惑之处)复习1: 椭圆2211612x y +=的 焦点坐标是( )( ) ;长轴长 、短轴长 ;离心率 .复习2:直线与圆的位置关系有哪几种?如何判定?【学习过程】知识点一:椭圆与直线的关系问题1:想想生活中哪些地方会有椭圆的应用呢?问题2:椭圆与直线有几种位置关系?又是如何确定?反思:点与椭圆的位置如何判定?※ 典型例题例1 一种电影放映灯泡的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上,由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F ,已知12BC F F ⊥,1 2.8F B cm =,12 4.5F F cm =,试建立适当的坐标系,求截口BAC所在椭圆的方程.变式:若图形的开口向上,则方程是什么?小结:①先化为标准方程,找出,a b,求出c;②注意焦点所在坐标轴.(理)例2 已知椭圆221259x y+=,直线l:45400x y-+=。

椭圆上是否存在一点,它到直线l的距离最小?最小距离是多少?变式:最大距离是多少?【基础达标】A1已知地球运行的轨道是长半轴长81.5010a km =⨯,离心率0.0192e =的椭圆,且太阳在这个椭圆的一个焦点上,求地球到太阳的最大和最小距离.B2.经过椭圆2212x y +=的左焦点1F 作倾斜角为60的直线l ,直线l 与椭圆相交于,A B 两点,求AB 的长.【课堂小结】1 .椭圆在生活中的运用;2 .椭圆与直线的位置关系:相交、相切、相离(用∆判定).【知识拓展】直线与椭圆相交,得到弦,弦长12l x -=其中k 为直线的斜率,1122(,),(,)x y x y 是两交点坐标.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差【当堂检测】(时量:5分钟 满分:10分)计分:1.设P 是椭圆 2211612x y +=,P 到两焦点的距离之差为,则12PF F ∆是( ). A .锐角三角形 B .直角三角形C .钝角三角形D .等腰直角三角形2.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ).A. B. C. 2 D. 1 3.已知椭圆221169x y +=的左、右焦点分别为12,F F ,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( ).A. 95B. 3C. 94D. 4.椭圆的焦距、短轴长、长轴长组成一个等到比数列,则其离心率为 .5.椭圆2214520x y +=的焦点分别是1F 和2F ,过原点O 作直线与椭圆相交于,A B 两点,若2ABF ∆的面积是20,则直线AB 的方程式是 .1. 求下列直线310250x y +-=与椭圆221254x y +=的交点坐标.2.若椭圆22149x y +=,一组平行直线的斜率是32 ⑴这组直线何时与椭圆相交?⑵当它们与椭圆相交时,这些直线被椭圆截得的线段的中点是否在一直线上?【学习反思】本节课我最大的收获是 我还存在的疑问是我对导学案的建议是。

人教A版高中数学选修2-1《2.2椭圆》复习教案

人教A版高中数学选修2-1《2.2椭圆》复习教案

1. 一、知识要点: 椭圆、双曲线、抛物线的标准方程与椭圆、双曲线、抛物线的标准方程与几何几何性质 椭圆椭圆 双曲线双曲线 抛物线抛物线定义定义 1.到两定点F 1,F 2的距离之和为定值2a(2a>|F 1F 2|)的点的轨迹轨迹 1.到两定点F 1,F 2的距离之差的绝对值为定值2a(0<2a<|F 1F 2|)的点的轨迹的点的轨迹2.与定点和直线的距离之比为定值e 的点的轨迹.(0<e<1) 2.与定点和直线的距离之比为定值e 的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹. 图形图形方程 标准方程方程 12222=+b y a x (b a >>0) 12222=-by a x (a>0,b>0) y 2=2px 参数方程 为离心角)参数q q q (sin cos îíì==b y a x 为离心角)参数q q q (tan sec îíì==b y a x îíì=y pt x 22(t 为参数) 范围范围 ─a £x £a ,─b £y £b |x| ³ a,y ÎR x ³0 中心中心 原点O (0,0) 原点O (0,0) 顶点 (a,0), (─a,0), (0,b) , (0,─b) (a,0), (─a,0) (0,0) 对称轴x 轴,y 轴;轴; 长轴长2a,短轴长2b x 轴,y 轴; 实轴长2a, 虚轴长2b. x 轴 焦点焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0) )0,2(p F 焦距 2c (c=22b a -) 2c (c=22b a +)离心率 )10(<<=e a c e )1(>=e a c ee=1 准线准线x=c a 2± x=ca 2±2p x -=渐近线y=±abx 焦半径 ex a r ±= )(a ex r ±±=2px r += 通径通径a b 22 a b 22 2p 焦参数焦参数ca 2ca 2P (1))0(12222>>=+b a b y a x ,焦点:F 1(-c,0),F 2(c,0),其中c=22b a -. (2))0(12222>>=+b a a y b x ,焦点:F 1(0,-c),F 2(0,c),其中以标准方程)0(12222>>=+b a by a x 为例: ①范围:|x|≤a,|y|≤b;②对称性:对称轴x=0,y=0,对称中心为O(0,0);③顶点A(a,0),A′(A(a,0),A′(--a,0),B(0,b),B′(0,a,0),B(0,b),B′(0,-b);-b);长轴|AA′|=2a,短轴|BB′|=2b;④离心率:e=ac,0<e<1;⑤准线x=±ca 2;⑥焦半径:|PF 1|=a+ex,|PF 2|=a-ex,其中P(x,y)是椭圆上任意一点. 二、基本训练1.设一动点P 到直线3x =的距离与它到点A (1,0)的距离之比为3,则动点P的轨迹方程是的轨迹方程是 ( )()A 22132x y += ()B 22132x y -=()C 22(1)132x y ++=()D 22123x y +=2.与曲线)9(192522<=-+-k ky k x 之间具有的等量关系之间具有的等量关系( )()A 有相等的长、短轴有相等的长、短轴 ()B 有相等的焦距有相等的焦距()C 有相等的离心率有相等的离心率()D 有相同的准线有相同的准线3.已知椭圆的长轴长是短轴长的3倍,长、短轴都坐标上,且过点(3,0)A ,则椭圆的方程是圆的方程是 ,1.椭圆的定义: 第一种定义:平面内与两个定点F 1、F 2的距离之和等于的距离之和等于常数常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距焦距. 第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线. 2.椭圆的标准椭圆的标准方程方程: c=22b a -. 3.椭圆的参数方程:îíì==q qsin cos b y a x ,(参数θ是椭圆上任意一点的是椭圆上任意一点的离心率离心率). 4.椭圆的几何性质:曲线192522=+y x .4.底面.底面直径直径为12cm 的圆柱被与底面成30的平面所截,的平面所截,截口是一个椭圆,这个椭圆的长截口是一个椭圆,这个椭圆的长y xOF 1F 2P αβyO x1lF 2 F 1 A 2 A 1 PMl短轴长短轴长 221(0)x y a b a b +,+=>>,P 为椭圆上除长轴端点外的任一点,12,F F 为椭圆的两个焦点,(1)若a =Ð21F PF ,21PF F b Ð=,求证:离心率2cos2cosb a ba -+=e ;(2)若q 221=ÐPF F ,求证:21PF F D 的面积为2t a n b q ×.例4设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->,且椭圆上存在点P ,使得直线1PF 与直线2PF 垂直.(1)求实数m 的取值范围;(2)设l 是相应于焦点2F 的准线,直线2PF 与l 相交于点Q ,若22||23||QF PF =-,求直线2PF 的方程.程.,离心率 .5.已知.已知椭圆椭圆22=>>的离心率为35,若将这个椭圆绕着它的右焦点按逆时针方向逆时针方向旋转旋转2p后,所得新椭圆的一条准线后,所得新椭圆的一条准线方程方程是163y =,则原来的椭,则原来的椭圆方程圆方程是 ;新椭圆方程是;新椭圆方程是 . 三、例题分析 例1(05浙江) .如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的轴的交点交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭求椭圆的方程圆的方程;(Ⅱ)若直线l 1:x =m (|m |>1),P 为l 1上的动点,使∠F 1PF 2最大的点P 记为Q ,求点Q 的坐标(用m 表示).例2设A B 是两个定点,且||2AB =,动点M 到A 点的距离是4,线段MB 的垂直平分线l 交MA 于点P ,求动点P 的轨迹方程.例3.已知椭圆22221(0)x y a b a bïîïíì³<<+)4(2)40(442b bbb ;(B) ïîïíì³<<+)2(2)20(442b bbb ;(C) 442+b ;(D) 2b2. P A 3316 ()B )32(4- ()C )32(16+ ()D 163.已知椭圆22221(0)x y a b a b+=>>的左焦点为的左焦点为 F ,(,0),(0,)A a B b -为椭圆的两个顶点,若F 到AB A 777- ()B 777+ ()C 12()D 454.(05天津卷)从集合{1,2,3…,11}例5(05上海)点A 、B 分别是分别是椭圆椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ^。

人教A版高中数学 选修2-1 2-2-2椭圆的简单几何性质 学

人教A版高中数学 选修2-1 2-2-2椭圆的简单几何性质 学

2.2.2椭圆的简单几何性质(一)教学目标1.知识与技能:(1) 通过对椭圆图形的研究,让学生熟悉椭圆的几何性质(对称性、范围、顶点、离心率)以及离心率的大小对椭圆形状的影响,进一步加强数形结合的思想。

(2) 熟练掌握椭圆的几何性质,会用椭圆的几何性质解决相应的问题2.过程与方法:通过讲解椭圆的相关性质,理解并会用椭圆的相关性质解决问题。

3.情感、态度与价值观:(1) 学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;(2) 培养学生抽象概括能力和逻辑思维能力。

(二)教学重点与难点重点:椭圆的几何性质,数形结合思想的贯彻,运用曲线方程研究几何性质难点:数形结合思想的贯彻,运用曲线方程研究几何性质。

(三)教学过程活动一:创设情景、引入课题 (5分钟)问题1:前面两节课,说一说所学习过的内容?1、 椭圆的定义?2、 两种不同椭圆方程的对比?问题2:观察椭圆12222=+by a x (a>b>0)的形状,你能从图上看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?活动二:师生交流、进入新知,(20分钟)1.范围:-a x a ≤≤,b y b -≤≤2.对称性:椭圆关于x 轴、y 轴和原点对称.所以,椭圆关于x 轴、y 轴和原点对称.这时, 是椭圆的对称轴, 是对称中心,椭圆的对称中心叫 .问题3:你能由椭圆的方程12222=+by a x 得出椭圆与x 轴、y 轴的交点坐标吗?3.顶点:与x 轴的两个交点.为1(,0)A a -,2(,0)A a ;长轴为|21A A |=2a ;长半轴长为a 与y 轴的两个交点为1(0,)B b -,2(0,)B b ;短轴为|21B B |=2b ;短半轴长为b所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点.同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b ,a 和b 分别叫做椭圆的 和 .由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a ;在22Rt OB F ∆中,2||OB b =,2||OF c =,22||B F a =,且2222222||||||OF B F OB =-,即222c a c =-.问题4:观察不同的椭圆,发现椭圆的扁平程度不一,那么用什么量可以刻画椭圆的扁平程度?4.离心率:椭圆的焦距与长轴的比c e a=叫椭圆的离心率. 01e << 问题5:书本P46页探究?练习:书本P48页练习1、2例4:求椭圆221625400x y +=的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出图形.扩展:已知椭圆()22550mx y m m +=>的离心率为e =m 的值. 练习:书本P48页练习3活动三:合作学习、探究新知(18分钟) 例5:如图,一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上,由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F .已知12BC F F ⊥,1 2.8F B cm =,12 4.5F F cm =.建立适当的坐标系,求截口BAC 所在椭圆的方程.引申:如图所示, “神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心2F 为一个焦点的椭圆,近地点A 距地面200km ,远地点B 距地面350km ,已知地球的半径6371R km .建立适当的直角坐标系,求出椭圆的轨迹方程.练习:书本P48页练习4、5活动四:归纳整理、提高认识(2分钟)1. 用表格形式表示一下椭圆的几何性质?活动五:作业布置、提高巩固1.书面作业:书本P49 A 组3、4、5、9板书设计:椭圆的几何性质1、椭圆的几何性质 例4:例5。

高中数学2.2.2椭圆的简单几何性质学案新人教A版选修2-1

高中数学2.2.2椭圆的简单几何性质学案新人教A版选修2-1

高中数学椭圆的简单几何性质教案新人教 A 版选修 2-1课前预习教案一、预习目标:预习椭圆的四个几何性质二、预习内容:(1) 范围 :----------------,椭圆落在-----------------构成的矩形中.(2)对称性 : 图象对于y轴对称.图象对于x轴对称.图象对于原点对称原点叫椭圆的---------,简称 -----.x轴、y轴叫椭圆的对称轴.从椭圆的方程中直接能够看出它的范围,对称的截距( 3)极点:椭圆和对称轴的交点叫做椭圆的极点椭圆共有四个极点:---------------加两焦点----------共有六个特别点.A1 A2叫椭圆的-----,B1B2叫椭圆的-----.长分别为2a,2b a, b分别为椭圆的-------和 ---- --.椭圆的极点即为椭圆与对称轴的交点(4) 离心率 :椭圆焦距与长轴长之比e ce 1 (b)20 e 1 a a椭圆形状与 e 的关系: e0,c0 ,椭圆变---,直至成为极限地点圆,此时也可以为圆为椭圆在 e 0 时的特例 e 1,c a, 椭圆变---,直至成为极限地点线段F1 F2,此时也可以为圆为椭圆在 e 1时的特例三、提出迷惑:同学们,经过你的自主学习,你还有哪些迷惑,请把它填在下边的表格中迷惑点迷惑内容课内研究教案一、学习目标: 1 掌握椭圆的范围、对称性、极点、离心率、理解a,b,c,e的几何意义。

2初步利用椭圆的几何性质解决问题。

学习重难点:椭圆的几何性质的商讨以及a,b,c,e的关系x 2 y 21(a b 0) 的形状,二、学习过程:研究一观察椭圆2 b2a你能从图形上看出它的范围吗?它拥有如何的对称性?椭圆上哪些点比较特别?1、范围:(1)从图形上看,椭圆上点的横坐标的范围是_________________。

椭圆上点的纵坐标的范围是 ____________________.。

(2)由椭圆的标准方程x2 y20) 知a1(a b2b2① x 2____1,即 ____ ____;②y 2____ 1;即 ____ y ___2 x 2a b所以 x2y 2 1(a b 0) 位于直线 ___________ 和 __________围成的矩形里。

高中数学选修2-1优质学案13:2.2.2 椭圆的简单几何性质(二)

高中数学选修2-1优质学案13:2.2.2 椭圆的简单几何性质(二)

2.2.2 椭圆的简单几何性质(二)课堂互动区知识点1 直线与椭圆的位置关系思考1 判断直线与圆的位置关系有哪几种方法?思考2 能否利用判断直线与圆的位置关系的方法判断直线与椭圆的位置关系?思考3 已知直线l 和椭圆C 的方程,如何判断直线与椭圆的位置关系?讲一讲1.已知椭圆4x 2+y 2=1及直线y =x +m .问m 为何值时,直线与椭圆相切、相交、相离.类题通法判断直线与椭圆的位置关系的方法练一练1.若直线y =kx +1与焦点在x 轴上的椭圆x 25+y 2m=1总有公共点,求m 的取值范围.知识点2 直线与椭圆的相交弦问题思考1 若直线l 与圆C 相交于点A ,B ,如何求弦长|AB |?思考2 若直线l :y =kx +m 与椭圆x 2a 2+y 2b 2=1相交于A (x 1,y 1),B (x 2,y 2)两点,如何求|AB |的值?讲一讲2.已知椭圆x 236+y 29=1和点P (4,2),直线l 经过点P 且与椭圆交于A 、B 两点. (1)当直线l 的斜率为12时,求线段AB 的长度; (2)当P 点恰好为线段AB 的中点时,求l 的方程.类题通法(1)弦长公式设直线方程为y =kx +m (k ≠0),椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2,所以|AB |=(x 1-x 2)2+(kx 1-kx 2)2 =1+k 2·(x 1-x 2)2 =1+k 2·(x 1+x 2)2-4x 1x 2,或|AB |=⎝⎛⎭⎫1k y 1-1k y 22+(y 1-y 2)2 =1+1k 2·(y 1-y 2)2 =1+1k2·(y 1+y 2)2-4y 1y 2. 其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y 或x 后得到关于x 或y 的一元二次方程得到.(2)解决椭圆中点弦问题的两种方法①根与系数的关系法:联立直线方程和椭圆方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决.②点差法:利用交点在曲线上,坐标满足方程,将交点坐标分别代入椭圆方程,然后作差,构造出中点坐标和斜率的关系,具体如下:已知A (x 1,y 1),B (x 2,y 2)是椭圆x 2a 2+y 2b 2=1(a >b >0)上的两个不同的点,M (x 0,y 0)是线段AB 的中点,则⎩⎨⎧x 21a 2+y 21b 2=1,①x 22a 2+y 22b 2=1,② 由①-②,得1a 2(x 21-x 22)+1b 2(y 21-y 22)=0,变形得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·x 0y 0,即k AB =-b 2x 0a 2y 0. 练一练2.直线y =x +1被椭圆x 24+y 22=1所截得线段的中点的坐标是( ) A.⎝⎛⎭⎫23,53 B.⎝⎛⎭⎫43,73 C.⎝⎛⎭⎫-23,13 D.⎝⎛⎭⎫-132,-1723.椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且椭圆与直线x +2y +8=0相交于P ,Q ,且|PQ |=10,求椭圆方程.知识点3 与椭圆有关的最值问题讲一讲3.已知椭圆x 2a 2+y 2b 2=1的离心率e =63. (1)若2a 2c =32,求椭圆方程; (2)直线l 过点C (-1,0)交椭圆于A 、B 两点,且满足:,试求△OAB 面积的最大值.类题通法解决这类问题需要正确地应用转化思想、函数与方程思想和数形结合思想.其中应用比较多的是利用根与系数的关系构造等式或函数关系式,这其中要注意利用根的判别式来确定参数的限制条件.练一练4.在椭圆x 24+y 27=1上求一点P ,使它到直线l :3x -2y -16=0的距离最短,并求出最短距离.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是直线与椭圆位置关系的判断、直线与圆的相交弦问题,难点是与椭圆有关的最值问题.2.本节课要重点掌握的规律方法(1)直线与椭圆位置关系的判定方法,见讲1.(2)弦长问题及中点弦问题的求解方法,见讲2.(3)与椭圆有关的最值问题,见讲3. ——★ 参 考 答 案 ★——课堂互动区知识点1 直线与椭圆的位置关系思考1 名师指津:(1)几何法:利用圆心到直线的距离d 与圆的半径的大小关系判断,d =r ⇔相切;d >r ⇔相离;d <r ⇔相交.(2)代数法:联立直线与圆的方程,利用方程组解的个数判断.思考2 名师指津:不能采用几何法,但是可以利用代数法判断直线与椭圆的位置关系. 思考3 名师指津:判断直线与椭圆的位置关系,通过解直线方程与椭圆方程组成的方程组,消去方程组中的一个变量,得到关于另一个变量的一元二次方程,则Δ>0⇔直线与椭圆相交;Δ=0⇔直线与椭圆相切;Δ<0⇔直线与椭圆相离.讲一讲1.解:将y =x +m 代入4x 2+y 2=1,消去y 整理得5x 2+2mx +m 2-1=0.Δ=4m 2-20(m 2-1)=20-16m 2.当Δ=0时,得m =±52,直线与椭圆相切; 当Δ>0时,得-52<m <52,直线与椭圆相交; 当Δ<0时,得m <-52或m >52,直线与椭圆相离. 练一练1.解:由⎩⎪⎨⎪⎧y =kx +1,x 25+y 2m =1,消去y ,整理得(m +5k 2)x 2+10kx +5(1-m )=0, 所以Δ=100k 2-20(m +5k 2)(1-m )=20m (5k 2+m -1),因为直线与椭圆总有公共点,所以Δ≥0对任意k ∈R 都成立,因为m >0,所以5k 2≥1-m 恒成立,所以1-m ≤0,即m ≥1.又因为椭圆的焦点在x 轴上,所以0<m <5,综上,1≤m <5,即m 的取值范围是[1,5).知识点2 直线与椭圆的相交弦问题思考1 名师指津:(1)利用r 2=d 2+⎝⎛⎭⎫l 22求解;(2)利用两点间的距离公式求解;(3)利用弦长公式|AB |=1+k 2|x 1-x 2|求解.思考2 名师指津:|AB |=1+k 2|x 1-x 2|.讲一讲2.解:(1)由已知可得直线l 的方程为y -2=12(x -4),即y =12x . 由⎩⎨⎧y =12x ,x 236+y 29=1,可得x 2-18=0, 若设A (x 1,y 1),B (x 2,y 2).则x 1+x 2=0,x 1x 2=-18.于是|AB |=(x 1-x 2)2+(y 1-y 2)2 =(x 1-x 2)2+14(x 1-x 2)2 =52(x 1+x 2)2-4x 1x 2 =52×62=310. 所以线段AB 的长度为310.(2)法一:设l 的斜率为k ,则其方程为y -2=k (x -4).联立⎩⎪⎨⎪⎧x 236+y 29=1,y -2=k (x -4),消去y 得(1+4k 2)x 2-(32k 2-16k )x +(64k 2-64k -20)=0.若设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=32k 2-16k 1+4k 2, 由于AB 的中点恰好为P (4,2),所以x 1+x 22=16k 2-8k 1+4k 2=4, 解得k =-12,且满足Δ>0. 这时直线的方程为y -2=-12(x -4), 即y =-12x +4. 法二:设A (x 1,y 1),B (x 2,y 2),则有⎩⎨⎧x 2136+y 219=1,x 2236+y 229=1, 两式相减得x 22-x 2136+y 22-y 219=0, 整理得k AB =y 2-y 1x 2-x 1=-9(x 2+x 1)36(y 2+y 1), 由于P (4,2)是AB 的中点,∴x 1+x 2=8,y 1+y 2=4,于是k AB =-9×836×4=-12, 于是直线AB 的方程为y -2=-12(x -4), 即y =-12x +4. 练一练2.[答案]C[解析]联立方程组⎩⎪⎨⎪⎧y =x +1,x 24+y 22=1, 消去y 得3x 2+4x -2=0.设交点A (x 1,y 1),B (x 2,y 2),中点M (x 0,y 0),x 1+x 2=-43,x 0=x 1+x 22=-23,y 0=x 0+1=13. ∴所求中点的坐标为⎝⎛⎭⎫-23,13. 3.解:∵e =32,∴b 2=14a 2.∴椭圆方程为x 2+4y 2=a 2. 与x +2y +8=0联立消去y ,得2x 2+16x +64-a 2=0,由Δ>0得a 2>32,由弦长公式得10=54×[64-2(64-a 2)].∴a 2=36,b 2=9.∴椭圆方程为x 236+y 29=1. 知识点3 与椭圆有关的最值问题讲一讲3.解:(1)由题意知⎩⎨⎧c a =63,2a 2c =32,解得a =3,c = 2.所以a 2=3,b 2=1, 所以椭圆方程为x 23+y 2=1. (2)由e =c a =63,及a 2=b 2+c 2,得a 2=3b 2,可设椭圆的方程为x 23b 2+y 2b2=1, 设A (x 1,y 1),B (x 2,y 2),由题意知直线l 的斜率存在,则设l 的方程为y =k (x +1),由⎩⎪⎨⎪⎧y =k (x +1),x 23b 2+y 2b 2=1, 得(3k 2+1)x 2+6k 2x +3k 2-3b 2=0,且Δ=12(3b 2-1)k 2+12b 2,因为直线l 交椭圆于A 、B 两点,且, 所以点C 在椭圆内部,所以a >1,所以3b 2>1,所以Δ>0.所以x 1+x 2=-6k 23k 2+1. 因为,所以(x 1+1,y 1)=3(-1-x 2,-y 2),所以x 1=-4-3x 2,所以x 2+1=-13k 2+1,所以|x 1-x 2|=43k 2+1. 又O 到直线l 的距离为d =|k |1+k 2, 所以S △ABO =12|AB |d =121+k 2|x 1-x 2|·d =2|k |3k 2+1=23|k |+1|k |≤33, 所以当且仅当3|k |=1|k |,即k =±33时, S △ABO 取得最大值33. 练一练4.解:设与椭圆相切并与l 平行的直线方程为y =32x +m ,代入x 24+y 27=1, 并整理得4x 2+3mx +m 2-7=0,Δ=9m 2-16(m 2-7)=0⇒m 2=16⇒m =±4,故两切线方程为y =32x +4和y =32x -4,显然y =32x -4距l 最近,d =|16-8|32+(-2)2=813, 切点为P ⎝⎛⎭⎫32,-74.。

人教A版高中数学选修2-1教案椭圆的简单几何性质(2)

人教A版高中数学选修2-1教案椭圆的简单几何性质(2)

科目数学课题 2.2.2椭圆的简单几何性质(二) 教学班级 中 级 班三 维 目 标知识与 技能 会用椭圆的定义解决实际问题;通过例题了解椭圆的第二定义,准线及焦半径的概念,利用信息技术初步了解椭圆的第二定义.过程与 方法 通过椭圆的方程研究其几何性质及其应用过程,培养学生观察、分析问题的能力,利用数形结合思想解决问题的能力情感态度与价值观 通过数与形的辩证统一,对学生进行辩证唯物主义教育,通过对椭圆对称美的感受,激发学生对美好事物的追求教学用具教学重点 椭圆的定义解决实际问题,了解椭圆的第二定义 教学难点了解椭圆的第二定义教学步骤及要点:教学过程:(一)复习:椭圆的简单几何性质1.椭圆81922=+y x 的长轴长为 18 ,短轴长为 6 ,半焦距为26,离心率为322,焦点坐标为)26,0(±,顶点坐标为)9,0(±)0,3(±,. 2.短轴长为8,离心率为53的椭圆两焦点分别为1F 、2F ,过点1F 作直线l 交椭圆于A 、B 两点,则2ABF ∆的周长为 20 .(二)新授例1. 如图,一种电影放映灯的反射镜面是旋转椭圆面的一部分.对称的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上,由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F .已知12BC F F ⊥,1 2.8F B cm =,12 4.5F F cm =.建立适当的坐标系,求截口BAC 所在椭圆的方程.解析:建立适当的直角坐标系,设椭圆的标准方程为22221x y a b+=,算出,,a b c 的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于,,a b c 的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.引申:如图所示, “神舟七号”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心2F 为一个焦点的椭圆,近地点A 距地面200km ,远地点B 距地面350km ,已知地球的半径6371R km =.建立适当的直角坐标系,求出椭圆的轨迹方程.例2.如图,设(),M x y 与定点()4,0F 的距离和它到直线l :254x =的距离的比是常数45,求点M 的轨迹方程. 分析:若设点(),M x y ,则()224MF x y =-+,到直线l :254x =的距离254d x =-,则容易得点M 的轨迹方程. 引申:若点(),M x y 与定点(),0F c 的距离和它到定直线l :2a x c=的距离比是常数ce a=()0a c >>,则点M 的轨迹方程是椭圆. 其中焦点(),0F c 相应的准线是定直线l :2a x c =;焦点(),0F c '-,相应的准线l ':2a x c=-,由椭圆的第二定义e dMF =∴||。

高中数学 专题2.2.2 椭圆的简单的几何性质(2)教案 新人教A版选修2-1(2021年整理)

高中数学 专题2.2.2 椭圆的简单的几何性质(2)教案 新人教A版选修2-1(2021年整理)

高中数学专题2.2.2 椭圆的简单的几何性质(2)教案新人教A版选修2-1 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学专题2.2.2 椭圆的简单的几何性质(2)教案新人教A版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学专题2.2.2 椭圆的简单的几何性质(2)教案新人教A版选修2-1的全部内容。

椭圆的简单的几何性质(2)【教学目标】知识目标:1.探究椭圆与直线的位置关系;2.会根据直线与椭圆的位置关系解决实际问题.能力目标:通过探究直线与椭圆的位置关系,体会数形结合的思想方法,培养学生综合运用能力、归纳能力,自觉养成运算能力、动手、动脑的良好习惯.情感目标:通过数学与探究活动,体会理论来源于实践并应用于实践。

【重点难点】1.教学重点:探究直线与椭圆的位置关系.2。

教学难点:会根据直线与椭圆的位置关系解决实际问题【教学过程】☆情境引入☆回忆:直线与圆的位置关系1.位置关系:相交、相切、相离2.判别方法(代数法)联立直线与圆的方程消元得到二元一次方程组(1)0∆直线与圆相交有两个公共点;>(2)0∆直线与圆相切有且只有一个公共点;=(3)0<∆直线与圆相离无公共点.☆探索新知☆直线与椭圆的位置关系1。

位置关系:相交、相切、相离2.判别方法(代数法)联立直线与椭圆的方程消元得到二元一次方程组22221Ax By Cx ya b++=⎧⎪⎨+=⎪⎩由方程组20(0)mx nx p m⇒++=≠24n mp-△=例1:直线y=kx+1与椭圆1522=+myx恒有公共点,求m的取值范围。

221:15y kxx ym=+⎧⎪⎨+=⎪⎩解22(5)10550m k x kx m⇒+++-=22104(5)550k m k m=-+-≥△()()22(51)0m k m∴+-≥20,511-01,5m k mm m m>∴≥-∴≤∴≥≠恒成立,且例2:已知椭圆221259x y+=,直线45400x y-+=,椭圆上是否存在一点,到直线l的距离最小?最小距离是多少?分析:设00(,)P x y是椭圆上任一点,试求点P到直线45400x y-+=的距离的表达式。

高中数学 2.2.2 椭圆及其标准方程学案 新人教A版选修21

高中数学 2.2.2 椭圆及其标准方程学案 新人教A版选修21

高中数学 2.2.2 椭圆及其标准方程学案 新人教A 版选修21 学习目标:1、掌握点的轨迹的求法;2、进一步掌握椭圆的定义标准方程。

一、复习回顾:(1)椭圆221169x y +=的焦点坐标为 ,焦距是 ,若CD 为过左焦点1F 的弦,则2F CD ∆的周长为 。

(2)椭圆22110064x y +=上一点P 到焦点1F 的距离等于8,则点P 到另一个焦点2F 的距离是 。

(3)动点P 到两定点1(4,0)F -,2(4,0)F 的距离和是8,则动点P 的轨迹为 。

(4)方程2241x ky +=的曲线是焦点在y 轴上的椭圆,则k 的取值范围是 。

二、典例分析:〖例1〗:(1)如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PP ',求线段PP '中点M 的轨迹。

(2)如图,设,A B 的坐标分别为()5,0-,()5,0。

直线AM ,BM 相交于点M ,且它们的斜率之积为49-,求点M 的轨迹方程。

〖例2〗:已知圆C :22(1)25x y ++=,及点(1,0)A ,Q 为圆上一动点,AQ 的垂直平分线交CQ 于点M ,求点M 的轨迹方程。

〖例3〗:一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,求动圆圆心M 的轨迹方程,并说明它是什么样的曲线?〖例4〗:已知椭圆22143x y +=,试确定m 的值,使得在此椭圆上存在不同两点关于直线4y x m =+对M P ′P 2-2xO y称。

三、课后作业:1、椭圆22213x y m m+=-的一个焦点为()0,1,则m 的值为( )A 、1B 、12-±C 、2-或1D 、2-或1或12- 2、若方程()220,0ax by c ab c +=≠>表示焦点在x 轴上的椭圆,则( )A 、0a b >>B 、0,0a b >>C 、0b a >>D 、a b c c> 3、椭圆2214x y m +=的焦距为2,则m 的值为( ) A 、5 B 、5或8 C 、3或5 D 、204、若圆229x y +=上每一个点的横坐标不变,纵坐标缩短为原来的,则所得的曲线的方程为A 、221916x y +=B 、2219144x y +=C 、2216199x y +=D 、22199x y += 5、21,F F 是椭圆17922=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则Δ12AF F 的面积为( ) A 、7 B 、47 C 、27 D 、257 6、设P 是椭圆22194x y +=上一动点,21,F F 是椭圆的两个焦点,则12cos F PF ∠的最小值是( ) A 、12 B 、19 C 、59- D 、19- 7、已知定点()1,0A ,Q 为椭圆1422=+y x 上的动点,则AQ 中点M 的轨迹方程为 。

高中新课程数学(新课标人教A版)选修2-1《2.2.2椭圆及其简单几何性质(2)》课件

高中新课程数学(新课标人教A版)选修2-1《2.2.2椭圆及其简单几何性质(2)》课件

故(2x25)2+(2y9)2=1,化简得1x020+3y62 =1. 即所求 M 的轨迹方程为1x020+3y62 =1. (2)由已知 a=5,b=3,c=4, cos∠F1PF2=|PF1|22+|PF|P1F|·2|2|P-F|F2| 1F2|2
=(|PF1|+|PF2|) 2|P2F-1|2·|P|FPF1|·2| |PF2|-|F1F2|2
【变式1】 已知椭圆1x62+y42=1,过点 P(2,1)作一弦,使弦在这点 被平分,求此弦所在直线的方程.
解 法一 如右图,设所求直线的方 程为y-1=k(x-2), 代入椭圆方程并整理,得 (4k2+1)x2-8(2k2-k)x+4(2k-1)2-16 =0, (*) 又设直线与椭圆的交点为A(x1,y1), B(x2,y2), 则x1、x2是(*)方程的两个根,
9分
解得 x0≈239.7,y0≈156.7(由题意 x0>0,y0>0).
∴探测器在变轨时与火星表面的距离为
(x0-c)2+y02-R≈187.3(百公里).
11 分
所以探测器在变轨时与火星表面的距离约为 187 百公里. 12 分
【题后反思】 解答与椭圆相关的应用问题时,事物的实际 含义向椭圆的几何性质的转化是关键,其次要充分利用椭 圆的方程对变量进行讨论,以解决实际问题.
[思路探索] 解答第(1)问的关键是由已知条件准确分析出|A→B|与
|A→P|的关系,再由向量的数量积得|A→P|,从而用待定系数法求出
椭圆 C 的方程,解答第(2)问的关键是利用 a2>b2>0,构造 t 的不 等式解出 t 的范围. 解 ∵直线 AB 的斜率为 1, ∴∠BAP=45°,
即△BAP 是等腰直角三角形,|A→B|= 2|A→P|.

人教A版数学高二选修2-1学案2.2第2课时椭圆的简单几何性质

人教A版数学高二选修2-1学案2.2第2课时椭圆的简单几何性质

第2课时椭圆的简单几何性质[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P43~P46“探究”的内容,回答下列问题.观察教材P44-图2.2-7,思考以下问题:(1)椭圆x2a2+y2b2=1(a>b>0)中x,y的取值范围各是什么?提示:-a≤x≤a,-b≤y≤b.(2)椭圆x2a2+y2b2=1(a>b>0)的对称轴和对称中心各是什么?提示:对称轴为x轴和y轴,对称中心为坐标原点(0,0).(3)椭圆x2a2+y2b2=1(a>b>0)与坐标轴的交点坐标是什么?提示:与x轴的交点坐标为(±a,0),与y轴的交点坐标为(0,±b).(4)椭圆的长轴和短轴分别对应图中的哪些线段?提示:长轴为A1A2,短轴为B1B2.(5)椭圆的离心率是什么?用什么符号表示?其取值范围是什么?提示:离心率e=ca;0<e<1.(6)如果保持椭圆的长半轴长a不变,改变椭圆的短半轴长b的值,你发现b的变化与椭圆的扁圆程度有什么关系?提示:b越大,椭圆越圆;b越小,椭圆越扁.(7)根据离心率的定义及椭圆中a,b,c的关系可知,e=ca=c2a2=a2-b2a2=1-⎝⎛⎭⎫ba2,所以e越接近于1,则c越接近于a,从而b=a2-c2就越小;e越接近于0,则c越接近于0,从而b越接近于a.那么e的大小与椭圆的扁圆程度有什么关系?提示:e越大,椭圆越扁;e越小,椭圆越圆.2.归纳总结,核心必记椭圆的简单几何性质焦点焦点在x轴上焦点在y轴上的位置图形标准 方程续表焦点 的位置 焦点在x 轴上 焦点在y 轴上 范围 -a ≤x ≤a 且-b ≤y ≤b -b ≤x ≤b 且-a ≤y ≤a 顶点 A 1(-a ,0),A 2(a ,0), B 1(0,-b ),B 2(0,b ) A 1(0,-a ),A 2(0,a ), B 1(-b ,0),B 2(b ,0)轴长 短轴长=2b ,长轴长=2a焦点 F 1(-c ,0),F 2(c ,0)F 1(0,-c ),F 2(0,c )焦距 |F 1F 2|=2c对称性 对称轴x 轴和y 轴,对称中心(0,0)离心率e =ca(0<e <1)[问题思考](1)借助椭圆图形分析,你认为椭圆上到对称中心距离最近和最远的点各是哪些? 提示:短轴端点B 1和B 2到中心O 的距离最近;长轴端点A 1和A 2到中心O 的距离最远. (2)借助椭圆图形分析,你认为椭圆上的点到焦点距离的最大值和最小值各是何值? 提示:点(a ,0),(-a ,0)与焦点F 1(-c ,0)的距离分别是椭圆上的点与焦点F 1的最大距离和最小距离,分别为a +c 和a -c .(3)如何用a ,b 表示离心率? 提示:由e =c a 得e 2=c 2a 2=a 2-b 2a 2,∴e = 1-⎝⎛⎭⎫b a 2. ∴e =1-b 2a2. [课前反思]通过以上预习,必须掌握的几个知识点.(1)椭圆的几何性质: ;(2)椭圆的离心率与椭圆的扁圆程度的关系是: .讲一讲1.求椭圆4x 2+9y 2=36的长轴长和焦距、焦点坐标、顶点坐标和离心率. [尝试解答] 将椭圆方程变形为x 29+y 24=1,∴a =3,b =2.∴c =a 2-b 2=9-4= 5. ∴椭圆的长轴长和焦距分别为2a =6,2c =25, 焦点坐标为F 1(-5,0),F 2(5,0),顶点坐标为A 1(-3,0),A 2(3,0),B 1(0,-2),B 2(0,2),离心率e =c a =53.解决此类问题的方法是将所给方程先化为标准形式,然后根据方程判断出椭圆的焦点在哪个坐标轴上,再利用a ,b ,c 之间的关系和定义,求椭圆的基本量.练一练1.求椭圆m 2x 2+4m 2y 2=1(m >0)的长轴长、短轴长、焦点坐标、顶点坐标和离心率. 解:椭圆的方程m 2x 2+4m 2y 2=1(m >0), 可转化为x 21m 2+y 214m 2=1.∵m 2<4m 2, ∴1m 2>14m 2, ∴椭圆的焦点在x 轴上,并且长半轴长a =1m ,短半轴长b =12m ,半焦距长c =32m .∴椭圆的长轴长2a =2m ,短轴长2b =1m ,焦点坐标为⎝⎛⎭⎫-32m ,0,⎝⎛⎭⎫32m ,0,顶点坐标为⎝⎛⎭⎫1m,0,⎝⎛⎭⎫-1m,0,⎝⎛⎭⎫,-12m,⎝⎛⎭⎫0,12m.离心率e=ca=32m1m=32.讲一讲2.求适合下列条件的椭圆的标准方程.(1)长轴长是短轴长的5倍,且过点A(5,0);(2)离心率e=35,焦距为12.[尝试解答](1)若椭圆焦点在x轴上,设其标准方程为x2a2+y2b2=1(a>b>0),由题意得⎩⎪⎨⎪⎧2a=5×2b,25a2+b2=1,解得⎩⎪⎨⎪⎧a=5,b=1.故所求椭圆的标准方程为x225+y2=1;若焦点在y轴上,设其标准方程为y2a2+x2b2=1(a>b>0),由题意,得⎩⎪⎨⎪⎧2a=5×2b,a2+25b2=1,解得⎩⎪⎨⎪⎧a=25,b=5.故所求椭圆的标准方程为y2625+x225=1.综上所述,所求椭圆的标准方程为x225+y2=1或y2625+x225=1.(2)由e=ca=35,2c=12,得a=10,c=6,∴b2=a2-c2=64.当焦点在x轴上时,所求椭圆的标准方程为x2100+y264=1;当焦点在y轴上时,所求椭圆的标准方程为y2100+x264=1.综上所述,所求椭圆的标准方程为x2100+y264=1或y2100+x264=1.(1)根据椭圆的几何性质求标准方程,通常采用待定系数法,其步骤仍然是“先定型,后计算”,即首先确定焦点位置,其次根据已知条件构造关于参数的关系式,利用方程(组)求得参数.(2)在求椭圆方程时,要注意根据题目条件判断焦点所在的坐标轴,从而确定方程的形式,若不能确定焦点所在的坐标轴,则应进行讨论.一般地,已知椭圆的焦点坐标时,可以确定其所在的坐标轴;而已知椭圆的离心率、长轴长、短轴长、焦距时,则不能确定焦点的位置,这时应对两种情况分别求解并进行取舍.练一练2.求满足下列条件的椭圆的标准方程. (1)长轴长是短轴长的2倍,且经过点A (2,3);(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为 3. 解:(1)若椭圆的焦点在x 轴上, 设标准方程为x 24b 2+y 2b2=1(b >0),∵椭圆过点A (2,3),∴1b 2+9b 2=1,b 2=10.∴方程为x 240+y 210=1.若椭圆的焦点在y 轴上. 设椭圆方程为y 24b 2+x 2b2=1(b >0),∵椭圆过点A (2,3),∴94b 2+4b 2=1,b 2=254.∴方程为y 225+4x 225=1.综上所述,椭圆的标准方程为x 240+y 210=1或y 225+4x 225=1.(2)由已知⎩⎨⎧a =2c ,a -c =3,∴⎩⎨⎧a =23,c = 3.从而b 2=9,∴所求椭圆的标准方程为x 212+y 29=1或x 29+y 212=1.讲一讲3.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-c ,0),A (-a ,0),B (0,b )是两个顶点,如果F 1到直线AB 的距离为b7,求椭圆的离心率e . [尝试解答] 由A (-a ,0),B (0,b ),得直线AB的斜率为k AB=ba,故AB所在的直线方程为y-b=ba x,即bx-ay+ab=0.又F1(-c,0),由点到直线的距离公式可得d=|-bc+ab|a2+b2=b7,∴7·(a-c)=a2+b2.又b2=a2-c2,整理,得8c2-14ac+5a2=0,即8⎝⎛⎭⎫ca2-14ca+5=0.∴8e2-14e+5=0.解得e=12或e=54(舍去).综上可知,椭圆的离心率e=12.求椭圆离心率及范围的两种方法(1)直接法:若已知a,c,可直接利用e=ca求解.若已知a,b或b,c,可借助于a2=b2+c2求出c或a,再代入公式e=ca求解.(2)方程法:若a,c的值不可求,则可根据条件建立a,b,c的关系式,借助于a2=b2+c2,转化为关于a,c的齐次方程或不等式,再将方程或不等式两边同除以a的最高次幂,得到关于e的方程或不等式,即可求得e的值或范围.练一练3.如图,已知F1为椭圆的左焦点,A,B分别为椭圆的右顶点和上顶点,P为椭圆上的一点,当PF1⊥F1A,PO∥AB(O为椭圆的中心)时,求椭圆的离心率.解:由已知可设椭圆的标准方程为x2a2+y2b2=1(a>b>0),则由题意可知P⎝⎛⎭⎫-c,b2a.∵△PF1O∽△BOA,∴PF1BO=F1OOA.∴b2ab=ca,即b=c,∴a2=2c2,∴e=ca=22.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是椭圆的几何性质及椭圆离心率的求法,难点是求椭圆的离心率.2.由椭圆的几何性质求标准方程时易忽视椭圆的焦点位置,这也是本节课的易错点.3.本节课要重点掌握的规律方法(1)已知椭圆的方程讨论性质时,若不是标准形式,应先化成标准形式,见讲1.(2)根据椭圆的几何性质,可以求椭圆的标准方程,其基本思路是“先定型,再定量”,常用的方法是待定系数法,见讲2.(3)求椭圆的离心率要注意函数与方程的思想、数形结合思想的应用,见讲3.。

2..2..2椭圆及其简单几何性质(2)教案(人教A版选修2-1)

2..2..2椭圆及其简单几何性质(2)教案(人教A版选修2-1)

§2.2.2 椭圆及其简单几何性质(2>学习目标1.根据椭圆地方程研究曲线地几何性质;2.椭圆与直线地关系.学习过程一、课前准备~ P48,文P40~ P41找出疑惑之处)46复习1:椭圆地焦点坐标是< )< );长轴长、短轴长;离心率.复习2:直线与圆地位置关系有哪几种?如何判定?二、新课导学※学习探究问题1:想想生活中哪些地方会有椭圆地应用呢?问题2:椭圆与直线有几种位置关系?又是如何确定?反思:点与椭圆地位置如何判定?※典型例题例1 一种电影放映灯泡地反射镜面是旋转椭圆面<椭圆绕其对称轴旋转一周形成地曲面)地一部分.过对称轴地截口是椭圆地一部分,灯丝位于椭圆地一个焦点上,片门位于另一个焦点上,由椭圆一个焦点发出地光线,经过旋转椭圆面反射后集中到另一个焦点,已知,,,试建立适当地坐标系,求截口所在椭圆地方程.变式:若图形地开口向上,则方程是什么?小结:①先化为标准方程,找出,求出;②注意焦点所在坐标轴.<理)例2 已知椭圆,直线:.椭圆上是否存在一点,它到直线地距离最小?最小距离是多少?变式:最大距离是多少?※动手试试练1已知地球运行地轨道是长半轴长,离心率地椭圆,且太阳在这个椭圆地一个焦点上,求地球到太阳地最大和最小距离.练2.经过椭圆地左焦点作倾斜角为地直线,直线与椭圆相交于两点,求地长.三、总结提升※学习小结1 .椭圆在生活中地运用;2 .椭圆与直线地位置关系:相交、相切、相离<用判定).※知识拓展直线与椭圆相交,得到弦,弦长其中为直线地斜率,是两交点坐标.学习评价※自我评价你完成本节导学案地情况为< ).A. 很好B. 较好C. 一般D. 较差※当堂检测<时量:5分钟满分:10分)计分:1.设是椭圆,到两焦点地距离之差为,则是< ).A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰直角三角形2.设椭圆地两个焦点分别为F1、、F2,过F2作椭圆长轴地垂线交椭PF2为等腰直角三角形,则椭圆地离心率是圆于点,若△F< ).A. B. C. D.3.已知椭圆地左、右焦点分别为,点P在椭圆上,若、F2是一个直角三角形地三个顶点,则点P到轴地距离为P、F< ).A. B. 3 C. D.4.椭圆地焦距、短轴长、长轴长组成一个等到比数列,则其离心率为.5.椭圆地焦点分别是和,过原点作直线与椭圆相交于两点,若地面积是,则直线地方程式是.课后作业1.求下列直线与椭圆地交点坐标.2.若椭圆,一组平行直线地斜率是⑴这组直线何时与椭圆相交?⑵当它们与椭圆相交时,这些直线被椭圆截得地线段地中点是否在一直线上?申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.2.2 椭圆及其简单几何性质(2)
1.根据椭圆的方程研究曲线的几何性质;
2.椭圆与直线的关系.
4648,文P 40~ P 41找出疑惑之处)
复习1: 椭圆22
11612
x y +=的 焦点坐标是( )( ) ;
长轴长 、短轴长 ;
离心率 .
复习2:直线与圆的位置关系有哪几种?如何判定?
二、新课导学
※ 学习探究
问题1:想想生活中哪些地方会有椭圆的应用呢?
问题2:椭圆与直线有几种位置关系?又是如何确定?
反思:点与椭圆的位置如何判定?
※ 典型例题
例1 一种电影放映灯泡的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位
于另一个焦点2F 上,由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个
焦点2F ,已知12BC F F ⊥,1 2.8F B cm =,12 4.5F F cm =,试建立适当的坐标系,求截口BAC 所在椭圆的方程.
变式:若图形的开口向上,则方程是什么?
小结:①先化为标准方程,找出,a b,求出c;
②注意焦点所在坐标轴.
(理)例2 已知椭圆
22
1
259
x y
+=,直线l:
45400
x y
-+=。

椭圆上是否存在一点,它到直线l的距离最小?最小距离是多少?变式:最大距离是多少?
※ 动手试试
练1已知地球运行的轨道是长半轴长
81.5010a km =⨯,离心率0.0192e =的椭圆,且太阳在这个椭圆的一个焦点上,求地球到太阳的最大和最小距离.
练2.经过椭圆2
212
x y +=的左焦点1F 作倾斜角为60 的直线l ,直线l 与椭圆相交于,A B 两点,求AB 的长.
三、总结提升
※ 学习小结
1 .椭圆在生活中的运用;
2 .椭圆与直线的位置关系:
相交、相切、相离(用∆判定).
※ 知识拓展
直线与椭圆相交,得到弦,
弦长12l x -
=
其中k 为直线的斜率,1122(,),(,)x y x y 是两交点坐标.
※ 自我评价 你完成本节导学案的情况为( ).
A. 很好
B. 较好
C. 一般
D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1.设P 是椭圆 22
11612
x y +=,P 到两焦点的距离之差为,则12PF F ∆是( ). A .锐角三角形 B .直角三角形
C .钝角三角形
D .等腰直角三角形
2.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ).
A. B. C. 2 D. 1 3.已知椭圆22
1169
x y +=的左、右焦点分别为12,F F ,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( ).
A. 95
B. 3
C. 94
D. 4.椭圆的焦距、短轴长、长轴长组成一个等到比数列,则其离心率为 .
5.椭圆22
14520
x y +=的焦点分别是1F 和2F ,过原点O 作直线与椭圆相交于,A B 两点,若2ABF ∆的面积是20,则直线AB 的方程式是 .
1. 求下列直线310250x y +-=与椭圆22
1254
x y +=的交点坐标.
2.若椭圆22149
x y +=,一组平行直线的斜率是32 ⑴这组直线何时与椭圆相交?
⑵当它们与椭圆相交时,这些直线被椭圆截得的线段的中点是否在一直线上?。

相关文档
最新文档