4整式的加减测试题
第四章 整式的加减 学情评估卷(含答案)2024-2025学年冀教版七年级数学上册
第四章 学情评估卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是( )A .-4πt 5的系数是-45B .42ab 2是5次单项式C .x +y3是多项式D .2x 2+x -3的常数项是32.若-3x 2y m 与4x n y 是同类项,则m -n 的值为( )A .-1B .0C .1D .23.甲、乙、丙、丁四人分别计算以下四个计算题目:甲:3x +3y =6xy ;乙:7x -5x =2;丙:3m 2n -4nm 2=-m 2n ;丁:3m 2n -3mn 2=0.则下列说法中,正确的是( )A .甲计算正确B .乙计算正确C .丙计算正确D .丁计算正确4.下列各组代数式中,不一定相等的一组是( )A .a +b +c 与a +(b +c )B .4a 与a +a +a +aC .a 3与a ·a ·aD .-(a -b )与-a -b5.若多项式y 3-mxy +x 2+14xy -1中不含xy 项,则m 的值为( )A .0B .14C .-14D .46.已知a ,b ,c 所对应的点在数轴上的位置如图所示,则|a +b |+|a +c |-|b -c |=( )A .0B .2a +2bC .2b -2cD .2a +2c7.如果代数式5a +3b 的值为-4,那么代数式2(a +b )+4(2a +b )-10的值是( )A .-18B .-14C .-8D .108.当a 是整数时,整式a 3-3a 2+7a +7+(3-2a +3a 2-a 3)一定是( )A .3的倍数B .4的倍数C .5的倍数D .10的倍数9.已知M =-2a 2+4a +1,N =-3a 2+4a -1,则M 与N 的大小关系是( )A .M >NB .M <NC .M =ND .以上都有可能10.如图,把三个完全相同的小长方形不重叠地放入大长方形ABCD 中,将图中的两个空白小长方形分别记为S 1,S 2,各长方形中长与宽的数据如图所示.则以下结论中正确的是( )A .a +2b =mB .小长方形S 1的周长为a +m -bC .S 1与S 2的周长和恰好等于长方形ABCD 的周长D .只需知道a 和m 的值,即可求出S 1与S 2的周长和二、填空题(本大题共4小题,每小题3分,共12分)11.若单项式34x 2y n 与-34x n y m 的差仍是单项式,则m -2n = .12.墨迹覆盖了等式“-(x 2+1)=3x ”中的多项式,则覆盖的多项式为 .13.当a =-23时,代数式2a 3-(6a +5a 2)-2(a 3-2a )的值为 .14.将a ,b 两张正方形纸片按下图所示的两种方式放置在同一个长方形ABCD 中.图①中阴影部分的周长的和为m ,图②中阴影部分的周长的和为n ,且AM =ND .若AD =17,m -n =9,则正方形纸片a 的边长为 .三、解答题(本大题共5小题,共58分)15.(10分)先化简,再求值:(3a 2+7bc -4b 2)-(5a 2-3bc -2b 2)+abc ,其中a =5,b =1,c =3.16.(10分)A ,B ,C ,D 四个车站的位置如图所示,车站B 与车站A ,D 之间的距离分别为(a +b )km ,(5a +3b )km ,车站C 与车站D 之间的距离为(3a +2b )km .其中a ,b 不为0.(1)求B ,C 两车站之间的距离(用含a ,b 的代数式表示);(2)若B ,D 两个车站之间的距离比A ,B 两个车站之间的距离长8 km ,求出B ,C 两个车站之间的距离是多远.17.(12分)小聪在做题目:化简(2x 2+6x +5)-2(x +x 2+2)时,发现“”处的x 的系数被污染了,看不清楚.(1)小聪自己想了一个数,得到的答案为3x +1,求小聪想的数;(2)老师看到了说:“你想错了,该题化简的结果是常数.”请求出原题中被污染的数.18.(12分)规定一种新运算:(a,b)◎(c,d)=ad-bc.如:(1,2)◎(3,4)=1×4-2×3=-2.(1)求(5,-3)◎(-1,-2)的值;(2)化简(3,xy-1)◎(5,-2xy+1);(3)若(2,x)◎(k,2x+k)的值与x的取值无关,求有理数k的值.19.(14分)阅读材料:整体思想是数学解题中一种重要的思想方法,在多项式的化简与求值中应用广泛,如把a+b看成一个整体,则3(a+b)-2(a+b)+(a+b)=(3-2+1)(a +b)=2(a+b).根据以上方法解答下列问题:(1)用整体思想化简:2(a-b)2-4(a-b)2+7(a-b)2;(2)若a2-2b2-3=0,求-3a2+6b2+2 032的值;(3)已知a2+2ab=15,b2+2ab=6,求代数式2a2-4b2-4ab的值.参考答案12345678910答案速查CACDBAACAD11.-2 12. x 2+3x +1 13.-89 14.8315.解:(3a 2+7bc -4b 2)-(5a 2-3bc -2b 2)+abc=3a 2+7bc -4b 2-5a 2+3bc +2b 2+abc =-2a 2+10bc -2b 2+abc .当a =5,b =1,c =3时,原式=-2×52+10×1×3-2×12+5×1×3=-50+30-2+15=-7.16.解:(1)由题意,得BC =(5a +3b )-(3a +2b )=5a +3b -3a -2b =2a +b (km).所以B ,C 两车站之间的距离为 (2a +b )km .(2)由题意,得 (5a +3b )-(a +b )=4a +2b =8,所以2a +b =4,所以 BC =2a +b =4 km .即B ,C 两个车站之间的距离是4 km .17.解:(1)由题意,得(2x 2+6x +5)-(3x +1)=2x 2+6x +5-3x -1=2x 2+3x +4=2(32x +x 2+2),所以小聪想的数为32.(2)设原题中被污染的数为a ,(2x 2+6x +5)-2(ax +x 2+2)=2x 2+6x +5-2ax -2x 2-4=(6-2a )x +1.因为化简的结果为常数,所以6-2a =0,所以a =3.所以原题中被污染的数为3.18.解:(1)(5,-3)◎(-1,-2)=5×(-2)-(-3)×(-1)=-10-3=-13.(2)(3,xy -1)◎(5,-2xy +1)=3(-2xy +1)-5(xy -1)=-6xy +3-5xy +5=-11xy +8.(3)(2,x )◎(k ,2x +k )=2(2x +k )-kx=4x+2k-kx=(4-k)x+2k.因为(2,x)◎(k,2x+k)的值与x的取值无关,所以4-k=0,解得k=4,所以有理数k的值为4.19.解:(1)原式=(2-4+7)(a-b)2=5(a-b)2.(2)因为a2-2b2-3=0,所以a2-2b2=3,所以-3a2+6b2+2 032=-3(a2-2b2)+2 032=-3×3+2 032=-9+2 032=2 023.(3)因为a2+2ab=15,b2+2ab=6,所以(a2+2ab)-(b2+2ab)=15-6,所以a2+2ab-b2-2ab=9,所以a2-b2=9,所以2a2-4b2-4ab=2a2-2b2-2b2-4ab=2(a2-b2)-2(b2+2ab)=2×9-2×6=18-12=6.。
人教版七年级数学上册《第四章整式的加减》单元测试卷及答案
人教版七年级数学上册《第四章整式的加减》单元测试卷及答案一、整体代入法求值整体代入法求值,就是将一个复杂的表达式或方程看作一个整体,然后将其代入到另一个表达式或方程中进行求解的方法。
通过“比较各项系数”“拼拆各项构造整体”“比较各项系数”“拼拆各项构造整体”等方法“化繁为简”,将复杂的问题分解成若干个简单的问题,再逐一解决,最终汇聚成整体的答案。
一、 整体代入——比较各项系数1. 若代数式b a -2的值为1 ,则代数式b a 247-+ 的值为( ) .A. 7B. 8C. 9D. 102. 若a 、b 互为相反数,c 、d 互为倒数,则()=-+cd b a 3 .3. 已知代数式y x 2+的值是3 ,则代数式142-+y x 的值是 .4. 若6=+b a ,则=--b a 2218 ( ) .A. 6B. 6-C. 24-D. 125. 已知,0122=++a a 求3422-+a a 的值 . 6. 若72=-b a ,则b a 426+- 的值为 .7. 如果代数式b a -的值为4 ,那么代数式522--b a 的值为 . 8. 已知代数式y x -2的值是2- ,则代数式y x +-21 的值是 .二、 整体代入——拼拆各项构造整体1. 请回答下列各题:( 1 )化简:()().363252222y x xy xy y x --+ ( 2 )化简求值:已知,2,9==+ab b a 求()()⎪⎭⎫ ⎝⎛+--++-b ab a ab ab ab 2141025131532的值.2. 已知,12,5=-=+c b b a 则c b a -+2 的值为( ) . A. 17B. 7C. 17-D.7-3. 已知5=-b a ,2=+d c 则()()d a c b --+的值是( ) .A.3-B. 3C.7-D. 74. 已知3=-b a ,2=+dc 则()()d a c b --+ 的值为 .5. 已知,6,1422-=-=+bc b bc a 则22b a+ 的值是 ,bc b a 3222+-的值是6. 已知,5,14=-=+ab b a 求()()[]a b ab a b ab 65876+--++ 的值 .三、 整体代入——比较各项系数1. 代数式22++x x 的值为0 ,则代数式3222-+x x 的值为( ) . A. 6 B. 7 C. 6- D. 7-2. 解答下列问题:( 1 )若代数式7322++x x 的值为 8 ,那么代数式2025962++x x 的值为( 2 )若5,7==+xy y x .则代数式xy y x +--228的值为 ( 3 )若,5,162244=-=+xy y x y x 则()()()422244253y xy xy y x y x----- 的值是多 少?3. 若代数式y x 32-的值是1 ,那么代数式846+-x y 的值是 .4. 已知a ,b 互为相反数, c ,d 互为倒数, x 的绝对值为2 .求()()20252cd x cd b a x -+++-的值 .5. 已知a 与b 互为相反数,c 与d 互为倒数, m 的值为6-,求m cd mba +-+的值 . 6. 若代数式5322++x x 的值是 8 ,则代数式7642-+x x 的值是( ) . A. 1- B. 1 C. 9- D. 9 7. 若1-=-n m ,则()n m n m 222+-- 的值是 .四、 整体代入——拼拆各项构造整体1. 若32-=+mn m,1832=-mn n 则224n mn m -+ 的值为 .2. 已知2,522-==+ab b a ,求代数式()()222222353242b b ab ab ab a ++---+的值.3. 已知:1,4-==-mn n m .求:()()()mn n m m n mn n m mn ++--+-++-4223322的值 . 4. 已知(),07535172=-++-+y x y x 求=+y x 32 .5. 已知,62,1422-=-=+bc b bc a 则=-+bc b a 54322 ( ) .A. 18B. 18-C. 20D. 86. 已知2-=-+a c b ,则()()=-++⎪⎭⎫ ⎝⎛+-+--a c b c b a c b c b a a 2223132323232 参考答案一、 整体代入——比较各项系数【解答】()b a b a -+=-+227247把12=-b a 代入上式得:927=+=∴原式. 答案:C【解答】b a 、 互为相反数,d c 、互为倒数.,1,0==+∴cd b a(),3303-=-=-+∴cd b a 答案:3-【知识点】倒数的定义1. 【解答】由题意可知:,32=+y x 原式().516122=-=-+=y x【解答】,6=+b a(),612182182218=-=+-=--∴b a b a 答案:A 2. 【解答】,0122=++a a ()550512234222=-=-++=-+∴a a a a3. 【解答】()b a b a 226426--=+-,其中,72=-b a 所以原式8726-=⨯-=4. 【解答】,4=-b a ()35425252=-⨯=--=--b a b a5. 【解答】22-=-y x()()3212121=--=--=+-∴y x y x二、 整体代入——拼拆各项构造整体1.【解答】(1)原式222222913361510xy y x y x xy xy y x +=+-+=(2)原式b ab a ab ab ab 24252210---++-=(),255822524210b a ab ba ab +--=--⎪⎭⎫ ⎝⎛+-+-=其中.2,9==+ab b a.5206511618922558-=--=⨯-⨯-=∴原式 2.【解答】12,5=-=+c b b a()()171252=+=-++=-+∴c b b a c b a .答案:A3.【解答】2,5=+=-d c b a()()325-=+-=++-=+-+=∴d c b a d a c b 原式.答案:A4.【解答】,d a c b +-+=原式()()132-=-=--+=+-+=b a d c ba d c5.【解答】()();86142222=-+=-++=+bc b bc a b a()()();346282322222=--=--+=+-bc bbc abc b a答案:8;346.【解答】()34228=++=++=ab b a a b ab 原式三、整体代入——比较各项系数1. 【解答】2,0222-=+=++x x x x 即()734322-=--=-+=x x 原式.答案:D2. 【解答】(1)87322=++x x,1322=+∴x x则原式(),20282025320253232=+=++=x x(2),5,7==+xy y x()xy y x ++-=∴28原式151485728-=+-=+⨯-=(3)()()()422244253y xy xy y xyx -----()()115165,16,3225322442244422244=-=∴=-=+∴--+=+-+--=原式xy y x y x xy y x y x y xy xy y x y x3. 【解答】,132=-y x()6828322=+-=+--=∴y x 原式【解答】b a , 互为相反数,d c ,互为倒数,x 的绝对值为2,2,1,0±===+∴x cd b a当2=x 时,原式()();11241210220252=--=-+⨯+-=当2-=x 时,原式()()()();51241210220252=-+=-+-⨯+--= 所以()()20252cd x cd b a x -+++-的值为1或5.【解答】b a , 互为相反数0=+∴b ad c , 互为倒数1=∴cd.5610610=+-=-+-=+-+m cd mba 4. 【解答】由题意可知:85322=++x x,3322=+∴x x().1732276422-=-+=-+∴x x x x 答案:A5. 【解答】1-=-n m()()()()()3121222222=-⨯--=---=+-=n m n m nm n m四、整体代入——拼拆各项构造整体1. 【解答】方法一:,183,322=--=+mn n mn m∴将这两个等式的两边相减得:(),183322--=--+mn n mn m,21322-=+-+∴mn n mn m ,21422-=-+∴n mn m方法二:原式(),332222mn n mn m n mn mn m --+=-++= 将183,322=--=+mn n mn m 代入 得原式21183-=--=2.【解答】原式,691524822222b b ab a b ab a +-+--+=(),137,71372222ab b a b ab a ++-=-+-=当2,522-==+ab b a 时 原式612635-=--=.3. 【解答】原式,4223322mn n m m n mn n m mn ---+--++-=(),36336n m mn nm mn -+-=-+-=把1,4-==-mn n m 代入得:原式18126=+=.4. 【解答】 已知条件17-+y x 和()27535-+y x 都是非负数,且(),07535172=-++-+y x y x .3932,5127535170753517=+∴⎩⎨⎧==∴⎩⎨⎧=+=+∴=-+=-+∴y x y x y x y x y x y x5. 【解答】bc b a 54322-+()()182414324322=-⨯=-++=bc b bc a6. 【解答】原式().382323222=⨯=--=c b a。
《整式的加减》练习题4(有答案)
《整式的加减》练习题4学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上1、根据以下运算程序,当输入x=﹣2时,输出的结果为()A. -2B. -5C. 6D. -1参考答案: B【思路分析】因为x=﹣2<0,所以在运算程序中将x=﹣2代入x﹣3的代数式即可求解.【解题过程】解:∵x=﹣2<0,∴x﹣3=﹣2﹣3=﹣5,故选:B.2、下列关于“代数式3x+2y”的意义叙述不正确的有()个①x的3倍加上y的2倍的和;②小明跑步速度为x千米/小时,步行的速度为y千米/时,则小明跑步3小时后步行2小时,走了(3x+2y)千米;③某小商品以每个3元卖了x个,又以每个2元卖了y个,则共卖了(3x+2y)元.A. 3B. 2C. 1D. 0参考答案: D【思路分析】这道题是考查代数式的意义,按照代数式的意义和运算顺序,结合实际,根据代数式的特点逐项判断.【解题过程】解:“代数式3x+2y”的意义是x的3倍加上y的2倍的和,故①正确;将“代数式3x+2y”赋予实际意义,可以是小明跑步速度为x千米/小时,步行的速度为y 千米/时,则小明跑步3小时后步行2小时,走了(3x+2y)千米,故②正确;还可以是某小商品以每个3元卖了x 个,又以每个2元卖了y 个,则共卖了(3x+2y )元,故③正确.故不正确的有0个.故选:D.3、在代数式①b a+b ②a+b 3③ -2x 3y 4④-2x 3+y 4⑤−5a 2b 2⑥ x 4-1中多项式的个数有( ) A. 4B. 3C. 2D. 1参考答案: B【思路分析】本题主要考查多项式的判断,判断一个式子是不是多项式的根据是多项式的定义,多项式是由几个单项式的和组成的,看式子中是否含有运算符号“+”或“-”,注意分母中不能含有字母。
4.整式的加减(题目+答案)
第4讲:整式的加减单项式与多项式1.(2015秋•龙海市期末)下列式子:x2+2,+4,,,﹣5x,0中,整式的个数是()A.6B.5C.4D.32.(2014秋•鄄城县期末)下列说法中正确的是()A.x的系数是0B.24与42不是同类项C.y的次数是0D.23xyz是三次单项式3.(2015秋•郯城县期末)下列说法正确的是()A.整式就是多项式B.π是单项式C.x4+2x3是七次二项次D.是单项式4.(2014秋•无锡校级期中)下列代数式:(1)﹣mn,(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+之中整式有()A.3个B.4个C.6个D.7个5.(2009春•临川区校级期末)在代数式a,π,ab,a﹣b,,x2+x+1,5,2a,中,整式有个;单项式有个,次数为2的单项式是;系数为1的单项式是.合并同类项1.(2018•东莞市校级一模)下列运算结果正确的是()A.5x﹣x=5B.2x2+2x3=4x5C.﹣n2﹣n2=﹣2n2D.a2b﹣ab2=02.(2018•东西湖区模拟)计算x2y﹣3x2y的结果是()A.﹣2B.﹣2x2y C.﹣x2y D.﹣2xy23.(2018•衢州一模)下面是小林做的4道作业题:(1)2ab+3ab=5ab;(2)2ab﹣3ab=﹣ab;(3)2ab﹣3ab=6ab;(4)2ab÷3ab=.做对一题得2分,则他共得到()A.2分B.4分C.6分D.8分4.(2016秋•宜春期末)(1)计算:﹣7+(20﹣3)(2)化简:3a﹣2b+4c﹣2a﹣6c+b.5.(2017秋•西城区校级期中)5x2+x+3+4x﹣8x2﹣2.去括号与添括号1.(2017秋•庆云县期末)下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣cB.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c2.(2017秋•柯桥区期末)﹣[a﹣(b﹣c)]去括号正确的是()A.﹣a﹣b+c B.﹣a+b﹣c C.﹣a﹣b﹣c D.﹣a+b+c3.(2017秋•惠民县期末)下列去括号的过程(1)a﹣(b﹣c)=a﹣b﹣c;(2)a﹣(b﹣c)=a+b+c;(3)a﹣(b+c)=a﹣b+c;(4)a﹣(b+c)=a﹣b﹣c.其中运算结果错误的个数为()A.1B.2C.3D.44.(2015秋•河南期中)先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)5.(2013秋•孟津县期末)先去括号,在合并同类项:3(2x2﹣y2)﹣2(3y2﹣2x2)整式的加减混合运算1.(2018•江阴市二模)已知a+b=4,c﹣d=3,则(b+c)﹣(d﹣a)的值等()A.1B.﹣1C.7D.﹣72.(2017秋•南充期末)下面计算正确的是()A.3x2﹣x2=3B.3a2+2a3=5a5C.3+x=3x D.﹣0.25ab+ba=03.(2017秋•武昌区校级期末)下列计算正确的是()A.8a+2b+(5a一b)=13a+3b B.(5a﹣3b)﹣3(a﹣2b)=2a+3bC.(2x﹣3y)+(5x+4y)=7x﹣y D.(3m﹣2n)﹣(4m﹣5n)=m+3n4.(2017秋•港闸区期末)化简:(1)(2a﹣b)﹣(2b﹣3a)﹣2(a﹣2b)(2)2x2﹣[7x﹣(4x﹣3)﹣x2]5.(2017秋•贵阳期末)一个整式A与x2﹣x﹣1的和是﹣3x2﹣6x+2(1)求整式A;(2)当x=2时,求整式A的值.单项式与多项式答案1.(2015秋•龙海市期末)下列式子:x2+2,+4,,,﹣5x,0中,整式的个数是()A.6B.5C.4D.3【分析】根据整式的定义分析判断各个式子,从而得到正确选项.【解答】解:式子x2+2,,﹣5x,0,符合整式的定义,都是整式;+4,这两个式子的分母中都含有字母,不是整式.故整式共有4个.故选:C.【点评】本题主要考查了整式的定义:单项式和多项式统称为整式.注意整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式是数字或字母的积,其中单独的一个数或字母也是单项式;多项式是几个单项式的和,多项式含有加减运算.2.(2014秋•鄄城县期末)下列说法中正确的是()A.x的系数是0B.24与42不是同类项C.y的次数是0D.23xyz是三次单项式【分析】根据单项式的概念及其次数分析判断.【解答】解:A、x的系数是1,故错;B、24与42是同类项,属于常数项,故错;C、y的次数是1,故错;D、23xyz是三次单项式,故D对.故选:D.【点评】主要考查了单项式的有关概念.单项式的系数是单项式中的常数,次数为各字母指数的和.3.(2015秋•郯城县期末)下列说法正确的是()A.整式就是多项式B.π是单项式C.x4+2x3是七次二项次D.是单项式【分析】解决本题关键是搞清整式、单项式、多项式的概念及次数、项次,紧扣概念作出判断.【解答】解:A、根据整式的概念可知,单项式和多项式统称为整式,故A错误;B、π是单项式,故B正确;C、x4+2x3是4次二项式,故C错误;D、是多项式,故D错误.故选:B.【点评】主要考查了整式的相关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.4.(2014秋•无锡校级期中)下列代数式:(1)﹣mn,(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+之中整式有()A.3个B.4个C.6个D.7个【分析】根据分母中不含有字母的式子是整式,可得整式的个数.【解答】解::(1)﹣mn,(2)m,(3),(5)2m+1,(6),(8)x2+2x+,分母中不含有字母,是整式,故选:C.【点评】本题考查了整式,整式与分式是相对的,分母中不含有字母的式子是整式.5.(2009春•临川区校级期末)在代数式a,π,ab,a﹣b,,x2+x+1,5,2a,中,整式有8个;单项式有5个,次数为2的单项式是ab;系数为1的单项式是a.【分析】解决本题关键是搞清整式、单项式、多项式的概念,紧扣概念作出判断.【解答】解:整式有a,π,ab,a﹣b,,x2+x+1,5,2a,共8个;单项式有a,π,ab,5,2a共5个,次数为2的单项式是ab;系数为1的单项式是a.故答案为:8;5;ab;a.【点评】此题考查了整式、单项式的有关概念,注意单个字母与数字也是单项式,单项式的系数是其数字因数,单项式的次数是所有字母指数的和.合并同类项答案1.(2018•东莞市校级一模)下列运算结果正确的是()A.5x﹣x=5B.2x2+2x3=4x5C.﹣n2﹣n2=﹣2n2D.a2b﹣ab2=0【分析】根据合并同类项法则判断即可.【解答】解:A、5x﹣x=4x,错误;B、2x2与2x3不是同类项,不能合并,错误;C、﹣n2﹣n2=﹣2n2,正确;D、a2b与ab2不是同类项,不能合并,错误;故选:C.【点评】此题主要考查了合并同类项知识,正确掌握相关运算法则是解题关键.2.(2018•东西湖区模拟)计算x2y﹣3x2y的结果是()A.﹣2B.﹣2x2y C.﹣x2y D.﹣2xy2【分析】根据合并同类项解答即可.【解答】解:x2y﹣3x2y=﹣2x2y,故选:B.【点评】此题考查合并同类项问题,关键是根据法则解答.3.(2018•衢州一模)下面是小林做的4道作业题:(1)2ab+3ab=5ab;(2)2ab﹣3ab=﹣ab;(3)2ab﹣3ab=6ab;(4)2ab÷3ab=.做对一题得2分,则他共得到()A.2分B.4分C.6分D.8分【分析】这几个式子的运算是合并同类项的问题,根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:(1)2ab+3ab=5ab,正确;(2)2ab﹣3ab=﹣ab,正确;(3)∵2ab﹣3ab=﹣ab,∴2ab﹣3ab=6ab错误;(4)2ab÷3ab=,正确.3道正确,得到6分,故选:C.【点评】本题主要考查合并同类项得法则.即系数相加作为系数,字母和字母的指数不变.4.(2016秋•宜春期末)(1)计算:﹣7+(20﹣3)(2)化简:3a﹣2b+4c﹣2a﹣6c+b.【分析】(1)根据有理数的加减运算即可求出答案.(2)根据合并同类项的法则即可求出答案.【解答】解:(1)解:原式=﹣7+17=10(2)解:原式=(3a﹣2a)+(﹣2b+b)+(4c﹣6c)=a﹣b﹣2c【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则进行计算,本题属于基础题型.5.(2017秋•西城区校级期中)5x2+x+3+4x﹣8x2﹣2.【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变进行计算即可.【解答】解:原式=(5﹣8)x2+(1+4)x+3﹣2=﹣3x2+5x+1.【点评】此题主要考查了合并同类项,关键是掌握合并同类项计算法则.去括号与添括号答案1.(2017秋•庆云县期末)下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣cB.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c【分析】利用去括号添括号法则计算.【解答】解:A、﹣(a+b﹣c)=﹣a﹣b+c,故不对;B、正确;C、﹣(﹣a﹣b﹣c)=a+b+c,故不对;D、﹣(a﹣b﹣c)=﹣a+b+c,故不对.故选:B.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.2.(2017秋•柯桥区期末)﹣[a﹣(b﹣c)]去括号正确的是()A.﹣a﹣b+c B.﹣a+b﹣c C.﹣a﹣b﹣c D.﹣a+b+c【分析】根据去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反进行计算即可.【解答】解:﹣[a﹣(b﹣c)]=﹣(a﹣b+c)=﹣a+b﹣c,故选:B.【点评】此题主要考查了去括号,关键是掌握去括号法则.3.(2017秋•惠民县期末)下列去括号的过程(1)a﹣(b﹣c)=a﹣b﹣c;(2)a﹣(b﹣c)=a+b+c;(3)a﹣(b+c)=a﹣b+c;(4)a﹣(b+c)=a﹣b﹣c.其中运算结果错误的个数为()A.1B.2C.3D.4【分析】直接利用去括号法则分别化简判断得出答案.【解答】解:(1)a﹣(b﹣c)=a﹣b+c,故此选项错误,符合题意;(2)a﹣(b﹣c)=a﹣b+c,故此选项错误,符合题意;(3)a﹣(b+c)=a﹣b﹣c,故此选项错误,符合题意;(4)a﹣(b+c)=a﹣b﹣c,正确,不合题意.故选:C.【点评】此题主要考查了去括号法则,正确去括号是解题关键.4.(2015秋•河南期中)先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)【分析】(1)根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;(2)根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;【解答】解:(1)2(2b﹣3a)+3(2a﹣3b)=4b﹣6a+6a﹣9b=﹣5b;(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)=4a2+6ab﹣4a2﹣7ab+1=﹣ab+1.【点评】本题考查了去括号与添括号,合并同类项,括号前是正号去掉括号不变号,括号前是负号去掉括号要变号.5.(2013秋•孟津县期末)先去括号,在合并同类项:3(2x2﹣y2)﹣2(3y2﹣2x2)【分析】根据括号前是正号,去掉括号及正号,各项都不变,括号前是负号,去掉括号及负号,各项都变号,可去括号,再根据系数相加字母部分不变,合并同类项.【解答】解:3(2x2﹣y2)﹣2(3y2﹣2x2)=6x2﹣3y2﹣6y2+4x2=(6x2+4x2)+(﹣3y2﹣6y2)=10x2﹣9y2.【点评】本题考查了去括号与添括号,根据法则去括号添括号是解题关键.整式的加减混合运算答案1.(2018•江阴市二模)已知a+b=4,c﹣d=3,则(b+c)﹣(d﹣a)的值等()A.1B.﹣1C.7D.﹣7【分析】原式去括号整理后,将已知的等式代入计算即可求出值.【解答】解:∵a+b=4,c﹣d=3,∴原式=b+c﹣d+a=(a+b)+(c﹣d)=3+4=7,故选:C.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.2.(2017秋•南充期末)下面计算正确的是()A.3x2﹣x2=3B.3a2+2a3=5a5C.3+x=3x D.﹣0.25ab+ba=0【分析】先判断是否为同类项,若是同类项则按合并同类项的法则合并.【解答】解:A、3x2﹣x2=2x2≠3,故A错误;B、3a2与2a3不可相加,故B错误;C、3与x不可相加,故C错误;D、﹣0.25ab+ba=0,故D正确.故选:D.【点评】此题考查了合并同类项法则:系数相加减,字母与字母的指数不变.3.(2017秋•武昌区校级期末)下列计算正确的是()A.8a+2b+(5a一b)=13a+3b B.(5a﹣3b)﹣3(a﹣2b)=2a+3bC.(2x﹣3y)+(5x+4y)=7x﹣y D.(3m﹣2n)﹣(4m﹣5n)=m+3n【分析】根据先去括号,然后合并同类项的原则即可求解.【解答】解:A,去括号合并同类项得:8a+2b+5a﹣b=8a+5b+2b﹣b=13a+b≠13a+3b,故本选项错误;B,去括号合并同类项得;5a﹣3b﹣3a+6b=5a﹣3a﹣3b+6b=2a+3b,故本选项正确;C,去括号合并同类项得:2x﹣3y+5x+4y=2x+5x﹣3y+4y=7x+y≠7x﹣y,故本选项错误;D,去括号合并同类项得:3m﹣2n﹣4m+5n=3m﹣4m﹣2n+5n=﹣m+3n≠m+3n,故本选项错误;故选:B.【点评】本题考查了整式的加减,属于基础题,关键是掌握先去括号再合并同类项进行计算.4.(2017秋•港闸区期末)化简:(1)(2a﹣b)﹣(2b﹣3a)﹣2(a﹣2b)(2)2x2﹣[7x﹣(4x﹣3)﹣x2]【分析】根据整式的运算法则即可求出答案.【解答】解:(1)原式=2a﹣b﹣2b+3a﹣2a+4b=3a+b(2)原式=2x2﹣[7x﹣4x+3﹣x2]=2x2﹣[3x+3﹣x2]=2x2﹣3x﹣3+x2=3x2﹣3x﹣3【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.(2017秋•贵阳期末)一个整式A与x2﹣x﹣1的和是﹣3x2﹣6x+2(1)求整式A;(2)当x=2时,求整式A的值.【分析】(1)根据题意列出等式,然后再求出整式A;(2)把x=2代入(1),计算即可求出整式A的值.【解答】解:(1)由题意可知:A+(x2﹣x﹣1)=﹣3x2﹣6x+2,∴A=(﹣3x2﹣6x+2)﹣(x2﹣x﹣1)=﹣3x2﹣6x+2﹣x2+x+1=﹣4x2﹣5x+3;(2)把x=2代入得:A=﹣4x2﹣5x+3═﹣4×22﹣5×2+3=﹣16﹣10+3=﹣23.【点评】此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键.。
初中数学冀教版七年级上册第四章 整式的加减4.4 整式的加减-章节测试习题(15)
章节测试题1.【答题】下列各式中,去括号正确的是()A.B.C.D.【答案】C【分析】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.【解答】本题考查的是去括号根据去括号法则依次判断即可。
,故本选项错误;,故本选项错误;,故本选项正确;,故本选项错误;选C.2.【答题】将合并同类项得()A.B.C.D.【答案】D【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,解答即可.【解答】本题考查的是合并同类项把与分别看作一个整体合并即可。
选D.3.【答题】下列各式中与的值不相等的是()A.B.C.D.【答案】B【分析】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.【解答】本题考查的是去括号把各选项去括号后即可判断。
A.,不符合题意;B. ,符合题意;C. ,不符合题意;D. ,不符合题意;选B.4.【答题】按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是()A. 6B. 21C. 156D. 231【分析】观察图示我们可以得出关系式为:,因此将x的值代入就可以计算出结果.如果计算的结果<等于100则需要把结果再次代入关系式求值,直到算出的值>100为止,即可得出y的值.【解答】解:依据题中的计算程序列出算式:由于,∵6<100∴应该按照计算程序继续计算,∵21<100∴应该按照计算程序继续计算,∴输出结果为231选D.5.【答题】张老板以每颗a元的单价买进水蜜桃100颗.现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b元的价格将剩下的30颗卖出,求全部水蜜桃共卖多少元?().A.70a+30(a-b)B.70×(1+20%)×a+30bC.100×(1+20%)×a-30(a-b)D.70×(1+20%)×a+30(a-b)【分析】本题考查的是根据实际问题列代数式。
冀教版数学七年级上册第4章《整式的加减》单元测试B卷
假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y=()。
A.2 B.3 C.6 D.x+3二、耐心填一填(每小题4分,共24分)11.(6x2-7x-5)-________ =5x2-2x+3.12.请写出一个多项式,使其至少含有三项,且合并同类项后的结果为3ab2. 你写出的多项式为____________.13.如图2,一个正方形纸板剪去四个完全相同的三角形,根据图中标注的尺寸,阴影部分的面积用式子可表示为_______.14.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛. 如:已知m+n=-2,mn=-4,则2(mn-3m)-3(2n-mn)的值为________.15.已知关于x的多项式(a+b)x4+(b-2)x3-2(a+1)x2+2ax-7中,不含x3项和x2项. 则当x=-2时,这个多项式的值为__________.16.某酒厂每天生产A、B两种品牌的白酒共600瓶,A、B两种品牌的白酒每瓶的成本和售价如下表:若每天生产A种品牌的白酒为x瓶,用含x的多项式表示出每天获得的利润为_______.三、用心做一做(共56分)17.(6分)请你求出下列三张卡片上的多项式的和,并求当x=2014,y=-1时,该多项式和的值.18.(8分)莉莉同学在做练习时,遇到了这样一道习题:“当a =20141,b =99时,求多项式3(a 3-b 3)+4a 3b +b 3与-3a 3-2(2a 3b -b 3)+5的和的值.”看了这道题,莉莉同学犯难地说:“这么大的数字,又这么复杂的式子,计算太麻烦了”.而京京同学却说:“题目中给出的条件是多余的,本题不用知道a 、b 的值照样计算”.你认为她的说法有道理吗?为什么?19.(10分)如图3所示,这是两种长方形铝合金窗框,已知窗框的长都是y 米,窗框的宽都是x 米,若张丽家需要A 型窗框5个,需要B 型窗框2个,则共需要铝合金多少米?20.(10分)化简与求值:(1)把(a+b )当作一个整体,化简5(a+b )2-(a+b )+2(a+b )2+2(a+b );。
初中数学冀教版七年级上册第四章 整式的加减4.4 整式的加减-章节测试习题(23)
章节测试题1.【题文】小明去商店买了10元一支的钢笔a支,5元一本的笔记本b本和若干文具盒,共花了(30a+20b)元钱,小明买文具盒花了多少钱?【答案】(20a+15b)元【分析】【解答】2.【题文】如图,将边长为a的正方形剪去两个小长方形得到S图案,再将这两个小长方形拼成一个新的长方形,求新的长方形的周长.【答案】4a-8b【分析】【解答】3.【题文】已知多项式A,B,其中B=5x2+3x-4,马小虎同学在计算“3A+B”时,误将“3A+B”看成了“A+3B”,求得的结果为12x2-6x+7.(1)求多项式A;(2)求出3A+B的正确结果;(3)当时,求3A+B的值.【答案】(1)-3x2-15x+19(2)-4x2-42x+53(3)【分析】【解答】4.【题文】当x=3时,求多项式-(x3+3x2-7x)+5x2-6x与x3-(4x+7)的和.【答案】2【分析】【解答】5.【题文】先化简,再求值:8a2b+2(2a2b-3ab2)-3(4a2b-ab2),其中a=-2,b=3.【答案】54【分析】【解答】6.【题文】一辆公交车上原来有(6a-6b)人,中途下去一半,又上来若干人,此时车上共有乘客(10a-6b)人.问:上车的乘客是多少人?当a=3,b=2时,上车的乘客是多少人?【答案】上车的乘客是(7a-3b)人.当a=3,b=2时,上车的乘客是15人.【分析】【解答】7.【题文】王明在计算一个多项式减去2b2+b-5的差时,因一时疏忽忘了将两个多项式用括号括起来,结果得到的差是b2+3b-1.求出这个多项式并算出正确的结果.【答案】3b2+2b+4,b2+b+9【分析】【解答】8.【答题】计算:等于()A. -3yB. -2x-3yC. -3x-5yD. -3x-7y【答案】C【分析】【解答】原式=-x-6y+y-2x=-3x-5y.9.【答题】一个多项式与3x2y-3xy2的和为x3-3x2y,则这个多项式是()A. x3+3xy2B. x3-3xy2C. x3-6x2y+3xy2D. x3-6x2y-3xy2【答案】C【分析】【解答】由题意得,所求多项式为(x3-3x2y)-(3x2y-3xy2)=x3-3x2y-3x2y+3xy2=x3-6x2y+3xy2.10.【答题】已知A=5x2-3x+4,B=3x2-3x-2,则A与B的大小关系为()A. A>BB. A<BC. A=BD. 不能确定【答案】A【分析】【解答】A-B=(5x2-3x+4)-(3x2-3x-2)=5x2-3x+4-3x2+3x+2=2x2+6>0,所以A>B.11.【答题】如果代数式a+8b的值为-5,那么代数式3(a-2b)-5(a+2b)的值为______.【答案】10【分析】【解答】3(a-2b)-5(a+2b)=3a-6b-5a-10b=-2a-16b=-2(a+8b),又a+8b=-5,所以3(a-2b)-5(a+2b)=10.12.【答题】(2020独家原创试题)对于有理数a,b,定义一种新运算“&”,规定a&b=3a+2b,则式子(m+2n)&(m-n)化简后为______.【答案】5m+4n【分析】【解答】依题意得,(m+2n)&(m-n)=3(m+2n)+2(m-n)=3m+6n+2m-2n=5m+4n.故答案为5m+4n.13.【答题】将4个数a、b、c、d排成2行2列,两边各加一条竖直线,写成,叫做2阶行列式,定义,则______.【答案】-11x2+5【分析】【解答】依题意得,原式=-5(x2-3)-2(3x2+5)=-5x2+15-6x2-10=-11x2+5.14.【答题】(2020独家原创试题)活动课上小丽准备用卡纸做手工,图3-6-1①是一张边长为a的正方形卡纸,她剪去两个相同的小长方形,得到了如图3-6-1②所示的图案,再将剪下的两个小长方形卡纸条拼成一个新的长方形,如图3-6-1③所示,则新长方形的周长可表示为______.【答案】4a-8b【分析】【解答】剪下的两个相同的小长方形卡纸条的长为(a-b),宽为,所以这两个小长方形卡纸条拼成的新长方形的长为(a-b),宽为(a-3b),所以新长方形的周长为2(a-b)+2(a-3b)=4a-8b.故答案为4a-8b.15.【题文】(2020北京朝阳期末)已知M=2a2b+ab2,N=a2b-ab2,当a=3,时,计算M-2N的值.【答案】见解答【分析】【解答】M-2N=2a2b+ab2-2(a2b-ab2)=2a2b+ab2-2a2b+2ab2=3ab2.当a=3,时,原式.16.【答题】(2019山东临沂经济技术开发区期中,10,★☆☆)一个多项式与x2-2x+1的和是3x-2,则这个多项式为()A. x2-5x+3B. -x2+x-1C. -x2+5x-3D. x2-5x-13【答案】C【分析】【解答】由题意,得这个多项式为(3x-2)-(x2-2x+1)=3x-2-x2+2x-1=-x2+5x-3.选C.17.【答题】(2020山东淄博张店七中月考,8,★★☆)如图3-6-2,两个正方形的面积分别为16,9,两个正方形中阴影部分的面积分别为a,b(a>b),则a-b 等于()A. 7B. 6C. 5D. 4【答案】A【分析】【解答】设题图中两个正方形重叠部分的面积为c,则a-b=(a+c)-(b+c)=16-9=7,选A.18.【题文】(2020山东济南历城期末,20,★★☆)化简求值:4x+3(2y2-3x)-2(4x-3y2),其中.【答案】见解答【分析】【解答】原式=4x+6y2-9x-8x+6y2=12y2-13x,因为,所以x-3=0,y+2=0,所以x=3,y=-2,则原式=12×(-2)2-13×3=12×4-39=48-39=9.19.【题文】(2020山东泰安新泰汶城中学期末,24,★★☆)在计算代数式(2x2+ax-5y+b)-(2bx2-3x+5y-1)的值时,某同学把“,y=1”误写成了“,y=1”,但其计算结果也是正确的,请你分析原因,并在此条件下计算-[-7a2-5a+(2a2-3a)+2a]-4a2的值.【答案】见解答【分析】【解答】∵(2x2+ax-5y+b)-(2bx2-3x+5y-1)=2x2+ax-5y+b-2bx2+3x-5y+1=(2-2b)x2+(a+3)x-10y+b+1,某同学把“,y=1”误写成了“,y=1”,但其计算结果也是正确的,∴a+3=0,∴a=-3,∵-[-7a2-5a+(2a2-3a)+2a]-4a2=7a2+5a-2a2+3a-2a-4a2=a2+6a,∴当a=-3时,原式=(-3)2+6×(-3)=9-18=-9.20.【题文】(2018山东枣庄峰城期中,25,★★☆)按图3-6-3所示的程序计算,把答案填写在表格里,然后看看有什么规律,想想为什么会有这个规律.(1)填写表内空格:(2)你发现的规律是______;(3)用简要过程说明你发现的规律.【答案】见解答【分析】【解答】(1)将2、-2、分别代入程序中计算,即可输出答案,如下表所示.(2)无论输入的x为何值,输岀的答案都为0.(3)因为输入x后,输出的答案为,所以无论输入的x为何值,输出的答案都为0.。
人教版七年级数学上册第二章《整式的加减》测试题(含答案)
人教版七年级数学上册第二章《整式的加减》测试题(含答案)(考试时间:90分钟,赋分:100分)姓名:________ 班级:________ 分数:________一、选择题(本大题共10小题,每小题3分,满分30分)1.下列四个式子:①3π;②a +b 2;③2x ;④15.其中不是整式的是 A .①B .②C .③D .④2.下列语句错误的是A.数字0是单项式B.单项式-a 的系数与次数都是1C.12xy 是二次单项式 D.-2ab 3的系数是-233.下列运算正确的是 A.3a 2b -3ba 2=0 B.5a 2-3a 2=2 C.3a 3+2a 3=5a 6D.3a +2b =5ab4.若单项式x m y 3与4x 2y n 的和仍是单项式,则m -n 的值是 A .5B .1C .0D .-15.有一个数值转换器,其原理如图所示.若开始输入的x 值是5,发现第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4,……依次继续下去,第101次输出的结果是A .2B .1C .4D .86.【合肥高新区期末】若整式3x 2-4x +6的值为9,则x 2-43x +6的值为 A .5B .6C .7D .87.一个多项式A 减去多项式2x 2+5x -3,某同学将减号抄成了加号,运算结果为-x 2+3x -5,那么正确的运算结果是 A .-3x 2-2x -4B .-x 2+3x -7C .-5x 2-7x +1D .无法确定8.若多项式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为 A .2B .-2C .-1D .09.如图,点A ,B 表示的数分别是a ,b ,点A 在数轴上0和1两点(不包括这两点)之间移动,点B 在数轴上-3和-2两点之间移动.下列四个代数式的值可能比2 021大的是A.a 6b 6B.b 6+a 6C.a 12bD.ab 1210.一个含有多个字母的整式,如果把其中任意两个字母互换位置,所得的结果与原式相同,那么称此整式是对称整式.例如,x 2+y 2+z 2是对称整式,x 2-2y 2+3z 2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式; ②一个多项式是对称整式,那么该多项式中各项的次数必相同; ③单项式不可能是对称整式;④若某对称整式只含字母x ,y ,z ,且其中有一项为x 2y ,则该多项式的项数至少为3. 以上结论中错误的个数是 A.4B.3C.2D.1二、填空题(本大题共6小题,每小题3分,满分18分)11.如果在数轴上表示a ,b 两个实数的点的位置如图所示,那么|a -b |+|a +b |化简的结果为 .12.七年级(1)班有学生a 人,七年级(2)班的人数比七年级(1)班的人数的一半多25人,那么七年级(2)班有 人.13.把四张形状、大小完全相同的小长方形卡片(如图1,卡片长为x 、宽为y ,且x >y )不重叠地放在一个底面为长方形(长为a 、宽为b )的盒子底部(如图2),盒底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分周长的和是 .(用只含b 的代数式表示)14.已知有理数a ,b ,c 在数轴上的位置如图所示,化简||a +b -||b -2-||c -a -||2-c = .15.现规定一种运算a *b =ab +a -b ,其中a ,b 为实数,则a *b +(b -a )*b = . 16.已知代数式ax 4+bx 3+cx 2+dx +3.当x =2时,代数式的值为20;当x =-2时,代数式的值为16,则当x =2时,代数式ax 4+cx 2+3的值为 .三、解答题(第21题12分,其余每题10分,共52分) 17.已知M =2x 2-2xy +y 2,N =3x 2+xy -2y 2,求2M -3N 的值.18.一根绳长a 米(a >6),第一次用掉了全长的13多1米,第二次用掉了余下的23少2米,最后还剩多少米?19.已知多项式-5x2y m+1+xy2-3x3-6是六次四项式,且单项式3x2n y5-m的次数与此多项式的次数相同.(1)求m,n的值;(2)求该多项式的常数项以及各项的系数和.20.观察下列等式:13+23=1×22×32;4×32×42;13+23+33=14×42×52;13+23+33+43=14…根据上述规律,解决下列问题:(1)若n为正整数,猜想:13+23+33+…+n3=;(2)利用(1)的结论,比较13+23+33+…+1003与50552的大小.21.将7张完全相同的小长方形纸片(如图1)按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分恰好被分割成两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a、宽为b,且a>b.(1)当a=9,b=3,AD=30时,长方形ABCD的面积是,S2-S1的值为;(2)当AD=40时,请用含a,b的式子表示S2-S1的值;(3)若AB的长度为定值,AD变长,将这7张小长方形纸片还按照同样的方式放在新的长方形ABCD内,而S2-S1的值总保持不变,求a,b满足的关系.参考答案一、选择题(本大题共10小题,每小题3分,满分30分)题 号 1 2345678910答 案 CBADBCCADB1.下列四个式子:①3π;②a +b 2;③2x ;④15.其中不是整式的是 A .①B .②C .③D .④2.下列语句错误的是A.数字0是单项式B.单项式-a 的系数与次数都是1C.12xy 是二次单项式 D.-2ab 3的系数是-233.下列运算正确的是 A.3a 2b -3ba 2=0 B.5a 2-3a 2=2 C.3a 3+2a 3=5a 6D.3a +2b =5ab4.若单项式x m y 3与4x 2y n 的和仍是单项式,则m -n 的值是 A .5B .1C .0D .-15.有一个数值转换器,其原理如图所示.若开始输入的x 值是5,发现第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4,……依次继续下去,第101次输出的结果是A .2B .1C .4D .86.【合肥高新区期末】若整式3x 2-4x +6的值为9,则x 2-43x +6的值为 A .5B .6C .7D .87.一个多项式A 减去多项式2x 2+5x -3,某同学将减号抄成了加号,运算结果为-x 2+3x -5,那么正确的运算结果是 A .-3x 2-2x -4B .-x 2+3x -7C .-5x 2-7x +1D .无法确定8.若多项式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为 A .2B .-2C .-1D .09.如图,点A ,B 表示的数分别是a ,b ,点A 在数轴上0和1两点(不包括这两点)之间移动,点B 在数轴上-3和-2两点之间移动.下列四个代数式的值可能比2 021大的是A.a 6b 6B.b 6+a 6C.a 12bD.ab 1210.一个含有多个字母的整式,如果把其中任意两个字母互换位置,所得的结果与原式相同,那么称此整式是对称整式.例如,x 2+y 2+z 2是对称整式,x 2-2y 2+3z 2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式; ②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式;④若某对称整式只含字母x ,y ,z ,且其中有一项为x 2y ,则该多项式的项数至少为3. 以上结论中错误的个数是 A.4B.3C.2D.1二、填空题(本大题共6小题,每小题3分,满分18分)11.如果在数轴上表示a ,b 两个实数的点的位置如图所示,那么|a -b |+|a +b |化简的结果为 -2a .12.七年级(1)班有学生a 人,七年级(2)班的人数比七年级(1)班的人数的一半多25人,那么七年级(2)班有 (12a +25) 人.13.把四张形状、大小完全相同的小长方形卡片(如图1,卡片长为x 、宽为y ,且x >y )不重叠地放在一个底面为长方形(长为a 、宽为b )的盒子底部(如图2),盒底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分周长的和是 4b .(用只含b 的代数式表示)14.已知有理数a ,b ,c 在数轴上的位置如图所示,化简||a +b -||b -2-||c -a -||2-c = -4 .15.现规定一种运算a *b =ab +a -b ,其中a ,b 为实数,则a *b +(b -a )*b = b 2-b . 16.已知代数式ax 4+bx 3+cx 2+dx +3.当x =2时,代数式的值为20;当x =-2时,代数式的值为16,则当x =2时,代数式ax 4+cx 2+3的值为 18 .三、解答题(第21题12分,其余每题10分,共52分) 17.已知M =2x 2-2xy +y 2,N =3x 2+xy -2y 2,求2M -3N 的值. 解:原式=2(2x 2-2xy +y 2)-3(3x 2+xy -2y 2) =4x 2-4xy +2y 2-9x 2-3xy +6y 2 =-5x 2-7xy +8y 2.18.一根绳长a 米(a >6),第一次用掉了全长的13多1米,第二次用掉了余下的23少2米,最后还剩多少米?解:由题可知a -(13a+1)-{23[a -(13a+1)]-2}=a -13a -1-[23(23a -1)-2]=a -13a -1-49a +23+2=(29a+53)米.答:最后还剩(29a+53)米.19.已知多项式-5x2y m+1+xy2-3x3-6是六次四项式,且单项式3x2n y5-m的次数与此多项式的次数相同.(1)求m,n的值;(2)求该多项式的常数项以及各项的系数和.解:(1)因为该多项式为六次四项式,所以2+m+1=6,所以m=3.因为单项式3x2n y5-m的次数也是6,所以2n+5-m=6,所以n=2.(2)该多项式为-5x2y4+xy2-3x3-6,常数项为-6,各项系数为-5,1,-3,-6,故系数和为-5+1-3-6=-13.20.观察下列等式:×22×32;13+23=1413+23+33=1×32×42;4×42×52;13+23+33+43=14…根据上述规律,解决下列问题:(1)若n为正整数,猜想:13+23+33+…+n3=1n2(n+1)2;4(2)利用(1)的结论,比较13+23+33+…+1003与50552的大小.×1002×1012=502×1012=50502.解:(2)根据(1)可知13+23+33+…+1003=14因为50502<50552,所以13+23+33+…+1003<50552.21.将7张完全相同的小长方形纸片(如图1)按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分恰好被分割成两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a、宽为b,且a>b.(1)当a=9,b=3,AD=30时,长方形ABCD的面积是630,S2-S1的值为-63;(2)当AD=40时,请用含a,b的式子表示S2-S1的值;(3)若AB的长度为定值,AD变长,将这7张小长方形纸片还按照同样的方式放在新的长方形ABCD内,而S2-S1的值总保持不变,求a,b满足的关系.解:(2)因为S1=4b(40-a),S2=a(40-3b),所以S2-S1=a(40-3b)-4b(40-a)=40a-160b+ab.(3)S2-S1=a(AD-3b)-4b(AD-a),整理,得S2-S1=(a-4b)AD+ab.因为若AB的长度不变,AD变长,而S2-S1的值总保持不变, 所以a-4b=0,即a=4b,所以a,b满足的关系是a=4b.。
整式的加减测试题1.,
整式的加减测试题(1)一、填空题(每小题2分,共20分)1.单项式-31x 2的系数是__________,次数是__________. 2.多项式(4x 4y +x 3y 2-21x 2y 3-4xy 4+6y 4是__________次__________项式.3.礼堂第一排有a 个座位,后面每排都比前一排多一个座位,则第n 排座位个数是_______. 4.计算:6x 2-[3x 2-(x -1)]=__________.5.一个多项式加上-x 2+x -2得x 2-1,这个多项式应该是__________. 6.若x -y +2=65,那么25(y -x -2)=__________. 7.多项式(2x 3-3x 2+6x +5)与-(x 3-6x +9)的差为__________. 8.x 3-x 2+x -1= -(__________)+(x -1). 9.多项式1(2)72mx m x -++是关于x 的二次三项式,则m= ______. 10.五次单项式2(3)kk x y -的系数为 .二、选择题(每小题4分,共32分) 11.在下列式子中,五次多项式指的是 A .x 5-2x +1 B .21(ab 6-3a 2bc 2+b 3c ) C .xy 3-x 2y 3z -5 D .a 2b -ab 5+a 2b 3 12.下列计算正确的是( )C .-21(a -b )+(3a -2b )=25a -b D .(3x 2y -xy )-(yx 2-3xy )=3x 2y -yx 2-4xy13.与-125a 3bc 2的同类项是 ( ) A .a 2b 3cB .21ab 2c 3C .0.35ba 3c 2D .13a 3bc 314.A 是一个五次多项式,B 是一个五次单项式,则A -B 一定是( ) A .十次多项式 B .五次多项式 C .四次多项式 D .不高于五次的整式 15.已知-51x 3y 2n与2x 3m y 2是同类项,则mn 的值是 A .1B .3C .6D .916.减去-2x 等于-3x 2+2x +1的多项式是( ) A .-3x 2+4x -1B .3x 2-4x -1C .-3x 2+1D .3x 2-117.化简a -[-2a -(a -b )]等于( ) A .-2a B .2aC .4a +bD .2a -2b18.已知:2a +3b =4,3a -2b =5,则10a +2b 的值是( ) A .19B .27C .18D .34三、解答题(每题7分,共28分)19.化简:(x -3y )-(y -2x ) 20.(x 3-2y 3-3x 2y )-(3x 3-3y 3-7x 2y )21.计算:3a 2-[5a -(21a -3)+2a 2]+422.若|x |=2,求下式的值:3x 2-[7x 2-2(x 2-3x )-2x ]四、拓展与创新(14分)23.(如果某三位数的百位数字是(a -b +c ),十位数字为(b -c +a ),个位数字是(c -a +b ) (1)列出这个三位数的代数式并化简.(2)当a =2,b =5,c =4时,求这个三位数. 五、新颖题(6分)按照规律填上所缺的单项式并回答问题:⑴a 、22a -、33a 、44a -,________,__________; ⑵试写出第2007个和第2008个单项式 ⑶ 试写出第n 个单项式整式的加减测试题(2)一、填空题(每题3分,共30分) 1、“x 的平方与2的差”用代数式表示为________.2、当2-=x时,代数式x 43-的值是________;3、代数式b a2-的系数是次数是________,次数是________;当21,3-==b a 时,这个代数式的值是________.4、多项式34232-+x x是________次________项式,常数项是________;5、计算:.__________,137_____,232222=+-=-=+-a a xy xy aa6、写一个关于x 的二次三项式: _______________________.7、请任意写出z y x 222的一个同类项________________________.8、观察下列单项式:x,-3x 2,5x 3,-7x 4,9x 5,…按此规律,可以得到第2008个单项式是______.第n 个单项式怎样表示________.9、代数式2)2(9b a --的最大值是______.10、右表是2002年6月份的日历,现用一矩形在日历中任意框出 4个数,请用一个等式表示a 、b 、c 、d之间的关系___________.二、选择题(每题3分,共24分) 11、下列叙述代数式2m的意义的句子中,不正确的是( )A 、m 除2 B 、m 除以2 C 、m 的21 D 、21与m 的积12、下列各式中,正确的是( ) A 、ab ba 33=+ B 、x x 27423=+ C 、42)4(2+-=--x x D 、)23(32--=-x x13、下列各组式子中,是同类项的是( )A 、y x 23与23xy -B 、xy 3与yx 2-C 、x 2与22xD 、xy 5与yz 5 14、下列说法中正确的是( ) A 、单项式x 的系数和次数都是零 B 、343x 是7次单项式C 、25R π的系数是5 D 、0是单项式 15、将多项式a a a -++-132按字母a 升幂排列正确的是( )A 、123+--a a aB 、132++--a a aC 、a a a --+231D 、321a a a +-- 16、若A 是五次多项式,B 也是五次多项式,则A+B 一定是( )A 、五次式项式B 、十次多项式C 、不高于五次的多项式D 、单次项 17、右图是一个数值转换机,若输入的x 为–7,则输出的结果是( )A 、12B 、–14C 、27D 、21 18、当2=x 时,代数式13++qx px 的值等于2002,那么当2-=x 时,代数式13++qx px 的值为( ) A 、2001 B 、-2001 C 、2000 D 、-2000三、解答题19、(本题6分)合并同类项:(1)a a a a 742322-+-; (2)[])3(43b a b a --+- .20、(本题6分)如图,正方形的边长为x ,用代数式表示图中阴影部分的面积,并计算当4=x 时,阴影部分的面积.(π取3.14)21、(本题8分)已知2222539,822y xy x B x y xy A -+=+-=,求(1)B A -;(2)B A 23+-。
2022-2023学年七年级数学上《整式的加减》测试卷及答案解析
2022-2023学年七年级数学上《整式的加减》一.选择题(共8小题)1.(2021秋•南山区期末)对于代数式,第三学习小组讨论后得出如下结论:①代数式还可以写成;②如图,较大正方形的边长为y,较小正方形的边长为1,则代数式表示阴影部分的面积;③其可以叙述为:y与1的平方差的一半;④代数式的值可能是﹣1.其中正确的个数为()A.1B.2C.3D.4 2.(2021秋•南开区期末)下列关于多项式﹣3a2b+ab﹣2的说法中,正确的是()A.是二次三项式B.二次项系数是0C.常数项是2D.最高次项是﹣3a2b3.(2021秋•皇姑区期末)下列代数式符合规范书写要求的是()A.﹣1x B.C.b3D.4.(2021秋•桓台县期末)某公司今年2月份的利润为x万元,3月份比2月份减少7%,4月份比3月份增加了8%,则该公司4月份的利润为()(单位:万元)A.(x﹣7%)(x+8%)B.(x﹣7%+8%)C.(1﹣7%+8%)x D.(1﹣7%)(1+8%)x 5.(2022•清苑区一模)根据数值转换机的示意图,输出的值为()A.9B.﹣9C.D.6.(2022•通州区校级开学)下列各式中,不是整式的是()A.3a B.C.0D.x+y 7.(2021秋•滦州市期末)下列代数式,书写不规范的是()A.a3B.3x+1C.D.1×m 8.(2021秋•天河区期末)一个两位数个位上的数是1,十位上的数是x,如果把1与x对调,新两位数与原两位数的和不可能是()A.66B.99C.110D.121二.多选题(共2小题)(多选)9.(2020春•沙坪坝区校级期中)如图是一个运算程序的示意图,若输出y的值为2,则输入x的值可能为()A.3B.1C.﹣1D.﹣3(多选)10.(2021秋•潍坊期末)如图,长为ycm,宽为xcm的大长方形被分割为7小块,除阴影A,B外,其余5块是形状、大小完全相同的小长方形,小长方形较短的边长为4cm,下列说法中正确的是()A.小长方形较长的边为(y﹣12)cmB.阴影A和阴影B的周长之和与y的取值无关C.若y=20cm时,则阴影A的周长比阴影B的周长少8cmD.当x=20cm时,阴影A和阴影B可以拼成一个长方形,且长方形的周长为(2y+24)cm三.填空题(共6小题)11.(2021秋•曲阳县期末)将下列各式按照列代数式的规范要求重新书写:(1)a×5,应写成;(2)S÷t应写成;(3)a×a×2﹣b×,应写成;(4)1x,应写成.12.(2020秋•郏县期末)结合实例解释代数式3a的意义.13.(2021秋•萧山区期中)下列各式:ab•2,m÷2n,,,其中符合代数式书写规范的有个.14.(2022•陈仓区一模)一件商品进价是a元,按进价提高40%标价,再打8折出售,那么每件商品的售价为元.(含a的式子表示)15.(2021秋•仪征市期末)如图是一个数值运算的程序,若输入的x值为5,则输出的y值为.16.(2021秋•鹿邑县月考)下列式子0,,﹣3+中,其中整式有个.四.解答题(共4小题)17.(2021秋•新泰市期末)如图是一块长方形花园,内部修有两个凉亭及过道,其余部分种植花圃(阴影部分).(1)用整式表示花圃的面积;(2)若a=3m,修建花圃的成本是每平方米60元,求修建花圃所需费用.18.(2021秋•海安市期中)如图,数轴上点A,B所对应的数是﹣4,4.对于关于x的代数式N,我们规定:当有理数x在数轴上所对应的点为A,B之间(包括点A,B)的任意一点时,代数式N的最大值小于等于4,最小值大于等于﹣4,则称代数式N是线段AB 的“和谐”代数式,例如,对于关于x的代数式|x|,当x=±4时,代数式|x|取得最大值4;当x=0时,代数式|x|取得最小值0,所以代数式|x|是线段AB的“和谐”代数式.问题:(1)关于x的代数式|x﹣2|,当有理数x在数轴上所对应的点为A,B之间(包括点A,B)的任意一点时,取得的最大值是,最小值是;所以代数式|x﹣2|(填“是”或“不是”)线段AB的“和谐”代数式.(2)关于x的代数式|x+3|+a是线段AB的“和谐”代数式,则有理数a的最大值是,最小值是.(3)以下关于x的代数式:①x−;②x2+1;③|x+2|﹣|x﹣1|﹣1.其中是线段AB的“和谐”代数式的是,并证明.(只需要证明是线段AB的“和谐”代数式的式子,不是的不需证明)19.(2019秋•历城区期中)如图,在数轴上A点表示数a,B点表示数b,C点表示数c.且a,b,c满足(c﹣7)2+|a+10|+|b﹣1|=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与表示的数的点重合;(3)点M以每秒3个单位长度的速度从点A向右运动,点N以每秒2个单位长度的速度从点B向右运动(点M、点N同时出发),经过几秒,点M、点N分别到点B的距离相等?20.(2021秋•同安区期末)在一个“磁悬浮”的轨道架上做钢球碰撞实验,如图1所示,轨道长为180cm,轨道架上有三个大小、质量完全相同的钢球A、B、C,轨道左右各有一个钢制挡板D和E,其中C到左挡板的距离为30cm,B到右挡板的距离为60cm,A、B两球相距40cm.现以轨道所在直线为数轴,假定A球在原点,B球代表的数为40,如图2所示,解答下列问题:(1)在数轴上,找出C球及右挡板E所代表的数,并填在图中括号内.(2)碰撞实验中(钢球大小、相撞时间不计),钢球的运动都是匀速,当一钢球以一速度撞向另一静止钢球时,这个钢球停留在被撞钢球的位置,被撞钢球则以同样的速度向前运动,钢球撞到左右挡板则以相同的速度反向运动.①现A球以每秒10cm的速度向右匀速运动,则A球第二次到达B球所在位置时用了秒;经过63秒时,A、B、C三球在数轴上所对应的数分是、、;②如果A、B两球同时开始运动,A球向左运动,B球向右运动,A球速度是每秒10cm,B球速度是每秒20cm,问:经过多少时间A、B两球相撞?相撞时在数轴上所对应的数是多少?2022-2023学年七年级数学上《整式的加减》参考答案与试题解析一.选择题(共8小题)1.(2021秋•南山区期末)对于代数式,第三学习小组讨论后得出如下结论:①代数式还可以写成;②如图,较大正方形的边长为y,较小正方形的边长为1,则代数式表示阴影部分的面积;③其可以叙述为:y与1的平方差的一半;④代数式的值可能是﹣1.其中正确的个数为()A.1B.2C.3D.4【考点】代数式;列代数式.【专题】整式;运算能力.【分析】根据代数式的意义,以及列代数式逐一判断即可.【解答】解:①代数式,还可以写成,故①正确;②较大正方形的边长为y,较小正方形的边长为1,则阴影部分的面积可表示为:,故②正确;③代数式,也可以叙述为:y与1的平方差的一半,故③正确;④因为y2≠﹣1,所以代数式的值不可能是﹣1,故④错误;∴其中正确的个数为:3个,故选:C.【点评】本题考查了代数式,列代数式,熟练掌握代数式表示的意义是解题的关键.2.(2021秋•南开区期末)下列关于多项式﹣3a2b+ab﹣2的说法中,正确的是()A.是二次三项式B.二次项系数是0C.常数项是2D.最高次项是﹣3a2b【考点】代数式;多项式.【专题】整式;符号意识.【分析】根据多项式的相关定义解答即可.【解答】解:A、多项式﹣3a2b+ab﹣2是三次三项式,原说法错误,故此选项不符合题意;B、多项式﹣3a2b+ab﹣2的二次项系数是1,原说法错误,故此选项不符合题意;C、多项式﹣3a2b+ab﹣2的常数项是﹣2,原说法错误,故此选项不符合题意;D、多项式﹣3a2b+ab﹣2的最高次项是﹣3a2b,原说法正确,故此选项符合题意;故选:D.【点评】此题主要考查了多项式,解题的关键是掌握多项式的相关定义.多项式中次数最高的项的次数叫做多项式的次数.多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.3.(2021秋•皇姑区期末)下列代数式符合规范书写要求的是()A.﹣1x B.C.b3D.【考点】代数式.【专题】整式;符号意识.【分析】根据代数式书写要求,分别判断得出答案.【解答】解:A.﹣1x应为:﹣x,故此选项不合题意;B.1xy应为:xy,故此选项不合题意;C.b3应为:3b,故此选项不合题意;D.﹣a,故此选项符合题意.故选:D.【点评】此题主要考查了代数式,正确掌握代数式的书写格式是解题关键.4.(2021秋•桓台县期末)某公司今年2月份的利润为x万元,3月份比2月份减少7%,4月份比3月份增加了8%,则该公司4月份的利润为()(单位:万元)A.(x﹣7%)(x+8%)B.(x﹣7%+8%)C.(1﹣7%+8%)x D.(1﹣7%)(1+8%)x【考点】列代数式.【专题】整式;运算能力.【分析】利用减少率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【解答】解:由题意得:3月份的利润为(1﹣7%)x万元,4月份的利润为(1+8%)(1﹣7%)x万元,故选:D.【点评】本题考查了列代数式,正确理解增长率与下降率的意义是解决问题的关键.5.(2022•清苑区一模)根据数值转换机的示意图,输出的值为()A.9B.﹣9C.D.【考点】代数式求值;有理数的混合运算.【专题】整式;运算能力.【分析】由数值转换机的示意图得出代数式,再把x=﹣3代入计算,即可得出答案.【解答】解:当x=﹣3时,31+x=31﹣3=3﹣2==,故选:C.【点评】本题考查了代数式求值,有理数的混合运算,掌握负整数指数幂的意义是解决问题的关键.6.(2022•通州区校级开学)下列各式中,不是整式的是()A.3a B.C.0D.x+y【考点】整式.【专题】整式;符号意识.【分析】根据单项式与多项式统称为整式,根据整式及相关的定义解答即可.【解答】解:A、3a是整式,不符合题意;B、是分式,不是整式,符合题意;C、0是整式,不符合题意;D、x+y是整式,不符合题意;故选:B.【点评】本题主要考查整式的相关的定义,解决此题的关键是熟记整式的相关定义.7.(2021秋•滦州市期末)下列代数式,书写不规范的是()A.a3B.3x+1C.D.1×m【考点】代数式.【专题】整式;符号意识.【分析】根据代数式的书写要求判断各项.【解答】解:A、代数式书写规范,故此选项不符合题意;B、代数式书写规范,故此选项不符合题意;C、代数式书写规范,故此选项不符合题意;D、带分数要写成假分数的形式,代数式书写不规范,故此选项符合题意;故选:D.【点评】本题考查了代数式,解题的关键是掌握代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.8.(2021秋•天河区期末)一个两位数个位上的数是1,十位上的数是x,如果把1与x对调,新两位数与原两位数的和不可能是()A.66B.99C.110D.121【考点】列代数式.【专题】整式;符号意识.【分析】分别表示出原两位数与新两位数,再相加,从而可判断.【解答】解:由题意得:10x+1+10×1+x=10x+1+10+x=11x+11=11(x+1),则其和为11的倍数,且1≤x≤9,当其和为121时,得11(x+1)=121,解得:x=10>9(不符合题意),故选:D.【点评】本题主要考查列代数式,解答的关键是理解清楚题意找到等量关系.二.多选题(共2小题)(多选)9.(2020春•沙坪坝区校级期中)如图是一个运算程序的示意图,若输出y的值为2,则输入x的值可能为()A.3B.1C.﹣1D.﹣3【考点】代数式求值;有理数的混合运算.【专题】整式;运算能力.【分析】分别令三种情况的y=2,求出相应的x,判断x是否满足所在范围即可.【解答】解:当x+1=2时,x=1,不符合x≤0;当x2+1=2时,x=±1,此时x=1符合;当=2时,x=3,此时符合;∴x=3或x=1,故选:AB.【点评】本题考查了代数式求值,函数值;熟练掌握由函数值求对应自变量的值的方法是解题的关键.(多选)10.(2021秋•潍坊期末)如图,长为ycm,宽为xcm的大长方形被分割为7小块,除阴影A,B外,其余5块是形状、大小完全相同的小长方形,小长方形较短的边长为4cm,下列说法中正确的是()A.小长方形较长的边为(y﹣12)cmB.阴影A和阴影B的周长之和与y的取值无关C.若y=20cm时,则阴影A的周长比阴影B的周长少8cmD.当x=20cm时,阴影A和阴影B可以拼成一个长方形,且长方形的周长为(2y+24)cm【考点】代数式求值;列代数式.【专题】矩形菱形正方形;几何直观.【分析】依次表示两个长方形的周长,再判断.【解答】解:由题意得:小长方形较长边等于长方形A的较长边,其长度=y﹣4×3=(y ﹣12)cm,故A符合题意.阴影A的长为:(y﹣12)cm,宽为:x﹣2×4=(x﹣8)cm,∴阴影A的周长=2(y﹣12+x﹣8)=(2x+2y﹣40)cm.阴影B的长为:4×3=12(cm),宽为:x﹣(y﹣12)=(x﹣y+12)cm.阴影B的周长=2(12+x﹣y+12)=(2x﹣2y+48)cm.∴阴影A和阴影B的周长之和为:2x+2y﹣40+2x﹣2y+48=(4x+8)cm.其值与y无关.故B符合题意.当y=20时,阴影A的周长=2x+2×20﹣40=2x(cm),阴影B的周长=2x﹣2×20+48=(2x+8)cm.故C符合题意.当A和B拼成长方形时,A的长=B的长,∴y﹣12=12,∴y=24(cm).故D不合题意.故选:ABC.【点评】本题考查图形周长的计算,正确表示A,B的长和宽是求解本题的关键.三.填空题(共6小题)11.(2021秋•曲阳县期末)将下列各式按照列代数式的规范要求重新书写:(1)a×5,应写成5a;(2)S÷t应写成;(3)a×a×2﹣b×,应写成;(4)1x,应写成.【考点】代数式;列代数式.【专题】整式;运算能力.【分析】(1)根据代数式书写规范即可得到结果.(2)根据代数式书写规范即可得到结果.(3)根据代数式书写规范即可得到结果.(4)根据代数式书写规范即可得到结果.【解答】(1)a×5=5a,故答案为:5a;(2)S÷t=.故答案为:;(3)a×a×2﹣b×=,故答案为:;(4),故答案为:.【点评】本题考查代数式书写规范,解题关键是熟知代数式的书写规范要求.12.(2020秋•郏县期末)结合实例解释代数式3a的意义代数式3a的意义:边长为a的等边三角形的周长(答案不唯一).【考点】代数式.【专题】整式;符号意识.【分析】可根据等边三角形的周长公式解释.【解答】解:代数式3a的意义:边长为a的等边三角形的周长.故答案为:边长为a的等边三角形的周长(答案不唯一).【点评】本题考查了代数式,是基础题,主要是对字母表示数的考查,开放型题目答案不唯一.13.(2021秋•萧山区期中)下列各式:ab•2,m÷2n,,,其中符合代数式书写规范的有2个.【考点】代数式.【专题】整式;符号意识.【分析】根据代数式的书写规则即可得出答案.【解答】解:ab•2应该写成2ab,m÷2n应该写成,,书写规范,综上所述,符合代数式书写规范的有2个,故答案为:2.【点评】本题考查了代数式的书写规则,注意在数字与字母相乘时省略乘号,数字要写在字母的前面,除法应该写成分数的形式.14.(2022•陈仓区一模)一件商品进价是a元,按进价提高40%标价,再打8折出售,那么每件商品的售价为 1.12a元.(含a的式子表示)【考点】列代数式.【专题】整式;应用意识.【分析】根据题意直接列出代数式,化简即可解决问题.【解答】解:由题意得:这件商品获利(1+40%)×0.8a=1.12a(元).故答案为:1.12a.【点评】该题主要考查了列代数式在现实生活中的实际应用问题;解题的关键是准确把握命题中隐含的数量关系,正确列出代数式.15.(2021秋•仪征市期末)如图是一个数值运算的程序,若输入的x值为5,则输出的y值为12.【考点】代数式求值;有理数的混合运算.【专题】实数;运算能力.【分析】根据运算程序中的计算顺序,将x=5代入即可.【解答】解:由题意得,y==12.故答案为:12.【点评】本题是程序运算题,考查了有理数的混合运算,根据程序得到运算顺序是解题的关键.16.(2021秋•鹿邑县月考)下列式子0,,﹣3+中,其中整式有3个.【考点】整式.【专题】整式;符号意识.【分析】根据单项式和多项式统称整式,可得答案.【解答】解:0,,﹣x是整式,共有3个,故答案为:3.【点评】本题考查了整式,整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.四.解答题(共4小题)17.(2021秋•新泰市期末)如图是一块长方形花园,内部修有两个凉亭及过道,其余部分种植花圃(阴影部分).(1)用整式表示花圃的面积;(2)若a=3m,修建花圃的成本是每平方米60元,求修建花圃所需费用.【考点】代数式;代数式求值.【专题】整式;运算能力.【分析】(1)根据大矩形面积减去两个小矩形面积表示出花圃面积即可;(2)把a的值代入计算即可求出所求.【解答】解:(1)根据题意得:(7.5+12.5)×(a+2a+2a+2a+a)﹣12.5•2a×2=20•8a﹣50a=160a﹣50a=110a(m2),所以,花圃的面积为:110a;(2)当a=3m、修建花圃的成本是每平方米60元时,修建花圃所需费用为110×3×60=19800(元),所以,修建花圃所需费用为19800元.【点评】此题考查了代数式求值,以及列代数式,根据题意列出关系式是解本题的关键.18.(2021秋•海安市期中)如图,数轴上点A,B所对应的数是﹣4,4.对于关于x的代数式N,我们规定:当有理数x在数轴上所对应的点为A,B之间(包括点A,B)的任意一点时,代数式N的最大值小于等于4,最小值大于等于﹣4,则称代数式N是线段AB 的“和谐”代数式,例如,对于关于x的代数式|x|,当x=±4时,代数式|x|取得最大值4;当x=0时,代数式|x|取得最小值0,所以代数式|x|是线段AB的“和谐”代数式.问题:(1)关于x的代数式|x﹣2|,当有理数x在数轴上所对应的点为A,B之间(包括点A,B)的任意一点时,取得的最大值是6,最小值是0;所以代数式|x﹣2|不是(填“是”或“不是”)线段AB的“和谐”代数式.(2)关于x的代数式|x+3|+a是线段AB的“和谐”代数式,则有理数a的最大值是﹣3,最小值是﹣4.(3)以下关于x的代数式:①x−;②x2+1;③|x+2|﹣|x﹣1|﹣1.其中是线段AB的“和谐”代数式的是③,并证明.(只需要证明是线段AB的“和谐”代数式的式子,不是的不需证明)【考点】代数式;数轴;非负数的性质:绝对值;有理数大小比较;非负数的性质:偶次方.【专题】新定义;实数;运算能力.【分析】(1)根据绝对值的性质可求最值,再根据“和谐”代数式的定义即可求解;(2)根据“和谐”代数式的定义即可求解;(3)根据“和谐”代数式的定义分别计算最大值和最小值,可作判断.【解答】解:(1)当x=﹣4时,|x﹣2|取得最大值为6,当x=2时,|x﹣2|取得最小值为0,∵|x﹣2|的最大值>4,∴|x﹣2|不是线段AB的“和谐”代数式.故答案为:6,0,不是;(2)|x+3|+a≤4,a≤4﹣|x+3|,4﹣|x+3|在﹣4和4之间的最小值是﹣3,a要不大于这个最小值才能使所有在﹣4和4之间的x都成立,所以a的最大值是﹣3,|x+3|+a≥﹣4,a≥﹣4﹣|x+3|,﹣4﹣|x+3|在﹣4和4之间的最大值是﹣4,a要不小于这个最大值才能使所有在﹣4和4之间的x都成立,所以a的最小值是﹣4;故答案为:﹣3,﹣4;(3)①x−,当x=4时,x﹣取得最大值是﹣,当x=﹣4时,x﹣取得最小值是﹣,∴x−不是线段AB的“和谐”代数式;②x2+1,当x=4时,x2+1取得最大值是17,当x=0时,x2+1取得最小值是1,∴x2+1不是线段AB的“和谐”代数式;③|x+2|﹣|x﹣1|﹣1.当﹣4≤x<﹣2时,|x+2|﹣|x﹣1|﹣1=﹣(x+2)+(x﹣1)﹣1=﹣4,当﹣2≤x≤1时,|x+2|﹣|x﹣1|﹣1=(x+2)+(x﹣1)﹣1=2x,∴﹣4≤2x≤2,当1≤x≤4时,原式=(x+2)﹣(x﹣1)﹣1=2,综上所述:﹣4≤|x+2|﹣|x﹣1|﹣1≤2满足最大值小于等于4,最小值大于等于﹣4,|x+2|﹣|x﹣1|﹣1是线段AB的“和谐”代数式.故答案为:③.【点评】本题考查了代数式和“和谐”代数式,读懂题意,模仿给定例题解决问题是解题的关键.19.(2019秋•历城区期中)如图,在数轴上A点表示数a,B点表示数b,C点表示数c.且a,b,c满足(c﹣7)2+|a+10|+|b﹣1|=0.(1)a=﹣10,b=1,c=7;(2)若将数轴折叠,使得A点与C点重合,则点B与表示﹣4的数的点重合;(3)点M以每秒3个单位长度的速度从点A向右运动,点N以每秒2个单位长度的速度从点B向右运动(点M、点N同时出发),经过几秒,点M、点N分别到点B的距离相等?【考点】代数式;数轴;非负数的性质:绝对值;非负数的性质:偶次方.【专题】整式;一次方程(组)及应用;运算能力;应用意识.【分析】(1)根据非负数的性质即可解答;(2)先求出数轴沿着表示﹣的数对折,即可求出点B关于表示﹣4的数重合;(3)设点M,N运动的时间为t秒,表示出点M,N表示的数,再根据题意列出方程解答即可.【解答】解:(1)∵(c﹣7)2+|a+10|+|b﹣1|=0,∴c﹣7=0,a+10=0,b﹣1=0,解得,a=﹣10,b=1,c=7,故答案为:﹣10;1;7;(2)∵a=﹣10,c=7,,∴数轴沿着表示的数对折,∴,∴点B与表示﹣4的数重合,故答案为:﹣4;(3)设点M,N运动的时间为t秒,则由题意得:点M表示的数为﹣10+3t,点N表示的数为1+2t,∴当点M、点N分别到点B距离相等时,|﹣10+3t﹣1|=1+2t﹣1,解得,t=11或t=.所以经过11秒或秒时,点M、点N分别到点B距离相等.【点评】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.20.(2021秋•同安区期末)在一个“磁悬浮”的轨道架上做钢球碰撞实验,如图1所示,轨道长为180cm,轨道架上有三个大小、质量完全相同的钢球A、B、C,轨道左右各有一个钢制挡板D和E,其中C到左挡板的距离为30cm,B到右挡板的距离为60cm,A、B两球相距40cm.现以轨道所在直线为数轴,假定A球在原点,B球代表的数为40,如图2所示,解答下列问题:(1)在数轴上,找出C球及右挡板E所代表的数,并填在图中括号内.(2)碰撞实验中(钢球大小、相撞时间不计),钢球的运动都是匀速,当一钢球以一速度撞向另一静止钢球时,这个钢球停留在被撞钢球的位置,被撞钢球则以同样的速度向前运动,钢球撞到左右挡板则以相同的速度反向运动.①现A球以每秒10cm的速度向右匀速运动,则A球第二次到达B球所在位置时用了40秒;经过63秒时,A、B、C三球在数轴上所对应的数分是﹣50、40、﹣70;②如果A、B两球同时开始运动,A球向左运动,B球向右运动,A球速度是每秒10cm,B球速度是每秒20cm,问:经过多少时间A、B两球相撞?相撞时在数轴上所对应的数是多少?【考点】列代数式;数轴.【专题】实数;整式;符号意识;应用意识.【分析】(1)首先可以计算出AC的距离AC=180﹣30﹣40﹣60=50(cm),再根据它在负半轴上所表示的数是﹣50;AE=40+60=100(cm),再根据它在正半轴上的位置,则其表示的数是100.(2)①根据时间=路程÷速度,路程=速度×时间进行计算;②设经过t秒时间A、B两球相撞,根据行驶的路程列出方程计算,进一步即可求解.【解答】解:(1)依题意得:AC=180﹣30﹣40﹣60=50(cm),40+60=100(cm),则C代表﹣50,E代表100,如图所示:;(2)①(40+60+60+40+50+30+30+50+40)÷10=40(秒),[63﹣40﹣(60+60)÷10]×10=130(cm),130﹣40﹣50﹣30=10(cm),50+30﹣10=70(cm),故A球第二次到达B球所在位置时用了40秒;经过63秒时,A、B、C三球在数轴上所对应的数分是﹣50、40、﹣70;故答案是:40;﹣50、40、﹣70;②A球撞到C球的用时50÷10=5(秒),此时球B运动路程为5×20=100(cm),5秒后A球停在球C的位置,B球用了(100+50+60﹣100)÷20=5.5(秒),此时C球撞到挡板反弹还没有撞到A球,∴A、B两球相撞的时间为5+5.5=10.5(秒).此时C球对应的数为﹣55,A,B球对应的数为﹣50.【点评】本题考查了列代数式,要求一个点所表示的数,首先分析它的绝对值,再分析它的符号.。
人教版七年级上册 第二章《整式的加减》综合测试题含答案
图 1 图2人教版七年级上册 第二章《整式的加减》综合测试题一、选择题(每小题3分,共30分)1.建军的作业本中有四道列代数式的题目,其中错误的是( ).A .减去5等于x 的数是x +5B .4与a 的积的平方为4a 2C .m 与n 的和的倒数为1m n+ D .比x 的立方的2倍小5的数是2x 3-5 2.下列说法中,正确的是( ).A .15x +是多项式B .213x π-的系数是13- C .2x 2-1的项是2x 2和1 D .3xy 2-y 2+6是三次三项式3.某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( ).A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元4.敏敏手中的纸条上写着多项式a 3+a x +1b -2a 2b 2,慧慧手中的纸条上写着单项式-a 3 b 4 c ,若这两个式子的次数相等,则x 的值为( ).A .5B .6C .7D .85.若多项式m 3+m x +1n -2m 2n 2与单项式-a 3 b 4 c 的次数相等,则x 的值为( ).A .5B .6C .7D .85.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为( ).A .7B .9C .-7D .-96.友龙在电脑中设置了一个运算程序:输入数a ,加“⊗”键,再输入数b ,得到运算a ⊗b =2ab 2+a 2b . 若a =-2,b=3,则输出的值为( ).A .-9B .-12C .-24D .67.有一个三位数,它的百位上的数字是a ,十位上的数字比百位上的数字大1,个位上的数字比百位上的数字小1,则这个三位数一定是( ).A .2的倍数B .3的倍数C .5的倍数D .9的倍数8.已知y=x -1,则(x -y)2+(y -x)+1的值为( ).A .-1B .0C .1D .29.已知有理数a 、b 、c 在数轴上的位置如图1所示,且a 与b 互为相反数,那么| a -c |-| b +c |的值为( ).A .0B .1C .a +bD .2c 10.如图2,将一个边长为a 的正方形纸片剪去两个小长方形,得到一个“”的图案,再将剪下的两个小长方形拼成一个新长方形,则新长方形的周长为( ).A .2a -3bB .4a -8bC .2a -4bD .4a -10b二、填空题(每小题3分,共24分)11.为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电若不超过100度,每度按a 元收费;图4 图3 若超过100度,那么超过部分每度按b 元收费. 某户居民在一个月内用电160度,那么该户居民这个月应缴纳电费____________元.12.已知单项式2a 3b n +1与单项式-3a m -2b 2的和仍是单项式,则3m -4n=_________.13.如图3,要给这个长、宽、高分别为x 、y 、z 的箱子打包,其打包方式如图所示. 则打包带的长至少要____________.(用含x 、y 、z 的代数式表示)14.已知(a +6)2+|b 2-2b -3 |=0,则2b 2-4b -a 的值为_________.15.已知关于x 的多项式(a +b )x 4+(b -2)x 3-2 (a +1)x 2+2ax -15中,不含x 3项和x 2项,则当x =-2时,这个多项式的值为__________.16.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…按照上述规律,第100个单项式是________.17.已知x=34-12,y=32,求-x +(px -y 2)-2(x -y 2)的值,龙龙在做题时,把x 的值看成x=34,但最后也算出了正确的结果,若计算过程无误,由此可判定p 的值为_______.18.出租车收费的标准因地而异,A 市的标准为:起步价10元,3千米后每千米为1.2元;B 市的标准为:起步价8元,3千米后每千米为1.4元. 则在A 市乘坐出租车x(x >3)千米比在B 市乘坐相同路程的出租车多花___________元.三、解答题(共66分)19.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:(1)求所捂的二次三项式;(2)若x =-6,求所捂二次三项式的值.20.(8分)如图4,一只蚂蚁从点A 沿数轴向右爬2个单位到达点B. 若点A 表示的数a为32-,设点B 所表示的数为b . (1)求b 的值;(2)先化简223(2)[322()]a ab a b ab b ---++,再求值.21.(8分)已知A=-6x 2+4x ,B=-x 2-3x ,C=5x 2-7x +4,小明和小金在计算时对x 分别取了不同的数值,并进行了多次计算,但所得A -B+C 的结果却是一样的,你认为这可能吗?说明你的理由.222(3)51x x x --=-+第1个 第2个 第3个 第4个22.(10分)张、王、李三家合办一个股份制企业,总股数为(5a 2-3a +3),每股20元,张家持有(2a 2+1)股,王家比张家少(a -1)股.(1)求王家和李家分别持有的股数.(2)若年终按持有股15%的比例支付股利,当a =300时,问李家能获得多少钱?23.(10分)用同样大小的黑色棋子按如图所示的规律摆放:(1)填写下表:(2)归纳猜测第n 个图形棋子的个数(用含n 的代数式表示);(3)建军认为第671个图形有2016颗黑色棋子,你同意他的说法吗?请说明理由.24.(10分)观察代数式x -3x 2+5x 3-7x 4+……并回答下列问题:(1)它的第100项是什么?(2)它的第n (n 为正整数)项是什么?(3)当x =1时,求它的前2016项的和.参考答案一、选择题1.B .提示:列代数式表示“a 与4的积的平方”为 (4a)2.2.D .提示:选项A 分母中含有字母,故不是多项式,选项B 的系数是13π-,选项C 的项是2x 2和-1. 3.A .提示:由于2月份产值是(1-10%)x 万元,故3月份产值是在(1-10%)x 万元的基础上增加了15%,即为(1-10%)(1+15%)x 万元.4.B .提示:由于-a 3 b 4 c 的次数为8,则a 3+a x +1b -2a 2b 2的次数x +1+1=8,故x=6.5.D .提示:根据“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,所以2×1-3=x ,故x=-1;又因为2x -7=y ,即2×(-1)-7=y ,故y=-9.6.C .提示:当a =-2,b=3时,2ab 2+a 2b =2×(-2)×32+(-2)2×3=-24.7.B .提示:根据题意得100a +10(a +1)+(a -1)=111a +9=3(37a +3),故为3的倍数.8.C .提示:由y=x -1,得y -x=-1或x -y=1,整体代入得,原式=12+(-1)+1=1.9.A .提示:因为a 与b 互为相反数,所以a +b=0;根据数轴得a -c <0,b +c >0,故原式=-(a -c)-(b +c)=-a+c -b -c=-(a +b)=0.10.B .提示:根据示意图知,剪下的两个小长方形拼成的新长方形的长为(a -b),宽为(a -3b),所以新长方形的周长为2(a -b)+2(a -3b) =2a -2b +2a -6b=4a -8b.二、填空题11.(100a +60b). 提示:前100度按每度a 元收费,故可收100a 元;超过100度的部分有60度,可收60b 元. 12.11.提示:根据题意,两个单项式是同类项,所以m -2=3,n +1=2,故m =5,n =1.13.2x +4y +6z. 提示:根据打包方式知,包带等于“长”的有2x ,包带等于“宽”的有4y ,包带等于“高”的有6z ,所以总长为2x +4y +6z.14.2.提示:由题意得a +6=0,b 2-2b -3=0,故a =-6,b 2-2b =3. 所以2b 2-4b -a =2(b 2-2b )-a =2×3-(-6)=12. 15.5.提示:根据题意,得a =-1,b =2,所以这个多项式为x 4-2x -15. 当x =-2时,x 4-2x -15=(-2)4-2×(-2)-15=5.16.199x 100. 提示:由于x 的指数是连续自然数,而系数是连续奇数,即系数为(2n -1),故第100个单项式的系数为2×100-1=199. 所以这个单项式为199x 100.17.3.提示:-x +(px -y 2)-2(x -y 2)=-x +px -y 2-2x +2y 2=(p -3)x +y 2,因为把x 的值看错,但结果仍正确,所以x 的系数p -3=0,故p=3.18.(2.6-0.2x). 提示:在A 、B 两市乘车的费用分别为 [10+1.2(x -3)]元和[8+1.4(x -3)]元,故A 市比B 市乘坐相同路程需多花[10+1.2(x -3)]-[8+1.4(x -3)]= (2.6-0.2x)元.三、解答题19.(1)设所捂的二次三项式为A ,则有A -2(x 2-3)=x 2-5x +1.所以A=(x 2-5x +1)+2(x 2-3)= x 2-5x +1+2x 2-6= 3x 2-5x -5.(2)当x=-2时,3x 2-5x -5=3×(-2)2-5×(-2)-5=17.20.(1)由于31222-+=,所以12b =. (2)原式22(36)(3222)a ab a b ab b =---++2236328a ab a ab ab =---=-. 当32a =-,b =12时,原式=-8×(32-)×12=6. 21.可能. 理由如下:A -B +C=(-6x 2+4x)-(-x 2-3x)+(5x 2-7x +4)=-6x 2+4x +x 2+3x +5x 2-7x +4=4.由于化简后的结果中不含有字母x ,所以无论x 取何数值,其结果都是4.22.(1)王家持股:(2a 2+1)-(a -1)=2a 2-a +2.李家持股:(5a 2-3a +3)-(2a 2+1)-(2a 2-a +2)=a 2-2a .(2)当a =300时,a 2-2a = 3002-2×300=89400.所以李家能获得的钱数为:89400×15%×20=268200(元).23.(1)填表如下:(2)3(n+1);(3)同意建军的说法. 理由如下:当n=671时,3(n+1)= 3×(671+1)=2016. 所以第670个图形有2016颗黑色棋子. 24.(1)第100项是-199x100;(2)第n(n为正整数)项是(-1)n+1(2n-1)x n;(3)当x=1时,原式=1-3+5-7+…+4029-4031=(1-3)+(5-7)+…+(4029-4031)=-2×1008=-2016.。
整式的加减运算200道
整式的加减专项练习200题1、3(a+5b)—2(b-a)2、3a—(2b—a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3—2y3—3x2y)-(3x3—3y3—7x2y)5、3x2—[7x-(4x-3)-2x2]6、(2xy—y)—(-y+yx)7、5(a2b—3ab2)-2(a2b—7ab)8、(—2ab+3a)—2(2a—b)+2ab9、(7m2n-5mn)-(4m2n—5mn)10、(5a2+2a—1)—4(3—8a+2a2).11、—3x2y+3xy2+2x2y-2xy2;12、2(a—1)—(2a—3)+3.13、—2(ab-3a2)-[2b2—(5ab+a2)+2ab]14、(x2-xy+y)—3(x2+xy—2y)15、3x2-[7x-(4x-3)—2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、—2y3+(3xy2—x2y)-2(xy2-y3).18、2(2x-3y)—(3x+2y+1)19、—(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n—8p+5n-9m—p;21、(5x2y—7xy2)—(xy2—3x2y);22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a].23、3a2—9a+5—(—7a2+10a-5);24、—3a2b—(2ab2—a2b)-(2a2b+4ab2).25、(5a—3a2+1)—(4a3—3a2);26、—2(ab-3a2)—[2b2—(5ab+a2)+2ab]27、(8xy-x2+y2)+(-y2+x2-8xy);28、(2x2-+3x)-4(x-x2+)29、3x2-[7x-(4x-3)-2x2].30、5a+(4b—3a)-(—3a+b);31、(3a2-3ab+2b2)+(a2+2ab-2b2);32、2a2b+2ab2-[2(a2b—1)+2ab2+2].33、(2a2—1+2a)—3(a-1+a2);34、2(x2-xy)-3(2x2—3xy)-2[x2—(2x2-xy+y2)].35、-ab+a2b+ab+(-a2b)-136、(8xy-x2+y2)+(-y2+x2-8xy);37、2x-(3x-2y+3)-(5y-2);38、-(3a+2b)+(4a-3b+1)-(2a-b-3)39、4x3-(-6x3)+(-9x3)40、3-2xy+2yx2+6xy-4x2y41、1-3(2ab+a)十[1-2(2a-3ab)].42、3x-[5x+(3x-2)];43、(3a2b-ab2)-(ab2+3a2b)44、45、(-x2+5+4x3)+(-x3+5x-4)46、(5a2-2a+3)-(1—2a+a2)+3(—1+3a—a2).47、5(3a2b-ab2)—4(—ab2+3a2b).48、4a2+2(3ab—2a2)-(7ab-1).49、xy+(—xy)-2xy2-(-3y2x)50、5a2—[a2—(5a2-2a)—2(a2—3a)]51、5m—7n—8p+5n—9m+8p52、(5x2y—7xy2)-(xy2-3x2y)53、3x2y-[2x2y-3(2xy—x2y)—xy]54、3x2—[5x-4(x2-1)]+5x255、2a3b—a3b—a2b+ a2b—ab2;56、(a2+4ab—4b2)—3(a2+b2)-7(b2-ab).57、a2+2a3+(—2a3)+(-3a3)+3a2;58、5ab+(-4a2b2)+8ab2-(-3ab)+(-a2b)+4a2b2;59、(7y—3z)—(8y-5z);60、—3(2x2-xy)+4(x2+xy-6).61、(x3+3x2y-5xy2+9y3)+(—2y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)62、-3x2y+2x2y+3xy2-2xy2;63、3(a2—2ab)—2(—3ab+b2);64、5abc—{2a2b—[3abc—(4a2b-ab2]}.65、5m2-[m2+(5m2—2m)-2(m2—3m)].66、—[2m—3(m—n+1)-2]-1.67、a-( a—4b—6c)+3(-2c+2b)—5a n—a n—(—7a n)+(-3a n)69、x2y-3xy2+2yx2-y2x70、a2b-0。
初中数学冀教版七年级上册第四章 整式的加减4.3 去括号-章节测试习题(3)
章节测试题1.【答题】下列各题去括号所得结果正确的是()A. x2﹣(x﹣y+2z)=x2﹣x+y+2zB. x﹣(﹣2x+3y﹣1)=x+2x﹣3y+1C. 3x﹣[5x﹣(x﹣1)]=3x﹣5x﹣x+1D. (x﹣1)﹣(x2﹣2)=x﹣1﹣x2﹣2【答案】B【分析】根据去括号法则进行运算即可.【解答】A选项错误,x2-(x-y+2z)=x2-x+y-2z;B选项正确;C选项错误,3x﹣[5x﹣(x﹣1)]=3x﹣5x+x-1;D选项错误,(x-1)-(x2-2)=x-1-x2+2.选B.2.【答题】下列各式中,去括号正确的是()A. m+(-n+x-y)=m+n+x-yB. m-(-n+x-y)=m+n+x+yC. a-2(b+c)=a-2b+cD. a-2(b-c)=a-2b+2c【答案】D【分析】根据去括号法则进行运算即可.【解答】A.m+(−n+x−y)=m−n−x+y,故本选项错误;B.m−(−n+x−y)=m+n−x+y,故本选项错误;C.a−2(b+c)=a−2b−2c,故本选项错误;D.a−2(b−c)=a−2b+2c,故本选项正确.选D.3.【答题】下列式子中,正确的是()A. 3x2-2x+5y=3x2-(2x+5y)B. 3x2-2x+5y=3x2-(5y-2x)C. 5x-3(4x-y2)=5x-12x+3y2D. 5x-3(4x-y2)=5x-12x-y2【答案】C【分析】根据去括号法则进行运算即可.【解答】A、3x2-2x+5y=3x2-(2x-5y),故此选项错误;B. 3x2-2x+5y=3x2-(-5y+2x),故此选项错误;C. 5x-3(4x-y2)=5x-12x+3y2,故此选项正确;D. 5x-3(4x-y2)=5x-12x+3y2,故此选项错误.选C.4.【答题】下列计算正确的是()A.B.C.D.【答案】D【分析】根据去括号法则进行运算即可.【解答】A. 原式=x−y+z,不符合题意;B. 原式=−x+y−z,不符合题意;C. x+2y+2z=x−2(−y−z),不符合题意;D. 符合题意;选D.5.【答题】下列计算正确的是()A.B.C.D.【答案】C【分析】根据去括号法则进行运算即可.【解答】解: A. ;故A错误;B.不是同类项,不能合并;故B错误;C. 正确;D. ,故D错误.选C.6.【答题】a-(b+c)=______,c-(b-a)=______.【答案】a-b-c,c-b+a【分析】本题主要考查去括号法则,熟记去括号的口诀是解题的关键.口诀:去括号时要注意,关键要看连接号,括号前面是正号,去掉括号不变号,括号前面是负号,去掉括号都变号【解答】根据去括号法则可得:a-(b+c)=a-b-c,c-(b-a)=c-b+a,故答案为:a-b-c,c-b+a.7.【答题】a-(-b)=a+______;【答案】b【分析】根据去括号法则: 括号前面是“-”号,去掉括号,括号内的数改变符号【解答】a-(-b)=a+(+b)=a+b.故答案为:b.8.【答题】去括号法则:若括号外的因数是正数,则去括号后______;若括号外的因数是负数,则去括号后______.【答案】各项的符号与原括号内相应各项的符号相同各项的符号与原括号内相应各项的符号相反【分析】根据去括号法则:括号外的因数是正数,去括号后,各项的符号与原来括号内的相应各项的符号相同,括号外的因数是负数,去括号后,各项的符号与原来括号内的相应各项的符号相反【解答】答案为:(1)各项的符号与原括号内相应各项的符号相同,(2) 各项的符号与原括号内相应各项的符号相反.9.【答题】去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号______;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号______.【答案】相同,相反【分析】根据去括号法则来解【解答】去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,故答案为:相同,相反.10.【答题】计算:3(2x+1)﹣6x=______.【答案】3【分析】原式去括号合并即可得到结果.【解答】解:原式=6x+3﹣6x=3.故答案为:3.11.【答题】补充完整:(-a-b+c)(a-b+c)=-[a+(______)][a-(______)].【答案】b-c,b-c【分析】添括号后,括号前是“+”,括号里的各项都不改变符号;添括号后,括号前是“-”,括号里的各项都改变符号.【解答】试题解析:因为-a-b+c=-(a+b-c)=-[a+(b-c)]a-b+c=a-(b-c),所以(-a-b+c)(a-b+c)=-[a+(b-c)][a-(b-c)].12.【答题】去括号:-[-(m-n)]=______.【答案】m-n【分析】去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.顺序为先大后小.【解答】根据去括号的法则可知,-[-(m-n)]=m-n.13.【答题】计算:﹣[﹣(﹣23)]=______;=______;|﹣7.2|﹣(﹣4.8)=______;=______.【答案】 -23 12 -4【分析】根据去括号的法则可得结果.【解答】−[−(−23)]=−23;+[−(−)]=;|−7.2|−(−4.8)=7.2+4.8=12;=故答案为:−23; ;12;-4.14.【答题】把(﹣8)﹣(+4)+(﹣5)﹣(﹣2)写成省略括号的和的形式是______.【答案】-8-4-5+2【分析】这个题目考查的是去括号法则:当括号前面是时,把括号和它前面的去掉,括号了的各项都不改变正负号,当括号前面是时,把括号和它前面的去掉,括号了的各项都改变正负号.【解答】原式故答案为:15.【答题】4﹣(+1)+(﹣6)﹣(﹣5)写成省略加号的和的形式为______.【答案】4﹣1﹣6+5【分析】这个题目考查的是去括号法则:当括号前面是时,把括号和它前面的去掉,括号了的各项都不改变正负号,当括号前面是时,把括号和它前面的去掉,括号了的各项都改变正负号.【解答】原式故答案为:16.【答题】化简:﹣[+(﹣6)]=______.【答案】6【分析】根据去括号的法则可得结果.【解答】试题解析:故答案为:6.17.【答题】把(﹣3)+(﹣5)﹣(﹣1)﹣7+(﹣9)写成省略括号加号的和的形式______.【答案】﹣3﹣5+1﹣7﹣9【分析】根据去括号的法则可得结果.【解答】(﹣3)+(﹣5)﹣(﹣1)﹣7+(﹣9)=﹣3﹣5+1﹣7﹣9.18.【答题】把多项式a-3b+c-2d的后3项用括号括起来,且括号前面带“-”号,所得结果是______.【答案】a-(3b-c+2d)【分析】根据去括号的法则可得结果.【解答】根据添括号法则,括号前是“-”号的,括号里的每一项都变号可得a-3b+c-2d= a-(3b-c+2d.故答案为: a-(3b-c+2d).19.【答题】在括号前填入正号或负号,使左边与右边相等y-x=______(x-y); (x-y)2=______(y-x)2。
整式的加减测试卷(含答案)
整式的加减测试卷(含答案)一、填空题:(每小题3分,共24分)1.代数式-7,x,-m,x 2y,2x y +, -5ab 2c 3, 1y 中,单项式有______个,其中系数为 1 的有_____.系数为-1的有_____,次数是1的有________.2.把4x 2y 3,-3x 2y 4,2x,-7y 3,5 这几个单项式按次数由高到低的顺序写出是_________.3.当5-│x+1│取得最大值时,x=_____,这时的最大值是_______.4.不改变2-xy+3x 2y-4xy 2的值,把前面两项放在前面带有“+”号的括号里, 后面两项放在前面带有“-”号的括号里,得_______.5.五个连续奇数中,中间的一个为2n+1,则这五个数的和是_________.6.某音像社对外出租光盘的收费方法是:每张光盘在租出后的头两天每天收0. 8元,以后每天收0.5元,那么一张光盘在租出的第n 天(n 是大于2的自然数),应收租金______元.7.假如m-n=50,则n-m=_____,5-m+n=______,70+2m-2n=________.8.设M=3a 3-10a 2-5,N=-2a 3+5-10a,P=7-5a-2a 2,那么M+2n-3P=_________.M-3N+2P=_______.二、选择题:(每小题3分,共24分)9.下列判定中,正确的个数是( )①在等式x+8=8+x 中,x 能够是任何数;②在代数式18x +中,x 能够是任何数; ③代数式x+8的值一定大于8;④代数式x+8的相反数是x-8A.0个B.1个C.2个D.3个10.一种商品单价为a 元,先按原价提高5%,再按新价降低5%,得到单价b 元,则a 、b 的大小关系为( )A.a>bB.a=bC.a<bD.无法确定11.若x<y<z,则│x-y │+│y-z │+│z-x │的值为( )A.2x-2zB.0C.2x-2yD.2z-2x12.关于单项式-23x 2y 2z 的系数、次数说法正确的是( )A.系数为-2,次数为8B.系数为-8,次数为5C.系数为-23,次数为4D.系数为-2,次数为713.下列说法正确的有( )①-1999与2000是同类项 ②4a 2b 与-ba 2不是同类项③-5x 6与-6x 5是同类项 ④-3(a-b)2与(b-a)2能够看作同类项A.1个B.2个C.3个D.4个14.已知x 是两数,y 是一位数,那么把y 放在x 的左边所得的三位数是( )A.yxB.x+yC.10y+xD.100y+x15.假如m 是三次多项式,n 是三次多项式,则m+n 一定是( )A.六次多项式B.次数不高于三的整式C.三次多项式D.次数不低于三的多项式16.若2ax 2-3b x+2=-4x 2-x+2对任何x 都成立,则a+b 的值为( ) A.-2 B.-1 C.0 D.1三、解答题:(共52分)17.假如单项式2a mx y 与235a nxy --是关于x 、y 的单项式,且它们是同类项. (1)求2002(722)a -的值. (2)若2a mx y 235a nx y --=0,且xy ≠0,求2003(25)m n -的值.(8分)18.先化简再求值(12分)(1)5x-{2y-3x+[5x-2(y-2x)+3y]},其中x=11,26y -=-.(2)已知A=x 2+4x-7,B=-12x 2-3x+5,运算3A-2B.(3)已知m 2+3mn=5,求5m 2-[+5m 2-(2m 2-mn)-7mn-5]的值.(4)若3x 2-x=1,求6x 3+7x 2-5x+1994的值.19.某同学做一道数学题,误将求“A-B”看成求“A+B”, 结果求出的答案是3x2-2x+5.已知A=4x2-3x-6,请正确求出A-B.(8分)20.探究规律(8分)(1)运算并观看下列每组算式:88____55____1212____,,79____46____1113____⨯=⨯=⨯=⎧⎧⎧⎨⎨⎨⨯=⨯=⨯=⎩⎩⎩(2)已知25×25=625,那么24×26=__________.(3)从以上的过程中,你发觉了什么规律,你能用语言叙述那个规律吗?你能用代数式表示设那个规律吗?21. (8分)有理数a、b、c在数轴上对应点为A、B、C,其位置如图所示, 试去掉绝对值符号并合并同类项: │c│-│c+b│+│a-c│+│b+a│.22.某移动通讯公司开设了两种通讯业务:“全球通”使用者缴50元月租费, 然后每通话1分钟再付话费0.4元;“快捷通”不缴月租费,每通话1分钟,付话费0,6 元(本题的通话均指市内通话).若一个月内通话x分钟,两种方式的费用分别为y1 元和y2元.(8分)(1)用含x的代数式分别表示y1和y2,则y1=________,y2=________.(2)某人估量一个月内通话300分钟,应选择哪种移动通讯合算些?第3章单元测试题答案一、1.5;x,x2y;-m;x,-m 2.-3x2y4,4x2y3,-7y3,2x,5 3.-1,54.(2-xy)-(-3x2y+4xy2)5.10n+56.(0.5n+0.6)7.-50,-45,1708.-a3-4a2-5a-16,9a3-14a2+20a-6二、9.B 10.A 11.D 12.B 13.B 14.D 15.B 16.D三、17.(1)先求a=3,(7a-22)2002=1 (2)a=3时,2mx3y-5nx3y=0,又xy ≠0 得2m-5n=0则原式=018.(1)原式=-x-3y值为1 (2)4x2+18x-31(3)原式=2(m2+3mn)+5,值为15(4)原式=6x3-2x2+9x2-3x-2x+1994=2x(3x2-x)+3(3x2-x)-2x+1994=2x+3-2x+1994=199719.A-B=2A-(A+B)=5x2-4x-1720.1.略 2.624 3.(n-1)(n+1)=n2-121.原式=-c-(-b-c)+(a-c)+(-b-a)=-c22.(1)y1=50+0.4x y2=0.6x(2)x=300时,y1=170 y2=180 故选“全球通”合算。
2024-2025学年人教新版七年级上册数学《第4章 整式的加减》单元测试卷(有答案)
2024-2025学年人教新版七年级上册数学《第4章整式的加减》单元测试卷一.选择题(共8小题,满分24分)1.代数式x2+5,﹣1,x2﹣8x+2,π,,中,整式有()A.3个B.4个C.5个D.6个2.已知﹣2x6y与5x2m y n是同类项,则()A.m=2,n=1B.m=3,n=1C.m=,n=1D.m=3,n=03.下列计算正确的是()A.5a﹣2a=3B.2a2+6a2=8a4C.x2y﹣2xy2=﹣xy2D.3mn﹣2mn=mn4.在等式1﹣a2+2ab﹣b2=1﹣()中,括号里应填()A.a2﹣2ab+b2B.a2﹣2ab﹣b2C.﹣a2﹣2ab+b2D.﹣a2+2ab﹣b25.若a<0,则|a﹣(﹣a)|等于()A.﹣a B.0C.2a D.﹣2a6.如图是小明完成的线上作业,他的得分是()判断题(每小题2分,共10分)①1是单项式.(×)②非负有理数不包括零.(×)③绝对值不相等的两个数的和一定不为零.(√)④单项式﹣a的系数与次数都是1.(√)⑤将34.945精确到十分位为34.95.(×)A.4分B.6分C.8分D.10分7.在下列各整式中,次数为5的是()A.8x3y B.m+n2+q2C.52c3D.x2y38.若代数式2(mx2+x﹣1)﹣(x2﹣nx+1)的值与x的取值无关,则m2023n2025的值为()A.﹣4B.4C.D.二.填空题(共8小题,满分24分)9.有一道题:﹣3x(﹣2x2+3x﹣1)=6x3﹣9x2+□,“□”的地方被墨水弄污了,你认为“□”内应填写.10.已知关于x的整式x3﹣x2+x a﹣2x﹣2bx中不含有x的一次项和二次项,则a+b=.11.若关于x,y,z的单项式﹣mx3y n与单项式的次数相同,系数互为倒数,则该单项式是.12.多项式x2+x+1的次数是.13.若2a m+1b2与﹣3a3b n是同类项,则m+n的值为.14.若一个四位自然数M各个数位上的数字均不为0,且前两位数字之和为5,后两位数字之和为8,则称M为“幸福数”.把四位数M的前两位数字和后两位数字整体交换得到新的四位自然数N.规定.例如:M=2344,∵2+3=5,4+4=8,∴2344是“幸福数”,则.若P是最大的“幸福数”,则F(P)=;若S是“幸福数”,且F(S)恰好能被8整除,则所有满足题意的S的值共有个.15.如果a2﹣3a﹣7=0,那么代数式(a﹣1)2+a(a﹣4)﹣2的值为.16.设x、y互为相反数,且xy≠0.m的绝对值为8,则的值为.三.解答题(共6小题,满分52分)17.已知单项式﹣3xy2的系数和次数分别是a,b,求ab+a b的值.18.已知A=3x2+xy+y,B=2x2﹣xy+2y.(1)化简2A﹣3B.(2)当x=2,y=﹣3,求2A﹣3B的值.19.【问题呈现】(1)已知代数式mx﹣y﹣3x+4y﹣1的值与x的值无关,求m的值;【类比应用】(2)将7张长为a,宽为b的小长方形纸片(如图①),按如图②的方式不重叠地放在长方形ABCD 内,未被覆盖的两部分的面积分别记为S1,S2,当AB的长度变化时,S1﹣S2的值始终不变,求a与b 的数量关系.20.已知多项式A=(m﹣3)2﹣(2﹣m)(2+m)+6m.(1)化简多项式A;(2)若m2﹣4=5,求多项式A的值.21.类比同类项的概念,我们规定:所含字母相同,并且相同字母的指数之差的绝对值等于0或1的项是“强同类项”,例如:﹣x3y4与2x4y3是“强同类项”.(1)给出下列四个单项式:①5x2y5,②﹣x5y5,③4x4y4,④﹣2x3y6.其中与x4y5是“强同类项”的是(填写序号);(2)若x3y4z m﹣2与﹣2x2y3z6是“强同类项”,求m的值;(3)若C为关于x、y的多项式,C=(n﹣5)x5y6+3x4y5﹣7x4y n,当C的任意两项都是“强同类项”,求n的值;(4)已知2a2b s、3a t b4均为关于a,b的单项式,其中s=|x﹣1|+k,t=2k,如果2a2b s、3a t b4是“强同类项”,那么x的最大值是,最小值是.22.定义:若非零实数a,b,c满足,则称c是a和b的“协调数”.如4是3和6的“协调数”.(1)问:是不是﹣2和﹣3的“协调数”?(2)若2m是p和q的“协调数”,用m,q的代数式表示q.参考答案与试题解析一.选择题(共8小题,满分24分)1.B2.B3.D4.A5.D6.B7.D8.A二.填空题(共8小题,满分24分)9.3x.10.1.11.﹣3x3y2.12.2.13.4.14.30,3.15.13.16.16或﹣16.三.解答题(共6小题,满分52分)17.﹣36.18.解:(1)2A﹣3B=2(3x2+xy+y)﹣3(2x2﹣xy+2y)=6x2+2xy+2y﹣6x2+3xy﹣6y=5xy﹣4y;(2)当x=2,y=﹣3时,2A﹣3B=5xy﹣4y=5×2×(﹣3)﹣4×(﹣3)=﹣18.19.(1)3;(2)a﹣2b=0.20.(1)2m2+5;(2)23.21.(1)②③④;(2)m=7,8,9;(3)n=5或n=6;(4),.22.(1)是;(2).。
整式的加减练习题集
整式的加减练习题集 整式的加减小测试题(1)1.下列说法中,正确的是 【 】(A )32xy -的系数是2- (B )253mn 的次数是2 (C )6y x +是多项式 (D )12--x x 的常数项是1 2.单项式323z y x -的系数是________,次数是________. 3.当1-=x 时,代数式122++x x 的值是________.4.已知6,5-==+ab b a ,则代数式()ba ab b a ++-+151的值是________. ★5.当1,3=-=b a a 时,代数式ab a -2的值是________.6.多项式1362+-x y x 是________次________项式.7.每本练习册m 元,甲买了5本,乙买了2本,两人一共花了__________元.8.多项式5322++-y x xy xy 的二次项为________.★9.若y mx n -是关于y x ,的一个单项式,且系数为3,次数为4,则=mn ________.10.列代数式:a 的3倍与b 的一半之和 ____________.★11.若多项式6432+-x x 的值为9,则6342+-x x 的值为________. 12.有三个连续的偶数,若最大的一个是22+n ,则较小的一个可表示为_________.13.若122=+a a ,则多项式1422-+a a 的值为________.14.若0,5,2<==ab b a ,则=+b a ________;=-b a ________.15.若b a ,互为倒数,则代数式52-ab 的值是________.16.已知多项式y x 2+的值是5,则多项式142++y x 的值是________.17.在我国南海某海域探明可燃冰储量约为194亿立方米,将194亿用科学记数法表示为________________.整式的加减小测试题(2)1.单项式223bc a -的系数是________,次数是________. 2.当1=x 时,代数式12-+x px 的值为2006,则当1-=x 时,代数式122+-x px 的值为________.3.计算:()=-÷--2277________.4.计算:()=-÷-2422________. 5.比a 的6倍小3的数是_______. 6.正方体的棱长为a ,则它的表面积为_______.7.当1,21==b a 时,下列代数式的值相等的是 【 】 ①22b a -; ②22b a +; ③()()b a b a -+; ④ab 2.(A )①② (B )②③ (C )①③ (D )③④8.下列叙述正确的是 【 】(A )yz x 331-的系数是31-,次数是3 (B )yz x 331-的系数是31,次数是5 (C )yz x 331-的系数是31-,次数是5 (D )yz x 331-的系数是31,次数是3 ★9.若612--m ab 是四次单项式,则=m ________. 10.单项式310423ab π⨯-的系数是________,次数是________. 11.若代数式axy -与3221y x 的系数相等,则=a ________. 12.观察下列单项式:a -,22a ,33a -,44a ,55a -, ……,则它的第2015个单项式为________,第2016个单项式为________.13.在下列代数式中,次数为3的单项式是 【 】(A )2xy (B )33y x - (C )y x 3 (D )xy 314.若()02212=++-y x ,则()=2016xy ________.整式的加减小测试题(3)1.下列不是整式的是 【 】(A )πnm -3 (B )π (C )12-r (D )11+t 2.如果132++-x x n 是五次多项式,则=n ________.3.下列说法: ①1-xy 是整式; ②xy 1是单项式; ③31+xy 是多项式; ④3xy 是单项式.其中说法正确的序号是__________.4.若单项式n z xy 243-是六次单项式,则n 的值是________. 5.多项式153223-+--x x x 是________次________项式,其中二次项系数是________,一次项系数是________,常数项是________.6.已知多项式()()n x x n x m mx +-++-+3122234不含3x 项和2x 项,则=m ________,=n ________,该多项式为__________________.7.多项式7273324--+y x xy y x 按x 的降幂排列是_____________________,按y 的升幂排列是____________________.8.已知()0212=-++b a ,则单项式a b b a y x -+-的次数是________. ★9.如果()32y x m m -是关于y x ,的五次单项式,则m 的值是 【 】(A )2± (B )2- (C )2 (D )不能确定10.代数式3abc , s t 2 , 0 , 34+-x , πm , b a 2- , 0. 45 , a 中,单项式有【 】 (A )5个 (B )6个 (C )7个 (D )8个11.若1-=x ,则代数式423+-x x 的值为________.12.某市出租车收费标准为:起步价5元,2千米后每千米按1. 6元收费,则某人乘坐出租车x (2>x )千米的付费为________________元.13.如果()114-+--x x x m n 是二次三项式,求n m 22-的值.1.下列各组式子中,两个单项式是同类项的是 【 】(A )a 2与2a (B )b a 25与b a 2(C )xy 与y x 2 (D )0. 32mn 与0. 32xy2.若单项式1275+n y ax 与457y ax m -的差仍是单项式,则=-n m 2________. 3.若n y x 514与2331y x m -的和仍是单项式,则n m 2412-的值是________.4.已知122=+a a ,则多项式1422-+a a 的值为________.5.下列各式中,正确的是 【 】(A )y x y x y x 2222-=- (B )ab b a 532=+(C )437=-ab ab (D )523a a a =+注意 不是同类项不能进行加、减合并!6.下列单项式中,与b a 23-为同类项的是 【 】(A )33ab - (B )241ba - (C )22ab (D )223b a 7.下列运算中,正确的是 【 】(A )xy y x 633=+ (B )2x x x =+(C )791622=-y y (D )09922=-ba b a8.在x 2 , 3-a , 5.2- , 7=x , x 2- , y x 2 , 2x 中,是单项式的有 【 】 (A )1个 (B )2个 (C )3个 (D )4个9.下列说法:①32xy -的系数是2-; ②π1不是单项式; ③6y x +是多项式; ④36x π的次数是4; ⑤12--x x 的一次项是x ; ⑥x 1是代数式,但不是整式.其中正确结论的序号是__________.1.下列计算正确的是 【 】(A )5552a a a =+ (B )1055a a a =+(C )a a a =+55 (D )33222y x xy y x =+2.代数式22222n n n m m m ---++合并同类项的结果为 【 】(A )2m (B )m 4 (C )64n m - (D )244n m -3.一个矩形的一边是b a 23+,另一边是b a -,这个矩形的周长是 【】 (A )b a +4 (B )b a -4 (C )b a 24+ (D )b a 28+4.下列合并同类项正确的是 【】 (A )ab b a 532=+ (B )022=-ba ab(C )xy xy y x -=-2232 (D )523734x x x =+5.若212y x m -与n y x 2-是同类项,则()=-n m ________.6.单项式41221b a x --与1223+y b a 合并后结果为42b a ,则=-y x 32________.7.已知代数式532++x x 的值是7,则代数式2932-+x x 的值为________.8.已知关于x 的多项式bx ax +合并后结果为0,则b a ,的关系是________.9.若单项式232y x m 的次数为5,则=m ________.10.合并同类项:yx x xy x x xy 23527222++-+-.11.先化简,再求值:x x x x x 652237222++---,其中2-=x .1.多项式y x y x xy xy 22223431+-+-的合并结果为 【 】 (A )y x xy 222311+ (B )223313xy y x - (C )2422311y x xy + (D )以上答案都不对 2.三角形的一边长为b a +,第二、第三边分别比第一边长5-a 和b 2,则此三角形的周长为 【 】(A )532-+b a (B )543-+b a (C )554-+b a (D )532++b a ★3.当=k ________时,多项式8313322----xy y kxy x 中不含xy 项. ★4.若多项式()12321234++-+--m x x x m x 中不含3x 项,则此多项式的常数项为________.5.单项式2322b a -的系数是________,次数是________. 6.下列运算正确的是 【 】(A )()16132--=--x x (B )()16132+-=--x x(C )()26132--=--x x (D )()26132+-=--x x7.下面各式中去括号正确的是 【 】(A )()z y x x z y x x 2222++-=+--(B )()132132+-+=-+--y x x y x x(C )()[]153153+--=---x x x x x x(D )()()212122---=---x x x x8.化简: ()()=+-----321a a __________.9.将()()y z x --+1去括号后应是________________.1.下列去括号正确的是 【 】(A )()z y x x z y x x ---=---232322(B )()342342-+-=-+-+c b a c b a(C )()()y x n m y x n m -+--=-+--(D )()()z y x b a z y x b a 263223232-+--=+---2.下列计算中正确的是 【 】(A )156=-a a (B )3232a a a =+(C )()b a b a +-=-- (D )()b a b a +=+22★3.已知两个多项式的和是3562+-a a ,其中一个多项式是1252-+a a ,则另一个多项式是 【 】(A )432+-a a (B )232+-a a (C )272+-a a (D )472+-a a4.去括号:()=+--c b a ____________.5.化简:()[]=----a a a 32__________.6.化简:()[]=+---b a a b a 2__________.7.计算:()=-+x x 6123__________; =+2232a a __________.8.一个多项式与22-+m m 的和是m m 22-,这个多项式是________________.9.去括号:()=-+c b a 32____________; ()=--c b a 32____________.★10.代数式32++x x 的值是7,则代数式3222-+x x 的值为________.11.计算:()=--x x 23________; =--2232x x ________.12.化简:()=---xy xy 24________; ()()=---+323232342y x y x y x ________.13.化简:()()=+---+227453x x x x ________________.14.多项式124322+--x xy y x 的四次项是__________________.15.化简:()()=+--121x x __________.1. z y x -+-的相反数是 【 】(A )z y x +-- (B )z y x +- (C )z y x -+ (D )z y x ++2.化简:()=-+a a 12________; ()=---c b a __________.3.三个连续偶数中,中间一个是n 2,则这三个连续偶数的和是____________.4.已知()()01122=++-b a ,则=+10099b a ________. 5.若()11--n xy m 是关于y x ,的单项式,系数是2,次数是3,则mn 的值是________.6.化简:()=+--n m n m __________; =+-2232x x __________.7.化简:()()=+--+-x x x x 312122__________.8.化简:()[]=----b a a b a 72532__________.9.化简:()[]{}=----c b a __________.10.多项式2532+-x x 与322-+x x 的差为____________.11.若一个多项式与x x 932+的和等于1432-+x x ,则这个多项式是__________.12.三个连续自然数中,最小的一个是13+n ,则它们的和是____________. ★13.如果整式252+--x x n 是关于x 的三次三项式,则=n ________.14.多项式4223-+-x x x 与6523+-x x 的和是________________.15.化简:()()=--+103453a a _________; ()()=---ab b a ab b a 32722________.16.已知xy x A 22-=,xy y B 52+=,求B A 42-.17.先化简,再求值:()()23234332x x x x +----,其中1-=x .1.填空:(1)+=-+-3322333x y xy y x x ( );(2)-=-+-22222y xy x ( ).2.填空:(1)-=+-222x y xy x ( );(2)+=+-222x y xy x ( ).3.化简:()()=--+112x x __________; =-+-++67456322x x x x _________.4.若1322+-=x x A ,732+-=x B ,则=-B A 2____________.5.设b a M 32-=,b a N 32--=,则=+N M ____________.6.长方形的宽为b a 23+,长比宽大b a -,则这个长方形的周长是____________. ★7.若33-=-b a ,则代数式b a 35+-的值是________.★8.若5322=-b a ,则23210b a +-的值是________.9.下列式子中,去括号后得c b a +-的是 【 】(A )()c b a +- (B )()c b a +-- (C )()c b a -- (D )()c b a ++- ★10.若3,5==+xy y x ,则()()=+--+-xy y x xy y x 4232________.11.多项式52+-x x 减去332+x 的结果为________________.★12.若52=+-y x ,则()()=--+-6023252y x y x ________. 13.化简:()[]=+---x x x x 54322__________.14.先化简,再求值:226576a a a a --+,其中3-=a .15.已知3,2=-=+xy y x ,求()()xy y x xy ---2332的值.1.合并同类项:(1)3723ac ab ac ab +--; (2)222222432b ab a ab b a +-+--.2.先去括号,再合并同类项:(1)()()b a b a 343+-++-; (2)()()y x y x +-+-5;(3)⎪⎭⎫ ⎝⎛--+2232369x x x x ; (4)()⎪⎭⎫ ⎝⎛++----22411446221x x x x .3.已知多项式2244y xy x A +-=,225y xy x B -+=,求:(1)B A 3-; (2)B A +3.4.先化简,在求值: ()[]()x x x x x x x 42276323233----+-,其中1-=x .5.先化简,再求值:⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛--22312332221y x y x x ,其中21,41-=-=y x .1.先去括号,再合并同类项:(1)()()222223223x y y x ---; (2)()()22222322547ab b a ab b a b a --+--.2.求整式272--x x 与1422-+-x x 的差.3.已知222232,23y xy x N y xy x M -+=+-=,求: (1)N M +; (2)N M -.4.先化简,再求值:()[]22732235x x x x +---,其中21=x .5.先化简,再求值:()()2225323x x x x x +---+,其中314=x .6.有一道题“先化简,再求值:222217(85)(43)(561)3x x x x x x x -+-+-+-+--,其中2006x =。
〖数 学〗第四章 整式的加减(单元测试)2024—-2025学年人教版数学七年级上册
第四章 整式的加减(单元测试)2024—-2025学年人教版数学七年级上册一、单选题1.下列运算正确的是( )A .32ab ab -=B .222358a a a --=C .2325x x x --=D .2416-=-2.下列代数式中,全是单项式的一组是( )A .1a ,2, 3ab B .2,a ,12ab C .2a b - ,1,πD .x +y ,-1,13(x -y) 3.两艘船从同一港口出发,甲船顺水而下,乙船逆水而上,已知两船在静水中的速度都是45km/h ,水流速度是akm/h ,1h 后两船相距( )km. A .90B .4aC .2aD .1804.关于多项式2π110xy x y x ---的描述正确的是( ) A .常数项是1 B .一次项是xy C .二次项是π10x -D .三次项是2x y -5.下列计算正确的是( )A .235x y xy +=B .22532x x -=C .23x x x +=D .835y y y -+=-6.对于若干个数,先将每两个数作差,再将这些差的绝对值相加,这样的运算称为对这若干个数进行“绝对运算”.例如,对于1,2,3进行“绝对运算”,得到:1223134-+-+-=. ①对1,3,5,10进行“绝对运算”的结果是29;②对,2,5x -进行“绝对运算”的结果为A ,则A 的最小值是7;③对,,,a b b c 进行“绝对运算”,化简的结果可能存在6种不同的表达式; 以上说法中正确的个数为( ) A .0B .1C .2D .37.若 523m x y + 与 382n x y 的差是一个单项式,则代数式 n m - 的值为( )A .-8B .9C .-9D .-68.下列结论不正确的是( )A .abc 的系数是1B .多项式1﹣3x 2﹣x 中,二次项是﹣3x 2C .﹣ab 3的次数是4D .34xy-不是整式 9.某代数式减去 22x y - 的结果是 22x y + ,则这个代数式是( )A .22yB .22y -C .22xD .22x -10.下列算式中,正确的是( )A .2a+2b=4abB .2a 2+2a 3=2a 5C .4a 2−3a 2=1D .−2ba 2+a 2b=−a 2b二、填空题11.若单项式22m a b 与13n a b +是同类项,则m n -的值是 . 12.已知3215na b 与1262m a b -是同类项,则m = ,n = ,m n += . 13.关于x 的多项式222514x mx nx x x -++--+,它的值与x 的取值无关,则m n -= . 14.若a 2m b 3和-7a 2b 3是同类项,则m 值为 .15.若一个各位上的数字均不为0且互不相等的四位数M 满足:千位与十位数字之和等于9,百位与个数位数字之和等于6,则称这个数M 为“吉祥如意数”.若“吉祥如意数”M abcd =(1a ≤,8c ≤,1b ≤,5d ≤,且a ,b ,c ,d 为整数)与234的和被7整除余3,则当3a b += 时,M 满足条件,且M 的值为 .三、解答题16.计算:(1)()325a b a b +-+ ;(2)()()2222232223a b a b ab ab a b +--- .17.如图,正方形ABCD 和正方形ECGF 的边长分别为a 和6,点C 、D 、E 在一条直线上,点B 、C 、G 在一条直线上,将依次连接D 、E 、F 、B 所围成的阴影部分的面积记为S 阴影.(1)试用含a 的代数式表示S 阴影;(2)当12a =时,比较S 阴影与BGF 面积的大小.18.已知2ax bx c ++是关于x 的多项式,记为()P x .我们规定:()P x 的导出多项式为2ax b +,记为()Q x .例如:若()2321P x x x =-+,则()P x 的导出多项式()23262Q x x x =⋅-=-.根据以上信息,解答下列问题:(1)若()24P x x x =-,则()Q x =______.(2)若()()22421P x x x =+-,求关于x 的方程()3Q x x =的解;(3)已知()232P x ax x =-+是关于x 的二次多项式,()Q x 为()P x 的导出多项式,若关于x 的方程()Q x x =-的解为正整数,求整数a 的值.19.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础,我们在课本《1.3绝对值》一节中,了解到550=-在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离,同理,式子61-在数轴上的意义是表示6的点与表示1的点之间的距离.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示2和5的两点之间的距离是______. 表示2-和5的两点之间的距离是______.表示数a 和2-的两点之间的距离是4,那么a =______. 一般地,数轴上表示数m 和数n 的两点之间的距离等于______. (2)若数轴上表示数a 的点位于3-与4之间,求34a a ++-的值.(3)存在不存在数a ,使代数式324a a a ++-+-的值最小?如果存在,请写出数a =______.此时代数式324a a a ++-+-最小值是______(直接写出答案)20.一种篮球的单价是x 元,排球的单价是y 元.一中买了40个篮球,12个排球;二中买了32个篮球,18个排球,解答下面问题:(1)用式子表示两所学校一共花费多少钱买了篮球和排球?(2)当150x =,65y =时,列式并计算说明哪个学校花费多?多用了多少钱?21.小刚在计算一个多项式A 减去多项式2235b b --的差时,因一时疏忽忘了把两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是232b b +-. (1)求多项式A(2)求出这两个多项式运算的正确结果 (3)当2b =-时,求(2)中结果的值.22.同学们都知道:数轴上表示x 与a 的两点之间的距离可以表示为x a -.例如()74--表示7与4-之差的绝对值,实际上也可理解为7与4-两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示7与4-两点之间的距离是______. (2)若32x -=,则x =______.(3)13x x ++-表示数轴上有理数x 所对应的点到1-和3所对应的点的距离之和,请你找出所有符合条件的整数x ,使得134x x ++-=,这样的整数是_____.(4)请你找出所有符合条件的整数x ,使得102818x x x ++++-=,这样的整数是_____. (5)继续探索:210328x x x -+-++是否有最小值?如果有,直接写出最小值;如果没有,说明理由.答案解析部分1.D 2.B 3.A 4.D 5.D 6.C 7.C 8.D 9.C 10.D 11.0 12.-1;3;2 13.1- 14.1 15.23;653116.(1)解: ()325a b a b +-+325a b a b =+-- 2a b =-+ ;(2)解: ()()2222232223a b a b ab ab a b +---2222232262a b a b ab ab a b =+--+ 2278a b ab =- .17.(1)213182S a a =-+阴影 (2)当12a =时,BGFS S=阴影.18.(1)24x -(2)8x =- (3)1a =19.(1)3;7;2或6-;m n -(2)7 (3)2;720.(1)解:一中的费用:()4012x y +元;二中的费用:()3218x y +元,∴两所学校一共的费用为()()()401232187230x y x y x y +++=+元 (2)解:两所学校费用的差为()()()4012321886x y x y x y +-+=-元, 当150x =,65y =时,原式81506658100=⨯-⨯=>, ∴一中花费多,多了810元.21.(1)解:A= ()()2232235b b b b +-+++=2232235b b b b +-+++ =2363b b ++;(2)解:()()22363235b b b b ++---=22363235b b b b ++-++298b b =++;(3)解:当2b =时,()2298(2)92841886b b ++=-+⨯-+=-+=-.22.(1)11(2)1或5(3)1-、0、1、2、3 (4)2-(5)有最小值,最小值为26。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的加减测试题 (2)
一、填空题(每题3分,共30分)
1、“x 的平方与2的差”用代数式表示为________.
2、当2-=x 时,代数式x 43-的值是________;
3、代数式b a 2-的系数是次数是________,次数是________;当2
1,3-==b a 时,这个代数式的值是________.
4、多项式3423
2-+x x 是________次________项式,常数项是________;
5、计算:.__________,137_____,232222=+-=-=+-a a xy xy a a
6、写一个关于x 的二次三项式: _______________________.
7、请任意写出z y x 222的一个同类项________________________.
8、观察下列单项式:x,-3x 2,5x 3,-7x 4,9x 5,…按此规律,可以得到第2008个单项式是______.第n 个单项式怎样表示________.
9、代数式2)2(9b a --的最大值是______.
10、右表是2002年6月份的日历,现用一矩形在日历中任意框出 4个数,请用一个等式表示a 、b 、c 、
d 之间的关系
___________.
二、选择题(每题3分,共24分)
11、下列叙述代数式
2
m 的意义的句子中,不正确的是( )A 、m 除2 B 、m 除以2 C 、m 的21 D 、21与m 的积 12、下列各式中,正确的是( )
A 、ab b a 33=+
B 、x x 27423=+
C 、42)4(2+-=--x x
D 、)23(32--=-x x
13、下列各组式子中,是同类项的是( )
A 、y x 23与23xy -
B 、xy 3与yx 2-
C 、x 2与2
2x D 、xy 5与yz 5
14、下列说法中正确的是( )
A 、单项式x 的系数和次数都是零
B 、343x 是7次单项式
C 、25R π的系数是5
D 、0是单项式
15、将多项式a a a -++-132按字母a 升幂排列正确的是( )
A 、123+--a a a
B 、132++--a a a
C 、a a a --+231
D 、321a a a +--
16、若A 是五次多项式,B 也是五次多项式,则A+B 一定是( )
A 、五次式项式
B 、十次多项式
C 、不高于五次的多项式
D 、单次项
17、右图是一个数值转换机,若输入的x 为–7,则输出的结果是( )
A 、12
B 、–14
C 、27
D 、21
18、当2=x 时,代数式13++qx px 的值等于2002,那么当2-=x 时,代数式13++qx px 的值为( )A 、2001 B 、-2001 C 、2000 D 、-2000
三、解答题
19、(本题6分)合并同类项:
(1)a a a a 74232
2-+-; (2)[])3(43b a b a --+- .
20、(本题6分)如图,正方形的边长为x ,用代数式表示图中阴影部分的面积,并计算当4=x 时,阴影部分的面积.(π取3.14)
21、(本题8分)
已知2
222539,822y xy x B x y xy A -+=+-=,求(1)B A -;(2)B A 23+-。
22、(本题8分)先化简,再求值:
(1)[])3(4)2(222x x x x ---+,其中3
21-=x ;
(2))3123()31(22122n m n m m ----,其中1,3
1-==n m .
23、(本题8分)如图是用4个相同的小矩形与1个小正方形镶嵌
成的正方形图案,已知图案的面积为49,小正方形的面积为4,若用x,y 表示小矩形的两边长(x>y),请观察图案,写出用x,y 的代数式表示的三个等式(要求写出化简后的等式)。
24、(本题10分) 某地区的手机收费有两种方式,用户可任选其一:
A 、月租费 20元,0.25元/分;
B 、月租费 25元,0.20元/分.
(1)某用户某月打手机x 小时,请你写出两种方式下该用户应交付的费用;
(2)若某用户估计一个月内打手机时间为25小时,你认为采用哪种方式更合算?
附加题(每题5分,共20分)
25、如图,为做一个试管架,在a cm 长的木条上钻了4 个圆孔,每个孔的直径为2cm
则x 等于( )
A. 85a + cm;
B. 165a - cm;
C. 45a - cm;
D. 85
a -cm 26、某公园一块草坪的形状如图所示(阴影部分),用代数式表示它的面积为
27、当a b a b
-+=3时,求代数式5()a b a b -+-3()a b a b +-的值. 28、若012=-+m m ,求2007223++m m 的值.。