高中数学第1章1.3全称量词与存在量词1.3.1量词讲义(含解析)苏教版选修2_1
高中数学 第一章 常用逻辑用语 1.3 全称量词与存在量词 1.3.1 全称量词与全称命题 1.3.
2.特称命题 “有些”“至少有一个”“有一个”“存在”等都有表示个别或一部分 的含义,这样的词叫作存在量词,含有存在量词的命题,叫作特称命 题. 【做一做2】 下列命题不是特称命题的是( ) A.有些实数没有平方根 B.能被5整除的数也能被2整除 C.存在x∈{x|x>3},使x2-5x+6<0 D.有一个m,使2-m与|m|-3异号 答案:B
题型一 题型二 题型三 题型四
解:(1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4. 要使m>-(x-1)2-4对于任意x∈R恒成立,只需m>-4即可. 故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,此时,只 需m>-4. (2)不等式m-f(x)>0可化为m>f(x),若存在一个实数x,使不等式 m>f(x)成立,只需m>f(x)min.
【做一做 3】 给出下列命题:
①任意 x∈R, ������是无理数; ②任意������, ������∈R,若 xy≠0,则 x,y 中至少
有一个不为 0;③存在实数既能被 3 整除又能被 19 整除.
其中真命题为
.(填序号)
解析:①是假命题,例如 4是有理数;②是假命题,若 xy≠0,则 x,y
题型一 题型二 题型三 题型四
题型三 利用全称命题、特称命题求参数范围
【例3】 已知函数f(x)=x2-2x+5. (1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立?并 说明理由. (2)若存在一个实数x,使不等式m-f(x)>0成立,求实数m的取值范围. 分析:可考虑用分离参数法,转化为m>-f(x)对任意x∈R恒成立和 存在一个实数x,使m>f(x)成立.
初升高数学衔接教材 第01章 第05节 全称量词与存在量词(解析版)
第一章第五节全称量词与存在量词一、电子版教材二、教材解读知识点一 全称量词命题和存在量词命题的判断1.全称量词与全称量词命题(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.(2)含有全称量词的命题叫做全称量词命题,通常将含有变量x 的语句用p (x ),q (x ),r (x ),…表示,变量x 的取值范围用M 表示,那么全称量词命题“对M 中任意一个x ,p (x )成立”可用符号简记为∀x ∈M ,p (x ).2.存在量词与存在量词命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫做存在量词命题,存在量词命题“存在M 中的元素x ,使p (x )成立”,可用符号简记为“∃x ∈M ,p (x )”.【例题1】(2020·全国高一)判断下列存在量词命题的真假:(1)存在一个四边形,它的两条对角线互相垂直;(2)至少有一个整数n ,使得2n n +为奇数;(3){|x y y ∃∈是无理数},2x 是无理数.【解析】(1)真命题,因为正方形的两条对角线互相垂直;(2)假命题,因为若n 为整数,则(1)n n +必为偶数;(3)真命题,因为π是无理数,2π是无理数.【例题2】(2020·全国高一)把下列定理表示的命题写成含有量词的命题:(1)勾股定理;(2)三角形内角和定理.【解析】(1)任意一个直角三角形,它的斜边的平方都等于两直角边的平方和;(2)所有三角形的内角和都是180°.【例题3】(2020·全国高一)指出下列命题是全称量词命题还是存在量词命题,并判断它们的真假.(1)∀x ∈N ,2x +1是奇数;(2)存在一个x ∈R ,使11x -=0; (3)对任意实数a ,|a |>0;【解析】(1)是全称量词命题.因为,21x N x ∀∈+都是奇数,所以该命题是真命题.(2)是存在量词命题.因为不存在x ∈R ,使101x =-成立,所以该命题是假命题. (3)是全称量词命题.因为00=,所以||0a >不都成立,因此,该命题是假命题.知识点二 含有一个量词的命题的否定一般地,对于含有一个量词的命题的否定,有下面的结论:全称量词命题p :∀x ∈M ,p (x ),它的否定﹁p :∃x ∈M ,﹁p (x );存在量词命题p :∃x ∈M ,p (x ),它的否定﹁p :∀x ∈M ,﹁p (x ).全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题.【例题4】(2020·全国高一)写出下列命题的否定:(1)所有人都晨练;(2)2,10x x x ∀∈++>R ;(3)平行四边形的对边相等;(4)2,10x x x ∃∈-+=R .【解析】(1)因为命题“所有人都晨练”是全称命题,所以其否定是“有的人不晨练”.(2)因为命题“2,10x x x ∀∈++>R ”是全称命题,所以其否定是“2,10x x x ∃∈++≤R ”.(3)因为命题“平行四边形的对边相等”是指任意一个平行四边形的对边相等,是一个全称命题, 所以它的否定是“存在平行四边形,它的对边不相等”.(4)因为命题“2,10x x x ∃∈-+=R ”是特称命题,所以其否定是“2,10x x x ∀∈-+≠R ”.【例题5】(2020·全国高一)写出下列全称量词命题的否定:(1)所有能被3整除的整数都是奇数;(2)每一个四边形的四个顶点在同一个圆上;(3)对任意x ∈Z ,2x 的个位数字不等于3.【解析】(1)该命题的否定:存在一个能被3整除的整数不是奇数.(2)该命题的否定:存在一个四边形,它的四个顶点不在同一个圆上.(3)该命题的否定:x Z ∃∈,2x 的个位数字等于3.【例题6】(2020·四川省泸县五中高二月考(理))命题“∀x ≤0,x 2+x +1>0”的否定是( )A .∀x >0,x 2+x +1≤0B .∀x >0,x 2+x +1>0C .∃x 0≤0,x 02+x 0+1≤0D .∃x 0≤0,x 02+x 0+1>0【答案】C【解析】命题“∀x ≤0,x 2+x +1>0”为全称命题,故其否定为:∃x 0≤0,x 02+x 0+1≤0【例题7】(2020·天津一中高二期末)“x R ∀∈,2210x x ++>”的否定是( )A .x R ∀∈,2210x x ++≤B .x R ∀∈,2210x x ++<C .0x R ∃∈,使得200210x x ++<D .0x R ∃∈,使得200210x x ++≤【答案】D【解析】全称量词的否定是特称量词,大于的否定是小于等于,故“x R ∀∈,2210x x ++>”的否定是“0x R ∃∈,使得200210x x ++≤”三、素养聚焦1.命题“[1,2]x ∀∈,2320x x -+≤”的否定是( )A .[1,2]x ∀∈,2320x x -+>B .[1,2]x ∀∉,2320x x -+>C .0[1,2]x ∃∈,200320x x -+>D .0[1,2]x ∃∉,200320x x -+>【答案】C【解析】命题是全称命题,则命题的否定是特称命题,即0[1,2]x ∃∈,200320x x -+>,2.设命题p :0x ∀>,sin x x >,则⌝p 为( )A .0x ∃>,sin x x ≤B .0x ∀>,sin x x ≤C .0x ∃≤,sin x x ≤D .0x ∀≤,sin x x ≤ 【答案】A【解析】命题p :0x ∀>,sin x x >,则⌝p :0x ∃>,sin x x ≤.3.已知命题2 :1,2log 1x p x x ∀≥-≥,则p ⌝为( ) A .21,2log 1xx x ∀<-< B .21,2log 1xx x ∀≥-< C .21,2log 1xx x ∃<-<D .21,2log 1xx x ∃≥-<【答案】D【解析】因为全称命题的否定是特称命题,所以命题:p 1x ∀≥,22log 1xx -≥,:p ⌝1x ∃≥,22log 1x x -<.4.命题:0p x ∀≥,都有1x e x ≥-+,则命题p 的否定为( ) A .0x ∀≥,都有1x e x <-+B .0x ∀<,都有1x e x ≥-+C .00x ∃≥,01xe x <-+D .00x ∃<,01xe x <-+【答案】C 【解析】命题:0p x ∀≥,都有1x e x ≥-+,∴命题p 的否定为00x ∃≥,01x e x <-+,5.命题p :对任意一个x ∈Z ,21x +是整数,则p ⌝为( ) A .对任意一个x Z ∉,21x +不是整数 B .对任意一个x Z ∉,21x +是整数 C .0x Z ∃∈,021x +不是整数 D .0x Z ∃∉,021x +不是整数【答案】C 【解析】命题p 为全称命题,∴p ⌝为“0x Z ∃∈,021x +不是整数”.6.已知命题P :x R ∀∈,sin 1x ≤,则p ⌝为( ) A .0x R ∃∈,0sin 1x ≥ B .x R ∀∈,sin 1x ≥ C .0x R ∃∈,0sin 1x > D .x R ∀∈,sin 1x >【答案】C 【解析】全称量词命题的否定是存在量词命题,且命题P :x R ∀∈,sin 1x ≤,00:,sin 1p x R x ∴⌝∃∈>.7.命题“,sin 10x R x ∀∈+≥”的否定是( ) A .00,sin 10x R x ∃∈+< B .,sin 10x R x ∀∈+< C .00,sin 10x R x ∃∈+≥ D .,sin 10x R x ∀∈+≤【答案】A【解析】因为,sin 10x R x ∀∈+≥的否定为00,sin 10x R x ∃∈+<, 所以选A.8.命题“,x R ∃∈使得21x =-”的否定是( ) A .x R ∀∉都有21x =- B .x R ∃∉使得21x =- C .,x R ∃∈使得21x ≠- D .,x R ∀∈都有21x ≠-【答案】D【解析】命题“,x R ∃∈使得21x =-”的否定是“,x R ∀∈都有21x ≠-”. 9.已知命题p :0x ∀>,总有(1)1x x e +>,则p ﹁为( )A .00x ∃≤,使得00(1)1xx e +≤B .00x ∃>,使得00(1)1xx e +≤C .0x ∀>,总有(1)1x x e +≤D .0x ∀≤,使得(1)1x x e +≤【答案】B【解析】因为命题p :0x ∀>,总有(1)1xx e +>,所以p ﹁:00x ∃>,使得00(1)1x x e +≤.10.命题p :∀x ∈N ,|x +2|≥3的否定为( ) A .∀x ∈N ,|x +2|<3 B .∀x ∉N ,|x +2|<3 C .∃x ∈N ,|x +2|≥3D .∃x ∈N ,|x +2|<3【答案】D【解析】因为命题p :∀x ∈N ,|x +2|≥3是全称命题, 所以其否定是特称命题,所以命题p :“∀x ∈N ,|x +2|≥3”的否定为:∃x ∈N ,|x +2|<3.11.若“122x ⎡⎤∃∈⎢⎥⎣⎦,使得2210x x λ-+<成立”是假命题,则实数λ的取值范围为( )A .(-∞B .⎡⎤⎣⎦C .⎡⎤-⎣⎦D .3λ=【答案】A【解析】因为命题“1[,2]2x ∃∈,使得2210x x λ-+<成立”为假命题,所以该命题的否定“1[,2]2x ∀∈,使得2210x x λ-+≥恒成立成立”,即221x xλ+≤对于1[,2]2x ∀∈恒成立,而22112x x x x +=+≥=12x x =,即2x =时取等号),即λ≤ A. 12.命题“*,x R n N ∀∈∃∈,使得2n x ≥”的否定形式是( ) A .*,x R n N ∀∈∃∈,使得2n x < B .*,x R n N ∀∈∀∈,使得2n x < C .*,x R n N ∃∈∃∈,使得2n x < D .*,x R n N ∃∈∀∈,使得2n x <【答案】D【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D . 13.已知命题p :“0a ∀>,都有1a e ≥成立”,则命题p ⌝为( ) A .0a ∃≤,有1a e <成立 B .0a ∃≤,有1a e ≥成立 C .0a ∃>,有1a e ≥成立 D .0a ∃>,有1a e <成立 【答案】D【解析】全称量词的否定为存在量词,命题的否定只否定结论,1a e ≥的否定为1a e <.命题p ⌝为0a ∃>,有1a e <成立14.已知命题:p x R ∀∈,210x x -+>,则p ⌝( ) A .x R ∃∈,210x x -+≤ B .x R ∀∈,210x x -+≤ C .x R ∃∈,210x x -+> D .x R ∀∈,210x x -+≥ 【答案】A【解析】由题意,根据全称命题与特称命题的关系,可得命题:p x R ∀∈,210x x -+>, 则:p ⌝x R ∃∈,210x x -+≤,故选A .15.命题“0x R ∃∈,20010x x ++≤”的否定为( )A .x R ∀∈,210x x ++>B .x R ∀∉ ,210x x ++≤C .0x R ∃∈,20010x x ++>D .0x R ∃∉, 20010x x ++≤【答案】A【解析】因为命题“0x R ∃∈,20010x x ++≤”为特称命题,所以其否定为“x R ∀∈,210x x ++>”.16.命题“00x ∃>,20010x x ++<”的否定是( )A .0x ∀>,210x x ++≥B .0x ∀≤,210x x ++<C .0x ∀>,210x x ++<D .0x ∀≤,210x x ++≥【答案】A【解析】由题意,根据全称命题与存在性命题的关系,可得命题“00x ∃>,20010x x ++<”的否定为:“0x ∀>,210x x ++≥”.17.命题“1x ∀>,20x x ->”的否定是( )A .01x ∃≤,2000x x -≤ B .1x ∀>,20x x -≤ C .01x ∃>,2000x x -≤D .1x ∀≤,20x x ->【答案】C【解析】因为全称命题的否定是特称命题,所以命题“1x ∀>,20x x ->”的否定是:“01x ∃>,2000x x -≤”,故选C.18.下列说法:①命题“0x ∀>,20x x -≤”的否定是“0x ∃≤,20x x ->”;②若一个命题的逆命题为真,则它的否命题也一定为真;③“矩形的两条对角线相等”的逆命题是真命题;④“3x <”是“3x <”成立的充分条件,其中错误的个数是( ) A .1 B .2 C .3 D .4【答案】C【解析】命题“0x ∀>,20x x -≤”的否定是“0x ∃>,20x x ->”,故①错误一个命题的逆命题和否命题互为逆否命题,同真假性,故②正确 对角线相等的等腰梯形不是矩形,故③错误由3x <推不出3x <,如4x =-时,满足3x <,但推不出3x <,故④错误 所以错误的个数是319.下列有关命题的说法正确的是( ).A .命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”B .“1x =-”是“2560x x --=”的必要不充分条件C .命题“R x ∃∈,使得210x x ++<”的否定是:“R x ∀∈,均有210x x ++<”D .命题“若x y =,则sin sin x y =”的逆否命题为真命题 【答案】D【解析】对于A :命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”.因为否命题应为“若21x ≠,则1x ≠”,故A 错误.对于B :“1x =-”是“2560x x --=”的必要不充分条件.因为21560x x x =-⇒--=,应为充分条件,故B 错误.对于C :命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++<”. 因为命题的否定应为x R ∀∈,均有210x x ++≥.故C 错误. 由排除法得到D 正确.20.已知命题2000:,220p x R x x ∃∈++≤,则p ⌝为( )A .2,220x x x ∀∈++>RB .2,220x R x x ∀∈++≤C .2,220 x R x x ∃∈++≤D .2,220x x x ∃∈++>R【答案】A【解析】特称命题的否定是全称命题,命题2000:,220p x R x x ∃∈++≤,则p ⌝为:2,220x x x ∀∈++>R .21.已知命题1,20x p x R -∀∈>:,则命题p ⌝为( ) A .1,20x x R -∀∈≤B .1,20x x R -∃∈≤C .1,20x x R -∃∈≠D .1,20x x R -∀∈<【答案】B【解析】因为命题1,20x p x R -∀∈>:所以命题:p ⌝1,20x x R -∃∈≤22.若命题“存在0x R ∈,使220x x m --≤0”是假命题,则实数m 的取值范围是( ) A .B .C .[]11-, D .【答案】D 【解析】命题“存在0x R ∈,使220x x m --≤0”是假命题, ∴不等式220x x m --≤0无解, ()2240m ∴∆=-+<,解得1m <-,∴实数m 的取值范围是,23.命题“x R ∃∈,2210x x -+<”的否定是( ) A .x R ∃∈,2210x x -+≥ B .x R ∃∈,2210x x -+> C .x R ∀∈,2210x x -+≥ D .x R ∀∈,2210x x -+<【答案】C【解析】特称命题的否定是全称命题,改量词,且否定结论,故命题20",210"x R x x ∃∈-+<的否定是“2,210x R x x ∀∈-+≥”.24.(多选题)下面命题正确的是( ) A .“1a >”是“11a<”的充分不必要条件 B .命题“任意x ∈R ,则210x x ++<”的否定是“存在x ∈R ,则210x x ++≥”. C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要而不充分条件 D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件 【答案】ABD【解析】对于A ,1110a a a -<⇔>()10a a ⇔->0a ⇔<或1a >,则“1a >”是“11a<”的充分不必要条件,故A 对;对于B ,全称命题的否定是特称命题,“任意x ∈R ,则210x x ++<”的否定是“存在x ∈R ,则210x x ++≥”,故B 对;对于C ,“2x ≥且2y ≥” ⇒ “224x y +≥”, “2x ≥且2y ≥” 是 “224x y +≥”的充分条件,故C 错; 对于D ,00ab a ≠⇔≠,且0b ≠,则“0a ≠”是“0ab ≠”的必要不充分条件,故D 对; 25.(多选题)在下列命题中,真命题有( ) A .x R ∃∈,230x x ++= B .x Q ∀∈,211132x x ++是有理数 C .,x y Z ∃∈,使3210x y -= D .x R ∀∈,2||x x >E.命题“x R ∀∈,3210x x -+≤”的否定是“x R ∃∈,3210x x -+>” 【答案】BCE【解析】A 中,221113024x x x ⎛⎫++=++> ⎪⎝⎭,故A 是假命题; B 中,x Q ∈,211132x x ++一定是有理数,故B 是真命题; C 中,4x =,1y =时,3210x y -=成立,故C 是真命题;对于D ,当0x =时,左边=右边=0,故D 为假命题;E 命题否定的形式正确,故为真命题. 故真命题有BCE .26.(多选题)下列命题中是真命题的是( ) A .“1x >”是“21x >”的充分不必要条件B .命题“0x ∀>,都有sin 1x ≤”的否定是“00x ∃>,使得0sin 1x >”C .数据128,,,x x x 的平均数为6,则数据12825,25,,25x x x ---的平均数是6D .当3a =-时,方程组232106x y a x y a -+=⎧⎨-=⎩有无穷多解【答案】ABD【解析】选项A ,1x >,则有21x >,但21x >,则1x >或1x <-, 所以“1x >”是“21x >”的充分不必要条件,选项A 正确; 选项B ,命题“0x ∀>,都有sin 1x ≤”的否定是 “00x ∃>,使得0sin 1x >”,所以选项B 正确; 选项C ,数据128,,,x x x 的平均数为6, 则数据12825,25,,25x x x ---的平均数是7,所以选项C 错误;选项D ,当3a =-时,方程组为32103210x y x y -+=⎧⎨-+=⎩,所以有无数个解,所以选项D 正确.27.(多选题)给出下列命题,其中真命题有( ) A .存在0x <,使|x|>x B .对于一切0x <,都有|x|>x C .存在0x <,使||x x ≤D .已知2a n =,3b n =,则存在*n ∈N ,使得a b = E.已知*{|2,}A a a n n ==∈N ,*{|3,}B b b n n ==∈N ,则A B =∅【答案】AB【解析】对A ,当1x =-时,11>-成立,故A 正确; 对B ,对0x <都0|x|>,显然有|x|>x ,故B 正确;对C ,命题“存在0x <,使||x x ≤”,是B 中命题的否定,所以C 为假命题,故C 错误; 对D ,“存在*n ∈N ,使得a b =”的否定是“对于任意的*n ∈N ,都有a b ”,由于23a b n n n -=-=-,所以对于任意的*n ∈N ,都有a b <,即a b ≠,故D 为假命题;对E ,已知*{|2,}A a a n n ==∈N ,*{|3,}B b b n n ==∈N ,易知6A ∈,6B ∈,因此E 为假命题;28.(多选题)下面命题正确的是( ) A .“1a >”是“11a<”的充分不必要条件 B .命题“若1x <,则21x <”的 否 定 是“ 存 在1x <,则21x ≥”.C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要而不充分条件D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要 不 充 分 条件 【答案】ABD【解析】选项A:根据反比例函数的性质可知:由1a >,能推出11a <,但是由11a<,不能推出1a >,例如当0a <时,符合11a<,但是不符合1a >,所以本选项是正确的; 选项B: 根据命题的否定的定义可知:命题“若1x <,则21x <”的 否 定 是“ 存 在1x <,则21x ≥”.所以本选项是正确的;选项C:根据不等式的性质可知:由2x ≥且2y ≥能推出224x y +≥,本选项是不正确的;选项D: 因为b 可以等于零,所以由0a ≠不能推出0ab ≠,再判断由0ab ≠能不能推出0a ≠,最后判断本选项是否正确.29.(多选题)关于下列命题正确的是( )A .一次函数320kx y k ++-=图象的恒过点是213⎛⎫- ⎪⎝⎭, B .3322,,()()a b R a b a b a ab b ∀∈+=+++ C .(2,4),(2)(4)x y x x ∀∈-=+-的最大值为9 D .若p 为假命题,则()p ⌝⌝为真命题 【答案】AC【解析】对A ,由320kx y k ++-=,即(1)320k x y ++-=,可令10x +=,即1x =-,320y -=,可得23y =,故直线320kx y k ++-=恒过定点2(1,)3-,故A 正确; 对B ,由两数的立方和公式可得a ∀,b R ∈,3322()()a b a b a ab b +=+-+,故B 错误;对C ,(2,4)x ∀∈-,可得20x +>,40x ->,则224(2)(4)()92x x y x x ++-=+-=,当且仅当1x =时y 取得最大值为9,故C 正确;对D ,若p 为假命题,则p ⌝为真命题,()p ⌝⌝为假命题,故D 错误. 30.(多选题)已知下列命题其中正确的有( ) A .“实数都大于0”的否定是“实数都小于或等于0” B .“三角形外角和为360度”是含有全称量词的真命题C .“至少存在一个实数x ,使得||0x ≥0”是含有存在量词的真命题 D .“能被3整除的整数,其各位数字之和也能被3整除”是全称量词命题 【答案】BCD【解析】对于A, “实数都大于0”的否定是“实数不都大于0”,故A 错误. 对于B, “三角形外角和为360度”含有全称量词,且为真命题,所以B 正确;对于C, “至少存在一个实数x ,使得||0x ≥0”含有存在量词,且为真命题,所以C 正确; 对于D, “能被3整除的整数,其各位数字之和也能被3整除”是全称量词命题,所以D 正确. 综上可知,正确命题为BCD。
高中数学选修1:知识点总结归纳
高中数学选修1-1知识点总结归纳常用逻辑用语1.1命题及其关系1.1.1命题1、命题:一般地,在数学中我们把语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
2、命题的构成:在数学中,命题通常写成“若p ,则q ”的形式。
其中p 叫做命题的条件,q 叫做命题的结论。
1.1.2四种命题3、互逆命题:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做互逆命题。
其中一个命题叫做原命题,另一个叫做原命题的逆命题。
如果原命题为“若p ,则q ”,则它的逆命题为“若q ,则p ”.4、互否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。
如果把其中的一个命题叫做原命题,,那么另一个叫做原命题的否命题。
如果原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、互逆否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。
如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题。
如果原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.6、以上总结概括:1.1.3四种命题间的相互关系7、四种命题间的相互关系:一般地,原命题、逆命题、否命题与逆否命题这四种命题之间原命题若p ,则q 逆命题若q ,则p 否命题若p ⌝,则q ⌝逆否命题若q ⌝,则p⌝原命题逆命题否命题逆否命题互为逆否互为逆否互逆互否互否若p ⌝,则q⌝若q ⌝,则p⌝若p ,则q若q ,则p互逆的相互关系:8、四种命题的真假性:一般地,四种命题的真假性之间的关系:(1)两个命题和互否命题,它们有相同的真假性;(2)两个命题为互逆否命题或互否命题,它们的真假性没有关系。
新课标2023版高考数学一轮总复习第1章预备知识第3节全称量词命题与存在量词命题教师用书
第三节全称量词命题与存在量词命题考试要求:能正确地对全称量词命题与存在量词命题进行否定.一、教材概念·结论·性质重现1.全称量词与存在量词(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,用符号“∀”表示.含有全称量词的命题叫做全称量词命题.(2)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,用符号“∃”表示.含有存在量词的命题叫做存在量词命题.2.含有一个量词的命题的否定命题命题的否定∀x∈M,p(x)∃x∈M,p(x)∃x∈M,p(x)∀x∈M,p(x)1.对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再写出命题的否定,否则易出错.2.注意“或”“且”的否定,“或”的否定为“且”,“且”的否定为“或”.二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)“∀x∈R,x2≥0”的否定是“∃x∈R,x2<0”.( √)(2)“长方形的对角线相等”是存在量词命题.( ×)(3)“∃x∈R,x2+1=0”为真命题.( ×)(4)写存在量词命题的否定时,存在量词变为全称量词.( √)(5)“∃x∈M,p(x)”与“∀x∈M,p(x)”的真假性相反.( √) 2.已知命题p:∀x>0,总有(x+1)e x>1,则p为( )A.∃x≤0,使得(x+1)e x≤1B.∃x>0,使得(x+1)e x≤1C.∀x>0,使得(x+1)e x≤1D.∀x≤0,使得(x+1)e x≤1B 解析:“∀x >0,总有(x +1)e x >1”的否定是“∃x >0,使得(x +1)e x≤1”. 3.(多选题)下列命题为全称量词命题的是( ) A .奇函数的图象关于原点对称 B .正四棱柱都是平行六面体 C .棱锥仅有一个底面D .存在大于等于3的实数x ,使x 2-2x -3≥0ABC 解析: A ,B ,C 中命题都省略了全称量词“所有”,所以A ,B ,C 都是全称量词命题;D 中命题含有存在量词“存在”,所以D 是存在量词命题.故选ABC .4.(多选题)下列命题是“∃x ∈R ,x 2>3”的另一种表述方法的是( ) A .有一个x ∈R ,使得x 2>3成立 B .对有些x ∈R ,有x 2>3成立 C .任选一个x ∈R ,都有x 2>3成立 D .至少有一个x ∈R ,使得x 2>3成立ABD 解析:原命题为存在量词命题,A ,B ,D 选项均为对应的存在量词命题,是原命题的表述方法,C 为全称量词命题.5.以下四个命题中既是存在量词命题又是真命题的是( ) A .锐角三角形有一个内角是钝角 B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,使1x>2B 解析:锐角三角形的内角都是锐角,所以A 项是假命题;当x =0时,x 2=0,满足x 2≤0,所以B 项既是存在量词命题又是真命题;因为2+(-2)=0不是无理数,所以C项是假命题;对于任意一个负数x ,都有1x <0,不满足1x>2,所以D 项是假命题.考点1 全称量词命题、存在量词命题的否定——基础性1.(2021·南昌测试)命题“∀x ≥0,sin x ≤x ”的否定为( ) A .∃x <0,sin x >x B .∃x ≥0,sin x >xC .∀x ≥0,sin x >xD .∀x <0,sin x ≤xB 解析:原命题是全称量词命题,其否定是存在量词命题.因为否定的是结论而不是条件,所以A 选项错误,B 选项正确.故选B .2.命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( ) A .∀x ∈R ,∃n ∈N *,使得n <x 2B .∀x ∈R ,∀n ∈N *,使得n <x 2C .∃x ∈R ,∃n ∈N *,使得n <x 2D .∃x ∈R ,∀n ∈N *,使得n <x 2D 解析:改变量词,否定结论.所以p 应为“∃x ∈R ,∀n ∈N *,使得n <x 2.”3.(2021·安徽滁州联合质检)命题“∃x ∈R,2x 2<cos x ”的否定为________________. ∀x ∈R,2x 2≥cos x 解析:存在量词命题的否定为全称量词命题,所以命题“∃x ∈R,2x 2<cos x ”的否定为“∀x ∈R,2x 2≥cos x ”.1.解决此类问题一般是先改写量词,再否定结论.2.对于省去量词的命题要结合命题的含义加上量词,再对量词进行改写.考点2 全称量词命题、存在量词命题的真假判断——综合性(1)下列四个命题中的真命题是( )A .∀n ∈R ,n 2≥nB .∃n ∈R ,∀m ∈R ,m ·n =mC .∀n ∈R ,∃m ∈R ,m 2<n D .∀n ∈R ,n 2<nB 解析:对于选项A ,令n =12,即可验证其为假命题;对于选项C ,D ,可令n =-1加以验证,均为假命题.(2)(多选题)已知集合A ={y |y =x 2+2},集合B ={x |y =lg x -3},则下列命题中的真命题是( )A .∃m ∈A ,mB B .∃m ∈B ,m AC .∀m ∈A ,m ∈BD .∀m ∈B ,m ∈AAD解析:因为A={y|y=x2+2}=[2,+∞),B={x|y=lg x-3}=(3,+∞),所以B A,则A,D是真命题.全称量词命题与存在量词命题真假的判断方法命题名称真假判断方法一判断方法二全称量词命题真所有对象使命题为真否定为假假存在一个对象使命题为假否定为真存在量词命题真存在一个对象使命题为真否定为假假所有对象使命题为假否定为真1.(2022·重庆一中模拟)命题p:∀x∈[0,+∞),(log32)x≤1,则( )A.p是假命题,p:∃x∈[0,+∞),(log32)x>1B.p是假命题,p:∀x∈[0,+∞),(log32)x≥1C.p是真命题,p:∃x∈[0,+∞),(log32)x>1D.p是真命题,p:∀x∈[0,+∞),(log32)x≥1C解析:因为0<log32<1,所以∀x∈[0,+∞),(log32)x≤1,所以p是真命题,p:∃x∈[0,+∞),(log32)x>1.2.(多选题)命题p:存在实数x∈R,使得数据1,2,3,x,6的中位数为3.若命题p为真命题,则实数x的取值集合可以为( )A.{3,4,5} B.{x|x>3}C.{x|x≥3} D.{x|3≤x≤6}ABCD解析:根据中位数的定义可知,只需x≥3,则1,2,3,x,6的中位数必为3,选项A,B,C,D中的取值集合均满足x≥3.考点3 全称量词命题、存在量词命题的应用——应用性(1)“∀x∈[-2,1],x2-2a≤0”为真命题的一个充分不必要条件是( )A.a≥0B.a≥1C.a≥2 D.a≥3D解析:“∀x∈[-2,1],x2-2a≤0”为真命题,即2a≥x2在x∈[-2,1]时恒成立,所以2a≥4,所以a≥2,即“∀x∈[-2,1],x2-2a≤0”为真命题的充要条件是a≥2,所以可转化为求“a≥2”的充分不必要条件,即找集合A ={a |a ≥2}的非空真子集,结合选项知故选D .(2)(多选题)(2021·辽宁盘锦模拟改编)使命题“∃x ∈[-1,2),f (x )=-x 2+ax +4≤0”为假命题的充分不必要条件可以为( )A .0≤a <3B .0<a <3C .a <3D .1<a <2BD 解析:若命题p “∃x ∈[-1,2),f (x )=-x 2+ax +4≤0”为假命题,则命题p“∀x ∈[-1,2),f (x )=-x2+ax +4>0”为真命题,则⎩⎪⎨⎪⎧f-1>0,f 2≥0,即⎩⎪⎨⎪⎧-1-a +4>0,-4+2a +4≥0,解得0≤a <3,结合选项知BD 正确.例2(1)改为“∃x ∈[-2,1),x 2-2a ≤0”为真命题,则a 的取值范围为________. AB 解析:“∀x ∈[-2,1],x 2-2a ≤0”为真命题,即2a ≥x 2在x ∈[-2,1]时恒成立,所以2a ≥4,所以a ≥2,即“∀x ∈[-2,1],x 2-2a ≤0”为真命题的充要条件是a ≥2,所以可转化为求“a ≥2”的必要不充分条件.结合选项知选AB .解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.1.命题“存在x ∈R ,使x 2+ax -4a <0为假命题”是命题“-16≤a ≤0”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件A 解析:因为存在x ∈R ,使x 2+ax -4a <0为假命题,所以任意x ∈R ,使x 2+ax -4a ≥0为真命题,则Δ=a 2+16a ≤0,解得-16≤a ≤0.故选A .2.若“∃x ∈(0,+∞),λx >x 2+1”是假命题,则实数λ的取值范围是________. (-∞,2] 解析:因为∃x ∈(0,+∞),λx >x 2+1是假命题,所以∀x ∈(0,+∞),x 2+1≥λx 为真命题,即λ≤x +1x 在(0,+∞)上恒成立.当x ∈(0,+∞)时,x +1x≥2,当且仅当x =1时,等号成立,所以λ≤2.。
高中数学 第一章 常用逻辑用语 1.4 全称量词与存在量词(含解析)1数学教案
全称量词与存在量词预习课本P21~25,思考并完成以下问题1.全称量词、全称命题的定义是什么?2.存在量词、特称命题的定义是什么?3.全称命题与特称命题的否定分别是什么命题?[新知初探]1.全称量词与全称命题全称量词所有的、任意一个、一切、每一个、任给符号__∀__全称命题含有全称量词的命题形式“对M中任意一个x,有p(x)成立”,可用符号简记为“∀x∈M,p(x)”存在量词存在一个、至少有一个、有一个、有些、有的符号表示__∃__特称命题含有存在量词的命题形式“存在M中的一个x0,使p(x0)成立”可用符号简记为“∃x0∈M,p(x0)”知识点原命题命题的否定全称命题p:∀x∈M,p(x)綈p:∃x0∈M,綈p(x0)的否定特称命题p:∃x0∈M,p(x0)綈p:∀x∈M,綈p(x)的否定[(1)全称命题的否定全称命题的否定是一个特称命题,否定全称命题时关键是找出全称量词,明确命题所提供的性质.(2)特称命题的否定特称命题的否定是一个全称命题,否定特称命题时关键是找出存在量词,明确命题所提供的性质.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)在全称命题和特称命题中,量词都可以省略( )(2)“有的等差数列也是等比数列”是特称命题( )(3)“三角形内角和是180°”是全称命题( )答案:(1)×(2)√(3)√2.命题“∀x∈R,|x|+x2≥0”的否定是( )A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+x20<0 D.∃x0∈R,|x0|+x20≥0答案:C3.下列全称命题为真命题的是( )A.所有的质数是奇数B.∀x∈R,x2+1≥1C.对每一个无理数x,x2也是无理数D.所有的能被5整除的整数,其末位数字都是5答案:B4.命题p:∃x0∈R,x20+2x0+5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定为綈p:______________.答案:特称命题假∀x∈R,x2+2x+5≥0全称命题与特称命题的判断[典例](1)凸多边形的外角和等于360°;(2)有的向量方向不定;(3)对任意角α,都有sin2α+cos2α=1;(4)矩形的对角线不相等;(5)若一个四边形是菱形,则这个四边形的对角线互相垂直.[解] (1)可以改为所有的凸多边形的外角和等于360°,故为全称命题.(2)含有存在量词“有的”,故是特称命题.(3)含有全称量词“任意”,故是全称命题.(4)可以改为所有矩形的对角线不相等,故为全称命题.(5)若一个四边形是菱形,也就是所有的菱形,故为全称命题.判断一个语句是全称命题还是特称命题的思路[注意] 全称命题可能省略全称量词,特称命题的存在量词一般不能省略. [活学活用]用全称量词或存在量词表示下列语句: (1)不等式x 2+x +1>0恒成立;(2)当x 为有理数时,13x 2+12x +1也是有理数;(3)等式sin(α+β)=sin α+sin β对有些角α,β成立; (4)方程3x -2y =10有整数解.解:(1)对任意实数x ,不等式x 2+x +1>0成立. (2)对任意有理数x ,13x 2+12x +1是有理数.(3)存在角α,β,使sin(α+β)=sin α+sin β成立. (4)存在一对整数x ,y ,使3x -2y =10成立.全称命题、特称命题的真假判断[典例] A .∃x 0∈R ,lg x 0=0 B .∃x 0∈R ,tan x 0=1 C .∀x ∈R ,x 2>0D .∀x ∈R ,e x>0(2)下列命题中的真命题是( )A .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数B .∃α0,β0∈R ,使cos(α0+β0)=cos α0+cos β0C .向量a =(2,1),b =(-1,0),则a 在b 方向上的投影为2D .“|x |≤1”是“x ≤1”的既不充分又不必要条件 [解析] (1)对于A ,x =1时,lg x =0; 对于B ,x =k π+π4(k ∈Z)时,tan x =1;对于C ,当x =0时,x 2=0,所以C 中命题为假命题; 对于D ,e x>0恒成立.(2)对于A ,当φ=π2时,f (x )=cos 2x ,为偶函数,故A 为假命题;对于B ,令α0=π4,β0=-π2,则cos(α0+β0)=cos ⎝ ⎛⎭⎪⎫-π4=22,cos α0+cos β0=22+0=22,cos(α0+β0)=cos α0+cos β0成立,故B 为真命题; 对于C ,向量a =(2,1),b =(-1,0),则a 在b 方向上的投影为a ·b |b |=-2+01=-2,故C 为假命题;对于D ,|x |≤1,即-1≤x ≤1,故充分性成立,若x ≤1,则|x |≤1不一定成立,所以“|x |≤1”为“x ≤1”的充分不必要条件,故D 为假命题.[答案] (1)C (2)B指出下列命题是全称命题,还是特称命题,并判断真假. (1)若a >0,且a ≠1,则对任意实数x ,a x>0. (2)对任意实数x 1,x 2,若x 1<x 2,则tan x 1<tan x 2. (3)存在两个相交平面垂直于同一条直线. (4)∃x 0∈R ,使x 20+1<0. 解:(1)是全称命题.∵a x>0(a >0,且a ≠1)恒成立,∴命题(1)是真命题. (2)是全称命题.存在x 1=0,x 2=π,x 1<x 2,但tan 0=tan π, ∴命题(2)是假命题. (3)是特称命题.由于垂直于同一条直线的两个平面是互相平行的, ∴命题(3)是假命题. (4)是特称命题.对任意x ∈R ,x 2+1>0,∴命题(4)是假命题.全称命题与特称命题的否定[典例] p n n2n pA.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n(2)(2016·浙江高考)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是( )A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2[解析] (1)因为“∃x∈M,p(x)”的否定是“∀x∈M,綈p(x)”,所以命题“∃n∈N,n2>2n”的否定是“∀n∈N,n2≤2n”,故选C.(2)由于特称命题的否定形式是全称命题,全称命题的否定形式是特称命题,所以“∀x ∈R,∃n∈N*,使得n≥x2”的否定形式为“∃x∈R,∀n∈N*,使得n<x2”.[答案] (1)C (2)D全称命题与特称命题的否定的思路(1)一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论.(2)对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.判断下列命题的真假,并写出它们的否定.(1)三角形的内角和为180°;(2)每个二次函数的图象都开口向下;(3)存在一个四边形不是平行四边形.解:(1)三角形的内角和为180°,是全称命题,是真命题.命题的否定:三角形的内角和不全为180°,即存在一个三角形,其内角和不等于180°.(2)每个二次函数的图象都开口向下,是全称命题,是假命题.命题的否定:存在一个二次函数的图象开口不向下.(3)存在一个四边形不是平行四边形,是特称命题,是真命题.命题的否定:所有的四边形都是平行四边形.利用全称命题与特称命题求参数[典例] 若命题“∀x ∈[-1,+∞),x 2-2ax +2≥a ”是真命题,求实数a 的取值范围.[解] 法一:由题意,∀x ∈[-1,+∞), 令f (x )=x 2-2ax +2≥a 恒成立,所以f (x )=(x -a )2+2-a 2≥a 可转化为∀x ∈[-1,+∞),f (x )min ≥a 恒成立, 而∀x ∈[-1,+∞),f (x )min =⎩⎪⎨⎪⎧2-a 2,a ≥-1,1+a 2+2-a 2,a <-1.由f (x )的最小值f (x )min ≥a ,知a ∈[-3,1]. 法二:x 2-2ax +2≥a , 即x 2-2ax +2-a ≥0, 令f (x )=x 2-2ax +2-a ,所以全称命题转化为∀x ∈[-1,+∞),f (x )≥0恒成立,所以Δ≤0或⎩⎪⎨⎪⎧Δ=4a 2-42-a >0,a <-1,f -1≥0,即-2≤a ≤1或-3≤a <-2.所以-3≤a ≤1. 综上,所求实数a 的取值范围是[-3,1].利用全称命题与特称命题求参数范围的两类题型(1)全称命题的常见题型是“恒成立”问题,全称命题为真时,意味着命题对应的集合中的每一个元素都具有某种性质,所以利用代入可以体现集合中相应元素的具体性质;也可以根据函数等数学知识来解决.(2)特称命题的常见题型是以适合某种条件的结论“存在”“不存在”“是否存在”等语句表达.解答这类问题,一般要先对结论作出肯定存在的假设,然后从肯定的假设出发,结合已知条件进行推理证明,若推出合理的结论,则存在性随之解决;若导致矛盾,则否定了假设.1.命题p :∃x 0∈[0,π],使sin ⎝⎛⎭⎪⎫x 0+π3<a ,若p 是真命题,则实数a 的取值范围为________.解析:由0≤x ≤π,得π3≤x +π3≤4π3,所以-32≤sin ⎝⎛⎭⎪⎫x +π3≤1. 而命题p :∃x 0∈[0,π],使sin ⎝ ⎛⎭⎪⎫x 0+π3<a ,因为p 为真命题,所以a >-32. 答案:⎝ ⎛⎭⎪⎫-32,+∞ 2.已知命题p :∃x 0∈R ,使x 20-mx 0+1=0,命题q :∀x ∈R ,有x 2-2x +m >0.若命题q ∨(p ∧q )为真,綈p 为真,求实数m 的取值范围.解:由于綈p 为真,所以p 为假,则p ∧q 为假. 又q ∨(p ∧q )为真,故q 为真,即p 假、q 真.命题p 为假,即关于x 的方程x 2-mx +1=0无实数解,则m 2-4<0,解得-2<m <2; 命题q 为真,则4-4m <0,解得m >1. 故实数m 的取值范围是(1,2).层级一 学业水平达标1.已知命题p :∀x >0,总有e x>1,则綈p 为( ) A .∃x 0≤0,使得e x 0≤1 B .∃x 0>0,使得e x 0≤1 C .∀x >0,总有e x≤1D .∀x ≤0,总有e x<1解析:选B 因为全称命题的否定是特称命题,所以命题p 的否定綈p 为∃x 0>0,使得e x 0≤1.故选B.2.下列四个命题中的真命题为( ) A .若sin A =sin B ,则A =B B .∀x ∈R ,都有x 2+1>0 C .若lg x 2=0,则x =1 D .∃x 0∈Z ,使1<4x 0<3解析:选B A 中,若sin A =sin B ,不一定有A =B ,故A 为假命题,B 显然是真命题;C 中,若lg x 2=0,则x 2=1,解得x =±1,故C 为假命题;D 中,解1<4x <3得14<x <34,故不存在这样的x ∈Z ,故D 为假命题.3.命题“∃x 0∈R,2x 0<12或x 20>x 0”的否定是( )A .∃x 0∈R,2x 0≥12或x 20≤x 0B .∀x ∈R,2x ≥12或x 2≤xC .∀x ∈R,2x ≥12且x 2≤xD .∃x 0∈R,2x 0≥12且x 20≤x 0解析:选C 原命题为特称命题,其否定为全称命题,应选C. 4.以下四个命题既是特称命题又是真命题的是( ) A .锐角三角形的内角是锐角或钝角 B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,使1x>2解析:选B A 中锐角三角形的内角是锐角或钝角是全称命题;B 中x =0时,x 2=0,所以B 既是特称命题又是真命题;C 中因为3+(-3)=0,所以C 是假命题;D 中对于任一个负数x ,都有1x<0,所以D 是假命题.5.命题p :∀x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是( ) A .(0,4]B .[0,4]C .(-∞,0]∪[4,+∞)D .(-∞,0)∪(4,+∞)解析:选D 当a =0时,不等式恒成立; 当a ≠0时,要使不等式恒成立,则有⎩⎪⎨⎪⎧a >0,Δ≤0,即⎩⎪⎨⎪⎧a >0,a 2-4a ≤0,解得0<a ≤4.综上,0≤a ≤4,则命题p :0≤a ≤4, 所以綈p :a <0或a >4.6.下列命题中,是全称命题的是________;是特称命题的是________.(填序号) ①正方形的四条边相等;②有两个角相等的三角形是等腰三角形; ③正数的平方根不等于0; ④至少有一个正整数是偶数.解析:①可表述为“每一个正方形的四条边相等”,是全称命题;②是全称命题,即“凡是有两个角相等的三角形都是等腰三角形”;③可表述为“所有正数的平方根不等于0”是全称命题;④是特称命题.答案:①②③ ④7.命题“至少有一个正实数x 满足方程x 2+2(a -1)x +2a +6=0”的否定是________. 解析:把量词“至少有一个”改为“所有”,“满足”改为“都不满足”得命题的否定. 答案:所有正实数x 都不满足方程x 2+2(a -1)x +2a +6=08.已知命题“∃x 0∈R,2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是________.解析:原命题等价于“∀x ∈R,2x 2+(a -1)x +12>0”是真命题,即Δ=(a -1)2-4<0,解得-1<a <3.答案:(-1,3)9.判断下列命题的真假,并写出它们的否定. (1)∀α,β∈R ,sin(α+β)≠sin α+sin β; (2)∃x 0,y 0∈Z,3x 0-4y 0=20;(3)在实数范围内,有些一元二次方程无解; (4)正数的绝对值是它本身.解:(1)当α=β=0时,sin(α+β)=sin α+sin β,故命题为假命题.命题的否定为:∃α0,β0∈R ,sin(α0+β0)=sin α0+sin β0.(2)真命题.命题的否定为:∀x ,y ∈Z,3x -4y ≠20.(3)真命题.命题的否定为:在实数范围内,所有的一元二次方程都有解.(4)省略了量词“所有的”,该命题是全称命题,且为真命题.命题的否定为:有的正数的绝对值不是它本身.10.已知命题p :∀a ∈(0,b ](b ∈R 且b >0),函数f (x )=3sin ⎝ ⎛⎭⎪⎫x a +π3的周期不大于4π.(1)写出綈p ;(2)当綈p 是假命题时,求实数b 的最大值. 解:(1)綈p :∃a 0∈(0,b ](b ∈R 且b >0),函数f (x )=3sin ⎝ ⎛⎭⎪⎫x a 0+π3的周期大于4π. (2)因为綈p 是假命题,所以p 是真命题, 所以∀a ∈(0,b ],2π1a≤4π恒成立,解得a ≤2,所以b ≤2,所以实数b 的最大值是2.层级二 应试能力达标1.已知f (x )=3sin x -πx ,命题p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0,则( )A .p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0B .p 是假命题,綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0 C .p 是真命题,綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 D .p 是真命题,綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0 解析:选D 由正弦函数的图象,知∀x ∈⎝⎛⎭⎪⎫0,π2,sin x <x ,又3<π,∴当x ∈⎝⎛⎭⎪⎫0,π2时,3sin x <πx ,即∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0恒成立,∴p 是真命题.又全称命题的否定是特称命题,∴綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0. 2.已知命题p :∀x ∈R,2x 2+2x +12<0;命题q :∃x 0∈R ,sin x 0-cos x 0= 2.则下列判断正确的是( )A .p 是真命题B .q 是假命题C .p ,q 都是假命题D .綈q 是假命题解析:选D p :2x 2+2x +12=2⎝ ⎛⎭⎪⎫x 2+x +14=2x +122≥0,∴p 为假命题,綈p 为真命题.q :sin x 0-cos x 0=2sin ⎝⎛⎭⎪⎫x 0-π4,∴x 0=34π时成立.故q 为真,而綈q 为假命题. 3.已知命题p :∃x 0∈R ,使sin x 0=52;命题q :∀x ∈R ,都有x 2+12x +34>0.给出下列结论:①命题p 是真命题; ②命题q 是假命题; ③命题(綈p )∧q 是真命题; ④命题p ∨(綈q )是假命题. 其中正确的是( ) A .②④ B .②③ C .③④D .①②③解析:选C 对于命题p ,因为函数y =sin x 的值域为[-1,1],所以命题p 为假命题; 对于命题q ,因为函数y =x 2+12x +34的图象开口向上,最小值在x =-14处取得,且f ⎝ ⎛⎭⎪⎫-14=1116>0,所以命题q 为真命题. 由命题p 为假命题和命题q 为真命题可得:命题(綈p )∧q 是真命题,命题p ∨(綈q )是假命题.故③④正确.4.命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0解析:选D 写全称命题的否定时,要把量词∀改为∃,并且否定结论,注意把“且”改为“或”.5.有下列四个命题:①∀x ∈R,2x 2-3x +4>0; ②∀x ∈{1,-1,0},2x +1>0; ③∃x 0∈N ,x 20≤x 0;④∃x 0∈N *,x 0为29的约数. 其中真命题有________个.解析:易知①③④正确.当x =-1时,2x +1<0,故②错误. 答案:36.已知命题p :∃c >0,y =(3-c )x在R 上为减函数,命题q :∀x ∈R ,x 2+2c -3>0.若p ∧q 为真命题,则实数c 的取值范围为________.解析:由于p ∧q 为真命题,所以p ,q 都是真命题,所以⎩⎪⎨⎪⎧0<3-c <1,2c -3>0,解得2<c <3.故实数c 的取值范围为(2,3).答案:(2,3)7.已知命题p :“至少存在一个实数x 0∈[1,2],使不等式x 2+2ax +2-a >0成立”为真,试求参数a 的取值范围.解:法一:由题意知,x 2+2ax +2-a >0在[1,2]上有解,令f (x )=x 2+2ax +2-a ,则只需f (1)>0或f (2)>0,即1+2a +2-a >0,或4+4a +2-a >0.整理得a >-3或a >-2.即a >-3.故参数a 的取值范围为(-3,+∞). 法二:綈p :∀x ∈[1,2],x 2+2ax +2-a >0无解, 令f (x )=x 2+2ax +2-a , 则⎩⎪⎨⎪⎧f 1≤0,f2≤0,即⎩⎪⎨⎪⎧1+2a +2-a ≤0,4+4a +2-a ≤0.解得a ≤-3.故命题p 中,a >-3. 即参数a 的取值范围为(-3,+∞).8.已知f (t )=log 2t ,t ∈[2,8],若命题“对于f (t )值域内的所有实数m ,不等式x 2+mx +4>2m +4x 恒成立”为真命题,求实数x 的取值范围.解:易知f (t )∈⎣⎢⎡⎦⎥⎤12,3. 由题意,令g (m )=(x -2)m +x 2-4x +4=(x -2)m +(x -2)2,则g (m )>0对∀m ∈⎣⎢⎡⎦⎥⎤12,3恒成立.所以⎩⎪⎨⎪⎧g ⎝ ⎛⎭⎪⎫12>0,g 3>0,即⎩⎪⎨⎪⎧12x -2+x -22>0,3x -2+x -22>0,解得x >2或x <-1.故实数x 的取值范围是(-∞,-1)∪(2,+∞).(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“存在一个无理数,它的平方是有理数”的否定是( ) A .任意一个有理数,它的平方是有理数 B .任意一个无理数,它的平方不是有理数 C .存在一个有理数,它的平方是有理数 D .存在一个无理数,它的平方不是有理数解析:选B 根据特称命题的否定是全称命题,先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.2.设x >0,y ∈R ,则“x >y ”是“x >|y |”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选C 由x >y 推不出x >|y |,由x >|y |能推出x >y ,所以“x >y ”是“x >|y |”的必要不充分条件.3.已知命题①若a >b ,则1a <1b,②若-2≤x ≤0,则(x +2)(x -3)≤0,则下列说法正确的是( )A .①的逆命题为真B .②的逆命题为真C .①的逆否命题为真D .②的逆否命题为真解析:选D ①的逆命题为1a <1b则,a >b ,若a =-2,b =3,则不成立.故A 错;②的逆命题为若(x +2)(x -3)≤0,则-2≤x ≤0是假命题,故B 错;①为假命题,其逆否命题也为假命题,故C 错;②为真命题,其逆否命题也为真命题,D 正确.4.已知命题p :实数的平方是非负数,则下列结论正确的是( ) A .命题綈p 是真命题B .命题p 是特称命题C .命题p 是全称命题D .命题p 既不是全称命题也不是特称命题解析:选C 命题p :实数的平方是非负数,是全称命题,且是真命题,故綈p 是假命题.5.下列命题中,真命题是( ) A .命题“若|a |>b ,则a >b ”B .命题“若“a =b ,则|a |=|b |”的逆命题C .命题“当x =2时,x 2-5x +6=0”的否命题 D .命题“终边相同的角的同名三角函数值相等”解析:选D 原命题可以改写成“若角的终边相同,则它们的同名三角函数值相等”,是真命题,故选D.6.已知命题p :若实数x ,y 满足x 3+y 3=0,则x ,y 互为相反数;命题q :若a >b >0,则1a <1b.下列命题p ∧q ,p ∨q ,綈p ,綈q 中,真命题的个数是( )A .1B .2C .3D .4解析:选B 易知命题p ,q 都是真命题,则p ∧q ,p ∨q 都是真命题,綈p ,綈q 是假命题.7.已知f (x )=e x+x -1,命题p :∀x ∈(0,+∞),f (x )>0,则( ) A .p 是真命题,綈p :∃x 0∈(0,+∞),f (x 0)<0 B .p 是真命题,綈p :∃x 0∈(0,+∞),f (x 0)≤0 C .p 是假命题,綈p :∃x 0∈(0,+∞),f (x 0)<0 D .p 是假命题,綈p :∃x 0∈(0,+∞),f (x 0)≤0解析:选B 由于函数y =e x 和y =x -1在R 上均是增函数,则f (x )=e x+x -1在R 上是增函数,当x >0时,f (x )>f (0)=0,所以p 为真命题,綈p :∃x 0∈(0,+∞),f (x 0)≤0,故选B.8.下列关于函数f (x )=x 2与函数g (x )=2x的描述,正确的是( ) A .∃a 0∈R ,当x >a 0时,总有f (x )<g (x ) B .∀x ∈R ,f (x )<g (x ) C .∀x <0,f (x )≠g (x )D.方程f(x)=g(x)在(0,+∞)内有且只有一个实数解解析:选A 在同一坐标系内作出两函数的大致图象,两交点为(2,4),(4,16).当x>4时,由图象知f(x)<g(x),其余三命题均错误.9.已知p:x≥k,q:3x+1<1,如果p是q的充分不必要条件,则实数k的取值范围是( )A.[1,+∞) B.(2,+∞)C.[-1,+∞) D.(-∞,-1)解析:选B3x+1<1⇔x<-1或x>2.又p是q的充分不必要条件,则k>2,故选B.10.下列判断正确的是( )A.命题“负数的平方是正数”不是全称命题B.命题“∀x∈N*,x3>x2”的否定是“∃x0∈N*,x30<x20”C.“a=1”是“函数f(x)=cos2ax-sin2ax的最小正周期是π”的必要不充分条件D.“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充要条件解析:选D 选项A是全称命题,不正确;选项B应该是∃x0∈N*,x30≤x20,不正确;对于选项C,f(x)=cos2ax-sin2ax=cos 2ax,周期T=2π2a=πa,当a=1时,周期是π,当周期是π时,a=1,所以“a=1”是“函数f(x)=cos2ax-sin2ax的最小正周期是π”的充要条件;选项D正确,故选D.11.设f(x)=x2-4x(x∈R),则f(x)>0的一个必要不充分条件是( )A.x<0 B.x<0或x>4C.|x-1|>1 D.|x-2|>3解析:选C 由f(x)=x2-4x>0,得x<0或x>4.由|x-1|>1,得x<0或x>2.由|x-2|>3,得x<-1或x>5,所以只有C是必要不充分条件.故选C.12.有下列命题:①“若x+y>0,则x>0且y>0”的否命题;②“矩形的对角线相等”的否命题;③“若m≥1,则mx2-2(m+1)x+m+3>0的解集是R”的逆命题;④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是( ) A .①②③ B .②③④ C .①③④D .①④解析:选C ①的逆命题为“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题; ③的逆命题为,若mx 2-2(m +1)x +m +3>0的解集为R ,则m ≥1. ∵当m =0时,解集不是R ,∴应有⎩⎪⎨⎪⎧m >0,Δ<0, 即m >1.∴③是真命题;④原命题为真,逆否命题也为真.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.命题“若a ∉A ,则b ∈B ”的逆否命题是________. 解析:逆否命题既否定其条件又否定其结论,然后交换其顺序. 答案:若b ∉B ,则a ∈A14.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件,命题q :函数y =x -3的定义域是[3,+∞),则“p ∨q ”“p ∧q ”“綈p ”中是真命题的为________.解析:p 为假命题,q 为真命题,故p ∨q 为真命题,綈p 为真命题. 答案:p ∨q ,綈p15.已知p :-4<x -a <4,q :(x -2)(3-x )>0,若綈p 是綈q 的充分条件,则实数a 的取值范围是________.解析:p :a -4<x <a +4,q :2<x <3. 由綈p 是綈q 的充分条件可知,q 是p 的充分条件,即q ⇒p ,∴⎩⎪⎨⎪⎧a -4≤2,a +4≥3,解得-1≤a ≤6.答案:[-1,6]16.已知在实数a ,b 满足某一前提条件时,命题“若a >b ,则1a <1b”及其逆命题、否命题和逆否命题都是假命题,则实数a ,b 应满足的前提条件是________.解析:由题意,知ab ≠0,当ab >0时,1a <1b ⇔ab ·1a <1b·ab ⇔b <a ,所以四种命题都是正确的.当ab <0时,若a >b ,则必有a >0>b ,故1a>0>1b ,所以原命题是假命题;若1a <1b,则必有1a<0<1b,故a <0<b ,所以原命题的逆命题也是假命题.由命题的等价性,可知四种命题都是假命题,故填ab <0.答案:ab <0三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)判断下列命题是全称命题还是特称命题,并判断其真假. (1)对数函数都是单调函数;(2)至少有一个整数,它既能被11整除,又能被9整除; (3)∀x ∈{x |x >0},x +1x>2;(4)∃x 0∈Z ,log 2x 0>2.解:(1)命题中隐含了全称量词“所有的”,因此命题应为“所有的对数函数都是单调函数”,是全称命题,且为真命题.(2)命题中含有存在量词“至少有一个”,因此是特称命题,且为真命题. (3)命题中含有全称量词“∀”,是全称命题,且为假命题. (4)命题中含有存在量词“∃”,是特称命题,且为真命题.18.(本小题满分12分)把下列命题改写成“若p ,则q ”的形式,并判断命题的真假. (1)能被6整除的数一定是偶数;(2)当a -1+|b +2|=0时,a =1,b =-2; (3)已知x ,y 为正整数,当y =x 2时,y =1,x =1.解:(1)若一个数能被6整除,则这个数为偶数,是真命题. (2)若a -1+|b +2|=0,则a =1且b =-2,真命题. (3)已知x ,y 为正整数,若y =x 2,则y =1且x =1,假命题.19.(本小题满分12分)已知c >0,设命题p :y =c x为减函数,命题q :函数f (x )=x +1x >1c 在x ∈⎣⎢⎡⎦⎥⎤12,2上恒成立.若p ∨q 为真命题,p ∧q 为假命题,求c 的取值范围. 解:由p ∨q 真,p ∧q 假,知p 与q 为一真一假,对p ,q 进行分类讨论即可.若p 真,由y =c x为减函数,得0<c <1.当x ∈⎣⎢⎡⎦⎥⎤12,2时,由不等式x +1x ≥2(x =1时取等号)知, f (x )=x +1x 在⎣⎢⎡⎦⎥⎤12,2上的最小值为2.若q 真,则1c <2,即c >12.若p 真q 假,则0<c <1,c ≤12,所以0<c ≤12;若p 假q 真,则c ≥1,c >12,所以c ≥1.综上可得,c ∈⎝ ⎛⎦⎥⎤0,12∪[1,+∞). 20.(本小题满分12分)已知k ∈R 且k ≠1,直线l 1:y =k 2x +1和l 2:y =1k -1x -k .(1)求直线l 1∥l 2的充要条件;(2)当x ∈[-1,2]时,直线l 1恒在x 轴上方,求k 的取值范围.解:(1)由题意得⎩⎪⎨⎪⎧k 2=1k -1,k -1≠0,-k ≠1,解得k =2.当k =2时,l 1:y =x +1,l 2:y =x -2,此时l 1∥l 2. ∴直线l 1∥l 2的充要条件为k =2.(2)设f (x )=k2x +1.由题意,得⎩⎪⎨⎪⎧f-1>0,f 2>0,即⎩⎪⎨⎪⎧k2×-1+1>0,k 2×2+1>0,解得-1<k <2.∴k 的取值范围是(-1,2).21.(本小题满分12分)已知“∃x ∈{x |-1<x <1},使等式x 2-x -m =0成立”是真命题.(1)求实数m 的取值集合M ;(2)设不等式(x -a )(x +a -2)<0的解集为N ,若x ∈N 是x ∈M 的必要条件,求实数a 的取值范围.解:(1)由题意,知m =x 2-x =⎝ ⎛⎭⎪⎫x -122-14.由-1<x <1,得m ∈⎣⎢⎡⎭⎪⎫-14,2,故M =⎣⎢⎡⎭⎪⎫-14,2. (2)由x ∈N 是x ∈M 的必要条件,知M ⊆N . ①当a >2-a ,即a >1时,N =(2-a ,a ),则⎩⎪⎨⎪⎧2-a <-14,a ≥2,a >1,解得a >94.②当a <2-a ,即a <1时,N =(a,2-a ),则⎩⎪⎨⎪⎧a <1,a <-14,2-a ≥2,解得a <-14.③当a =2-a ,即a =1时,N =∅,不满足M ⊆N . 综上可得a ∈⎝ ⎛⎭⎪⎫-∞,-14∪⎝ ⎛⎭⎪⎫94,+∞. 22.(本小题满分12分)已知命题:“∀x ∈{x |-1≤x ≤1},都有不等式x 2-x -m <0成立”是真命题.(1)求实数m 的取值集合B ;(2)设不等式(x -3a )(x -a -2)<0的解集为A ,若x ∈A 是x ∈B 的充分不必要条件,求实数a 的取值范围.解:(1)命题:“∀x ∈{x |-1≤x ≤1},都有不等式x 2-x -m <0成立”是真命题,得x 2-x -m <0在-1≤x ≤1时恒成立,∴m >(x 2-x )max ,得m >2, 即B ={m |m >2}.(2)不等式(x -3a )(x -a -2)<0,①当3a >2+a ,即a >1时,解集A ={x |2+a <x <3a },若x ∈A 是x ∈B 的充分不必要条件,则A B ,∴2+a ≥2,此时a ∈(1,+∞);②当3a =2+a ,即a =1时,解集A =∅,若x ∈A 是x ∈B 的充分不必要条件,则A B 成立;③当3a <2+a ,即a <1时,解集A ={x |3a <x <2+a },若x ∈A 是x ∈B 的充分不必要条件,则A B 成立,∴3a ≥2,此时a ∈⎣⎢⎡⎭⎪⎫23,1.综上①②③可得a ∈⎣⎢⎡⎭⎪⎫23,+∞.。
2018-2019学年高二数学苏教版选修2-1讲义:第1部分 第1章 1.3 1.3.2 含有一个量词的命题的否定
1.3.2含有一个量词的命题的否定[对应学生用书P14]观察下列几个命题:(1)p:有些三角形是直角三角形;(2)q:所有的质数都是奇数;(3)r:所有的人都睡觉;(4)s:有些实数的相反数比本身大.问题1:哪些是全称命题,哪些是存在性命题?提示:(1)、(4)是存在性命题,(2)、(3)是全称命题.问题2:试对它们进行否定.提示:(1)任意的三角形都不是直角三角形.(2)有些质数不是奇数.(3)有的人不睡觉.(4)任意实数的相反数都不大于本身.问题3:它们的否定有什么规律?提示:全称命题的否定是存在性命题;存在性命题的否定是全称命题.1.全称命题的否定全称命题的否定是存在性命题,“∀x∈M,p(x)”的否定为“∃x∈M,綈p(x)”.2.存在性命题的否定存在性命题的否定是全称命题,“∃x∈M,p(x)”的否定为“∀x∈M,綈p(x)”.对全称命题与存在性命题进行否定的方法:(1)确定所给命题类型,分清是全称命题还是存在性命题;(2)改变量词:把全称量词换为恰当的存在量词;把存在量词换为恰当的全称量词;(3)否定性质:原命题中的“是”“有”“存在”“成立”等更改为“不是”“没有”“不存在”“不成立”等.[对应学生用书P15][例1] 判断下列命题的真假,并写出它们的否定. (1)对任意x ∈R ,x 3-x 2+1≤0; (2)所有能被5整除的整数都是奇数; (3)对任意的x ∈Q ,13x 2+12x +1是有理数.[思路点拨] 几个命题均为全称命题,可先判断真假,再变换量词、否定结论、写出其否定.[精解详析] (1)当x =2时,23-22+1=5>0,故(1)是假命题. 命题的否定:存在x ∈R ,x 3-x 2+1>0.(2)10能被5整除,10是偶数,故(2)是假命题. 命题的否定:存在一个能被5整除的整数不是奇数.(3)有理数经过加、减、乘运算后仍是有理数,故(3)是真命题. 命题的否定:存在x ∈Q ,13x 2+12x +1不是有理数.[一点通]1.全称命题的否定:全称命题的否定是一个存在性命题,给出全称命题的否定时既要否定全称量词,又要否定性质,所以找出全称量词,明确命题所提供的性质是解题的关键.2.常见词语的否定:1.指出下列命题的形式,写出下列命题的否定: (1)所有的矩形都是平行四边形; (2)每一个素数都是奇数; (3)∀x ∈R ,x 2-2x +1≥0.解:(1)∀x ∈M ,p (x ),否定:存在一个矩形不是平行四边形,∃x ∈M ,綈p (x ). (2)∀x ∈M ,p (x ),否定:存在一个素数不是奇数, ∃x ∈M ,綈p (x ).(3)∀x∈M,p(x),否定:∃x∈R,x2-2x+1<0,∃x∈M,綈p(x).2.判断下列命题的真假,并写出这些命题的否定:(1)三角形的内角和为180°;(2)每个二次函数的图像都开口向下;(3)任何一个平行四边形的对边都平行;(4)负数的平方是正数.解:(1)是全称命题且为真命题.命题的否定:三角形的内角和不全为180°,即存在一个三角形且它的内角和不等于180°.(2)是全称命题且为假命题.命题的否定:存在一个二次函数的图像开口不向下.(3)是全称命题且为真命题.命题的否定:存在一个平行四边形的对边不都平行.(4)是全称命题且为真命题.命题的否定:某个负数的平方不是正数.[例2]写出下列存在性命题的否定,并判断其否定的真假:(1)有些实数的绝对值是正数;(2)某些平行四边形是菱形;(3)∃x0,y0∈Z,使得2x0+y0=3.[思路点拨]它们的否定是全称命题,解题时既要改变量词,也要否定结论,最后判断其真假.[精解详析](1)命题的否定是:“所有实数的绝对值都不是正数”.由于|-2|=2,因此命题的否定为假命题.(2)命题的否定是:“每一个平行四边形都不是菱形”.由于菱形是平行四边形,因此命题的否定是假命题.(3)命题的否定是:“∀x,y∈Z,2x+y≠3”.因为当x=0,y=3时,2x+y=3,因此命题的否定是假命题.[一点通]1.存在性命题的否定是全称命题,要否定存在性命题“∃x∈M,p(x)成立”,需要验证对M中的每一个x,均有p(x)不成立,也就是说“∀x∈M,綈p(x)成立”.2.要证明存在性命题是真命题,只需要找到使p(x)成立的条件即可.3.只有“存在”一词是量词时,它的否定才是“任意”,当“存在”一词不是量词时,它的否定是“不存在”.例如:三角形存在外接圆.这个命题是全称命题,量词“所有的”被省略了,所以,这个命题的否定是:有些三角形不存在外接圆.3.写出下列命题的否定,并判断其真假:(1)p:∃x0∈R,x20+1<0;(2)p:至少有一个实数x,使x3+1=0.解:(1)綈p:∀x∈R,x2+1≥0,真命题.(2)綈p:∀x∈R,x3+1≠0∵x=-1时,x3+1=0,∴綈p为假命题.4.判断下列命题的真假,并写出这些命题的否定:(1)存在一条直线在y轴上有截距;(2)存在二次函数的图像与x轴相交;(3)存在一个三角形,它的内角和小于180°;(4)存在一个四边形没有外接圆.解:(1)与y轴平行的直线在y轴上没有截距,其他直线在y轴上都有截距,所以,此命题是真命题.命题的否定是:所有的直线在y轴上没有截距;(2)对于二次函数y=ax2+bx+c(a≠0),当Δ≥0时,函数图像与x轴有交点,所以,此命题是真命题,命题的否定是:所有二次函数的图像与x轴不相交;(3)任何三角形内角和都等于180°.所以,此命题是假命题.命题的否定是:任何三角形的内角和不小于180°;(4)对角不互补的四边形就没有外接圆,所以,此命题是真命题.命题的否定是:任何四边形都有外接圆.[例3]若全称命题“对任意x∈[-1,+∞),x2-2ax+2≥a恒成立”是真命题,求实数a的取值范围.[思路点拨]由于此全称命题是真命题,所以可以推出a的值,求出在x∈[-1,+∞)时,f(x)min≥a,利用一元二次不等式与二次函数的关系解题.[精解详析]法一:由题意,对任意x∈[-1,+∞),令f(x)=x2-2ax+2≥a恒成立.所以f(x)=(x-a)2+2-a2可转化为对任意x∈[-1,+∞),f(x)min≥a成立,即对任意x ∈[-1,+∞),f (x )min =⎩⎪⎨⎪⎧2-a 2,a ≥-1,(1+a )2+2-a 2,a <-1. 由f (x )的最小值f (x )min ≥a ,知a ∈[-3,1]. 所以实数a 的取值范围是[-3,1].法二:x 2-2ax +2≥a ,即x 2-2ax +2-a ≥0. 令f (x )=x 2-2ax +2-a ,所以全称命题转化为对任意x ∈[-1,+∞),f (x )≥0恒成立. 所以Δ≤0,或⎩⎪⎨⎪⎧Δ=4a 2-4(2-a )>0,a <-1,f (-1)≥0,即-2≤a ≤1,或-3≤a <-2.所以-3≤a ≤1. 综上,所求实数a 的取值范围是[-3,1].[一点通] 对任意x ∈[-1,+∞),f (x )≥a ,只需f (x )min ≥a .也可等价转化为对任意x ∈[-1,+∞),x 2-2ax +2-a ≥0恒成立,结合一元二次不等式的解集与二次函数图像间的关系求解.5.若命题:“∃x ∈k ,m <4sin x +cos x ”是真命题,求m 的取值范围. 解:∵4sin x +cos 2x =-2sin 2x +4sin x +1 =-2(sin x -1)2+3, 又x ∈R 时,-1≤sin x ≤1, ∴4sin x +cos 2x ∈[-5,3]. 则当m <3时,该命题为真命题. ∴m 的取值范围为(-∞,3).6.若方程ax 2+2x -1=0至少有一个正实数根,求实数a 的取值范围. 解:当a =0时,方程变为:2x -1=0,x =12>0满足条件.当a ≠0时,若方程ax 2+2x -1=0至少有一个正实数根. 则Δ=4+4a ≥0,则a ≥-1.又因x =0时,ax 2+2x -1=-1<0恒成立. 故a ≥-1时,一定有正实根. 综上:a 的取值范围为[-1,+∞).对含有一个量词的命题的否定要遵循以下步骤: (1)确定命题类型,是全称命题还是存在性命题.(2)改变量词:把全称量词改为恰当的存在量词;把存在量词改为恰当的全称量词. (3)否定结论:原命题中的“是”“有”“存在”“成立”等改为“不是”“没有”“不存在”“不成立”等.(4)无量词的全称命题要先补回量词再否定.[对应课时跟踪训练(六)]1.(重庆高考改编)命题“对任意x ∈R ,都有x 2≥0”的否定是_________________. 解析:因为“∀x ∈M ,p (x )”的否定是“∃x ∈M ,綈p (x )”故“对任意x ∈R ,都有x 2≥0”的否定是“存在x ∈R ,使得x 2<0”.答案:存在x ∈R ,使得x 2<02.命题“∃x ∈∁R Q ,x 3∈Q ”的否定是________________. 解析:存在性命题的否定是全称命题. 答案:∀x ∈∁R Q ,x 3∉Q3.命题“∀x ∈R ,x 2-x +3>0”的否定是_______________________________. 解析:全称命题的否定是存在性命题. 答案:∃x ∈R ,x 2-x +3≤04.命题“所有能被2整除的整数都是偶数”的否定是______________________. 解析:此命题是一个全称命题,全称命题的否定是存在性命题.故该命题的否定是:“存在能被2整除的整数不是偶数”.答案:存在能被2整除的整数不是偶数5.若命题“∃x ∈R ,使得x 2+(a -1)x +1≤0”为假命题,则实数a 的取值范围是________. 解析:该命题p 的否定是綈p :“∀x ∈R ,x 2+(a -1)x +1>0”,即关于x 的一元二次不等式x 2+(a -1)x +1>0的解集为R ,由于命题p 是假命题,所以綈p 是真命题,所以Δ=(a -1)2-4<0,解得-1<a <3,所以实数a 的取值范围是(-1,3).答案:(-1,3)6.设语句q (x ):cos ⎝⎛⎭⎫x -π2=sin x : (1)写出q ⎝⎛⎭⎫π2,并判定它是不是真命题;(2)写出“∀a ∈R ,q (a )”,并判断它是不是真命题. 解:(1)q ⎝⎛⎭⎫π2:cos ⎝⎛⎭⎫π2-π2=sin π2, 因为cos 0=1,sin π2=1,所以q ⎝⎛⎭⎫π2是真命题.(2)∀a ∈R ,q (a ):cos ⎝⎛⎭⎫a -π2=sin a , 因为cos ⎝⎛⎭⎫a -π2=cos ⎝⎛⎭⎫π2-a =sin a , 所以“∀a ∈R ,q (a )”是真命题. 7.写出下列命题的否定,并判断其真假:(1)p :不论m 取何实数,方程x 2+x -m =0必有实数根; (2)q :存在一个实数x ,使得x 2+x +1≤0; (3)r :等圆的面积相等,周长相等.解:(1)这一命题可以表述为p :“对所有的实数m ,方程x 2+x -m =0有实数根”,其否定形式是綈p :“存在实数m ,使得x 2+x -m =0没有实数根”.当Δ=1+4m <0,即m <-14时,一元二次方程没有实数根,所以綈p 是真命题.(2)这一命题的否定形式是綈q :对所有实数x ,都有x 2+x +1>0.利用配方法可以验证綈q 是一个真命题.(3)这一命题的否定形式是綈r :存在一对等圆,其面积不相等或周长不相等,由平面几何知识知綈r 是一个假命题.8.∀x ∈[-1,2],使4x -2x +1+2-a <0恒成立,求实数a 的取值范围.解:已知不等式化为22x -2·2x +2-a <0.① 令t =2x ,∵x ∈[-1,2],∴t ∈⎣⎡⎦⎤12,4,则不等式①化为:t 2-2t +2-a <0,即a >t 2-2t +2,原命题等价于:∀t ∈⎣⎡⎦⎤12,4,a >t 2-2t +2恒成立,令y =t 2-2t +2=(t -1)2+1,当t ∈⎣⎡⎦⎤12,4时,y max =10.所以只须a >10即可.即所求实数a 的取值范围是(10,+∞).。
高中数学选修2-1 1.3全称量词与存在量词
需要证明集合M中,使p(x)成立的元素x不存在.
练习:
1.指出下列命题使用了那种量词,并用符号表示出来
①对任意正实数 a, a2 a 2 0 ;a 0, a2 a 2 0 ②对某个大于10的正整数 n,( 2)n 1024 ;
C. x R,lg x 1 D. x R, tan x 2
4.已知a
0 ,函数
f
(x)
ax2
bx
c
.若
x 0
满足关于x
的方程2ax b 0,则下列选项中为假命题的是(C )
A. x R,
f
(x)
f
(x ) 0
B. x R, f (x) f (x ) 0
C. x R,
f
(x)
f
需要对集合M中每个元素x,证明p(x)成立
判断全称命题“x∈M, p(x) ”是假命题 的方法
只需在集合M中找到一个元素x0,使得p(x0) 不成立即可(举反例)
总 结:
判断特称命题“x0∈M, p(x0) ”是真命题 的方法
只需在集合M中找到一个元素x0,使得p(x0) 成立即 可 (举例说明).
常见的存在量词还有 “有些”“有一个” “对某个”“有的”等 。
特称命题“存在M中的一个x0,使p(x0)成立 ” 可用符号简记为:
x0 M,p(x0 ),
读作“存在一个x0属于M,使p(x0)成立”。
全称命题、特称命题的表述方法:
命题 全称命题 x M , p(x) 特称命题 x0 M , p(x)
全称命题“对M中任意一个x,有p(x)成立 ”可用符号简记为:
x M,p(x),
选修1、2_1-1.3 全称量词与存在量词(一)量词
选修:1.3全称量词与存在量词(一)量词教学目标:了解量词在日常生活中和数学命题中的作用,正确区分全称量词和存在量词的概念,并能准确使用和理解两类量词。
教学重点:理解全称量词、存在量词的概念区别;教学难点:正确使用全称命题、存在性命题;课型:新授课教学过程:一、创设情境在前面的学习过程中,我们曾经遇到过一类重要的问题:给含有“至多、至少、有一个┅┅”等量词的命题进行否定,确定它们的非命题。
大家都曾感到困惑和无助,今天我们将专门学习和讨论这类问题,以解心中的郁结。
问题1:请你给下列划横线的地方填上适当的词①一纸;②一牛;③一狗;④一马;⑤一人家;⑥一小船①张②头③条④匹⑤户⑥叶什么是量词?这些表示人、事物或动作的单位的词称为量词。
汉语的物量词纷繁复杂,又有兼表形象特征的作用,选用时主要应该讲求形象性,同时要遵从习惯性,并注意灵活性。
不遵守量词使用的这些原则,就会闹出“一匹牛”“一头狗”“一只鱼”的笑话来。
二、活动尝试所有已知人类语言都使用量化,即使是那些没有完整的数字系统的语言,量词是人们相互交往的重要词语。
我们今天研究的量词不是究其语境和使用习惯问题,而是更多的给予它数学的意境。
问题2:下列命题中含有哪些量词?(1)对所有的实数x,都有x2≥0;(2)存在实数x,满足x2≥0;(3)至少有一个实数x,使得x2-2=0成立;(4)存在有理数x,使得x2-2=0成立;(5)对于任何自然数n,有一个自然数s 使得s = n × n;(6)有一个自然数s 使得对于所有自然数n,有s = n × n;上述命题中含有:“所有的”、“存在”、“至少”、“任何”等表示全体和部分的量词。
三、师生探究命题中除了主词、谓词、联词以外,还有量词。
命题的量词,表示的是主词数量的概念。
在谓词逻辑中,量词被分为两类:一类是全称量词,另一类是存在量词。
全称量词:如“所有”、“任何”、“一切”等。
例句:“所有的鱼都会游泳。
2019_2020学年高中数学第1章常用逻辑用语的命题的否定讲义苏教版选修2_1
1.2 简单的逻辑联结词(不作要求)1.3 全称量词与存在量词1.3.1 量词1.3.2 含有一个量词的命题的否定学习目标核心素养1.理解全称量词与存在量词的意义,能准确地利用全称量词和存在量词叙述简单的数学内容.(重点)2.能判定全称命题和存在性命题的真假.(难点)3.了解对含有一个量词的命题的否定的意义,能正确地对含有一个量词的命题进行否定.(易错点)1.通过对含有量词的命题的否定,培养逻辑推理素养.2.借助含量词的命题的真假求参数问题,提升数学运算素养.1.全称量词和全称命题全称量词“所有”、“任意”、“每一个”等表示全体的量词在逻辑中称为全称量词符号表示∀全称命题含有全称量词的命题称为全称命题符号表示∀x∈M,p(x)存在量词“有一个”、“有些”、“存在一个”等表示部分的量词在逻辑中称为存在量词符号表示∃存在性命题含有存在量词的命题称为存在性命题符号表示∃x∈M,p(x)写成相应命题的形式.(2)“不等式(m+1)x2-(m-1)x+3(m-1)<0对任意实数x恒成立”是存在性命题还是全称命题?请改写成相应命题的形式.[提示] (1)是存在性命题,可改写为“∃x∈R,使ax2+2x+1=0”(2)是全称命题,可改写成:“∀x∈R,(m+1)x2-(m-1)x+3(m-1)<0”.3.全称命题和存在性命题的否定1.下列命题中为全称命题的是( ) A .至少有一个自然数是2的倍数 B .存在小于零的整数 C .方程3x =2有实数根 D .无理数是小数D [D 中“无理数”指的是所有的无理数.] 2.下列语句是存在性命题的是( ) A .整数n 是2和7的倍数 B .存在整数n ,使n 能被11整除 C .x >7D .∀x ∈M ,p (x )成立B [B 选项中有存在量词“存在”,故B 项是存在性命题,A 和C 不是命题,D 是全称命题.]3.下列四个命题中的真命题为( ) A .∃x ∈Z,1<4x <3 B .∃x ∈Z,5x +1=0 C .∀x ∈R ,x 2-1=0 D .∀x ∈R ,x 2+x +2>0D [当x ∈R 时,x 2+x +2=⎝ ⎛⎭⎪⎫x +122+74>0,故选D.]4.已知命题p :∀x ∈R ,sin x ≤1,则命题p 的否定是________.∃x ∈R ,sin x >1 [命题p 是全称命题,其否定应为存在性命题,即綈p :∃x ∈R ,sinx >1.]两种命题的概念及真假判断【例1(1)∀x ∈N,2x +1是奇数;(2)存在一个x ∈R ,使1x -1=0; (3)能被5整除的整数末位数是0; (4)有一个角α,使sin α>1[解] (1)是全称命题,因为∀x ∈N,2x +1都是奇数,所以该命题是真命题. (2)是存在性命题.因为不存在x ∈R ,使1x -1=0成立,所以该命题是假命题. (3)是全称命题.因为25能被5整除,但末位数不是0,因此该命题是假命题. (4)是存在性命题,因为∀α∈R ,sin α∈[-1,1],所以该命题是假命题.1.判断命题是全称命题还是存在性命题的方法 (1)分析命题中是否含有量词; (2)分析量词是全称量词还是存在量词;(3)若命题中不含量词,要根据命题的意义去判断. 2.全称命题与存在性命题真假的判断方法(1)要判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中每个元素x ,证明p (x )都成立;如果在集合M 中找到一个元素x ,使得p (x )不成立,那么这个全称命题就是假命题.(2)要判定存在性命题“∃x ∈M ,p (x )”是真命题,只需在集合M 中找到一个元素x ,使p (x )成立即可;如果在集合M 中,使p (x )成立的元素x 不存在,那么这个存在性命题就是假命题.1.(1)以下四个命题既是存在性命题又是真命题的是( ) A .锐角三角形的内角是锐角或钝角 B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,使1x>2B [A 中锐角三角形的内角是锐角或钝角是全称命题;B 中x =0时,x 2=0,所以B 既是存在性命题又是真命题;C 中因为3+(-3)=0,所以C 是假命题;D 中对于任一个负数x ,都有1x<0,所以D 是假命题.](2)下列命题中,真命题是( ) A .∃x ∈⎣⎢⎡⎦⎥⎤0,π2,sin x +cos x ≥2B .∀x ∈(3,+∞),x 2>2x +1 C .∃x ∈R ,x 2+x =-1D .∀x ∈⎝ ⎛⎭⎪⎫π2,π,tan x >sin x B [(1)对于选项A ,sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2,∴此命题不成立;对于选项B ,x 2-2x -1=(x -1)2-2,当x >3时,(x -1)2-2>0,∴此命题成立;对于选项C ,x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34>0,∴x 2+x =-1对任意实数x 都不成立,∴此命题不成立;对于选项D ,当x ∈⎝ ⎛⎭⎪⎫π2,π时,tan x <0,sin x >0,命题显然不成立.故选B.]含有一个量词的命题的否定x x 2x A .∀x ∉R ,x 2≠x B .∀x ∈R ,x 2=x C .∃x ∉R ,x 2≠x D .∃x ∈R ,x 2=x(2)写出下列命题的否定,并判断其真假: ①p :∀x ∈R ,x 2-x +14≥0;②p :所有的正方形都是菱形; ③p :至少有一个实数x ,使x 3+1=0.[思路探究] 先判定命题是全称命题还是存在性命题,再针对不同的形式加以否定. (1)D [原命题的否定为∃x ∈R ,x 2=x ,故选D.] (2)[解] ①綈p :∃x ∈R ,x 2-x +14<0,假命题.因为∀x ∈R ,x 2-x +14=⎝ ⎛⎭⎪⎫x -122≥0恒成立.②綈p :至少存在一个正方形不是菱形,假命题. ③綈p :∀x ∈R ,x 3+1≠0,假命题. 因为x =-1时,x 3+1=0.对全称命题和存在性命题进行否定的步骤与方法1.确定类型:是存在性命题还是全称命题.2.改变量词:把全称量词换为恰当的存在量词;把存在量词换为恰当的全称量词. 3.否定结论:原命题中“是”“有”“存在”“成立”等改为“不是”“没有”“不存在”“不成立”等.提醒:无量词的全称命题要先补回量词再否定.2.(1)命题“∃x ∈(0,+∞),ln x =x -1”的否定是( ) A .∀x ∈(0,+∞),ln x ≠x -1 B .∀x ∉(0,+∞),ln x =x -1 C .∃x ∈(0,+∞),ln x 0≠x 0-1 D .∃x ∉(0,+∞),ln x 0=x 0-1A [存在性命题的否定是全称命题,故原命题的否定是∀x ∈(0,+∞),ln x ≠x -1.] (2)写出下列命题的否定,并判断其真假.①p :不论m 取何实数,方程x 2+x -m =0必有实数根; ②q: 存在一个实数x ,使得x 2+x +1≤0; ③r :等圆的面积相等,周长相等; ④s :对任意角α,都有sin 2α+cos 2α=1.[解] ①这一命题可以表述为p :“对所有的实数m ,方程x 2+x -m =0有 实数根”,其否定形式是綈p :“存在实数m ,使得x 2+x -m =0没有实数根”.注意到当Δ=1+4m <0时,即m <-14时,一元二次方程没有实数根,所以綈p 是真命题.②这一命题的否定形式是綈q :“对所有的实数x ,都有x 2+x +1>0”,利用配方法可以证得綈q 是真命题.③这一命题的否定形式是綈r :“存在一对等圆,其面积不相等或周长不相等”,由平面几何知识知綈r 是假命题.④这一命题的否定形式是綈s :“存在α∈R ,sin 2α+cos 2α≠1”,由于命题s 是真命题,所以綈s 是假命题.由命题的真假确定参数的范围1.若含参数的命题p 是假命题,如何求参数的取值范围? 提示:先求綈p ,再求参数的取值范围.2.全称命题和存在性命题与恒成立问题和存在性问题有怎样的对应关系?提示:全称命题与恒成立问题对应,存在性命题与存在性问题对应.【例3】 (1)若命题p “∃x ∈R,2x 2-3ax +9<0”为假命题,则实数a 的取值范围是________.(2)已知命题p :∃x ∈R,9x -3x-a =0,若命题p 是真命题,求实数a 的取值范围. [思路探究] (1)先求綈p ,再求参数的取值范围. (2)令3x=t ,看作一元二次方程有解问题.(1) [-22,22] [綈p :∀x ∈R,2x 2-3ax +9≥0为真命题. 则Δ=9a 2-72≤0,解得-22≤a ≤22] (2)解:设3x=t ,由于x ∈R ,则t ∈(0,+∞),则9x-3x-a =0⇔a =(3x )2-3x⇔a =t 2-t ,t ∈(0,+∞),设f (t )=t 2-t ,t ∈(0,+∞),则f (t )=⎝ ⎛⎭⎪⎫t -122-14,当t =12时,f (t )min =-14,则函数f (t )的值域是⎣⎢⎡⎭⎪⎫-14,+∞,所以实数a 的取值范围是⎣⎢⎡⎭⎪⎫-14,+∞.母题探究:1.若将本例题(2)条件“∃x ∈R ”,改为“∃x ∈[0,1]”,其他不变,试求实数a 的取值范围.[解] 设3x=t ,x ∈[0,1],∴t ∈[1,3].a =t 2-t ,∵t 2-t =⎝ ⎛⎭⎪⎫t -122-14,∴a =t 2-t 在t ∈[1,3]上单调递增.∴t 2-t ∈[]0,6.即a 的取值范围是[]0,6.2.将本例题(2)换为“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m 是真命题”,试求m 的最小值.[解] 由已知可得m ≥tan x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π4恒成立.设f (x )=tan x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π4,显然该函数为增函数,故f (x )的最大值为f ⎝ ⎛⎭⎪⎫π4=tan π4=1,由不等式恒成立可得m ≥1,即实数m的最小值为1.应用两种命题求参数范围的两类题型1.全称命题的常见题型是“恒成立”问题,全称命题为真时,意味着命题对应的集合中的每一个元素都具有某种性质,所以可以利用代入体现集合中相应元素的具体性质中求解;也可以根据函数等数学知识来解决.2.存在性命题的常见题型是以适合某种条件的结论“存在”“不存在”“是否存在”等语句表述.解答这类问题,一般要先对结论作出肯定存在的假设,然后从肯定的假设出发,结合已知条件进行推理证明,若推出合理的结论,则存在性随之解决;若导致矛盾,则否定了假设.1.判断命题是全称命题还是存在性命题,主要是看命题中是否含有全称量词或存在量词,有些全称命题不含全称量词,可以根据命题涉及的意义去判断.2.要确定一个全称命题是真命题,需保证该命题对所有的元素都成立;若能举出一个反例说明命题不成立,则该全称命题是假命题.3.要确定一个存在性命题是真命题,举出一个例子说明该命题成立即可;若经过逻辑推理得到命题对所有的元素都不成立,则该存在性命题是假命题.4.对含有一个量词的命题的否定要注意以下问题:(1)确定命题类型,是全称命题还是存在性命题.(2)改变量词:把全称量词改为恰当的存在量词;把存在量词改为恰当的全称量词.(3)否定结论:原命题中的“是”“有”“存在”“成立”等分别改为“不是”“没有”“不存在”“不成立”等.(4)无量词的全称命题要先补回量词再否定.1.判断(正确的打“√”,错误的打“×”)(1)命题“对数函数都是单调函数”是全称命题.( )(2)命题“有些菱形是正方形”是全称命题.( )(3)命题:∀x∈R,x2-3x+3>0的否定是∀x∉R,x2-3x+3≤0.()[答案] (1)√(2)×(3)×2.命题“所有能被2整除的数都是偶数”的否定是( )A.所有不能被2整除的数都是偶数B.所有能被2整除的数都不是偶数C.存在一个不能被2整除的数是偶数D.存在一个能被2整除的数不是偶数D[全称命题的否定为相应的存在性命题,即将“所有”变为“存在”,并且将结论进行否定.]3.命题p:∃x∈R,x2+2x+5<0是________(填“全称命题”或“存在性命题”),它是________命题(填“真”或“假”),它的否定为綈p:________.存在性命题假∀x∈R,x2+2x+5≥0[命题p:∃x∈R,x2+2x+5<0是存在性命题.因为x2+2x+5=(x+1)2+4>0恒成立,所以命题p为假命题.命题p的否定为:∀x∈R,x2+2x+5≥0.]4.判断下列命题是全称命题还是存在性命题,并判断其真假;(1)对某些实数x,有2x+1>0;(2)∀x∈{3,5,7},3x+1是偶函数;(3)∃x∈Q,x2=3[解] (1)命题中含有存在量词“某些”,因此是存在性命题,真命题.(2)命题中含有全称量词的符号“∀”,因此是全称命题.把3,5,7分别代入3x+1,得10,16,22,都是偶数,因此,该命题是真命题.(3)命题中含有存在量词的符号“∃”,因此是存在性命题.由于使x2=3成立的实数只有±3,且它们都不是有理数,因此,没有一个有理数的平方等于3,所以该命题是假命题.。
苏教版高中数学选修2-1第1章 1.3 全称量词与存在量词 课件
∴a 的取值范围为(1,+∞).
易错警示
对量词的否定不当致误
(2012·高考安徽卷改编)命题“存在实数x,使x>1”
的否定是_对__任__意__实___数__x_,__都__有___x_≤__1___________.
[解析] “存在实数x,使x>1”的否定是“对任意实数x,都 有x≤1”.
[错因与防范] (1)本题易误把“存在”否定为“不存在”, 而“存在”的否定其实是“任意”.
(2)忽略x>1的否定.
(3)解决对含有一个量词的命题进行否定的问题时,有以下几 点请注意: ①正确理解含有一个量词的命题的否定的含义,从整体上把 握,明确其否定的实质. ②记住一些常用的词语的否定形式及其规律.
(5)虽然不含逻辑联结词,其实“指数函数都是单调函数”中
省略了“所有的”,所以该命题是全称命题且为真命题.
[方法归纳] 判定一个语句是全称命题还是存在性命题可分三个步骤: (1)首先判定语句是否为命题,若不是命题,就当然不是全称 命题或存在性命题. (2)若是命题,再分析命题中所含的量词,含有全称量词的命 题是全称命题,含有存在量词的命题是存在性命题. (3)当命题中不含量词时,要注意理解命题含义的实质.
2.(2012·高考辽宁卷改编)已知命题p:∀x1,x2∈R,
(f(x2)-f(x1))(x2-x1)≥0,则﹃p是_③_______.
①∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0; ②∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0; ③∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0; ④∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0. 解析:全称命题的否定为存在性命题.故﹃p为:
第1章 量词
§1.3 全称量词与存在量词1.3.1 量 词学习目标 1.理解全称量词与存在量词的含义.2.理解并掌握全称命题和存在性命题的概念.3.能判定全称命题和存在性命题的真假并掌握其判断方法.知识点一 全称量词与全称命题思考 观察下列命题:①每一个三角形都有内切圆;②所有实数都有算术平方根;③对一切有理数x,5x+2还是有理数.以上三个命题中分别使用了什么量词?根据命题的实际含义能否判断命题的真假.答案 命题①②③分别使用量词“每一个”“所有”“一切”.命题①③是真命题,命题②是假命题.三个命题中的“每一个”“所有”“一切”都有全部、所有的意义,要求命题对某个集合的所有元素都成立,而负实数没有算术平方根,故命题②为假命题.梳理 (1)(2)判断全称命题真假性的方法:对于全称命题“∀x∈M,p(x)”,要判断它为真,需要对集合M中的每个元素x,证明p(x)成立;要判断它为假,只需在M中找到一个x,使p(x)不成立,即“∃x∈M,p(x)不成立”.知识点二 存在量词与存在性命题思考 观察下列命题:①有些矩形是正方形;②存在实数x,使x>5;③至少有一个实数x,使x2-2x+2<0.以上三个命题分别使用了什么量词?根据命题的实际含义能否判断命题的真假.答案 命题①②③分别使用了量词“有些”“存在”“至少有一个”.命题①②是真命题,命题③是假命题.三个命题中的“有些”“存在”“至少有一个”等词都是对某个集合内的个别元素而言,要说明这些命题是真命题,只要举出一个例子即可.所以命题①②是真命题,而对任意实数x,x2-2x+2都大于0,所以命题③为假命题.梳理 (1)(2)判断存在性命题真假性的方法:要判断一个存在性命题是真命题,只要在限定集合M中,至少能找到一个x=x0,使p(x0)成立即可,否则,这一存在性命题是假命题.1.“某些”“有个”“有的”等短语不是存在量词.( × )2.全称命题一定含有全称量词,存在性命题一定含有存在量词.( × )3.全称量词的含义是“任意性”,存在量词的含义是“存在性”.( √ )类型一 全称命题与存在性命题的识别例1 判断下列语句是全称命题还是存在性命题:(1)凸多边形的外角和等于360°;(2)有的向量方向不定;(3)对任意角±,都有sin2±+cos2±=1;(4)有一个函数,既是奇函数又是偶函数;(5)若一个四边形是菱形,则这个四边形的对角线互相垂直.考点 全称量词及全称命题、存在量词及存在性命题题点 识别全称命题和存在性命题解 (1)可以改写为“所有的凸多边形的外角和都等于360°”,故为全称命题.(2)含有存在量词“有的”,故是存在性命题.(3)含有全称量词“任意”,故是全称命题.(4)含有存在量词“有一个”,故为存在性命题.(5)若一个四边形是菱形,也就是所有的菱形,故为全称命题.反思与感悟 判断一个语句是全称命题还是存在性命题的思路跟踪训练1 判断下列命题是全称命题还是存在性命题,并用符号“∀”或“∃”表示下列命题:(1)自然数的平方大于或等于零;(2)对每一个无理数x,x2也是无理数;(3)有的函数既是奇函数又是增函数;(4)对于数列{}nn+1,总存在正整数n,使得a n与1之差的绝对值小于0.01.考点 全称量词及全称命题、存在量词及存在性命题题点 识别全称命题和存在性命题解 (1)是全称命题,表示为∀x∈N,x2≥0.(2)是全称命题,∀x∈{x|x是无理数},x2是无理数.(3)是存在性命题,∃f(x)∈{函数},f(x)既是奇函数又是增函数.(4)是存在性命题,∃n∈N*,|a n-1|<0.01,其中a n=nn+1.类型二 全称命题与存在性命题的真假判断例2 判断下列命题的真假,并给出证明:(1)任意两向量a,b,若a·b>0,则a,b的夹角为锐角;(2)∃x,y为正实数,使x2+y2=0;(3)在平面直角坐标系中,任意有序实数对(x,y)都对应一点P;(4)∀x∈N,x2>0.考点 全称量词及全称命题、存在量词及存在性命题题点 全称命题和存在性命题真假判断解 (1)∵a·b=|a||b|·cos 〈a,b〉>0,∴cos 〈a,b〉>0.又0≤〈a,b〉≤À,∴0≤〈a,b〉<π2,即a,b的夹角为零或锐角.故它是假命题.(2)∵当x2+y2=0时,x=y=0,∴不存在x,y为正实数,使x2+y2=0,故它是假命题.(3)由有序实数对与平面直角坐标系中的点的对应关系知,它是真命题.(4)∵0∈N,02=0,∴命题“∀x∈N,x2>0”是假命题.反思与感悟 要判定一个全称命题是真命题,必须对限定集合M中的每个元素x验证p(x)成立;但要判定全称命题是假命题,却只要能举出集合M中的一个x=x0,使得p(x0)不成立即可(这就是通常所说的“举出一个反例”).跟踪训练2 有下列四个命题:①∀x∈R,2x2-3x+4>0;②∀x∈{1,-1,0},2x+1>0;③∃x∈N,x2≤x;④∃x∈N*,x为29的约数,其中真命题的个数为________.考点 全称量词及全称命题、存在量词及存在性命题题点 全称命题和存在性命题真假判断答案 3解析 ①中,2x2-3x+4=2(x-342+238>0,故①正确;②中,当x=-1时,2x+1<0,故②不正确;③中,当x=0或1时,x2≤x,故③正确;④中,∃29∈N*,29为29的约数,故④正确.∴真命题的个数为3.类型三 全称命题、存在性命题的应用例3 ∀x∈[-1,2],使4x-2x+1+2-a<0恒成立,求实数a的取值范围.考点 全称量词及全称命题、存在量词及存在性命题题点 由全称命题和存在性命题求参数范围解 已知不等式化为22x-2·2x+2-a<0,①令t=2x,∵x∈[-1,2],∴t∈[]12,4,则不等式①化为t2-2t+2-a<0,即a>t2-2t+2,原命题等价于∀t∈[]12,4,a>t2-2t+2恒成立,令y=t2-2t+2=(t-1)2+1,当t∈[]12,4时,y max=10.∴只需a>10即可.即所求实数a的取值范围是(10,+∞).引申探究本例改为:∃x∈[-1,2],使4x-2x+1+2-a<0成立,求实数a的取值范围.解 已知不等式化为22x-2·2x+2-a<0,①令t=2x,∵x∈[-1,2],∴t∈[]12,4,则不等式①化为t2-2t+2-a<0,即a>t2-2t+2,原命题等价于∃t∈[]12,4,使a>t2-2t+2成立.令y=t2-2t+2=(t-1)2+1,当t∈[]12,4时,y min=1.∴只需a>1即可.∴a的取值范围为(1,+∞).反思与感悟 有解和恒成立问题是存在性命题和全称命题的应用,注意二者的区别.跟踪训练3 (1)已知关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,求实数a的取值范围;(2)令p(x):ax2+2x+1>0,若对∀x∈R,p(x)是真命题,求实数a的取值范围.考点 全称量词及全称命题、存在量词及存在性命题题点 由全称命题和存在性命题求参数范围解 (1)∵关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,∴”=(2a+1)2-4(a2+2)≥0,即4a-7≥0,解得a≥74,∴实数a的取值范围为[74,+∞.(2)∵对∀x∈R,p(x)是真命题,∴对∀x∈R,ax2+2x+1>0恒成立,当a=0时,不等式为2x+1>0不恒成立,当a≠0时,若不等式恒成立,则{a>0,Δ=4-4a<0,∴a>1,即a的取值范围为(1,+∞).1.下列命题是“∃x∈R,x2>3”的表述方法的有________.①有一个x∈R,使得x2>3;②对有些x∈R,使得x2>3;③任选一个x∈R,使得x2>3;④至少有一个x∈R,使得x2>3.考点 存在量词与存在性命题题点 识别存在性命题答案 ①②④2.下列命题中全称命题的个数是________.①任意一个自然数都是正整数;②有的等差数列也是等比数列;③三角形的内角和是180°.考点 全称量词及全称命题题点 识别全称命题答案 2解析 ①③是全称命题.3.下列存在性命题是假命题的是________.①存在x∈Q,使得2x-x3=0;②存在x∈R,使得x2+x+1=0;③有的素数是偶数;④有的有理数没有倒数.考点 存在量词与存在性命题题点 存在性命题真假的判断答案 ②解析 对于任意的x∈R,x2+x+1=(x+122+34>0恒成立,因此,使x2+x+1=0的实数不存在,所以②为假命题.4.对任意的x>3,x>a都成立,则a的取值范围为________.考点 全称量词及全称命题题点 恒成立求参数的范围答案 (-∞,3]解析 只有当a≤3时,对任意的x>3,x>a都成立.5.用量词符号“∀”“∃”表述下列命题:(1)凸n边形的外角和等于2 À.(2)有一个有理数x满足x2=3.考点 全称量词及全称命题、存在量词及存在性命题题点 识别全称命题和存在性命题解 (1)∀x∈{x|x是凸n边形},x的外角和是2 À.(2)∃x∈Q,x2=3.1.判断命题是全称命题还是存在性命题,主要是看命题中是否含有全称量词或存在量词,有些全称命题虽然不含全称量词,可以根据命题涉及的意义去判断.2.要确定一个全称命题是真命题,需保证该命题对所有的元素都成立;若能举出一个反例说明命题不成立,则该全称命题是假命题.3.要确定一个存在性命题是真命题,举出一个例子说明该命题成立即可;若经过逻辑推理得到命题对所有的元素都不成立,则该存在性命题是假命题.一、填空题1.下列命题中,是全称命题且是真命题的是________.(填序号)①对任意的a,b∈R,都有a2+b2-2a-2b+2<0;②菱形的两条对角线相等;③∀x∈R,x2=x;④对数函数在定义域上是单调函数.考点 全称量词及全称命题题点 全称命题真假的判断答案 ④解析 ①中的命题是全称命题,但a2+b2-2a-2b+2=(a-1)2+(b-1)2≥0,故是假命题;②中的命题是全称命题,但是假命题;③中的命题是全称命题,但x2=|x|,故是假命题;很明显④中的命题是全称命题且是真命题.2.下列命题中,既是真命题又是存在性命题的是________.(填序号)①存在一个角±,使得tan(90°-±)=tan ±;②存在实数x,使得sin x=π2;③对一切±,sin(180°-±)=sin ±;④sin(±-²)=sin ±cos ²-cos ±sin ².考点 存在量词与存在性命题题点 存在性命题真假的判断答案 ①解析 ∵当±=45°时,tan(90°-45°)=tan 45°,∴①为真命题,且为存在性命题;②中对∀x∈R,有sin x≤1<π2,∴②为假命题;③④都是全称命题.3.下列命题中的假命题是________.(填序号)①∃x∈R,lg x=0;②∃x∈R,tan x=1;③∀x∈R,x3>0;④∀x∈R,2x>0.考点 全称量词及全称命题、存在量词及存在性命题题点 全称命题和存在性命题真假判断答案 ③解析 对于①,当x=1时,lg x=0,正确;对于②,当x=π4时,tan x=1,正确;对于③,当x<0时,x3<0,错误;对于④,∀x∈R,2x>0,正确.4.已知命题:“∃x∈{x|-1<x<1},使等式x2-x-m=0成立”是真命题,则实数m的取值范围为________.考点 存在量词与存在性命题题点 存在性命题求参数的范围答案 [-14,2解析 已知命题:“∃x∈{x|-1<x<1},使等式x2-x-m=0成立”是真命题,得f(x)=x2-x-m=0在(-1,1)有解,由图象对称轴x=12,则 {Δ=1+4m≥0, f-1=1+1-m>0,得m∈[-14,2.5.若命题“∃x∈[1,2],使x2+2x+a≥0”为真命题,则实数a的取值范围为____________.考点 存在量词与存在性命题题点 存在性命题求参数的范围答案 [-8,+∞)解析 令f(x)=x2+2x+a,x∈[1,2].∵f(x)在[1,2]上为增函数,∴f(x)max=f(2)=8+a,由题意知,8+a≥0,得a≥-8.6.若“∀x∈[]0,π4,tan x≤m”是真命题,则实数m的最小值为________.考点 全称量词及全称命题题点 恒成立求参数的范围答案 1解析 “∀x∈[]0,π4,tan x≤m”是真命题,当x∈[]0,π4时,tan x≤1,所以m≥1.故实数m的最小值为1.7.设∀x∈R,函数y=lg(mx2-4mx+m+3)有意义,则实数m的取值范围为__________.考点 全称量词及全称命题题点 恒成立求参数的范围答案 [0,1)解析 由题意,得mx2-4mx+m+3>0对任意x∈R都成立,当m=0时,显然成立;当 {m>0,-4m2-4mm+3<0,即0<m<1时,不等式也成立;当m<0时不符合题意.所以实数m的取值范围为[0,1).8.已知命题p:∀x∈R,2x2-2x+1≤0,命题q:∃x∈R,sin x+cos x=2,则下列判断正确的是________.(填序号)①“p且q”是真命题;②“p或q”是真命题;③q是假命题;④“非p”是真命题.考点 全称量词及全称命题、存在量词及存在性命题题点 全称命题和存在性命题真假判断答案 ②④解析 由题意知,p假q真,故②④正确.9.在R上定义运算⊙:x⊙y=x(1-y).∀x∈R,不等式(x-a)⊙(x+a)<1恒成立,则实数a的取值范围为________.考点 全称量词及全称命题题点 恒成立求参数的范围答案 (-12,32解析 由题意,知(x-a)⊙(x+a)=(x-a)(1-x-a)=x-x2+a2-a<1,即x2-x+1>a2-a.∴对∀x∈R,不等式x2-x+1>a2-a恒成立,即(x2-x+1)min>a2-a恒成立.又x2-x+1=(x-122+34≥34,∴a2-a<(x2-x+1)min=34,解得-12<a<32,∴a的取值范围为(-12,32.10.已知命题p:“∀x∈[0,1],a≥e x”,命题q:“∃x∈R,x2+4x+a=0”,若命题“p∧q”是真命题,则实数a的取值范围为________.考点 全称量词及全称命题、存在量词及存在性命题题点 由全称命题和存在性命题真假求参数范围答案 [e,4]解析 由命题“p∧q”是真命题,得命题p,q都是真命题.因为x∈[0,1],所以e x∈[1,e],所以a≥e;∃x∈R,x2+4x+a=0,即方程x2+4x+a=0有实数根,所以”=42-4a≥0,解得a≤4,取交集得a∈[e,4].二、解答题11.判断下列命题是不是全称命题或存在性命题,若是,用符号表示,并判断其真假:(1)有一个实数±,使sin2±+cos2±≠1;(2)任何一条直线都存在斜率;(3)所有的实数a,b,方程ax+b=0恰有唯一解;(4)存在实数x,使得1x2-x+1=2.考点 全称量词及全称命题、存在量词及存在性命题题点 由全称命题和存在性命题真假求参数范围解 (1)是一个存在性命题,用符号表示为“∃±∈R,sin2±+cos2±≠1”,是一个假命题.(2)是一个全称命题,用符号表示为“∀直线l,l都存在斜率”,是一个假命题.(3)是一个全称命题,用符号表示为“∀a,b∈R,方程ax+b=0恰有唯一解”,是一个假命题.(4)是一个存在性命题,用符号表示为“∃x∈R,1x2-x+1=2”,是一个假命题.12.已知命题p:∀x∈[1,2],x2-a≥0,命题q:∃x∈R,x2+2ax+2-a=0.若命题“p∧q”是真命题,求实数a的取值范围.考点 全称量词及全称命题、存在量词及存在性命题题点 由全称命题和存在性命题真假求参数范围解 对于p:∀x∈[1,2],x2-a≥0,即a≤x2,当x∈[1,2]时恒成立,∴a≤1,∴p:a≤1.对于q:∃x∈R,x2+2ax+2-a=0,即方程x2+2ax+2-a=0有实根,∴”=4a2-4(2-a)≥0,∴a≤-2或a≥1.∴q:a≤-2或a≥1.又p∧q为真,故p,q都为真,∴{a≤1,a≤-2或a≥1,∴a≤-2或a=1,∴实数a的取值范围为{a|a≤-2或a=1}.13.已知函数f(x)=x2-2x+5.(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立?并说明理由;(2)若存在实数x,使不等式m-f(x)>0成立,求实数m的取值范围.考点 全称量词及全称命题、存在量词及存在性命题题点 由全称命题和存在性命题真假求参数范围解 (1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成立,只需m>-4即可.故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,此时m>-4.(2)不等式m-f(x)>0可化为m>f(x).若存在实数x,使不等式m>f(x)成立,只需m>f(x)min.又f(x)=(x-1)2+4,所以f(x)min=4,故m>4.故所求实数m的取值范围是(4,+∞).三、探究与拓展14.已知命题p:f(x)=1-t·3x对∀x∈(-∞,0]有意义;命题q:数列{a n}中,a n=n,且对∀n∈N*,均有1a1a2+1a2a3+…+1an-1an+1anan+1<log21+t1-t恒成立.若命题p与q有且仅有一个正确,试求实数t的取值范围.考点 全称量词及全称命题题点 恒成立求参数的范围解 (1)对于命题p,由f(x)=1-t·3x在x∈(-∞,0]上有意义,知1-t·3x≥0,x∈(-∞,0]恒成立,即t≤(13x,x∈(-∞,0]恒成立,解得t≤1,所以,若命题p成立,则t≤1.(2)对于命题q,因为a n=n,所以1a1a2+1a2a3+…+1anan+1=(1-12+(12-13+…+(1n-1n+1=1-1n+1<1,所以log21+t1-t≥1,解得13≤t<1.因为命题p与q有且仅有一个正确,所以,若命题p成立,q不成立,则{t≤1,t<13或t≥1,所以t=1或t<13,若命题p不成立,q成立,{t>1,13≤t<1,解得t∈∅.综上可知,t的取值范围是{}t|t=1或t<13.15.是否存在k和等差数列{a n},使ka2n-1=S2n-S n+1,其中S2n,S n+1分别是等差数列{a n}的前2n项,前n+1项的和.若存在,试求出常数k和数列{a n}的通项;若不存在,请说明理由.考点 存在量词与存在性命题题点 存在性命题求参数的范围解 假设存在.设a n=pn+q(p,q为常数),则ka2n-1=kp2n2+2kpqn+kq2-1,S n=12pn(n+1)+qn.S2n-S n+1=32pn2+(q-p2n-(p+q),则kp2n2+2kpqn+kq2-1=32pn2+(q-p2n-(p+q).故有 {kp2=32p, ①2kpq=q-p2,②kq2-1=-p+q,③由①,得p=0或kp=32.当p=0时,由②,得q=0,而p=q=0不适合③,故p≠0.把kp=32代入②,得q=-p4;把q=-p4代入③,由kp=32,得p=3227.从而q=-827,k=8164.故存在常数k=8164及等差数列a n=3227n-827,满足题意.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.1 量词[对应学生用书P12]全称量词与全称命题观察下列命题:(1)对任意实数x,都有x>5.(2)对任意一个x(x∈Z),3x+1是整数.问题:上述两个命题各表示什么意思?提示:(1)表示对每一个实数x,必定有x>5;(2)对所有的整数x,3x+1必定是整数.全称量词和全称命题全称量词所有、任意、每一个、任给符号表示∀x表示“对任意x”全称命题含有全称量词的命题一般形式∀x∈M,p(x)存在量词和存在性命题观察下列语句:(1)存在一个实数x,使3x+1=7.(2)至少有一个x∈Z,使x能被3和4整除.问题:上述两个命题各表述什么意思?提示:(1)表示有一个实数x,满足3x+1=7;(2)存在一个整数Z,满足能被3和4整除.存在量词和存在性命题存在量词有一个、有些、存在一个符号表示“∃x”表示“存在x”存在性命题含有存在量词的命题一般形式∃x∈M,p(x)1.判断命题是全称命题还是存在性命题,主要是看命题中是否含有全称量词和存在量词,有些全称命题虽然不含全称量词,但可以根据命题涉及的意义去判断.2.要确定一个全称命题是真命题,需保证该命题对所有的元素都成立;若能举出一个反例说明命题不成立,则该全称命题是假命题.3.要确定一个存在性命题是真命题,举出一个例子说明该命题成立即可;若经过逻辑推理得到命题对所有的元素都不成立,则该存在性命题是假命题.[对应学生用书P12]全称命题、存在性命题的判断[例1] 判断下列命题是全称命题还是存在性命题.(1)若a>0且a≠1,则对任意x,a x>0;(2)对任意实数x1,x2,若x1<x2,则tan x1<tan x2;(3)存在实数T,使得|sin(x+T)|=|sin x|;(4)存在实数x,使得x2+1<0.[思路点拨] 分析每一个命题中的量词,再判断.[精解详析] (1)、(2)含有全称量词“任意”,是全称命题.(3)、(4)含有存在量词“存在”,是存在性命题.[一点通]判断一个语句是全称命题还是存在性命题的步骤:(1)判断此语句是否为命题;(2)看命题中是否含有量词,并判断该量词是全称量词还是存在量词;(3)对不含或省略量词的命题,要根据命题涉及的实际意义进行判断.1.下列命题中,是全称命题的是________;是存在性命题的是________.(填序号)①正方形的四条边相等;②有两个角相等的三角形是等腰三角形;③正数的平方根不等于0;④至少有一个正整数是偶数.解析:①可表述为“每一个正方形的四条边相等”,是全称命题;②是全称命题,即“凡是有两个角相等的三角形都是等腰三角形”;③可表述为“所有正数的平方根不等于0”是全称命题;④是存在性命题.答案:①②③④2.判断下列命题是全称命题还是存在性命题:(1)指数函数都是单调函数;(2)至少有一个整数,它既能被2整除,又能被5整除;(3)∀x∈{x|x是无理数},x2是无理数;(4)∃x∈{x|x∈Z},log2x>0;(5)负数的平方是正数;(6)有的实数是无限不循环小数;(7)每个二次函数的图像都与x轴相交.解:(1)中含有全称量词“都”,所以是全称命题.(2)中含有存在量词“至少有一个”,所以是存在性命题.(3)中含有全称量词符号“∀”,所以是全称命题.(4)中含有存在量词符号“∃”,所以是存在性命题.(5)中省略了全称量词“都”,所以是全称命题.(6)中含有存在量词“有的”,所以是存在性命题.(7)中含有全称量词“每个”,所以是全称命题.全称命题、存在性命题的表述[例2] 判断下列命题是全称命题还是存在性命题,并用量词符号“∀”,“∃”表述:(1)凸n边形的外角和等于2π;(2)有一个有理数x,满足x2=3;(3)对任意角α,都有sin2α+cos2α=1.[精解详析] (1)全称命题:∀x∈{x|x是凸n边形},x的外角和是2π.(2)存在性命题:∃x∈Q,x2=3.(3)全称命题:∀α∈R,sin2α+cos2α=1.[一点通] 准确理解全称命题和存在性命题的概念,熟练应用常用的全称量词和存在量词.任何一个全称命题和存在性命题都有多种表述方式,但用符号“∀”“∃”表述却很规范,就是一般式.全称命题:∀x∈M,p(x);存在性命题:∃x∈M,p(x).3.将下列命题用量词符号“∀”或“∃”表示:(1)整数中1最小;(2)方程ax2+2x+1=0(a<1)至少存在一个负根;(3)对于某些实数x,有2x+1>0;(4)若直线l垂直于平面α内任一直线,则l⊥α.解:(1)∀x∈Z,x≥1.(2)∃x<0,有ax2+2x+1=0(a<1).(3)∃x∈R,有2x+1>0.(4)若∀a⊂α,l⊥a,则l⊥α.全称命题和存在性命题真假的判断[例3] 判断以下命题是不是全称命题或存在性命题,并判断真假:(1)有一个实数α,sin2α+cos2α≠1;(2)任何一条直线都存在斜率;(3)对所有的实数a,b,方程ax+b=0恰有一解;(4)存在实数x,使1x2-x+1=2.[思路点拨] 应先分清所给命题是全称命题还是存在性命题,再判断真假.[精解详析] (1)是一个存在性命题,是假命题;(2)是一个全称命题,是假命题;(3)是一个全称命题,是假命题;(4)是一个存在性命题,是假命题.[一点通]1.全称命题的真假判断:要判定一个全称命题是真命题,必须对限定集合M中的每个元素x验证p(x)成立;但要判定全称命题是假命题,却只要能举出集合M中的一个元素x=x0,使得p(x0)不成立即可.2.存在性命题的真假判断:要判定一个存在性命题是真命题,只要在限定集合M中,找到一个元素x=x0,使p(x0)成立即可;否则,这一存在性命题就是假命题.4.给出下列命题:①∀x ∈⎝⎛⎭⎪⎫0,π2,tan x >sin x ;②∀x ∈R,3x>0;③∃x ∈R ,sin x +cos x =2; ④∃x ∈R ,lg x =0.其中为真命题的是________.(填入所有真命题的序号)解析:①中,由于x ∈⎝ ⎛⎭⎪⎫0,π2,所以sin x >0,0<cos x <1,所以tan x -sin x =sin x cos x -sin x =sin x (1-cos x )cos x>0,所以①是真命题;②中,函数y =3x,x ∈R 的值域是(0,+∞),所以②是真命题;③中,函数y =sin x +cos x = 2 sin ⎝⎛⎭⎪⎫x +π4,x ∈R 的值域是[-2,2],又2∉[-2, 2 ],所以③是假命题;④中,由于lg 1=0,所以④是真命题. 答案:①②④5.判断下列全称命题的真假. (1)所有的素数是奇数; (2)∀x ∈R ,x 2+1≥1;(3)对每一个无理数x ,x 2也是无理数.解:(1)2是素数,但不是奇数.所以,全称命题“所有的素数是奇数”是假命题. (2)∀x ∈R ⇒x 2≥0⇒x 2+1≥1.所以,全称命题“∀x ∈R ,x 2+1≥1”是真命题. (3)2是无理数,但(2)2=2是有理数.所以,“对每一个无理数x ,x 2也是无理数”是假命题.6.分别判断下列存在性命题的真假: (1)有些向量的坐标等于其起点的坐标; (2)存在x ∈R ,使sin x -cos x =2. 解:(1)真命题.设A (x 1,y 1),B (x 2,y 2),AB u u u r =(x 2-x 1,y 2-y 1),由⎩⎪⎨⎪⎧x 2-x 1=x 1,y 2-y 1=y 1,得⎩⎪⎨⎪⎧x 2=2x 1,y 2=2y 1.如A (1,3),B (2,6),AB u u u r=(x 2-x 1,y 2-y 1)=(1,3),满足题意.(2)假命题.由于sin x -cos x =2⎝⎛⎭⎪⎫22sin x -22cos x =2sin ⎝ ⎛⎭⎪⎫x -π4的最大值为2,所以不存在实数x ,使sin x -cos x =2.1.判定命题是全称命题还是存在性命题,主要方法是看命题中是否含有全称量词和存在量词;另外,有些全称命题并不含有全称量词,这时我们就要根据命题涉及的意义去判断.2.要判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中每个元素x ,证明p (x )成立;如果在集合M 中找到一个元素x 0,使得p (x 0)不成立,那么这个全称命题就是假命题.3.要判定存在性命题“∃x ∈M ,p (x )”是真命题,只需在集合M 中找到一个元素x 0,使p (x 0)成立即可;如果在集合M 中,使p (x )成立的元素x 不存在,那么这个存在性命题是假命题.[对应课时跟踪训练(五)]1.下列命题: ①有的质数是偶数;②与同一平面所成的角相等的两条直线平行; ③有的三角形的三个内角成等差数列; ④与圆只有一个公共点的直线是圆的切线,其中是全称命题的是________,是存在性命题的是________.(只填序号) 解析:根据所含量词可知②④是全称命题,①③是存在性命题. 答案:②④ ①③2.下列命题中的假命题是________. ①∀x ∈R,2x -1>0;②∀x ∈N *,(x -1)2>0; ③∃x ∈R ,lg x <1; ④∃x ∈R ,tan x =2.解析:对②,x =1时,(1-1)2=0,∴②假. 答案:②3.用符号“∀”或“∃”表示下面含有量词的命题:(1)实数的平方大于或等于0: ____________________________________________; (2)存在一对实数,使3x -2y +1≥0成立: _________________________________. 答案:(1)∀x ∈R ,x 2≥0 (2)∃x ∈R ,y ∈R,3x -2y +1≥04.命题“∀x ∈R +,2x +1x>a 成立”是真命题,则a 的取值范围是________.解析:∵x ∈R +,∴2x +1x≥22,∵命题为真,∴a <2 2. 答案:(-∞,22)5.已知“∀x ∈R ,ax 2+2ax +1>0”为真命题,则实数a 的取值范围是________. 解析:当a =0时,不等式为1>0, 对∀x ∈R,1>0成立.当a ≠0时,若∀x ∈R ,ax 2+2ax +1>0,则⎩⎪⎨⎪⎧a >0,Δ=4a 2-4a <0,解得0<a <1.综上,a 的取值范围为[0,1). 答案:[0,1)6.判断下列命题是全称命题还是存在性命题,并判断其真假: (1)对任意x ∈R ,z x>0(z >0);(2)对任意非零实数x 1,x 2,若x 1<x 2,则1x 1>1x 2;(3)∃α∈R ,使得sin(α+π3)=sin α; (4)∃x ∈R ,使得x 2+1=0.解:(1)(2)是全称命题,(3)(4)是存在性命题. (1)∵z x>0(z >0)恒成立, ∴命题(1)是真命题.(2)存在x 1=-1,x 2=1,x 1<x 2,但1x 1<1x 2,∴命题(2)是假命题.(3)当α=π3时,sin(α+π3)=sin α成立,∴命题(3)为真命题.(4)对任意x ∈R ,x 2+1>0,∴命题(4)是假命题. 7.判断下列命题的真假,并说明理由. (1)∀x ∈R ,都有x 2-x +1>12;(2)∃α,β,使cos(α-β)=cos α-cos β; (3)∀x ,y ∈N ,都有(x -y )∈N ; (4)∃x ,y ∈Z ,使2x +y =3.解:(1)法一:当x ∈R 时,x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34>12,所以该命题是真命题.法二:x 2-x +1>12⇔x 2-x +12>0,由于Δ=1-4×12=-1<0,所以不等式x 2-x +1>12的解集是R ,所以该命题是真命题.(2)当α=π4,β=π2时,cos(α-β)=cos ⎝ ⎛⎭⎪⎫π4-π2=cos ⎝ ⎛⎭⎪⎫-π4=cos π4=22,cos α-cos β=cos π4-cos π2=22-0=22,此时cos (α-β)=cos α-cos β,所以该命题是真命题.(3)当x =2,y =4时,x -y =-2∉N ,所以该命题是假命题.(4)当x =0,y =3时,2x +y =3,即∃x ,y ∈Z ,使2x +y =3,所以该命题是真命题.8.(1)对于任意实数x ,不等式sin x +cos x >m 恒成立,求实数m 的取值范围; (2)存在实数x ,不等式sin x +cos x >m 有解,求实数m 的取值范围. 解:(1)令y =sin x +cos x ,x ∈R . ∵y =sin x +cos x =2sin(x +π4)≥- 2.又∵∀x ∈R ,sin x +cos x >m 恒成立. ∴只要m <-2即可.∴所求m 的取值范围是(-∞,-2). (1)令y =sin x +cos x ,x ∈R .∵y =sin x +cos x =2sin(x +π4)∈[-2, 2 ],又∵∃x ∈R ,sin x +cos x >m 有解. ∴只要m <2即可.∴所求m 的取值范围是(-∞,2).。