【超级经典】全等三角形全判定和性质91页

合集下载

全等三角形的性质及判定(经典讲义)

全等三角形的性质及判定(经典讲义)

全等三角形的性质及判定知识要点1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等, 对应角的平分线相等.(3)全等三角形的周长、面积相等.3、全等三角形判定方法:(1)全等判定一:三条边对应相等的两个三角形全等(SSS )(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA ) (3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS) (4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS )专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等例题1:下列说法,正确的是( )A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形 例题2:如图1,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD=7cm ,DM=5cm ,∠DAM=39°,则AN =____cm ,NM =____cm ,NAB ∠= .【仿练1】如图2,已知ABC ADE ∆≅∆,AB AD =,BC DE =,那么与BAE ∠相等的角是 . 【仿练2】如图3,ABC ADE ∆≅∆,则AB= ,∠E= _.若∠BAE=120°,∠BAD=40°,则∠BAC= .、图4EDCB A图2 图3M DA NBC 图1三角形全等的判定一(SSS )相关几何语言考点∵AE=CF ∵CM 是△的中线∴_____________( )∴____________________∴__________( ) 或 ∵AC=EF∴____________________∴__________( )AB=AB ( )在△ABC 和△DEF 中∵⎪⎩⎪⎨⎧___________________________ ∴△ABC ≌△DEF ( )例1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?例2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .BFECAFE DCB ACMBA B A例3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.练习1..如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD2、如图所示,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACD B.△BDE≌△CDEC.△ABE≌△ACE D.以上都不对3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSS B.SAS C.AASD.HL4.如图,AB=AC,D为BC的中点,则△ABD≌_________.5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。

全等三角形的判定与性质

全等三角形的判定与性质

全等三角形的判定与性质在初中数学的学习中,全等三角形是一个非常重要的概念。

它不仅是解决几何问题的基础,也是培养我们逻辑思维和空间想象能力的重要工具。

今天,咱们就来好好聊聊全等三角形的判定与性质。

首先,咱们得明白啥是全等三角形。

简单来说,两个三角形的形状和大小完全相同,就叫做全等三角形。

全等三角形的对应边相等,对应角也相等。

这就好比两个一模一样的积木块,它们的边的长度和角的大小都是完全一样的。

那怎么判定两个三角形全等呢?这就有好几种方法啦。

第一种方法是“边边边”(SSS)。

如果两个三角形的三条边分别对应相等,那么这两个三角形就全等。

比如说,有两个三角形,一个三角形的三条边分别是 3 厘米、4 厘米、5 厘米,另一个三角形的三条边也分别是 3 厘米、4 厘米、5 厘米,那这两个三角形就是全等的。

第二种方法是“边角边”(SAS)。

如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形也全等。

打个比方,一个三角形的两条边分别是 6 厘米和 8 厘米,它们的夹角是 60 度;另一个三角形也有两条边分别是 6 厘米和 8 厘米,夹角同样是 60 度,那这两个三角形就全等。

第三种方法是“角边角”(ASA)。

当两个三角形的两个角及其夹边分别对应相等时,这两个三角形全等。

比如,一个三角形的两个角分别是 45 度和 60 度,它们的夹边是 7 厘米;另一个三角形的两个角也是 45 度和 60 度,夹边也是 7 厘米,那么这两个三角形就全等。

还有一种方法是“角角边”(AAS)。

如果两个三角形的两个角分别对应相等,其中一条对应角的对边也相等,那么这两个三角形全等。

举个例子,一个三角形有两个角分别是 30 度和 50 度,30 度角所对的边是 9 厘米;另一个三角形也有两个角是 30 度和 50 度,30 度角所对的边也是 9 厘米,这两个三角形就全等。

最后一种特殊的判定方法是“斜边、直角边”(HL)。

这个只适用于直角三角形,如果两个直角三角形的斜边和一条直角边分别对应相等,那么这两个直角三角形全等。

全等三角形的性质与判定(经典讲义)

全等三角形的性质与判定(经典讲义)

全等三角形的性质及判定知识要点1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等, 对应角的平分线相等.(3)全等三角形的周长、面积相等.3、全等三角形判定方法:(1)全等判定一:三条边对应相等的两个三角形全等(SSS )(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA ) (3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS) (4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS )专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等例题1:下列说法,正确的是( )A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形 例题2:如图1,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD=7cm ,DM=5cm ,∠DAM=39°,则AN =____cm ,NM =____cm ,NAB ∠= .【仿练1】如图2,已知ABC ADE ∆≅∆,AB AD =,BC DE =,那么与BAE ∠相等的角是 . 【仿练2】如图3,ABC ADE ∆≅∆,则AB= ,∠E= _.若∠BAE=120°,∠BAD=40°,则∠BAC= .、图4EDCB A图2 图3M DA NBC 图1三角形全等的判定一(SSS )相关几何语言考点∵AE=CF ∵CM 是△的中线∴_____________( )∴____________________∴__________( ) 或 ∵AC=EF∴____________________∴__________( )AB=AB ( )在△ABC 和△DEF 中∵⎪⎩⎪⎨⎧___________________________ ∴△ABC ≌△DEF ( )例1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?例2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .BFECAFE DCB ACMBA B A例3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.练习1..如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD2、如图所示,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACD B.△BDE≌△CDEC.△ABE≌△ACE D.以上都不对3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSS B.SAS C.AASD.HL4.如图,AB=AC,D为BC的中点,则△ABD≌_________.5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。

全等三角形的定义和性质

全等三角形的定义和性质
定义
两个三角形的三个内角分别对应相等 ,且三边对应成比例,则这两个三角 形相似。
性质
相似三角形的对应角相等,对应边成 比例,对应高、中线、角平分线也成 比例,周长之比等于相似比,面积之 比等于相似比的平方。
相似三角形与全等三角形联系与区别
联系
全等三角形是相似三角形的特例,当相似比为1时,相似三角 形即为全等三角形。因此,全等三角形具有相似三角形的所 有性质。
的两个基本条件。
在解决与角度有关的问题时, 可以利用全等三角形的对应角
相等这一性质来求解。
性质应用举例
1
利用全等三角形的性质可以证明线段相等、角相 等以及求解一些与三角形有关的问题。
2
例如,在证明两个三角形全等后,可以利用对应 边相等或对应角相等的性质来证明其他线段或角 的相等关系。
3
又如,在求解一些与三角形有关的问题时,可以 通过构造全等三角形来利用全等三角形的性质求 解。
根据题目给出的条件,我们可以 按照ASA判定方法来证明两个三 角形全等。首先,由已知条件可 得AB = DE,∠B = ∠E,BC = EF。因此,根据ASA判定方法, 我们可以得出△ABC ≌ △DEF。
03 2. 题目
已知△ABC中,∠C = 90°,AD平 分∠BAC交BC于点D,DE⊥AB于 点E。求证:△ACD ≌ △AED。
THANKS FOR WATCHING
感谢您的观看
解析
该命题不正确。根据相似三角形的判定定理,若两个三角形有两边对应成比例,且夹角相等, 则这两个三角形相似。但此命题中说的是“有一个角相等”,并未指明是夹角,因此不能判 定两个三角形相似。
06 总结回顾与课堂练习
关键知识点总结
• 全等三角形的定义:两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。

全等三角形的概念与性质PPT课件

全等三角形的概念与性质PPT课件

结合2,3两题,说说你是怎样寻找这些对应元素的。 ⑴写出图中相等的线段,相等的角;
相等
全等三角形的对应角有什么关系? 记作: ∆ABC≌∆A1B1C1
相等
全等三角形的性质
全等三角形的对应边相等,对应角相等。
∵△ABC≌ △DFE(已知) ∴ AB=DF, BC=FE, AC=DE ( 全等三角形的对应边相等 ) ∴ ∠ A= ∠ D, ∠ B= ∠ F , ∠ C= ∠ E
(1) △ ABE ≌ △ ACF
(2)△ BCE ≌ △ CBF (3)△ BOF ≌ △ COE
5. △ABC≌△FED
⑴写出图中相等的线段,相等的角;
⑵图中线段除相等外,还有什么关系吗? 请与同伴交流并写出来.
A
D
B
C E
F
感谢观看
O B
③ D
结合2,3两题,说说你是怎样寻找这些对 应元素的。 (1)对应角所对的边是对应边;对应边 所对的角是对应角。
(2)有公共边的,公共边是对应边;有 公共角的,公共角是对应角。
(3)相等的边是
1、如图△ ABD ≌ △CDB,若AB=4,AD=5,BD=6,则BC=
全等三角形的对应边有什么关系? 图对指结即 A●(∴写对CA中应出合∠重出应=BAB三 角 下 2合 全 角=,EA3D角所列的等所D两F形对全顶三对=,题B∠的的等点角的C,C位边三叫形边=说AF置是角对的是EE说),是对形应符对A你怎应的顶号应C是=样边对点表边D怎变应示..E样化边,并寻的和指找?对出这应它些角们对的应对元应素顶的点。、对应边、对应角。
其它的对应边有:______ A
E
对应角有:__________
∠BAD=∠CAE吗?为什么?

中考数学全等三角形的性质及判定

中考数学全等三角形的性质及判定

全等三角形的性质及判定一■知识讲解1.全等三角形的概念及性质(1)全等形的概念:两个能够完全重合的图形叫做全等形。

(2)全等形的性质:全等图形的形状和大小都相同。

(3)全等三角形的概念:能够完全重合的两个三角形叫做全等三角形。

如果A ABC能与村BC全等,记作A ABC 0 A A,BC。

(4)全等三角形的对应元素:两个三角形全等,互相重合的顶点叫对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

(5)表示方法:符号“0”读作“全等于",如△ ABC和^DEF全等,记作△ ABC/△ DEF, 如图,点A和点D,点B和点E,点C和点F是对应顶点,AB和DE、BC和EF, AC和DF是对应边,/A和N D、/B和N E、/C和N F是对应角。

(6)全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。

2.三角形全等的判定(1)边边边公理:三边对应相等的两个三角形全等,简写成,边边边”或“SSS”。

①书写格式:在列举两个三角形全等的条件时,把三个条件按顺序排列,并用大括号将它们括起来,如:^ AB = A B在A ABC和A ABC中,[AC = AC ,A A ABC 0 A ABC (SSS) BC = BC(2)边角边公理:两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”。

(3)角边角公理:两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”和“ASA”。

(4)角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边” 和“AAS”。

(5)直角三角形全等的条件:斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“ HL”。

3、要点补充要点1用“SAS”判断两个三角形全等的条件是两条边以及这两条边的夹角对应相等,应特别注意其中的夹角是两对应边的夹角而不是其中一边的对角。

用'ASA”定理来判断两个三角形全等,一定要证明这两个三角形有两个角以及这两个角的夹边对应相等;用'AAS”定理来判断两个三角形全等,要注意边是其中一角的对边。

全等三角形判定方式和解释

全等三角形判定方式和解释

全等三角形判定方式和解释一、全等三角形的基础概念全等三角形是指两个三角形能够完全重合,它们的形状和大小都相等。

全等关系是三角形的一种重要性质,它在几何学中有广泛的应用。

二、全等三角形的判定方式1. 边边边(SSS)判定法如果两个三角形的三边长度分别相等,则这两个三角形全等。

数学表示为:如果△ABC ≌△DEF,当且仅当AB = DE, BC = EF, AC = DF。

解释:这个判定法是基于三角形的定义和性质。

在平面几何中,三角形的定义是一个由三条边和三个角构成的闭合二维多边形。

因此,如果两个三角形的三条边长度相等,那么它们的角度一定相等,从而它们的形状和大小都相等。

2. 边角边(SAS)判定法如果两个三角形的两边长度相等,并且这两边所夹的角相等,则这两个三角形全等。

数学表示为:如果△ABC ≌△DEF,当且仅当AB = DE, BC = EF, 且∠BAC = ∠DEF。

解释:这个判定法也基于三角形的性质。

在一个三角形中,任何一边的长度都受到与其所夹的两个角的影响。

因此,如果两个三角形的两条边长度相等,并且这两条边所夹的角相等,那么它们的形状和大小一定相等。

3. 角边角(ASA)判定法如果两个三角形的两个角相等,并且这两个角所夹的一边相等,则这两个三角形全等。

数学表示为:如果△ABC ≌△DEF,当且仅当∠A = ∠D, ∠B = ∠E, 且AB = DF。

解释:这个判定法同样基于三角形的性质。

在一个三角形中,任何一角的度数都受到与其所夹的两边长度的影响。

因此,如果两个三角形的两个角相等,并且这两个角所夹的一边长度相等,那么它们的形状和大小一定相等。

4. 角角边(AAS)判定法如果两个三角形的两个角相等,并且其中一个角所对的一边相等,则这两个三角形全等。

数学表示为:如果△ABC ≌△DEF,当且仅当∠A = ∠D, ∠B = ∠E, 且AC = DF。

解释:这个判定法也是基于三角形的性质。

在一个三角形中,任何一角的度数都受到与其所夹的两边长度的影响。

初中数学:全等三角形的性质及判定

初中数学:全等三角形的性质及判定

初中数学:全等三角形的性质及判定一、知识点概述全等三角形是初中数学中重要的概念之一,它是指两个三角形的三边和三角度数分别相等。

全等三角形具有许多重要性质,学习全等三角形的性质及判定,对于初中数学学习来说是非常重要的。

二、重点概念解释1. 全等三角形:两个三角形的三边和三角度数分别相等时,称这两个三角形为全等三角形。

全等三角形有六个对应部分相等,即三边和三角度数各有三个对应部分相等。

2. SSS全等定理:若两个三角形的三边分别相等,则这两个三角形全等。

3. SAS全等定理:若两个三角形的一边和两个夹角分别相等,则这两个三角形全等。

4. ASA全等定理:若两个三角形的两个夹角和一边分别相等,则这两个三角形全等。

5. RHS全等定理:若两个直角三角形的一个锐角和两个斜边分别相等,则这两个三角形全等。

三、典型例题分析例题1:已知三角形ABC和三角形DEF,已知AB=DE, BC=EF,∠ABC=∠DEF,判断是否全等。

如果两个三角形不完全重合,说明它们是什么关系?解答:由题意可以知道,两个三角形的两边和一个夹角分别相等,同时根据SAS全等定理可以得出这两个三角形全等。

如果两个三角形不完全重合,那么它们就是全等但不合同的。

例题2:如图所示,已知ABCD和EFGH是两个正方形,BC=EH,证明三角形ABE和FCH全等。

解答:因为两个正方形各边相等,所以BC=EH,又因为两个正方形的一条对角线分别为AC和EG,AC=EG,所以∠ACB=∠EGH。

根据ASA全等定理可以得到三角形ABE和FCH全等。

例题3:如图所示,已知三角形ABC、ADE,且∠ABC=∠ADE. BC=DE,证明三角形ABC和ADE全等。

解答:根据题意,两个三角形的一边和两个夹角分别相等,所以根据ASA全等定理可以得到三角形ABC和ADE全等。

四、结论全等三角形的性质及判定是初中数学中的重要概念,学习全等三角形可以帮助我们了解三角形的基本性质和规律,为我们解决一系列三角形相关的问题提供了基础。

全等三角形及基本判定定理

全等三角形及基本判定定理

全等三角形全等三角形【知识要点】1.全等图形定义:两个能够重合的图形称为全等图形. 2.全等图形的性质:(1)全等图形的形状和大小都相同,对应边相等,对应角相等 (2)全等图形的面积相等3.全等三角形:两个能够完全重合的三角形称为全等三角形(1)表示方法:两个三角形全等用符号“≌”来表示,读作“全等于” 如DEF ABC ∆∆与全等,记作ABC ∆≌DEF ∆ (2)符号“≌”的含义:“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同,大小也相等,这就是全等.(3)两个全等三角形重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.(4)证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.全等三角形的判定1:SSS三边对应相等的两个三角形全等,简与成“边边边”或“SSS ”.如图,在ABC ∆和DEF ∆中⎪⎩⎪⎨⎧===DF AC EF BC DEABABC ∆∴≌DEF ∆【典型例题】例1.如图,ABC ∆≌ADC ∆,点B 与点D 是对应点,︒=∠26BAC ,且︒=∠20B ,1=∆ABC S ,求A C D D C A D ∠∠∠,,的度数及ACD ∆的面积.A BC DEFABDC例2.如图,ABC ∆≌DEF ∆,cm CE cm BC A 5,9,50==︒=∠,求ED F ∠的度数及CF 的长.例3.如图,已知:AB=AD ,AC=AE ,BC=DE ,求证:CAD BAE ∠=∠例4.如图AB=DE ,BC=EF ,AD=CF ,求证:(1)ABC ∆≌DEF ∆ (2)AB//DE ,BC//EFA B E C FD A BE CD ABCDFE例5.如图,在,90︒=∠∆C ABC 中D 、E 分别为AC 、AB 上的点,且BE=BC ,DE=DC ,求证:(1)AB DE ⊥;(2)BD 平分ABC ∠ (角平分线的相关证明及性质)全等三角形判定定理2:SAS两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS ”。

全等三角形及性质PPT课件

全等三角形及性质PPT课件

角角边定理
两角和一边对应相等的两个三角 形全等,简称AAS。
若两个三角形有两个角相等,且 其中一个角的对边也相等,则这
两个三角形全等。
举例:若△ABC和△DEF中, ∠A=∠D,∠B=∠E,BC=EF,则
△ABC≌△DEF。
04
全等三角形与相似三角形关系
相似三角形定义及性质
定义:两个三角形如果它们 的对应角相等,则称这两个
行推导。
全等三角形在几何证明中作用
01
02
03
04
证明线段相等
通过全等三角形的对应边相等 来证明两条线段相等。
证明角相等
通过全等三角形的对应角相等 来证明两个角相等。
证明垂直关系
通过全等三角形的性质来证明 两条直线垂直。
证明平行关系
通过全等三角形的性质来证明 两条直线平行。
典型例题解析
例题1
已知△ABC和△DEF全等,且AB=DE,BC=EF,∠B=∠E。 求证:AC=DF。
HL全等(直角三角形)
在直角三角形中,斜边和一条直 角边分别相等的两个三角形全等 。
典型例题解析
解析
根据SAS全等的判定方法,已知两边和夹角分别相等,因 此可以判定△ABC和△DEF全等。
例2
已知△ABC中,∠C = 90°,AC = BC,AD平分∠CAB交BC 于D,DE⊥AB于E,且AB = 6cm,求△DEB的周长。
边角边判定
如果两个多边形的一组对 应边和它们之间的对应角 都相等,则它们是全等的 。
角边角判定
如果两个多边形的一组对 应角和它们之间的夹边都 相等,则它们是全等的。
典型例题解析
1. 例题一
已知两个四边形ABCD和EFGH,其中AB=EF, BC=FG, CD=GH, DA=HE,且∠A=∠E, ∠B=∠F, ∠C=∠G, ∠D=∠H。求证:四边形ABCD与四边形EFGH全等。

全等三角形全部概念

全等三角形全部概念

全等三角形全部概念全等三角形是指具有相同形状和大小的三角形,它们的所有对应边长度相等,所有对应角度相等。

全等三角形的性质和定理在几何学中起着重要作用,对于解决各种三角形相关的问题具有重要意义。

以下是关于全等三角形的全部概念、性质和定理的详细介绍:一、全等三角形的定义:1. 全等三角形定义:如果两个三角形的所有对应边相等,对应角相等,那么这两个三角形就是全等的。

2. 全等三角形的记法:当两个三角形全等时,通常用符号“≌”来表示,如三角形ABC≌三角形DEF。

3. 全等三角形的条件:两个三角形全等的条件是:对应的三边相等,对应的内角相等。

即两个三角形的任意两对边相等,夹角相等或对应角相等,则这两个三角形全等。

二、全等三角形的性质:1. 全等三角形的性质1:全等的三角形的对应边相等,对应角相等。

2. 全等三角形的性质2:全等的三角形的对应角的对边也相等。

3. 全等三角形的性质3:全等的三角形的各边都是对应边的相等。

4. 全等三角形的性质4:如果两个三角形全等,则它们的周长相等。

5. 全等三角形的性质5:如果两个三角形全等,则它们的面积也相等。

6. 全等三角形的性质6:如果三角形ABC≌三角形DEF,则三角形ABC的内角和等于三角形DEF的内角和。

7. 全等三角形的性质7:全等三角形对应边之间的比例相等,即对应边之比相等。

8. 全等三角形的性质8:全等的三角形的顶点到对边的距离相等。

三、全等三角形的定理:1. SSS全等定理:如果一个三角形的三条边分别等于另一三角形的三条边,那么这两个三角形全等。

2. SAS全等定理:如果一个三角形的两边和夹角分别等于另一个三角形的两边和夹角,那么这两个三角形全等。

3. ASA全等定理:如果一个三角形的两个角和夹边分别等于另一个三角形的两个角和夹边,那么这两个三角形全等。

4. RHS全等定理:如果一个直角三角形的斜边和一个锐角三角形的一个锐角以及两边分别等于另一个锐角三角形的一个锐角以及两边,则这两个三角形全等。

全等三角形的性质及判定

全等三角形的性质及判定

全等三角形的性质及判定在我们的数学世界中,全等三角形是一个非常重要的概念。

它就像是一把神奇的钥匙,能够帮助我们解开许多几何问题的谜团。

接下来,让我们一起深入地了解一下全等三角形的性质及判定。

全等三角形,简单来说,就是两个三角形的形状和大小完全相同。

这意味着它们的对应边长度相等,对应角的度数也相等。

先来说说全等三角形的性质。

如果两个三角形全等,那么它们的对应边相等。

比如,△ABC 全等于△DEF,那么 AB = DE,BC = EF,AC = DF。

这就好像是两个完全一样的拼图块,对应的边必然长度一致。

对应角相等也是全等三角形的重要性质。

还是以△ABC 全等于△DEF 为例,∠A =∠D,∠B =∠E,∠C =∠F。

这些角就像是双胞胎的表情,一模一样。

全等三角形的性质在解决实际问题中非常有用。

比如说,我们知道两个三角形全等,要求其中一个三角形的某个边长或者角度,只需要根据对应关系,去查找另一个三角形中对应的边或角的信息就可以了。

接下来,咱们再聊聊全等三角形的判定。

这就像是给两个三角形做“身份鉴定”,看看它们是不是真的全等。

第一种判定方法是“边边边”(SSS)。

如果两个三角形的三条边对应相等,那么这两个三角形全等。

比如说有△ABC 和△DEF,AB =DE,BC = EF,AC = DF,那么就可以判定这两个三角形全等。

第二种是“边角边”(SAS)。

如果两个三角形的两条边及其夹角对应相等,那么这两个三角形全等。

假设在△ABC 和△DEF 中,AB =DE,∠A =∠D,AC = DF,那么就能够得出这两个三角形全等的结论。

“角边角”(ASA)也是常见的判定方法。

当两个三角形的两个角及其夹边对应相等时,这两个三角形全等。

比如在△ABC 和△DEF 中,∠B =∠E,BC = EF,∠C =∠F,那么△ABC 和△DEF 就是全等的。

还有一种判定方法是“角角边”(AAS)。

如果两个三角形的两个角和其中一个角的对边对应相等,那么这两个三角形全等。

全等三角形的性质及判定

全等三角形的性质及判定

全等三角形第1节全等三角形的性质和判定【知识梳理】1、全等图形:能够完全重合的两个图形就是全等图形.2、全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”.3、全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.4、全等三角形的判定方法:(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3) 边边边定理(SSS):三边对应相等的两个三角形全等.(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.【诊断自测】1、如果ΔABC≌ΔDBC,则AB的对应边是_____,AC的对应边是_____,∠DBC的对应角是_____,∠DCB的对应角是_____.2、如图,已知△ABE≌△DCE,AE=2 cm,BE=1.5 cm,∠A=25°,∠B=48°;那么DE=_____cm,EC=_____cm,∠C=_____°;∠D=_____°.3、如果△ABC和△DEF这两个三角形全等,点C和点E,点B和点D分别是对应点,则另一组对应点是,对应边是,对应角是,表示这两个三角形全等的式子是.【考点突破】类型一:全等形例1、由同一张底片冲洗出来的两张五寸照片的图案_____全等图案,而由同一张底片冲洗出来的五寸照片和七寸照片____全等图形。

(填“是”或者“不是”)类型二:全三角形的定义和性质例2、如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A.∠B B.∠A C.∠EMF D.∠AFB例3、如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠BAC:∠ABC:∠BCA=28:5:3,则∠α的度数为()A.90°B.85°C.80°D.75°类型三:全等三角形的判定(SSS)例4、用直尺和圆规作一个角等于己知角的作图痕迹如图所示,则作图的依据是()A.SSS B.SAS C.ASA D.AAS例5、已知:如图2-1,△RPQ中,RP=RQ,M为PQ的中点.求证:RM平分∠PRQ.分析:要证RM平分∠PRQ,即∠PRM=______,只要证______≌______证明:∵ M 为PQ 的中点(已知),∴______=______在△______和△______中,⎪⎩⎪⎨⎧===),______(____________,),(PM RQ RP 已知 ∴______≌______( ).∴ ∠PRM =______(______).即RM .例6.已知:如图,AD =BC .AC =BD .试证明:∠CAD =∠DBC .类型四:全等三角形的判定(SAS )例7. 已知:如图3-1,AB 、CD 相交于O 点,AO =CO ,OD =OB .求证:∠D =∠B .分析:要证∠D =∠B ,只要证______≌______证明:在△AOD 与△COB 中,⎪⎩⎪⎨⎧=∠=∠=),______(),______(______),(OD CO AO∴ △AOD ≌△______ ( ).∴ ∠D =∠B (______).例8、小红家有一个小口瓶(如图所示),她很想知道它的内径是多少?但是尺子不能伸在里边直接测,于是她想了想,唉!有办法了.她拿来了两根长度相同的细木条,并且把两根长木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,你知道这是为什么吗?请说明理由.(木条的厚度不计)例9、如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.类型五:全等三角形的判定(AAS和ASA)例10、某同学把一块三角形的玻璃打碎成了3块,现要到玻璃店去配一块完全一样的玻璃,同学小明知道只要带③去就行了,你知道其中的道理是()A.SAS B.SSA C.ASA D.HL例11. 如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC 全等的图形是例12、已知:如图,PM=PN,∠M=∠N.求证:AM=BN.分析:∵PM =PN ,∴ 要证AM =BN ,只要证PA =______,只要证______≌______.证明:在△______与△______中,⎪⎩⎪⎨⎧∠=∠=∠=∠),______(______),______(______),______(______ ∴ △______≌△______ ( ).∴PA =______ ( ).∵PM =PN ( ),∴PM -______=PN -______,即AM =______.例13、已知:AB ⊥AE ,AD ⊥AC ,∠E=∠B ,DE=CB .求证:AD=AC ..例14、如图,在△ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE 于点E .AD ⊥CE 于点D .求证:△DEC ≌△CDA .类型六:全等三角形的判定(HL ) 例15.已知在△ABC 和△DEF 中,∠A=∠D=90°,则下列条件中不能判定△ABC 和△DEF 全等的是( )A.AB=D E,AC=DFB.AC=EF,BC=DFC.AB=DE,BC=EFD.∠C=∠F,BC=EF例16、如图所示,在△ABC中,∠C=90°,DE⊥AB于点D,BD=BC,若AC=6,则AE+DE=_____【易错精选】1、如图所示,△ABC≌△DEC,则不能得到的结论是()A.AB=DE B.∠A=∠D C.BC=CD D.∠ACD=∠BCE2、如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为()A.22 B.24 C.26 D.283、如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=__________度A CBED【精华提炼】判定三角形全等的基本思路:SAS SS HLSSS →⎧⎪→⎨⎪→⎩找夹角已知两边 找直角 找另一边 AAS ASA SA AASSAS ⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩边为角的对边→找任意一角→ 找这条边上的另一角→已知一边一角 边就是角的一条边 找这条边上的对角→ 找该角的另一边→ ASA AA AAS →⎧⎨→⎩找两角的夹边已知两角 找任意一边 备注:寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的图形归纳起来有以下几种典型形式:⑴ 平移全等型⑵ 对称全等型⑶ 旋转全等型【本节训练】训练【1】如图,E为线段BC上一点,AB⊥BC,△ABE≌△ECD,判断AE与DE的关系,并证明你的结论.训练【2】如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.训练【3】已知图中的两个三角形全等,则∠1等于度.【训练4】.如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.基础巩固一、选择题1、下列说法:①有两条直角边对应相等的两个直角三角形全等;②有斜边对应相等的两个等腰直角三角形全等;③有一条直角边和斜边上的高对应相等的两个直角三角形全等;④有一条边相等的两个等腰直角三角形全等.其中正确的有().A、1个B、2个C、3个D、4个2、如图,△ABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三角形,使所作三角形与△ABC全等,这样的三角形最多可以画出 [ ].A.2个 B.4个 C.6个 D.8个3、下列说法正确的是()A、全等三角形是指周长和面积都一样的三角形;B、全等三角形的周长和面积都一样 ;C、全等三角形是指形状相同的两个三角形;D、全等三角形的边都相等4、下列两个三角形中,一定全等的是()A. 两个等边三角形B. 有一个角是40°,腰相等的两个等腰三角形C. 有一条边相等,有一个内角相等的两个等腰三角形D. 有一个角是100°,底相等的两个等腰三角形5、如图,△ABC与△BDE都是等边三角形,AB<BD,若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为 ( )A.AE=CD B.AE>CD C.AE<CD D.无法确定6、如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°二、填空题6、如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与B E相交于点F,若BF=AC,则∠ABC=_______7、如图,等腰直角三角形ABC的直角顶点B在直线PQ上,AD⊥PQ于D,CE⊥PQ 于E,且AD=2cm,DB=4cm,则梯形ADEC的面积是 _____.A8、(动手操作实验题)如图所示是小明自制对顶角的“小仪器”示意图:(1)将直角三角板ABC的AC边延长且使AC固定;(2)另一个三角板CDE•的直角顶点与前一个三角板直角顶点重合;(3)延长DC,∠PCD与∠ACF就是一组对顶角,已知∠1=30°,∠ACF为多少?三、简答题9、如图,已知AB=AC,∠1=∠2,AD=AE,求证:∠C=∠B.10、如图,在△ABC中,AD是∠BAC的平分线,DE、DF分别是△ABD和△ACD的高线,求证:AD⊥EF。

全等三角形判定公理以及推论

全等三角形判定公理以及推论

全等三角形判定公理以及推论一、全等三角形判定公理1. SSS(边边边)公理- 内容:三边对应相等的两个三角形全等。

- 例如:在△ABC和△DEF中,如果AB = DE,BC = EF,AC = DF,那么△ABC≌△DEF。

- 作用:当我们知道两个三角形的三条边分别相等时,就可以直接判定这两个三角形全等。

这是全等三角形判定中最基本的一种方法,不需要考虑角的大小。

2. SAS(边角边)公理- 内容:两边和它们的夹角对应相等的两个三角形全等。

- 例如:在△ABC和△DEF中,AB = DE,∠A = ∠D,AC = DF,那么△ABC≌△DEF。

这里的角必须是两条边的夹角。

- 作用:如果已知两个三角形有两条边相等且这两条边所夹的角也相等,就可以判定它们全等。

在实际解题中,经常需要通过已知条件找出对应的边和角是否满足该公理。

3. ASA(角边角)公理- 内容:两角和它们的夹边对应相等的两个三角形全等。

- 例如:在△ABC和△DEF中,∠B = ∠E,BC = EF,∠C = ∠F,那么△ABC≌△DEF。

这里的边是两个角的夹边。

- 作用:当我们知道两个三角形有两个角以及这两个角的夹边相等时,可以判定这两个三角形全等。

在证明三角形全等时,如果能找到这样的角和边的关系,就可以使用该公理。

4. AAS(角角边)推论- 内容:两角和其中一角的对边对应相等的两个三角形全等。

- 例如:在△ABC和△DEF中,∠A = ∠D,∠B = ∠E,BC = EF,那么△ABC≌△DEF。

这里是两个角相等,并且其中一个角的对边相等。

- 作用:在有些情况下,当我们知道两个三角形的两个角相等,且其中一个角的对边相等时,可以使用该推论判定全等。

它是ASA公理的一种延伸,在证明过程中可以根据已知条件灵活运用。

5. HL(斜边、直角边)公理(适用于直角三角形)- 内容:斜边和一条直角边对应相等的两个直角三角形全等。

- 例如:在Rt△ABC和Rt△DEF中,∠C = ∠F = 90°,AB = DE,AC = DF,那么Rt△ABC≌Rt△DEF。

全等三角形的性质和判定

全等三角形的性质和判定

全等三角形的性质和判定要点一、全等三角形的概念能够完全重合的两个三角形叫全等三角形.要点二、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC 与△DEF 全等,记作△ABC ≌△DEF ,其中点A 和点D ,点B 和点E ,点C 和点F 是对应顶点;AB 和DE ,BC 和EF ,AC 和DF 是对应边;∠A 和∠D ,∠B 和∠E ,∠C 和∠F 是对应角.要点三、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点四、全等三角形的判定(SSS 、SAS 、ASA 、AAS 、HL )全等三角形判定一(SSS ,SAS )全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“边角边”1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【典型例题】类型一、全等三角形的判定1——“边边边”1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .证明:∵M 为PQ 的中点(已知),∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边 ∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等).即RM 平分∠PRQ.举一反三:【变式】已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.类型二、全等三角形的判定2——“边角边”2、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .证明: ∵∠1=∠2∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠DAE在△ABC 和△ADE 中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (SAS )∴BC =DE (全等三角形对应边相等)3、如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD 中90ABE CBD BE BD ⎪∠=∠=︒⎨⎪=⎩∴△ABE ≌△CBD (SAS )∴AE =CD ,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC =90°∴AE ⊥CD举一反三:【变式】已知:如图,PC ⊥AC ,PB ⊥AB ,AP 平分∠BAC ,且AB =AC ,点Q 在PA 上,求证:QC =QB类型三、全等三角形判定的实际应用4、“三月三,放风筝”.下图是小明制作的风筝,他根据DE =DF ,EH =FH ,不用度量,就知道∠DEH =∠DFH .请你用所学的知识证明.【答案与解析】证明:在△DEH 和△DFH 中,EH FH DH DH ⎪⎨⎪=⎩=∴△DEH ≌△DFH(SSS)∴∠DEH =∠DFH .一、选择题1. △ABC 和△'''A B C 中,若AB =''A B ,BC =''B C ,AC =''A C .则( )A.△ABC ≌△'''A C BB. △ABC ≌△'''A B CC. △ABC ≌△'''C A BD. △ABC ≌△'''C B A2. 如图,已知AB =CD ,AD =BC ,则下列结论中错误的是( )A.AB ∥DCB.∠B =∠DC.∠A =∠CD.AB =BC3. 下列判断正确的是( )A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等6. 如图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,AB =CD ,BC =ED ,以下结论不正确的是( )A.EC ⊥ACB.EC =ACC.ED +AB =DBD.DC =CB二、填空题9. 如图,在△ABC 和△EFD 中,AD =FC ,AB =FE ,当添加条件_______时,就可得△ABC ≌△EFD (SSS )10. 如图,AC =AD ,CB =DB ,∠2=30°,∠3=26°,则∠CBE =_______.12. 已知,如图,AB =CD ,AC =BD ,则△ABC ≌,△ADC ≌ .三、解答题13. 已知:如图,四边形ABCD 中,对角线AC 、BD 相交于O ,∠ADC =∠BCD ,AD =BC ,求证:CO =DO .14. 已知:如图,AB ∥CD ,AB =CD .求证:AD ∥BC .分析:要证AD ∥BC ,只要证∠______=∠______,又需证______≌______.证明:∵ AB ∥CD ( ),∴ ∠______=∠______ ( ),在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______ ∴ Δ______≌Δ______ ( ).∴ ∠______=∠______ ( ).∴ ______∥______( ).15.如图,已知AB=DC,AC=DB,BE=CE求证:AE=DE.全等三角形判定3——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).要点诠释:如图,如果∠A=∠'A,AB=''A B,∠B=∠'B,则△ABC≌△AB C.'''要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)2.三个角对应相等的两个三角形不一定全等.如图,在△ABC和△ADE中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SAS AAS ASA两角对应相等ASA AAS两边对应相等SAS SSS类型一、全等三角形的判定3——“角边角”1、已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B .求证:AE =CF .证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF举一反三:【变式】如图,AB ∥CD ,AF ∥DE ,BE =CF.求证:AB =CD.类型二、全等三角形的判定4——“角角边”2、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD举一反三:【变式】如图,AD 是△ABC 的中线,过C 、B 分别作AD 及AD 的延长线的垂线CF 、BE.求证:BE =CF.【答案】证明:∵AD 为△ABC 的中线∴BD =CD∵BE ⊥AD ,CF ⊥AD ,∴∠BED =∠CFD =90°,在△BED 和△CFD 中BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等) ∴△BED ≌△CFD (AAS )∴BE =CF3、已知:如图,AC 与BD 交于O 点,AB ∥DC ,AB =DC .(1)求证:AC 与BD 互相平分;(2)若过O 点作直线l ,分别交AB 、DC 于E 、F 两点,求证:OE =OF.证明:∵AB ∥DC∴∠A=∠C在△ABO 与△CDO 中A C (AOB COD ∠∠⎧⎪∠∠⎨⎪⎩==对顶角相等) AB=CD∴△ABO ≌△CDO (AAS )∴AO =CO ,BO=DO在△AEO 和△CFO 中A C (AOE COF ∠∠⎧⎪⎨⎪∠∠⎩=AO=CO=对顶角相等) ∴△AEO ≌△CFO (ASA )∴OE =OF.一、选择题1. 能确定△ABC ≌△DEF 的条件是 ( )A .AB =DE ,BC =EF ,∠A =∠EB .AB =DE ,BC =EF ,∠C =∠EC .∠A =∠E ,AB =EF ,∠B =∠DD .∠A =∠D ,AB =DE ,∠B =∠E2.如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是 ( )图4-3 A .甲和乙 B .乙和丙 C .只有乙D .只有丙3.AD是△ABC的角平分线,作DE⊥AB于E,DF⊥AC于F,下列结论错误的是()A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF 4.如图,已知MB=ND,∠MBA=∠NDC,下列条件不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN6.如图,∠1=∠2,∠3=∠4,下面结论中错误的是()A.△ADC≌△BCD B.△ABD≌△BACC.△ABO≌△CDO D.△AOD≌△BOC二、填空题7. 如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是.(填上你认为适当的一个条件即可).8. 在△ABC和△'''C=69°,∠'B=44°,A B C中,∠A=44°,∠B=67°,∠'且AC=''B C,则这两个三角形_________全等.(填“一定”或“不一定”)9. 已知,如图,AB∥CD,AF∥DE,AF=DE,且BE=2,BC=10,则EF=________.11. 如图, 已知:∠1 =∠2 , ∠3 =∠4 , 要证BD =CD , 需先证△AEB≌△AEC , 根据是,再证△BDE ≌△,根据是.12. 已知:如图,∠B=∠DEF,AB=DE,要说明△ABC≌△DEF,(1)若以“ASA”为依据,还缺条件(2)若以“AAS”为依据,还缺条件(3)若以“SAS”为依据,还缺条件三、解答题13.阅读下题及一位同学的解答过程:如图,AB和CD相交于点O,且OA=OB,∠A=∠C.那么△AOD与△COB全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD≌△COB.证明:在△AOD和△COB中,⎪⎩⎪⎨⎧∠=∠=∠=∠),(),(),(对顶角相等已知已知COBAODOBOACA∴△AOD≌△COB (ASA).问:这位同学的回答及证明过程正确吗?为什么?14. 已知如图,E、F在BD上,且AB=CD,BF=DE,AE=CF,求证:AC与BD互相平分.15. 已知:如图, AB∥CD, OA = OD, BC过O点, 点E、F在直线AOD上, 且AE = DF.求证:EB∥CF.要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理.要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.【典型例题】类型一、直角三角形全等的判定——“HL”1、已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=CD:(2)AD∥BC.证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°在Rt △ABD 和Rt △CDB 中,AD BC BD DB⎧⎨=⎩=∴Rt △ABD ≌Rt △CDB (HL )∴AB =CD (全等三角形对应边相等)(2)由∠ADB =∠CBD∴AD ∥BC ..举一反三:【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .2、 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;( )(2)一个锐角和斜边对应相等; ( )(3)两直角边对应相等; ( )(4)一条直角边和斜边对应相等. ( )举一反三:【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.( )(2)有两边和其中一边上的高对应相等的两个三角形全等.( )(3)有两边和第三边上的高对应相等的两个三角形全等.( )3、已知:如图,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;证明:连接DC∵AD ⊥AC ,BC ⊥BD∴∠DAC =∠CBD =90°在Rt △ADC 与Rt △BCD 中,DC CD AC BD=⎧⎨⎩=∴Rt △ADC ≌Rt △BCD (HL )∴AD =BC .(全等三角形对应边相等)举一反三:【变式】已知,如图,AC 、BD 相交于O ,AC =BD ,∠C =∠D =90° .求证:OC =OD.4、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.一、选择题1.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两等腰直角三角形全等3. 能使两个直角三角形全等的条件是( )A.斜边相等B.一锐角对应相等C.两锐角对应相等D.两直角边对应相等5. 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等6. 在两个直角三角形中,若有一对角对应相等,一对边对应相等,则两个直角三角形()A.一定全等B.一定不全等C.可能全等D.以上都不是二、填空题7.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“______”.8. 已知,如图,∠A=∠D=90°,BE=CF,AC=DE,则△ABC≌_______.9. 如图,BA∥DC,∠A=90°,AB=CE,BC=ED,则AC=_________.10. 如图,已知AB⊥BD于B,ED⊥BD于D,EC⊥AC,AC=EC,若DE=2,AB=4,则DB=______.12. 如图,已知AD是△ABC的高,E为AC上一点,BE交AD于F,且BF=AC,FD=CD.则∠BAD=_______.三、解答题14. 如图,已知AB⊥BC于B,EF⊥AC于G,DF⊥BC于D,BC=DF. 求证:AC=EF.15. 如图,已知AB=AC,AE=AF,AE⊥EC,AF⊥BF,垂足分别是点E、F.求证:∠1=∠2.欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

全等三角形的性质与判定

全等三角形的性质与判定

第01讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同; 2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( ) A .5对B .4对C .3对D .2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90. 在△ABC 和△DCB 中AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌∴△DCB (SAS ) ∴∠A =∠D ⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ABE ≌∴△DCE ∴BE =CE ⑶在Rt △EFB 和Rt △EFC 中BACDEFAFC EDBBE CEEF EF=⎧⎨=⎩ ∴Rt △EFB ≌Rt △EFC (HL )故选C . 【变式题组】01.(天津)下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等02.(丽水)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.03.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ;⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是___________命题,命题2是________________命题(选择“真”或“假”填入空格).ABCDOFE【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .【解法指导】想证AF =DE ,首先要找出AF 和DE 所在的三角形.AF 在△AFB 和△AEF 中,而DE 在△CDE 和△DEF 中,因而只需证明△ABF ≌△DCE 或△AEF ≌△DFE 即可.然后再根据已知条件找出证明它们全等的条件.证明:∵FB =CE ∴FB +EF =CE +EF ,即BE =CF在△ABE 和△DCF 中, AB DCAE DF BE CF =⎧⎪=⎨⎪=⎩∴△ABE ≌△DCF (SSS ) ∴∠B =∠C在△ABF 和△DCE 中, AB DC B C BF CE =⎧⎪=⎨⎪=⎩∠∠ ∴△ABF ≌△DCE ∴AF =DE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO的长为( ) A .2B .3C .4D .502.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD ⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =___________________. \03.(北京)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE=BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .AE第1题图A BCDEBCDO第2题图ACEFBD【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【解法指导】⑴∠AFD =∠DCA⑵∠AFD =∠DCA 理由如下:由△ABC ≌△DEF ,∴AB =DE ,BC =EF , ∠ABC =∠DEF , ∠BAC =∠EDF ∴∠ABC -∠FBC =∠DEF -∠CBF , ∴∠ABF =∠DEC在△ABF 和△DEC 中, AB DE ABF DEC BF EC =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DEC ∠BAF =∠DEC ∴∠BAC -∠BAF =∠EDF -∠EDC , ∴∠F AC =∠CDF ∵∠AOD =∠F AC +∠AFD =∠CDF +∠DCA∴∠AFD =∠DCA 【变式题组】01.(绍兴)如图,D 、E 分别为△ABC 的AC 、BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若∠CDE =48°,则∠APD 等于( ) A .42°B .48°C .52°D .58°02.如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是AFECB DB (E )OC F 图③FA B C DE FAB (E )C DDA图②图①( )A .△ABC ≌△DEFB .∠DEF =90°C . AC =DFD .EC =CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B 、F 、C 、D 在同一条直线上. ⑴求证:AB ⊥ED ;⑵若PB =BC ,找出图中与此条件有关的一对全等三角形,并证明.【例4】(第21届江苏竞赛试题)已知,如图,BD 、CE 分别是△ABC 的边A C 和AB 边上的高,点P 在BD 的延长线,BP =AC ,点Q 在CE 上,CQ =AB. 求证:⑴ AP =AQ ;⑵AP ⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP =AQ ,也就是证△APD 和△AQE ,或△APB 和△QAC 全等,由已知条件BP =AC ,CQ =AB ,应该证△APB ≌△QAC ,已具备两组边对应相等,于是再证夹角∠1=∠2即可. 证AP ⊥AQ ,即证∠P AQ =90°,∠P AD +∠QAC =90°就可以.证明:⑴∵BD 、CE 分别是△ABC 的两边上的高, ∴∠BDA =∠CEA =90°,∴∠1+∠BAD =90°,∠2+∠BAD =90°,∴∠1=∠2. EFB AB P D EC第1题图ACD G第2题图BF AC E NMPDD A CB FE21A BCPQE F DABCDFE在△APB 和△QAC 中, 2AB QC BP CA =⎧⎪=⎨⎪=⎩∠1∠ ∴△APB ≌△QAC ,∴AP =AQ⑵∵△APB ≌△QAC ,∴∠P =∠CAQ , ∴∠P +∠P AD =90° ∵∠CAQ +∠P AD =90°,∴AP ⊥AQ 【变式题组】01.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 的中点,求证:AF ⊥CD .02.(湖州市竞赛试题)如图,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是( ) A .2a bm + B .2a bm - C .bm D .am03.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为__________演练巩固·反馈提高01.(海南)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°AECBA 75° C45° BNM第2题图第3题图D02.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40°03.(牡丹江)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( ) A .SASB .ASAC .AASD .SSS04.(江西)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . CB =CD B .∠BAC =∠DAC C . ∠BCA =∠DCAD .∠B =∠D =90°05.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( )A . △ABE ≌△CBDB . ∠ABE =∠CBDC . ∠ABC =∠EBD =45° D . AC ∥BE06.如图,△ABC 和共顶点A ,AB =AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对第3题图第1题图C AOD B P第2题图ACA /B B /a αcca50° b72° 58°E21N AB DC 第5题图A BCDEABCD第4题图第6题图M07.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA的度数是___________.08.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB 的度数为_______.09.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB =2, CD =6,则AE =_____. 11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D . ⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F ,请你写出图中三对全等三角形,并选取其中一对加以证明.第10题图AB CDE 第9题图EABC D A BC DEF O CAEBD第7题图 第8题图DA C .Q P.BDBAC EFAEBFDC14.如图,将等腰直角三角板ABC 的直角顶点C 放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E .⑴找出图中的全等三角形,并加以证明;⑵若DE =a ,求梯形DABE 的面积.(温馨提示:补形法)15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F .求证:CE=DF .16.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等? ⑴阅读与证明:对于这两个三角形均为直角三角形,显然它们全等;对于这两个三角形均为钝角三角形,可证明它们全等(证明略); 对于这两个三角形均为锐角三角形,它们也全等,可证明如下;已知△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1.求证:△ABC ≌△A 1B 1C 1.(请你将下列证明过程补充完整)⑵归纳与叙述:由⑴可得一个正确结论,请你写出这个结论.ABCDA 1B 1C 1D 1BDEClAAEFBDC培优升级·奥赛检测01.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( ) A .4对B .5对C .6对D .7对02.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接DE , 则OE 平分∠AOB ,正确的是( ) A .①②B .②③C .①③D .①②③03.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BC C . ABD .AE +AC04.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等05.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,则∠ABC =_______. 06.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE =AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)07.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;F第6题图2 1ABCE N M3 21ADEBCFADECOA E O BFCD 第1题图B第2题图第3题图⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗?证明你的判定.08.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线.求证:AC =2AE .09.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCE =90°, ∠BAC =∠EAD .求证:∠CED =90°.10.(沈阳)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB=90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .⑴求证:AF +EF =DE ;⑵若将图①中△DBE 绕点B 顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中结论是否仍然成立;⑶若将图①中△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③你认为(1)中结论还成立吗?若成立,写出证明过程;若不成立,请写AB E D CA EFCDBAEBDC出此时AF 、EF 与DE 之间的关系,并说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A D O B E
C
例2、已知:点D在AB上,点E在AC上,BE和CD相交于点 O,AB=AC, ∠B= ∠C,求证:AD=AE. 证明:在△ADC和△AEB中 ∠A= ∠A AC=AB ∠C= ∠B ∴△ADC≌△AEB(ASA) ∴AD=AE
A D O B E
C
三角形全等判定定理
定理四:
两个角和其中一个角的对边对应相等的两个三角形全等。简 写成“角角边”或“AAS”。 A 用数学语言表示为: 在△ABC和△DEF中,
全等三角形
学习目标
• 1、了解全等形和全等三角形的概念 • 2、了解常见的全等三角形的基本图形 • 3、理解全等三角形的性质
观察下列图形有什么特点?
• 全等形定义:能够完全重合的图形叫做全等形。全等图形 的形状相同,大小相等。 • 全等三角形:能够完全重合的两个三角形叫做全等三角形。 • 两个全等三角形互相重合后,重合的顶点叫做对应顶点, 重合的边叫做对应边,重合的角叫做对应角。
A
D
B
E
C
F
定理五: 斜边和一条直角边对应相等的两个直角三角形全等。简写成 “斜边,直角边”或“HL”。
用数学语言表示为: 在Rt△ACB和Rt△DFE中, AC=DF AB=DE ∴Rt△ACB≌Rt△DFE(HL)
A D
C
B
F
E
课堂小结
1、三角形全等的判定方法: SSS、SAS、ASA、AAS、HL 2、题目中若条件不够,则应该看看是否有隐含条件可以用,如 对顶角、公共边、公共角等,若条件还是不够,则应该确定还 要找出哪些条件。 (1)根据已知找条件 已知两边,则可以找夹角(SAS),找直角(HL),找另一边 (SSS) 已知一边一角,则可以找任一角(AAS或ASA),找其中一角的 对边(SAS) 已知两角,则可以找两角的夹边(ASA),找一角的对边(AAS) (2)添加辅助线 通常辅助线的做法有做平行,垂直,延长中线,截长补短等方法, 需根据题目实际情况加以应用
AE=AD ∠A=∠A AC=AB
∴△AEC≌△ADB(SAS)
例3:如图,AE=AF, ∠AEF=∠ AFE, BE=CF,求证:AB=AC
A
证明:∵∠AEF=∠AFE ∴180°-∠AEF=180°-∠AFE ∴∠AEB=∠AFC 在△ABE和△ACF中, B E AE=AF ∠AEB=∠AFC BE=CF ∴△ABE≌△ACF(SAS) ∴AB=AC(全等三角形的对应边相等)
12 B
D C
例2、已知如图,点B、E、C、F在同一条直线上,AB∥DE, AC∥DF且AC=DF,求证:BE=FC.
A
D
B
E
C
F
例2、已知如图,点B、E、C、F在同一条直线上,AB∥DE, AC∥DF且AC=DF,求证:BE=FC. 证明:∵AB∥DE ∴∠B=∠DEF ∵AC∥DF ∴∠ACB=∠DFE 在△ABC和△DEF中, ∠B=∠DEF ∠ACB=∠DFE AC=DF ∴△ABC≌△DEF(AAS) ∴BC=EF ∴BC-EC=EF-EC 即BE=FC
2017/12/11
三角形全等的判定
三角形全等判定定理
定理二: 两边和它们的夹角对应相等的两个三角形全等。简写成 “边角边”或“SAS". A 用数学语言表示为: 在△ABC和△DEF中, AB=DE ∠B=∠E BC=EF ∴△ABC≌△DEF(SAS)
B D
C
E
F
例1:如图,AC=BD,∠CAB= ∠DBA,你能判断BC=AD吗?说 明理由。
A D
B
C
E
F
一一对应哦! 记作:∆ABC ≌ ∆DEF 读作:∆ABC全等于 ∆DEF 思考:你能否直接从∆ABC ≌ ∆DEF中判断出所有的对应顶 点、对应边、对应角?
• • • •
∆ABC ≌ ∆DEF 其中点A和点D,点B和点E,点C和点F是对应顶点; AB和DE,BC和EF,AC和DF是对应边; ∠A和∠D,∠B和∠E,∠C和∠F是对应角。




AB=AC BD=CD AD=AD
∴△ABD≌△ACD(SSS)
2017/12/11
证明的书写步骤
1、准备条件:证全等时要用的间接条件要先证好; 2、三角形全等书写步骤: 写出在哪两个三角形中; 摆出三个条件用大括号括起来; 写出全等结论。
2017/12/11
你会用刻度尺和圆规画全等三角形吗?
A D B
O
E
操作测量题: OC是∠AOB的平分线,点P是射线OC上的任意一点, 1. 操作测量:取点P的三个不同的位置,分别过点P作PD⊥OA, PE ⊥OB,点D、E为垂足,测量PD、PE的长.将三次数据填入 下表:
2cm
4cm
2017/12/11
2cm
4cm
给三个条件: 1、三条边 2、三个角
3、两边一角
4、两角一边
2017/12/11
三角形全等判定定理
定理一: 有三边对应相等的两个三角形全等。可以简写成“边边边”或“sss". 用数学语言表述: A 在△ABC和△DEF中, AB=DE BC=EF AC=DF
A
B
C
D
E
课堂小结
• 全等三角形:能够完全重合的两个三角形叫做全等三角形。 • 全等三角形的性质: 全等三角形的对应边相等 全等三角形的对应角相等 找对应边、对应角的方法: 1、由全等三角形的记法确定对应边和对应角 2、特殊位置法:在两个全等三角形中,公共角、对顶角必 为对应角,公共边必为对应边。 3、数量对应法: 在两个全等三角形中(不等边), 在两 个全等三角形中,最长边对最长边;最小边对最小边;最 大角对最大角;最小角对最小角。
D
B
C
E
• 大胆说出你的想法!
证明:在△ACD和△ACB中 AD=AB(已知) DC=BC(已知) AC=AC(公共边) ∴ △ACD≌ △ACB(SSS) ∴∠CAD=∠CAB(全等三角形的对应角相等) ∴AC是∠A的角平分线
经过上面的探索,你能得到作已知角的平分线的方 法吗?
2、尺规作角的平分线 画法:
C
证明:在△ABC与△BAD中 AC=BD A ∠CAB=∠DBA AB=BA ∴△ABC≌△BAD(SAS) ∴BC=AD(全等三角形的 对应边相等)
D
B
例2:如图,在△AEC 和 △ADB 中,已知AE=AD,AC=AB请说明 △AEC ≌ △ADB 的理由。
C
证明:在△AEC和△ADB中,
D A E B
三角形全等的判定
知识回顾
1、什么叫做全等三角形? 能够完全重合的两个三角形叫做全等三角形。 2、全等三角形有什么性质? 全等三角形的对应边相等,对应角相等。
A D
B
C
E
F
2017/12/11AB=DE NhomakorabeaBC=EF AC=DF ∠A=∠D ∠B=∠E ∠C=∠F
小明家的衣橱上镶有两块全等的三角 形玻璃装饰物,其中一块被打碎了,妈
1.以O为圆心,适当长为半径作弧,交OA于点M,交OB于 点N. A 2.分别以M,N为圆心. 大于 1/2 MN的长为半径 M 作弧.两弧在∠AOB的 C 内部交于C. 3.作射线OC. 射线OC即为所求.

动手操作:画一个已知角的角平分线。


• 将角AOB对折,再折出一个直角三角形(使第一条折痕 为斜边),然后展开,观察两次折叠形成的三条折痕,你 能得到什么结论?
A D
B
C
E
F
• 想一想:∆ABC ≌ ∆DEF,对应边有什么 关系?对应角有什么关系? • 全等三角形的性质:
全等三角形的对应边相等。 全等三角形的对应角相等。
• 几种常见的全等三角形基本图形
A D
1、平移
F
B
C
E
D A E B C F
B E C F A D
• 几种常见的全等三角形基本图形
E D
B D C
∠B=∠E ∠C=∠F AC=DF ∴△ABC≌△DEF(AAS)
E
F
例1、已知如图,AB⊥BC,AD ⊥DC,垂足分别为B、D, ∠1=∠2,求证:AB=AD
A
12 B
D C
例1、已知如图,AB⊥BC,AD ⊥DC,垂足分别为B、D, ∠1=∠2,求证:AB=AD
A
证明:∵AB⊥BC,AD ⊥DC ∴∠B=∠D=90° 在△ABC和△ADC中, ∠B=∠D ∠1=∠2 AC=AC ∴△ABC≌△ADC(AAS) ∴AB=AD
F
C
作一个角等于已知角
已知:∠AOB 求作:∠A′O′B′,使∠A′O′B′=∠AOB
作法: 1. 以点O为圆心,任意长为半径画弧, 分别交OA,OB于点C,D; O 2. 画一条射线O′A′,以点O′为圆心, OC长为半径画弧,交O′A′于点C′ 3. 以点C′为圆心,CD长为半径画 弧,与前弧交于点D′ 4. 过点D′画射线O′B′。 ∴∠A′O′B′就是所求的角。
A
画法:1、画线段BC=6cm 2、分别以点B、C为圆 心,以3cm、5cm长为半 径画弧,交于点A; 3、连结AB,AC △ABC就是所求三角形。
5cm
3cm
B 6cm
C
2017/12/11
课堂小结
1、三角形全等的判定定理:
有三边对应相等的两个三角形全等。可以简写成“边边 边”或“sss".
2、用刻度尺和圆规画三角形
B D
C
∴△ABC≌△DEF(SSS)
E
2017/12/11
F
如下图,△ABC是一个钢架,AB=AC,AD是 连接A与BC中点D的支架.求证: △ABC≌△DEF
相关文档
最新文档