有关传送带的能量问题

合集下载

(最新优质)高一物理专题十四 :传送带与板块中的能量(附解析)

(最新优质)高一物理专题十四 :传送带与板块中的能量(附解析)

专题十四传送带与板块中的能量学科素养部分一.核心素养聚焦考点一科学思维——传送带中的能量问题例题1.如图所示,水平传送带长为s,以速度v始终保持匀速运动,把质量为m的货物放到A点,货物与皮带间的动摩擦因素为μ。

当货物从A点运动到B点的过程中,摩擦力对货物做的功可能是()A.等于12mv2B.小于12mv2C.大于μmgs D.小于μmgs【答案】ABD【解析】货物在传送带上相对地面的运动可能先加速后匀速,也可能一直加速而货物的最终速度小于v,故摩擦力对货物做的功可能等于12mv2,可能小于12mv2,可能等于μmgs,可能小于μmgs,故选A、B、D.例题2.如图所示,足够长的传送带以恒定速率沿顺时针方向运转。

现将一个物体轻轻放在传送带底端,物体第一阶段被加速到与传送带具有相同的速度,第二阶段匀速运动到传送带顶端.则下列说法中正确的是()A.第一阶段和第二阶段摩擦力对物体都做正功B .第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加量C .第二阶段摩擦力对物体做的功等于第二阶段物体机械能的增加量D .两个阶段摩擦力对物体所做的功等于物体机械能的减少量 【答案】AC【解析】两阶段中摩擦力方向都是沿传送带向上的,与速度方向相同,A 正确;两阶段中都是除了摩擦力外还有重力对物体做功,而由动能定理知合外力所做功才等于物体动能的变化量,B 错误;除了重力外只有摩擦力对物体做功,由功能原理知C 正确;两阶段中摩擦力都做正功,机械能在整个过程中一直是增加的,D 错误。

例题3.如下图所示,浅色传送带A 、B 两端距离L =24m ,以速度v 0=8m/s 逆时针匀速转动,并且传送带与水平面的夹角为θ=30°,现将一质量为m =2kg 的煤块轻放在传送带的A 端,煤块与传送带间动摩擦因数g 取10m/s 2,则下列叙述正确的是A .煤块从A 端运动到B 端所经历时间为3s B .煤块从A 端运动到B 端重力的瞬时功率为240WC .煤块从A 端运动到B 端留下的黑色痕迹为4mD .煤块从A 端运动到B 端因摩擦产生的热量为24J 【答案】AC【解析】煤块刚放上传送带时的加速度大小为:22130303030510/8/mgsin mgcos a gsin gcos s m s m μμ︒+︒=︒+︒===,则煤块速度达到与传送μ=带共速所需的时间为s a v t 1101==,这段时间内的位移m a v x 42121==。

传送带模型中的能量问题全解

传送带模型中的能量问题全解
的货物放到A点,货物与传送带间的动摩擦因数为 μ ,当货物从A点运动到 B点的过程中,摩擦力对货物做的功不可能是( )
1 2 A.等于 mv 2 C .大于 μ mgs
1 2 B.小于 mv 2 D.小于μ mgs
答案 C
THANK YOU
A
v
B
答案: (1)
(2)t=1s (3)0.5m (4)2.5s (5)4J
Ff 4 N
a 1m / s 2
2.如图所示,水平传送带AB逆时针匀速转动,一个质量为
M=1.0 kg的小物块以某一初速度由传送带左端滑上,通过速度
传感器记录下物块速度随时间的变化关系如图所示(图中取向左为
传送带装置示意图,绷紧的传送带AB始终保持v=1m/s的恒定速率运行. 一质量为m=4kg的行 李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又 以与传送带相等的速率做匀速直线运动 . 设行李与传送带间的动摩擦因数 μ =0.1,AB间的距离 l=2m,g=10m/s2. 求: (1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小 (2)求行李做匀加速运动的时间 (3)行李在传送带上形成的划迹的长度 (4)行李从A运动到B的时间 (5)电机带动传送带匀速传动输出的总能量。
不打滑,质量为0.1kg的小物块与传送带间的动摩擦因数为μ = 3 。
当传送带沿逆时针方向以 v 1 =3m/s 的速度匀速运动时,将小物块 无初速地放在A点后,它会运动至B点。(g取10m/s2) (1)求物体刚放在A点的加速度? (2)物体从A到B约需多长时间? (3)整个过程中摩擦产生的热量?
0.5.设皮带足够长.取g=10 m/s2,在邮件与皮带发生相对滑 动的过程中,求 (1)邮件滑动的时间t; (2)邮件对地的位移大小x; (3)邮件与皮带间的摩擦力对皮带做的功W.

传送带的能量分析

传送带的能量分析
v
30°
例3.质量m=1kg的物体从半径为R=0.2m的1/4光滑圆弧轨道顶端 正上方h=0.6m处的P点由静止开始下落,滑到水平传送带上的A点, 恰好能滑至传送带右端B点,圆弧底端切线与传送带相切,传送 带AB之间的距离为L=5m,传送带一直以v=4m/s的速度向左匀速运 动, 求: (1)物体与传送带间的动摩擦因素μ。 (2)物块返回后能从圆弧顶端上升的最大高度。 (3)试描述物体接下来的运动。 (4)物体从P点开始到第二次到 达最大高度的过程中,带动传送 P 带转动的电动机多做了多少功?
传送带的能量分析
例1.水平放置的传送带以v=2.0m/s匀速运转。将 m=0.40kg的物体轻放在传送带左端,经过一段时 间,物体和传送带具有了同样的速度。由于放上 了该物体,传送带的电机在这段时间内多做的功 是多少?
例2. 一传送皮带与水平面夹角为30°,以2m/s的恒定 速度顺时针运行。现将一质量为10kg的工件轻放于底 端,经一段时间送到高2m的平台上,工件与皮带间的 动摩擦因数为μ= 3 2 ,取g=10m/s2 求带动皮带的电动机由于传送工件多消耗的电能。
为L。每个箱子在A处投放后,在到达B之前已经相对于传送带
静止,且以后也不再滑动(忽略经BC段时的微小滑动)。已知
在一段相当长的时间T 内,共运送小货箱的数目为N。这装置
由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩
擦。
D
求电动机的平均输出功率P。Fra bibliotekA BC
R
A
B
L
例3.一传送带装置示意如图,其中传送带经过AB区域时是水平
的,经过BC区域时变为圆弧形(圆弧由光滑模板形成,未画
出),经过CD区域时是倾斜的,AB和CD都与BC相切。现将大

2022高考物理微专题42 “传送带”模型中的能量问题

2022高考物理微专题42  “传送带”模型中的能量问题

微专题42 “传送带”模型中的能量问题1.计算摩擦力对物块做的功和摩擦力对传送带做功要用动能定理,计算摩擦生热要用Q =F f x 相对或能量守恒.2.电机多做的功一部分增加物块的机械能,一部分因摩擦产生热量. 1.(多选)如图1所示,传送带以v 的速度匀速运动.将质量为m 的物体无初速度放在传送带上的A 端,物体将被传送带带到B 端.已知物体到达B 端之前已和传送带相对静止,则下列说法正确的是( )图1A .传送带对物体做功为m v 2B .传送带克服摩擦力做功为m v 2C .电动机由于传送物体多消耗的能量为m v 2D .在传送物体过程中产生的热量为m v 2 答案 BC解析 物体与传送带相对静止前,物体受重力、支持力和摩擦力,根据动能定理知传送带对物体做的功等于物体的动能的增加量,传送带对物体做功为W =12m v 2,物体与传送带相对静止后,物体受重力和支持力,传送带对物体不做功,故A 错误;在传送物体过程产生的热量等于滑动摩擦力与相对路程的乘积,即Q =F f Δx ,设加速时间为t ,物体的位移为x 1=12v t ,传送带的位移为x 2=v t ,根据动能定理知摩擦力对物体做的功W 1=F f x 1=12m v 2,热量Q =F f Δx=12m v 2,传送带克服摩擦力做的功W 2=F f x 2=m v 2,故B 正确,D 错误;电动机由于传送物体多消耗的能量等于物体动能增加量和摩擦产生的热量之和,等于m v 2,故C 正确. 2.(多选)如图2所示,水平传送带顺时针转动,速度为v 1,质量为m 的物块以初速度v 0从左端滑上传送带,v 0>v 1,经过一段时间物块与传送带速度相同,此过程中( )图2A .物块克服摩擦力做的功为12m v 12B .物块克服摩擦力做的功为12m (v 02-v 12)C .产生的内能为12m (v 02-v 12)D .产生的内能为12m (v 0-v 1)2答案 BD解析 物块的初速度大于传送带的速度,物块受到的摩擦力向左,其向右匀减速运动直至与传送带共速,由动能定理有-W f =12m v 12-12m v 02,得W f =12m v 02-12m v 12,故A 错误,B 正确;物块和传送带间摩擦生热,相对位移为Δx =v 0+v 12·v 0-v 1μg -v 1·v 0-v 1μg =(v 0-v 1)22μg ,故热量为Q=μmg ·Δx =m (v 0-v 1)22,故C 错误,D 正确.3.已知一足够长的传送带与水平面的倾角为θ,以恒定的速度顺时针转动.某时刻在传送带适当的位置放上具有一定初速度、质量为m 的小物块,如图3甲所示.以此时为t =0时刻,小物块的速度随时间的变化关系如图乙所示(图甲中取沿传送带向上的方向为正方向,图乙中v 1>v 2).下列说法中正确的是( )图3A .0~t 1内传送带对小物块做正功B .小物块与传送带间的动摩擦因数μ小于tan θC .0~t 2内传送带对小物块做功为12m v 22-12m v 12D .0~t 2内小物块与传送带间因摩擦产生的热量大于小物块动能的减少量 答案 D解析 由题图乙可知,物块先向下运动后向上运动,又知传送带的运动方向向上,0~t 1内,物块向下运动,传送带对物块的摩擦力方向沿传送带向上,传送带对物块做负功,故A 错误;在t 1~t 2内,物块向上运动,则有μmg cos θ>mg sin θ,得μ>tan θ,故B 错误;0~t 2内,根据v -t 图像中图线与t 轴所围“面积”等于位移可知,物块的总位移沿传送带向下,高度下降,重力对物块做正功,设为W G ,根据动能定理有W +W G =12m v 22-12m v 12,则传送带对物块做的功W ≠12m v 22-12m v 12,故C 错误;0~t 2内物块的重力势能减小,动能也减小,都转化为系统产生的热量,则由能量守恒定律可知,系统产生的热量大小一定大于物块动能的减少量,故D 正确.4.(2020·陕西西安市西安中学第六次模拟)如图4甲所示,一倾角为θ=37°的传送带以恒定速度运行.现将一质量m =1 kg 的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.则下列说法中正确的是( )图4A .0~8 s 内物体位移的大小为18 mB .物体和传送带间的动摩擦因数为0.625C .0~8 s 内物体机械能增量为78 JD .0~8 s 内物体因与传送带摩擦产生的热量Q 为126 J 答案 D解析 根据v -t 图像与时间轴围成的“面积”等于物体的位移,可得0~8 s 内物体的位移x =12×2×(2+4) m +2×4 m =14 m ,故A 错误. 物体运动的加速度a =ΔvΔt =1 m/s 2,根据μmg cos 37°-mg sin 37°=ma 解得μ=0.875,选项B错误;0~8 s 内物体的机械能的增加量等于物体重力势能的增加量和动能增加量之和,为ΔE =mgx sin 37°+12m ×(4 m/s)2=92 J ,故C 错误;0~8 s 内只有前6 s 发生相对滑动,0~6 s 内传送带运动距离为:x 带=4×6 m =24 m ;0~6 s 内物体位移为:x 物=6 m ;则0~6 s 内两者相对位移Δx =x 带-x 物=18 m ,产生的热量为Q =μmg cos θ·Δx =126 J ,故D 正确.5.(多选)(2019·湖北荆州市一检)如图5所示,足够长的传送带与水平方向的倾角为θ,物块a通过平行于传送带的轻绳跨过光滑轻滑轮与物块b 相连,b 的质量为m ,重力加速度为g .开始时,a 、b 及传送带均静止,且a 不受传送带摩擦力作用,现让传送带逆时针匀速转动,则在b 上升h 高度(未与滑轮相碰)过程中( )图5A .物块a 的重力势能减少mghB .摩擦力对a 做的功等于a 机械能的增量C .摩擦力对a 做的功等于物块a 、b 动能增量之和D .任意时刻,重力对a 、b 做功的瞬时功率大小相等 答案 ACD解析 开始时,a 、b 及传送带均静止且a 不受传送带摩擦力作用,有m a g sin θ=m b g ,则m a =m b sin θ=m sin θ,b 上升h ,则a 下降h sin θ,则a 重力势能的减小量为ΔE p a =m a g ·h sin θ=mgh ,故A 正确;根据能量守恒定律,摩擦力对a 做的功等于a 、b 系统机械能的增量,因为系统重力势能不变,所以摩擦力对a 做的功等于系统动能的增量,故B 错误,C 正确;任意时刻a 、b 的速率大小相等,对b ,克服重力做功的瞬时功率P b =mg v ,对a 有:P a =m a g v sin θ=mg v ,所以重力对a 、b 做功的瞬时功率大小相等,故D 正确.6.如图6所示,光滑轨道ABCD 是大型游乐设施过山车轨道的简化模型,最低点B 处的入、出口靠近但相互错开,C 是半径为R 的圆形轨道的最高点,BD 部分水平,末端D 点与右端足够长的水平传送带无缝连接,传送带以恒定速度v 逆时针转动,现将一质量为m 的小滑块从轨道AB 上竖直高度为3R 的位置A 由静止释放,滑块能通过C 点后再经D 点滑上传送带,已知滑块滑上传送带后,又从D 点滑入光滑轨道ABCD 且能到达原位置A ,则在该过程中(重力加速度为g )( )图6A .在C 点滑块对轨道的压力为零B .传送带的速度可能为5gRC .摩擦力对物块的冲量为零D .传送带速度v 越大,滑块与传送带因摩擦产生的热量越多 答案 D解析 对滑块从A 到C ,根据动能定理有mg (h -2R )=12m v C 2-0,根据F N +mg =m v C 2R ,解得F N =mg ,选项A 错误;从A 到D ,根据动能定理有mgh =12m v D 2,解得v D =6gR ,由于滑块还能到达原位置A ,则传送带的速度v ≥v D =6gR ,选项B 错误;滑块在传送带上运动的过程中,动量方向变为相反,动量变化量不为0,则摩擦力对滑块的冲量不为0,选项C 错误;滑块与传送带之间产生的热量Q =μmg Δx ,传送带的速度越大,在相同时间内二者相对位移(Δx )越大,则产生的热量越多,故选项D 正确.7.(多选)(2019·安徽蚌埠市第三次质量检测)如图7所示,在一水平向右匀速运动的长传送带的左端A 点,每隔相同的时间轻放上一个相同的工件.经测量,发现前面那些已经和传送带达到相同速度的工件之间的距离均为L .已知传送带的速率恒为v ,工件与传送带间的动摩擦因数为μ,工件质量为m ,重力加速度为g ,则下列说法正确的是( )图7A .工件在传送带上加速运动的时间一定等于L vB .传送带对每个工件做的功为12m v 2C .每个工件与传送带间因摩擦而产生的热量一定等于12μmgLD .传送带因传送每一个工件而多消耗的能量为m v 2 答案 BD解析 工件在传送带上先做匀加速直线运动,当速度与传送带速度相等时工件做匀速直线运动,加速度为a =μg ,则加速的时间为t =vμg ,故A 错误;传送带对每个工件做的功使工件的动能增加,根据动能定理得:W =12m v 2,故B 正确;工件与传送带相对滑动的路程为:Δx=v v μg -v 22μg =v 22μg ,则摩擦产生的热量为:Q =μmg Δx =m v 22,故C 错误;根据能量守恒得,传送带因传送一个工件多消耗的能量E =12m v 2+Q =m v 2,故D 正确.8.如图8所示,传送带与地面的夹角θ=37°,A 、B 两端间距L =16 m ,传送带以速度v =10 m/s ,沿顺时针方向运动,物体质量m =1 kg ,无初速度地放置于A 端,它与传送带间的动摩擦因数μ=0.5,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:图8(1)物体由A 端运动到B 端的时间; (2)系统因摩擦产生的热量. 答案 (1)2 s (2)24 J解析 (1)物体刚放上传送带时受到沿斜面向下的滑动摩擦力和重力,由牛顿第二定律得:mg sin θ+μmg cos θ=ma 1,设物体经时间t 1,加速到与传送带同速, 则v =a 1t 1,x 1=12a 1t 12解得:a 1=10 m/s 2 t 1=1 s x 1=5 m<L因mg sin θ>μmg cos θ,故当物体与传送带同速后,物体将继续加速 由mg sin θ-μmg cos θ=ma 2 L -x 1=v t 2+12a 2t 22解得:t 2=1 s故物体由A 端运动到B 端的时间t =t 1+t 2=2 s. (2)物体与传送带间的相对位移 x 相=(v t 1-x 1)+(L -x 1-v t 2)=6 m 故Q =μmg cos θ·x 相=24 J.9.如图9所示,与水平面成30°角的传送带以v =2 m/s 的速度按如图所示方向顺时针匀速运动,AB 两端距离l =9 m .把一质量m =2 kg 的物块(可视为质点)无初速度地轻轻放到传送带的A 端,物块在传送带的带动下向上运动.若物块与传送带间的动摩擦因数μ=7153,不计物块的大小,g 取10 m/s 2.求:图9(1)从放上物块开始计时,t =0.5 s 时刻摩擦力对物块做功的功率是多少?此时传送带克服摩擦力做功的功率是多少?(2)把这个物块从A 端传送到B 端的过程中,传送带运送物块产生的热量是多大? (3)把这个物块从A 端传送到B 端的过程中,摩擦力对物块做功的平均功率是多少? 答案 (1)14 W 28 W (2)14 J (3)18.8 W 解析 (1)物块受沿传送带向上的摩擦力为: F f =μmg cos 30°=14 N由牛顿第二定律得:F f -mg sin 30°=ma , a =2 m/s 2物块与传送带速度相同时用时为:t 1=v a =22 s =1 s因此t =0.5 s 时刻物块正在加速, 其速度为:v 1=at =1 m/s则此时刻摩擦力对物块做功的功率是: P 1=F f v 1=14 W此时刻传送带克服摩擦力做功的功率是: P 2=F f v =28 W(2)当物块与传送带相对静止时:物块的位移x 1=12at 12=12×2×12 m =1 m<l =9 m摩擦力对物块做功为:W 1=F f x 1=14×1 J =14 J 此段时间内传送带克服摩擦力所做的功: W 2=F f v t 1=28 J这段时间产生的热量:Q =W 2-W 1=14 J(3)物块在传送带上匀速运动的时间为: t 2=l -x 1v =4 s把物块由A 端传送到B 端摩擦力对物块所做的总功为: W 总=mgl sin 30°+12m v 2把物块从A 端传送到B 端的过程中,摩擦力对物块做功的平均功率是: P =W 总t 1+t 2=18.8 W. 10.(2019·河北邯郸市测试)如图10所示,一根轻弹簧左端固定于竖直墙上,右端被质量m =1 kg 且可视为质点的小物块压缩而处于静止状态,且弹簧与物块不拴接,弹簧原长小于光滑平台的长度.在平台的右端有一传送带,AB 长L =5 m ,物块与传送带间的动摩擦因数μ1=0.2,与传送带相邻的粗糙水平面BC 长s =1.5 m ,它与物块间的动摩擦因数μ2=0.3,在C 点右侧有一半径为R 的光滑竖直圆弧与BC 平滑连接,圆弧对应的圆心角为θ=120°,在圆弧的最高点F 处有一固定挡板,物块撞上挡板后会以原速率反弹回来.若传送带以v =5 m/s 的速率顺时针转动,不考虑物块滑上和滑下传送带的机械能损失.当弹簧储存的E p =18 J 能量全部释放时,小物块恰能滑到与圆心等高的E 点,取g =10 m/s 2.图10(1)求右侧圆弧的轨道半径R ;(2)求小物块最终停下时与C 点的距离;(3)若传送带的速度大小可调,欲使小物块与挡板只碰一次,且碰后不脱离轨道,求传送带速度的可调节范围.答案 (1)0.8 m (2)13 m (3)37 m/s ≤v ≤43 m/s解析 (1)物块被弹簧弹出,由E p =12m v 02,可知v 0=6 m/s因为v 0>v ,故物块滑上传送带后先减速,物块与传送带相对滑动过程中, 由:μ1mg =ma 1,v =v 0-a 1t 1,x 1=v 0t 1-12a 1t 12得到:a 1=2 m/s 2,t 1=0.5 s ,x 1=2.75 m因为x 1<L ,故物块与传送带同速后相对静止,最后物块以5 m/s 的速度滑上水平面BC ,物块滑离传送带后恰到E 点,由动能定理可知:12m v 2=μ2mgs +mgR代入数据整理可以得到:R =0.8 m.(2)设物块从E 点返回至B 点的速度为v B ,由12m v 2-12m v B 2=μ2mg ·2s得到v B =7 m/s ,因为v B >0,故物块会再次滑上传送带,物块在恒定摩擦力的作用下先减速至0再反向加速,由运动的对称性可知其以相同的速率离开传送带,设最终停在距C 点x 处,由12m v B 2=μ2mg (s -x ),得到:x =13m.(3)设传送带速度为v 1时物块恰能到F 点,在F 点满足mg sin 30°=m v F 2R从B 到F 过程中由动能定理可知:12m v 12-12m v F 2=μ2mgs +mg (R +R sin 30°)解得:v 1=37 m/s设传送带速度为v 2时,物块撞挡板后返回能再次上滑恰到E 点, 由:12m v 22=μ2mg ·3s +mgR解得:v 2=43 m/s若物块在传送带上一直加速运动,由12m v B m 2-12m v 02=μ1mgL知其到B 点的最大速度v B m =214 m/s综合上述分析可知,只要传送带速度37 m/s ≤v ≤43 m/s 就满足条件.。

传送带模型中的能量问题

传送带模型中的能量问题

高三物理传送带模型中的能量问题1.如图所示,比较长的传送带与水平方向的夹角θ=37°,在电动机带动下以v 0=4 m/s 的恒定速率顺时针方向运行.在传送带底端P 处有一离传送带很近的固定挡板,可将传送带上的物体挡住.在距P 距离为L =9 m 的Q 处无初速度地放一质量m =1 kg 的物体,它与传送带间的动摩擦因数μ=0.5,物体与挡板的碰撞能量损失及碰撞时间不计,取g =10 m/s 2,sin37°=0.6,求物体从静止释放到第一次返回上升至最高点的过程中:(1)相对传送带发生的位移;(2)系统因摩擦产生的热量;(3)传送带多消耗的电能;(4)物体的最终状态及该状态后电动机的输出功率.【解析】(1)要分上和下两个过程处理,注意相对路程和相对位移是不一样的。

解法1:力和运动法.物体由静止释放,沿传送带向下加速运动,相对传送带亦向下滑,受力如图1所示,有mgsin θ-μmgcos θ=ma 1,得a 1=2 m/s 2 与P 碰前速度v 1=2a 1L =6 m/s设物体从Q 到P 的时间为t 1,则t 1=v 1a 1=3 s 设物体对地位移为x 1,可知x 1=L =9 m ,相对传送带向下的位移Δx 1=x 1+v 0t 1=21 m物体与挡板碰撞后,以速度v 1反弹,向上做减速运动,因v 1>v 0,物体相对传送带向上滑,设速度减小到与传送带速度相等的时间为t 2,此过程受力如图2所示,有mgsin θ+μmgcos θ=ma 2得a 2=10 m/s 2,t 2=v 1-v 0a 2=0.2 s 在t 2时间内物体对地向上的位移x 2=v 1+v 02t 2=1 m 相对传送带向上的位移Δx 2=x 2-v 0t 2=0.2 m 物体速度与传送带速度相等后,由于mgsin θ>μmgcos θ物体不能匀速,将相对传送带向下滑,对地向上做加速度大小为a 3=a 1=2 m/s 2的减速运动,设速度减小到零的时间为t 3,t 3=v 0a 3=2 s 此过程中物体对地向上的位移x 3=v 02t 3=4 m 相对传送带向下的位移Δx 3=v 0t 3-x 3=4 m整个过程中两者相对滑动位移为Δx =Δx 1-Δx 2+Δx 3=24.8 m.解法2:相对运动法.以传送带为参考系,在求出相对初速度和相对加速度后,三个阶段物体相对传送带的位移分别为Δx 1=v 0t 1+12a 1t 21=21 m Δx 2=(v 1-v 0)t 2-12a 2t 22=0.2m Δx 3=12a 3t 23=4 m 第二阶段物体相对传送带向上运动,两者相对滑动总位移为Δx =Δx 1-Δx 2+Δx 3=24.8 m.解法3:图象法.设沿传送带向上为正方向,画出如图3所示物体和传送带运动的v -t 图象,直接用物体和传送带v -t 图线所夹的面积表示相对发生的位移:Δx 1=(v 0+v 0+v 1)t 12=21 m ,Δx 2=(v 1-v 0)t 22=0.2 m Δx 3=12v 0t 3=4 m 两者相对滑动的总位移为Δx =Δx 1-Δx 2+Δx 3=24.8 m.(2)系统因摩擦产生的热量,是由于一对滑动摩擦力作用点移动的不同导致做功不等而造成的,产生的热量不是与传送带和物体间的相对移动的位移而是与相对移动的距离有关(如图4所示阴影部分面积):Q =Q 1+Q 2+Q 3=F f ·Δl =μmgcos θ(Δx 1+Δx 2+Δx 3)=100.8 J.出现相对来回的情况时,热量要用相对路程而不能用相对位移(3)传送带消耗的电能是因为传送带要克服摩擦力做功,这与传送带对地运动位移有关(如图5所示阴影部分面积),在物体向下加速和相对传送带向下运动的减速阶段,摩擦力对传送带做负功消耗电能,在物体相对传送带向上运动的减速阶段,摩擦力对传送带做正功,减少电能损耗.ΔE 电=-F f (x 传送带1-x 传送带2+x 传送带3)=-μmgcos θ(v 0t 1-v 0t 2+v 0t 3)=-76.8 J即传送带多消耗的电能为76.8 J.可由功能关系处理,从开始到回到最高点过程中,系统增加了热能100.8 J ,减少了重力势能mgxsin θ,x=x1-x2-x3=4m, mgxsin θ=24j,系统动能就有变,系统总的增加了100.8-24=76.8j 所以传送带多消耗的电能是76.8j(4)物体返回上升到最高点时速度为零,以后将重复上述过程,且每次碰后反弹速度、上升高度依次减小,最终达到一个稳态:稳态的反弹速度大小应等于传送带速度4 m/s ,此后受到的摩擦力总是斜向上,加速度为gsin θ-μgcos θ=2 m/s 2,方向斜向下,物体相对地面做往返“类竖直上抛”运动,对地上升的最大位移为x m =v 202a 1=4 m ,往返时间为T =2v 0a 1=4 s 传送带受到的摩擦力大小始终为F f =μmgcos θ,稳态后方始终斜向下,故电动机的输出功率稳定为P =F f v 0=μmgcos θ×v 0=16 W.传送带受到物体的摩擦力方向向下,电动机对传送带的力要向上,这样,电动机的输出功率用力和时间的积就可以求出了。

传送带中的能量问题解析

传送带中的能量问题解析

传送带中的能量问题解析传送带作为一种运输工具,其能量的转化主要考虑两个方面:①、增加物体的机械能(动能和势能)②、增加系统的内能(即由于物体和皮带之间发生相对运动因摩擦而产生的热量)例1. 如图,电机带动传送带以速度v 匀速传动,一质量为m 的小木块由静止放在传送带上(传送带足够长)若小木 块与传送带之间的动摩擦因数为µ,当小木块与传送带相对静止时,求:⑴、小木块的位移。

⑵、传送带经过的路程。

⑶、小木块获得的动能。

⑷、摩擦过程产生的热量。

⑸电机带动传送带匀速转动输出的总能量。

分析:木块刚放上时速度为零,必然受到传送带的滑动摩擦力作用做匀加速直线运动,达到与传送带有共同速度后不再有相对运动,整个过程中木块获得一定的动能,系统要产生摩擦热。

对木块:相对滑动时,a=µg,达到相对静止所用的时间为t=v g μ,木块的位移21122v s vt g μ==,传送带的位移22v s vt g μ==,木块相对传送带的位移2212v s s s g μ=-=,小木块获得的动能212k E mv =,产生的热量221211()()2Q fs f s s mg s s mv μ==-=-=,电动机输出的总能量转化为小木块的动能和系统产生的热量2k E E Q mv =+=注意:当木块的初速为零时,木块经过的位移和木块相对皮带的位移恰好相等,这一特点要记住,在解题中很有用处。

2.如图,已知传送带两轮的半径r =1m ,传动中传送带不打滑,质量为1kg 的物体从光滑轨道A 点无初速下滑(A 点比B 点高h =5m ),物体与传送带之间的动摩擦因数2.0=μ,当传送带静止时,物体恰能在C 点离开传送带,则(1)BC 两点间距离为多少?(2)若要使物体从A 点无初速释放后能以最短时间到达C 点,轮子转动的角速度大小应满足什么条件?(3)当传送带两轮以12rad/s 的角速度顺时针转动时,物体仍从A 点无初速释放,在整个过程中物体与皮带系统增加的内能为多少?解:(1)设物体质量为m ,在C 点时运动速度为C v ,BC 间距离为s 。

微专题34 传送带模型的能量分析

微专题34  传送带模型的能量分析

微专题34 传送带模型的能量分析【核心要点提示】传送带模型能量分析的问题主要包括以下两个核心问题(1)摩擦系统内摩擦热的计算:依据Q =F f ·x 相对,找出摩擦力与相对路程大小即可。

要注意的问题是公式中的x 相对并不是指的是相对位移大小。

特别是相对往返运动中,x 相对为多过程相对位移大小之和。

(2)由于传送物体而多消耗的电能:一般而言,有两种思路:①运用能量守恒,多消耗的电能等于系统能量的增加的能量。

以倾斜向上运动传送带传送物体为例,多消耗的电能k E E E Q =∆+∆+重摩擦②运用功能关系,传送带克服阻力做的功等于消耗的电能E fS =传 【微专题训练】如图所示,水平传送带长为s ,以速度v 始终保持匀速运动,把质量为m 的货物放到A 点,货物与传送带间的动摩擦因数为μ,当货物从A 点运动到B 点的过程中,摩擦力对货物做的功不可能是( )A .等于12mv 2B .小于12mv 2C .大于μmgsD .小于μmgs【解析】货物在传送带上相对地面的运动可能先加速后匀速,也可能一直加速,而货物的最终速度应小于等于v ,根据动能定理知摩擦力对货物做的功可能等于12mv 2,可能小于12mv 2,可能等于μmgs ,可能小于μmgs ,故选C. 【答案】C(2016·湖北省部分高中高三联考)如图所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对静止这一过程,下列说法正确的是( )A .电动机多做的功为mv 2/2B .物体在传送带上的划痕长v 2/2μgC .传送带克服摩擦力做的功为mv 2/2D .电动机增加的功率为μmgv【解析】电动机多做的功转化成了物体的动能和内能,物体在这个过程中获得的动能就是12mv 2,所以电动机多做的功一定要大于12mv 2,故A 错误;物体在传送带上的划痕长等于物体在传送带上的相对位移,物体达到速度v 所需的时间t =v μg ,在这段时间内物体的位移x 1=v 22μg ,传送带的位移x 2=vt =v 2μg ,则物体相对位移x =x 2-x 1=v 22μg ,故B 正确;传送带克服摩擦力做的功就为电动机多做的功,所以由A 的分析可知,C 错误;电动机增加的功率即为克服摩擦力做功的功率,大小为fv =μmgv ,所以D 正确。

传送带中的能量转化问题解题技巧

传送带中的能量转化问题解题技巧

传送带中的能量转化问题解题技巧A点到C点的时间为t,由匀加速直线运动公式可得:s = 1/2at^2 + vt其中v为物体在A点的初始速度,由于是无初速下滑,所以v = 0.代入题目数据可得:5 = 1/2at^2 + 0t = sqrt(10/a)由于BC段物体与传送带不打滑,所以物体在BC段的加速度为g - μg,代入上式可得:5 = 1/2(g - μg)t^2a = (g - μg)/2 = 2.45m/s^2物体在BC段的速度为v_BC = at = 7.78m/s,由此可得BC 段的长度为:s = v_BC * t = 19.4m2)物体以最短时间到达C点时,BC段的长度为最短,即BC段的长度为19.4m。

轮子转动的角速度大小为v_BC/r,代入题目数据可得:v_BC/r = 7.78rad/s3)物体与传送带系统增加的内能为动能转化为热能和摩擦产生的热能之和。

物体在BC段失去的重力势能全部转化为动能,即:E_k = mgh = 49J由于物体与传送带之间有摩擦,所以会产生热能,热能的大小为:Q = μmgd = 9.8J因此,物体与传送带系统增加的内能为:E = E_k + Q = 58.8J联解③、④得到:v' = 2gμL由①、⑤联解得到:v = at其中,S1为木块从A运动到B相对皮带的位移,公式为S1 = L + vt,其中v为初速度,L为A点到B点的距离。

木块开始向左做匀加速运动,到停止滑动所经历的时间为t2,这段时间内木块相对皮带发生相对位移S2,公式为S2 = v2/2gμ,其中v为匀加速运动的末速度。

全过程中产生最大热量Q为:Q = (M+m)gμ(S1+S2) = (v+2gμL)²/2gμ解答此题时应注意:第一问按常规的完全非弹性碰撞模型处理即可;v < 2gμL的含义是木块不会从皮带上滑出;第二问属于临界问题,要使系统产生的热量最多,意味着要使块和皮带之间的相对位移最大;求相对位移和相对速度时,同向相减,反向相加。

传送带中能量问题

传送带中能量问题

“传送带模型”【模型特征】一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图(a)、(b)、(c)所示.【建模指导】水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻.水平传送带模型:【例1】传送带是一种常用的运输工具,被广泛应用于矿山、码头、货场、车站、机场等。

如图所示为火车站使用的传送带示意图。

绷紧的传送带水平部分长度L=5m,并以v=2m/s的速度匀速向右运动。

现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g取10m/s2(1)求旅行包经过多长时间到达传送带的右端;(2)若要旅行包从左端运动到右端所用时间最短,则传送带速度的大小应满足什么条件?最短时间是多少?【例2】如图所示,质量为m=1kg的物块,以速度v0=4m/s滑上正沿逆时针方向转动的水平传送带,此时记为时刻t=0,传送带上A、B两点间的距离L=6m,已知传送带的速度v=2m/s,物块与传送带间的动摩擦因数μ=0.2,重力加速度g取10m/s2.关于物块在传送带上的整个运动过程,下列表述正确的是() A.物块在传送带上运动的时间为4s B.传送带对物块做功为6J C.2s 末传送带对物体做功的功率为0D.整个运动过程中由于摩擦产生的热量为18J倾斜传送带问题:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.倾斜传送带模型:【例3】如图所示,传送带与水平面间的倾角为θ=37°,传送带以10m/s的速率运行,在传送带上端A处无初速度地放上质量为0.5kg的物体,它与传送带间的动摩擦因数为0.5,若传送带A到B的长度为16m,则物体从A运动到B的时间为多少?(取g=10 m/s2)传送带中的能量问题【基础知识】一、静摩擦力做功的特点:1、静摩擦力可以做,也可以做,还可以。

高中物理学习细节(人教版)之机械能守恒定律:传送带模型中的能量守恒问题(含解析)

高中物理学习细节(人教版)之机械能守恒定律:传送带模型中的能量守恒问题(含解析)

传送带模型的特征是以静摩擦力的转换为纽带来联系传送带和物体的相对运动。

物体随传送带的运动有匀加速直线运动和匀速直线运动,有受滑动摩擦力、静摩擦力以及不受摩擦力三种情况。

处理这类问题时只要分析传送带施加给物体的摩擦力特点、抓住临界条件、挖掘隐含条件,运用牛顿运动定律、运动学公式、功能关系和能量守恒定律列出方程就可解决。

【典例1】如图所示,电动机带动传送带以速度v匀速传动,一质量为m的小木块静止放在传送带上(传送带足够长),若小木块与传送带之间的动摩擦因数为μ,当小木块与传送带相对静止时,求:
(1) 小木块获得的动能;
(2) 摩擦过程产生的热量;
(3) 传送带克服摩擦力所做的功;
(4) 电动机输出的总能量。

(1)小木块获得的动能E k=1
2
mv2;
(2)产生的热量Q=F fΔl=F f(l2-l1)=μmg(l2-l1)=1
2
mv2;。

高考物理二轮复习热门考点归纳—传送带中的动力学和能量问题

高考物理二轮复习热门考点归纳—传送带中的动力学和能量问题

高考物理二轮复习热门考点归纳—传送带中的动力学和能量问题1.传送带中动力学问题的注意事项(1)摩擦力的方向及存在阶段的判断.理清物体与传送带间的相对运动方向及摩擦力方向是解决传送带问题的关键.(2)物体能否达到与传送带共速的判断.物体与传送带达到相同速度时往往出现摩擦力突变的临界状态,对这一临界状态进行分析往往是解题的突破口.2.传送带中摩擦力做功与能量转化(1)静摩擦力做功的特点:①静摩擦力可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总是等于零,不会转化为内能.(2)滑动摩擦力做功的特点:①滑动摩擦力可以做正功,也可以做负功,还可以不做功.②相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功之和的绝对值等于产生的内能.(3)摩擦生热的计算:①Q=F f·s相对,其中s相对为相互摩擦的两个物体间的相对路程.②传送带因传送物体多消耗的能量等于物体增加的机械能与系统产生的内能之和.例1(2022·河北省高三学业考试)如图甲所示,倾斜的传送带正以恒定速率v1沿顺时针方向转动,传送带的倾角为37°.一物块以初速度v0从传送带的底部冲上传送带并沿传送带向上运动,其运动的v-t图像如图乙所示,物块到传送带顶端时速度恰好为零,sin37°=0.6,cos37°=0.8,g取10m/s2,则()A.0~1s内物块受到的摩擦力大小大于1~2s内的摩擦力大小B.摩擦力方向一直与物块运动的方向相反C.物块与传送带间的动摩擦因数为0.5D.传送带底端到顶端的距离为10m答案D解析由题图乙可知在0~1s内物块的速度大于传送带的速度,物块所受摩擦力的方向沿传送带向下,与物块运动的方向相反;1~2s内,物块的速度小于传送带的速度,物块所受摩擦力的方向沿传送带向上,与物块运动的方向相同,由于物块对传送带的压力相等,根据F f=μF N,可知两段时间内摩擦力大小相等,A、B错误;在0~1s内物块的加速度大小为a=|ΔvΔt =12-41m/s2=8m/s2,根据牛顿第二定律有mg sin37°+μmg cos37°=ma,解得μ=0.25,C错误;物块运动的位移大小等于v-t图线与时间轴所围图形的“面积”大小,为x=4+122×1m+4×12m=10m,所以传送带底端到顶端的距离为10m,D正确.例2(2022·江苏海安市高三期末)如图所示,一个工作台由水平传送带与倾角θ=37°的斜面体组成,传送带AB间的长度L=1.7m,传送带顺时针匀速转动,现让质量m=1kg的物块以水平速度v0=5m/s从A点滑上传送带,恰好能滑到斜面上高度h=1.08m的C点,物块与斜面体和传送带之间的动摩擦因数均为μ=0.5,传送带与斜面平滑连接,g取10m/s2.(sin37°=0.6,cos37°=0.8)(1)求物块由A运动到B时的速度大小v B;(2)求物块由A运动到C所需要的时间t;(3)若改变传送带转速,物块以初动能E k x从A点水平滑上传送带,滑上斜面后恰好能返回出发点A,求物块初动能E k x的取值范围.答案(1)6m/s(2)0.9s(3)34J≤E k x≤42.5J解析(1)物块从B运动到C过程,由动能定理可得-mgh-μmg cos37°·hsin37°=0-12 mv B2解得v B=6m/s;(2)设物块从A运动到B过程中相对传送带的位移是x相对,由动能定理可得1 2mv B2-12mv02=μmgx相对解得x相对=1.1m<L即物块在传送带上先匀加速到v B,然后在传送带上匀速运动.设物块在传送带上匀加速时间为t1,有v B=v0+at1,a=μg解得t1=0.2s设物块在传送带上匀速时间为t2,有L-x相对=v B t2解得t2=0.1s设物块从B运动到C所用时间为t3,由牛顿第二定律可得mg sin37°+μmg cos37°=ma′,又0=v B-a′t3,联立可得t3=0.6s,物块由A 运动到C 所需要的时间为t =t 1+t 2+t 3=0.9s ;(3)物块以初动能E k x 从A 点水平滑上传送带,设到达B 点动能为E k B ,相对传送带位移为x ,则有E k B -E k x =μmgx ,0≤x ≤L ,物块从B 沿斜面运动到最高点,设上滑距离为s ,有0-E k B =-μmg cos 37°·s -mg sin 37°·s ,物块从B 上滑后又返回B 过程,有E k B ′-E k B =-2μmg cos 37°·s ,其中E k B ′是物块返回B 时的动能,从B 经传送带返回A 过程,有0-E k B ′=-μmgL ,联立可得34J≤E k x ≤42.5J.1.(多选)(2022·宁夏回族自治区银川一中一模)如图所示,机场将货物用与水平面成θ=30°角的传送带送到货仓,传送带以v =2m/s 的速度顺时针运行,地勤人员将一质量m =1kg 的货物以初速度v 0=4m/s 从底部滑上传送带,货物恰好能到达传送带的顶端.已知货物与传送带之间的动摩擦因数为μ=35,最大静摩擦力等于滑动摩擦力,取重力加速度g =10m/s 2,下列说法正确的是()A .传送带从底端到顶端的长度为1mB .货物在传送带上运动的时间为1.25sC .货物在传送带上留下的划痕为1.25mD .货物在传送带上向上运动的过程中由于摩擦产生的热量为3.75J答案BD解析开始时,货物相对传送带向上运动,受到的摩擦力沿传送带向下,货物将匀减速上滑,直至与传送带等速,设货物上滑的加速度大小为a1,由牛顿第二定律得mg sinθ+μmg cosθ=ma1,代入数据得a1=8m/s2,则货物相对传送带匀减速上滑,直至与传送带等速的时间为t1=v-v0-a1=2-4-8s=0.25s,货物沿传送带向上的位移为x1=v0+v2t1=4+22×0.25m=0.75m,货物与传送带相对静止瞬间,由于最大静摩擦力F f=μmg cosθ<mg sinθ,相对静止状态不能持续,货物速度会继续减小,此后,货物受到的摩擦力沿传送带向上,但所受合力沿传送带向下,故继续匀减速上升,直至速度为0,令此时货物减速上升的加速度大小为a2,由牛顿第二定律得mg sinθ-μmg cosθ=ma2,代入数据得a2=2m/s2,由于货物恰好能到达传送带的顶端,则货物到达传送带顶端速度减为零且时间为t2=va2=1s,货物沿传送带向上运动的位移为x2=v2t2=1m,货物在传送带上运动的时间为t=t1+t2=0.25s+1s=1.25s,B正确;根据选项B可知,传送带从底端到顶端的长度L=x1+x2=1.75m,A错误;货物减速到与传送带速度相等时传送带的位移大小x传送带1=vt1=2×0.25m=0.5m,货物与传送带速度相等后运动过程传送带的位移大小x传送带2=vt2=2×1m=2m,货物速度与传送带速度相等前运动过程货物对于传送带的位移大小L1=x1-x传送带1=0.75m-0.5m=0.25m,货物速度与传送带速度相等后运动过程货物对于相传送带的位移大小L2=x传送带2-x2=2m-1m=1 m>L1,货物速度与传送带速度相等后向上运动过程中货物与传送带上留下的划痕与第一阶段减速运动过程划痕重合,因此货物在传送带上留下划痕的长度L=L2=1m,C错误;货物从滑上传送带到滑离传送带的过程中,因摩擦产生的热量为Q=μmg cosθ·(L1+L2)=3.75J,D正确.2.(2022·湖南长沙一中高三检测)如图所示,水平传送带足够长,顺时针运动的速度v=4m/s,与倾角为37°的斜面的底端P平滑连接,将一质量m=2kg的小物块(可看作质点)从A点静止释放.已知A、P的距离L=9m,物块与斜面、传送带间的动摩擦因数分别为μ1=0.5、μ2=0.1,取重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8.求物块:(1)第1次滑过P点时的速度大小v1;(2)第1次在传送带上往返运动的时间t;(3)从释放到最终停止运动,与斜面间摩擦产生的热量Q.答案(1)6m/s(2)12.5s(3)88J解析(1)由动能定理得(mg sin37°-μ1mg cos37°)L=12mv12-0解得v1=6m/s(2)由牛顿第二定律有μ2mg=ma物块与传送带共速时,由速度公式得-v=v1-at1解得t1=10s匀速运动阶段的时间为t2=v122a-v22av=2.5s第1次在传送带上往返运动的时间t=t1+t2=12.5s(3)由分析可知,物块第一次离开传送带以后,每次再到达传送带和离开传送带的速度大小相等,物块最终停止在P 点,则根据能量守恒有Q =μ1mg cos 37°·L +12mv 2=88J.专题强化练1.(2022·河南省濮阳外国语学校月考)如图甲,M 、N 是倾角θ=37°的传送带的两个端点,一个质量m =5kg 的物块(可看作质点)以4m/s 的初速度自M 点沿传送带向下运动.物块运动过程的v -t 图像如图乙所示,g 取10m/s 2,sin 37°=0.6,cos 37°=0.8,下列说法正确的是()A .物块最终从N 点离开传送带B .物块与传送带间的动摩擦因数为0.6C .物块在第6s 时回到M 点D .传送带的速度v =2m/s ,方向沿逆时针转动答案C 解析从题图乙可知,物块速度减为零后反向沿传送带向上运动,最终的速度大小为2m/s ,方向沿传送带向上,所以没从N 点离开传送带,从M 点离开,并且可以推出传送带沿顺时针转动,速度大小为2m/s ,A 、D 错误;速度时间图像中斜率表示加速度,可知物块沿传送带下滑时的加速度大小a =Δv Δt=1.5m/s 2,根据牛顿第二定律有μmg cos 37°-mg sin 37°=ma ,解得μ≈0.94,B 错误;图线与时间轴围成的面积表示位移大小,由题图乙可知t1=83s时,物块的速度减为0,之后物块沿传送带向上运动,所以物块沿传送带向下运动的位移大小x1=12×4×83m=16 3m,t1=83s到t2=6s,物块沿传送带向上运动的位移大小x2=6-4+6-832×2m=163m,因为x1=x2,所以物块在第6s时回到M点,C正确.2.(多选)(2022·广东省模拟)如图,水平传送带在电动机带动下以恒定速率v顺时针运行,某时刻一个质量为m的快递包裹(可视为质点)以初速度v0(v0<v)从传送带左端滑上传送带.若从包裹滑上传送带开始计时,t0时刻包裹的速度达到v,快递包裹与传送带间的动摩擦因数为μ.重力加速度为g,则该快递包裹在传送带上运动的过程中()A.包裹先受到滑动摩擦力的作用,后受到静摩擦力的作用B.0~t0时间内,包裹所受摩擦力对包裹做功的功率越来越大C.若仅增大包裹的初速度v0(v0仍小于v),则包裹被传送的整个过程中传送带对包裹所做的功也一定增加D.电动机因传送该包裹而多消耗的电能为μmgvt0答案BD解析由题意可知,包裹先受向右的滑动摩擦力做加速运动,速度与传送带相同后做匀速运动,匀速运动阶段不受摩擦力作用,A错误;0~t0时间内,包裹所受摩擦力恒定为μmg,包裹速度越来越大,摩擦力做功功率为P=F f v t,可知摩擦力对包裹做功的功率越来越大,B正确;由动能定理知,整个过程中传送带对包裹所做的功等于包裹动能的增加量,所以v0增大,而末速度不变,动能增加量减小,传送带对包裹做的功减小,C错误;电动机因传送该包裹而多消耗的电能等于包裹动能的增加量及产生的摩擦热,在0~t0时间内,摩擦力对包裹所做的功为W=F f x=μmg v+v02t0,包裹动能的增加量ΔE k=W,产生的摩擦热Q=μmgΔx=μmg(vt0-v0+v2t0),则电动机因传送该包裹多消耗的电能为E=μmgvt0,D正确.3.(2022·湖南常德市模拟)如图所示,水平传送带AB间的距离为16m,质量分别为2kg、4kg的物块P、Q,通过绕在光滑定滑轮上的细线连接,Q在传送带的左端且连接物块Q的细线水平.当传送带以8m/s的速度逆时针转动时,Q恰好静止.重力加速度g=10m/s2,最大静摩擦力等于滑动摩擦力.当传送带以8m/s 的速度顺时针转动时,下列说法正确的是()A.Q与传送带间的动摩擦因数为0.6B.Q从传送带左端运动到右端所用的时间为2.6sC.Q在运动过程中所受摩擦力始终不变D.Q从传送带左端运动到右端的过程中P处于失重状态答案B解析当传送带以v=8m/s逆时针转动时,Q恰好静止不动,对Q受力分析,则有F T=F f,即m P g=μm Q g,代入数据解得μ=0.5,故A错误;当传送带以v=8m/s顺时针转动,物块Q做初速度为零的匀加速直线运动,根据牛顿第二定律有m P g+μm Q g=(m P+m Q)a,解得a=203m/s2,当Q速度达到传送带速度即8m/s 后,做匀速直线运动,根据速度时间公式有v=at1,代入数据解得匀加速的时间为t1=1.2s,匀加速的位移大小为x=v22a,代入数据解得x=4.8m,则匀速运动的时间为t2=L-xv,代入数据解得t2=1.4s,Q从传送带左端滑到右端所用的时间为t总=t1+t2=2.6s,故B正确;物块Q做匀加速直线运动时,摩擦力方向水平向右,匀速运动过程中,摩擦力方向水平向左,故Q在运动过程中所受摩擦力方向变化,故C错误;由B的分析可知,Q在这个过程中先加速后匀速,Q做匀加速直线运动时,P加速下降,处于失重状态,Q匀速运动过程中,P匀速下降,处于平衡状态,故D错误.4.(2022·广东省模拟)如图甲所示,倾角为37°的传送带以速度v0=3m/s顺时针运转,两传动轮之间的距离足够长,质量m=2kg的滑块从左侧底端以一定速度滑上传送带,滑块在传送带上运动的v-t图像如图乙所示,已知此过程传送带的速度保持不变(sin37°=0.6,cos37°=0.8,g=10m/s2),则在图示时间内()A.滑块与传送带间的动摩擦因数μ=0.6B.0~4s内,传送带对滑块做的功为56JC.0~4s内,滑块对传送带做功大小为156JD.0~4s内,系统产生的内能为20J解析根据图像可知,滑块向上先加速后匀速,加速过程有μmg cos37°-mg sin37°=ma,a=ΔvΔt=1m/s2,解得μ=0.875,A错误;根据能量守恒定律可知,在0~4s内,传送带对滑块做的功为W=12mv02-12mv2+mgx sin37°,x=1+32×2m+3×2m=10m,联立解得W=128J,B错误;在0~4s内,滑块对传送带做负功,大小为W′=μmg cos37°×3×2 J+mg sin37°×2×3J=156J,C正确;在0~4s内,系统产生的内能为Q=μmgΔx cos37°,Δx=12×2×2m=2m,联立解得Q=28J,则在0~4s内系统产生的内能为28J,D错误.5.(2022·重庆八中高三检测)如图所示,水平传送带以v=4m/s逆时针匀速转动,A、B为两轮圆心正上方的点,AB=L1=2m,两边水平面分别与传送带上表面无缝对接,弹簧右端固定,自然长度时左端恰好位于B点.现将一小物块与弹簧接触但不拴接,并压缩至图示位置后由静止释放.已知小物块与各接触面间的动摩擦因数均为μ=0.2,AP=L2=1m,小物块与轨道左端P碰撞后原速反弹,小物块刚好返回到B点时速度减为零.g=10m/s2,则下列说法正确的是()A.小物块第一次运动到A点时,速度大小一定为4m/sB.弹簧对小物块做的功等于小物块离开弹簧时的动能C.小物块离开弹簧时的速度可能为1m/sD.小物块对传送带做功的绝对值与传送带对小物块做功的绝对值一定相等解析设物块到达P点时的速度大小为v′,反弹后运动到B点时的速度为零,对物块从P点返回到B点的过程,由动能定理得-μmg(L1+L2)=0-12mv′2,解得v′=23m/s,对物块由A点到P点过程,由动能定理得-μmgL2=12mv′2-12mv A2,解得v A=4m/s,小物块可能在传送带上减速到共速、加速到共速,也可能一开始到B端时就共速,故A正确;弹簧对小物块做的正功与摩擦力对小物块做的负功之和等于小物块离开弹簧时的动能,故B错误;若物块滑上传送带时的速度v B 较大,则一直做匀减速运动,对其从滑上B点到返回B点的过程,有-2μmg(L1+L2)=0-12mv B2,解得v B=26m/s,若速度v B较小,物块在AB上一直加速,到A点时恰好与传送带同速,有μmg=ma,L1=v B t+12at2,v=v B+at,联立解得v B =22m/s,故小物块离开弹簧时的速度一定满足22m/s≤v B≤26m/s,故C错误;小物块与传送带间摩擦力大小相等,但小物块对传送带做功的绝对值为摩擦力乘传送带位移,传送带对小物块做功的绝对值为摩擦力乘小物块位移,当有摩擦力时,两者位移不同,因此功的绝对值也不同,故D错误.6.(多选)(2022·广东省模拟)我国快递行业迅猛发展,工作人员在分快递时常用传送带传送快递商品,工作人员用如图所示的倾斜传送带向高处传送质量为m=2kg 的快递商品,传送带倾角为37°,传送带的底端A和顶端B之间的距离L=9m,传送带以恒定速率v=3m/s顺时针运行,将快递商品静止放于传送带底端A,经过一段时间将快递商品传送到传送带的顶端B,快递商品与传送带间的动摩擦因数为μ=0.875,快递商品可以看作质点,最大静摩擦力等于滑动摩擦力,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8,下列说法正确的是()A.快递商品从底端A传送到顶端B用的时间为32sB.快递商品从底端A传送到顶端B过程中滑动摩擦力对快递商品做的功为126J C.快递商品从底端A传送到顶端B过程中机械能的增量为117JD.快递商品从底端A传送到顶端B过程中电动机比空载时多消耗的电能为180J 答案CD解析快递商品开始运动时受到沿传送带向上的滑动摩擦力F f1=μmg cos37°根据牛顿第二定律有F f1-mg sin37°=ma,解得加速度大小a=1m/s2与传送带达到共同速度经历的时间为t1=va=3s,运动的位移为x1=v2t1=4.5m因为μ=0.875,μmg cos37°>mg sin37°当快递商品的速度与传送带的速度相等时开始做匀速直线运动,运动的位移为x2=L-x1=4.5m匀速运动的时间为t2=x2v=1.5s,则快递商品从底端传送到顶端用的时间为t=t1+t2=4.5s,A错误;快递商品加速运动时滑动摩擦力做的功为W=F f1x1=63J,B错误;快递商品从底端A传送到顶端B过程中机械能的增量为ΔE=12mv2+mgL sin37°=117J,C正确;快递商品与传送带之间发生相对滑动时,传送带做匀速运动位移x3=vt1=9.0m,则产生的热量为Q=μmg cos37°(x3-x1)=63J,第二阶段快递商品与传送带之间没有相对滑动,不产生热量,物块在传送带上运动过程中因摩擦产生的热量是63J ,根据能量守恒定律可知,快递商品从底端A 传送到顶端B 过程中电动机多消耗的电能为系统能量的增量,即系统内能和快递商品机械能的增量,则E 电=Q +ΔE =180J ,D 正确.7.(多选)(2022·河南省高三检测)如图(a),倾角为37°的传送带以v =5m/s 的速度逆时针匀速转动,传送带A 、B 之间的距离为20m ,质量为m =1kg 的物块(可视为质点)自A 点无初速度放上传送带.物块在传送带上运动时,其动能E k 与位移x 的关系图像(E k -x )如图(b)所示,设物块与传送带之间的动摩擦因数为μ,物块从A 运动到B 所用时间为t ,已知重力加速度g 取10m/s 2,sin 37°=0.6,cos 37°=0.8.则下列说法中正确的是()A .μ=0.25B .x 0=1.25mC .t =4sD .E 0=50J 答案BD 解析由题图(b)可知,开始时,物块所受摩擦力方向向下,当物块的速度和传送带速度相等时,摩擦力反向,但此时物块重力沿传送带向下的分力仍大于摩擦力,故物块继续做加速运动,当位移为x 0时,物块的速度为5m/s ,可得E 04=12mv 2,代入数据解得E 0=50J ,故D 正确;根据功能关系得(mg sin θ+μmg cos θ)x 0=12mv 2=E 04,(mg sin θ-μmg cos θ)×10x 0=3E 04-E 04,联立解得μ=0.5,x 0=1.25m ,故B 正确,A 错误;传送带A 、B 之间的距离为20m ,物块速度和传送带速度相等前,根据牛顿第二定律得a1=g sinθ+μg cosθ=10m/s2,可得时间t1=va1=0.5s,当速度和传送带速度相等后,根据牛顿第二定律有a2=g sinθ-μg cosθ=2m/s2,根据运动学公式有20m-x0=vt2+12a2t22,解得t2=2.5s,物块从A运动到B所用时间为t=t1+t2=3s,故C错误.8.(2022·湖南郴州市质检)近些年网购流行,物流业发展迅速,工作人员常利用传送带来装卸快递或包裹.如图所示为某仓库卸货时的示意图,以恒定速率v1=0.6 m/s逆时针运行的传送带与水平面间的夹角α=37°.工作人员沿传送方向以速度v2=1.4m/s从传送带顶端推下一质量m=5kg的小包裹(可视为质点).5s后突然停电,传送带立即停止运动,经过一定时间后包裹到达传送带底端速度恰好为0;包裹与传送带间的动摩擦因数μ=0.8,最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8.求:(1)传送带顶端到底端的距离L;(2)整个过程产生的热量Q.答案(1)4.25m(2)40J解析(1)包裹被从顶端推下传送带时由牛顿第二定律可得μmg cosα-mg sinα=ma,解得a=0.4m/s2设经过t1后包裹与传送带速度相等,有t1=v2-v1a=2s这段时间内包裹运动的距离s1=v1+v22·t1=2m传送带运动的距离s1′=v1t1=1.2m由于μmg cosθ>mg sinθ,则包裹与传送带共速后,一起做匀速运动,共速后匀速运动时间t2=Δt-t1=3s包裹匀速运动距离s2=v1t2=1.8m停电后包裹做匀减速直线运动,加速度大小仍为a,匀减速直线运动时间t3=v1 a=1.5s停电后运动的距离s3=v12t3=0.45m传送带顶端到底端的距离L=s1+s2+s3=4.25m(2)产生的热量Q=μmg(s1-s1′)cosα+μmgs3cosα=40J.9.(2022·江苏苏州市高三期末)如图所示,一倾斜固定的传送带与水平面的倾角θ=37°,传送带以v=2m/s的速率沿顺时针方向匀速运行.从距离传送带底端x0=4 m的O点由静止释放一质量m=0.5kg的滑块(视为质点),滑块沿传送带向下运动,到达传送带底端时与挡板P发生碰撞,碰撞时间极短,碰撞后反弹速率不变.滑块与传送带间的动摩擦因数μ=0.5,取g=10m/s2,sin37°=0.6,cos37°=0.8,传送带与轮子间无相对滑动,不计轮轴处的摩擦.求:(1)滑块刚要与挡板P第一次碰撞时的速度大小;(2)滑块与挡板P第一次碰撞后到达的最高位置与传送带底端之间的距离L;(3)试描述经过足够长时间后滑块所处的状态,并计算与放置滑块前相比电动机增加的功率.答案(1)4m/s(2)1.6m(3)见解析解析(1)由牛顿第二定律有mg sin37°-μmg cos37°=ma,解得a=2m/s2,由2ax0=v12,可得v1=4m/s.(2)上滑时,滑块速度大于传送带速度的过程,加速度大小为a1=mg sin37°+μmg cos37°m=10m/s2,由v2-v12=-2a1L1,解得L1=0.6m,速度小于传送带速度后加速度等于第一次下滑时的加速度,由v2=2aL2,得L2=1m,则滑块与挡板P第1次碰撞后到达的最高位置与传送带底端之间的距离为L=L1+L2=1.6m.(3)滑块上升到最高点后,沿传送带以加速度大小a向下做匀加速运动,与挡板P 发生第二次碰撞,根据速度位移公式可得碰撞前瞬间的速度大小为v2=2aL=6.4m/s与挡板第二次碰撞后,滑块以原速被反弹,先沿传送带向上以加速度大小a1做匀减速运动直到速度为v,此过程运动距离为L3,则L3=v2-v22-2a1=0.12m之后以加速度大小a继续做匀减速运动直到速度为0,此时上升到最高点,此过程运动距离为L4,则有L4=v22a=1m,滑块滑到最高点后,沿传送带以a的加速度向下匀加速,与挡板P发生第三次碰撞,碰前速度为v3=2a L3+L4=4.48m/s,第三次碰撞后,沿传送带上滑的距离为L′=v2-v32-2a1+v22a=1.024m,以此类推,经过多次碰撞后滑块以2m/s的速度被反弹,在距挡板1m的范围内不断做向上的减速运动和向下的加速运动,加速度大小均为2m/s2,滑块对传送带有一与传送带运动方向相反的阻力F f=μmg cos37°=2N,故电动机增加的输出功率为P=μmgv cos37°=4W.。

高中物理专题复习---传送带模型的能量分析

高中物理专题复习---传送带模型的能量分析

微专题34 传送带模型的能量分析【核心要点提示】传送带模型能量分析的问题主要包括以下两个核心问题(1)摩擦系统内摩擦热的计算:依据Q =F f ·x 相对,找出摩擦力与相对路程大小即可。

要注意的问题是公式中的x 相对并不是指的是相对位移大小。

特别是相对往返运动中,x 相对为多过程相对位移大小之和。

(2)由于传送物体而多消耗的电能:一般而言,有两种思路:①运用能量守恒,多消耗的电能等于系统能量的增加的能量。

以倾斜向上运动传送带传送物体为例,多消耗的电能k E E E Q =∆+∆+重摩擦②运用功能关系,传送带克服阻力做的功等于消耗的电能E fS =传 【微专题训练】如图所示,水平传送带长为s ,以速度v 始终保持匀速运动,把质量为m 的货物放到A 点,货物与传送带间的动摩擦因数为μ,当货物从A 点运动到B 点的过程中,摩擦力对货物做的功不可能是( )A .等于12mv 2B .小于12mv 2C .大于μmgsD .小于μmgs【解析】货物在传送带上相对地面的运动可能先加速后匀速,也可能一直加速,而货物的最终速度应小于等于v ,根据动能定理知摩擦力对货物做的功可能等于12mv 2,可能小于12mv 2,可能等于μmgs ,可能小于μmgs ,故选C. 【答案】C(2016·湖北省部分高中高三联考)如图所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对静止这一过程,下列说法正确的是( )A .电动机多做的功为mv 2/2B .物体在传送带上的划痕长v 2/2μgC .传送带克服摩擦力做的功为mv 2/2D .电动机增加的功率为μmgv【解析】电动机多做的功转化成了物体的动能和内能,物体在这个过程中获得的动能就是12mv 2,所以电动机多做的功一定要大于12mv 2,故A 错误;物体在传送带上的划痕长等于物体在传送带上的相对位移,物体达到速度v 所需的时间t =v μg ,在这段时间内物体的位移x 1=v 22μg ,传送带的位移x 2=vt =v 2μg ,则物体相对位移x =x 2-x 1=v 22μg ,故B 正确;传送带克服摩擦力做的功就为电动机多做的功,所以由A 的分析可知,C 错误;电动机增加的功率即为克服摩擦力做功的功率,大小为fv =μmgv ,所以D 正确。

传送带中的能量问题

传送带中的能量问题

高三专题复习 传送带中的能量问题
一、水平传送带
如图所示,传送带保持以1m/s 的速度顺时针转动,现将一质量m=0.5kg 的物体从皮带上的a 点轻轻地放上,设物体与皮带间的动摩擦因数μ = 0.1,a 、b 间的距离L=2.5m ,在物体从a 运动到b 的过程中
(1)摩擦力对传送带做的功为多大?
(2)摩擦力对物件做的功多大?
(3)物件增加的动能是多大?
(4)整个过程中系统产生的内能是多少?
(5)由于传输该物体,电动机多做的功为多少?
(6)电动机增加的功率是多少?
二:倾斜传送带
1、如图所示,传送带与地面倾角θ= 30º ,传送带以v =1m / s 的速度顺时针转动,在传送带下端a 处无初速的放一个质量为m=0.5kg 的物体,它与传送带之间的动摩擦因数μ=2
3,a 、b 间的距离L=2.5m ,则在物体从a 运动到b 的过程中
(1)物块对传送带做的功为多大?
(2)传送带对物件做的功多大?
(3)物件增加的动能是多大?
(4)整个过程中系统产生的内能是多少?
(5)由于传输该物体,电动机多做的功为多少?
2、如图所示,传送带与地面倾角θ= 37º,从a 到b 长度L=16m,传送带以v =10m/ s 的速度逆时针转动。

在传送带上端a处无初速地放一个质量为m=0.5kg的物体,它与传送带之间的动摩擦因数μ= 0.5。

求在物体从a运动到b的过程中
(1)摩擦力对传送带做的功为多大?
(3)传送带对物件做的功多大?
(4)物件增加的动能是多大?
(5)整个过程中系统产生的内能是多少?
(6)由于传输该物体,电动机多消耗的电能为多少?。

传送带多消耗电能计算方法

传送带多消耗电能计算方法

传送带多消耗电能计算方法摘要:一、传送带多消耗电能的原因二、计算传送带多消耗电能的方法1.物体动能改变多少,传送带就做了多少功2.考虑系统产生的内能3.多消耗的电能等于物体增加的动能加上因摩擦增加的内能正文:传送带在运输工件过程中,由于摩擦等因素,会多消耗一定的电能。

那么,这部分电能该如何计算呢?首先,我们要明白传送带多消耗电能的原因。

传送带在运动过程中,不仅要克服物体的重力,还要克服因摩擦而产生的阻力。

这部分阻力所做的功转化为内能,使得传送带多消耗了电能。

接下来,我们来详细计算传送带多消耗的电能。

首先,传送带做的功是针对物体而言的,物体动能改变多少,传送带就做了多少功。

其次,我们还要考虑系统产生的内能。

这部分内能是由于摩擦而产生的,它使得系统的能量发生了转化。

那么,如何计算传送带多消耗的电能呢?我们可以用以下公式:多消耗的电能= 物体增加的动能+ 因摩擦增加的内能物体增加的动能可以通过动能定理来计算,即动能的增加量等于物体所受重力势能的减少量。

而因摩擦增加的内能,则可以通过摩擦力、物体质量和运动距离来计算。

具体来说,首先计算物体在传送带上的加速度,然后根据加速度和运动距离计算物体的动能增加量。

接着,计算因摩擦而产生的热量,这部分热量就是内能的增加量。

最后,将物体动能的增加量和内能的增加量相加,就得到了传送带多消耗的电能。

通过以上步骤,我们就可以准确地计算出传送带在运输过程中多消耗的电能。

需要注意的是,这个计算结果与传送带与物体之间的摩擦因数无关,只与物体的质量、运动速度和运动距离有关。

总之,掌握传送带多消耗电能的计算方法,对于我们理解和优化传送带系统的能耗具有重要意义。

传送带中的能量问题

传送带中的能量问题

传送带中的能量问题知识梳理摩擦力做功与机械能、能之间转化的关系类别比较静摩擦力滑动摩擦力不同点能量的转化方面在静摩擦力做功的过程中,只有机械能从一个物体转移到另一个物体(静摩擦力起着传递机械能的作用)而没有机械能转化为其他形式的能量(1)相互摩擦的物体通过摩擦力做功,将部分转移到另一个物体(2)部分机械能转化为能,此部分能量就是系一对摩擦力的总功方面一对静摩擦力所做功的代数总和等于零一对相互作用的滑动摩擦力对物体系统所做力与两个物体相对路径长度的乘积,即g物体克服摩擦力做功,系统损失机械能转变相同点正功、负功、不做功方面两种摩擦力对物体可以做正功、负功,还可以不做功方法指导:一对相互作用的清动摩擦力做功所产生的热量相对,其中I相对是物体间相对路径长度.如果两物体同向运动,1相对为两物体对地位移大小之差;如果两物体反向运动,1相对为两物体对地位移大小之和;如果一个物体相对另一物体做往复运动,则]相对为两物体相对滑行路径的总长度例1、电机带动水平传送带以速度,匀速运动,一质量为勿的小木块由停止轻放在传送带上, 若小木块与传送带之间的动摩擦因数为〃,如图所示,当小木块与传送带相对静止时,求:(1)小木块的位移;(2)传送带转过的路程;(3)小木块获得的功能;(4)摩擦过程产生的能;(5)电机带动传送带匀速转动输出的总能量.例2、如图5-4-4所示,0为半径/?=0.8m的1/4光滑圆弧轨道,下端B恰与小车右端平滑对接.小车质t M=3 kg,车长Z=2.06ni,车上表面距地面的高度力=0. 2 m.现有一质量Z27=l kg的小滑块,由轨道顶端无初速释放,滑到8端后冲上小车.巳知地面光滑,滑块与小车上表面间的动摩擦因数〃=0.3,当车运动了1.5 s时,车被地面装置锁定.(g=10m/s2)试求:(1)滑块到达&端时,轨道对它支持力的大小;(2)车被锁定时,车右端距轨道8端的距离;(3)从车开始运动到被锁定的过程中,滑块与车面间由于摩擦而产生的能大小;B例3、工厂流水线上采用弹射装置把物品转运,现简化其模型分析:如图5-4-24所示,质量为0的滑块,放在光滑的水平平台上,平台右端方与水平传送带相接,传送带的运行速度为Q,长为Z;现将滑块向左压缩固定在平台上的轻弹簧,到达某处时由静止释放,若滑块离开弹簧时的速度小于传送带的速度,当滑块滑到传送带右端C时.恰好与传送带速度相同,滑块与传送带间的动摩擦因数为以•求:(1)释放滑块时,弹簧具有的弹性势能;(2)滑块在传送带上滑行的整个过程中产生的热量.B综合题例4、某校物理兴趣小组决定举行遥控赛车比赛,比赛路径如图5-4-8所示,奏车从起点为出发,沿水平直线轨道运动[后,由B点进入半径为Q的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到。

高中物理模块五功与能考点7.4传送带模型能量分析

高中物理模块五功与能考点7.4传送带模型能量分析

考点7.4 传送带模型能量分析问题传送带模型能量分析的问题主要包括以下两个核心问题传送带模型能量分析的问题主要包括以下两个核心问题(1)(1)摩擦系统内摩擦热的计算:依据摩擦系统内摩擦热的计算:依据Q =F f ·x 相对,找出摩擦力与相对路程大小即可。

要注意的问题是公式中的x 相对并不是指的是相对位移大小。

特别是相对往返运动中,x 相对为多过程相对位移大小之和。

位移大小之和。

(2)(2)由于传送物体而多消耗的电能:一般而言,有两种思路:由于传送物体而多消耗的电能:一般而言,有两种思路:由于传送物体而多消耗的电能:一般而言,有两种思路:①运用能量守恒,多消耗的电能等于系统能量的增加的能量。

以倾斜向上运动传送带传送物体为例,多消耗的电能k E E E Q=∆+∆+重摩擦②运用功能关系,传送带克服阻力做的功等于消耗的电能E fS =传【例题】如图所示,传送带始终保持v =3 m/s 的速度顺时针运动,一个质量为m =1.0 kg ,初,初速度为零的小物体放在传送带的左端,若物体与传送带之间的动摩擦因数μ=0.150.15,传送带左,传送带左右两端距离为x =4.5 m(g =10 m/s 2).(1)(1)求物体从左端到右端的时间;求物体从左端到右端的时间;求物体从左端到右端的时间;(2)(2)求物体从左端到右端的过程中产生的内能;求物体从左端到右端的过程中产生的内能;求物体从左端到右端的过程中产生的内能;(3)(3)设带轮由电动机带动,求为了使物体从传送带左端运动到右端而多消耗的电能.设带轮由电动机带动,求为了使物体从传送带左端运动到右端而多消耗的电能.设带轮由电动机带动,求为了使物体从传送带左端运动到右端而多消耗的电能. 【解析】(1)(1)滑动摩擦力产生的加速度为滑动摩擦力产生的加速度为a =μg =0.15×10 m/s2=1.5 m/s 2所以速度达到3 m/s 的时间为t 1=v a =31.5s =2 s2 s 内物体发生的位移为x 1=12at 21=3 m<4.5 m所以物体先加速后匀速到达另一端.t 2=x -x 1v=0.5 s ,总时间为,总时间为t =t 1+t 2=2.5 s. (2)(2)物体与传送带之间的相对位移为物体与传送带之间的相对位移为Δx =vt 1-x 1=3 m ,所以产生的热量为,所以产生的热量为,所以产生的热量为 Q =μmg Δx =0.15×1×10×3 J=4.5 J.(3)(3)解法解法1:物体在传送带上滑行时皮带受到向右的摩擦力和电动机的牵引力做匀速直线运动.故摩擦力对传送带做功与电动机做的功动.故摩擦力对传送带做功与电动机做的功((电动机多消耗的电能电动机多消耗的电能))大小相等.大小相等. 故ΔE 电=μmgx 2=μmgvt =9 J, 解法2:电动机多消耗的电能等于物体的动能的增加量与产生的内能之和,故有:电动机多消耗的电能等于物体的动能的增加量与产生的内能之和,故有 ΔE 电=Q +12mv 2=9 J.【答案】(1)2.5 s (2)4.5 J (3)9 J 1.1.足够长的传送带以速度v 匀速传动,一质量为m的小物体A 由静止轻放于传送带上,若小物体与传送带之间的动摩擦因数为μ,如图所示,当物体与传送带相对静止时,转化为内能的能量为当物体与传送带相对静止时,转化为内能的能量为( ( ( D D D ) )2.2.A .mv 2B .2mv 2C.14mv 2D.12mv 23.3. (多选多选))如图所示,在匀速转动的电动机带动下,足够长的水平传送带以恒定速率v 1匀速向右运动,一质量为m 的滑块从传送带右端以水平向左的速率v 2(v 2>v 1)滑上传送带,最后滑块返回传送带的右端.关于这一过程的下列判断,正确的有块返回传送带的右端.关于这一过程的下列判断,正确的有( ( ( ABD ABD ABD ) )A.A. 滑块返回传送带右端的速率为v 1B.B.此过程中传送带对滑块做功为12mv 21-12mv 22C.C. 此过程中电动机对传送带做功为12mv 21-12mv 22D.D.此过程中滑块与传送带间摩擦产生的热量为12m (v 1+v 2)2 4.4. 如图所示,足够长的传送带以恒定速率顺时针运行,将一个物体轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送带相对静止,匀速运动到达传送带顶端.下列说法正确的是达传送带顶端.下列说法正确的是( ( ( C C C ) )A.A. 第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功B.B. 第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加C.C. 第一阶段物体和传送带间的摩擦生热等于第一阶段物体机械能的增加第一阶段物体和传送带间的摩擦生热等于第一阶段物体机械能的增加D.D. 物体从底端到顶端全过程机械能的增加等于全过程物体与传送带间的摩擦生热 5.5.如图所示,甲、乙两种粗糙面不同的传送带,倾斜于水平地面放置,以同样恒定速率v 向上运动.现将一质量为m 的小物体的小物体((视为质点视为质点))轻轻放在A 处,小物体在甲传送带上到达B 处时恰好达到传送带的速率v ;在乙传送带上到达离B 竖直高度为h 的C 处时达到传送带的速率v .已知B 处离地面的高度皆为H .则在小物体从A 到B 的过程中的过程中( ( ( C C C ) )A.A. 两种传送带与小物体之间的动摩擦因数相同两种传送带与小物体之间的动摩擦因数相同B.B.将小物体传送到B 处,两种传送带消耗的电能相等能相等 C.C. 两种传送带对小物体做功相等两种传送带对小物体做功相等D.D.将小物体传送到B 处,两种系统产生的热量相等相等6.6.如图所示,传送带与水平面之间的夹角为θ=30°,其上A 、B 两点间的距离为x =5 m ,传送带在电动机的带动下以,传送带在电动机的带动下以v =1 m/s 的速度匀速运动,现将一质量为m =10 kg 的小物体的小物体((可视为质点可视为质点))轻放在传送带的A 点,已知小物体与传送带之间的动摩擦因数为μ=32,在传送带将小物体从A 点传送到B 点的过程中,(g 取10 m/s 2)求:求:(1)(1) 传送带对小物体做的功;传送带对小物体做的功; (2)(2)电动机做的功.电动机做的功.【答案】【答案】 (1)255 J (2)270 J7.7. 如图所示,与水平面夹角θ=30°的倾斜传送带始终绷紧,传送带下端A 点与上端B 点间的距离L =4 m ,传送带以恒定的速率,传送带以恒定的速率v =2 m/s 向上运动现将一质量为1 kg 的物体无初速度地放于A 处,已知物体与传送带间的动摩擦因数μ=32,取g =10 m/s 2,求:,求: (1)(1) 物体从A 运动到B 共需多长时间?共需多长时间? (2)(2) 电动机因传送该物体多消耗的电能电动机因传送该物体多消耗的电能. . 【答案】【答案】(1)2.4 s (1)2.4 s(2)28 J8.8. 如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6 m/s 的速度运动,运动方向如图所示.一个质量为2 kg 的物体的物体((物体可以视为质点物体可以视为质点)),从h =3.2 m高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.50.5,物体向左最多能滑到传送带左右两端,物体向左最多能滑到传送带左右两端AB 的中点处,重力加速度g =10 m/s 2,则:,则:(1)(1) 物体由静止沿斜面下滑到斜面末端需要多长时间?物体由静止沿斜面下滑到斜面末端需要多长时间? (2)(2) 传送带左右两端A 、B 间的距离l 至少为多少?至少为多少?(3)(3) 物体与传送带组成的系统在完成一次来回滑行过程中产生的摩擦热为多少?物体与传送带组成的系统在完成一次来回滑行过程中产生的摩擦热为多少? 【答案】【答案】 (1)1.6 s (1)1.6 s (2)12.8 m(2)12.8 m (3)196 J9.9.如图所示,在大型超市的仓库中,要利用皮带运输机将货物由平台D 运送到高为h =2.5 m 的平台C 上.为了便于运输,仓储员在平台D 与皮带间放了一个14圆周的光滑轨道ab ,轨道半径为R =0.8 m ,轨道最低点与皮带接触,轨道最低点与皮带接触良好.已知皮带和水平面间的夹角为θ=37°,皮带和货物间的动摩擦因数为μ=0.750.75,,运输机的皮带以v 0=1 m/s 1 m/s的速度沿顺时针方向匀速运动的速度沿顺时针方向匀速运动的速度沿顺时针方向匀速运动((皮带和轮子之间不打滑皮带和轮子之间不打滑)).现仓储员将质量为m =200 kg 的货物放于轨道的a 端(g =10 m/s 2).求:.求: (1)(1) 货物到达圆轨道最低点b 时对轨道的压力;时对轨道的压力; (2)(2)货物沿皮带向上滑行多远才能相对皮带静止;止; (3)(3)皮带将货物由A 运送到B 需对货物做多少功.【答案】【答案】(1)6(1)6(1)6××103N (2)0.625 m (3)3 500 J10.10.如图所示,x 轴与水平传送带重合,轴与水平传送带重合,坐标原点坐标原点O 在传送带的左端,传送带长L =8 m ,匀速运动的速度,匀速运动的速度v 0=5 m/s.一质量一质量m =1 kg的小物块轻轻放在传送带上x P =2 m 的P 点,小物块随传送带运动到Q 点后冲上光滑斜面且刚好到达N 点(小物块到达N 点后被收集,不再下滑不再下滑)).若小物块经过Q 处无机械能损失,小物块与传送带间的动摩擦因数μ=0.50.5,重力加速度,重力加速度g =10 m/s 2. (1)(1) 求N 点的纵坐标;点的纵坐标;(2)(2) 求小物块在传送带上运动产生的热量;求小物块在传送带上运动产生的热量;(3)(3)若将小物块轻轻放在传送带上的某些位置,最终均能沿光滑斜面越过纵坐标y M =0.5 m 的M 点,求这些位置的横坐标范围.点,求这些位置的横坐标范围. 【答案】【答案】 (1)1.25 m (1)1.25 m (2)12.5 J (2)12.5 J (3)0(3)0≤≤x <7 m11.11.一质量为M =2 kg 2 kg的小物块随足够长的水平传送带一起运的小物块随足够长的水平传送带一起运动,被一水平向左飞来的子弹击中,子弹从物块中穿过,如图5甲所示,地面观察者记录了小物块被击穿后的速度随时间的变化关系,如图乙所示(图中取向右运动的方向为正方向),已知传送带的速度保持不变,g 取10 m/s 2. (1)(1) 指出传送带的速度v 的方向及大小,说明理由.的方向及大小,说明理由. (2)(2) 计算物块与传送带间的动摩擦因数.计算物块与传送带间的动摩擦因数.(3)(3)计算物块对传送带总共做了多少功?系统有多少能量转化为内能?为内能?【答案】【答案】(1)2 m/s (1)2 m/s ,方向向右,方向向右,方向向右 理由见解析理由见解析 (2)0.2 (3)-24 J 36 J12.12. 如图为某生产流水线工作原理示意图如图为某生产流水线工作原理示意图..足够长的工作平台上有一小孔A ,一定长度的操作板(厚度可忽略不计厚度可忽略不计))静止于小孔的左侧,某时刻开始,零件静止于小孔的左侧,某时刻开始,零件((可视为质点可视为质点))无初速度地放上操作板的中点,同时操作板在电动机带动下向右做匀加速直线运动,直至运动到A 孔的右侧(忽略小孔对操作板运动的影响忽略小孔对操作板运动的影响)),最终零件运动到A 孔时速度恰好为零,并由A 孔下落进入下一道工序入下一道工序..已知零件与操作板间的动摩擦因数μ1=0.050.05,零件与工作台间的动摩擦因,零件与工作台间的动摩擦因数μ2=0.0250.025,不计操作板与工作台间的摩擦,不计操作板与工作台间的摩擦重力加速度g =10 m/s 2求:求: (1)(1) 操作板做匀加速直线运动的加速度大小;操作板做匀加速直线运动的加速度大小;(2)(2) 若操作板长L =2 m ,质量M =3 kg kg,零件的质量,零件的质量m =0.5 kg kg,则操作板从,则操作板从A 孔左侧完全运动到右侧的过程中,电动机至少做多少功?运动到右侧的过程中,电动机至少做多少功?【答案】【答案】(1)2 m/s (1)2 m/s2 (2)12.33 J13.13.飞机场上运送行李的装置为一水平放置的环形传送带,传送带的总质量为M ,其俯视图如图所示,现开启电动机,传送带达到稳定运行的速度v 后,将行李依次轻轻放到传送带上,若有n 件质量均为m 的行李需通过传送带运送给旅客.假设在转弯处行李与传送带无相对滑动,忽略皮带轮、电动机损失的能量.求从电动机开启到运送完行李需要消耗的电能为多少?多少?【答案】 12Mv 2+nmv 2。

传送带做功公式

传送带做功公式

传送带做功公式传送带是一种被广泛应用于工业生产中的设备,它可以将物体从一个地方移动到另一个地方。

而传送带做功公式则是描述传送带在运动中所做的功的数学表达式。

传送带做功公式可以表示为:功 = 力× 距离× cosθ。

其中,功是传送带在运动过程中所做的功;力是施加在物体上的力;距离是物体在传送带上移动的距离;θ是力和物体运动方向之间的夹角。

传送带做功公式的推导基于功的定义,即功等于力乘以物体在力的方向上的位移。

在传送带上,物体在力的方向上的位移可以表示为物体在传送带上移动的距离与夹角θ的余弦值的乘积。

当物体在传送带上沿着力的方向移动时,夹角θ为0度,此时cosθ的值为1,传送带所做的功最大。

当物体在传送带上与力的方向相反移动时,夹角θ为180度,此时cosθ的值为-1,传送带所做的功为负值,表示传送带对物体做负功,即将物体从一个地方移动到另一个地方时消耗能量。

传送带做功公式的应用可以帮助我们计算传送带在运动过程中所做的功。

例如,在物流行业中,我们可以通过传送带做功公式计算出传送带将货物从仓库运送到卡车上所做的功。

在工厂生产线上,我们可以通过传送带做功公式计算出传送带将零件从一工序输送到下一工序所做的功。

传送带做功公式还可以帮助我们优化传送带的设计和使用。

通过合理调整传送带的长度、速度和施加在物体上的力,可以最大限度地减少传送带所做的功,提高能源利用效率。

同时,传送带做功公式也可以用于计算传送带所需的驱动功率,为传送带的选型和电机的选用提供参考依据。

总结起来,传送带做功公式是描述传送带在运动中所做的功的数学表达式。

它可以帮助我们计算传送带在运动过程中所做的功,优化传送带的设计和使用,提高能源利用效率。

传送带做功公式的应用具有广泛的实际意义,在工业生产和物流运输等领域发挥着重要作用。

通过深入理解和应用传送带做功公式,我们可以更好地掌握传送带的工作原理和性能特点,为工业生产和物流运输提供技术支持。

摩擦力做功及传送带中的能量问题

摩擦力做功及传送带中的能量问题

摩擦力做功及传送带中的能量问题 ① 滑动摩擦力对物体可能做正功,也可能做负功,物体的动能可能增加也可能减少;滑动摩擦力对传送带可能做正功也可能做负功。

摩擦力对系统做的总功等于摩擦力对物体和传送带做的功的代数和。

滑动摩擦力对系统总是做负功,这个功的数值等于摩擦力f 与相对位移△s 的积,即系统产生的热量Q = f △s 。

②要维持传送带匀速运动,必须有外力克服传送带受到的阻力做功而将系统外的能量转化为系统的能量,通常,这部分能量一部分转化为被传送物体的机械能E 机 ,一部分相互摩擦转化为内能——产生热量Q 。

由能的 转化和守恒定律得:E = E 机+ Q 或者写成W =△E K +△E P + Q 。

二、传送带问题中的功能分析 ①功能关系:W F =△E K +△E P +Q ②对W F 、Q 的正确理解(a )传送带做的功:W F =F ·S 带 功率P =F · v 带(F 由传送带受力平衡求得)(b )产生的内能:Q =f · S 相对 【典例】 (2013·云南部分名校统考,24)如图5-3-12所示,与水平面夹角为θ=30°的倾斜传送带始终绷紧,传送带下端A 点与上端B 点间的距离为L =4 m ,传送带以恒定的速率v =2 m/s 向上运动.现将一质量为1 kg 的物体无初速度地放于A 处,已知物体与传送带间的动摩擦因数μ=32,取g =10 m/s 2,求:(1)物体从A 运动到B 共需多少时间? (2)电动机因传送该物体多消耗的电能.解析 (1)物体无初速度放在A 处后,因mgsin θ<μmgcos θ,则物体斜向上做匀加速直线运动, 加速度a =μmgcos θ-mgsin θm=2.5 m/s 2物体达到与传送带同速所需的时间t 1=va =0.8 st 1时间内物体的位移L 1=v2t 1=0.8 m之后物体以速度v 1做匀速运动,运动的时间 t 2=L -L1v=1.6 s 物体运动的总时间t =t 1+t 2=2.4 s (2)前0.8 s 内物体相对传送带的位移为 ΔL =vt 1-L 1=0.8 m因摩擦而产生的内能E 内=μmgcos θ·ΔL =6 J E 总=E k +E p +E 内=12mv 2+mgLsin θ+E 内=28 J即学即练 (2013·陕西西工大附中适应考,20)如图5-3-13所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速率v 匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对传送带静止这一过程,下列说法正确的是图5-3-13A .电动机多做的功为12mv 2B .摩擦力对物体做的功为12mv 2C .电动机增加的功率为μmgvD .传送带克服摩擦力做功为12mv 2解析 由能量守恒知电动机多做的功为物体动能增量和摩擦生热Q ,所以A 项错;根据动能定理,对物体列方程,W f =12mv 2,所以B 项正确;因为电动机增加的功率P =μm g v 2t +μm g v 2tt =μmgv ,C 项正确;因为传送带与物体共速之前,传送带的路程是物体路程的2倍,所以传送带克服摩擦力做功为W =μmgx 传=2μmgx 物=mv 2,D 项错误.答案 BC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有关传送带的能量问题
一、计算题()
1.如图所示,一质量为m=1 kg的可视为质点的滑块,放在光滑的水平平台上,平台的左端与水平传送带相接,传送带以v=2 m/s的速度沿顺时针方向匀速转动(传送带不打滑),现将滑块缓慢向右压缩轻弹簧,轻弹簧的原长小于平台的长度,滑块静止时弹簧的弹性势能为E p=4.5 J,若突然释放滑块,滑块向左滑上传送带。

已知滑块与传送带的动摩擦因数为μ=0.2,传送带足够长,g=10 m/s2。

求:
(1) 滑块第一次滑上传送带到离开传送带所经历的时间。

(2) 滑块第一次滑上传送带到离开传送带由于摩擦产生的热量。

2.如图所示,质量m的小物体,从光滑曲面上高度h处释放,到达底端时水平进入轴心距离L的水平传
送带,传送带可由一电机驱使顺时针转动.已知物体与传送带间的动摩擦因数为μ.求:
(1)求物体到达曲面底端时的速度大小v0?
(2)若电机不开启,传送带不动,物体能够从传送带右端滑出,则物体滑离传送带右端的速度大小v1
为多少?
(3)若开启电机,传送带以速率v2(v2>v0)顺时针转动,且已知物体到达传送带右端前速度已达到
v2,则传送一个物体电动机对传送带多做的功为多少?
3.电机带动水平传送带以速度v匀速传动,一质量为m的小木块由静止轻放在传送带上,如图所示.若小
木块与传送带之间的动摩擦因数为μ,当小木块与传送带相对静止时,求:
(1)小木块的位移;
(2)传送带转过的路程;
(3)摩擦过程产生的摩擦热;
(4)电机带动传送带匀速转动输出的总能量.
4.如图所示,绷紧的传送带在电动机带动下,始终保持v0=4m/s的速度匀速运行,传送带与水平地面的夹角
θ=30°,现把一质量m=10kg的工件轻轻地放在传送带底端,由传送带送至h=2m的高处.已知工件与传送带
间动摩擦因数μ=,g取10m/s2.
(1)试通过计算分析工件在传送带上做怎样的运动?
(2)工件从传送带底端运动至高h=2m处的过程中摩擦力对工件做了多少功?
(3)在运送工件过程中,电动机多消耗的电能.
5.如图所示,绷紧的传送带在电动机的带动下,始终保持v0=2m/s的速度匀速行驶,传送带与水平地面的夹
角θ=30°.现把一质量m=10kg的工件轻轻地放在传送带底端,由传送带送至h=2m的高处,已知工件与传
送带间动摩擦因数μ=,g=10m/s2.求:
(1)试通过计算分析工件在传送带上做怎样的运动?
(2)在工件从传送带底端运动至h=2m高处的过程中,摩擦力对工件做了多少功?
(3)由于传送工件,电动机多消耗的能量△E为多少?
6.如图,传送带AB总长为l=10m,与一个半径为R=0.4m 的光滑圆轨道BC相切于B点.传送带速度恒
为v=6m/s,方向向右.现有一个滑块以一定初速度v0从A点水平冲上传送带,滑块质量为m=10kg,滑块与传送带间的动摩擦因数为μ=0.1.已知滑块运动到B端时,刚好与传送带共速.求
(1)v0;
(2)滑块能上升的最大高度h;
(3)求滑块第二次在传送带上滑行时,滑块和传送带系统产生的内能.
高中物理试卷第1页,共1页。

相关文档
最新文档