等差数列前n项和公开课优质课件

合集下载

4.2.2等差数列的前n项和(第一课时)课件(人教版)

4.2.2等差数列的前n项和(第一课时)课件(人教版)
最小值时n的值为(
A.5

B.6
C.7
)
D.8
a1
17
解析 由 7a5+5a9=0,得 d =- 3 .
又a9>a5,所以d>0,a1<0.
d
1 a1 1 17 37
d 2
因为函数 y=2x +a1-2x 的图象的对称轴为 x=2- d =2+ 3 = 6 ,


取最接近的整数 6,故 Sn 取得最小值时 n 的值为 6.
已知等差数列{ an }的首项为a1,项数
是n,第n项为an,求前n项和Sn .
S n a1 (a1 d ) (a1 2d ) ... [a1 (n 1)d ], ①
S n an (an d ) (an 2d ) ... [an (n 1)d ], ②
跟踪练习
8.植树节某班20名同学在一段直线公路一侧植树,每人植树一棵,相邻两棵树相距
10米,开始时需将树苗集中放置在某一棵树坑旁边,使每位同学从各自树坑出发前
来领取树苗往返所走的路程总和最小,此最小值为________米.
解析 假设20位同学是1号到20号依次排列,
使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,
由①+②,得
2Sn (a1 an)+(a1 an)+(a1 an)+...+(a1 an)
n个
n(a1 an )
2 S n n(a1 an ) 即Sn
2
求和公式
可知三
求一
等差数列的前n项和的公式:
n(a1 an )
Sn
不含d

等差数列前n项和(公开课)PPT课件

等差数列前n项和(公开课)PPT课件
几何等领域。
组合数学
等差数列的前n项和公式可以应 用于组合数学中,解决一些组合 问题,如计算组合数的公式等。
数列求和
等差数列的前n项和公式是数列 求和的一种重要方法,可以用于
解决等差数列的求和问题。
在物理中的应用
力学
在物理学中,等差数列的 前n项和公式可以应用于求 解一些力学问题,如计算 多自由度振动的周期等。
简化计算
等差数列的前n项和公式在日常生活 和科学研究中有着广泛的应用,如计 算存款利息、解决生产计划问题等。
对于一些较大的等差数列,使用前n 项和公式可以大大简化计算过程,提 高计算效率。
验证答案
使用前n项和公式可以快速验证一些 等差数列求和问题的答案,确保计算 的准确性。
实例解析
简单实例
例如,一个等差数列1, 4, 7, 10... ,使用前n项和公式可以快速求出
统计学
在统计学中,等差数列的 前n项和公式可以用于计算 平均值、中位数等统计指 标。
信号处理
在信号处理中,等差数列 的前n项和可以用于计算信 号的频谱、滤波等操作。
在计算机科学中的应用
数据结构
在计算机科学中,等差数列的前n项和公式可以应用于一些数据结 构的设计,如数组、链表等。
算法设计
等差数列的前n项和公式可以用于设计一些算法,如排序算法、查 找算法等。
详细描述
等差数列是一种特殊的数列,其中任意两个相邻的项之间的 差是一个固定的值,这个值被称为公差。等差数列的通项公 式为 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项,a_1 是首项 ,d 是公差。
性质
总结词
等差数列具有一些重要的性质,包括对称性、中项性质和等差中项性质等。

2.3等差数列前n项和(公开课)优质课件

2.3等差数列前n项和(公开课)优质课件

?
1 2 3 99 100 100 99 3 2 1
1 100100 5050
2
100 99
1
03
试一试




1 2 3 ( n 1) n
n n-1
1
凯里实验高级中学
Kailishiyangaojizhongxue
Kailishiyangaojizhongxue




等差求和的数学史
我国数列求和的概念起源很早,到南北朝时,张丘建始创等 差数列求和解法。他在《张丘建算经》中给出等差数列求和 问题: 例如:今有女子不善织布,每天所织的布以同数递减,初日 织五尺,末一日织一尺,共织三十日,问共织几何?
原书的解法是:并初、末日织布数,半之再乘以织日数,即得.
凯里实验高级中学
Kailishiyangaojizhongxue




例2
等差数列{an}中,d=4,n=5, Sn =45,求a1的值。
解: 由 S n na 1
n( n 1)d 得: 2
5(5 1) 45 5a1 4 2
解得
a1 1
凯里实验高级中学
Kailishiyangaojizhongxue
想一想




如图,一个堆放铅笔的V形架的最下面一层放1支铅笔,往上每一层 都比它下面一层多放1支,最上面一层放100支. 这个V形架上共放 了多少支铅笔? 100 99
1
凯里实验高级中学
Kailishiyangaojizhongxue
?

等差数列前n项和(公开课)PPT课件

等差数列前n项和(公开课)PPT课件
数学建模
等差数列的前n项和公式也可以用于数学建模,例如在解决一 些实际问题时,可以利用等差数列的前n项和来建立数学模型 ,从而更好地理解和解决这些问题。
在物理中的应用
物理学中的等差数列
在物理学中,有些物理量呈等差数列 分布,例如光的波长、音阶的频率等 ,等差数列的前n项和公式可以用于 计算这些物理量的总和。
物理学中的级数求和
在物理学中,有些级数的求和问题可 以用等差数列的前n项和公式来解决 ,例如在求解一些物理问题的近似解 时,可以利用等差数列的前n项和来 简化计算。
在经济中的应用
金融投资
在金融投资中,有些投资组合的收益 呈等差数列分布,例如定期存款、基 金定投等,等差数列的前n项和公式 可以用于计算这些投资组合的总收益 。
CHAPTER 02
等差数列的前n项和公式
等差数列前n项和的定义
01
02
03
定义
等差数列的前n项和是指 从第一项到第n项的所有 项的和。
符号表示
记作Sn,其中S表示总和 ,n表示项数。
举例
对于等差数列2, 4, 6, ..., 2n,前n项和为Sn = 2 + 4 + 6 + ... + 2n。
等差数列前n项和(公开 课)ppt课件
汇报人:可编辑
2023-12-23
CONTENTS
目录
• 等差数列的概念 • 等差数列的前n项和公式 • 等差数列前n项和的特例 • 等差数列前n项和的应用 • 习题与解答
CHAPTER 01
等差数列的概念
等差数列的定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常
等差数列前n项和的公式推导
推导方法

等差数列前n项和PPT优秀课件

等差数列前n项和PPT优秀课件

n 个 2 S ( a a ) ( a a ) ( a a ) n 1 n 1 n 1 n
n ( a a ) 1 n
n ( a 1 a n) S n 2
等差数列的前n项和公式的其它形式
n ( a 1 a n) S n 2 n ( n 1 ) S na d n 1 2
解: 由题意 , m 是 7 的倍数 , 且 0 m 100 .
练习1.
课 堂 小 练
1. 根据下列条件,求相应的等差数列
a n 的 S
( 1 ) a 5 , a 95 , n 10 ; 1 n
( 2 ) a 100 , d 2 , n 50 ; 1
n
练习2.
解得: n = 4 或 n = 6 a1=6 或 a1= -2
M m |m 7 n ,n N , 且 m 100 例3. 求集合
的元素个数 , 并求这些元素的和 .
将它们从小到大排列得 : ,7 7 0,7 1, 7 2, 7 , 14 , 21 , , 98 . 14 .即 共有 15 个元素 , 构成一个等差数列 ,记为 a , n 15 ( 0 98 ) a 0 , a 98 S 1 15 735 15 2 答 : 集合 M 共有 15 个元素 , 和等于 735 .
= 7260 120 = (1 + 120 ) · 2
120 (a1 a120) · 2
(三)构建数学:猜测
问题 1: 问题 2: S120=1+2+ · · · · · ·+12 0 120
(a1 a120 )· 2

《等差数列的前n项和》课件(全国讲课比赛一等奖)

《等差数列的前n项和》课件(全国讲课比赛一等奖)

对学生的答疑解惑
01
解答学生在学习过程中遇到的疑 惑和问题,帮助他们更好地理解 和掌握等差数列的前n项和。
02
针对学生的不同学习需求和问题 ,提供个性化的指导和建议。
下节课预告:等差数列的性质探究
• 预告下节课的学习内容,引导学生对等差数列的 性质进行探究和思考,激发他们的学习兴趣和好 奇心。
THANKS。
详细描述
首先,将等差数列的项倒序排列,然后将其与原数列相加。由于倒序数列与原数列的对 应项相加都等于同一个常数(等差数列的首项加末项),因此,这些相加的结果都相互 抵消,除了第一项和最后一项。因此,等差数列的前n项和可以通过求第一项和最后一
项的和,然后乘以项数n再除以2来得到。
错位相减求和
总结词
错位相减法是一种通过将等差数列的每 一项乘以一个递增或递减的系数,然后 求和来找到等差数列的和的方法。
等差数列的前n项和公式的扩 展
推广到等差数列的任意项和
总结词
等差数列的任意项和公式是等差数列前n项和公式的一种扩展,它可以计算等差数列中任意一项的值。
详细描述
等差数列的任意项和公式是基于等差数列的通项公式和前n项和公式推导出来的。通过设定等差数列的首项、公 差以及项数,可以计算出任意一项的值。这个公式在解决一些数学问题时非常有用,特别是那些需要精确计算等 差数列中某一项的值的问题。
要点二
详细描述
首先,将等差数列的每一项拆分成两个部分,通常是一个 常数和一个递增或递减的等差数列。然后,将这些拆分后 的项重新组合成新的数列,并求和。由于相邻的拆分项会 相互抵消,因此最后只剩下首项和末项的和。因此,等差 数列的前n项和可以通过求首项和末项的和,然后乘以项 数n再除以2来得到。

等差数列的前n项和PPT优秀课件1

等差数列的前n项和PPT优秀课件1

(2)100元“零存整取”的月利息为 100×1.725‰=0.1725(元), 存3年的利息是
0.1725×(1+2+3+……+36)=114.885(元), 因此李先生多收益
179.82-114.885×(1-20%)=87.912元.
答:李先生办理“教育储蓄”比“零存整 取”多收益87.912元
解:(1)100元“教育储蓄”存款的月利息是 100×2.7‰=0.27(元), 第1个100元存36个月,得利息0.27×36(元); 第2个100元存35个月,得利息0.27×35(元); ………… 第36个100元存1个月,得利息0.27×1(元),
此时李先生获得利息
0.27×(1+2+3+……+36)=179.82(元), 本息和为3600+179.82=3779.82元;
解 得 30AB2
S 3 0 9 0 0 A 3 0 B 3 0 ( 3 0 A B ) 6 0
解法三: 设a1+a2+……+a10=A, a11+a12+……+a20=B,
a21+a22+……+a30=C, 则A,B,C成等差数列, 且A=10,A+B=30, 解得B=20,
2.2.2等差数列的前n项和
如图堆放一堆钢管,最上一层放了4根, 下面每一层比上一层多放一根,共8层,这 堆钢管共有多少根?
这堆钢管从上到下的数 量组成一个等差数列。
其中a1=4,公差d=1. 最下一层中a8=11。
即求4+5+6+……+11=?
我们设想,在这堆钢管旁,如图所示堆放同 样数量的钢管,这时每层都有钢管(4+11)根.

等差数列前n项和(公开课)PPT课件

等差数列前n项和(公开课)PPT课件
所以这个等差数列共有(a+d)×(n-2)/2 +10 =25。
04
第二题答案:16;解析:设等差数列的首项为a,公 差为d,根据题意有4a + 6d = 12,解得a+d=2,所 以这个等差数列共有(a+d)×(n-2)/2 +4 =16。
感谢您的观看
THANKS
习题答案与解析
进阶习题答案与解析
01
输标02入题
第一题答案:42;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 10d = 25,解得a+d=5, 所以第6项到第10项的和为5a+35d=42。
03
第三题答案:25;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 20d = 80,解得a+4d=8,
第二题答案:18;解析:设等差数列的首项为a,公差为d,根据题意有3a + 3d = 15,解得a+d=5,所以这个等差数列共有(a+d)×(n-2)/2 +3 =18。
习题答案与解析
• 第三题答案:30;解析:设等差数列的首项为a,公差为d,根据题意有5a + 45d = 200,解得a+d=5,所以这个等差数 列共有(a+d)×(n-2)/2 +10 =30。
公式5
$S_n - S_{n-1} = a_n$
公式6
$S_n = S_{n-1} + a_n$
公式之间的联系与区别
联系
公式1、2、3都是求等差数列前n项 和的基本公式,而公式4、5、6则是 基于这些基本公式的推导或变种。
区别
公式1和公式2形式较为简洁,而公式 3则更便于观察等差数列的对称性质。 公式4、5、6则更注重于相邻两项和 之间的关系,可以用于求解某些特定 问题。

等差数列前n项和(公开课)PPT课件

等差数列前n项和(公开课)PPT课件
成立。
代数证明
利用等差数列的性质和代数方法 ,通过一系列的推导和变换,证
明前n项和公式的正确性。
图形证明
通过图形证明前n项和公式的正 确性。将等差数列的项表示为坐 标平面上的点,利用梯形的面积
公式推导出前n项和公式。
03
等差数列前n项和的性质
和的最小值和最大值
最小值
等差数列的前n项和的最小值出 现在首项小于0,公差小于0的情 况下,此时最小值为 S_n=a_1×n+d/2×n(n-1)。
等差数列的实例
01
自然数列:1, 2, 3, 4, ...
03
三角数列:1, 3, 6, 10, ...
02
偶数数列:2, 4, 6, 8, ...
04
等差数列的前n项和为Sn=n/2*(2a1+(n-1)d),其 中a1是第一项,d是公差。
02
等差数列的前n项和公式
前n项和公式的推导
1 2
3
最大值
等差数列的前n项和的最大值出 现在首项大于0,公差大于0的情 况下,此时最大值为 S_n=a_1×n+d/2×n(n-1)。
和的奇偶性
奇数项和
等差数列的奇数项和等于中间项乘 以项数,即S_n=(a_n+a_1)/2×n。
偶数项和
等差数列的偶数项和等于首尾两项的 和乘以项数再除以2,即 S_n=(a_1+a_n)×n/2。
统计学
在统计学中,等差数列的前n项和可 以用于描述一系列数据的分布特征 ,例如测量误差、概率分布等。
在经济中的应用
金融
等差数列的前n项和可以用于计算一 系列金融数据的累加值,例如股票价 格、债券收益、投资回报等。

等差数列前n项和(公开课)PPT课件

等差数列前n项和(公开课)PPT课件

实例
总结词
等差数列的实例包括正整数序列、负数序列、斐波那契数列等。
详细描述
正整数序列1, 2, 3, ...是一个等差数列,其中首项a=1,公差d=1;负数序列-1, 2, -3, ...也是一个等差数列,其中首项a=-1,公差d=-1;斐波那契数列0, 1, 1, 2, 3, 5, ...也是一个等差数列,其中首项a=0,公差d=1。
01
求等差数列3, 6, 9, ..., 3n的前n项和。
进阶习题2
02
求等差数列-2, -4, -6, ..., -2n的前n项和。
进阶习题3
03
求等差数列5, 10, 15, ..., 5n的前n项和。
高阶习题
1 2
Байду номын сангаас
高阶习题1
求等差数列-3, -6, -9, ..., -3n的前n项和。
高阶习题2
总结词
等差数列是一种特殊的数列,其 中任意两个相邻项的差是一个常 数。
详细描述
等差数列通常表示为“an”,其 中a是首项,n是项数,d是公差 (任意两个相邻项的差)。
性质
总结词
等差数列的性质包括对称性、递增性、递减性等。
详细描述
等差数列的对称性是指任意一项与它的对称项相等,即a_n=a_(n+2m),其中 m是整数;递增性是指如果公差d>0,则数列是递增的;递减性是指如果公差 d<0,则数列是递减的。
PART 04
等差数列前n项和的变式 与拓展
REPORTING
变式公式
01
02
03
04
公式1
$S_n = frac{n}{2} (2a_1 + (n-1)d)$

等差数列的前n项求和公式ppt课件

等差数列的前n项求和公式ppt课件

由等差数列的性质 即
a1+an=a2+an-1=a3+an-2=…
2Sn=(a1+an)+(a1+an)+(a1+an)+..
Sn=n(a1+an)/2
5
如果代入等差数列的通项公式an=a1+(n-1)d,Sn也可 以用首项a1和公差d表示,即 Sn=na1+n(n-1)d/2 所以,等差数列的前n项求和公式是
-------方程、函数思想 3.公式中五个量a1, d, an, n, sn, 已知 其中三个量,可以求其余两个 -------知三求二
15
A组2、4、5
16
谢谢观赏
17
S
n

n a1 a n 2

S
n
n a1
n n 1 d 2
6
例题
例1
54?
等差数列-10,-6,-2, 2,…前多少项的和是
例2
已知一个等差数列{an}的前10项的和是310,前 20项的和是1220 .求等差数列的前n项和的公式
例3
求集合M={m|m=7n, n是正整数, 且m<100}的元素 个数, 并求这些元素的和.
8a 52 d n 2 14n nn 1 d S na d
a
n 1
13 d 0 d 0 2
2
2
解2: S3 S11
即 n=7
a1 0
由等差数列构成的函数图象,可知 n=(3+11)/2=7时,Sn最大
12
an 例8.等差数列 的前项n和S n,且a3 12 ,S12 0, S13 0

等差数列的前n项和公式的性质省公开课获奖课件市赛课比赛一等奖课件

等差数列的前n项和公式的性质省公开课获奖课件市赛课比赛一等奖课件

(1)当1≤n≤6(n∈N*)时, Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=12n-n2.
(2)当n≥7(n∈N*)时,Tn=|a1|+|a2|+…+|an| =(a1+a2+…+a6)-(a7+a8+…+an) =-(a1+a2+…+an)+2(a1+…+a6) =-Sn+2S6=n2-12n+72.
∵a1<0,∴d>0,∴Sn=na1+21n(n-1)d=12dn2-221dn
=d2n-2212-4841d.
∵d>0,∴Sn 有最小值.
又∵n∈N*,∴n=10或n=11时,Sn取最小值.
解法 2:同解法 1,由 S9=S12 得 a1=-10d
代入aann=+1=a1+a1+nn-d≥1d>0≤0 得,- -1100dd+ +nnd-≥10>d≤0
∵a1<0,∴d>0, 解得 10<n≤11. ∴n 取 10 或 11 时,Sn 取最小值.
解法 3:∵S9=S12,∴a10+a11+a12=0, ∴3a11=0,∴a11=0.∵a1<0,∴前 10 项或前 11 项和最小.
小结:求等差数列{an}前n项和Sn旳最值常用措施: 措施1:二次函数性质法,即求出Sn=an2+bn,
2.2.2等差数列前n项和公式 旳性质及其应用
思(2分钟)
1.等差数列旳递推公式是什么?
an- an-1=d(n≥2) an-1+an+1=2an(n≥2)
2.等差数列通项公式是什么?构造上它有什么特征? an=a1+(n-1)d=am+(n-m)d=pn+k. 在构造上是有关n旳一次函数.
3.等差数列前n项和旳两个基本公式是什么?
『变式探究』
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

归纳总结 收获分享
1.倒序相加法求和的思想及应用
2.等差数列前n项和公式的推导过程
3.公式
Sn

n a1 an
2
nn 1
Sn na1 2 d
4.前n项和公式的灵活应用及方程的思想
5 . .…………………………
课后作业
一、书面作业: 1.已知等差数列{an},其中d=2,n=15, an =-10,求a1 及sn。 2.在a,b之间插入10个数,使它们同这两个数成 等差数列,求这10个数的和。
n可能是奇数也可能是偶数,怎么避免讨论?
利用倒序相加法
sn=1 + 2 + … + n-1 + n
sn=n + n-1 + … + 2 + 1
2sn =(n+1) + (n+1) + … + (n+1) + (n+1) n个
问题3: 对于一般等差数列{an},首项为a1公差为d,如何推导 它的前n项和公式Sn呢?
等差数列前n项和
数列的前n项和的定义
你世知界道七这大个奇雄迹伟之壮一观—的—建印筑度是泰哪姬儿陵吗?
问题1: 传说泰姬陵 陵寝中有一个三角形图案,以相同大
小的圆宝石镶饰而成,共有100层(见示意图),奢
靡之程度可见一斑。你知道这个图案一共花了多少 颗圆宝石吗?
即: 1+2+3+······+100=?
21个22 2S21=(1+21) + (2+20) +(3+19 )+ … + (21+1)
探索与发现2:第5层到12层一共有多少颗圆宝石?
S8=5+6+7+8+9+10+11+12 S8=12+11+10+9+8+7+6+5 总结一下这种方法特点?可以叫什么法呢?
倒序相加法
问题2:等差数列1,2,3,…,n, …的前n项和怎么求?
二、课后思考: 等差数列的前n项和公式的推导方法除了倒序相加法 还有没有其它方法呢?
据测算,2001年该市用于“校校通”工程的 经费为500万元.为了保证工程的顺利实施,计 划每年投入的资金都比上一年增加50万元.那 么从2001年起的未来10年内,该市在“校校通” 工程中的总投入是多少?
解答过程
解:设从2001年起第n年投入的资金 为an,根据题意,数列{an}是一个等差
数列,其中 a1=500, d=50
上式相加得: 由等差数列性质可知:
2Sn a1 an (a1 an ) (a1 an ) (a1 an )
Sn

n a1
2
an

又 an a1 n 1 d
n个
nn 1
Sn na1 2 d
等差数列前n项和公式
Sn

解:1 Sn
n(a1 an ) 2
10 (5 95) 2
500
解:2 Sn

na1

n(n 1) 2
d
50100 50 (50 1) -2 2550
2
例题讲解
例1.2000年11月14日教育部下发了<<关 于在中小学实施“校校通”工程的通知>>.某市 据此提出了实施“校校通”工程的总目标:从 2001年起用10年时间,在全市中小学建成不 同标准的校园网.
看看高斯的
(1+100)+(2+99)+ …+(50+51) =101×50=5050
? ?
高斯的思路有什么特点? 适合哪种类型?
特点:首尾配对(变不同数求和为相同 数求和,变加法为乘法) 类型:偶数个数相加
探索与发现1:第1层到21层一共有多少颗圆宝石?
高斯的办法行吗?如何改进? S21=1 + 2 + 3 + … + 21 S21 =21 + 20 + 19 + … + 1
n a1
2
an

(公式一)
nn 1
Sn na1
2
d(公式二)
一、两个公式的相同的是a1和n,不同的是:公 式一中有an,公式二中有d 。 若a1,d, n, an中已
知三个量就可以求出Sn 。
二、 a1,d, n, an,Sn五个量可“知三求二”。
探索与发现3: 等差数列前n项和公式与梯形面积公式有什么联系呢?
公式一:如何类比梯形面积公式来记忆?
Sn

n a1
2
an

a1
n
an
公式二:如何类比梯形面积公式来记忆?
nn 1
Sn na1 2 d
a1
n
a1 (n 1)d
分中的条件,求相应的 等差数列{an}的Sn :
(1)a1=5,an=95,n=10 (2)a1=100,d=-2,n=50
答: 从2001年起的未来10年内,该市在 “校校通”工程中的总投入是7250万元。
例题讲解
例2、已知一个等差数列{an} 的前10项的和是310,前20项 的和是1220,由这些条件可以 确定这个等差数列的前n项和 的公式吗?
例题讲解
用公式一做做
方法2
用公式二做做
反馈达标
练习1. 在等差数列{an}中, a1=20, an=54, sn =999,求n。
相关文档
最新文档