NL2011T-03中文资料
LMP2011中文资料
LMP2011Single/LMP2012Dual/LMP2014QuadHigh Precision,Rail-to-Rail Output Operational AmplifierGeneral DescriptionThe LMP201X is a new precision amplifier family that offers unprecedented accuracy and stability at an affordable price and is offered in miniature packages.This device utilizes patented techniques to measure and continually correct the input offset error voltage.The result is an amplifier which is ultra stable over time and temperature.It has excellent CMRR and PSRR ratings,and does not exhibit the familiar 1/f voltage and current noise increase that plagues tradi-tional amplifiers.The combination of the LMP201X charac-teristics makes it a good choice for transducer amplifiers,high gain configurations,ADC buffer amplifiers,DAC I-V conversion,and any other 2.7V-5V application requiring pre-cision and long term stability.Other useful benefits of the LMP201X are rail-to-rail output,a low supply current of 930µA,and wide gain-bandwidth product of 3MHz.These extremely versatile features found in the LMP201X provide high performance and ease of use.Features(For V S =5V,Typical unless otherwise noted)n Low guaranteed V OS over temperature 60µV n Low noise with no 1/f 35nV/n High CMRR 130dB n High PSRR 120dB n High A VOL130dB n Wide gain-bandwidth product 3MHz n High slew rate4V/µs n Low supply current 930µA n Rail-to-rail output30mVn No external capacitors requiredApplicationsn Precision instrumentation amplifiers n Thermocouple amplifiers n Strain gauge bridge amplifierConnection Diagrams5-Pin SOT238-Pin SOIC8-Pin MSOP20071502Top View20071542Top View20071538Top View14-Pin TSSOP14-Pin LLP20071539Top View20071541Top ViewPRELIMINARYOctober 2004LMP2011Single/LMP2012Dual/LMP2014Quad High Precision,Rail-to-Rail Output Operational Amplifier©2004National Semiconductor Corporation Absolute Maximum Ratings (Note 1)If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.ESD Tolerance Human Body Model 2000V Machine Model 200V Supply Voltage 5.8VCommon-Mode Input Voltage−0.3≤V CM ≤V CC +0.3VLead Temperature (soldering 10sec.)+300˚CDifferential Input Voltage ±Supply VoltageCurrent at Input Pin30mACurrent at Output Pin 30mA Current at Power Supply Pin50mAOperating Ratings (Note 1)Supply Voltage2.7V to 5.25V Storage Temperature Range −65˚C to 150˚COperating Temperature Range LMP2011MF,LMP2011MFX −40˚C to 125˚C LMP2011MA,LPM2011MAX −40˚C to 125˚C LMP2012MM,LMP2011MMX −40˚C to 125˚C LMP2014SD,LMP2014SDX −40˚C to 125˚CLMP2014MT,LMP2014MTX0˚C to 70˚C 2.7V DC Electrical CharacteristicsUnless otherwise specified,all limits guaranteed for T J =25˚C,V +=2.7V,V -=0V,VCM=1.35V,V O =1.35V and R L >1M Ω.Boldface limits apply at the temperature extremes.Symbol ParameterConditions Min (Note 3)Typ (Note 2)Max (Note 3)Units V OSInput Offset Voltage 0.82560µV Offset Calibration Time0.51012ms TCV OSInput Offset Voltage 0.015µV/˚C Long-Term Offset Drift 0.006µV/monthLifetime V OS Drift2.5µV I IN Input Current -3pA I OS Input Offset Current 6pA R IND Input Differential Resistance 9M ΩCMRR Common Mode Rejection Ratio−0.3≤V CM ≤0.9V 0≤V CM ≤0.9V1309590dB PSRR Power Supply Rejection Ratio 1209590dBA VOLOpen Loop Voltage GainR L =10k Ω1309590dBR L =2k Ω1249085V OOutput SwingR L =10k Ωto 1.35V V IN (diff)=±0.5V2.6652.6552.68V0.0330.0600.075R L =2k Ωto 1.35V V IN (diff)=±0.5V2.6302.6152.65V0.0610.0850.105I OOutput CurrentSourcing,V O =0V V IN (diff)=±0.5V 1253mASinking,V O =5V V IN (diff)=±0.5V1853R OUT Output ImpedanceΩI SSupply Current per Channel0.9191.201.50mAL M P 2011S i n g l e /L M P 2012D u a l /L M P 2014Q u a d 22.7V AC Electrical CharacteristicsT J =25˚C,V +=2.7V,V -=0V,V CM =1.35V,V O =1.35V,and R L>1M Ω.Boldface limits apply at the temperature extremes.Symbol ParameterConditions Min (Note 3)Typ (Note 2)Max (Note 3)Units GBW Gain-Bandwidth Product 3MHz SR Slew Rate 4V/µs θm Phase Margin 60Deg G m Gain Margin−14dB e n Input-Referred Voltage Noise 35nV/i n Input-Referred Current Noise pA/e n p-p Input-Referred Voltage Noise R S =100Ω,DC to 10Hz 850nV pp t rec Input Overload Recovery Time 50mst SOutput Settling timeA V =+1,R L =2k Ω1V Step1%ns0.1%0.01%A V =−1,R L =2k Ω1V Step1%0.1%0.01%5V DC Electrical CharacteristicsUnless otherwise specified,all limits guaranteed for TJ=25˚C,V +=5V,V -=0V,VCM=2.5V,V O =2.5V and R L >1M Ω.Boldface limits apply at the temperature extremes.Symbol ParameterConditionsMin (Note 3)Typ (Note 2)Max (Note 3)Units V OSInput Offset Voltage 0.122560µV Offset Calibration Time0.51012ms TCV OSInput Offset Voltage 0.015µV/˚C Long-Term Offset Drift 0.006µV/monthLifetime V OS Drift2.5µV I IN Input Current -3pA I OS Input Offset Current 6pA R IND Input Differential Resistance 9M ΩCMRR Common Mode Rejection Ratio−0.3≤V CM ≤3.20≤V CM ≤3.213010090dB PSRR Power Supply Rejection Ratio 1209590dBA VOLOpen Loop Voltage GainR L =10k Ω130105100dBR L =2k Ω1329590V OOutput SwingR L =10k Ωto 2.5V V IN (diff)=±0.5V4.964.954.978V0.0400.0700.085R L =2k Ωto 2.5V V IN (diff)=±0.5V4.8954.8754.919V0.0910.1150.140LMP2011Single/LMP2012Dual/LMP2014Quad35V DC Electrical Characteristics Unless otherwise specified,all limits guaranteed for T J =25˚C,V +=5V,V -=0V,VCM=2.5V,V O =2.5V and R L >1M Ω.Boldface limits apply at the temperature extremes.(Continued)Symbol ParameterConditionsMin (Note 3)Typ (Note 2)Max (Note 3)UnitsI OOutput CurrentSourcing,V O =0V V IN (diff)=±0.5V 1586mASinking,V O =5V V IN (diff)=±0.5V1786R OUT Output ImpedanceΩI SSupply Current per Channel0.9301.201.50mA5V AC Electrical CharacteristicsT J =25˚C,V +=5V,V -=0V,V CM =2.5V,V O =2.5V,and R L >1M Ω.Boldface limits apply at the temperature extremes.Symbol ParameterConditionsMin (Note 3)Typ (Note 2)Max (Note 3)Units GBW Gain-Bandwidth Product 3MHz SR Slew Rate 4V/µs θm Phase Margin 60deg G m Gain Margin−15dB e n Input-Referred Voltage Noise 35nV/i n Input-Referred Current Noise pA/e n p-p Input-Referred Voltage Noise R S =100Ω,DC to 10Hz 850nV pp t rec Input Overload Recovery Time 50mst SOutput Settling timeA V =+1,R L =2k Ω1V Step1%ns0.1%0.01%A V =−1,R L =2k Ω1V Step1%0.1%0.01%Note 1:Absolute Maximum Ratings indicate limits beyond which damage may occur.Operating Ratings indicate conditions for which the device is intended to be functional,but specific performance is not guaranteed.For guaranteed specifications and test conditions,see the Electrical Characteristics.Note 2:Typical values represent the most likely parametric norm.Note 3:Limits are 100%production tested at 25˚C.Limits over the operating temperature range are guaranteed through correlations using statistical quality control (SQC)method.Ordering InformationPackage Part Number TemperatureRangePackage MarkingTransport Media NSC Drawing5-Pin SOT23LMP2011MF −40˚C to 125˚CAN1A 1k Units Tape and Reel MF05A LMP2011MFX 3k Units Tape and Reel 8-Pin MSOP LMP2012MM AP1A1k Units Tape and Reel MUA08A LMP2012MMX 3.5k Units Tape and Reel8-Pin SOIC LMP2011MA LMP2011MA 95Units/Rail M08A LMP2011MAX 2.5k Units Tape and Reel 14-Pin LLP LMP2014SD P2014SD 250Units Tape and Reel SRC14A LMP2014SDX 2.5Units Tape and Reel14-Pin TSSOPLMP2014MT 0˚C to 70˚C LMP2014MT94Units/Rail MTC14LMP2014MTX2.5k Units Tape and ReelL M P 2011S i n g l e /L M P 2012D u a l /L M P 2014Q u a d 4Typical Performance CharacteristicsT A =25C,V S =5V unless otherwise specified.Supply Current vs.Supply VoltageOffset Voltage vs.Supply Voltage2007152420071525Offset Voltage mon Mode Offset Voltage mon Mode2007153520071534Voltage Noise vs.Frequency Input Bias Current mon Mode2007150420071503LMP2011Single/LMP2012Dual/LMP2014Quad5Typical Performance Characteristics(Continued)PSRR vs.FrequencyPSRR vs.Frequency2007150720071506Output Sourcing @2.7V Output Sourcing @5V2007152620071527Output Sinking @2.7V Output Sinking @5V2007152820071529L M P 2011S i n g l e /L M P 2012D u a l /L M P 2014Q u a d 6Typical Performance Characteristics(Continued)Max Output Swing vs.Supply VoltageMax Output Swing vs.Supply Voltage2007153020071531Min Output Swing vs.Supply Voltage Min Output Swing vs.Supply Voltage2007153220071533CMRR vs.Frequency Open Loop Gain and Phase vs.Supply Voltage2007150520071508LMP2011Single/LMP2012Dual/LMP2014Quad7Typical Performance Characteristics(Continued)Open Loop Gain and Phase vs.R L @2.7VOpen Loop Gain and Phase vs.R L @5V2007150920071510Open Loop Gain and Phase vs.C L @2.7V Open Loop Gain and Phase vs.C L @5V2007151120071512Open Loop Gain and Phase vs.Temperature @2.7V Open Loop Gain and Phase vs.Temperature @5V2007153620071537L M P 2011S i n g l e /L M P 2012D u a l /L M P 2014Q u a d 8Typical Performance Characteristics(Continued)THD+N vs.AMPLTHD+N vs.Frequency20071514200715130.1Hz −10Hz Noise vs.Time20071515LMP2011Single/LMP2012Dual/LMP2014Quad9Application InformationTHE BENEFITS OF LMP201XNO1/f NOISEUsing patented methods,the LMP201X eliminates the1/fnoise present in other amplifiers.That noise,which in-creases as frequency decreases,is a major source of mea-surement error in all DC-coupled measurements.Low-frequency noise appears as a constantly-changing signal inseries with any measurement being made.As a result,evenwhen the measurement is made rapidly,this constantly-changing noise signal will corrupt the result.The value of thisnoise signal can be surprisingly large.For example:If aconventional amplifier has a flat-band noise level of10nV/and a noise corner of10Hz,the RMS noise at0.001Hz is1µV/.This is equivalent to a0.50µV peak-to-peak error,in the frequency range0.001Hz to1.0Hz.In acircuit with a gain of1000,this produces a0.50mV peak-to-peak output error.This number of0.001Hz might appearunreasonably low,but when a data acquisition system isoperating for17minutes,it has been on long enough toinclude this error.In this same time,the LMP201X will onlyhave a0.21mV output error.This is smaller by2.4x.Keepin mind that this1/f error gets even larger at lower frequen-cies.At the extreme,many people try to reduce this error byintegrating or taking several samples of the same signal.This is also doomed to failure because the1/f nature of thisnoise means that taking longer samples just moves themeasurement into lower frequencies where the noise level iseven higher.The LMP201X eliminates this source of error.The noiselevel is constant with frequency so that reducing the band-width reduces the errors caused by noise.Another source of error that is rarely mentioned is the errorvoltage caused by the inadvertent thermocouples createdwhen the common"Kovar type"IC package lead materialsare soldered to a copper printed circuit board.These steel-based leadframe materials can produce over35µV/˚C whensoldered onto a copper trace.This can result in thermo-couple noise that is equal to the LMP201X noise when thereis a temperature difference of only0.0014˚C between thelead and the board!For this reason,the lead-frame of the LMP201X is made ofcopper.This results in equal and opposite junctions whichcancel this effect.The extremely small size of the SOT-23package results in the leads being very close together.Thisfurther reduces the probability of temperature differencesand hence decreases thermal noise.OVERLOAD RECOVERYThe LMP201X recovers from input overload much fasterthan most chopper-stabilized op amps.Recovery from driv-ing the amplifier to2X the full scale output,only requiresabout40ms.Many chopper-stabilized amplifiers will takefrom250ms to several seconds to recover from this sameoverload.This is because large capacitors are used to storethe unadjusted offset voltage.The wide bandwidth of the LMP201X enhances performancewhen it is used as an amplifier to drive loads that injecttransients back into the output.ADCs(Analog-to-Digital Con-verters)and multiplexers are examples of this type of load.To simulate this type of load,a pulse generator producing a1V peak square wave was connected to the output through a10pF capacitor.(Figure1)The typical time for the output torecover to1%of the applied pulse is80ns.To recover to0.1%requires860ns.This rapid recovery is due to the widebandwidth of the output stage and large total GBW.NO EXTERNAL CAPACITORS REQUIREDThe LMP201X does not need external capacitors.This elimi-nates the problems caused by capacitor leakage and dielec-tric absorption,which can cause delays of several secondsfrom turn-on until the amplifier’s error has settled.MORE BENEFITSThe LMP201X offers the benefits mentioned above andmore.It has a rail-to-rail output and consumes only950µA ofsupply current while providing excellent DC and AC electricalperformance.In DC performance,the LMP201X achieves130dB of CMRR,120dB of PSRR and130dB of open loopgain.In AC performance,the LMP201X provides3MHz ofgain-bandwidth product and4V/µs of slew rate.HOW THE LMP201X WORKSThe LMP201X uses new,patented techniques to achieve thehigh DC accuracy traditionally associated with chopper-stabilized amplifiers without the major drawbacks producedby chopping.The LMP201X continuously monitors the inputoffset and corrects this error.The conventional choppingprocess produces many mixing products,both sums anddifferences,between the chopping frequency and the incom-ing signal frequency.This mixing causes large amounts ofdistortion,particularly when the signal frequency approachesthe chopping frequency.Even without an incoming signal,the chopper harmonics mix with each other to produce evenmore trash.If this sounds unlikely or difficult to understand,look at the plot(Figure2),of the output of a typical(MAX432)chopper-stabilized op amp.This is the output when there isno incoming signal,just the amplifier in a gain of-10with theinput grounded.The chopper is operating at about150Hz;the rest is mixing products.Add an input signal and the noisegets much pare this plot with Figure3of theLMP201X.This data was taken under the exact same con-ditions.The auto-zero action is visible at about30kHz butnote the absence of mixing products at other frequencies.Asa result,the LMP201X has very low distortion of0.02%andvery low mixing products.20071516FIGURE1.LMP211Single/LMP212Dual/LMP214Quad10Application Information(Continued)INPUT CURRENTSThe LMP201X’s input currents are different than standard bipolar or CMOS input currents in that it appears as a current flowing in one input and out the other.Under most operating conditions,these currents are in the picoamp level and will have little or no effect in most circuits.These currents tend to increase slightly when the common-mode voltage is near the minus supply.(See the typical curves.)At high temperatures such as85˚C,the input currents become larger,0.5nA typical,and are both positive except when the V CM is near V−.If operation is expected at low common-mode voltages and high temperature,do not add resistance in series with the inputs to balance the impedances.Doing this can cause an increase in offset voltage.A small resistance such as1 kΩcan provide some protection against very large transients or overloads,and will not increase the offset significantly.PRECISION STRAIN-GAUGE AMPLIFIERThis Strain-Gauge amplifier(Figure4)provides high gain (1006or~60dB)with very low offset and ing the resistors’tolerances as shown,the worst case CMRR will be greater than108dB.The CMRR is directly related to the resistor mismatch.The rejection of common-mode error,at the output,is independent of the differential gain,which is set by R3.The CMRR is further improved,if the resistor ratio matching is improved,by specifying tighter-tolerance resis-tors,or by trimming.Extending Supply Voltages and Output Swing by Using a Composite Amplifier Configuration:In cases where substantially higher output swing is required with higher supply voltages,arrangements like the ones shown in Figure5and Figure6could be used.These configurations utilize the excellent DC performance of the LMP201X while at the same time allow the superior voltage and frequency capabilities of the LM6171to set the dynamic performance of the overall amplifier.For example,it is pos-sible to achieve±12V output swing with300MHz of overall GBW(A V=100)while keeping the worst case output shift due to V OS less than4mV.The LMP201X output voltage is kept at about mid-point of its overall supply voltage,and its input common mode voltage range allows the V-terminal to be grounded in one case(Figure5,inverting operation)and tied to a small non-critical negative bias in another(Figure6, non-inverting operation).Higher closed-loop gains are also possible with a corresponding reduction in realizable band-width.Table1shows some other closed loop gain possibili-ties along with the measured performance in each case.20071517 FIGURE2.20071504 FIGURE3.20071518FIGURE4.LMP2011Single/LMP2012Dual/LMP2014Quad11Application Information(Continued)TABLE posite Amplifier Measured PerformanceAV R1ΩR2ΩC2pF BW MHz SR (V/µs)en p-p (mV PP )5020010k 8 3.31783710010010k 10 2.5174701001k 100k 0.67 3.117070500200100k 1.75 1.4962501000100100k2.20.9864400In terms of the measured output peak-to-peak noise,the following relationship holds between output noise voltage,e n p-p,for different closed-loop gain,A V ,settings,where −3dB Bandwidth is BW:It should be kept in mind that in order to minimize the output noise voltage for a given closed-loop gain setting,one could minimize the overall bandwidth.As can be seen from Equa-tion 1above,the output noise has a square-root relationship to the Bandwidth.In the case of the inverting configuration,it is also possible to increase the input impedance of the overall amplifier,by raising the value of R1,without having to increase the feed-back resistor,R2,to impractical values,by utilizing a "Tee"network as feedback.See the LMC6442data sheet (Appli-cation Notes section)for more details on this.20071519FIGURE 5.20071520FIGURE 6.20071521FIGURE 7.L M P 2011S i n g l e /L M P 2012D u a l /L M P 2014Q u a d 12Application Information(Continued)LMP201X AS ADC INPUT AMPLIFIERThe LMP201X is a great choice for an amplifier stage imme-diately before the input of an ADC (Analog-to-Digital Con-verter),whether AC or DC coupled.See Figure 7and Figure 8.This is because of the following important characteristics:A)Very low offset voltage and offset voltage drift over timeand temperature allow a high closed-loop gain setting without introducing any short-term or long-term errors.For example,when set to a closed-loop gain of 100as the analog input amplifier for a 12-bit A/D converter,the overall conversion error over full operation temperature and 30years life of the part (operating at 50˚C)would be less than 5LSBs.B)Fast large-signal settling time to 0.01%of final value (1.4µs)allows 12bit accuracy at 100KH Z or more sampling rate.C)No flicker (1/f)noise means unsurpassed data accuracyover any measurement period of time,no matter how long.Consider the following op amp performance,based on a typical low-noise,high-performance commercially-available device,for comparison:Op amp flatband noise =8nV/1/f corner frequency =100Hz A V =2000Measurement time =100sec Bandwidth =2HzThis example will result in about 2.2mV PP (1.9LSB)of output noise contribution due to the op amp alone,com-pared to about 594µV PP (less than 0.5LSB)when that op amp is replaced with the LMP201X which has no 1/f contribution.If the measurement time is increased from 100seconds to 1hour,the improvement realized by using the LMP201X would be a factor of about 4.8times (2.86mV PP compared to 596µV when LMP201X is used)mainly because the LMP201X accuracy is not compromised by increasing the observation time.D)Copper leadframe construction minimizes any thermo-couple effects which would degrade low level/high gain data conversion application accuracy (see discussion under "The Benefits of the LMP201X"section above).E)Rail-to-Rail output swing maximizes the ADC dynamicrange in 5-Volt single-supply converter applications.Be-low are some typical block diagrams showing the LMP201X used as an ADC amplifier (Figure 7and Figure 8).20071522FIGURE 8.LMP2011Single/LMP2012Dual/LMP2014Quad13Physical Dimensionsinches (millimeters)unless otherwise noted5-Pin SOT23NS Package Number MF0A58-Pin MSOPNS Package Number MUA08AL M P 2011S i n g l e /L M P 2012D u a l /L M P 2014Q u a d 14Physical Dimensionsinches (millimeters)unless otherwise noted (Continued)8-Pin SOICNS Package Number M08A14-Pin TSSOPNS Package Number MTC14LMP2011Single/LMP2012Dual/LMP2014Quad15Physical Dimensionsinches (millimeters)unless otherwise noted (Continued)14-LLPNS Package Number SRC14ANational does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.For the most current product information visit us at .LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.BANNED SUBSTANCE COMPLIANCENational Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2)and the Banned Substances and Materials of Interest Specification (CSP-9-111S2)and contain no ‘‘Banned Substances’’as defined in CSP-9-111S2.National Semiconductor Americas Customer Support CenterEmail:new.feedback@ Tel:1-800-272-9959National SemiconductorEurope Customer Support CenterFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)6995086208English Tel:+44(0)8702402171Français Tel:+33(0)141918790National Semiconductor Asia Pacific Customer Support CenterEmail:ap.support@National SemiconductorJapan Customer Support Center Fax:81-3-5639-7507Email:jpn.feedback@ Tel:81-3-5639-7560L M P 2011S i n g l e /L M P 2012D u a l /L M P 2014Q u a d H i g h P r e c i s i o n ,R a i l -t o -R a i l O u t p u t O p e r a t i o n a l A m p l i f i e r。
STD03N中文资料
Equivalent Circuits
3 STD03N 1
4
1
STD03P
2
5
5 3
Datasheet 28104.00a
元器件交易网
STD03N and STD03P
Darlington Transistors for Audio Amplifiers
SELECTION GUIDE
VCB = 160 V VEB = 5 V IC = 30 mA VCE = 4 V, IC = 10 A
–
–
100
μA
–
–
100
μA
160
–
–
V
5000
–
20000
–
Collector-Emitter Saturation Voltage
VCE(sat) IC = 10 A, IB = 10 mA
The temperature compensation diode is integrated on the same chip as the power transistors. By this design, the STD03N and STD03P eliminate delays that would otherwise be induced between thermal sensing at the heat source, and the operation of the compensation circuitry. Thus, these transistors are ideal for applications where enhanced thermal stability is required.
EN1T13中文资料(Vicor)中文数据手册「EasyDatasheet - 矽搜」
ENMODS ™
每个模块:
组件功率前端系统EN合规
C US
特征
• 符合RoHS(使用F或G针款式) • 无源谐波电流衰减
以EN61000-3-2 • 575 W额定输出功率 • 自动调节115/230伏交流输入 • 浪涌电流限制
产品亮点
所述ENMOD系统是一种新型AC前端
00927
10 A Wickman 194 Series or Bussman ABC-10
27 µH 1.3 mH 10Ω 150 kΩ, 0.5 W 2.2 Ω, 2 W MOV
32012 32006
30076
图1b - 输入EMI滤波器EN55022,B级合规
Harmonic Current
图2 - 测量谐波电流在230 VAC,575W¯¯主场迎战EN规格限制
英寸
mm Hours
EN1xxx
Notes 50 - 625瓦,230伏交流输入575 W输出 (参见图2)
中断和限电
2千伏-50微秒线路或中性线接地 1千伏-50微秒线路至中性 带过滤器 (参见图1a和1b)
Notes 由DC-DC变换器提供隔离(多个)
底座接地
264伏
Notes
见许可条件对安全证书 低电压指令 见许可条件对安全证书 低电压指令
输入欠压
AC线路频率
功率因数 浪涌电流
输出规格
参数
90
115
132
Vac
自动量程(倍频器模式下)
180
230
264
Vac
自动量程(桥接模式)
90
Vac
关掉
47
63
上海市艺术体操后备人才培养可持续发展的困境与对策研究
“ 可持续发展” 的概 念由原挪威首相 G H. 伦特 兰在 《 . 布 我
12 1 文 献 资 料 法 ..
们共 同的未来》 告 中首次 明确提 出, 是指 “ 报 它 既满足 当代 人
的需要 , 又不对后代人满 足其需要 能力构成危害 的发展 。 …可 ”
通 过上海 图书馆公共 目录检索 系统 以及上海 体育 学院 图 书馆 中文期 刊 目录检索 系统 ( 99—20 ) 19 0 9 的检索 , 阅与本 文 查 相关 的资料文件 。
12 2 观 察 法 、 谈 法 .. 访
持续发展理论是我国竞技体育发展的战略思想 , 竞技体育可持
续发展的关键在于“ 人才 ” 的培养 与发展 , 因此 , 后备 人才 的培 养理应受到重视 。特别是 我国正处 于社 会转型期 , 技体育 的 竞 可持续发展面临着“ 生源危机” 问题 。
老工业及金 融中心的活力 。在竞技体育 的艺 术体操领域 , 上海
操健美操部部长谢颖 , 庞琼等进行了专题访 谈。
12 3 问卷 调 查 法 ..
市一直在 国内一二集 团间徘徊 , 在人才培养和艺术体 操的可持
续发展方 面出现 了一些 问题 , 对于后辈人才的培养 问题 不仅仅 是上海一地 的问题 , 也不是艺术体操一个项 目所 出现 的独特现
运动员 数量是考察一个 国家 一个 地 区运 动项 目水 平 的重 要参数 。“ 世界艺术体操强 国保加利 亚平 均每 9 0人 中有 1 0 人
从事过 艺术 体操 训练 , 多年称 霸世界 艺术体 操赛坛 的前 苏 ” 联, 国内参加 训 练 的少年 选手 多 达 1 人 。上 海市 长 宁、 0万 静
摘 要: 运用可持续发展理论 , 从数量 、 质量 、 社会三个维度 剖析了上海市艺术体操 后备人才可持续发 展的困境 。上海 艺术体操在发展 中存在在训
2011.pdf用户手册说明书
MODEL 2011
High Speed Asynchronous to Synchronous Converter
Part# 07M2011-A Doc# 062021UA Revised 03/16/94
SALES OFFICE (301) 975-1000 TECHNICAL SUPPORT (301) 975-1007
2.1 FEATURES
• Conforms to CCITT V.22 and V.14 standards • Lets asynchronous terminals communicate with synchronous
modems and multiplexers • Accepts character lengths to 11 bits • Requires no AC power or batteries • Supports data rates to 64 Kbps • Automatically adjusts synchronous data rates • Miniature size • Plugs directly into async. or sync. DB-25 port • Accepts external clocking • Made in the USA
2
Async. Female Connector Sync. Male Connector
3.0 CONFIGURAT I O N The Model 2011 is configured using internal DIP switches. Figure 1 shows the location of the Model 2011's configuration switches.
SAE AMS6370N-2011-中文版
AerospaceAMS6370原理AMS6370N源自本规范的一次“五年期”审查和更新。
1.范围1.1表本规范涵盖下面形状的航空质量级低合金钢:棒材、锻件、闪光焊环件、用于锻件或闪光焊环件的坯料。
1.2应用这些产品通常用于制造满足下面条件的零件:在热处理时截面厚度等于或小于0.50英寸(12.7mm),并要求在淬火和回火时完全硬化钢能够形成高达35 HRC的硬度;也用于制造具有更大厚度的零件,但需要按比例降低硬度。
但用途不仅限于这类应用。
2.适用文件在本规范范围内,在采购订单日期有效的下面文件版本构成本规范的一部分。
除非指定一份特定文件版本,否则,供应商可以采用一份文件的后续版本开展工作。
当已取消参考文件以及没有指定替代文件时,应使用该文件的最新版本。
2.1SAE出版物可从SAE International获得,地址:400 Commonwealth Drive,Warrendale,PA15096-0001;电话:877-606-7323(美国及加拿大内)或724-776-4970(美国以外);网址:。
AMS2251公差 - 低合金钢棒AMS2259化学检验分析限制 - 锻造低合金钢和碳素钢AMS2301钢洁净度、航空质量等级、磁粉检测程序AMS2370质量保证采样和测试,碳素钢和低合金钢锻造产品及锻件坯料SAE技术标准委员会规则规定:“由SAE发布本报告,用于促进技术与工程科学状态。
本报告的使用完全出于自愿,由用户为任何特定用途全权负责本报告的适用性和适合性,包括其中所产生的任何专利侵权。
”SAE至少每五年会对各技术报告进行审查,在审查时可以重申、修订或取消报告。
SAE诚邀您提出书面意见及建议Copyright © 2011 SAE International保留所有权利。
未经SAE的事先书面许可,不得在检索系统中复制、存储,或者以任何形式或借助任何电子、机械、影印、录制手段或其他方式传送本出版物的任何部分。
国际工程因所在国法律改变引起的索赔案例分析--以巴布亚新几内亚高地Mend..
Sichuan Building MaterialsVol.41,No.2April ,2015第41卷第2期2015年4月国际工程因所在国法律改变引起的索赔案例分析以巴布亚新几内亚高地Mendi 公路为例刘长有,刘㊀平(中国海外工程有限责任公司,北京㊀100048)作者简介:刘长有(1982-),男,河北承德人,硕士,工程师,研究方向:公路施工与管理;刘平(1981-),女,河北沧州人,硕士,工程师,研究方向:公路施工技术㊂㊀㊀摘㊀要:本文以巴布亚新几内亚高地Mendi 公路为研究对象,运用FIDIC 对变更与调整条款,探讨解决因法律改变引起的索赔的方法,以期维护承包商的合法权益,进而对国际工程施工企业有所帮助㊂㊀㊀关键词:FIDIC ;法律改变;国际工程㊀㊀中图分类号:F284/TU723.3文献标志码:A文章编号:1672-4011(2015)02-0273-02DOI :10.3969/j.issn.1672-4011.2015.02.132Case Analysis of Overseas Engineering ClaimCaused by the State Legal Alterations Mendi Highway Project in Southern Highlands Province ,Papua New GuineaLIU Changyou ,LIU Ping(China Overseas Engineering Group Co.,Ltd ,Beijing 100048,China )Abstract :this article takes Mendi Highway Project in Southern Highlands Province,Papua New Guinea as the study object,researches on the ways of solving claims caused by legal alterations through Variations and Adjustments clause of FIDIC,to safeguard the lawful rights and interests of contrac-tors,and benefit the construction enterprises of overseas engi-neering.Key words :fidic;legal alterations;overseas engineering0㊀前㊀言国际工程承包实施过程中,由于项目工程周期一般较长,极易存在由于项目所在国法律变化给项目成本和工期带来的风险㊂这些新的㊁修正的法律㊁法令和新出台的政策,承包商在合同签订前是无法预见到[1]㊂那么如何应对由于法律㊁法令变化所带来的风险,也是专家㊁学者和施工企业关注的焦点㊂1㊀项目背景Mendi 公路项目是某海外公司在巴布亚新几内亚承揽的最大公路项目,项目合同工期30个月,全长49.6km,沿线道路曲折,线路两侧植被茂密㊂项目位于巴新南高地省,雨季和旱季已不明显,全年多雨且雨量较大,历史最大日降雨量在300mm 左右㊂全线软基点多,业主又不想有过多变更,在现有的预算内施工,由于线路较长,施工难度较大,因此全线施工过程中,项目组科学制定了施工组织程序,增加了工作面,增加了人员投入,人员成本压力较大㊂2014年,巴新国家政府对现行工资法律进行调整,加剧了项目组的成本压力,项目组经过分析,采用FIDIC 中变更与调整条款同监理和业主进行了协商,得到了监理和业主的初步认可㊂2㊀因法律改变的调整承包商编制投标报价的依据之一就是工程所在国的各项法律[2],如果这些法律发生变动,其工程费用当然会受到影响㊂FIDIC 中13.7款中明确写到 于基准日期后工程所在国法律有所改变或对此类法律的司法或政府解释有改变,影响承包商履行合同义务的,合同价格应考虑上述改变导致的任何费用增减进行调整 [3-4]㊂施工合同签定于2011年9月,但值得注意的是,FIDIC 这个条款并没有给出具体的计算方式,给合同索赔过程中监理和承包商之间留下了争议隐患㊂本文仅以法律变化中国家最低工资标准为例,来探讨对承包商的影响,并提出索赔的模式㊂3㊀巴新法律对当地最低工资进行了调整2014年,巴新政府通过决议,将全国最低工资标准从原来的2.29基纳调整到3.2基纳,增幅达39.7%㊂这个决定,对全体国民无疑是福音,但却给企业带来了成本压力,特别是施工企业㊂以该项目为例,目前该项目每个月人员工资总共200万人民币,由于标准调整,调整后每个月额外增加支付工人的工资㊂4㊀最低工资标准变化引起承包商索赔模式由于所在国法律变化给承包商费用造成影响,根据这些影响程度对价格甚至工期做出调整是公平合理的,FIDIC 中虽然明确指出由于所在国法律变更,导致承包商费用增加,业主方要承担责任,但是,并没有给出具体的计算方法㊂本文依据FIDIC13.7条款,结合巴新国家和项目组,探讨出一个较为公平合理的计算方法和计算模式,具体如下:N:假定合同总额为NM:平均每个月合同额㊀N /30=MA:调整前一个双周所有工人工资总和=A B:调整后一个双周所有工人工资总和=B C:调整前后月份工资平均值(A +B)/2=C D:平均增加工资额度C -A =DE:平均每个月工资增加比率E =D /M也就是说,由于最低工资标准变化引起承包商索赔额为:每个月计量总额ˑE,即为索赔金额㊂表1最低工资标准变化引起承包商索赔模式案例分析1合同总额N2平均每个月合同额M 3调整前一个双周所有工人工资总A 4调整后一个双周所有工人工资总和B 5调整前后月份工资平均值C 6平均增加工资额度D7平均每个月工资增加比率E 8最低工资标准变化引起承包商索赔每个月计量总额ˑE㊃372㊃Sichuan Building MaterialsVol.41,No.2April ,2015第41卷第2期2015年4月通过计算该项目平均每个月工资增加比率=1.14%,以当月产值1200万人民币计算,当月索赔金额1200ˑ1.14%=16.8万人民币㊂承包商充分搜集工资发放证据,并积极同业主监理沟通,得到了他们的初步理解,有望尽快解决㊂5㊀结㊀论本文以巴布亚新几内亚高地Mendi 公路为研究对象,运用FIDIC 对变更与调整条款,探讨解决因法律改变引起的索赔的方法,以期维护承包商的合法权益,进而在巴布亚新几内亚的中资施工企业有所帮助,主要有以下几个方面的结论:1)承包商,特别是国际工程承包商必需深入了解所在国国情,对国家法律㊁合同条款要深入了解;2)充分搜集证据,用数据说话,严格按照合同索赔程序做事;3)充分同业主㊁监理沟通,建立良好的互信关系,争取对方的理解和支持㊂[ID:001778]参考文献:[1]㊀夏志宏.国际工程承包风险与规避[M].北京:中国建筑工业出版社,2004.[2]㊀张水波.FIDIC 新版合同条件导读与解析[M].北京:中国建筑工业出版社,2003.[3]㊀Conditons of contract for Consturction[Z].FIDIC,1999.[4]㊀中国工程咨询协会.FIDIC 施工合同条件[M].北京:机械工业出版社,2002.ʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏ(上接第268页)为了避免目前这种状况,根据江苏省城乡规划设计研究院刘一雷对结构设计中常用图表的补充意见,结合笔者在株洲市炎帝广场商业文化街等工程建设中的体会,现就如何合理使用ϕ6.5规格的Ⅰ级钢筋,作以下三点建议:1)钢筋混凝土结构的一些梁㊁板㊁柱配筋图例中的各类附加钢筋,凡标注ϕ6@200或ȡϕ6@200(不小于ϕ6@200)的钢筋,均可用ϕ6.5@225或ȡϕ6.5@225(不小于ϕ6.5@225)代换㊂2)GB50011-2010‘工业与民用建筑抗震设计规范“条文中 沿墙高每50cm 配置2ϕ6钢筋连接 ,可进行如下代换: 沿墙高每60cm 配置2ϕ6.5钢筋连接㊂3)每米板宽各种间距下的钢筋截面积(cm 2)参考表如下(可供钢筋代用时选择)㊂表1每米板宽各种间距下的钢筋截面积(cm 2)参考表mm 直径d 钢筋间距707580859010012012514015016018020022022525028030032064.043.773.543.333.142.832.362.262.021.891.771.571.411.291.261.131.010.940.886.54.744.424.153.913.693.322.772.652.372.222.081.841.651.511.481.331.191.101.036/85.615.244.914.624.373.933.273.142.812.622.462.181.961.791.751.571.41.311.236.5/85.975.575.224.924.644.183.483.342.982.792.612.322.081.901.861.711.511.391.305㊀推广新技术,大力采用中强度冷轧带肋钢筋5.1㊀对钢筋冷加工处理提高屈服强度,节约钢材将钢材在常温下进行冷拉㊁冷拔或冷轧,使之产生塑性变形,从而提高屈服强度,这个过程称为 冷加工强化处理 [5]㊂工地或预制构件厂常利用这一原理对钢筋或低碳钢盘条按一定规范进行冷拉或冷拔加工,以提高屈服强度㊁节约钢材㊂5.2㊀合理采用中强度冷轧带肋钢筋冷轧带肋钢筋属冶金部 八五 期间发展的120个钢材品种之一,已通过国家标准审查,它具有与混凝土粘结锚固能力强㊁施工工序简单㊁节省钢材等优点[4]㊂据四川省建筑科学研究院的研究结果表明:①若预应力C25混凝土构件采用冷轧带肋钢筋,其钢筋强度比冷拔丝高15%~23%,同时可节约钢材15%左右,节约水泥40~50kg /m 3;②在非预应力构件㊁现浇楼面㊁路面㊁机场跑道等施工中,冷轧带肋钢筋代替Ⅰ级钢筋使用可节约钢材30%~40%㊂5.3㊀中强度冷轧带肋钢筋在工程中的实际应用在非预应力构件㊁现浇楼面㊁路面等钢筋混凝土结构中,冷轧带肋钢筋的代换原则为:将直径规格为5㊁6㊁8㊁10mm 的冷轧带肋钢筋以等同延长米方式,分别代替规格为ϕ6.5㊁ϕ8㊁ϕ10㊁ϕ12的Ⅰ级钢筋(钢筋间距两者保持不变),且省略两端弯钩的制作㊂株洲市汽贸大厦工程共9层,底下2层为框架结构,上面7层为砖混结构㊂经建设单位㊁监理单位㊁施工单位和设计单位有关专家共同进行技术核定,将原设计中楼面板的Ⅰ级钢筋用冷轧带肋钢筋代换;另外,新疆生产建设兵团农四师七十六团农用飞机场的跑道施工也是通过技术核定单的形式,按上述方法代换使用;总建筑面积25万多m 2的新疆叶城县金果小区商住楼工程的楼面板钢筋也是按此方法设计施工的㊂通过若干以上类似工程实践证明:合理采用中强度冷轧带肋钢筋,不仅结构安全可靠,而且经济效益和社会效益十分可观㊂笔者曾先后参与了上述工程的施工管理工作,并随同施工代表就代换后的工程质量和使用功能进行多次回访调查,据业主方反映,多年无任何质量问题,满足正常使用功能㊂6㊀结㊀语总之,钢材是建筑工程的三大主材之一,在工程中一定要强化管理,合理利用钢材,注意点滴节约,积少成多,为施工企业创造良好的施工效益,从而更好地支援其他工程建设㊂[ID:001844]参考文献:[1]㊀上官子昌.钢筋工程施工技术与禁忌[M].北京:机械工业出版社,2013.[2]㊀肖玉峰.钢筋下料计算与施工[M].北京:机械工业出版社,2013.[3]㊀吴成材.钢筋连接技术手册[M].北京:中国建筑工业出版社,2014.[4]㊀俞宾辉.建筑钢筋工程施工手册(新规范)[M].济南:山东科学技术出版社,2004.[5]㊀吴志红.建筑施工技术[M].南京:东南大学出版社,2010.㊃472㊃国际工程因所在国法律改变引起的索赔案例分析--以巴布亚新几内亚高地Mendi公路为例作者:刘长有, 刘平, LIU Changyou, LIU Ping作者单位:中国海外工程有限责任公司,北京,100048刊名:四川建材英文刊名:Sichuan Building Materials年,卷(期):2015(2)引用本文格式:刘长有.刘平.LIU Changyou.LIU Ping国际工程因所在国法律改变引起的索赔案例分析--以巴布亚新几内亚高地Mendi公路为例[期刊论文]-四川建材 2015(2)。
易拉罐行业食品安全、质量管理体系
北京有限公司制罐食品安全、质量管理体系(FSSC /QMS )依据 GB/T19001 – 2008 标准编制依据 ISO22000 – 2005 标准编制依据 FSSC22000 – 2011 标准编制审核:批准:北京***有限公司(盖章)目录程序文件采购部行政部综合管理手册生产部物资部销售部质量部程序文件1.0 目的对公司范围内质量管理体系有关的文件进行有效控制;确保在各个部门、相应场所可获得文件的最新有效版本,防止作废文件的非预期使用。
2.0 范围本程序适用于本公司内所有体系有关的文件,包括外来文件的控制。
3.0 参考文献3.1 公司的综合管理手册。
3.2 ISO 9001:2008 、FSSC22000标准要求。
4.0 解释4.1 受控文件是关于质量管理控制方面的特殊的可被识别的文件(电子版或印刷版)。
4.2 DOCC 指文件控制中心,通常它被指定在质量部。
4.3 DOCS 指文件控制站,是执行或参考文件的各部门。
5.0 职责5.1 工厂质量保证部5.1.1 管理和负责公司的文件控制中心(DOCC) 。
负责公司质量手册、程序文件、操作规程文件、记录表格、技术或管理文件及外来文件的管理(保留最新文件的电子版和印刷版),防止未经许可的拷贝、复制与拍摄。
5.1.2 负责本程序的组织实施。
防止未经许可或未受控和作废的文件在公司内使用。
5.1.3 负责文件发行前写法或格式的审核。
5.1.4 编制文件控制站结构图, 分派文件编号给各个文件控制站,避免空号和重号使用。
5.1.5 负责本部门范围内的文件编制和控制。
涉及相关部门的文件编制,在相互讨论后完成。
5.1.6 当发行或收到最新版文件时, DOCC要保存最近期2个版本号的老文件,其它旧版文件立即销毁(从电脑中删除和撕碎旧文件) 。
5.1.7 质量手册由质量部组织有关人员组成小组进行编写。
5.2 其它部门5.2.1 管理本部门文件(保留最新文件的电子版和印刷版), 防止未经许可的拷贝、复制与拍摄。
IM03TS中文资料
IM RelayThe Best Rela ytionSlim line AND low profile2 pole telecom/signal relay, polarizedThrough Hole Types (THT), standard versionwith 5.08 mm, narrow version with 3.2 mm between the terminal rows orSurface Mount Type (SMT)Relay types:non-latching with 1 coil latching with 1 coilFeatures-Telecom/signal relay (dry circuit, test access, ringing)-Slim line10 x 6 mm, 0.39 x 0.24 inch -Low profile 5.65 mm, 0.222 inch -Minimum board-space 60 mm 2-Switching current 2 A- 2 changeover contacts (2 form C / DPDT)-Bifurcated contacts, gold plated-High sensitivity results in low nominal power consumption 140 mW for non latching 100 mW for latching version -High surge capability (1.2/50 µs and 10/700 µs) meets Bellcore GR 1089, FCC Part 68 and ITU-T K20³1500 V between open contacts ³ 2500 V between coil and contacts -High mechanical shock resistance up to 300 G functional up to 500 G survival Typical applications:-Communications equipmentLinecard application – analog, ISDN, xDSL,PABXVoice over IP -Office and business equipment -Measurement and control equipment -Consumer electronics Set top boxes, HiFi -Medical equipment Options:Surge capability ³ 2500 V between open contactsInsulation category:Supplementary insulation according IEC/EN 60950 and UL 1950Working voltage £ 300 Vrms Mains supply voltage SMT: 250 VrmsTHT: 200 VrmsRepetitive peak voltage 2500 V Pollution degree:External: 2Internal: 1Flammability classification:V-0Maximum operating temperature:85°CCSA-C22.2 No. 14-95 File No. 169679-1079886CSA-C22.2 No. 950-95UL 508 File No. E111441UL 1950 3rd ed.QC 160501-CH0001IEC/EN60950IEC Ref. Cert. No. 1176CECC 16501-003THT VersionMounting hole layoutView onto the component side of the PCB(top view)Terminal assignmentRelay - top view Non-latching type,not energized conditionDimensionsIM THT IM THT IM SMT IM SMT StandardNarrowGull WingsJ-Legsmminchmminch mminchL 10 ±0.080.393 ±0.00310 ±0.080.393 ±0.00310 ±0.080.393 ±0.00310 ±0.080.393 ±0.003W 6 ±0.080.236 ±0.0035.7 ±0.30.224 ±0.0126 ±0.080.236 ±0.0036 ±0.080.236 ±0.003H 5.65 -0.20.222 -0.008 5.85 -0.150.230 -0.0065.65 -0.20.222 -0.0085.65 -0.20.222 -0.008T 3.20.125 3.20.125N/A N/A N/AN/AT1N/AN/AN/A N/A 7.5 ±0.30.295 ±0.0112.8 ±0.20.110 ±0.007T2 5.08±0.10.200 ±0.0043.2±0.10.126 ±0.0065.08 ±0.10.200 ±0.0045.08 ±0.10.200 ±0.004D13.2 ±0.150.126 ±0.0063.2 ±0.150.126 ±0.0063.2 ±0.150.126 ±0.0063.2 ±0.150.126 ±0.006D22.2 ±0.150.087 ±0.0062.2 ±0.150.087 ±0.0062.2 ±0.150.087 ±0.0062.2 ±0.150.087 ±0.006Tw 0.40.0150.40.0150.40.0150.40.015S 0.3 ±0.050.011 ±0.0020.3 ±0.050.011 ±0.002N/AN/A N/AN/ASMT VersionGull WingsJ LegsSolder pad layoutView onto the component side of the PCB (top view)Gull WingsJ LegsLatching type, 1 coil reset conditionStandard versionNarrow versionStandard versionNarrow version1.5 1.13 3.40.1514016IM0032.1 6.80.3014064IM014.53.1510.30.45140145IM025 3.511.40.50140178IM0364.213.70.60140257IM049 6.320.40.90140574IM05128.427.3 1.201401028IM062416.845.62.402002880IM07non-latching 1 coillatching 1 coil1.5 1.13 4.1- 1.1310023IM4032.258.1- 2.2510090IM414.53.3812.1- 3.38100203IM425 3.7513.5- 3.75100250IM4364.516.2- 4.50100360IM449 6.7524.2- 6.75100810IM45129.0032.3- 9.001001440IM462418.0041.9- 18.002002880IM47Further coil versions are available on request.Ambient temperature t amb [°C]U I =Minimum voltage at 23° C after pre-energizing with nominal voltage without contact current U II =Maximum continous voltage at 23°The operating voltage limits U I and U II depend on the temperature according to the formula:U I tamb =K I · U I 23° Cand U II tamb =K Il · U Il 23° C t amb= Ambient temperatureU I tamb = Minimum voltage at ambient temperature, t amb U II tamb = Maximum voltage at ambient temperature, t ambk I , k II= Factors (dependent on temperature), see diagram* High Dielectric Version …C“All data refers to 23° C unless otherwise specified.Recommended soldering conditionsSoldering conditions according CECC 00802Vapor Phase Soldering: Temperature/Time Profile (Lead Temperature)Infrared Soldering: Temperature/Time Profile (Lead Temperature)Time (s)Time (s)T e m p e r a t u r e °CT e m p e r a t u r e °CPacking Dimensions in mm Tube for THT version - 50 relays per tube, 1000 relays per boxIM00GR3-1462037-7 IM00JR3-1462037-9 IM00TS3-1462037-5 IM00NS1-1462038-0 IM01GR0-1462037-1 IM01CGR0-1462038-4 IM01JR4-1462037-0 IM01TS0-1462037-4 IM01NS1-1462038-1 IM02GR0-1462037-9 IM02CGR0-1462038-1 IM02JR1-1462037-1 IM02TS1-1462037-3 IM02NS1-1462038-2 IM03GR1-1462037-4 IM03CGR0-1462038-2 IM03JR1-1462037-6 IM03TS1-1462037-8 IM03NS1-1462038-3 IM04GR4-1462037-2 IM04JR4-1462037-4 IM04TS4-1462037-1 IM04NS1-1462038-4 IM05GR3-1462037-4 IM05CGR0-1462038-3 IM05JR4-1462037-5 IM05TS2-1462037-2 IM05NS1-1462038-5 IM06GR2-1462037-3 IM06CGR9-1462037-9 IM06JR4-1462037-6 IM06TS2-1462037-7 IM06NS1-1462038-6 IM07GR4-1462037-7 IM07JR4-1462037-8IM07TS3-1462037-0 IM07NS1-1462038-7 IM40GR5-1462037-1 IM40JR5-1462037-2 IM40TS5-1462037-0 IM40NS1-1462038-8 IM41GR5-1462037-4 IM41JR5-1462037-5 IM41TS5-1462037-3 IM41NS1-1462038-9 IM42GR3-1462037-1 IM42JR5-1462037-7 IM42TS5-1462037-6 IM42NS2-1462038-0 IM43GR5-1462037-9 IM43JR6-1462037-0 IM43TS5-1462037-8 IM43NS2-1462038-1 IM44GR6-1462037-2 IM44JR6-1462037-3 IM44TS6-1462037-1 IM44NS2-1462038-2 IM45GR6-1462037-4 IM45JR6-1462037-5 IM45TS3-1462037-2 IM45NS2-1462038-3 IM46GR6-1462037-7 IM46JR6-1462037-8 IM46TS6-1462037-6 IM46NS2-1462038-4 IM47GR7-1462037-0 IM47JR7-1462037-1 IM47TS6-1462037-9 IM47NS2-1462038-5Relay Code TycoPart Number Relay Code TycoPart NumberOrdering InformationIM Relays4th generation slim line – low profile polarized 2 c/o telecom relay with bifurcated contacts, available as non latching or latching relay with1 coil. Nominal voltage range from 1.5... 24 V, coil power consumption of 140... 200 mW, latching relays with 1 coil 100 mW. The IM relay is available as through hole and surface mount type (J-Legs and Gull Wings) and capable to switch loads up to 60 W/62,5 VA. Dielectric strength fulfills the Bellcore requirements according GR 1089 (2,5 kV –2 / 10 µs) and FCC part 68 (1,5 kV – 10 / 160 µs). The IM is CECC/ IECQ approved and certified in accordance with IEC/EN 60950 and UL1950. Dimensions approx. 10 x 6 mm board space and 5.65 mm height.P2 Relays3rd generation polarized 2 c/o telecom relay with bifurcated contacts, available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from 3 ... 24 V, coil power consumption 140 mW, latching relays with 1 coil 70 mW. The P2 relay is available as through hole or surface mount type and capable to switch currents up to 5 A. Dielectric strength fulfills the Bellcore requirements according GR 1089 (2,5 kV – 2 / 10 µs) and FCC part 68 (1,5 kV – 10 / 160 µs). Dimensions approx. 15 x 7,5 mm board space and 10 mm height.FX Relays3rd generation polarized 2 c/o telecom relay with bifurcated contacts, available as non latching or latching relay with 1 coil. Nominal voltage range from 3 ... 48 V, coil power consumption of 80 ... 260 mW for the high sensitive version, 140... 300 mW for the standard version, latching relays with 1 coil 100 mW. The FX2 relay is available as through hole type and capable to switch loads up to 60 W/62,5 VA. Dielectric strength fulfills the Bellcore requirements according GR 1089 (2,5 kV – 2 / 10 µs) and FCC part 68 (1,5 kV – 10 / 160 µs). The FX2 is CECC/IECQ approved and certified in accordance with IEC/EN 60950 and UL1950. Dimensions approx. 15 x 7,5 mm board space and 10,7 mm height.FT2 / FU2 Relays3rd generation non polarized, non latching 2 c/o telecom relay with bifurcated contacts. Nominal voltage range from 3 ... 48 V, coil power consumption 200 ... 300 mW. Most sensitive 48 V relay. Available as through hole and surface mount type. Dielectric strength fulfills the Bellcore requirements according GR 1089 (2,5 kV – 2 / 10 µs) and FCC part 68 (1,5 kV – 10 / 160 µs). The FT2/FU2 is CECC/IECQ approved and certified in accordance with IEC/EN 60950 andUL1950. Dimensions approx. 15 x 7,5 mm board space and 10 mm height.FP2 Relays3rd generation polarized 2 c/o telecom relay with bifurcated contacts, available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from 3 ... 48 V, coil power consumption of 80 ...260 mW for the high sensitive version, 140... 300 mW for the standard version, latching relays with 1 coil 100 mW.. The FP2 relay is available as through hole type and capable to switch loads up to30 W/62,5 VA. Dielectric strength fulfills FCC part 68 (1,5 kV – 10 / 160 µs). The FP2 is CECC/IECQ approved. Dimensions approx.14 x 9 mm board space and 5 mm height.MT2 / MT42nd generation non polarized, non latching 2 c/o and 4 c/o telecom and signal relay with bifurcated contacts. Nominal voltage range from 4.5 ... 48 V, coil power consumption 150/200/300/400 and550 mW, and 300 mW (MT4). Dielectric strength fulfills the requirements according FCC part 68 (1,5 kV – 10 / 160 µs) for both and the Bellcore requirements according GR 1089 (2,5 kV – 2 / 10 µs) the MT4 only.Dimensions MT2 approx. 20 x 10 mm board space and 11 mm height, MT4 approx. 20 x15 mm board space and 11 mm height.D2n Relays2nd generation non polarized 2 c/o relay for telecom and various other applications. Nominal voltage range from 3 ... 48 V, coil power consumption from 150 .... 500 mW. The D2n relay is capable to switch currents up to 3 A. Dielectric strength fulfills the requirements according FCC part 68 (1,5 kV – 10 / 160 µs). Dimensions approx.20 x10 mm board space and 11,5 mm height.P1 RelaysExtremely sensitive, polarized 1 c/o relay with bifurcated contacts for a wide range of applications, available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from 3 ... 24 V, coil power consumption 65 mW, latching relays with 1 coil 30 mW. The P1 relay is available as through hole or surface mount type and capable to switch currents up to 1 A. Dielectric strength fulfills the requirements according FCC part 68 (1,5 kV – 10 / 160 µs). Dimensions approx.13 x 7,6 mm board space and 7 mm height for THT or 8 mm height for SMT version.W11 RelaysLow cost, non polarized 1 c/o relay for various applications. Nominal voltage range from 3 ... 24 V, coil power consumption 450 mW, sensitive versions 200 mW. The W11 relay is capable to switch currents up to 3 A. Dielectric strength 1000 Vrms. Dimensions approx. 15,6 x 10,6 mm board space and 11,5 mm height.Reed RelaysHigh sensitive, non polarized relay for telecom and various other applications, available with 1 n/o, 2 n/o or 1c/o contacts. Nominal voltage range from 5 ... 24 V, coil power consumption 50...280 mW for 1 n/o and 125 ... 280 mW for 2 n/o or 1 c/o versions. Reedrelays are available in DIP or SIL housing and capable to switch currents up to 0,5 A. Integrated diode and/or electrostatic shield optional. Dielectric strength 1500 Vdc. Dimensions approx. 19,3 x 7 mm board space and 5 ... 7,5 mm height for DIP or 19,8 x 5 mm board space and 7,8 mm height for SIL version.Cradle RelaysExtremely reliable and mature relay family of 1st generation for various signal switching applications. Available as non polarized, polarized / latching and relay with AC coil. The benefit is the possibility of combining various contact sets from 1 up to 6 poles, single and bifurcated contacts, different contact materials with a coil voltage range from 1,5 Vdc to 220 Vac. Cradle relays are available as dust protected and hermetically sealed versions, with plug in or solder terminals and are capable to switch currents up to 5 A. Forcibly guided (linked) contact sets optional. Dielectric strength 500 Vrms. Dimensions from approx. 19 x 24 to 19x35 mm board space and30 mm height.Other RelaysWe offer a variety of different relay families for maintenance and replacement purposes. These relays are up to 60 years old now, such as Card Relay SN (V23030 / V23031 series), Small General Purpose Relay (V23006 series), Small Polarized Relay (V23063 ... V23067 and V23163 ... V23167 series). Accessories like sockets, hold down springs, etc. optional.Tyco Electronics AXICOM Ltd.Seestrasse 295 - P.O. Box 220CH-8804 Au-Wädenswil / Switzerland Phone +41 1 782 9111Fax +41 1 782 9080E-mail: axicom@Tyco Electronics Corporation POB 3608,Harrisburg, PA 17105, USA Phone +1 800-522-6752Tyco Electronics EC Trutnov s.r.o.Komenského 821CZ-541 01 Trutnov / Czech Republic E-mail: axicom@Tyco Electronics AMP GmbH Paulsternstrasse 26D-13629 Berlin / Germany Phone +49 30 386 38260Fax +49 30 386 38569E-mail: axicom@A p r i l 2002R e v . 3.01。
一种快速的单模式匹配算法
一种快速的单模式匹配算法杨子江;聂瑞华【摘要】After analyzing BM algorithm and some important improved algorithms , a new improved algorithm called Y_BMHS is put forward .With a two-dimensional array , the algorithm considers the uniqueness of text string's last two interval characters and pattern string's first character .The proposed algorithm makes the maximum displacement enhance to m+3, and the occurrence probability and match speed are also improved .The experimental results show that the Y_BMHS algorithm performs better than BM , BMH, BMHS and other improved algorithms as well .%在分析了BM算法以及一些重要的改进算法的基础上,提出一种新的改进算法---Y_BMHS 算法。
利用辅助的二维数组,考虑了文本串后间隔的两位字符和模式串首字符的唯一性,使得最大位移提升到m+3,出现概率也显著提高,加快了匹配速度。
证明Y_BMHS算法比BM、BMH、BMHS等算法有更好的性能。
【期刊名称】《华南师范大学学报(自然科学版)》【年(卷),期】2013(000)005【总页数】5页(P31-35)【关键词】BMHS算法;二维数组;出现概率;BMH算法;BM算法【作者】杨子江;聂瑞华【作者单位】华南师范大学计算机学院,广东广州510631;华南师范大学计算机学院,广东广州510631; 华南师范大学网络中心,广东广州510631【正文语种】中文【中图分类】TP301.6模式匹配是指在文本串 T=T[0]T[1]…T[n-2]T[n-1]中查找 P=P[0]P [1]…P[m-2]P[m-1].该技术广泛应用于信息检索、数据挖掘、模式识别和入侵检测等领域,而匹配算法的好坏直接影响该系统效率.模式匹配分为多模式串匹配和单模式串匹配,多模式串匹配算法有AC算法[1]等其他一些改进算法,单模式串匹配的主要算法有BF算法[2]、KMP算法[3]和 BM 算法[4]等.BM 及其改进算法(如 BMH算法[5]、BMHS算法)由于效率较高而被广泛应用.本文首先介绍BM算法和改进算法BMH、BMHS等,分析各种算法的优缺点,在此基础上提出一个新的单模式匹配算法——Y_BMHS.1 相关算法介绍假设文本串 T=T[0]T[1]T[2]…T[n-2]T[n-1],长度是 n;模式串 P=P [0]P[1]P[2]…P[m-2]P[m-1],长度是m;匹配进行到文本串的j处,现在就BM算法以及改进算法作简单的介绍.1.1 BM、BMH、BMHS 算法1977 年,BOYER 和 MOORE[4]提出了 BM 算法.BM算法是先将模式串P与文本串T左对齐,从P的最右端字符往左开始匹配,一直到P中的字符全部匹配成功或者是有不匹配的字符出现时循环结束.算法采用根据2个预先定义的跳跃数组Badchar和Goodsuffix计算出的位移量进行移动.Badchar和Goodsuffix根据已匹配的字符串和未匹配字符的位置进行计算.当文本串字符与模式串字符失配时,根据数组Badchar和Goodsuffix取其中较大者为shift的值,将模式P往右移shift个字符,继续进行下一轮匹配,匹配成功则直接输出.BM算法考虑全面,包括了右移时的所有情况,但它使用了2个数组,预处理花费太多时间,程序实现复杂,并且Badchar被选为shift的值出现的概率远比Goodsuffix的大,而在匹配过程中两者都用,进行了大量不必要的比较,降低了匹配速度.HORSPOOL[5]于 1980 年提出了 BMH 算法,该算法将匹配字符串与计算右移量独立,即在计算右移量时不关心匹配位置和匹配情况.当发生失配时,通过与模式串末端对应的文本串位置的字符计算右移量.BMH算法较BM算法有更好的性能,它只使用了Badchar数组,简化了预处理过程,并且省去比较shift值的过程,实践也证明BMH性能更优.它仅仅通过一个字符计算右移量,增加了很多不必要的比较和移动.SUNDAY[6]于1990年在BMH算法的基础上又提出了改进的BMHS算法.其主要改进思想是:在计算Badchar函数时,利用模式串末端对应的文本串位置的下一字符决定右移量.当比较进行到文本串 j位置,失配发生在 T[i+j]=b 与 P[i]=a 处,只使用T[j+m]=c决定右移量.当发生失配时,若c未出现在P中,则直接右移m+1位,否则与P中从右往左第一次出现的相同字符对齐,继续进行下一轮匹配.该算法中,当下一个字符T[j+m]未出现在模式中时,它的右移量比BMH算法的右移量大,BMHS算法右移m+1位,BMH算法只能右移Badchar[j+m-1]位置,最多移动m位,故BMHS算法通常比BMH算法快.而当T[j+m-1]不在模式中出现而T[j+m]出现时,BMHS算法就比BMH算法慢.1.2 N_BMHS、IBMHS、Im_Sunday 算法N_BMHS算法[7]是在 BMHS算法的基础上,引入一个数组S标记模式串中字符出现的次数,并在匹配过程上采用两端向中间交替匹配的顺序,一旦失配,利用已匹配位置和辅助数组S的信息进行移动,有效减少了移动和比较次数.IBMHS算法[8]综合了BMH和BMHS算法的特点,并利用频度函数使得最大位移m+1出现频率提高,从而降低匹配时间.算法的主要过程是:在第j轮匹配中,分别计算出采用BMH和BMHS算法启发规则得到的窗口移动值qsBc[T[j+m-1]]-1和qsBc[T[j+m]]并进行比较.若后者大于前者,直接移动qsBc[T [j+m]],否则根据字符出现的频次进行(m+1)或 qsBc[T[j+m-1]]-1的移位.Im_Sunday算法[9]使用与模式串最右端对应的文本串字符的下一个字符 S [next]和 S[nnext].S[nnext]是 S[next]后面 m 长度位置的字符,即nnext=next+plen.当 S[next]字符在模式串中出现时,匹配方法与BMHS算法相同.当S[next]字符未在模式串中出现时,判断S[nnext]字符是否出现在模式串中.若出现,将模式串中最右端第一个出现的字符与S[nnext]对齐,否则将整个模式串移动到 S[nnext]的右侧.1.3 算法分析在以上算法中,BM算法是最全面和最复杂的算法,它充分考虑了所有的可能性,但预处理花费太多时间,并且在选择shift值和匹配上进行了太多次不必要的比较.BMH较BM算法有改进,它只采用坏字符的移动规则,并且将字符匹配和计算位移量独立,加快了匹配速度.BMHS是在BMH的基础上进行的改进,其最大位移是m+1,BMH则是m,通常情况下BMHS要比BMH算法的速度更快.IBMHS算法综合了前两者的优点,并利用字符出现次数提高了最大位移m+1的频率.N_BMHS利用已匹配位置和频度数组,能有效减少移动和比较次数.Im_Sunday算法在匹配过程中利用了 S[next]和S[nnext]字符,在一定程度上减少了比较.然而,上述匹配算法仅仅利用模式串末端字符对应的文本串的一个字符或下一字符的信息进行跳跃,从而进行了很多次不必要的比较和跳跃,且其跳跃距离和最大跳跃距离出现概率均偏小,造成匹配速度变慢.模式匹配存在2个基本定理:任何文本串匹配算法在最坏情况下必须检查文本串中至少n-m+1个字符;任何模式匹配算法至少检查 n/m个字符[10].因此,没有一个算法的计算复杂度比BM算法及其改进算法还要优越,但是我们可以通过增加偏移量,减少匹配次数,获得更好的性能.2 改进算法——Y_BMHS算法根据概率论的理论,2个字符出现在文本串中的概率远小于一个字符出现的概率,所以通过创建一个二维数组,既可以增大最大位移,又可以提高最大位移出现的概率,而有一些模式串的特点是:有大量重复的前缀和后缀如in、ex、ly和组合字符串如ea、se、at等,Y_BMHS算法正是基于这样的想法,结合模式串本身的特点,在BMHS算法的基础上,采用与模式串末端对应的文本串位置(i-1)的下2个字符T[i]和 T[i+2](非连续字符)和模式串首字母的唯一性来计算位移量,非连续字符在一定程度下可以加快匹配速度.该算法将T[i]和T[i+2]作为一个子串,在模式串中出现时,则右移模式串使得子串与文本串从右往左出现的相同子串对齐,否则根据不同情况进行右移处理,最大位移为m+3,其中m是模式串的长度.下面以算法的预处理阶段和匹配阶段做详细阐述.2.1 预处理阶段因为使用2个字符的子串决定右移量,所以我们采用辅助的二维数组来表示位移量.预处理阶段主要是对该位移量数组进行初始化.假设m是模式串P的长度,i 是匹配过程中模式串末端对应的文本串的下一位置,则子串为 T[i]T[i+2].对数组进行如下初始化:第一步,将数组初始值置为m+3;第二步,考虑如下几种特殊情况:(1)当T[i]=P[m-1]时,文本串可能匹配.此时,模式串右移1位,置值为1,如图1A.(2)当T[i]=P[m-2]时,文本串可能匹配.此时,模式串右移2位,置值为2,如图1B.(3)当 T[i+2]=P[1]时,文本串可能匹配.此时,模式串右移m+1位,置值为m+1,如图1C.(4)当 T[i+2]=P[0]时,文本串可能匹配.此时,模式串右移m+2位,置值为m+2,如图1D.第三步,当子串在模式串P中出现时,将其与P中从右到左第一次出现的子串对齐.图1 4种可能的匹配情况Figure 1 Four possiblematch situations2.2 匹配阶段在匹配阶段中,研究了Im_Sunday算法并对其进行了改进.根据概率论的理论,发生失配时,循环判断此时的位移量.若位移量为m+3,则模式串向右移动m+3,并继续循环,否则退出循环进行下一轮匹配.考虑一种特殊情况,如图2示.图2 右移后匹配Figure 2 Match after rightmove此时,右移量还是m+3,但明显已经匹配了,所以在循环中须加入判断.综上所述,实际的匹配流程如图3示.根据上述算法的描述,以T=“Manyarygycnobgtifintromtnology”,P=“nology”为例进行搜索.开始匹配时,把模式串与文本串自左边对齐.具体匹配过程如表1所示.(1)第1 次:T[6]=‘y’=P[m-1],模式串右移1位.(2)第2次:T[7]=‘g’=P[m-2],模式串右移2位.(3)第3次:T[10]=‘n’=P[0],模式串右移m+1位.(4)第4次:T[18]=‘n’=P[0],模式串右移m+2位.(5)第5 次:T[24]T[26]=“nl”,P 中存在该子串,根据跳跃表移动6位,找到字符串,匹配结束.图3 Y_BMHS算法的匹配流程Figure 3 Match process of Y_BMHS表1 Y_BMHS算法匹配过程Table 1 Thematch process of Y_BMHS algorithmM a n y a r y g y c n o b g t i f i n t r o m t n o l o g y 0 n o l o g y 1 n o l o g y 2 n o l o g y 3 n o l o g y 4 n o l o g y 5 n o l o g y2.3 算法分析从Y_BMHS算法的匹配过程可以看出,它是一种典型的以空间换取时间的算法.BMH、BMHS算法在比较时每次只取一个字符进行比较,当发生失配时,以P中某位置对应的文本串的字符T[i]的位移量作为P的移动距离.这种情况下,只有当T[i]不在P中出现时,模式串才能获得最大移动距离.从概率上来说,2个连续字符出现在模式串中的概率远远低于一个字符出现的概率,模式串的特性又使得间隔的两字符在模式串中出现的概率一般低于2个连续字符出现的概率,Y_BMHS算法以间隔2个字符计算偏移量作为P的移动距离,模式串获得最大移动距离m+3的概率也大得多,并且在匹配阶段通过位移量的判断,最大限度地提高了移动距离,这样显然可以获得更高的匹配速度.3 算法性能测试本实验使用的计算机硬件平台为Intel(R)CoreTM i5-2430 M处理器,4 G内存,软件平台为Windows7 64位操作系统,MicroSoft Visual Studio 2010集成开发环境.现采用随机函数产生一段随机长度为500~1 000的文本串和随机长度为5~10的模式串,分别用 BM、BMH、BMHS、IBMHS、Im_Sunday、Y_BMHS 算法进行匹配测试,测试程序与算法均用C语言编写,用主程序调用这6种匹配算法,匹配算法中均插入CPU内部时间戳进行高精度计时,同时统计每种算法一次匹配中平均位移量等数据.实验结果见表2.表2 实验结果比较Table 2 Experimental results算法BM BMH BMHS IBMHS Im_Sunday Y_BMHS一次匹配中最大位移出现的概率0.706 0.745 0.741 0.907 0.709 0.757一次匹配中平均位移量/次 6.817 6.679 7.497 8.671 6.975 9.583 1 000万次匹配消耗时间/s 22.152 13.604 11.856 13.151 11.341 6.630通过上述实验测试可知,Y_BMHS算法在单模式匹配算法中,平均位移量更大,最大位移出现的概率更高,能够快速提高匹配速度,对模式串匹配有更明显的加速效果.4 结束语Y_BMHS算法采用辅助的二维数组记录位移量,通过对模式串末端字符对应的文本串位置的下2个间隔字符的比较,并且在匹配阶段尽可能地使模式串右移,使得模式串以最大位移量m+3进行右移的几率变得更大.通过对算法的分析和实验证明,该算法能够有效地增加模式串右移量,大幅度提高匹配速度,降低匹配时间.参考文献:[1]AHO A V,CORASICK M J.Efficient string matching:An aid to bibliographic search[J].Commun ACM,1975,18(6):333-340.[2]CHARRAS C,LECROQ T.Exact string matching algo-rithms[EB/OL].(1997-01-14)[2012-04-03].http://www.r-igm.univ-mlv.fr/lecroq/string.[3]KNUTH D E,MORRIS JH,PRATT V R.Fast pattern in strings [J].SIAM JComput,1977,6(2):323-350.[4]BOYER R S,MOORE JS.A fast string searching algorithm [J].Commun ACM,1977,20(10):762-772.[5]HORSPOOL N R.Practical fast searching in strings[J].Software Practice and Experience,1980,10(6):501-506.[6]SUNDAY D M.A very fast substring search algorithm[J].Comm ACM,1990,33(8):132-142.[7]单懿慧,蒋玉明,田诗源.面向入侵检测的改进BMHS模式匹配算法[J].计算机工程,2009,35(24):170-173.[8]岳成刚.基于 Snort平台的网络入侵检测系统研究[D].合肥:合肥工业大学,2009.[9]武旭东.Snort入侵检测系统研究与应用[D].吉林:吉林大学,2011.[10]李雪莹,刘宝旭.字符串匹配技术研究[J].计算机工程,2004,30(22):24-26.。
NL1010T-03中文资料
214-340-4900 (tel) ● 214-341-5212 (fax) ●
元器件交易网
marlow
industries
Subsidiary of II-VI Incorporated
a global leader in thermoelectric solutions
2.00 +/-.25 [50.80+/-6.35]
.003 [0.08] .001 [0.03]
A
.095 +/-.005 [2.40 +/-0.13] .001 [0.03] Ceramic Material: Alumina (AC) Millimeters are in [ ] A
Ordering Options
Performance Curves
Environgen
Hot Side Temperature: 27°C 80.0 60.0 T (C) 40.0 20.0 0.0 VOLTAGE (VDC) 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 CURRENT (AMPS) 1.2 Q=0 T=0 HEAT LOAD (WATTS) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 80.0 60.0 T (C) 40.0 20.0 0.0 VOLTAGE (VDC) 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 CURRENT (AMPS) 1.2 Q=0 T=0 Hot Side Temperature: 50°C HEAT LOAD (WATTS) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
危险化学品特性表
危险化学品特性表(自制)危险化学品特性表(自制) (1)(1)丙烯酸 (4)(2)甲酸 (5)(3)氢氟酸 (6)(1)N,N-二甲基甲酰胺 (7)(2)丙烯酸丁酯 (7)(1)萘 (8)(2)乌洛托品 (9)(1)氯酸钠 (10)(2)亚硝酸钠 (11)(1)四氯乙烯 (12)(2)二氯甲烷 (13)3。
1。
1.1丙酮 (15)3.1.1.2—丁酮 (16)3.1。
1.3甲醇 (17)3。
1.1。
4乙醇 (18)3.1。
1。
5 环己酮 (19)3。
1.1.6异丙醇 (20)3.1.1.7 甲苯 (21)3。
1.1。
8 1,2—二甲苯 (22)3.1。
1.9 乙醚 (23)3.1.1。
10 乙酸乙酯 (24)3.1。
1.11过氧化氢 (25)3。
1。
1.12高锰酸钾 (26)3.1.1。
13重铬酸钾 (27)3。
1.1.14硝酸银 (28)3.1。
1.15苯酚 (29)3。
1。
1.16三氯甲烷 (30)3.1。
1.17四氯化碳 (31)3.1.1。
18氢氧化铵水溶液 (32)3。
1.1.19氢氧化钠 (33)3.1.1。
20氢氧化钾 (34)3。
1.1.21甲醛 (35)3。
1。
1.22盐酸 (36)3。
1.1。
23硝酸 (37)3.1.1。
24硫酸 (38)3.1.1.25 乙酸 (39)3.1。
1。
26三氯乙酸 (40)3。
1。
1。
27氢氟酸 (41)3.1。
1。
28次氯酸钠 (42)3。
1.1.29亚硫酸氢钠 (43)(4)纯苯 (44)(5)1,1—二氯乙烷 (45)(7)正丁醇 (46)(10)二(正)丁醚 (47)(11)丙烯酸正丁酯 (48)(4)冰醋酸 (49)三氯乙醛 (50)硝酸钠 (51)连二亚硫酸钠 (52)石油醚 (53)对二甲苯 (54)氧 (55)乙炔 (56)⑺乙酸酐 (57)⑻2—丁酮 (58)(1)丙烯酸(1)N,N—二甲基甲酰胺表3.1—5丙烯酸丁酯简介表3.1-6萘简介表3。
雷公藤提取物联合来氟米特治疗类风湿关节炎效果及安全性的meta分析
•临床医学-骨科-中国医药导报2021年3月第18卷第9期雷公藤提取物联合来氟米特治疗类风湿关节炎效果及安全性的meta分析王子杨1李维峰2纪伟11.南京中医药大学附属医院风湿科,江苏南京210029;2.南京中医药大学附属医院儿科,江苏南京210029[摘要]目的评价雷公藤提取物联合来氟米特治疗类风湿关节炎的有效性与安全性。
方法对中国知网、维普、万方、PubMed、Elsevier及Web of Science数据库进行检索,检索时间为建库至2020年2月,收集相关临床试验。
由两位研究者独立筛选文献、提取数据与评价纳入研究质量后,采用RevMan5.3软件进行统计分析。
结果共纳 入10篇临床试验,696例患者。
meta分析结果显示实验组在总有效率[OR=3.80,95%CI(2.34,6.16),P<0.00001]、疼痛关节数[MD=-1.56,95%CI(-2.08,-1.05),P<0.00001]、压痛关节数[SMD=-0.92,95%CI(-1.74,-0.09),P=0.03]、红细胞沉降率[SMD=-1.64,95%CI(-2.26,-1.01),P<0.00001]、C反应蛋白[SMD=-1.98,95%CI(-2.81,-1.14),P<0.00001]、类风湿因子[SMD=-2.23,95%CI(-3.27,-1.19),P<0.0001]的改善方面优于对照组。
结论雷公藤提取物联合来氟米特比单用来氟米特更能有效治疗类风湿关节炎。
[关键词]类风湿关节炎;雷公藤提取物;来氟米特;meta分析冲图分类号]R593.22[文献标识码]A[文章编号]1673-7210(2021)03(C)-0090-05Meta-analysis of efficacy and safety of Tripterygium wilfordii extract combined with Leflunomide in treating rheumatoid arthritisWANG Ziyang LI Weifeng2JI Wei11.DeparLmenL of Rheumatology,AffiliaLed HospiLal of Nanjing University of Chinese Medicine,Jiangsu Province,Nanjing210029,China;2.DeparLmenL of PediaLrics,AffiliaLed HospiLal of Nanjing University of Chinese Medicine,Jiangsu Province,Nanjing210029,China[Abstract]Objective To evaluate Lhe efficacy and safeLy of Tripterygium wilfordii exLracL combined wiLh Leflunomide in Lhe LreaLmenL of rheumaLoid arLhriLis.Methods The relevant clinical Lrials were collected from CNKI,VIP,WanFang, PubMed,Elsevier and Web of Science databases from Lhe establishment of Lhe database Lo February2020.Two researchers independently screened Lhe liLeraLure,exLracLed daLa and evaluated Lhe qualiLy of Lhe included sLudies,and Lhen conducted sLaLisLical analysis using RevMan5.3software.Results A LoLal of Len clinical Lrials involving696paLienLs were included.MeLa-analysis resulLs showed LhaL in Lhe experimental group,Lhe LoLal effective raLe(OR=3.80, 95%CI[2.34,6.16],P<0.00001),Lhe number of painful joinLs(MD=-1.56,95%CI[-2.08,-1.05],P<0.00001),Lhe number of painful joinLs(SMD=-0.92,95%CI[-1.74,-0.09],P=0.03),Lhe number of eryLhrocyLic sedimenLaLion raLe (SMD=-1.64,95%CI[-2.26,-1.01],P<0.00001),C-reacLive proLein(SMD=-1.9&95%CI[-2.81,-1.14],P<0.00001),rheumaLoid facLor(SMD=-2.23,95%CI[-3.27,-1.19],P<0.0001)were beLLer Lhan Lhe conLrol group inLerms of improvement.Conclusion Tripterygium wilfordii exLracL combined wiLh Leflunomide was more effective in LreaLing rheumaLoid arLhriLis Lhan Leflunomide alone.[Key words]RheumaLoid arLhriLis;Tripterygium wilfordii exLracL;Leflunomide;MeLa-analysis类风湿关节炎(rheumatoid arthritis,RA)是由滑膜炎引起关节囊和关节软骨膜的破坏进而引起的畸形与功能障碍[1-2],是我国劳动力丧失和致残的主因之一旦,其致病因素已知的为感染、遗传、免疫、性激素等问。
Volvo 2011年及更新版型号发动机维护规程说明书
SERVICE AT A GLANCE MAINTENANCE INTERVALS FOR VNM, VNL, VNR, VNX, VHD AND VAH MODEL YEAR 2011 AND NEWERNormal Duty Greater than 6 mpg Less than 39L/100kmHeavy DutyGreater than 5 mpgLess than 50L/100kmSevere DutyLess than 5 mpgGreater than 50L/100kmENGINEVOLVO PREMIUM ENGINE OIL, FILTERS AND FUEL FILTERSModel Y ear 2011 and Newer Engines Using Volvo VDS-4.5 Oil Specification *Volvo Premium Motor Oil VDS-4.5/ **Other Volvo Approved VDS-4.5 OilD11 / D13 or D16 with 42L/44qt Oil Pan: Volvo VDS-4.5*** Oil, Filters and Fuel Filters (Replace) If idle time is greater than 30%, use the next lower drain es60,000* / 55,000**45,000* / 40,000**35,000* / 30,000** Km95,000* / 90,000**70,000* / 65,000**55/000* / 50,000** Hours1,700* / 1,600**1,300* / 1,200**825* / 750**D16 with 52 L/55qt Oil Pan: Volvo VDS-4.5*** Oil, Filters, and Fuel Filters (Replace) If idle time is greater than 30%, use the next lower drain es65,000* / 60,000**50,000* / 45,000**40,000* / 35,000** Km105,000* / 95,000**80,000* / 70,000**65,000* / 55,000** Hours1,7501,300825Model Y ear 2011 to 2016 Engines Using Volvo VDS-4 Premium Oil *Volvo Premium VDS-4.5 Oil Only ** VDS-4.5 approved oil. list can be made availableD11 / D13 or D16 with 42L/44qt Oil Pan: Volvo VDS-4***Premium Oil, Filters and Fuel Filters (Replace) If idle time is greater than 30%, use the next lower drain es45,00035,00025,000 Km75,00060,00045,000 Hours1,3001,000625D16 with 52 L/55qt Oil Pan: Volvo VDS-4*** Premium Oil, Filters, and Fuel Filters (Replace)If idle time is greater than 30%, use the next lower drain interval. *** Approved oils only, lists can be made available Miles50,00045,00035,000 Km80,00075,00060,000 Hours1,3001,000625VOLVO PREMIUM LONG LIFE COOLANTVolvo Premium Long-Life Coolant (Replace)Miles1,000,000 Km1,600,000 Hours96 monthsVolvo Premium Long-Life Coolant Filter (Replace)Miles150,000 Km240,000 Time12 monthsVOLVO PREMIUM FULL Y FORMULATED COOLANTVolvo Premium Fully Formulated Coolant (Replace)Miles300,000150,000 Km500,000240,000 Hours24 months12 monthsVolvo Premium Fully Formulated Coolant Filter (Replace)Time At every oil change MISCELLANEOUSValve Adjustment Miles150,000 / then every 300,000 Km240,000 / then every 500,000 Time12 months / then every 24 monthsFan and Accessory Drive Belt (Replace)Miles300,000150,000 Km500,000240,000 Time36 months12 monthsVolvo Premium Air Filter and Fuel Tank Ventilation Filter (Replace)Time Maximum 24 monthsEXHAUST AFTERTREATMENT SYSTEM Normal Duty Heavy Duty Severe DutyDiesel Particle Filter (Clean)Miles400,000250,000 Km650,000400,000 Hours10,0004,500Aftertreatment Hydrocarbon Injector (AHI)MY 2011 to 2012 (April) clean AHI nozzle.MY 2012 (May) and newer replace AHI nozzle and data es150,000 Km240,000 Hours4,500DEF, Pump and Tank Filler Neck FilterDrain DEF tank, replace DEF pump main filter, clean DEF tank neck es150,000 Km240,000 Hours4,500TRANSMISSION AND AXLES Normal Duty Heavy Duty Severe Duty TRANSMISSIONS I-SHIFTVolvo I-ShiftTransmission oil and filter (Replace)Oil quality: Volvo Transmission Oil 97318*Miles500,000Not Allowed Km800,000Time60 monthsVolvo I-Shift; Volvo I-Shift Severe Duty and Volvo I-Shift with Crawler GearsTransmission oil and filter (Replace)Oil quality: Volvo Transmission Oil 97319** Approved oils only, lists can be made available Miles500,000250,000 Km800,000400,000 Time60 months2500 hAXLES3 Axle Alignment Time12 months (minimum)CHASSIS Normal Duty Heavy Duty Severe DutyVolvo Premium Chassis Lubrication Miles15,00010,000 Km24,00016,000 Time12 monthsElectrical System Connectors (Check)Time Every 6 months.Power Steering Fluid and Filter (Replace)Miles150,000 Km240,000 Time12 monthsAir Dryer Coalescing Cartridge (Replace)Miles150,000 Km240,000 Time12 monthsThese maintenance intervals are general recommendations. Please refer to the appropriate maintenance and lubrication manual for your specific vehicle as the authoritative source for all details of a proper and complete inspection and maintenance plan for your vehicle. Recommended intervals by Miles, Km or Hours whichever occurs first.PV960-092518-V-9-P。
4430 三层管ountain 产品说明书
97833C (Rev. J - 7/06)Owners ManualModel 4430Tri-Level Tubular FountainIMPORTANTALL SERVICE TO BE PERFORMED BY AN AUTHORIZED SERVICE PERSONIMPORTANT! INSTALLER PLEASE NOTE.THE GROUNDING OF ELECTRICAL EQUIPMENT SUCH AS TELEPHONE, COMPUTERS, ETC. TO WATER LINES IS A COMMON PROCEDURE. THIS GROUNDING MAY BE IN THE BUILDING OR MAY OCCUR AWAY FROM THE BUILDING . THIS GROUNDING CAN CAUSE ELECTRICAL FEEDBACK INTO A FOUNTAIN, CREATING AN ELEC-TROLYSIS WHICH CAUSES A METALLIC TASTE OR AN INCREASE IN THE METAL CONTENT OF THE WATER.THIS CONDITION IS AVOIDABLE BY USING THE PROPER MATERIALS AS INDICATED. ANY DRAIN FITTINGS PROVIDED BY THE INSTALLER SHOULD BE MADE OF PLASTIC TO ELECTRICALLY ISOLATE THE FOUNTAIN FROM THE BUILDING PLUMBING SYSTEM.97833C (Rev. J - 7/06)LEGENDA=3/8"O.D.UNPLATEDCOPPERTUBECONNECT-SHUTOFFVALVEBYOTHERSB=ACCESSPANEL(8"X1")C=REMOVABLEBOTTOMCOVER97833C (Rev. J - 7/06)1. This fountain is to be mounted on a smooth, flat, finished surface with adequate support structure. NOTE: Mounting structure must be capable of supporting 300 lb. load on fountain.2. Refer to rough-in for plumbing.3. Install shut-off valve on water supply. (Valve not furnished)4. Locate and install fountain using 3/8" minimum screws or bolts, (Screws or bolts not furnished).5. Connect fountain to supply line with a shut-off valve and install a 3/8" unplated copper water line between the valve and the cooler. Remove any burrs from outside of water line. Push the tubes straight into the fittings until they reach a positive stop, approximately 3/4" (See Fig. 2). DO NOT SOLDER TUBES INSERTED INTO THE STRAINER AS DAMAGE TO THE O-RINGS MAY RESULT.6. Water supply 3/8" O.D. unplated copper tube. Waste 1-1/2" IPS. Contractor to supply waste trap and service stop valve in accordance with local code.7. Connect water supply and fountain drain. Connect drain waste "Tee" to fountain drain tubes. Connect outlet of "Tee" to drainage system. Water connection and drain must comply with local codes.8. Turn on water supply and check all connections for leaks. Threaded drain fittings may require thread sealer to create a leak free connection. Apply thread sealer to threaded connection fittings only, not the slip connection fittings.CAUTION: This fountain is rated for inlet water pressure of 20-105 PSI. A pressure reducing regulator should be used if the inlet water supply exceeds 105 PSI. Any damage caused by reason of connecting this product to supply line pressures lower than 20 psig or higher than 105 psig is not covered by warranty.9. Connecting lines to be made of unplated copper and should be thoroughly flushed to remove all foreign matter before being connected to fountain. This fountain is manufactured in such a manner that it does not in any way cause taste, odor, color, or sediment problems.FIG. 1NOTE: WATER FLOWDIRECTIONBUILDING WATER INLETSERVICE STOP (NOT FURNISHED)1/4" O.D. TUBE WATER INLET TO COOLER3/8" O.D. UNPLATEDCOPPER TUBE CONNECT COLD WATER SUPPLYFIG. 2Actuation of Quick Connect Water Fittings:Fountain is provided with lead-free connectors which utilize an o-ring water seal. To remove tubing from the fitting, relieve water pressure, push in on the gray collar while pulling on thetubing.(see Fig.2) To insert tubing, push tube straight into fitting until it reaches a positive stop, approximately 3/4".TROUBLE SHOOTING AND MAINTENANCESTREAM HEIGHT ADJUSTMENT :Stream height is factory set at 35 PSI. If supplypressure varies greatly from this, insert a small straight bladed screwdriver through the access hole in the center of the push button and turn the adjustmentscrew. Clockwise adjustment will raise the stream and counterclockwise adjustment will lower the stream. For best adjustment, the stream should be approximately 1 1/2" above the top of the bubbler . (See Fig. 3)FIG. 397833C (Rev. J - 7/06)PRINTED IN U.S.A.ITEM NO.PART NO.10014714056028308C 10157054056015005C 15009C 28703C 40045C 40551C 98118C 45464C 45826C 45832C 45833C 45734C 45662C 45663C 50986C 56121C 55913C 56092C 55996C 61313C 66346C 75672C 70852C 28467C 75535C 10032274056075588C 75589C 75521C 75596CITEMIZED PARTS LIST123456789101112131415161718192021222324252627282930NS NSDrain Gasket Spacer Washer Drain GasketRegulator Retaining Nut Nipple Assy. - Bubbler Nameplate Insert Hex Nut 1-5/16"T ailpipeBubbler Assembly Drain Plug 1-1/2"Fountain Body Access Panel Bottom Cover Drain Tube Push ButtonPush Button Sleeve Regulator Holder Drain Elbow 1-1/4"Drain AdaptorPoly Tubing (Cut To Length)In - Line Strainer Regulator Drain Tube Cap Screw Tee - 3/8"BasinPinned Torx Screw 1/4-20 x .75"WasherSlip Joint Nut 1-1/4"GasketTorx Bit (T-27)Paint Touch-up (Pen)DESCRIPTION528132652634, 17, 227161511815101327299292312202114251112, 2721Touch-up PaintFor minor scratches a Touch-up Paint Stick is available. For repairing large defects, off-the-shelf aerosol paint from your local hardware store can be used. Listed are two sug-gested brandnames.• Brandname: X-O XO-11 Hunter Green• Brandname: Ace HardwareRust Stop / Machine & Implement International Green 20202521301726164, 17, 22263289261019302983015246274, 17, 2218132727235271210928FIG. 32859See Fig. 3162424 800-518-5388。
改进canny算子的亚像素定位算法
改进canny算子的亚像素定位算法舒启林;山博【摘要】为了提高亚像素边缘定位精度,减小定位误差,提出了一种改进的canny 边缘检测算子用来检测图像的像素级边缘,之后基于改进的canny算子粗定位的边缘点,采用高斯拟合亚像素方法找出图像的亚像素边缘点位置.针对微小的圆形零件进行图像采集及图像处理,通过matlab实验仿真将该方法与传统的canny算子相比较,发现误定位明显减少,在保留边缘信息的同时有效的提高了边缘定位的精度,得到更准确的圆心位置及半径长度.结果表明是一种有效的边缘检测定位算法,具有一定的实用意义.【期刊名称】《机械设计与制造》【年(卷),期】2018(000)010【总页数】4页(P165-168)【关键词】图像处理;边缘检测;Canny算子;圆心定位;亚像素【作者】舒启林;山博【作者单位】沈阳理工大学机械工程学院,辽宁沈阳 110159;沈阳理工大学机械工程学院,辽宁沈阳 110159【正文语种】中文【中图分类】TH16;TP751.11 引言在现代生产中,微小机械零件的应用越来越广泛,对于微小机械零件尺寸的测量要求也愈来越多。
经调查发现,当今国内市场上一些微小型的零件主要测量方式为传统的人工测量,传统的测量方法包括游标卡尺、千分尺、量规、百分表、千分表等测量方法,有些微小零件的测量甚至要借助显微镜进行,虽然操作起来比较直接,但测量过程中会存在一些问题,比如不易持握,测量过程中受人为因素和环境因素的影响较大,难以保证精度,更不要说速度,无法实现自动测量和非接触式测量。
图像测量技术具有非接触、动态测量范围大的特点,对于微小的被测机械零件可以通过调节摄像系统的放大倍数,方便的实现毫米量级、微米量级甚至纳米量级的参数测量。
而且只要能够保证采集图片的摄像系统有足够高的分辨率,就能通过算法实现较高的测量精度。
技术主要是通过对待加工零件的图像进行处理从而获得其尺寸及位置信息,其中,图像边缘信息检测是该技术的关键之处。
Lucas 数的标准分解式中诸素因数的指数
Lucas 数的标准分解式中诸素因数的指数王晨;卢青林【摘要】In this paper, we first correct a mistake in reference [10];then we prove that the index of 5 in Ln is 0;at last, we prove that index of 7 in Ln can be determined by the indexes of 2 and 7 in the standard fac-torization of n.%纠正了L2×3k×p≡0(mod3k+1),k∈Z,k≥0,p为任意正整数的错误,然后证明了Lucas数Ln的标准分解式中素因数5指数为0,最后证明了Ln 的标准分解式中素因数7的指数由n的标准分解式中2和7的指数决定。
【期刊名称】《淮阴师范学院学报(自然科学版)》【年(卷),期】2015(000)002【总页数】4页(P104-106,116)【关键词】Lucas数;标准分解式;素因数;指数【作者】王晨;卢青林【作者单位】江苏师范大学数学与统计学院,江苏徐州 221116;江苏师范大学数学与统计学院,江苏徐州 221116【正文语种】中文【中图分类】O157.1Fibonacci序列{Fn}n≥0的定义为F0=0,F1=1,Fn+2=Fn+1+Fn(n≥0),它除了本身有很多性质外,在数论、几何、概率、数据处理等学科中都有重要应用,美国数学会主办的期刊《Fibonacci Quarterly》就专门刊登有关Fibonacci序列的研究论文.Fibonacci序列有许多研究方向,其中之一就是研究Fn的标准分解式中素因数的指数.多位学者对此进行了系列的研究,给出Fn的标准分解式中素数2,3,5,7,11,13,17的指数刻画[1-8].Lucas序列{Ln}n≥0是Fibonacci序列{Fn}n≥0的姊妹序列,其定义为陈小芳[9-10]研究了Lucas数Ln的标准分解式中素因数2、3的指数,本文首先纠正文[10]中的一个错误,然后给出Ln标准分解式中素因数5、7的指数的刻画.对于Lucas序列,有下列著名的比内公式引理1[4] 7|Fn⟺8|n.引理2[11]Ln+m=Fn-1Lm+FnLm+1.引理3[2] F2m×3kn 的标准分解式中3的指数为k+1,其中m,n,k∈Z,且m≥2,k≥0,n≥1.引理4[4] F8k×7s×p(k>0)的标准分解式中素因数7的指数是s+1.引理).引理6[10] L2×3k的标准分解式中素因数3的指数是k+1,其中k为非负整数.引理7 7|Ln⟺n≡4(mod 8).证由Ln+2=Ln+1+Ln知,Ln关于模7的最小非负剩余rn满足rn+2≡rn+1+rn(mod 7).计算结果见表1.由表1知,rn关于模7的最小周期为16,即Ln+16≡Ln(mod 7).又有L4≡0(mod7),L12≡0(mod7),故可知7|Ln⟺n≡4(mod 8).引理8).证作为例子,我们只证明第一个式子,其余的类似可证.有比内公式可得L5n=α5n+β5n=(αn)5+(βn)5=(αn+βn)(α4n-α3nβn+α2nβ2n-αnβ3n+β4n)=>L5n=α5n+β5n=(αn)5+(βn)5=(αn+βn)(α4n-α3nβn+α2nβ2n-αnβ3n+β4n)=Ln((α2n+β2n)2-α2nβ2n-αnβn(α2n+β2n))=Ln(-1-(-1)nL2n),由引理5有所以).陈小芳[10]为了证明其主要定理,给出了以下结论(定理3):L2×3k×p≡0(mod3k+1),k∈Z,k≥0,p为任意正整数.显然,当p为偶数时,以上结论不成立.我们用分类方法,将文[10]中定理3、定理4和定理5概括为如下的结论.定理1 L2×3k×p的标准分解式中素因数3的指数为k+1,k∈Z,k≥0,且gcd(p,6)=1.证因为gcd(p,6)=1,故可令p=6m+r,其中m∈Z且m≥0,r=1,5.由引理2和引理3可得因此,只需要证明若3k+1恰整除L2×3kr.下面对r进行讨论:1)当r=1时,由引理6知命题成立.2)当r=5时,由引理8(1)知).由引理6知3k+1恰整除L2×3k,又因为3⫮从而3k+1恰整除).综上所述,定理得证.定理2 Lucas数Ln的标准分解式中不含因数5.证通过计算可得Lucas数Ln关于模7的最小非负剩余rn如下:故Lucas数Ln关于模7的最小非负剩余rn的最小周期为16,且在第一个周期内Lucas数均不能被5整除,故定理得证.最后,我们讨论Lucas数Ln的标准分解式中因数7的指数.定理3 L4×7k的标准分解式中素因数7的指数为k+1,k∈Z且k≥0.证对k作数学归纳法.当k=0时,L4=7,故L4中7的指数为1,命题成立.假设命题对于非负整数k成立,即L4×7k=7k+1q,其中gcd(q,7)=1,则对于k+1,由引理8的2)有因为(q,7)=1,故L4×7k+1中的指数为k+2.证毕.定理4 L4×7k×p的标准分解式中素因数7的指数为k+1,其中k∈Z,k≥0,且gcd(p,14)=1.证令p=14m+r,其中m∈Z且m≥0,r=1,3,5,9,11,13.则由引理2及引理4知因为(7,F8×7k+1m-1)=1,故只需要证明7k+1恰整除L4×7kr.下面对r进行讨论:1)当r=1时,由定理3,命题成立.2)当r=3, 11时,由引理8知因为7k+1恰整除L4×7k,而故7k+1恰整除L4×7kr.3)当r=5,9,13时,由引理8知仿上可证,7k+1恰整除L4×7kr.综上所述,定理4得证.将上面的结论总结如下:定理5 设n=2s×7k×p,其中s, k∈Z, s, k≥0, 且 (p, 14)=1,则Ln的标准分解式中7的指数t为证当s=0时,n=7kp≡±1, ±3(mod 8); 当s=1时,n=2×7kp≡±2(mod 8);当s≥3时,n=2s×7k×p≡0(mod 8), 由引理7知,Ln的标准分解式中7的指数为0.当s=2时,由定理4知,Ln的标准分解式中7的指数为k+1.【相关文献】[1]袁明豪. 正Fibonacci数的标准分解式中因子2的指数[J]. 数学通讯,2003(15):26-27.[2]袁明豪. 正Fibonacci数的标准分解式中因子3的指数[J]. 荆州师范学院学报,2003(2):12-13.[3]袁明豪. 正Fibonacci数的标准分解式中因子5的指数[J]. 数学实践与认识,2003,37(7):166-170.[4]王念良,张洁. Fibonacci数的标准分解式中素因子7的指数[J]. 商洛学院学报,2007,21(4):4-7.[5]林丽蓉,尤利华. Fibonacci数的标准分解式中素因数11的指数[J]. 甘肃联合大学学报,2008,22(6):4-10.[6]尤利华,黄荣辉.Fibonacci数的标准分解式中诸素因数的指数[J].广西师范大学学报:自然科学版,2011,29(3):18-22.[7]黄荣辉,尤利华. Fibonacci数的标准分解式中素因数13的指数[J]. 江西师范大学学报,2012,36(3):234-237.[8]林伟芬,尤利华. Fibonacci数的标准分解式中素因数17的指数[J]. 淮阴师范学院学报:自然科学版,2013(3):213-217.[9]陈小芳. Lucas数列中素因子2的指数[J].首都师范大学学报,2013,34(5):6-7.[10]陈小芳. Lucas数的标准分解式中素因子3的指数[J].贵州师范大学学报,2013,31(4):45-47.[11]卢世芳. Fibonacci数和Lucas数的几个性质[J].青海大学学报:自然科学版,1999,17(6):68-70.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RHale Waihona Puke HS 2002/95/EC Compliant
Mechanical Characteristics
Positive Lead .260 [6.60] .156 [3.96] Leads: 26 AWG (0.40) Bus Solid Tinned Copper Negative Lead .156 [3.96] .260 [6.60]
Addresses
Marlow Industries, Inc. 10451 Vista Park Road Dallas Texas 75238-1645 214-340-4900 (tel) 214-341-5212 (fax) II-VI Japan Inc. WBG Marive East 17F 2-6 Nakase, Mihama-ku Chiba-Shi, Chiba 261-7117 Japan 81 43 297 2693 (tel) 81 43 297 3003 (fax) center@ii-vi.co.jp www.ii-vi.co.jp Marlow Industries Europe Aberdeen House, South Road Haywards Heath West Sussex RH164NG UK +44 (0)1444-443404 (tel) +44 (0)1444-443334(fax) Marlow Industries China, II-VI Technologies Beijing
Ordering Options
Model Number NL2011T-01 NL2011T-02 NL2011T-03 Description both surfaces are metallized hot side exterior is metallized no metallization
Hot Side Temperature (°C) Δ Tmax (°C-dry N2): Qmax (watts): Imax (amps): Vmax (vdc): AC Resistance (ohms): 27°C 76 0.47 0.7 1.9 2.52 50°C 87 0.53 0.7 2.2 ---
• • • Pretinned metallized ceramic surface(s) with 117°C solder. Thermistor mounted on edge of cold side ceramic. (Calibration available.) Elevated temperature burn-in with test data provided. Doc # 102-0299 Rev B
VOLTAGE (VDC)
2.0 1.6 1.2 0.8 0.4 0.0 0.0 0.2 0.4 0.6 CURRENT (AMPS) 0.8 Q=0 T=0
Q=0 T=0 0.8
For performance information in a vacuum or with hot side temperatures other than 27°C or 50°C, consult one of our Applications Engineers.
Rm 202, 1# Lize 2nd Middle Road Wangjing, Chaoyang District Beijing 100102 China 64391260 ext 105 (tel) 64399315 (fax) info@ Doc # 102-0299 Rev B
Page 2 of 2
214-340-4900 (tel) ● 214-341-5212 (fax) ●
100.0 80.0
T (C)
40.0 20.0 0.0
T (C) VOLTAGE (VDC)
60.0
HEAT LOAD (WATTS) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
100.0 80.0 60.0 40.0 20.0 0.0 2.0 1.6 1.2 0.8 0.4 0.0 0.0 0.2 0.4 0.6 CURRENT (AMPS)
2.00 +/-.25 [50.80+/-6.35]
Cold Side
.004 [0.10] .001 [0.03]
A
.169+/-.007 [4.29 +/-0.18] .001 [0.03] Ceramic Material: Alumina (AC) Millimeters are in [ ] A
Installation
Recommended mounting methods: Bonding with thermal epoxy or soldering with metallized ceramics. For additional information, please refer to our TEC Installation Guide.
元器件交易网
marlow
industries
Subsidiary of II-VI Incorporated
a global leader in thermoelectric solutions
Thermoelectric Cooler NL2011T
Performance Values
Page 1 of 2
214-340-4900 (tel) ● 214-341-5212 (fax) ●
元器件交易网
marlow
industries
Subsidiary of II-VI Incorporated
a global leader in thermoelectric solutions
Features
• • RoHS 2002/95/EC compliant For example, and NL2011T with only the hot side metallized is specified as an NL2011T-02AC
Available Modifications
Operation Cautions
For maximum reliability, storage and operation below 85°C in a non-condensing environment is recommended. To minimize thermal stress, use linear/proportional temperature control or a similar method rather than an ON/OFF method.
A subsidiary of II-VI Incorporated
II-VI Singapore Pte., Ltd. Blk. 5012, Techplace II #04-07 & 05-07/12, Ang Mo Kio Ave. 5 Singapore 569876 (65) 6481 8215 (tel) (65) 6481 8702 (fax) info@.sg .sg
Performance Curves
Environment: One atmosphere dry nitrogen
Hot Side Temperature: 27°C Hot Side Temperature: 50°C HEAT LOAD (WATTS) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50