物理方程有定解的线性边界条件的分类
三类典型的数学物理方程

数学物理方程的建立过程
确定所研究的物理量 用数学中的“微元法”从所研究的系统中分割出
一小部分,再根据相应的物理规律分析邻近部分 与该部分的作用(抓主要作用),这种相互作用 在一个短的时间间隔内如何影响物理量。 把这种关系用微分方程表达出来,经过化简整理, 得到数学物理方程。
杆的纵振动方程 杆上x点在t时刻 F(x,t) 的弹性应力 x 研究对象:杆上各点的纵向位移 u(x,t)
得到
uxx u 2u u
utt a2[u 2u u ]
将上面两式代入原波动方程,得到
u 0
如何处理?
考虑采用积分的方法
先对 积分 u u d 0 f ( )
再对 积分
u f ( )d f1( ) f2 () f1(x at) f2(x at)(2)
即为齐次波动方程初值问题的通解 就某一具体问题,通过定解条件(初始条件)来 确定 f1 , f2
例:长为l 的均质细杆,侧面绝热,一端放在0°的水中,
另一端按已知规律 f (t) 变化。写出边界条件
物体边界面各点在时刻t所流过的热量已知:
u n
s
质温度已知,物体内部通过其边界S与 周围介质进行热量交换:
在S上任取一小块dS,用u1表示与物体接触处的介质温度,dQ 表示dt时间内流过dS的热量,根据牛顿冷却定律,我们有
弦的端点沿垂直于x轴的方向自由滑动,并受到一个 沿位移方向作用的已知外力,则边界条件形式为
ux (0,t) 1(t), ux (a,t) 2(t)
自由端点的情形:
1.2 初始条件与边界条件
第三类边界条件 给出所研究的物理量及其沿边界外法向导数 在边界上应满足的条件。
端点处为弹性支撑端的情形 根据Hooke 定律
数学物理方程及其定解问题

3.定解问题的整体性(除上述两种类型外的 数学物理方程)
4.定解问题的适定性
4
一. 无界弦的自由振动
1. 无界弦的自由振动 (1)无界弦的含义:无界弦不是指无限长的弦,是指所关 心的那一段弦远离两端,在所讨论的时间内,弦两端的影响来 不及传到这段弦上,因而认为弦的两端在无限远,就不必给弦 的两端提出边界条件。 定解问题 初值问题
x at, x at
得方程的通解
u f1 ( x at) f 2 ( x at)
通解的物理意义: f2 ( x at ) 正行波, f2 ( x at ) 反行波
6
⑵ 利用定解条件来确定函数 f1 ( x), f 2 ( x)
由初始条件得
u ( x, 0) f1 ( x) f 2 ( x) ( x) ut ( x, 0) af1 ( x) af 2 ( x) ( x)
数学物理方程及其定解问题数学物理方程习题解答数学物理方程数学物理方程谷超豪数学物理方程pdf数学物理方程试卷数学物理方程视频数学物理方程答案数学物理方程第三版数学物理方程讲义
第七章 数学物理方程及其定解问题
1.数学物理方程的导出 2.定解条件 3.数学物理方程的分类 4.达朗贝尔公式 定解问题
1
3.数学物理方程的分类
15
三. 一般情况下的数学物理方程
一般情况下,无法像对无限长弦那样,先求通解,然后用定解条件 求特解。
定解问题的整体性
物理问题
数学问题
定解问题是一个整体
四 . 定解问题的适定性
如定解问题满足 (1) 有解 (2) 解是唯一的 (3) 解是稳定的 则称此定解问题是适定的。 因为定解问题来自实际。
材料力学边界条件

材料力学边界条件边界条件在材料力学中起到非常重要的作用,它们是物理现象或力学问题的解决方案的关键要素之一、边界条件确定了在研究区域边界上发生的物理过程和影响。
在材料力学中,常见的边界条件包括:1.位移边界条件:位移边界条件是指物体在边界上的位移情况。
常见的位移边界条件有固定边界条件、自由边界条件和摩擦边界条件等。
固定边界条件是指物体在其中一边界上的位移被限制为零,即该边界上的点不能发生位移。
自由边界条件是指物体在其中一边界上的位移没有任何限制,即该边界上的点可以自由运动。
摩擦边界条件是指物体在其中一边界上的位移受到边界面上的摩擦力所限制。
2.力边界条件:力边界条件是指物体在边界上受到的外力情况。
常见的力边界条件有固定力边界条件和自由力边界条件等。
固定力边界条件是指物体在其中一边界上受到的外力为零,即该边界上没有外力作用。
自由力边界条件是指物体在其中一边界上受到的外力没有任何限制,即该边界上的外力可以自由作用。
3.应力边界条件:应力边界条件是指物体在边界上的应力情况。
常见的应力边界条件有固定应力边界条件和自由应力边界条件等。
固定应力边界条件是指物体在其中一边界上的应力被固定为其中一个值,即该边界上的应力受到限制。
自由应力边界条件是指物体在其中一边界上的应力没有任何限制,即该边界上的应力可以自由变化。
边界条件的选择需要根据具体问题的要求和实际情况进行确定。
通常情况下,边界条件需要满足力学平衡条件、位移连续条件和应力连续条件等。
同时,边界条件的选择也需要考虑到物体的边界特性,比如是否有固定边界、自由边界或者摩擦边界等。
边界条件的正确选择对于力学问题的解决至关重要。
不恰当的边界条件会导致计算结果的不准确甚至错误。
因此,在进行模拟和计算时,需要仔细分析和确定边界条件,并考虑到实际问题的特点和要求。
总之,材料力学边界条件是研究区域边界上发生的物理过程和影响的要素,其正确选择对于解决力学问题具有重要作用。
在选择边界条件时,需要考虑到力学平衡、位移连续和应力连续等方面,以获得准确的计算结果。
数学物理方程(很好的学习教材)

数学物理方程(很好的学习教材)
二、数学物理方程的一般分类
一般分类 按自变量的个数,分为二元和多元方程; 按未知函数及其导数的幂次,分为线性微分方程和 非线性微分方程; 按方程中未知函数导数的最高阶数,分为一阶、二 阶和高阶微分方程。
由能量守恒定律 c ρdx du=dQ =[q(x,t)-q(x+dx,t)]dt =-qx(x,t)dxdt
于是有 c ρut = -qx 由热传导定律 q(x,t) = -k ux(x,t) 代入前面的式子,得到 c ρut = k uxx ut = a2 uxx
a2 = k/(cρ)
数学物理方程(很好的学习教材)
四、常见数学物理方程的定解条件
波动方程
方程形u式 tt : a2u f 定解条初 件边始界条条件件::包第含一 位初 第类 移始 二或 ”“ 类者 和或初者始第“三速
输运方程
方程形u式 t a: 2uf 定解条边 件初 界始 条条 件件 :: 第物 一 第理 类 始 二量 或 时 类在 者 刻 或初 的 者值 第
三类线性边界条件
第一类边界条 u(x件 ,y,: z,t)边界x0,y0,z0 f(x0,y0,z0,t)
第二类边界条件: u n边界x0,y0,z0
f(x0,y0,z0,t)
第三类边界条 u件 H: u
n边界x0,y0,z0
f(x0,y0,z0,t)
初始条件
定解条件
边界条件
数学物理方程(很好的学习教材)
u u 2u u u 2
2
yy
y数学物理方程(很好y的学y习教材) y
yyu
yy
于是,方程化为:
三类边界条件可以统一地写成

定解问题问题的分类数学物理方程(泛定方程)加上相应的定解条件一起构成了定解问题。
根据定解条件的不同,又可以把定解问题分为三类:初值问题:定解条件仅有初值条件;边值问题:定解条件仅有边值条件;混合问题:定界条件有初值条件也有边值条件。
35分离变量理论(,)(,)(,)(,)(,)0xx yy x y a x y u b x y u c x y u d x y u e x y u ++++=考察如下两变量的二阶线性齐次偏微分方程:试确定方程如下形式的解:()()u X x Y y =将该解代入方程可得:aX Y bXY cX Y dXY eXY ′′′′′′++++=8有界弦的自由振动问题(齐次方程的混合问题)研究两端固定的均匀弦的自由振动,即定解问题:()()()()()()()()()20, 0,0,0, ,00;,0, ,0, 0.tt xx t u a u x l t u t u l t t u x x u x x x l ϕψ⎧=<<>⎪==≥⎨⎪==≤≤⎩在求解常微分方程时,通常的做法是先求出方程的通解,然后利用给定条件确定通解中的积分常数。
对于如上定解问题,这中做法一般情况下是行不通的。
原因在于通常很难求出偏微分方程的通解。
解决这一问题的办法是直接求满足定解条件的特解。
10相应地,边界条件变为:()()()()()()()()0000,00,0u t X T t u l t X l l t X X T ==⎫⎪⇒⎬===⎧=⎪⎭⎪⎨⎪⎩这样就得到如下常微分方程:()()''000, 0X X X X l λ−=⎧⎪⎨==⎪⎩该常微分方程的解依λ的取值不同而不同,需要讨论。
15本征值问题在求解方程过程中,我们遇到如下问题:()()''000, 0X X X X l λ−=⎧⎪⎨==⎪⎩通过讨论我们知道,仅当λ>0,且为某些特定值时该方程有非平庸解。
弹性力学-边界条件

yx
x
P y
fx
n
l cosn, x cos m cosn, y sin
xy
由 x s m xy s f x xy s m y s f y
fy
x s cos yx s sin 0
h 2 h 2
h 2 h 2
f x ydy M
则边界条件可以写成(P.23 (b)):
x x l
dy Fx ,
xy x l
dy Fy ,
x x l
ydy M
悬臂梁的例子:
y
h 2 h 2
y y x
h 2 h 2
x
P
L
L
对边界条件的积分为: (P.23 (b)):
x yx
xy l fx y s m fy
x 上面:l=0,m=-1 左面: 右面: l=-1 l=1 m=0 m=0 下面:l=0,m=1 y
(2).上下两面 ( ) f l 0 m 1 ( ) f
二、应力边界条件 在边界上的楔形体(单位厚度)如图所示: 弹性体内单元体斜面上的 y 应力分量与坐标面应力的 yx 关系有(静力平衡) f xn X x p x x xy l p y m y yx
• 所得到的应力分量必须在所有边界上各点处严 格满足应力边界条件,才是所论问题的解答。 • 在小边界上,如果不能严格满足边界条件,可 以用圣维南原理在静力等效意义上满足(积分 意义上的)边界条件。 • 根据这个原理:两组面力其分布尽管不同,但 如果两者的合力与合力矩相同(静力等效),此 时它们所产生的作用结果仅仅在局部有比较大 的差异,远离这个局部,结果基本相同。
弹性力学4-物理方程、边界条件

第二章 平面问题的基本理论 2.6 边界条件
应力边条件较为复杂,比较常用,需要说明的几点: 1.应力边界条件中的面力和应力具有不同的正负号规 定,且分别作用于通过边界点的不同面上。
这两种方法应用见后面的例子。
第二章 平面问题的基本理论
2.6 边界条件
例2.1:悬臂梁受力如图,试写出其上、下两边应
力边界条件。
p
上表面:y h l 0 , m 1
x
2
q y
xy yh 2 0
y yh 2 p
下表面:y h
(l x m xy )s fx (s)
2
l 0 , m 1
应力边界条件:若给定了部分边界上面力分量,则由 边界上任意点的静力平衡条件,导出边界上每一点的应 力与面力的关系式。可将[P13式(2-3)]应力分量px和py
分别用面力分量 fx (s), fy (s) 代替可得:
(l x m xy )s fx (s)
(l xy m y )s f y (s)
(l xy m y )s f y (s) xy yh 2 q
y yh 2 0
第二章 平面问题的基本理论 2.6 边界条件
例2.2:如图,为左侧受静水压力、下边固定的水 坝,试写出其应力边界条件(固定边不写)。
右侧面: x cos xy sin 0 xy cos y sin 0
混合边界条件:
一部分边界具有已知位移,因而具有位移边界条件,如 式(2-14);另一部分边界具有已知面力,因而具有应力 边界条件,如式(2-15); 另外,在同一部分边界上还可能出现混合边界条件,即 两个边界条件中,一个是位移边界条件,而另一个是应力 边界条件,课本图2-7。
数学物理方法第七章2013

4
3、求解方法 —— 行波法、分离变量法、等
7.1 数学物理方程的导出
导出步骤:
1、确定物理量,从所研究的系统中划出一小部分,分析邻 近部分与它的相互作用。 2、根据物理规律,以算式表达这个作用。 3、化简、整理。
波动方程的导出
5
(一)均匀弦的微小横振动
设:均匀柔软的细弦沿x轴绷紧,在平衡位置附 近产生振幅极小的横振动 u(x,t): 坐标为x 的点在t时刻沿垂线方向的位移 求:细弦上各点的振动规律 弦的横振动 u( x, t )
x
x dx
相对伸长量:
u( x dx , t ) u( x , t ) u dx x
10
u( x , t )
u( x dx, t )
胡克定律:
dL
f YS
dL L
Y:杨氏模量,
u 杆的dx一段相对伸长 x u f YS YSux x
f
L
S
运动方程: 杆dx两端的相对伸长不同,应力也不同
T (u x
x dx
ux
x
) F ( x , t )dx ( dx )utt
单位质量所受 外力,力密度
9
受迫振动方程
utt a 2 uxx f ( x, t )
(二)均匀杆的纵振动
设:均匀细棒(杆),沿杆长方向作微小振动 u(x,t): 平衡时坐标为x 的点在t 时刻沿x 方向的位移。 求:细杆上各点的运动规律 研究对象:取一不包含端点的小段(x, x+dx),并设杆的 横截面积为S,密度为 ,杨氏模量为Y,该小段在t时刻 的伸长量u(x+dx,t)-u(x,t)
扩散现象:系统的浓度 u(x) 不均匀时,将出 现物质从高浓度处到低浓度处的转移,叫扩散。
数学物理方法1-1数学物理方程及其定解条件资料讲解

9
教学基本要求
掌握波动方程、热传导方程、Laplace方程的 物理背景及其定解问题的提法;
熟练掌握三类方程定解问题的解法:分离变量 法,行波法、积分变换法等;
ds
M
gds
在弦上任取一弧段 M M ,' 其长度为ds, T
弧段两端所受张力为 T 和 T '
N
N'
O
x
x dx
x
是弦的线密度
由于假定弦是柔软的,所以在任意点处张力的方向总是沿着弦在该点的 切线方向。
14
现在考虑弧段 M M ' 在t时刻的受力和运动情况。
根据牛顿第二定律,作用于弧段上任一方向上力的总和等于这段弧的
由
cos12
4
2! 4!
略去 和 ' 的所有高于一次方的项时,就有
cos1, cos' 1 u
T'
代入式 T c o s T 'c o s' 0
便可近似得到: T T '
M'
'
ds
M
gds
T
在u方向弧段 M M ' 受力总和为
N
N'
O
x
x dx
x
TsinT'sin'g d s,
其中, gds 是 M M ' 的重力。
第四章 Bessel函数的性质及其应用 §4.1 Bessel方程的引出 §4.2 Bessel函数的性质 §4.3 Bessel函数的应用 *§4.4 修正Bessel函数 *§4.5 可化为Bessel方程的方程
数学物理方法 名词解释

第一章1.定解条件:边界条件和初始条件统称为定解条件。
边界条件又有Dirichlet边界条件(也称第一类边界条件)、Neumann条件,也称第二类边界条件、Robin边界条件,第三类边界条件。
P3-42.定解问题:一个微分方程(组)和相对应的定解条件合在一起就构成了一个定界问题。
又分有初始问题(Cauchy问题),只有初始条件没有边界条件的定界问题;边值问题,只有边界条件没有初始条件的定解问题;混合问题,两者都有。
对于边值问题,根据边界条件不同,又可以分为第一、第二和第三边值问题。
P113.定解问题的适定性从数学上看,判断一个定解问题是否合理,即是否能够完全描述给定的物理状态,一般来说有一下三个标准:⑴解的存在性:所给定的定解问题至少存在一个解。
⑵解的惟一性:所给定的定解问题至多存在一个解。
⑶解的稳定性:当给定条件以及方程中的系数有微小变动时,相应的解也只有微小变动。
定解问题解的存在性、惟一性和稳定性统称为定解问题的适定性。
P124.Dirichlet、Neumann定解问题定解条件只有Dirichlet条件没有初始条件的定解问题叫做Dirichlet定解问题。
定解条件只有Neumann条件没有初始条件的定解问题叫做Neumann定解问题。
5.热传导Fourier定律:热量以传导形式传递时,单位时间内通过单位面积所传递的热量与当地温度梯度成正比。
对于一维问题,可表示为:Φ=-λA(dt/dx)其中Φ为导热量,单位为W,λ为导热系数,A为传热面积,单位为m2, t为温度,单位为K, x 为在导热面上的坐标。
6.Hooke弹性定律:在弹性限度内,物体的形变跟引起形变的外力成正比。
7.发展方程:所描述的物理过程随时间而演变,如:波动方程、热传导方程等8.在热传导方程中,如果温度分布稳定,即,则三维热传导方程变为,此方程为Poisson方程。
特别地,若f(x,y,z)=0,即,则为Laplace方程。
Poisson方程或Laplace方程统称为位势方程。
数学物理方程 第一章典型方程和定解条件

C、泊松方程和拉普拉斯方程的初始条件 描述稳恒状态,与时间变量无关,不提初始条件
2、边界条件——描述系统在边界上的状况
A、 弦振动方程的边界条件
(1)固定端:振动过程中端点 (x=a) 保持不动,其边界条件为:
u|xa0 或: u(a,t)0 第一类边界条件
(2)自由端:x=a 端既不固定,又不受位移方向力的作用。
ns
ns
(3)热交换状态
第二类边界条件
牛顿冷却定律:单位时间内物体单位表面积与周围介质交
换的热量,同物体表面温度与周围介质温度差成正比。
dQ k1(uu 1)dSdt
k
u n
dSdt
k 1 热交换系数;u 1 周围介质的温度
u nuSu1S,
k1
k
第三类边界条件
边界条件
第一类边界条件
给 出 边 界 上 各 点 的 函 数 值 : u |s f 第二类边界条件
• 在 杆 中 隔 离 一 小 段 ( x , x d x ) , 分 析 受 力 情 况
截面x:受到弹(应)力P(x,t)S; 截面xdx:受到弹力P(xdx,t)S, P为单位面积所受的弹力,沿x轴方向.
牛顿运动定律:
dm 2 tu 2[P (xdx,t)P (x,t)]S.
dm 2u[P (xdx,t)P (x,t)]S. t2
2u2u2u0 ( Laplace方程 ) x2 y2 z2 ( 位势(Possion)方程 )
19世纪打开偏微分方程研究热烈局面的第一人是傅立叶 (Fourier),当时工业上要研究金属冶炼和热处理,迫切需要 确定物体内部各点的温度如何随时间变化。Fourier对这种 热流动问题颇感兴趣,1807年向巴黎科学院提交用数学研 究热传导的论文并创立了分离变量法:
浅谈数理方程中线性边界条件的分类

浅谈数理方程中线性边界条件的分类摘要: 数学物理方程中有定解离不开初始条件和边界条件,其反映了具体问题所处的环境和背景。
本文针对线性边界条件的分类进行归纳。
关键词: 数学物理方程 线性边界条件 分类一、 引言物理课程中所研究论述的物理规律是物理量在空间和时间中变化的规律。
物理规律用数学表达是:物理量u 在各个地点和各个时刻所取值之间的联系。
通过这种联系,我们就可以由边界条件和初始条件推算出物理量在任意地点和任意时刻的u(x,y,z,t)。
同时它也是解决问题的依据。
为了解算具体问题,应该考虑到所研究的区域所处的环境。
边界条件和初始条件就是反映具体问题所处的环境和背景。
二、 线性边界条件的分类物理规律反映的是物理量在时间和空间上的联系,与特定的周围环境和历史有关。
物理中的联系总是要通过中介,周围环境的影响是通过边界传给其研究对象,所以,周围环境的影响体现于边界所处的物理状况,即边界条件。
而不同的物理过程,因其具体的条件不同,结果也不一样。
下面,将对线性边界条件进行简单的归纳。
1、第一类边界条件这类边界条件直接规定了所研究的物理量在边界上的数值。
()(),,,U x y z t 00000边界x ,y ,z 0,=f t,x ,y ,z ,又称狄利克雷()Dirichlet 边界条件。
首先以弦振动为例:取一根长为L 的弦,把它的两端0X =和X L =固定起来,然后让它振动。
边界条件0X =和X L =既然是固定的,那位移U 当然始终为零。
()0,0x U x t ==()()()()()000000,,000,,,,,,0,0,,,0x x tx x ax lx y z x a U x t N U x t N f z t u x t uuf t x y z nkUn ρϕ=========∂=∂=边界(),0x t U x t ==对于细杆导热问题,如果杆的某一端点x=a 的温度U 按已知的规律f (t)变化,则该点的边界条件是:()(),x aU x t f t ==特别是如果该端点恒温u 0 ,则边界条件成为()()0,x aU x t f u ==再如,半导体扩散工艺的“恒定表面浓度扩散”中,硅片周围环境是携带着充足杂质的氮气,杂质通过硅片表面向内部扩散,而硅片表面的杂质浓度保持一定。
现代数学物理方程

这就是微分方程的适定性问题。
2、验证
u( x , y, t )
2
1 t x y
2 2
在锥
t x y 0
2 2 2
中都满足波动方程
u
2
t
2
u
2
x
2
u
2
y
2
.
证明:在该锥内
u t
2
(t x y )
2 2 2
3 2
t
3 2 5 2
又
sin 1 tg 1 sin 2 tg 2
u( x x , t )
.
于是得运动方程
x
u
2
t
2
g [ l ( x x )]
u( x x , t ) x
[l x ]
u( x , t ) x
u
2
[ l ( x x )] g
u( x , 0) t aF '( x at ) aG '( x at ) t 0 aF '( x ) aG '( x ) ( x ).
aF '( x ) aG '( x ) ( x ).
两边对 x 积分:
aF ( x ) aG ( x ) C
u
2
t
2
c u
2
这里c 通常是一个固定常数,代表波的传播速率。 在针对实际问题的波动方程中,一般都将波速表 示成可随波的频率变化的量,这种处理对应真实 物理世界中的色散现象。
(2)方程的导出 均匀弦的微小横振动 理想化假设:
数学物理方程总复习

⎤ ⎥⎦
−
ρ
gdx
≈
ρ
∂ 2u ( x, ∂t 2
t)
dx
T
⎡ ⎢⎣
∂u(x + dx,t) ∂x
−
∂u( x, t ) ∂x
⎤ ⎥⎦
−
ρ
gdx
≈
ρ
∂ 2u( x, t ) ∂t 2
dx
∂u ( x,t )
由于x产生dx的变化而引起的 用微分近似代替,即
∂x
的改变量,可
∂u(x + dx,t) ∂x
现在考虑弧段MM’在t时刻的受力情况
由于假定弦是柔软的,所以在任一点张力 的方向总是沿着弦在该点的切线方向。
t时刻 位移NM记作u u(x,t)
弧段 Mq M ' 两端
所受的张力记作T,T’
根据牛顿第二定律 F = ma
在x轴方向弧段 Mq M ' 受力的总和为
T 'cos a '− T cos a = 0
行的外力,且假定在时刻t弦上x点处的外力密度为F(x,t),
显然
T 'cos a '− T cos a = 0
Fds
−
T
sin
a
+
T
'
sin
a
'−
ρ
gds
≈
ρ
ds
∂2u ∂t 2
弦的强迫振动方程
∂2u ∂t 2
=
a2
∂2u ∂x2
+
f
( x, t )
弦的强迫振动方程
∂2u ∂t 2
=
a2
∂2u ∂x2
dx
数理方程第一章-3讲解

a2
(
2u x2
2u y2
2u z2
)
u t
a2 k c
—— 三维热传导方程
本课程内容,只涉及线性边界条件,且仅包括以下三类。
深圳大学电子科学与技术学院
第一类边界条件:物理条件直接规定了 u 在边界上的值,如
u S
f1
第二类边界条件:物理条件并不直接规定了 u 在边界上的值,而是规定了u 的法向微商在边界上的值,如
深圳大学电子科学与技术学院
知识补充:
弹性模量是指当有力施加于物体或物质时,其弹性变 形(非永久变形)趋势的数学描述。物体的弹性模量 定义为弹性变形区的应力-应变曲线的斜率。杨氏模 量指的是受拉伸和压缩时的弹性模量。
杨氏模量(Young‘s modulus)是描述固体材料抵抗形变 能力的物理量。一条长度为L、截面积为S的金属丝在 力F作用下伸长L。F/S叫应力,其物理意义是金属丝 单位截面积所受到的力; L/L叫应变,其物理意义是 金属丝单位长度所对应的伸长量。
dx
x
不考虑垂直杆方向的形变,根据Hooke定律,应力与应变成正
比,即 P E u x
代入
P x
2u t 2
2u t2
a2
2u x2
0 xl , t0
其中
a2 E
深圳大学电子科学与技术学院
例6:一根均匀杆,原长为l,一端固定,另一端沿杆的轴线方向被拉长e而静 止。突然松手,任其纵向振动。写出定解问题。
(3)对于稳恒场,上述边界条件的两端均不含时间 t ; (4)边界条件的推导,步骤与泛定方程的推导大致相同,但微元只能在边界上选取。
x
x
S 2u d x
t2
Sdx dm(微元质量)
数学物理方程中的边界条件与数值解答

数学物理方程中的边界条件与数值解答在数学物理领域中,边界条件是解决方程问题中不可或缺的一部分。
边界条件为方程提供了额外的信息,使得问题的解能够满足特定的要求。
同时,数值解答方法也是解决方程问题的重要手段之一。
本文将探讨数学物理方程中的边界条件与数值解答的关系,以及它们在实际问题中的应用。
一、边界条件的作用在求解数学物理方程时,边界条件起到了限制和约束解的作用。
边界条件可以是给出边界上的解值,也可以是给出解的导数值。
通过给定边界条件,我们可以确定问题的唯一解,或者在特定条件下得到一组解的集合。
以热传导方程为例,假设我们要求解一个矩形材料的温度分布。
边界条件可以是材料四个边界上的温度值,或者是材料表面上的热流密度。
通过这些边界条件,我们可以确定矩形材料内部的温度分布。
类似地,对于其他数学物理方程,边界条件也起到了类似的作用。
二、数值解答方法数值解答方法是一种通过数值计算来近似求解方程问题的方法。
它将连续的数学物理问题转化为离散的数值计算问题,通过对离散点上的数值进行计算,得到问题的近似解。
常见的数值解答方法包括有限差分法、有限元法和边界元法等。
这些方法在求解不同类型的方程问题时具有各自的优势和适用范围。
在选择数值解答方法时,需要考虑问题的性质、边界条件的类型以及计算资源的限制等因素。
三、边界条件与数值解答的关系边界条件与数值解答方法密切相关。
在使用数值解答方法求解方程问题时,我们需要将边界条件转化为数值计算问题中的约束条件。
以有限差分法为例,该方法将求解区域离散化为一系列网格点,通过在网格点上的差分近似来计算方程的解。
在边界上,我们需要根据边界条件来确定网格点上的解值或导数值。
在有限元法中,我们将求解区域划分为一系列单元,通过在单元上的试探函数来近似方程的解。
在边界上,我们需要根据边界条件来确定试探函数的取值或导数值。
因此,边界条件与数值解答方法密切相关,二者相互依赖,共同决定了方程问题的求解过程和结果。
第三类边界条件

重要说明:所求节点的温度前的系数一定等于其他 所有相邻节点温度前的系数之和。这一结论也适用 于边界节点。但这里不包括热流(或热流密度)前的 系数。
第四章 导热问题的数值解法
20
4-2 边界节点离散方程的建立及代数 方程的求解
对于第一类边界条件的热传导问题,处理比较简单,因为 已知边界的温度,可将其以数值的形式加入到内节点的离 散方程中,组成封闭的代数方程组,直接求解。
第四章 导热问题的数值解法
2
(3) 实验法 就是在传热学基本理论的指导下,采用对所 研究对象的传热过程所求量的方法
3 三种方法的特点 (1) 分析法 a 能获得所研究问题的精确解,可以为实验和数值计算 提供比较依据; b 局限性很大,对复杂的问题无法求解; c 分析解具有普遍性,各种情况的影响清晰可见
第四章 导热问题的数值解法
28
判断迭代是否收敛的准则:
max ti(k1) ti(k )
max
ti(k 1) ti(k )
ti(k )
max
ti(k 1) ti(k ) tm(ka)x
— 允许的偏差; 相对偏差 值一般
取103 ~ 106
k及k+1表示迭代次数; tm(ka)x—第k次迭代得到的最大值
而对于第二类边界条件或第三类边界条件的热传导问题, 就必须用热平衡的方法,建立边界节点的离散方程,边界 节点与内节点的离散方程一起组成封闭的代数方程组,才 能求解。
为了求解方便,这里我们将第二类边界条件及第三类边界 条件合并起来考虑,用qw表示边界上的热流密度或热流 密度表达式。用Φ表示内热源强度。
25
2.节点方程组的求解 写出所有内节点和边界节点的温度差分方程 n个未知节点温度,n个代数方程式:
数学物理方程边界条件

数学物理方程边界条件数学物理方程的边界条件是指在应用数学物理方程求解实际问题时,所需要给出的边界条件。
边界条件的正确设置不仅可以保证数学物理方程的解有意义且唯一,也能为实际问题的研究提供可行的解决方案。
下面我们将会对数学物理方程边界条件的概念、种类、应用以及各种规律进行详细介绍。
一、数学物理方程边界条件的概念数学物理方程通常是研究物理现象或数学问题的数学描述,常见的有热传导、波动、电磁等方程。
而边界条件是在物理问题求解中需要给定的条件,通常是关于物体表面的温度、电磁场强度等等的条件,该条件能够限制方程的解的形式及数值,使得解具有实际和物理意义。
二、数学物理方程边界条件的种类1. Dirichlet边界条件:指在区域的边界上,给定了解的函数值,例如给定物体表面的温度。
2. Neumann边界条件:指在区域的边界上,给定了解的导数值,例如给定物体表面的热流密度。
3. Robin边界条件:是指结合了Dirichlet和Neumann边界条件的混合类型,是边界条件的最一般形式,例如考虑热传导时物体表面的换热系数。
4. Cauchy边界条件:是指边界上同时给定解的函数值和导数值的情况,常见于泛函分析理论中。
三、数学物理方程边界条件的应用1. 热传导问题中的边界条件a. 第一类边界条件:物体表面温度固定。
b. 第二类边界条件:物体表面的热流密度固定。
c. 第三类边界条件:物体表面的温度与热流密度成比例关系。
2. 波动问题中的边界条件a. 固定边界条件:物体表面只能在原位置保持不动。
b. 自由边界条件:物体表面可以自由地运动,例如在水面上波动。
c. 辐射边界条件:表示在物体表面能够辐射出能量,例如在声波传导中透声壁的情况。
3. 电磁问题中的边界条件a. 边界上电场密度与导体表面垂直,电场在导体内部不存在的情况。
b. 边界上磁场密度与导体表面平行,磁感应强度在导体内部不存在的情况。
四、数学物理方程边界条件的规律1. 边界条件的使用应当具有现实意义和可行性。
浅话边界条件与初始条件

浅话边界条件与初始条件边界条件在说边界条件之前,先谈谈初值问题和边值问题。
初值和边值问题:对一般的微分方程,求其定解,必须引入条件,这个条件大概分两类---初始条件和边界条件,如果方程要求未知量y(x)及其导数y′(x)在自变量的同一点x=x0取给定的值,即y(x0 )=y0,y′(x0)= y0′,则这种条件就称为初始条件,由方程和初始条件构成的问题就称为初值问题;而在许多实际问题中,往往要求微分方程的解在在某个给定的区间a ≤ x ≤b的端点满足一定的条件,如y(a) = A , y(b) = B 则给出的在端点(边界点)的值的条件,称为边界条件,微分方程和边界条件构成数学模型就称为边值问题。
三类边界条件:边值问题中的边界条件的形式多种多样,在端点处大体上可以写成这样的形式,Ay+By'=C,若B=0,A≠0,则称为第一类边界条件或狄里克莱(Dirichlet)条件;B≠0,A=0,称为第二类边界条件或诺依曼(Neumann)条件;A≠0,B≠0,则称为第三类边界条件或洛平 (Robin)条件。
总体来说,第一类边界条件:给出未知函数在边界上的数值;第二类边界条件:给出未知函数在边界外法线的方向导数;第三类边界条件:给出未知函数在边界上的函数值和外法向导数的线性组合。
对应于comsol,只有两种边界条件:Dirichlet boundary(第一类边界条件)—在端点,待求变量的值被指定。
Neumann boundary(第二类边界条件)—待求变量边界外法线的方向导数被指定。
再补充点初始条件:初始条件,是指过程发生的初始状态,也就是未知函数及其对时间的各阶偏导数在初始时刻t=0的值.在有限元中,好多初始条件要预先给定的。
不同的场方程对应不同的初始条件。
总之,为了确定泛定方程的解,就必须提供足够的初始条件和边界条件.边界条件与初始条件是控制方程有确定解的前提。
边界条件是在求解区域的边界上所求解的变量或其导数随时间和地点的变化规律。
弹性力学-边界条件

xy y
s
l m
f f
x y
y
yx
x
Xf xn
xy
fYyn
注意:以上在推导时,斜面
上的应力px,py采用矢量符号
规定-与面力相同。
应力边界条件的写法是:左端为边界上微元体的应力分量; 右端为面力分量。可以各自采用各自的符号规定。但需 要用边界的方向余弦
xy x, y, z
x, y, x, y, x, y
x
y
xy
独立的(3个)
(3个)
3、位移分量f
ux, y, vx, y, w 独立的(2个) ux, y, vx, y(2个)
二. 平面问题基本方程
平面应力问题 1、平衡微分方程 (2个)
x x
表述-2:在没有初始应力的情况下,弹性力学 边值问题的解在相差一组刚体位移的意义下是唯 一的。
证明概要:只要证明在体力和面力都为零的情况 下,边值问题只可能有零解(应力、应变和位移 全为零)。后者则需要用到应变能的概念。
据此,任何一组应力应变和位移,如果它们确能 满满足方程和边界条件,就肯定是该问题的解。
二1.、圣必须维用南等原效理力的系应代用替。条件
2、载荷区域必须比物体的最小尺寸为小(小边界上 )
举例 P
P 图(a)
q P A
q
图(b)
P
(1)以(b)代(a)应力边界条件可以近似满足。 (2)以(b)代(c)应力边界条件可以近似满足,但
位移边界条件不能完全满足。
图(c)
圣维南原理的应用
所得到的应力分量必须在所有边界上各点处严 格满足应力边界条件,才是所论问题的解答。