沪科版八年级上命题与证明教案

合集下载

泸科版八年级数学上册教案 命题与证明

泸科版八年级数学上册教案  命题与证明

义务教育基础课程初中教学资料13.2 命题与证明教学目标:1.了解命题及相关概念的内涵,会判断一个命题的真假,知道反例的意义和作用。

2.经历探究命题及结构的过程,会区分命题的条件和结论,体会命题的内涵。

3.培养学生严谨的推理和论证意识,感悟几何思想的应用价值。

[中国%&*教育^出版网~]教学重点:认识命题的内涵和结构,对命题进行“如果·····那么····”的改写。

教学难点:区分命题的题设和结论。

突破点:弄清命题的定义及结构。

教学过程: 一、创设情境,引入新课:上一节课我们研究三角形性质时,通过得到三角形三个内角的和是180°,但也有些同学在度量三个角的度数后相加不是180°,那么三角形内角和到底是不是180°呢?对于这种不同的结果我们要进行判断。

生活和数学学习中也经常需要对结果进行判断。

请看:二、新课演练,探究新知:例1.在日常生活中,大家经常要遇到下面的表达语言:(1)合肥市是安徽省的省会。

(2)如果1∠与2∠是对顶角。

那么12∠=∠。

(3)邻补角互补。

(4)4+7<11学们快乐成长,能够取得好成绩,为祖国奉献力量!祝福您及家人身体健康、万事如意、阖家欢乐!祝福同学们快乐成长,能够取得好成绩,为祖国奉献力量!(5)两直线平行,同位角相等。

(6)有公共顶点的角是对顶角判断上述语句是否正确。

学生回答:教师归纳:人们对于客观事物情况的判断可能是正确的,也可能是错误的。

在逻辑学中,凡是可以判断出真(正确)、假(错误)的语句叫命题。

正确的命题叫真命题,错误的命题是假命题。

注:假命题也是命题如果一个语句没有对某一事件的正确与否作出任何判断那么它就不是命题。

如你作业做完了吗?我回家等。

请几个同学分别说一个语句让其他同学来判断是否是命题?如果是,并说出是真、假命题。

在数学课堂中,只研究与数学事物有关的命题我们称之为数学命题。

13.2.1命题与证明(教案)

13.2.1命题与证明(教案)
如果两个三角形的形状和大小相同,
那么这两个三角形面积相等。
变式4
如果两个角是对顶角,那么这两个角相等,是______(真或假)命题,此命题的题设是_________________,结论是_________________
拓展提高
下列命题的逆命题是真命题的是()
A.两直线平行同位角相等
B.对顶角相等
C.若a=-b ,则a3=b3
D.若(a+1)x>a+1 ,则x>1
必做题:随堂练习P77
习题13.2第1,2,3题
学生自学课本内容,锻炼了学生自学能力,为学生命题的结构,类型等做铺垫.
学生对命题的概念进行初步的学习,
学生讨论后回答1,2,3都不是命题。
老师提问,学生回答,并纠错
学生回答例题问题,认识概念,并掌握。
教学过程
教学环节
教师活动
学生活动
设计意图
导入新课
判断下列语句哪些是判断句?
(1)两点的线段是最短的。
(2)2×3<11。
(3)对顶角相等。
(4)若a是偶数,a一定能被3整除
(5)上海在中国。
(6)你的这道题会做了吗?
学生思考后,依次回答问题
以问题形式导入
,引人入胜,快速进入课堂。
讲授新课
活动探究一:思考以下问题。(小组讨论,3min)
①逆命题:两直线平行,内错角相等
真命题
②逆命题:如果ab=0,那么a=0
假命题
反例,当a=1,b=0时,ab=0
变式1下列语句中,是命题的是( )
A.对顶角相等吗
B.作A的平分线AD
C.两个锐角的和大于90°
D.在线段AB上取一点

沪科版数学八年级上册13.2《命题与证明》教学设计4

沪科版数学八年级上册13.2《命题与证明》教学设计4

沪科版数学八年级上册13.2《命题与证明》教学设计4一. 教材分析《命题与证明》是沪科版数学八年级上册13.2章节的重点内容,本节内容是在学生已经掌握了命题与定理的基础上进行进一步的深入学习。

本节课的主要内容是让学生了解证明的方法和步骤,学会如何正确地进行数学证明。

教材通过具体的例子引导学生理解证明的过程,并通过练习让学生掌握证明的方法。

二. 学情分析学生在学习本节内容之前,已经学习了命题与定理的基本概念,对命题和定理有了初步的理解。

但是,学生在证明方面还缺乏系统的训练,证明的方法和步骤还不够清晰。

因此,在教学过程中,需要教师引导学生理解证明的过程,并通过大量的练习让学生掌握证明的方法。

三. 教学目标1.让学生理解证明的概念和方法,掌握证明的基本步骤。

2.培养学生进行数学证明的能力,提高学生的逻辑思维能力。

3.通过数学证明的学习,培养学生的耐心和细致,提高学生的学习兴趣。

四. 教学重难点1.教学重点:让学生理解证明的概念和方法,掌握证明的基本步骤。

2.教学难点:如何引导学生理解证明的过程,如何让学生掌握证明的方法。

五. 教学方法1.采用问题驱动的教学方法,通过具体的例子引导学生理解证明的过程。

2.使用小组合作学习的方法,让学生在合作中学习,提高学生的学习效果。

3.通过大量的练习,让学生在实践中掌握证明的方法。

六. 教学准备1.准备相关的教学材料,如PPT、教案、练习题等。

2.准备相关的教学工具,如黑板、粉笔等。

七. 教学过程1.导入(5分钟)教师通过提问的方式引导学生回顾命题与定理的基本概念,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过PPT或黑板,呈现本节课的主要内容,让学生了解本节课的学习目标。

3.操练(10分钟)教师通过具体的例子,引导学生理解证明的过程,让学生掌握证明的基本步骤。

4.巩固(10分钟)教师布置一些练习题,让学生在练习中巩固所学的内容,提高学生的证明能力。

5.拓展(10分钟)教师通过一些综合性的练习题,让学生在练习中提高自己的逻辑思维能力,提高学生的学习兴趣。

沪科版数学八年级上册13.2《命题与证明》教学设计4

沪科版数学八年级上册13.2《命题与证明》教学设计4

沪科版数学八年级上册13.2《命题与证明》教学设计4一. 教材分析《命题与证明》是沪科版数学八年级上册13.2章节的内容,本节课的主要内容是让学生理解命题的概念,掌握证明的方法和技巧。

教材通过引入生活中的实例,让学生体会命题的意义,进而引导学生学习证明的基本方法。

教材内容由浅入深,循序渐进,有利于学生掌握。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力,对数学概念有一定的理解。

但是,对于证明这一概念,学生可能较为陌生,需要通过具体的实例来引导学生理解和掌握。

此外,学生在学习过程中可能存在对证明方法的不理解,需要教师耐心引导和讲解。

三. 教学目标1.让学生理解命题的概念,能正确写出题设和结论。

2.让学生掌握证明的方法和技巧,能运用所学的证明方法解决实际问题。

3.培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。

四. 教学重难点1.重点:命题的概念,证明的方法和技巧。

2.难点:证明方法的灵活运用,对复杂命题的证明。

五. 教学方法1.采用实例导入法,通过生活中的实例引导学生理解命题的意义。

2.采用问题驱动法,引导学生思考和探索证明的方法。

3.采用分组合作法,让学生在合作中交流和分享证明的方法和经验。

4.采用讲解法,教师对重点和难点进行讲解和解答。

六. 教学准备1.准备相关的生活实例,用于导入和讲解。

2.准备一些证明题目,用于巩固和拓展。

3.准备PPT,用于展示和讲解。

七. 教学过程1.导入(5分钟)通过一个生活实例,如“如果一个人是男生,那么他一定有喉结”,让学生理解命题的概念,引导学生写出题设和结论。

2.呈现(10分钟)呈现一些简单的命题,如“勾股定理”和“平行线的性质”,让学生尝试证明。

教师在旁边指导,解答学生的疑问。

3.操练(10分钟)学生分组合作,每组选择一个命题进行证明。

教师巡回指导,检查学生的证明过程,纠正错误。

4.巩固(10分钟)教师选取一些学生的证明题目,进行讲解和分析,让学生理解和掌握证明的方法和技巧。

沪科版数学八年级上册13.2《命题与证明》教学设计2

沪科版数学八年级上册13.2《命题与证明》教学设计2

沪科版数学八年级上册13.2《命题与证明》教学设计2一. 教材分析《命题与证明》是沪科版数学八年级上册13.2章节的内容,本节内容是在学生已经掌握了四则运算、方程求解、几何图形的性质等基础知识的基础上进行讲解的。

本节内容主要让学生了解命题与定理的概念,学会如何阅读和理解证明过程,以及如何运用已知定理证明未知定理。

教材通过具体的例子让学生理解命题与证明的基本概念,并培养学生的逻辑思维能力。

二. 学情分析学生在学习本节内容前,已经具备了一定的数学基础,对几何图形的性质和方程求解等有一定的了解。

但是,对于命题与证明这一概念,学生可能较为陌生。

因此,在教学过程中,需要引导学生从实际例子出发,逐步理解命题与证明的概念。

同时,八年级的学生逻辑思维能力较强,对于新的知识有较强的求知欲,通过引导,可以激发学生学习本节内容的兴趣。

三. 教学目标1.了解命题与证明的概念,理解定理的含义。

2.学会阅读和理解证明过程,培养逻辑思维能力。

3.能够运用已知定理证明未知定理,提高解决问题的能力。

四. 教学重难点1.重点:命题与证明的概念,定理的含义。

2.难点:如何阅读和理解证明过程,运用已知定理证明未知定理。

五. 教学方法1.引导法:通过具体的例子引导学生理解命题与证明的概念。

2.讲解法:讲解定理的含义,解释证明过程。

3.实践法:让学生通过实际操作,运用已知定理证明未知定理。

六. 教学准备1.教学PPT:制作相关的PPT,展示具体的例子和证明过程。

2.练习题:准备一些相关的练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个具体的例子,引导学生思考什么是命题,什么是证明。

例如,给出一个命题:“所有的直角三角形都是等腰三角形”,让学生思考这个命题是否正确,如何进行证明。

2.呈现(10分钟)讲解命题与证明的概念,解释定理的含义。

通过PPT展示相关的例子和证明过程,让学生理解命题与证明的基本概念。

3.操练(10分钟)让学生分组讨论,每组选择一个定理,尝试用自己的语言进行解释,并尝试证明。

13.2命题的证明 教案-沪科版数学八年级上册

13.2命题的证明 教案-沪科版数学八年级上册

课题:13.2命题与证明(1)一、教学内容和内容解析教学内容:命题的概念与结构,命题的真假及判断,原命题和逆命题的区分以及反例的概念。

内容解析:本节内容是沪科版初中数学八年级(上)第13章第2节的内容,本节课通过只凭剪拼的直观操作法来说明三角形的内角和为180°这个结论难以令人信服的,说明推理证明的必要接着学习命题、命题的结构、互逆命题、反例等知识;本节内容是将前面学习的几何性质与后面即将学习的证明联系起来;通过本节课的学习初步训练学生逻辑推理思维能力,同时也为接下来的证明奠定基础.二、教学目标1、结合具体实例了解命题、真命题、假命题、原命题、逆命题、反例的概念,区分命题的条件和结论,了解原命题和逆命题的关系;2、经历探究命题以及结构的过程,体会命题的内涵,明确反例的意义和作用,经历一系列问题串的探究过程,掌握有关数学概念的学习方法,为后继学习做好准备;3、在师生互动过程中,掌握有关数学概念的学习方法,为后继学习做好准备,同时不断提高学生学好数学的信心。

三、教学重难点重点:认识命题的意义和结构,判断命题的真假,以及互逆命题之间的关系。

难点:反例构造的过程。

四、教学策略分析为了实现教学目标,根据教学内容及学生的学习特点,本着“学生为主体”的教学理念,通过问题引领启发、引导、合作、探究,以及组合的教学媒体,把复杂的问题变成简易的过程,注重教学方法的渗透。

五、教学支持条件分析利用多媒体技术可以方便地创设、改变和探索某种数学情境,在这种情境下,通过思考和操作活动,研究数学知识的本质和发现数学规律。

根据如今各学校实际教学环境及本节课的实际教学需要,我选择多媒体教学系统辅助教学,将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,吸引了学生的注意力,激发了学生学习数学的兴趣。

疑问:(1)在剪拼时,发现三个内角难以拼成一个平角,只是接近180°的某个值。

(2)度量三个角,然后相加,有的接近179°,有的接近181°,不是很准确地都得180°。

八年级数学上册13.2命题与证明教案(新版)沪科版

八年级数学上册13.2命题与证明教案(新版)沪科版

13.2 命题与证明第1课时命题1.了解命题的含义.2.对命题的概念有正确的理解.3.会区分命题的条件和结论.重点找出命题的条件(题设)和结论.难点命题概念的理解.一、创设情境,导入新课教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等.根据我们已学过的图形特性,试判断下列句子是否正确.1.如果两个角是对顶角,那么这两个角相等;2.两直线平行,同位角相等;3.同旁内角相等,两直线平行;4.直角都相等.二、合作交流,探究新知学生回答后,教师给出答案:根据已有的知识可以判断出句子1、2、4是正确的,句子3是错误的.像这样对某一事件作出正确或不正确判断的语句叫做命题.上面判断性语句1、2、4都是正确的命题,称为真命题,3是错误的命题,称为假命题.教师:在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项,结论是由已知事项推出的事项,这样的命题常可写成“如果,,那么,,”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论.有的命题的题设与结论不十分明显,可以将它写成“如果,,那么,,”的形式,就可以分清它的题设和结论了.例如,命题4可写成“如果两个角是直角,那么这两个角相等.”应用迁移、巩固提高1.教师提出问题1:把命题“三个角都相等的三角形是等边三角形”改写成“如果,,那么,,”的形式,并分别指出命题的题设和结论.学生回答后,教师总结:这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”.这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”.2.教师提出问题2:把下列命题写成“如果,,那么,,”的形式,并说出它们的条件和结论.(1)对顶角相等;(2)如果a>b,b>c, 那么a>c.学生小组交流后回答,学生回答后,教师给出答案.(1)条件:如果两个角是对顶角;结论:那么这两个角相等.(2)条件:如果a>b,b>c;结论:那么a>c.对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,我们把这样的两个命题称为互逆命题,其中一个叫原命题,另一个命题叫逆命题.说出上题的逆命题,并讨论.三、运用新知,深化理解例1 写出下列命题的题设和结论:(1)如果a2=b2,那么a=b;(2)对顶角相等;(3)三角形内角和等于180°.分析:第(1)题中有“如果”“那么”,条件结论明显,第(2)(3)题可先改写成“如果,,那么,,”的形式,再找出题设和结论.解:(1)题设是“a2=b2”,结论是“a=b”;(2)改写:如果两个角是对顶角,那么这两个角相等.题设:“两个角是对顶角”,结论:“这两个角相等”;(3)改写:如果三个角是一个三角形的三个内角,那么这三个角的和等于180°.题设:“三个角是一个三角形的三个内角”,结论:“三个角的和等于180°”.【归纳总结】通常情况下命题都可以写成“如果,,那么,,”的形式,当条件结论不是很明显的时候,把所给命题改写成“如果,,那么,,”的形式可以帮助我们找出题设和结论,在改写时,要做到语句通顺,措辞准确.例2 写出下列命题的逆命题,并判断逆命题的真假.(1)如果∠α与∠β是邻补角,那么∠α+∠β=180°;(2)如果△ABC是直角三角形,那么△ABC的内角中一定有两个锐角.分析:(1)交换原命题中“如果”和“那么”后面的部分即可得到原命题的逆命题,然后根据邻补角的定义判断命题的真假;(2)交换原命题中“如果”和“那么”后面的部分即可得到原命题的逆命题,然后根据三角形的角的关系判断命题的真假.解:(1)逆命题为:如果∠α+∠β=180°,那么∠α与∠β是邻补角,此逆命题为假命题;(2)逆命题为:如果一个三角形中有两个锐角,那么这个三角形是直角三角形,此逆命题为假命题.【归纳总结】将命题的条件与结论互换,得到新命题,我们把这样的两个命题称为互逆命题,其中一个叫原命题,另一个叫做原命题的逆命题.当一个命题是真命题时,它的逆命题不一定是真命题,所举的例子,如果符合命题条件,但不满足命题的结论,称之为反例;要说明一个命题是假命题,只要举出一个反例即可.四、课堂练习,巩固提高1.教材P77练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知命题命题的概念:对某一事件作出正确或者不正确判断的语句(或式子)叫做命题;命题的结构:由题设和结论两部分组成,常写成“如果,,那么,,”的形式;命题的分类:真命题和假命题(要说明一个命题是假命题,只要举出一个反例即可);逆命题:原命题为“如果p,那么q”,逆命题则为“如果q,那么p”.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P84习题13.2第1~3题.第2课时证明(一)1.理解和掌握定理的概念,了解证明(演绎推理)的概念.2.了解证明的基本步骤和书写格式,能运用已学过的几何知识证明一些简单的几何问题.重点证明的含义和表述格式.难点按规定格式表述证明的过程.一、创设情境,导入新课教师借助多媒体设备向学生演示,比较线段AB和线段CD的长度.通过简单的观察,并尝试用数学的方法加以验证,体会验证的必要性和重要性.二、合作交流,探究新知证明的引入(1)命题“等腰直角三角形的斜边是直角边的2倍”是真命题吗?请说明理由.分析:根据需要画出图形,用几何语言描述题中的已知条件和要说明的结论.教师对具体的说理过程予以详细的板书.小结归纳得出证明的含义,让学生体会证明的初步格式.(2)通过教材例3,例4的教学理解证明的含义,体会证明的格式和要求.【归纳总结】证明几何命题的表述格式:①按题意画出图形;②分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;③在“证明”中写出推理过程.三、运用新知,深化理解例1 如图,下列推理中正确的有( )①因为∠1=∠2,所以b∥c(同位角相等,两直线平行);②因为∠3=∠4,所以a∥c(内错角相等,两直线平行);③因为∠4+∠5=180°,所以b∥c(同旁内角互补,两直线平行).A.0个B.1个C.2个D.3个分析:结合图形,根据平行线的判定方法逐一进行判断.①因为∠1、∠2不是同位角,所以不能证明b∥c,故错误;②因为∠3=∠4,所以a∥c(内错角相等,两直线平行),正确;③因为∠4+∠5=180°,所以b∥c(同旁内角互补,两直线平行),正确.故正确的是②③,共2个.故选 C.【归纳总结】本题主要考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.例2 完成下面的证明过程:已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°(已知),∴∠D+∠EFD=180°,∴AD∥______(同旁内角互补,两直线平行).又∵∠1=∠2(已知),∴______∥BC(内错角相等,两直线平行),∴EF∥______,∴∠3=∠B(两直线平行,同位角相等).分析:求出∠D+∠EFD=180°,根据平行线的判定推出AD∥EF,AD∥BC,即可推出答案.∵∠D=110°,∠EFD=70°,∴∠D+∠EFD=180°,∴AD∥EF.又∵∠1=∠2,∴AD ∥BC,∴EF∥BC.故答案为:EF,AD,BC.【归纳总结】本题考查了平行线的性质和判定的应用,平行线的性质有:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补.反过来就是平行线的判定.四、课堂练习,巩固提高1.教材P78~79练习及P80练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知(1)证明的含义.(2)真命题证明的步骤和格式.(3)思考、探索:假命题的判断如何说理、证明?六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P84~85习题13.2第5~8题.第3课时证明(二)1.通过对三角形内角和定理的探究,进一步了解证明的基本过程.2.能将几何命题的文字语言用图形语言和符号语言表示出来.重点根据具体的证明过程,填写推理的理由.难点将文字语言表述的证明题改写成用图形语言和符号语言表述的证明题.一、创设情境,导入新课在前面的学习中,我们已经知道三角形的内角和等于180°,你还记得这个结论的探索过程吗?(1.度量法; 2.折叠法; 3.剪拼法.)但观察和实验得到的结论并不一定可靠,这样就需要进行几何证明.二、合作交流,探究新知1.三角形内角和定理的证明(1)理解题意,分清题目的条件和结论;(2)请同学们分别用图形语言和符号语言表述命题.已知:△ABC,求证:∠A+∠B+∠C=180°.证法一:(请学生参照剪贴的方法去证明)证法二:(引导学生仿照证法一添加辅助线转化成平角去证明)除此之外还有哪些证法呢?引导学生积极思考.2.总结证明命题的一般步骤:(1)理解题意:分清命题的条件(已知),结论(求证);(2)根据条件画出图形并在图形上标出字母;(3)结合图形和命题写出已知和求证;(4)分析因果关系,探索证明思路;(5)依据思路,运用数学符号和数学语言条理清晰地写出证明过程;(6)检查表述过程是否正确,完善.3.小试牛刀尝试写出下列问题的已知、求证并画图:(1)求证:直角三角形的两个锐角互余.(2)求证:对顶角相等.4.证明:直角三角形的两个锐角互余.(请学生画图口答即可.)推论1:直角三角形两锐角互余.由公理、定理直接得出的真命题叫做推论.推论2:有两个角互余的三角形是直角三角形.三、运用新知,深化理解例1 如图,在△ABC内任意取一点P,过点P画三条直线分别平行于△ABC的三条边.(1)∠1、∠2、∠3分别和△ABC的哪一个角相等?请说明理由;(2)利用(1)说明三角形三个内角的和等于180°.分析:(1)利用平行线的性质即可证得;(2)根据对顶角相等,以及∠HPE+∠2+∠3=180°和(1)的结论即可证得.解:(1)∠1=∠A,∠2=∠B,∠3=∠C.理由如下:∵HI∥AC,∴∠1=∠CEP,又∵DE∥AB,∴∠CEP=∠A,∴∠1=∠A.同理,∠2=∠B,∠3=∠C;(2)如图,∵∠HPE=∠1,∠HPE+∠2+∠3=180°,∴∠1+∠2+∠3=180°,∵∠1=∠A,∠2=∠B,∠3=∠C,∴∠A+∠B+∠C=180°.【归纳总结】本题考查了平行线的性质,正确观察图形,熟练掌握平行线的性质和对顶角相等是解答本题的关键.例2 如图所示,AB∥CD,∠BAC和∠DCA的平分线相交于H点,那么△AHC是直角三角形吗?为什么?分析:要判断△AHC的形状,首先观察它的三个内角,其中∠1与∠2与已知条件角平分线有关,而两条角平分线分别平分∠BAC和∠DCA,这两个角是同旁内角,于是联想到已知条件中的AB∥CD.解:△AHC是直角三角形.理由如下:因为AB∥CD,所以∠BAC+∠DCA=180°.又因为AH,CH分别平分∠BAC和∠DCA,所以∠1=12∠BAC,∠2=12DCA,所以∠1+∠2=12(∠BAC+∠DCA),所以∠1+∠2=90°,所以△AHC为直角三角形.【归纳总结】判定一个三角形是否为直角三角形,既可以通过这个三角形有一个角是直角来判定(直角三角形的定义),也可以通过有两个角度数之和为90°来判定.四、课堂练习,巩固提高1.教材P81~82练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知三角形内角和定理的证明及推论1、2三角形内角和定理:三角形的内角和等于180°.证明定理的一般步骤①找出命题的题设和结论,画出图形;②题设部分是已知部分,结论部分是要证明的部分;③利用已知条件,依据定义、基本事实、已证定理,并按照逻辑规则,推导出结论.推论1:直角三角形的两锐角互余.推论2:有两个角互余的三角形是直角三角形.六、布置作业请同学们完成《探究在线·高效课堂》“课时作业”内容.第4课时三角形的外角1.了解三角形的外角.2.知道三角形的一个外角等于与它不相邻的两个内角的和,一个外角大于与它不相邻的任何一个内角.3.学会运用简单的说理来计算三角形的相关的角.重点三角形外角的性质.难点运用三角形外角性质进行有关计算时能准确地推理.一、创设情境,导入新课什么是三角形的内角?它是由什么组成的?三角形的内角和定理的内容是什么?教师提出问题,学生举手回答问题.【教学说明】为本节课进一步学习与三角形有关的角作准备.二、合作交流,探究新知探究问题1:如图,把△ABC的一边BC延长到D,得∠ACD,它不是三角形的内角,那它是三角形的什么角?练习:如图,∠ADB,∠BPC,∠BDC,∠DPC分别是哪个三角形的外角?问题2:观察问题1图,∠ACD与∠ACB是什么关系,由此你能得到什么结论?教师利用投影出示图形,并提出问题.教师指出像这样的角叫做三角形的外角,它是由三角形的一边和另一边的延长线组成的.然后教师利用投影出示练习,安排学生举手回答,并按照外角的定义一一指明这些角分别由哪些边组成.完成以后,教师提出问题2,并让学生进行讨论.然后师生共同归纳总结,得出结论:1.三角形的一个外角等于与它不相邻的两个内角的和.2.三角形的一个外角大于与它不相邻的任何一个内角.归纳总结的过程就是让学生说理证明的过程,教师要让学生说一说,练一练.【教学说明】教师指明外角的定义以后,马上进行练习,便于巩固学生对概念的理解.结合图形,培养学生的图形变换能力.通过学生的归纳,总结,证明,让学生自己去发现结论,让学生体验主动探究的成功与快乐.通过观察、讨论等一系列活动,再让学生进行证明,由于准备进行得比较充分,学生能够较顺利地说出证明的过程.培养学生的推理论证能力.三、运用新知,深化理解教师出示教材例5,先让学生进行分析,教师可以适当加以引导学生,将三角形的外角转化为三角形的内角.然后师生共同写出规范的解答过程.思考:还有没有其他的方法可以证明?【教学说明】先让学生分析,培养学生的分析图形能力,然后师生共同解决,规范学生的解答过程.继续提出新的问题,培养学生的发散思维和创新能力.例1 已知:如图为一五角星,求证:∠A+∠B+∠C+∠D+∠E=180°.分析:根据三角形外角性质得出∠EFG=∠B+∠D,∠EGF=∠A+∠C,根据三角形内角和定理得出∠E+∠EGF+∠EFG=180°,代入即可得证.证明:∵∠EFG,∠EGF分别是△BDF,△ACG的外角,∴∠EFG=∠B+∠D,∠EGF=∠A +∠C.又∵在△EFG中,∠E+∠EGF+∠EFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【归纳总结】解决此类问题的关键是根据图形的特点,利用三角形外角的性质将分散的角集中到某个三角形中,利用三角形内角和进行解决.例2 如图,求证:(1)∠BDC>∠A;(2)∠BDC=∠B+∠C+∠A.如果点D在线段BC的另一侧,结论会怎样?分析:通过学生的探索活动,使学生进一步了解辅助线的作法及重要性,理解掌握三角形的内角和定理及推论.证法一:(1)连接AD,并延长AD,如图,则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1>∠3.∠2>∠4(三角形的一个外角大于任何一个和它不相邻的内角).∴∠1+∠2>∠3+∠4(不等式的性质).即:∠BDC>∠BAC.(2)由(1)作图知∠1=∠3+∠B,∠2=∠4+∠C(三角形的一个外角等于和它不相邻的两个内角的和).∴∠1+∠2=∠3+∠4+∠B+∠C(等式的性质),即:∠BDC=∠B+∠C+∠BAC.证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC(三角形的一个外角大于任何一个和它不相邻的内角).∵∠DEC是△ABE的一个外角(已作),∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角),∴∠BDC>∠A(不等式的性质).(2)由(1)作图知∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和),∵∠DEC是△ABE的一个外角,∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).∴∠BDC=∠B+∠C+∠A(等量代换).【教学说明】让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习.注意事项:学生对于几何图形中的不等关系的证明比较陌生,因此有必要在证明过程中,引导学生作辅助线找到一个过渡角.四、课堂练习,巩固提高1.教材P83练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知教师引导学生谈谈对三角形外角的认识.主要从定义和性质两个方面.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P85习题13.2第9题.。

沪教版(五四学制)数学八上 19.1.2 命题和证明 教案(表格式)

沪教版(五四学制)数学八上 19.1.2 命题和证明 教案(表格式)
人们从长期的实践中总结出来的真命题叫做公理,它们可以作为判断其他命题真假的原始依据.有些命题是从公理或其他真命题出发,用推理方法证明为正确的,并进一步作为判断其他命题真假的依据,这样的真命题叫做定理.
请学生举例:依据公理或其他真命题,可以推导出的定理?
确认一个命题是真命题,要经过证明.那么证明真命题需要有哪些步骤呢?
_月__日 星期__第__周
课题
19.1-2命题和证明
课 型
新授
教 时
1
教学
目标
1.知道定义、命题、真命题、假命题、公理、定理等概念。
2.会说出命题的结构,能够初步区分命题的题设和结论,会把命题改写成“如果……那么……”的形式。
3.知道证明一个命题为真命题的一般过程;知道证明一个命题为假命题只要举一个反例。
课后反思:
数学命题通常由假设、结论两部分组成,可以写成“如果……那么……”的形式,“如果”开始的部分是题设,“那么”开始的部分是结论
(二)例题分析:
例1.把下列命题改写成“如果……那么……”的形式,并指出这个命题的题设和结论.
(1)对顶角相等;
(2)同位角相等,两直线平行
(3)同角的余角相等
在以前的学习中,我们通过操作实验,归纳出一些基本事实.
2.命题证明的步骤。
五、作业:
练习册:习题19.1(1)
学生也可举例
深入学习理解,
通过举例,复习旧知,理解概念,结合实例,初步形成正确的认识
结合图形,对题设与结论分析,添上命题中被省略的词语
计:
1.定义、命题、公理、定理等的概念
2. 命题证明的步骤
3.例题分析过程及解题格式
(5)两条直线被第3条直线所截,如果内错角相等,那么这两条直线平行

沪科版数学八年级上册13.2命题与证明三角形内角和定理优秀教学案例

沪科版数学八年级上册13.2命题与证明三角形内角和定理优秀教学案例
2.设计一系列子问题,如“三角形内角和能否大于180度?”“三角形内角和是否等于180度?”等,引导学生逐步深入探究。
3.引导学生运用转化思想,将复杂的几何问题转化为简单的问题,提高学生解决问题的能力。
4.鼓励学生提出自己的疑问,组织讨论,促进学生思维的发展。
(三)小组合作
1.组织学生分组进行讨论,鼓励学生互相交流、分享思路。
3.通过示例,讲解如何运用三角形内角和定理解决实际问题,让学生体会数学的应用价值。
(三)学生小组讨论
1.设计探究活动,让学生分组讨论如何证明三角形内角和定理。
2.引导学生运用归纳推理、类比推理等方法,深入探究三角形内角和成果,互相交流、学习。
(四)总结归纳
1.教师引导学生总结三角形内角和定理的证明方法,巩固所学知识。
2.总结三角形内角和定理在实际生活中的应用,强调数学的实际价值。
3.引导学生反思自己在讨论过程中的表现,总结自己的优点和不足。
(五)作业小结
1.设计课后作业,让学生运用所学知识解决实际问题,巩固所学内容。
2.要求学生在作业中运用转化思想,提高解决问题的能力。
3.鼓励学生在课后进行自主学习,深入研究三角形内角和定理的相关知识。
二、教学目标
(一)知识与技能
1.让学生掌握三角形内角和定理,理解并能够运用该定理解决实际问题。
2.培养学生空间想象能力,通过观察、实践,让学生能够形象地理解三角形内角和定理。
3.培养学生逻辑思维能力,学会运用归纳推理、类比推理等方法,证明三角形内角和定理。
4.培养学生运用数学知识解决实际问题的能力,将所学知识运用到生活中,提高学生解决实际问题的能力。
4.运用多媒体技术辅助教学,为学生提供丰富的学习资源,提高课堂教学效果。

沪科版数学八年级上册13.2《命题与证明》教学设计3

沪科版数学八年级上册13.2《命题与证明》教学设计3

沪科版数学八年级上册13.2《命题与证明》教学设计3一. 教材分析《命题与证明》是沪科版数学八年级上册第13.2节的内容,本节课主要让学生了解命题与证明的概念,学会如何阅读和书写证明,以及如何进行证明的基本方法。

教材通过引入实例,让学生体会证明的重要性,培养学生的逻辑思维能力和推理能力。

二. 学情分析学生在七年级时已经接触过一些简单的几何证明,对证明的概念和基本方法有所了解。

但学生在证明方面的知识体系还不够完善,证明方法的应用能力和证明过程的书写能力有待提高。

此外,部分学生对证明的理解停留在表面,缺乏深入的逻辑思考。

三. 教学目标1.让学生理解命题与证明的基本概念,掌握证明的方法和步骤。

2.培养学生阅读和书写证明的能力,提高逻辑思维和推理能力。

3.让学生能够运用证明解决实际问题,体会证明在数学中的重要性。

四. 教学重难点1.重点:命题与证明的概念,证明的方法和步骤。

2.难点:证明过程的逻辑性和书写规范,证明方法在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究命题与证明的关系。

2.通过实例分析,让学生体会证明的过程和方法,培养学生的逻辑思维能力。

3.运用小组合作学习,让学生互相交流、讨论,提高合作意识和解决问题的能力。

4.注重个体差异,给予学生个性化的指导和关爱,帮助每个学生提高。

六. 教学准备1.教材和教学参考书。

2.课件和教学素材。

3.练习题和测试题。

4.黑板和粉笔。

七. 教学过程1.导入(5分钟)利用生活中的实例,如“勾股定理”,引导学生思考证明的意义,激发学生的学习兴趣。

2.呈现(15分钟)介绍命题与证明的基本概念,通过PPT展示证明的方法和步骤,让学生初步了解证明的结构。

3.操练(15分钟)让学生分组讨论,分析教材中的例题,引导学生掌握证明的过程和方法。

4.巩固(10分钟)学生独立完成教材中的练习题,教师巡回指导,检查学生的掌握情况。

5.拓展(10分钟)让学生运用证明的方法解决实际问题,如几何图形的性质证明等,提高学生的应用能力。

沪科版(2012)初中数学八年级上册 13.1.2命题与证明 教案

沪科版(2012)初中数学八年级上册 13.1.2命题与证明 教案

13.2命题与证明(第一课时)◆课标要求:结合具体实例,会区分命题的条件和结论,了解原命题和逆命题的概念。

会识别两个互逆的命题,知道原命题成立其逆命题不一定成立;了解反例的作用,知道利用反例可以判断一个命题的错误。

◆内容分析:本节为几何命题证明的起始内容,通过直观操作说明三角形内角和为180度这个结论难以使人信服,说明推理证明的必要性,接着给出了命题、真命题、假命题的意义,说明命题的结构;介绍了反例可以说明一个命题是假命题。

本节课将前面的几何性质与后面的几何证明相联系,为接下来几何证明的学习奠定基础。

◆学情分析:八年级学生已经对几何的性质有了初步的掌握,但是逻辑思维能力还不强,对于集合的学习还较多的停留在直观感受。

因此要在本节知识中锻炼孩子的逻辑思维能力。

◆教学目标:1.理解命题、真命题、假命题的意义。

2.会区分命题的条件和结论。

3.知道反例的意义与作用。

◆教学重点:分清命题的条件和结论,知道如何利用反例判断一个命题是假命题。

◆教学难点:分清命题的条件和结论。

◆教学方法:启发讲授,探究讨论等。

◆教学过程:一、创设情境,导入新课先请同学们阅读这则小故事,看一看这个故事告诉了我们哪些道理:苏格拉底被称为西方的孔子,是西方哲学的奠基者。

苏格拉底曾经把人定义为“人是有两条腿的动物”。

有人便指着一只鸡问:“这是人吗? ”苏格拉底发现自己给人下的定义有问题,又补充说:“人是有两条腿而没有羽毛的动物。

”于是那人再次反驳:“这么说来,拔去羽毛的鸡就是人了?”苏格拉底无语了。

【设计意图】激发学生探究数学的兴趣,方便后面的教学。

二、积极引导,探索新知我们在前面已经学习过了一些几何图形的性质,在认识性质的时候我们是使用了观察、操作和实验的方法。

但是如果仅仅采用这样一些直观的观察和操作难以使人确信结果的正确性比如研究三角形的内角和为180度这样的性质。

要想使别人信服,我们只有用逻辑推理的方法对几何中的结论进行论证。

推理是种思维活动,在思维活动中我们常常需要进行判断。

沪教版(上海)八年级上册数学 19.1 命题与证明 教案

沪教版(上海)八年级上册数学 19.1 命题与证明  教案

19.1 命题与证明教案【学习目标】1.了解命题、定义、公理、定理的含义,会区分命题的题设(条件)和结论,会在简单情况下判断一个命题的真假;2.理解逆命题、逆定理的概念,会识别互逆命题与互逆定理,并知道原命题成立时其逆命题不一定成立;3.能用基本的逻辑术语、几何证明的步骤、格式和规范进行演绎证明;4.了解证明的含义,理解证明的必要性,体会证明的过程要步步有据.【要点梳理】要点一、演绎证明、演绎推理演绎证明从已知的概念、条件出发,依据已被确认的事实和公认的逻辑规则,推导出某结论为正确的过程.演绎推理演绎推理是数学证明一种常用的、完全可靠的方法.演绎证明是一个严格的数学证明,是我们将要学习的证明方法,演绎证明也称为证明.要点诠释:演绎推理的过程就是演绎证明,并不是所有的真理都可以进行演绎证明.要点二、命题、公理、定理定义能界定某个对象含义的句子叫做定义.命题判断一件事情的句子叫命题.其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题.命题通常由题设、结论两个部分组成,通常可以写成“如果……那么……”的形式. 要点诠释:命题属于判断句或陈述句,是对一件事情作出判断,与判断的正确与否没有关系.其中命题的题设是已知事项,结论是由已知事项推出的事项.当证明一个命题是假命题时只要举出一个反例就可以.公理人们从长期的实践中总结出来的真命题叫做公理,它们可以作为判断其他命题真假的原始依据.定理从公理或其他真命题出发,用推理方法证明为正确的,并进一步作为判断其他命题真假的原始依据.要点诠释:也就是说同时满足以下两个条件的真命题称为定理:(1)其正确性可通过公理或其它真命题逻辑推理而得到.(2)其又可作为判断其它命题真假的依据.要点三、逆命题和逆定理互逆命题在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题.互逆定理如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理.【典型例题】类型一、命题例题1. 判断下列语句在表述形式上,哪些对事情作了判断?哪些没有对事情作出判断?做出判断的哪些是正确的?哪些是错误的?(1)对顶角相等; (2)画一个角等于已知角;(3)两直线平行,同位角相等; (4)a ,b 两条直线平行吗?(5)鸟是动物; (6)若24a =,求a 的值;(7)若22a b =,则a =b .【答案与解析】句子(1)(3)(5)(7) 对事情作了判断,其中 (1)(3)(5)判断是正确的,(7)判断是错误的. 句子(2)(4)(6)没有对事情作出判断.其中(2)属于操作性语句,(4)属于问句,都不是判断性语句.举一反三:【变式】下列语句中,哪些是命题,哪些不是命题?(1)若a b <,则<-b a -;(2)三角形的三条高交于一点;(3)在ΔABC 中,若AB >AC ,则∠C >∠B 吗?(4)两点之间线段最短;(5)解方程2230x x --=;(6)1+2≠3.【答案】(1)(2)(4)(6)是命题,(3)(5)不是命题.例题2.根据命题“两直线平行,内错角相等.”解决下列问题:(1)写出逆命题;(2)判断逆命题是真命题还是假命题;(3)根据逆命题画出图形,写出已知,求证.【答案与解析】解:(1)逆命题:内错角相等,两直线平行;(2)是真命题;(3)已知:如图,∠AMN=∠DNM,求证:AB∥CD.举一反三:【变式】下列命题:①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;它们的逆命题一定成立的有()A.①②③B.①③C.②③D.②【答案】D例题3.指出下列命题的条件和结论,并改写成“如果……那么……”的形式:(1)三条边对应相等的两个三角形全等;(2)在同一个三角形中,等角对等边;(3)对顶角相等;(4)同角的余角相等;【答案与解析】(1)“三条边对应相等”是对两个三角形来说的,因此写条件时最好把“两个三角形”这句话添加上去,即命题的条件是“两个三角形的三条边对应相等”,结论是“这两个三角形全等”.可以改写成“如果两个三角形有三条边对应相等,那么这两个三角形全等”.(2)“等角对等边含义”是指有两个角相等所对的两条边相等。

沪科版八年级数学上册第十三章第2节命题与证明教学设计第一课时

沪科版八年级数学上册第十三章第2节命题与证明教学设计第一课时

沪科版八年级数学上册第十三章第2节命题与证明教学设计第一课时一、教材分析本节课是沪科版八上第十三章第2节“命题与证明”的第1课时,是实验几何过渡到论证几何的启蒙章节。

本节课通过由直观操作的办法得到的结论不一定可靠,进而说明推理证明的必要性。

接着学习命题、命题的结构、真假命题和反例、互逆命题等知识,将前面学习过的几何性质与后面即将学习的证明联系起来,初步训练学生的逻辑推理能力,为以后的证明奠定基础。

二、教学目标1.通过具体实例,了解命题、真命题、假命题的意义;2.结合具体实例,会区分命题的条件和结论,了解原命题及其逆命题的意义。

会识别两个互逆的命题,知道原命题成立其逆命题不一定成立;3.了解反例的作用,知道利用反例可以判断一个命题是错误的;4.初步感受感性认识与理性认识的不同,体会证明的必要性和数学推理的严密性。

三、教学重难点重点:命题及其结构以及真假命题的判断。

难点:把命题改写为“如果……,那么……”的形式以及反例构造。

四、学情分析学生已经学习了一些几何图形的性质,在认识这些性质时,使用了观察、操作和实验等方式,并对它们作出一些说理与解释。

八年级学生的思维方式渐趋成熟,由“形象思维”逐步转向“抽象思维”。

学生在学习本节知识时首先要了解证明的必要性,其次知道证明什么,再进一步掌握命题的结论,以及真假命题的判断,最后再学习如何证明。

五、教学方法启发讲授、探究讨论、合作交流等。

六、教学过程1.单元框架【设计意图】教师展示单元框架图,梳理知识的来源与生成,让学生体会本节课的内容在单元中的地位与作用。

2.问题引入在学习“三角形中角的关系”时,得到“三角形的内角和等于180°”。

问题1.你还记得怎样得到的吗?问题2.展示一些同学在操作中的疑问,如何回答上面的问题?教师引导学生得出:学习几何需要观察和实验,同时也需要学会推理。

【设计意图】通过对三角形内角和相关知识的回顾,找寻本节课知识的生长点,让学生意识推理的必要性,以及学习命题的必要性。

沪科版数学八年级上册13.2《命题与证明》教学设计1

沪科版数学八年级上册13.2《命题与证明》教学设计1

沪科版数学八年级上册13.2《命题与证明》教学设计1一. 教材分析《命题与证明》是沪科版数学八年级上册13.2章节的内容,本节内容是学生在学习了命题的概念和简单逻辑连接词的基础上,进一步学习如何用数学语言和逻辑推理来证明一个命题的正确性。

本节课的内容对于学生来说,既是对已有知识的巩固,又是向更深入的数学逻辑推理的过渡。

因此,在教学设计中,要注重学生已有知识的激活,又要引导学生逐步掌握证明的方法和技巧。

二. 学情分析八年级的学生已经具备了一定的数学基础,对命题的概念和简单逻辑连接词有所了解。

但学生在证明方面的能力还相对较弱,对于如何运用逻辑推理来证明一个命题,可能还存在一定的困难。

因此,在教学过程中,需要教师引导学生逐步理解证明的过程,通过具体的例子,让学生体会证明的方法和技巧。

三. 教学目标1.让学生理解命题与证明的概念,掌握证明的方法和技巧。

2.培养学生的逻辑思维能力,提高学生用数学语言和逻辑推理来表达和证明问题的能力。

3.通过对命题与证明的学习,培养学生解决问题的能力和合作交流的能力。

四. 教学重难点1.重点:理解命题与证明的概念,掌握证明的方法和技巧。

2.难点:如何引导学生运用逻辑推理来证明一个命题,如何处理证明过程中的困难和问题。

五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索,激发学生的学习兴趣。

2.使用案例教学法,通过具体的例子,让学生体会证明的过程和方法。

3.采用小组合作学习的方式,培养学生的合作交流能力和解决问题的能力。

六. 教学准备1.准备相关的教学案例和例题,用于引导学生进行证明的学习。

2.准备教学PPT,用于辅助教学。

3.准备课堂练习题,用于巩固学生所学的内容。

七. 教学过程1.导入(5分钟)教师通过提问的方式,引导学生回顾已学的命题的概念和简单逻辑连接词,激发学生的学习兴趣。

2.呈现(10分钟)教师通过PPT展示本节课的学习内容,引导学生了解命题与证明的概念,明确学习目标。

八年级数学上册13.2命题与证明教案(新版)沪科版

八年级数学上册13.2命题与证明教案(新版)沪科版

13.2 命题与证明第1课时命题1.了解命题的含义.2.对命题的概念有正确的理解.3.会区分命题的条件和结论.重点找出命题的条件(题设)和结论.难点命题概念的理解.一、创设情境,导入新课教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等.根据我们已学过的图形特性,试判断下列句子是否正确.1.如果两个角是对顶角,那么这两个角相等;2.两直线平行,同位角相等;3.同旁内角相等,两直线平行;4.直角都相等.二、合作交流,探究新知学生回答后,教师给出答案:根据已有的知识可以判断出句子1、2、4是正确的,句子3是错误的.像这样对某一事件作出正确或不正确判断的语句叫做命题.上面判断性语句1、2、4都是正确的命题,称为真命题,3是错误的命题,称为假命题.教师:在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项,结论是由已知事项推出的事项,这样的命题常可写成“如果……那么……”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论.有的命题的题设与结论不十分明显,可以将它写成“如果……那么……”的形式,就可以分清它的题设和结论了.例如,命题4可写成“如果两个角是直角,那么这两个角相等.”应用迁移、巩固提高1.教师提出问题1:把命题“三个角都相等的三角形是等边三角形”改写成“如果……那么……”的形式,并分别指出命题的题设和结论.学生回答后,教师总结:这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”.这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”.2.教师提出问题2:把下列命题写成“如果……那么……”的形式,并说出它们的条件和结论.(1)对顶角相等;(2)如果a>b,b>c, 那么a>c.学生小组交流后回答,学生回答后,教师给出答案.(1)条件:如果两个角是对顶角;结论:那么这两个角相等.(2)条件:如果a>b,b>c;结论:那么a>c.对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,我们把这样的两个命题称为互逆命题,其中一个叫原命题,另一个命题叫逆命题.说出上题的逆命题,并讨论.三、运用新知,深化理解例1 写出下列命题的题设和结论:(1)如果a2=b2,那么a=b;(2)对顶角相等;(3)三角形内角和等于180°.分析:第(1)题中有“如果”“那么”,条件结论明显,第(2)(3)题可先改写成“如果……那么……”的形式,再找出题设和结论.解:(1)题设是“a2=b2”,结论是“a=b”;(2)改写:如果两个角是对顶角,那么这两个角相等.题设:“两个角是对顶角”,结论:“这两个角相等”;(3)改写:如果三个角是一个三角形的三个内角,那么这三个角的和等于180°.题设:“三个角是一个三角形的三个内角”,结论:“三个角的和等于180°”.【归纳总结】通常情况下命题都可以写成“如果……那么……”的形式,当条件结论不是很明显的时候,把所给命题改写成“如果……那么……”的形式可以帮助我们找出题设和结论,在改写时,要做到语句通顺,措辞准确.例2 写出下列命题的逆命题,并判断逆命题的真假.(1)如果∠α与∠β是邻补角,那么∠α+∠β=180°;(2)如果△ABC是直角三角形,那么△ABC的内角中一定有两个锐角.分析:(1)交换原命题中“如果”和“那么”后面的部分即可得到原命题的逆命题,然后根据邻补角的定义判断命题的真假;(2)交换原命题中“如果”和“那么”后面的部分即可得到原命题的逆命题,然后根据三角形的角的关系判断命题的真假.解:(1)逆命题为:如果∠α+∠β=180°,那么∠α与∠β是邻补角,此逆命题为假命题;(2)逆命题为:如果一个三角形中有两个锐角,那么这个三角形是直角三角形,此逆命题为假命题.【归纳总结】将命题的条件与结论互换,得到新命题,我们把这样的两个命题称为互逆命题,其中一个叫原命题,另一个叫做原命题的逆命题.当一个命题是真命题时,它的逆命题不一定是真命题,所举的例子,如果符合命题条件,但不满足命题的结论,称之为反例;要说明一个命题是假命题,只要举出一个反例即可.四、课堂练习,巩固提高1.教材P77练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知命题⎩⎪⎪⎨⎪⎪⎧命题的概念:对某一事件作出正确或者不正确判断的语句(或式子)叫做命题;命题的结构:由题设和结论两部分组成,常写成“如果……那么……”的形式;命题的分类:真命题和假命题(要说明一个命题是假命题,只要举出一个反例即可);逆命题:原命题为“如果p ,那么q ”,逆命题则为“如果q ,那么p ”.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P84习题13.2第1~3题.第2课时 证明(一)1.理解和掌握定理的概念,了解证明(演绎推理)的概念.2.了解证明的基本步骤和书写格式,能运用已学过的几何知识证明一些简单的几何问题.重点证明的含义和表述格式.难点按规定格式表述证明的过程.一、创设情境,导入新课教师借助多媒体设备向学生演示,比较线段AB 和线段CD 的长度.通过简单的观察,并尝试用数学的方法加以验证,体会验证的必要性和重要性.二、合作交流,探究新知证明的引入(1)命题“等腰直角三角形的斜边是直角边的2倍”是真命题吗?请说明理由. 分析:根据需要画出图形,用几何语言描述题中的已知条件和要说明的结论.教师对具体的说理过程予以详细的板书.小结归纳得出证明的含义,让学生体会证明的初步格式.(2)通过教材例3,例4的教学理解证明的含义,体会证明的格式和要求.【归纳总结】证明几何命题的表述格式:①按题意画出图形;②分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论; ③在“证明”中写出推理过程.三、运用新知,深化理解例1 如图,下列推理中正确的有( )①因为∠1=∠2,所以b∥c(同位角相等,两直线平行);②因为∠3=∠4,所以a∥c(内错角相等,两直线平行);③因为∠4+∠5=180°,所以b∥c(同旁内角互补,两直线平行).A.0个B.1个C.2个D.3个分析:结合图形,根据平行线的判定方法逐一进行判断.①因为∠1、∠2不是同位角,所以不能证明b∥c,故错误;②因为∠3=∠4,所以a∥c(内错角相等,两直线平行),正确;③因为∠4+∠5=180°,所以b∥c(同旁内角互补,两直线平行),正确.故正确的是②③,共2个.故选C.【归纳总结】本题主要考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.例2 完成下面的证明过程:已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°(已知),∴∠D+∠EFD=180°,∴AD∥______(同旁内角互补,两直线平行).又∵∠1=∠2(已知),∴______∥BC(内错角相等,两直线平行),∴EF∥______,∴∠3=∠B(两直线平行,同位角相等).分析:求出∠D+∠EFD=180°,根据平行线的判定推出AD∥EF,AD∥BC,即可推出答案.∵∠D=110°,∠EFD=70°,∴∠D+∠EFD=180°,∴AD∥EF.又∵∠1=∠2,∴AD ∥BC,∴EF∥BC.故答案为:EF,AD,BC.【归纳总结】本题考查了平行线的性质和判定的应用,平行线的性质有:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补.反过来就是平行线的判定.四、课堂练习,巩固提高1.教材P78~79练习及P80练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知(1)证明的含义.(2)真命题证明的步骤和格式.(3)思考、探索:假命题的判断如何说理、证明?六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P84~85习题13.2第5~8题.第3课时证明(二)1.通过对三角形内角和定理的探究,进一步了解证明的基本过程.2.能将几何命题的文字语言用图形语言和符号语言表示出来.重点根据具体的证明过程,填写推理的理由.难点将文字语言表述的证明题改写成用图形语言和符号语言表述的证明题.一、创设情境,导入新课在前面的学习中,我们已经知道三角形的内角和等于180°,你还记得这个结论的探索过程吗?(1.度量法;2.折叠法;3.剪拼法.)但观察和实验得到的结论并不一定可靠,这样就需要进行几何证明.二、合作交流,探究新知1.三角形内角和定理的证明(1)理解题意,分清题目的条件和结论;(2)请同学们分别用图形语言和符号语言表述命题.已知:△ABC,求证:∠A+∠B+∠C=180°.证法一:(请学生参照剪贴的方法去证明)证法二:(引导学生仿照证法一添加辅助线转化成平角去证明)除此之外还有哪些证法呢?引导学生积极思考.2.总结证明命题的一般步骤:(1)理解题意:分清命题的条件(已知),结论(求证);(2)根据条件画出图形并在图形上标出字母;(3)结合图形和命题写出已知和求证;(4)分析因果关系,探索证明思路;(5)依据思路,运用数学符号和数学语言条理清晰地写出证明过程;(6)检查表述过程是否正确,完善.3.小试牛刀尝试写出下列问题的已知、求证并画图:(1)求证:直角三角形的两个锐角互余.(2)求证:对顶角相等.4.证明:直角三角形的两个锐角互余.(请学生画图口答即可.)推论1:直角三角形两锐角互余.由公理、定理直接得出的真命题叫做推论.推论2:有两个角互余的三角形是直角三角形.三、运用新知,深化理解例1 如图,在△ABC 内任意取一点P ,过点P 画三条直线分别平行于△ABC 的三条边.(1)∠1、∠2、∠3分别和△ABC 的哪一个角相等?请说明理由;(2)利用(1)说明三角形三个内角的和等于180°.分析:(1)利用平行线的性质即可证得;(2)根据对顶角相等,以及∠HPE +∠2+∠3=180°和(1)的结论即可证得.解:(1)∠1=∠A ,∠2=∠B ,∠3=∠C .理由如下:∵HI ∥AC ,∴∠1=∠CEP ,又∵DE ∥AB ,∴∠CEP =∠A ,∴∠1=∠A .同理,∠2=∠B ,∠3=∠C ;(2)如图,∵∠HPE =∠1,∠HPE +∠2+∠3=180°,∴∠1+∠2+∠3=180°,∵∠1=∠A ,∠2=∠B ,∠3=∠C ,∴∠A +∠B +∠C =180°.【归纳总结】本题考查了平行线的性质,正确观察图形,熟练掌握平行线的性质和对顶角相等是解答本题的关键.例2 如图所示,AB ∥CD ,∠BAC 和∠DCA 的平分线相交于H 点,那么△AHC 是直角三角形吗?为什么?分析:要判断△AHC 的形状,首先观察它的三个内角,其中∠1与∠2与已知条件角平分线有关,而两条角平分线分别平分∠BAC 和∠DCA ,这两个角是同旁内角,于是联想到已知条件中的AB ∥CD .解:△AHC 是直角三角形.理由如下:因为AB ∥CD ,所以∠BAC +∠DCA =180°.又因为AH ,CH 分别平分∠BAC 和∠DCA ,所以∠1=12∠BAC ,∠2=12DCA ,所以∠1+∠2=12(∠BAC +∠DCA ),所以∠1+∠2=90°,所以△AHC 为直角三角形.【归纳总结】判定一个三角形是否为直角三角形,既可以通过这个三角形有一个角是直角来判定(直角三角形的定义),也可以通过有两个角度数之和为90°来判定.四、课堂练习,巩固提高1.教材P81~82练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知三角形内角和定理的证明及推论1、2⎩⎪⎪⎪⎨⎪⎪⎪⎧三角形内角和定理:三角形的内角和等于180°.证明定理的一般步骤⎩⎪⎨⎪⎧①找出命题的题设和结论,画出图形;②题设部分是已知部分,结论部分是要证明的部分;③利用已知条件,依据定义、基本事实、已证定理,并按照逻辑规则,推导出结论.推论1:直角三角形的两锐角互余.推论2:有两个角互余的三角形是直角三角形.六、布置作业请同学们完成《探究在线·高效课堂》“课时作业”内容.第4课时 三角形的外角1.了解三角形的外角.2.知道三角形的一个外角等于与它不相邻的两个内角的和,一个外角大于与它不相邻的任何一个内角.3.学会运用简单的说理来计算三角形的相关的角.重点三角形外角的性质.难点运用三角形外角性质进行有关计算时能准确地推理.一、创设情境,导入新课什么是三角形的内角?它是由什么组成的?三角形的内角和定理的内容是什么?教师提出问题,学生举手回答问题.【教学说明】为本节课进一步学习与三角形有关的角作准备.二、合作交流,探究新知探究问题1:如图,把△ABC的一边BC延长到D,得∠ACD,它不是三角形的内角,那它是三角形的什么角?练习:如图,∠ADB,∠BPC,∠BDC,∠DPC分别是哪个三角形的外角?问题2:观察问题1图,∠ACD与∠ACB是什么关系,由此你能得到什么结论?教师利用投影出示图形,并提出问题.教师指出像这样的角叫做三角形的外角,它是由三角形的一边和另一边的延长线组成的.然后教师利用投影出示练习,安排学生举手回答,并按照外角的定义一一指明这些角分别由哪些边组成.完成以后,教师提出问题2,并让学生进行讨论.然后师生共同归纳总结,得出结论:1.三角形的一个外角等于与它不相邻的两个内角的和.2.三角形的一个外角大于与它不相邻的任何一个内角.归纳总结的过程就是让学生说理证明的过程,教师要让学生说一说,练一练.【教学说明】教师指明外角的定义以后,马上进行练习,便于巩固学生对概念的理解.结合图形,培养学生的图形变换能力.通过学生的归纳,总结,证明,让学生自己去发现结论,让学生体验主动探究的成功与快乐.通过观察、讨论等一系列活动,再让学生进行证明,由于准备进行得比较充分,学生能够较顺利地说出证明的过程.培养学生的推理论证能力.三、运用新知,深化理解教师出示教材例5,先让学生进行分析,教师可以适当加以引导学生,将三角形的外角转化为三角形的内角.然后师生共同写出规范的解答过程.思考:还有没有其他的方法可以证明?【教学说明】先让学生分析,培养学生的分析图形能力,然后师生共同解决,规范学生的解答过程.继续提出新的问题,培养学生的发散思维和创新能力.例1 已知:如图为一五角星,求证:∠A+∠B+∠C+∠D+∠E=180°.分析:根据三角形外角性质得出∠EFG=∠B+∠D,∠EGF=∠A+∠C,根据三角形内角和定理得出∠E+∠EGF+∠EFG=180°,代入即可得证.证明:∵∠EFG,∠EGF分别是△BDF,△ACG的外角,∴∠EFG=∠B+∠D,∠EGF=∠A +∠C.又∵在△EFG中,∠E+∠EGF+∠EFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【归纳总结】解决此类问题的关键是根据图形的特点,利用三角形外角的性质将分散的角集中到某个三角形中,利用三角形内角和进行解决.例2 如图,求证:(1)∠BDC>∠A;(2)∠BDC=∠B+∠C+∠A.如果点D在线段BC的另一侧,结论会怎样?分析:通过学生的探索活动,使学生进一步了解辅助线的作法及重要性,理解掌握三角形的内角和定理及推论.证法一:(1)连接AD,并延长AD,如图,则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1>∠3.∠2>∠4(三角形的一个外角大于任何一个和它不相邻的内角).∴∠1+∠2>∠3+∠4(不等式的性质).即:∠BDC>∠BAC.(2)由(1)作图知∠1=∠3+∠B,∠2=∠4+∠C(三角形的一个外角等于和它不相邻的两个内角的和).∴∠1+∠2=∠3+∠4+∠B+∠C(等式的性质),即:∠BDC=∠B+∠C+∠BAC.证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC(三角形的一个外角大于任何一个和它不相邻的内角).∵∠DEC是△ABE的一个外角(已作),∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角),∴∠BDC>∠A(不等式的性质).(2)由(1)作图知∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和),∵∠DEC是△ABE的一个外角,∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).∴∠BDC=∠B+∠C+∠A(等量代换).【教学说明】让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习.注意事项:学生对于几何图形中的不等关系的证明比较陌生,因此有必要在证明过程中,引导学生作辅助线找到一个过渡角.四、课堂练习,巩固提高1.教材P83练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知教师引导学生谈谈对三角形外角的认识.主要从定义和性质两个方面.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P85习题13.2第9题.。

沪科版数学八年级上册《命题的证明》教学设计2

沪科版数学八年级上册《命题的证明》教学设计2

沪科版数学八年级上册《命题的证明》教学设计2一. 教材分析《命题的证明》是沪科版数学八年级上册的一章,主要让学生了解和掌握命题证明的基本方法和步骤。

本章内容主要包括命题的定义、命题的证明方法以及一些常用的证明技巧。

在教学设计中,我们需要让学生通过具体例子,掌握命题证明的基本方法,培养他们的逻辑思维能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,对一些基本的数学概念和运算规则有所了解。

但他们在证明方面的知识和能力还有所欠缺,需要通过本章的学习,逐步培养他们的证明能力和逻辑思维能力。

三. 教学目标1.了解命题的定义,掌握命题证明的基本方法。

2.能够运用所学的证明方法,解决一些简单的数学问题。

3.培养学生的逻辑思维能力,提高他们的数学素养。

四. 教学重难点1.命题的定义和命题证明的基本方法。

2.如何运用证明方法解决实际问题。

五. 教学方法1.讲授法:讲解命题的定义和证明方法,引导学生理解并掌握。

2.案例分析法:通过具体的例子,让学生学会运用证明方法。

3.小组讨论法:分组讨论,培养学生的合作能力和逻辑思维。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示命题证明的例子和步骤。

2.练习题:准备一些相关的练习题,巩固学生的学习效果。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾已学的数学知识,为新课的学习做好铺垫。

2.呈现(15分钟)讲解命题的定义,介绍命题证明的基本方法,如直接证明、反证法、归纳法等。

通过具体的例子,让学生学会运用证明方法。

3.操练(15分钟)让学生分组讨论,运用所学的证明方法解决一些简单的数学问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生独立完成一些相关的练习题,巩固所学知识。

教师及时批改,给予反馈。

5.拓展(10分钟)引导学生思考如何运用证明方法解决实际问题,分享一些经典的证明案例。

6.小结(5分钟)对本节课的主要内容进行总结,强调命题证明的基本方法和步骤。

沪科版数学八年级上册《命题的证明》教学设计1

沪科版数学八年级上册《命题的证明》教学设计1

沪科版数学八年级上册《命题的证明》教学设计1一. 教材分析《命题的证明》是沪科版数学八年级上册的一章内容。

这部分内容主要介绍了一种重要的数学思维方法——证明。

通过这部分的学习,学生能够理解命题的意义,学会如何用逻辑推理的方式证明一个命题的正确性。

教材中包含了各种不同类型的命题,以及相应的证明方法。

本节课的教学设计将围绕这些内容展开。

二. 学情分析学生在学习这部分内容之前,已经接触过一些基本的数学概念和运算规则,具备一定的逻辑思维能力。

但他们在证明方面的知识和技能还有待提高。

因此,在教学过程中,教师需要关注学生的学习需求,引导学生逐步掌握证明的方法和技巧。

三. 教学目标1.了解命题的意义,能够正确理解题设和结论。

2.学会用逻辑推理的方式证明一个命题的正确性。

3.培养学生的逻辑思维能力和数学表达能力。

四. 教学重难点1.重点:命题的意义,证明的方法和技巧。

2.难点:如何运用逻辑推理证明一个命题的正确性。

五. 教学方法1.讲授法:教师讲解命题的意义、证明的方法和技巧。

2.案例分析法:分析具体的命题,引导学生学会证明。

3.小组讨论法:学生分组讨论,共同完成证明任务。

4.练习法:学生独立完成练习题,巩固所学知识。

六. 教学准备1.教学PPT:包含教材中的重点内容、案例分析、练习题等。

2.教学案例:选取一些典型的命题,用于讲解和练习。

3.练习题:设计一些具有代表性的练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过一个简单的命题,引导学生思考证明的意义和目的。

例如,命题:“勾股定理”。

教师提问:“如何证明这个定理的正确性?”从而引出本节课的主题。

2.呈现(10分钟)教师讲解命题的意义,解释题设和结论。

然后,通过PPT展示教材中的案例,讲解证明的方法和技巧。

例如,证明“菱形的对角线互相垂直平分”。

3.操练(10分钟)学生分组讨论,共同完成一个证明任务。

教师选取一个典型的命题,如“平行线的性质”,让学生运用所学知识进行证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

命题与证明
一、证明
(1)概念:从已知的概念和条件出发,依据已被确认的事实和公认的逻辑规则,推导出某结论正确与否的过程。

(由于证明的需要,可以在原来的图形上添加一些线,这样的线叫辅助线)。

推导证明的条件除了已知条件外,还有公认的事实、公理和学过的定理。

例:(1)证明“对顶角相等”
分析:第一步的因是∠1与∠2,∠2与∠3分别是邻补角,果是∠1+∠2=180°,∠2+∠3=180°。

确立因果关系的依据是——邻补角的意义.
第二步的因是∠1+∠2=180°,∠2+∠3=180°,果是∠1+∠2=∠2+∠3,依据是——等量代换。

第三步的因是∠1+∠2=∠2+∠3,果是∠1=∠3。

依据是——等量减等量,差相等。

整体来看,前一步的果为后一步的证明提供了因,这样一连串连贯、有序的因果关系组成了完整的证明过程。

证明一般采用的分析方法是:从“要证什么”着眼,探寻“需要知道什么”,由此考虑“只要证什么”,一直追寻到“已知”。

而证明的表述一般是从“已知”开始,推导出“可知”,直到求证的“结论”。

例:(学生做)已知,如图,AD⊥BC于D,EF⊥BC于F,EF交AB于G,交CA延长线于E,且∠1=∠2.求证:AD平分∠BAC,填写“分析”和“证明”中的空白.
分析:要证明AD平分∠BAC,只要证明∠ =∠,而已知∠1=∠2,所以应联想这两个角分别和∠1、∠2的关系,由已知BC的两条垂线可推出∥,这时再观察这两对角的关系已不难得到结论.
证明:∵AD⊥BC,EF⊥BC(已知)
∴∥()
∴ = (两直线平行,内错角相等.)
= (两直线平行,同位角相等.)
∵(已知)
∴,即AD平分∠BAC()
例:已知,如图,AD⊥BC于D,EF⊥BC于F,EF交AB于G,交CA延长线于E,且∠1=∠2.
求证:AD平分∠BAC
二、命题
(1)概念:对某一件事情作出正确或不正确的判断的句子。

例:下列句子中,哪些是命题?哪些不是命题?
1、将27开立方;
2、任意三角形的三条中线相交于一点吗?
3、线段垂直平分线上的点到线段两端的距离相等;
4、|a|<0(a为实数);
5、鸟是动物会飞的动物是鸟吗?
(2)其中判断为正确的命题叫真命题,例如:两条平行线被第三条直线所截,内错角平分线平行。

判断为错误的命题叫假命题,例如:互为补角的两个角都是锐角。

确认一个命题是真命题要经过证明。

而确认一个命题是假命题,只要举一个反例。

例:下列命题中,哪些是真命题?哪些是假命题?请说明理由。

1、三角形的任何一个外角大于和它不相邻的内角;
2、一条直线截另外两条直线所得到的同位角相等;
B
C D A 3、两个锐角的和还是锐角;
4、如果一个数能被2整除,那么这个数也能被4整除。

5、素数是奇数;
6、一个图形经过旋转变换后原图形全等。

7、有两个角是锐角的三角形是锐角三角形
(3)数学命题通常由题设、结论两部分组成,题设是已知事项是判断的根据,结论是由已知事项推出的事项是判断的结果。

这样的命题可以写成“如果……,那么……”的形式。

例:“同角的余角相等”可以改写为“如果两个角是同一个角的余角,那么这两个角相等”。

例:指出下列命题的条件和结论,并改写成“如果······那么······”的形式:
1、在直角三角形中,斜边大于直角边。

2、内错角相等,两直线平行。

3、角平分线上的点到角的两边的距离相等。

4、三条边对应相等的两个三角形全等。

5、在同一个三角形中,等角对等边。

6、对顶角相等。

7、全等三角形对应边相等。

三、公理和定理
(1)概念:从长期的实践中周总结出来的真命题叫公理。

例如:两点之间线段最短;同位角相等,两直线平行;两直线平行,同位角相等。

有些命题是从公理或其他真命题出发,用推理的方法证明为正确,并进一步作为判断其他命题真假的依据,这样的真命题叫定理。

例如:依据公理“两点之间线段最短”可以推导出“三角形两边之和大于第三边”,而“三角形两边之和大于第三边”还是判断其他一些命题真假的依据,所以它是定理。

四、证明举例
例1:已知:如图,AB ∥CD ,AB=CD ,BF=CE ,点B ,E ,C ,F 同在一直线上。

求证:AE ∥DF 。

A B
C D E
F
: 例1 例2 例3
例2:如图,在△ABC 中,∠A =70°,BO ,CO 分别是∠ABC 和∠ACB 的角平分线,求∠BOC 的度数.
例3:已知:如图,AC 与BD 相交于点O ,AO=CO ,BO=DO 。

求证: AB ∥CD
例4:已知:如图,AD 是∠BAC 的角平分线,BC ⊥AD 于点O ,AC ⊥DC 于点C .
求证:(1)⊿ABC 是等腰三角形;
(2)∠D=∠B . O
O
A
B
C
D。

相关文档
最新文档