高考文科数学二轮复习圆锥曲线中的综合问题

合集下载

圆锥曲线中综合问题(题型归纳)

圆锥曲线中综合问题(题型归纳)

圆锥曲线中综合问题【考情分析】1.圆锥曲线的综合问题是高考考查的重点内容,常见的热点题型有:范围、最值问题,定点、定值问题,探索型问题等.2.以解答题的压轴题形式出现,难度较大,重在提升逻辑推理、直观想象、数学运算的核心素养.【题型一】圆锥曲线中的最值、范围问题【典例分析】1.(2021·山东滕州一中高三模拟)已知椭圆22:143x y C +=的左顶点为A ,过其右焦点F 作直线交椭圆C 于D ,E (异于左右顶点)两点,直线AD ,AE 与直线:4l x =分别交于M ,N ,线段MN 的中点为H ,连接FH .(1)求证:FH DE ⊥;(2)求DEH △面积的最小值.【解析】(1)由已知得(1,0)F ,设()11,D x y ,()22,E x y ,直线DE 的方程为1x my =+,与椭圆方程联立得()2234690m y my ++-=,122634m y y m +=-+,122934y y m =-+设直线AD 的方程为11(2)2y y x x =++,与直线:4l x =联立得1164,2y M x ⎛⎫⎪+⎝⎭,同理可得2264,2y N x ⎛⎫⎪+⎝⎭,则()()()12121221212123233323339M N H my y y y y y y y y m my my m y y m y y ++⎛⎫+==+==- ⎪+++++⎝⎭,(4,3)H m ∴-,3041FH m k m --==--,当0m =时,显然DE FH ⊥;当0m ≠时,()11DE FH k k m m⨯=⨯-=-时,DE FH ⊥,综上,可得DE FH ⊥.(2)12234y y m -===+()2122121||34m DE y y m +=-=+,H 到直线DE的距离d ==(221811||234DFHm S DE d m +=⨯=+△,设2211t m t =≥⇒=-,()3322()(1)31314t t f t t t t ==≥+-+,()422233'()031t t f t t +=>+()f t ∴在[1,)+∞上单调递增,min 1()(1)4f t f ==,当1t =,即0m =时取得最小值.DEH ∴ 面积的最小值是92.2.(2021·山东省实验中学高三模拟)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,点P 是椭圆C上位于第二象限的任一点,直线l 是12F PF ∠的外角平分线,直线2PF 交椭圆C 于另一点Q ,过左焦点1F 作l 的垂线,垂足为N ,延长1F N 交直线2PF 于点M ,||2ON =(其中O 为坐标原点),椭圆C 的离心率为12.(1)求椭圆C 的标准方程;(2)求1PF Q 的内切圆半径r 的取值范围.【解析】(1)由题意可得1||||F N NM =,且1||||PF PM =,所以1222||||||||||2PF PF PM PF MF a +=+==,因为O ,N 分别为线段12F F ,1F M 的中点,所以ON 为12MF F △的中位线,所以2//ON MF 且21||||22ON MF a ===,由12c a =,222a b c =+得23b =,所以椭圆C 的标准方程为22143x y +=.(2)由(1)知2(1,0)F ,设直线2PF 的方程为1(0)x my m =+≠,由点P 在第二象限求得33m <.设11(,)P x y ,22(,)Q x y ,由221143x my x y =+⎧⎪⎨+=⎪⎩得22(34)690m y my ++-=,由根与系数的关系得122634m y y m +=-+,122934y y m =-+,所以12212121212211121||||2()42234PF Q m S F F y y y y y y m +=⋅⋅-=⨯+-+△,令2231()3t m t =+>,则221m t =-,所以12212121213(1)4313PF Q t t S t t t t===-+++△,因为13y t t=+在233t >时单调递增,所以15332y t t =+>所以11283153PF Q S t t=∈+△,又11111(||||||)4422PF Q S PF PQ QF r a r r =++⋅=⋅⋅=△,所以83045r <<,即305r <<,所以1PF Q 内切圆半径r 的取值范围是23)5.【提分秘籍】求解圆锥曲线中最值、范围问题的主要方法(1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形性质数形结合求解.(2)代数法:若题目中的条件和结论能体现一种明确的函数关系,或者不等关系,或者已知参数与新参数之间的等量关系等,则利用代数法求参数的范围.【变式演练】1.(2021·辽宁本溪高级中学高三模拟)已知点F 为椭圆2222:1(0)x y C a b a b+=>>的右焦点,椭圆上任意一点到点F 距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若M 为椭圆C 上的点,以M 为圆心,MF 长为半径作圆M ,若过点(1,0)E -可作圆M 的两条切线,EA EB (,A B 为切点),求四边形EAMB 面积的最大值.【解析】(1)根据题意椭圆上任意一点到点F 距离的最大值为3,最小值为1.所以31a c a c +=⎧⎨-=⎩,解得2,1a c ==,所以b =因此椭圆C 的标准方程为22143x y +=(2)由(1)知,()1,0E-为椭圆的左焦点,根据椭圆定义知,||||4ME MF +=,设|r MF MB ==|,∵点E 在圆M 外,∴||4ME r r =->,∴12r ≤<所以在直角三角形MEB 中,||EB ==1||||2MEB S EB MB =⋅= ,由圆的性质知,四边形EAMB面积22MEB S S == ,其中12r ≤<.即)12S r =≤<.令()322412y r r r =-+≤<,则2682(34)y r r r r '=-+=--当413r <<时,0y '>,3224y r r =-+单调递增;当423r <<时,0y '<,3224y r r =-+单调递减.所以,在43r =时,y 取极大值,也是最大值此时maxS ==2.在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的两焦点与短轴的一个端点的连线构成等边三角形,直线10x y ++-=与以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)BMN △是椭圆C 的内接三角形,若坐标原点O 为BMN △的重心,求点B 到直线MN 距离的取值范围.【解析】(1)设椭圆2222:1x y C a b+=的右焦点()2,0F c ,则以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆:()222x c y a -+=,所以圆心到直线10x y ++=的距离d a ==,又椭圆的两焦点与短轴的一个端点的连线构成等边三角形,所以2,a c b ==,解得:2,1a b c ===,所以椭圆的标准方程为22143x y +=;(2)设(),B m n ,设,M N 的中点为D ,直线OD 与椭圆交于A,B 两点,因为O 为BMN △的重心,则2BO OD OA ==,所以,22m n D ⎛⎫-- ⎪⎝⎭即B 到直线MN 的距离是原点O 到直线MN 距离的3倍.当MN 的斜率不存在时,点D 在x 轴上,所以此时B 在长轴的端点处.由2OB =得:1OD =,则O 到直线MN 距离为1,B 到直线MN 距离为3;当MN 的斜率存在时,设()()1122,,,M x y N x y ,则有:22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得:()()()()12121212043x x x x y y y y +-+-+=,因为D 为,M N 的中点,所以1212,x x m y y n +=-+=-,所以121234y y mk x x n-==--,所以直线MN 的方程为3242n m m y x n ⎛⎫+=-+ ⎪⎝⎭,即2268430mx ny n m +++=,所以原点O 到直线MN距离22d =.因为22143m n +=,所以223124m n =-,所以22d ===因为203n <≤,所以3<≤13≤<,所以332d ≤<综上所述,33332d ≤≤.即点B 到直线MN 距离的取值范围33,32⎡⎤⎢⎥⎣⎦.【题型二】圆锥曲线中的定点、定值问题【典例分析】1.(2021浙江镇海中学高三模拟)已知()0,1F 且满足1PF x =+的动点(),P x y 的轨迹为C.(1)求曲线C 的轨迹方程;(2)如图,过点()1,0-T 的斜率大于零的直线与曲线C 交于D ,M 两点,()1,1Q -,直线DQ 交曲线C 于另外一点N ,证明直线MN 过定点.【解析】(1)∵1PF x =+,1x ≥-1x =+,等式两边平方整理得24y x =.(2)证明:设()11,M x y ,()22,N x y ,()33,D x y .由21123344y x y x ⎧=⎨=⎩两式相减得1313134DM y y k x x y y -==-+.所以直线DM 的方程为()11134y y x x y y -=-+,整理得()13134y y y x y y +=+(*).因为点T 在直线上,所以134y y =①,同理直线DN 的方程为()23234y y y x y y +=+,因为点Q 在直线上,所以()23234y y y y -+=+②.由①②两式得2211444y y y y ⎛⎫-+=+⋅ ⎪⎝⎭,整理得()121244y y y y =-+-.由(*)式同理知直线MN 的方程为()12124y y y x y y +=+,所以()()1212124444y y y x y y x y y +=+=-+-,整理得直线MN 的方程为()()()12441y y y x ++=-,所以直线MN 过定点()1,4-.2.(2021·天津八中高三模拟)已知椭圆C :2221(0)6x y b b+=>的左、右焦点分别为()1,0F c -和()2,0F c ,P 为椭圆C 上任意一点,三角形12PF F 面积的最大值是3.(Ⅰ)求椭圆C 的方程;(Ⅱ)若过点()2,0的直线l 交椭圆C 于A ,B 两点,且9,04Q ⎛⎫⎪⎝⎭,证明:QA QB ⋅ 为定值.【解析】(Ⅰ)由题意知226c b =-,当P 点位于椭圆C 短轴端点时,三角形12PF F 的面积S 取最大值,此时max 1232S c b bc =⨯⨯==.所以229b c =,即()2269bb -=,解得23b=.故椭圆C 的方程为22163x y +=.(Ⅱ)(方法1)当直线l 的斜率不为0时,设直线l :2x my =+交椭圆于()()1122,,,A x y B x y .由22226x my x y =+⎧⎨+=⎩消去x 得,()222420m y my ++-=.则12122242, 22m y y y y m m +=-=-++.而112299,,,44QA x y QB x y ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,所以()()2121212129911144416QA QB x x y y m y y m y y ⎛⎫⎛⎫⋅=--+=+-++ ⎪⎪⎝⎭⎝⎭()222222141211512421621616m m m m m m m --⎛⎫⎛⎫=+---+=+=- ⎪ ⎪+++⎝⎭⎝⎭.当直线l 的斜率为0时,(A B ,则998115,0,06441616QA QB ⎫⎛⎫⋅=⋅=-+=-⎪ ⎪⎭⎝⎭ .故QA QB ⋅ 为定值,且为1516-.(方法2)当直线l 的斜率存在时,设直线l :()2y k x =-交椭圆于()()1122,,,A x y B x y .由22(2)26y k x x y =-⎧⎨+=⎩消去y 得,()2222218860k x k x k +-+-=.则2122821k x x k +=+,21228621k x x k -=+.而112299,,,44QA x y QB x y ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭.所以()()222121212129998112444416QA QB x x y y k x x k x x k ⎛⎫⎛⎫⎛⎫⋅=--+=+-++++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ()22222228698811242142116k k k k k k k -⎛⎫=+⋅-+⋅++⎪++⎝⎭22126818115621161616k k --=+=-+=-+.当直线l 的斜率不存在时,可求得()()2,1,2,1A B -,则991152,12,11441616QA QB ⎛⎫⎛⎫⋅=-⋅--=-=- ⎪ ⎪⎝⎭⎝⎭ .故QA QB ⋅ 为定值,且为1516-.【提分秘籍】1.求定值问题的思路方法(1)思路:求解定值问题的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.(2)方法:从特殊入手,求出定值,再证明这个值与变量无关;直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.求定点问题的解题方法(1)动直线l 过定点问题:设动直线方程(斜率存在)为y=kx+t,由题设条件将t 用k 表示为t=mk,得y=k(x+m),故动直线过定点(-m,0).(2)动曲线C 过定点问题:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.【变式演练】1.(2021·广东华南师范大学附属中学高三模拟)设A ,B 为双曲线2222:1x y C a b-=(0,0)a b >>的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,AMN 为等腰直角三角形.(1)求双曲线C 的离心率;(2)已知直线AM ,AN 分别交直线2ax =于,P Q 两点,当直线l 的倾斜角变化时,以PQ 为直径的圆是否过定点,若过定点,求出定点的坐标;若不过定点,请说明理由.【解析】(1)由l x ⊥轴时,AMN 为等腰直角三角形,可得||||||AF NF MF ==,所以2ba c a+=,即2220c ac a --=,故220e e --=,结合1e >,解得2e =.故双曲线C 的离心率为2.(2)因为2c e a ==,所以双曲线:C 222213x y a a-=,显然直线l 的斜率不为0,设直线:2l x my a =+,11(,)M x y ,22(,)N x y ,联立直线l 与双曲线C 的方程得2222213x my a x y a a=+⎧⎪⎨-=⎪⎩,化简得222(31)1290m y amy a -++=,根据根与系数的关系,得2121222129,3131am a y y y y m m +=-⋅=--,①所以121224()431ax x m y y a m -+=++=-,②222221212122342()431a m a x x m y y am y y a m --⋅=⋅+++=-,③设直线:AM 11()y y x a x a =++,直线:AN 22()y y x a x a=++,令2ax =,可得121233(,),(,)22()22()ay ay a a P Q x a x a ++,设()G x y ,是以PQ 为直径的圆上的任意一点,则0PG QG ⋅=,则以PQ 为直径的圆的方程为2121233()[][]022()2()ay ay a x y y x a x a -+--=++,由对称性可得,若存在定点,则一定在x 轴上,令0y =,可得2121233()022()2()ay ay a x x a x a -+⋅=++,即2212212129()024[()]a y y a x x x a x x a -+=+++,将①②③代入,可得22222222229931()034424()3131a a a m x a m a a a a m m ⋅--+=---+⋅+--,即229(24a x a -=,解得x a =-或2x a =,所以以PQ 为直径的圆过定点(,0)a -,(2,0)a .2.(2021·山师大附中高三模拟)已知圆(22:12C x y +=,动圆M过点)D且与圆C 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)假设直线l 与轨迹E 相交于A ,B 两点,且在轨迹E 上存在一点P ,使四边形OAPB 为平行四边形,试问平行四边形OAPB 的面积是否为定值?若是,求出此定值;若不是,请说明理由.【解析】(1)因为CD =<,所以点D 在圆内.又因为圆M 过点D 且与圆C相切,所以MC MD =,所以MC MD CD +=>.即点M 的轨迹是以C ,D 为焦点的椭圆.则2a =,即a =又因为222a b -=,所以21b =.故动圆圆心M 的轨迹E 的方程为:2213x y +=.(2)当直线AB 的斜率不存在时,可得直线AB 的方程为32x =±,此时32A y =,所以四边形OAPB 的面积32S =.当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+,由22,13y kx m x y =+⎧⎪⎨+=⎪⎩整理得,()()222316310k x kmx m +++-=.因为直线l 与轨迹E 相交于A ,B 两点,所以()()()222222361231112310k m k m k m =-+-=-+>△.设()11,A x y ,()22,B x y ,则122631kmx x k +=-+,()21223131m x x k -=+.所以()121222231my y k x x m k +=++=+.设AB 的中点为Q ,则Q 的坐标为223,3311km m k k ++⎛⎫-⎪⎝⎭.因为四边形OAPB 为平行四边形,所以22622,3131km m OP OQ k k ⎛⎫==- ⎪++⎝⎭,所以点P 的坐标为2262,3131km m k k ⎛⎫-⎪++⎝⎭.又因为点Р在椭圆上,所以222262311331km m k k ⎛⎫- ⎪+⎛⎫⎝⎭+= ⎪+⎝⎭.整理得,22431m k =+.又因为12223131AB x k k =-==++,原点О到直线AB的距离为d =所以平行四边形OAPB的面积322AOBS S AB d ==⋅== .综上可知,平行四边形OAPB 的面积为定值32.1.(2021·江苏南京师范大学附属中学高三模拟)已知抛物线2:2(0)C y px p =>,满足下列三个条件中的一个:①抛物线C 上一动点Q 到焦点F 的距离比到直线:1m x =-的距离大1;②点(2,3)A 到焦点F 与到准线:2pl x =-的距离之和等于7;③该抛物线C 被直线:20n x y --=所截得弦长为16.请选择其中一个条件解答下列问题.(1)求抛物线C 的标准方程;(2)O 为坐标原点,直线l 与抛物线C 交于M ,N 两点,直线OM 的斜率为1k ,直线ON 的斜率为2k ,当124k k ⋅=-时,求OMN 的面积的最小值.【解析】(1)若选择①,则抛物线C 上一动点Q 到焦点F 的距与到直线:2m x =-的距离相等,故22p=,故4p =,所以抛物线的方程为28y x =.2=72p +,解得4p =,故抛物线的方程为28y x =.若选择③,则由222y x y px=-⎧⎨=⎩可得2240y py p --=,16=,解得4p =,故抛物线的方程为28y x =.(2)设:MN x my n =+,()11,M x y 、()22,N x y ,因为MN 与抛物线C 相交于M 、N ,所以将:MN x my n =+代28y x =消去x 得:2880y my n --=,则264640m n ∆=+>且128y y m +=,128y y n ⋅=-,由题意可知111y k x =,222y k x =,所以1212122212121264644888y y y y k k y y x x y y n ⋅⋅=⋅====-⋅-⋅,所以2n =,所以OMN的面积1212122S y y y y =⨯⨯-=-=≥,当且仅当0m =时等号成立,所以OMN的面积的最小值为2.(2021·重庆第一中学高三模拟)已知A ,B 分别为椭圆()2222:10x y C a b a b+=>>的左、右顶点,F 为右焦点,点P 为C 上的一点,PF 恰好垂直平分线段OB (O 为坐标原点),32PF =.(1)求椭圆C 的方程;(2)过F 的直线l 交C 于M ,N 两点,若点Q 满足OQ OM ON =+(Q ,M ,N 三点不共线),求四边形OMQN面积的取值范围.【解析】(1)由题意可知(),0F c ,(),0B a ,∵PF 恰好垂直平分线段OB ,∴2a c =,令x c =,代入22221x y a b +=得:2b y a =±,∴232b a =,∴2222232a cba abc =⎧⎪⎪=⎨⎪=+⎪⎩,解得21a b c =⎧⎪=⎨⎪=⎩,∴椭圆C 的方程为:22143x y +=.(2)由题意可知直线l 的斜率不为0,设直线l 的方程为:1x my =+,设()11,M x y ,()22,N x y ,联立方程221431x y x my ⎧+=⎪⎨⎪=+⎩,消去x 得:()2234690m y my ++-=,∴()223636340m m ∆=++>,∴122634m y y m -+=+,122934y y m -=+,设MN 的中点为E ,则2OQ OM ON OE =+=,∴MN 与OQ 互相平分,四边形OMQN 为平行四边形,∴OMQN S 平行四边形2OMN S =△12122OF y y =⨯⨯⨯-12y y =-==212134m=+,令1t =≥,则()2121211313OMQN t S t t t t==≥++平行四边形,∵11333y t t t t ⎛⎫ ⎪=+=+ ⎪ ⎪ ⎪⎝⎭在[1,)+∞上单调递增,∴134t t+≥,∴(]120,313t t∈+,∴03OMQN S <≤平行四边形.综上所述,四边形OMQN 面积的取值范围为(0,3].3.(2021·浙江杭州高级中学高三模拟)已知抛物线2:2(0)C x py p =>的焦点为F ,点P 为抛物线C 上一点,点P 到F 的距离比点P 到x 轴的距离大1.过点P 作抛物线C 的切线,设其斜率为0k .(1)求抛物线C 的方程;(2)直线:l y kx b =+与抛物线C 相交于不同的两点A ,B (异于点P ),若直线AP 与直线BP 的斜率互为相反数,证明:00k k +=.【解析】(1)解:设点()00,P x y ,由点P 到F 的距离比点P 到x 轴的距离大1,可得01PF y =+,即0012py y +=+,所以2p =,即抛物线C 的方程为24x y =.(2)证明:设()11,A x y ,()22,B x y ,直线AP 的斜率为AP k ,直线BP 的斜率为BP k ,则()101010AP y y k x x x x -=≠-,()202020BP y yk x x x x -=≠-.因为直线AP 与直线BP 的斜率互为相反数,所以AP BP k k =-,即10201020y y y y x x x x --=---,又点()11,A x y ,()22,B x y 均在抛物线上,可得222200211020444x x x x x x x x --=---,化简可得1202x x x +=-,因为2114x y =,2224x y =,所以()2212124x x y y -=-,即1212124y y x x x x -+=-,故012122x y y k x x -==--,因为24x y =,所以214y x =,所以1 2y x '=,则0012k x =,故00k k +=.4.(2021·湖南长沙长郡中学高三模拟)已知椭圆E :()222210x y a b a b+=>>上有一点A ,点A 在x 轴上方,1F ,2F分别为E 的左,右焦点,当△12AF F 121sin 2AF F ∠=.(Ⅰ)求E 的标准方程;(Ⅱ)若直线l 交E 于P ,Q 两点,设PQ 中点为M ,O 为坐标原点,2PQ OM =uu u r uuu r,作ON PQ ⊥,求证:ON为定值.【解析】(Ⅰ)由椭圆的性质知,△12AF F 的面积取最大时,A 为椭圆的上顶点,即(0,)A b ,而12||2F F c =,∴12121||||2AF F S F F OA bc =⋅== 121sin 2b AF F a ∠==,又222a bc =+,∴24a =,21b =,可得E 的标准方程2214x y +=.(Ⅱ)由题意,2PQ OM =uu u r uuu r且PQ 中点为M ,易得90POQ ∠=︒,即OP OQ ⊥,若直线l 斜率不存在时,P ,Q 关于x 轴对称,2PQ OM =uu u r uuu r知:横纵坐标的绝对值相等,不妨假设P 在第一象限,则(,)P m m ,(,)Q m m -在椭圆上,∴255m =,此时,M N 两点重合,即255ON =;若直线l 斜率为0时,同理可得255ON =,若直线l 斜率存在且不为0时,设直线l 为(0)y kx b b =+≠,11(,)P x y ,22(,)Q x y ,则11(,)OP x y = ,22(,)OQ x y =,且12120x x y y +=,联立椭圆与直线得:222(41)84(1)0k x kbx b +++-=且2216(41)0k b ∆=-+>,∴122841kb x x k +=-+,21224(1)41b x x k -=+,即2222222221212122224(1)84()414141k b k b b k y y k x x kb x x b b k k k --=+++=-+=+++,∴222222224(1)45440414141b b k b k k k k ----+==+++,即||b =.∴||5ON==,为定值.5.(2021·天津南开中学高三模拟)已知点A,B分别为椭圆2222:1(0)x yE a ba b+=>>的左顶点和上顶点,且坐标原点O到直线AB 的距离为61313,椭圆E的离心率是方程2650x-+=的一个根.(1)求椭圆E的标准方程;(2)若(3,0)P,过P作斜率存在的两条射线PM,PN,交椭圆E于M,N两点,且PM PN⊥,问:直线MN经过定点吗?若经过,求出这个定点坐标;若不经过,说明理由.【解析】(1)因为椭圆E的离心率是方程2650x-+=的一个根,所以2e=或3e=.因为椭圆E的离心率(0,1)e∈,所以53e=.因为3ca=,所以2295a c=,所以222245b ac c=-=,因为点A,B分别为椭圆E的左顶点和上顶点,所以||AB===.因为坐标原点O到直线AB 的距离为61313,所以11||22ab AB=,=⨯,所以c=,所以29a=,24b=,所以椭圆E的标准方程为22194x y+=.(2)当直线MN的斜率存在时,设MN:y=kx+m,由22194y kx mx y=+⎧⎪⎨+=⎪⎩,消元并化简得222(49)189360k x kmx m+++-=,设1122(,),(,)M x y N x y ,则1221849km x x k +=-+,212293649m x x k-=+,又(3,0)P ,PM PN ⊥,所以1212133y yx x ⋅=---,所以1212123()9()()0x x x x kx m kx m -+++++=,即221212(1)(3)()(9)0k x x km x x m ++-+++=,所以2222293618(1)(3)(9)04949m kmk km m k k--++-++=++,所以2222(1)(936)(3)(18)(9)(49)0k m km km m k +-+--+++=,即224554130k km m ++=,所以30k m +=或15130k m +=,当30k m +=时,(3)y k x =-,此时M ,N ,P 重合,舍去.当15130k m +=时,15(13y k x =-,恒过点15(,0)13.当直线MN 的斜率不存在时,MN ⊥x 轴,设(),3M t t -,则()223194t t -+=,解得1513t =,所以此时直线MN 也过点15(,0)13.所以直线MN 恒过定点15(,0)13.6.(2021·湖南长郡中学高三模拟)已知抛物线2:4C x y =的焦点为F ,准线为l .设过点F 且不与x 轴平行的直线m 与抛物线C 交于A ,B 两点,线段AB 的中点为M ,过M 作直线垂直于l ,垂足为N ,直线MN 与抛物线C 交于点P .(1)求证:点P 是线段MN 的中点.(2)若抛物线C 在点P 处的切线与y 轴交于点Q ,问是否存在直线m ,使得四边形MPQF 是有一个内角为60︒的菱形?若存在,请求出直线m 的方程;若不存在,请说明理由.【解析】(1)证明:由题意知直线m 的斜率存在且不为0,故设直线m 的方程为1(0)y kx k =+≠,代入24x y =,并整理得2440x kx --=.所以216160k ∆=+>,设()11,A x y ,()22,B x y ,则124x x k +=,124x x =-.设()00,M x y ,则12022x x x k +==,200121y kx k =+=+,即()22,21M k k +.由MN l ⊥,得(2,1)N k -,所以MN 中点的坐标为()22,k k.将2x k =代入24x y =,解得2y k =,则()22,P k k ,所以点P 是MN 的中点.(2)由24x y =,得24x y =,则'2x y =,所以抛物线C 在点()22,P k k的切线PQ 的斜率为k ,又由直线m 的斜率为k ,可得m PQ ∥;又M N y ∥轴,所以四边形MPQF 为平行四边形.而||MF ==()222||211MP k k k =+-=+,由||||MF MP =,得21k =+,解得3k =±,即当3k =±时,四边形MPQF 为菱形,且此时2||1||||PF k MP MF ==+==,所以60PMF ∠=︒,直线m 的方程为13y x =±+,2即0x +=或0x +=,所以存在直线m ,使得四边形MPQF 是有一个内角为60︒的菱形.。

高考二轮复习圆锥曲线专题(共88张PPT)

高考二轮复习圆锥曲线专题(共88张PPT)

xR=m+2
m2+3
3
.
所以||PPQR||=xxQR=22
11++mm3322-+11=1+2
2 1+m32-1.
基础知识
题型分类 第18页,共88页。 思想方法
练出高分
题型分类·深度剖析
此时 1+m32>1,且 1+m32≠2,
所以 1<1+ 2
1+2 m32-1<3,且
1+ 2
1+2 m32-1≠53,
【例 2】 已知椭圆 C 经过点 A1,32, 两个焦点为(-1,0)、(1,0). (1)求椭圆 C 的方程;
思维启迪
解析
探究提高
可设直线 AE 的斜率来计算直线 EF 的斜率,通过推理计算消参.
(2)E、F 是椭圆 C 上的两个动点,
如果直线 AE 的斜率与 AF 的斜率
互为相反数,证明直线 EF 的斜率
圆锥曲线中的探索性问题
难圆点锥正 曲本线P中1的(疑x函点1数清,思源想y1),P2(x2,y2),则所得弦长|P1P2|
圆锥曲线中的探索性问题
1+k |x -x | = 圆数直锥学线曲 和线圆R 中锥A(的曲文探线)索问性题问解题法的2一般1规律
2
圆锥曲线中的范围、最值问题
1 圆锥曲线中的范围、最值问题
p y0.
2.“点差法”的常见题型
求中点弦方程、求(过 定点、平行弦)弦中点 轨迹、垂直平分线问 题.必须提醒的是 “点差法”具有不等 价性,即要考虑判别 式 Δ>0 是否成立.
基础知识
题型分类 第6页,共88页。 思想方法
练出高分
基础知识·自主学习
基础自测
题号
1 2 3 4
答案

高考数学二轮复习考点十六《直线与圆锥曲线综合问题》课件

高考数学二轮复习考点十六《直线与圆锥曲线综合问题》课件
考点十六 直线与圆锥曲线综合问题
一、选择题(在每小题给出的四个选项中,只有一项符合题目要求) 1.已知双曲线ax22-by22=1(a>0,b>0)的离心率为 3,右焦点到一条渐近 线的距离为 2,则此双曲线的焦距等于( ) A. 3 B.2 3 C.3 D.6
答案 B
|bc+0| 解析 由题意,得焦点 F(c,0)到渐近线 bx+ay=0 的距离为 d= a2+b2 =bcc=b= 2,又ac= 3,c2=a2+b2,解得 c= 3,所以该双曲线的焦距为 2c=2 3,故选 B.
A.若 x1+x2=6,则|PQ|=8 B.以 PQ 为直径的圆与准线 l 相切 C.设 M(0,1),则|PM|+|PP1|≥ 2 D.过点 M(0,1)与抛物线 C 有且仅有一个公共点的直线至多有 2 条 答案 ABC
解析 对于 A,因为 p=2,所以 x1+x2+2=|PQ|,则|PQ|=8,故 A 正 确;对于 B,设 N 为 PQ 的中点,点 N 在 l 上的射影为 N1,点 Q 在 l 上的射 影为 Q1,则由梯形性质可得|NN1|=|PP1|+2 |QQ1|=|PF|+2 |QF|=|P2Q|,故 B 正 确;对于 C,因为 F(1,0),所以|PM|+|PP1|=|PM|+|PF|≥|MF|= 2,故 C 正确;对于 D,显然直线 x=0,y=1 与抛物线只有一个公共点,设过 M 斜 率存在的直线的方程为 y=kx+1,联立yy= 2=k4xx+,1,可得 k2x2+(2k-4)x+1 =0,令 Δ=0,则 k=1,所以直线 y=x+1 与抛物线也只有一个公共点,此 时有三条直线符合题意,故 D 错误.故选 ABC.
三、填空题 9.若直线 2x+4y+m=0 经过抛物线 y=2x2 的焦点,则 m=________.

高考数学文(二轮复习)课件讲《圆锥曲线中的综合问题》

高考数学文(二轮复习)课件讲《圆锥曲线中的综合问题》

2.有关弦长问题 (1)有关弦长问题,应注意运用弦长公式及根与系数的关 系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义 的运用,以简化运算. ①斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2, y2),则所得弦长|P1P2|= 1+k |x2-x1|或|P1P2|=
2
1 1+k2 |y2-
4.定点、定值问题必然是在变化中所表现出来的不变的 量,那么就可以用变化的量表示问题的直线方程、数量积、比 例关系等,这些直线方程、数量积、比例关系不受变化的量所 影响的一个点、一个值,就是要求的定点、定值.化解这类问 题的关键就是引进变的参数表示直线方程、数量积、比例关系 等,根据等式的恒成立、数式变换等寻找不受参数影响的量.
3.轨迹方程问题 (1)求轨迹方程的基本步骤: ①建立适当的平面直角坐标系,设出轨迹上任一点的坐标 ——解析法(坐标法); ②寻找动点与已知点满足的关系式——几何关系; ③将动点与已知点的坐标代入——几何关系代数化; ④化简整理方程——简化; ⑤证明所得方程为所求的轨方程的常用方法: ①直接法:将几何关系直接翻译成代数方程; ②定义法:满足的条件恰适合某已知曲线的定义,用待定 系数法求方程; ③代入法:把所求动点的坐标与已知动点的坐标建立联 系; ④交轨法:写出两条动直线的方程直接消参,求得两条动 直线交点的轨迹.
高考真题要回访,做好真题底气足 1.(2014· 四川高考)已知F为抛物线y2=x的焦点,点A,B在 → → 该抛物线上且位于x轴的两侧, OA · OB =2(其中O为坐标原点), 则△ABO与△AFO面积之和的最小值是( A.2 B.3 17 2 C. 8 ) D. 10
答案:B
解析:设直线AB的方程为x=ny+m(如图),A(x1,y1), B(x2,y2), → → ∵OA· OB=2,

高考数学二轮复习第2部分专题5解析几何第3讲圆锥曲线中的综合问题课件理

高考数学二轮复习第2部分专题5解析几何第3讲圆锥曲线中的综合问题课件理
(1)求直线AP斜率的取值范围; (2)求|PA|·|PQ|的最大值.
切入点:(1)直接套用斜率公式,并借助-12<x<32求其范围; (2)先分别计算|PA|、|PQ|的长,再建立|PA|·|PQ|的函数,进而借 助导数求其最值.
[解](1)设直线AP的斜率为k,k=xx2+-1214=x-12, 因为-12<x<32, 所以-1<x-12<1, 即直线AP斜率的取值范围是(-1,1).
(与向量交汇直线过定点问题)设M点为圆C:x2+y2=4上的动 点,点M在x轴上的投影为N.动点P满足2 P→N = 3 M→N ,动点P的轨迹 为E.
(1)求E的方程; (2)设E的左顶点为D,若直线l:y=kx+m与曲线E交于A,B两 点(A,B不是左、右顶点),且满足| D→A + D→B |=| D→A - D→B |,求证:直 线l恒过定点,并求出该定点的坐标.
第二部分 讲练篇
专题五 解析几何 第3讲 圆锥曲线中的综合问题
研考题 举题固法
求圆锥曲线中的最值范围问题(5年2考) 考向1 构造不等式求最值或范围
[高考解读] 以直线与圆锥曲线的位置关系为载体,融函数与 方程,均值不等式、导数于一体,重在考查学生的数学建模、数学 运算能力和逻辑推理及等价转化能力.
[解](1)设点M(x0,y0),P(x,y),由题意可知N(x0,0), ∵2P→N= 3M→N,∴2(x0-x,-y)= 3(0,-y0), 即x0=x,y0= 23y, 又点M在圆C:x2+y2=4上,∴x20+y20=4, 将x0=x,y0= 23y代入得x42+y32=1, 即轨迹E的方程为x42+y32=1.
设C(p,q),由2qpp=+q21,-2=0
得p=q=2,所以C(2,2).

圆锥曲线的综合问题 强化训练-2023届高三数学二轮专题复习(含解析)

圆锥曲线的综合问题 强化训练-2023届高三数学二轮专题复习(含解析)

冲刺2023年高考二轮 圆锥曲线的综合问题强化训练(原卷+答案)考点一 证明问题——等价转化,直击目标圆锥曲线中证明问题的两种常见类型圆锥曲线中的证明问题,主要有两类:一是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上,某直线经过某个点、某两条直线平行或垂直等;二是证明直线与圆锥曲线中的一些数量关系(相等或不等).例 1已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,-2),B (32,-1)两点.(1)求E 的方程;(2)设过点P (1,-2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ .证明:直线HN 过定点.对点训练已知直线y =3与曲线C :x 2+2py =0的两个公共点之间的距离为4√6. (1)求C 的方程;(2)设P 为C 的准线上一点,过P 作C 的两条切线,切点为A ,B ,直线P A ,PB 的斜率分别为k 1,k 2,且直线P A ,PB 与y 轴分别交于M ,N 两点,直线AB 的斜率为k 0.证明:k 1·k 2为定值,且k 1,k 0,k 2成等差数列.考点二 定点问题——目标等式寻定点解析几何中的定点问题一般是指与解析几何有关的直线或圆(其他曲线过定点太复杂,高中阶段一般不涉及)过定点的问题,其实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这些直线或圆绕着定点在转动,这类问题的求解一般分为以下三步:一选:选择变量,定点问题中的定点,随某一个量的变化而固定,可选择这个量为变量(有时可选择两个变量,如点的坐标、斜率、截距等,然后利用其他辅助条件消去其中之一).二求:求出定点坐标所满足的方程,即把需要证明为定点的问题表示成关于上述变量的方程.三定点:对上述方程进行必要的化简,即可得到定点坐标. 例 2 已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,AB 为过椭圆右焦点的一条弦,且AB 长度的最小值为2.(1)求椭圆M 的方程;(2)若直线l 与椭圆M 交于C ,D 两点,点P (2,0),记直线PC 的斜率为k 1,直线PD 的斜率为k 2,当1k 1+1k 2=1时,是否存在直线l 恒过一定点?若存在,请求出这个定点;若不存在,请说明理由.对点训练已知抛物线C :y 2=2px (p >0)的焦点为F ,S (t ,4)为C 上一点,直线l 交C 于M ,N 两点(与点S 不重合).(1)若l 过点F 且倾斜角为60°,|FM |=4(M 在第一象限),求C 的方程;(2)若p =2,直线SM ,SN 分别与y 轴交于A ,B 两点,且OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =8,判断直线l是否恒过定点?若是,求出该定点;若否,请说明理由.考点三 定值问题——巧妙消元寻定值定值问题一般是指在求解解析几何问题的过程中,探究某些几何量(斜率、距离、面积、比值等)与变量(斜率、点的坐标等)无关的问题,其求解步骤一般为:一选:选择变量,一般为点的坐标、直线的斜率等.二化:把要求解的定值表示成含上述变量的式子,并利用其他辅助条件来减少变量的个数,使其只含有一个变量(或者有多个变量,若是能整体约分也可以).三定值:化简式子得到定值.由题目的结论可知要证明为定值的量必与变量的值无关,故求出的式子必能化为一个常数,所以只需对上述式子进行必要的化简即可得到定值.例 3 已知双曲线C :x 2a2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,双曲线C 的右顶点A 在圆O :x 2+y 2=3上,且AF 1⃗⃗⃗⃗⃗⃗⃗ ·AF 2⃗⃗⃗⃗⃗⃗⃗ =-1.(1)求双曲线C 的方程;(2)动直线l 与双曲线C 恰有1个公共点,且与双曲线C 的两条渐近线分别交于点M 、N ,设O 为坐标原点.求证:△OMN 的面积为定值.对点训练已知F 1(-√3,0),F 2(√3,0)分别是双曲线C :x 2a 2−y 2b 2=1(a >b >0)的左、右焦点,A 为双曲线在第一象限的点,△AF 1F 2的内切圆与x 轴交于点P (1,0).(1)求双曲线C 的方程;(2)设圆O :x 2+y 2=2上任意一点Q 处的切线l ,若l 与双曲线C 左、右两支分别交于点M 、N ,问:QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ 是否为定值?若是,求出此定值;若不是,说明理由.考点四 圆锥曲线中的最值、范围问题——巧设变量,引参搭桥圆锥曲线中的最值 (1)椭圆中的最值 F 1,F 2为椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有:①|OP |∈________;②|PF 1|∈________;③|PF 1|·|PF 2|∈________;④∠F 1PF 2≤∠F 1BF 2.(2)双曲线中的最值F 1,F 2为双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O为坐标原点,则有:①|OP |≥________;②|PF 1|≥________. (3)抛物线中的最值点P 为抛物线y 2=2px (p >0)上的任一点,F 为焦点,则有:①|PF |≥________;②A (m ,n )为一定点,则|P A |+|PF |有最小值;③点N (a ,0)是抛物线的对称轴上一点,则|PN |min ={|a |(a ≤p ),√2pa −p 2(a >p).例 4如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q (0,12)在线段AB 上,直线P A ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求|CD |的最小值.对点训练已知抛物线C :x 2=2py (p >0)的焦点为F ,且F 与圆M :x 2+(y +4)2=1上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,P A ,PB 是C 的两条切线,A ,B 是切点,求△P AB 面积的最大值.[典例] 已知圆(x +√3)2+y 2=16的圆心为M ,点P 是圆M 上的动点,点N (√3,0),点G 在线段MP 上,且满足(GN⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )⊥(GN ⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ ). (1)求点G 的轨迹C 的方程;(2)过点T (4,0)作斜率不为0的直线l 与轨迹C 交于A ,B 两点,点A 关于x 轴的对称点为D ,连接BD 交x 轴于点Q ,求△ABQ 面积的最大值.(1)因为(GN ⃗⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )⊥(GN ⃗⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ ), 所以(GN ⃗⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )·(GN ⃗⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ )=0,即GN ⃗⃗⃗⃗⃗⃗ 2-GP ⃗⃗⃗⃗⃗ 2=0, 所以|GP |=|GN |,所以|GM |+|GN |=|GM |+|GP |=|MP |=4>2√3=|MN |, 所以点G 在以M ,N 为焦点,长轴长为4的椭圆上,设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则2a =4,2c =2√3,即a =2,c =√3,所以b 2=a 2-c 2=1, 所以点G 的轨迹C 的方程为x 24+y 2=1. (2)依题意可设直线l :x =my +4. 由{x =my +4,x 24+y 2=1消去x ,得(m 2+4)y 2+8my +12=0.设A (x 1,y 1),B (x 2,y 2),由Δ=64m 2-4×12×(m 2+4)=16(m 2-12)>0,得m 2>12. ①且y 1+y 2=-8mm 2+4,y 1y 2=12m 2+4.②因为点A 关于x 轴的对称点为D , 所以D (x 1,-y 1), 可设Q (x 0,0),所以k BD =y 2+y 1x 2−x 1=y 2+y 1m (y 2−y 1), 所以BD 所在直线的方程为y -y 2=y 2+y 1m (y2−y 1)(x -my 2-4). 令y =0,得x 0=2my 1y 2+4(y 1+y 2)y 1+y 2. ③将②代入③, 得x 0=24m−32m−8m=1, 所以点Q 的坐标为(1,0).因为S △ABQ =|S △TBQ -S △TAQ |=12|QT ||y 2-y 1|=32√(y 1+y 2)2−4y 1y 2=6√m 2−12m 2+4,令t =m 2+4,结合①得t >16, 所以S △ABQ =6√t−16t= 6√−16t 2+1t =6√−16(1t −132)2+164.当且仅当t =32,即m =±2√7时,(S △ABQ )max =34. 所以△ABQ 面积的最大值为34.参考答案考点一[例1] 解析:(1)设椭圆E 的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). 将点A (0,-2),B (32,-1)的坐标代入,得{4n =1,94m +n =1,解得{m =13,n =14. 所以椭圆E的方程为x 23+y 24=1. (2)证明:方法一 设M (x 1,y 1),N (x 2,y 2).由题意,知直线MN 与y 轴不垂直,设其方程为x -1=t (y +2).联立得方程组{x −1=t (y +2),x 23+y 24=1. 消去x 并整理,得(4t 2+3)y 2+(16t 2+8t )y +16t 2+16t -8=0,所以y 1+y 2=-16t 2+8t 4t 2+3,y 1y 2=16t 2+16t−84t 2+3.设T (x 0,y 1).由A ,B ,T 三点共线,得y 1+2x 0=y 1+1x 0−32,得x 0=32y 1+3.设H (x ′,y ′). 由MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得(32y 1+3-x 1,0)=(x ′-32y 1-3,y ′-y 1),所以x ′=3y 1+6-x 1,y ′=y 1, 所以直线HN 的斜率k =y 2−y ′x 2−x ′=y 2−y 1x 2+x 1−(3y 1+6)=y 2−y 1t (y 1+y 2)−3y 1+4t−4,所以直线HN 的方程为y -y 2=y 2−y 1t (y 1+y 2)−3y 1+4t−4·(x -x 2).令x =0,得y =y 2−y 1t (y 1+y 2)−3y 1+4t−4·(-x 2)+y 2=(y 1−y 2)(ty 2+2t+1)t (y 1+y 2)−3y 1+4t−4+y 2=(2t−3)y 1y 2+(2t−5)(y 1+y 2)+6y 1t (y 1+y 2)−3y 1+4t−4=(2t−3)·16t 2+16t−84t 2+3+(5−2t )·16t 2+8t4t 2+3+6y 1−t(16t 2+8t)4t 2+3−3y 1+4t−4=-2.所以直线NH 过定点(0,-2).方法二 由A (0,-2),B (32,-1)可得直线AB 的方程为y =23x -2. a .若过点P (1,-2)的直线的斜率不存在,则其直线方程为x =1.将直线方程x =1代入x 23+y 24=1,可得N (1,2√63),M (1,-2√63). 将y =-2√63代入y =23x -2,可得T (3-√6,-2√63).由MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得H (5-2√6,-2√63). 此时直线HN 的方程为y =(2+2√63)(x -1)+2√63,则直线HN 过定点(0,-2). b .若过点P (1,-2)的直线的斜率存在,设此直线方程为kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立得方程组{kx −y −(k +2)=0,x 23+y 24=1. 消去y 并整理,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0. 所以{x 1+x 2=6k (2+k )3k 2+4,x 1x 2=3k (4+k )3k 2+4,则{y 1+y 2=−8(2+k )3k 2+4,y 1y 2=4(4+4k−2k 2)3k 2+4, 且x 1y 2+x 2y 1=−24k3k 2+4.①联立得方程组{y =y 1,y =23x −2,可得T (3y 12+3,y 1). 由MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得H (3y 1+6-x 1,y 1). 则直线HN 的方程为y -y 2=y 1−y 23y 1+6−x 1−x2(x -x 2). 将点(0,-2)的坐标代入并整理,得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0.②将①代入②,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立.综上可得,直线HN 过定点(0,-2).对点训练解析:(1)将y =3代入x 2+2py =0,得x 2=-6p . 当p ≥0时,不合题意;当p <0时,x =±√−6p ,则2√−6p =4√6, 解得p =-4,故C 的方程为x 2=8y .(2)证明:由(1)可知C 的准线方程为y =-2, 不妨设P (m ,-2),A (x 1,y 1),B (x 2,y 2),设过点P 且与C 相切的直线l 的斜率为k ,则l :y =k (x -m )-2,且k ≠0,联立{y =k (x −m )−2,x 2=8y ,得x 2-8kx +8(km +2)=0,则Δ=64k 2-32(km +2)=0,即k 2-12mk -1=0,由题意知,直线P A ,PB 的斜率k 1,k 2为方程k 2-12mk -1=0的两根, 则k 1+k 2=m2,k 1k 2=-1,故k 1·k 2为定值. 又x 2-8kx +8(km +2)=(x -4k )2=0, 则x 1=4k 1,同理可得x 2=4k 2,则k 0=y 1−y 2x 1−x 2=18x −1218x 22x 1−x 2=x 1+x 28,因此k 0=4(k 1+k 2)8=k 1+k 22,故k 1,k 0,k 2成等差数列.考点二[例2]解析:(1)因为x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,过椭圆右焦点的弦长的最小值为2b 2a=2,所以a =2,c =√2,b =√2,所以椭圆M 的方程为x 24+y 22=1. (2)设直线l 的方程为m (x -2)+ny =1,C (x 1,y 1),D (x 2,y 2),由椭圆的方程x 2+2y 2=4,得(x -2)2+2y 2=-4(x -2).联立直线l 的方程与椭圆方程,得(x -2)2+2y 2=-4(x -2)[m (x -2)+ny ], 即(1+4m )(x -2)2+4n (x -2)y +2y 2=0,(1+4m )(x−2y )2+4n x−2y+2=0, 所以1k 1+1k 2=x 1−2y 1+x 2−2y 2=-4n 1+4m=1,化简得m +n =-14,代入直线l 的方程得m (x -2)+(−14−m)y =1,即m (x -y -2)-14y =1,解得x =-2,y =-4,即直线l恒过定点(-2,-4).对点训练解析:(1)抛物线C :y 2=2px (p >0)的焦点为F (p2,0),因为l 过点F 且倾斜角为60°,所以l :y =√3(x -p2), 联立y 2=2px (p >0),可得12x 2-20px +3p 2=0,解得x =32p 或x =p6,又M 在第一象限,所以x M =32p ,因为|FM |=4,所以32p +p2=4,解得p =2,所以抛物线C 的方程为y 2=4x ;(2)由已知可得抛物线C 的方程为y 2=4x ,点S (4,4), 设直线l 的方程为x =my +n ,点M (y 12 4,y1),N (y 22 4,y2),将直线l 的方程与抛物线C :y 2=4x 联立得y 2-4my -4n =0, 所以Δ=16m 2+16n >0,y 1+y 2=4m ,y 1y 2=-4n (*),直线SM 的方程为y -4=y 1−4y 12 4-4(x -4),令x =0求得点A 的纵坐标为4y 1y 1+4,同理求得点B 的纵坐标为4y 2y2+4, 由OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =16y 1y 2y 1y 2+4(y 1+y 2)+16=8,化简得y 1y 2=4(y 1+y 2)+16,将上面(*)式代入得-4n =16m +16,即n =-4m -4, 所以直线l 的方程为x =my -4m -4,即x +4=m (y -4), 所以直线l 过定点(-4,4).考点三[例3] 解析:(1)不妨设F 1(-c ,0),F 2(c ,0), 因为A (a ,0), 从而AF 1⃗⃗⃗⃗⃗⃗⃗ =(−c −a ,0),AF 2⃗⃗⃗⃗⃗⃗⃗ =(c -a ,0) ,故有 AF 1⃗⃗⃗⃗⃗⃗⃗ ·AF 2⃗⃗⃗⃗⃗⃗⃗ =a 2-c 2=-1, 又因为a 2+b 2=c 2, 所以 b =1,又因为A (a ,0) 在圆 O :x 2+y 2=3 上, 所以 a =√3,所以双曲线C的标准方程为x 23-y 2=1.(2)证明:设直线l 与x 轴交于D 点,双曲线的渐近线方程为y =±√33x ,由于动直线l 与双曲线C 恰有1个公共点, 且与双曲线C 的两条渐近线分别交于点M 、N ,当动直线l 的斜率不存在时, l :x =±√3,|OD |=√3,|MN |=2,S △OMN =12×√3×2=√3,当动直线l 的斜率存在时, 且斜率k ≠±√33, 不妨设直线 l :y =kx +m,故由{y =kx +m x 23−y 2=1⇒(1-3k 2)x 2-6mkx -3m 2-3=0, 依题意,1-3k 2≠0且m ≠0,Δ=(-6mk )2-4(1-3k 2)(-3m 2-3)=0, 化简得 3k 2=m 2+1,故由{y =kx +my =√33x ⇒x M =√33−k , 同理可求,x N =-√33+k, 所以|MN |=√1+k 2|xM−x N |=2√3|m|√k 2+1|1−3k 2|,又因为原点O 到直线l :kx -y +m =0的距离d =√k 2+1,所以S △OMN =12|MN |d =√3m 2|1−3k 2|,又由3k 2=m 2+1,所以S △OMN =√3|m|√k 2+1|1−3k 2|=√3,故△OMN 的面积为定值,定值为√3.对点训练解析:(1)如图,设AF 1,AF 2与△AF 1F 2的内切圆分别交于G ,H 两点, 则2a =|AF 1|−|AF 2|=|F 1P |−|PF 2| =(1+√3)-(√3-1)=2,所以a =1,则b 2=c 2-a 2=2, 则双曲线C 的方程为x 2-y 22=1.(2)由题意得,切线l 的斜率存在.设切线l 的方程为y =kx +m ,M (x 1,y 1),N (x 2,y 2). 因为l 与圆O :x 2+y 2=2相切,所以√1+k 2=√2,即m 2=2k 2+2.联立{y =kx +m ,x 2−y 22=1,消去y 并整理得(2-k 2)x 2-2kmx -m 2-2=0, 所以x 1+x 2=2km2−k 2,x 1x 2=−m 2−22−k 2.又QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =(QO ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ )·(QO ⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗ ) =|QO ⃗⃗⃗⃗⃗ |2-OQ ⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ −OQ ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|OQ ⃗⃗⃗⃗⃗ |·|ON ⃗⃗⃗⃗⃗ |cos ∠QON -|OQ ⃗⃗⃗⃗⃗ |·|OM ⃗⃗⃗⃗⃗⃗ |cos ∠QOM +ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|OQ ⃗⃗⃗⃗⃗ |·|OQ ⃗⃗⃗⃗⃗ |−|OQ ⃗⃗⃗⃗⃗ |·|OQ ⃗⃗⃗⃗⃗ |+ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|QO ⃗⃗⃗⃗⃗ |2-|QO ⃗⃗⃗⃗⃗ |2+ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ −|OQ ⃗⃗⃗⃗⃗ |2. 又OM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2 =x 1x 2+(kx 1+m )(kx 2+m )=(k 2+1)x 1x 2+km (x 1+x 2)+m 2 =(k 2+1)(−m 2−2)2−k 2+2k 2m 22−k2+m 2=m 2−2k 2−22−k 2,将m 2=2k 2+2代入上式得OM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ =0.所以QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =0-|OQ ⃗⃗⃗⃗⃗ |2=-2. 综上所述,QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ 为定值,且QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =-2.考点四(1)[b ,a ] [a -c ,a +c ] [b 2,a 2] (2)a c -a (3)p2[例4] 解析:(1)设M (2√3cos θ,sin θ)是椭圆上一点,P (0,1),则|PM |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=14411-11(sin θ+111)2≤14411.故|PM |的最大值为12√1111.(2)由题意,知直线AB 的斜率存在,故设直线AB 的方程为y =kx +12.将直线方程与椭圆方程联立,得{y =kx +12,x 212+y 2=1.消去y 并整理,得(k 2+112)x 2+kx -34=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-kk 2+112,x 1x 2=-34(k 2+112).直线P A :y =y 1−1x 1x +1与直线y =-12x +3交于点C ,则x C =4x 1x1+2y 1−2=4x 1(2k+1)x 1−1. 同理可得,x D =4x 2x 2+2y 2−2=4x 2(2k+1)x 2−1,则|CD |= √1+14|x C -x D | =√52|4x1(2k+1)x1−1−4x2(2k+1)x2−1|=2√5|x 1−x 2[(2k+1)x1−1][(2k+1)x 2−1]|=2√5|x 1−x 2(2k+1)2x 1x 2−(2k+1)(x 1+x 2)+1|=3√52·√16k 2+1|3k+1|=6√55·√16k 2+1· √916+1|3k+1| ≥6√55,当且仅当k =316时等号成立.故|CD |的最小值为6√55.对点训练解析:(1)由题意知M (0,-4),F (0,p2),圆M 的半径r =1,所以|MF |-r =4,即p2+4-1=4,解得p =2.(2)由(1)知,抛物线方程为x 2=4y , 由题意可知直线AB 的斜率存在,设A (x 1,x 12 4),B (x2,x 22 4),直线AB 的方程为y =kx +b ,联立得{y =kx +bx 2=4y,消去y 得x 2-4kx -4b =0, 则Δ=16k 2+16b >0(※),x 1+x 2=4k ,x 1x 2=-4b ,所以|AB |=√1+k 2|x 1-x 2|=√1+k 2·√(x 1+x 2)2−4x 1x 2=4√1+k 2·√k 2+b . 因为x 2=4y ,即y =x 24,所以y ′=x 2,则抛物线在点A 处的切线斜率为x12,在点A 处的切线方程为y −x 12 4=x 12(x -x 1),即y =x 12x −x 12 4,同理得抛物线在点B 处的切线方程为y =x 22x −x 22 4,联立得{y =x 12x −x 124y =x22x -x 22 4,则{x =x 1+x 22=2ky =x 1x 24=−b , 即P (2k ,-b ).因为点P 在圆M 上,所以4k 2+(4-b )2=1 ①,且-1≤2k ≤1,-5≤-b ≤-3,即-12≤k ≤12,3≤b ≤5,满足(※). 设点P 到直线AB 的距离为d ,则d =2√1+k 2,所以S △P AB =12|AB |·d =4√(k 2+b )3.由①得,k 2=1−(4−b )24=−b 2+8b−154, 令t =k 2+b ,则t =−b 2+12b−154,且3≤b ≤5. 因为t =−b 2+12b−154在[3,5]上单调递增,所以当b =5时,t 取得最大值,t max =5,此时k =0,所以△P AB 面积的最大值为20√5.。

2024年高考数学二轮复习专题五解析几何解答题专项5圆锥曲线的综合问题

2024年高考数学二轮复习专题五解析几何解答题专项5圆锥曲线的综合问题
y 轴上滑动,A,B 两点间距离为 1+ 3.点 P 满足 = 3,且点 P 的轨迹为
C.
(1)求 C 的方程;
(2)设 M,N 是 C 上的不同两点,直线 MN 的斜率存在且与曲线 x2+y2=1 相切,
若点 F 为( 2,0),求△MNF 的周长的最大值.
解 (1)设点 P 坐标为(x,y),点 A,B 的坐标分别为(a,0),(0,b).
所以设直线 MN:y=kx+m,M(x1,y1),N(x2,y2).
因为 M,N 是椭圆 C 上的不同两点,所以 k≠0.
||
由直线 MN 与曲线 x +y =1 相切,可得
2
2
=1,
2 +1
= + ,
2 2
2
得 m2=k2+1.联立 2
可得(1+3k
)x
+6kmx+3m
-3=0,
因为-5≤y0≤-3,所以当 y0=-3 时,|FN|min=
2
4
因此 p=2.
(方法二 利用圆的几何意义求最小值)点 F

|FM|-1= +4-1=4,解得
2
p=2.
+ 3 + 9=4.又 p>0,解得 p=2,

0, 2
到圆 M 的距离的最小值为
2


2
(2)(方法一)由(1)知,抛物线 C 的方程为 x =4y,即 y= ,则 y'= .
0 2
2
· (1 + 2 )2 -41 2 =
(02 + 4)(02 -40 ).
1
y= 2 -y1,

2023届高考数学二轮复习专题六解析几何第4讲圆锥曲线中的综合问题(43张)课件(1)全文

2023届高考数学二轮复习专题六解析几何第4讲圆锥曲线中的综合问题(43张)课件(1)全文


--(-)

-


(x-0),即 y=x-2,
).
),直线 lHN:y

=



-
(x-1),即 y=
(+ )

x-2,所以直线 HN 过定点
当直线 MN 的斜率存在时,如图,设 M(x1,y1),N(x2,y2),直线 lMN:y=kx+m(k+m=-2).
= + ,


+ ++ ( --)
-(x1+x2)+6+3(y1+y2)= ++6+ +=
所以 y=
=
-( + )++( + )-
- +
x1y2+x2y1=x1(kx2+m)+x2(kx1+m)=2kx1x2+m(x1+x2)=

又点 M 在直线 y= x 上,所以


-


= ·

=
-
,解得 k=m,因此 PQ∥AB.
-
若选择②③:因为 PQ∥AB,所以直线 AB 的方程为 y=k(x-2),
设 A(xA,yA),B(xB,yB),不妨令点 A 在直线 y= x 上,
= ( -),

所以可设椭圆 E 的方程为 + =1,



又椭圆 E 过 B(,-1),所以+=1,得 a2=3,

所以 E 的方程为 + =1.


2.[圆锥曲线中的定点、定值问题](2022·全国乙卷,T20)已知椭圆 E 的中心为坐标原点,对称轴

四川省高考数学二轮复习:12 圆锥曲线的综合问题

四川省高考数学二轮复习:12 圆锥曲线的综合问题

四川省高考数学二轮复习:12 圆锥曲线的综合问题姓名:________班级:________成绩:________一、 解答题 (共 15 题;共 145 分)1. (10 分) (2017 高二上·临淄期末) 已知椭圆 C:(a>b>0)的左焦点为 F(﹣2,0),离心率为 . (Ⅰ)求椭圆 C 的标准方程;(Ⅱ)设 O 为坐标原点,T 为直线 x=﹣3 上一点,过 F 作 TF 的垂线交椭圆于 P、Q,当四边形 OPTQ 是平行四边 形时,求四边形 OPTQ 的面积.2. (10 分) (2018 高二上·牡丹江期中) 已知椭圆 ,右焦点为 (1) 求椭圆 的标准方程;的离心率为,短轴长为(2) 若直线 经过点且与椭圆 有且仅有一个公共点 ,过点 作直线 交椭圆于另一点①证明:当直线与直线的斜率, 均存在时,.为定值;②求面积的最小值。

3. (10 分) (2019 高三上·常州月考) 如图,在平面直角坐标系 xOy 中,已知椭圆 C:()经过点,设椭圆 C 的左顶点为 A,右焦点为 F,右准线于 x 轴交于点 M,且 F 为线段 AM 的中点,(1) 求椭圆的标准方程;第 1 页 共 20 页(2) 若过点 A 的直线 l 与椭圆 C 交于另一点 P(P 在 x 轴上方),直线 PF 与椭圆 C 相交于另一点 Q,且直线 l 与 OQ 垂直,求直线 PQ 的斜率.4. (10 分) (2020·江西模拟) 已知离心率为 的椭圆为 F,及点,且、、成等比数列.(1) 求椭圆 C 的方程;(2) 斜率不为 0 的动直线 l 过点 P 且与椭圆 C 相交于 M、N 两点,记,试求(O 为坐标原点)面积的取值范围.的左顶点为 A,左焦点,线段上的点 A 满足5. (10 分) 已知椭圆 G 的离心率为 (1) 求椭圆 G 的标准方程;,其短轴的两端点为 A(0,1),B(0,﹣1).(2) 若 C,D 是椭圆 G 上关于 y 轴对称的两个不同的点,直线 BC 与 x 轴交于点 M,判断以线段 MD 为直径的圆 是否过点 A,并说明理由.6. (10 分) (2019·上饶模拟) 已知椭圆 远处的距离为 3.(1) 求椭圆 的方程;(2) 设 求四边形为坐标原点,过 的直线与 面积 的最大值.交于的短轴长等于,右焦点 距 最两点(不在 轴上),若,7. (10 分) (2019·江南模拟) 设 是坐标原点,圆 :,椭圆 的焦点在 轴上,左、右顶点分别为 交点分别为 ,, ,离心率为 ,短轴长为 4.平行 轴的直线 与椭圆 和圆 ,直线 与 轴交于点 ,直线 与 轴交于点 .在 轴右侧的(Ⅰ)求椭圆 的标准方程;(Ⅱ)当时,求 的取值范围.8. (10 分) (2020 高三上·闵行期末) 已知抛物线为.第 2 页 共 20 页和圆,抛物线 的焦点(1) 求 的圆心到 的准线的距离;(2) 若点在抛物线 上,且满足求四边形的面积的取值范围;, 过点 作圆 的两条切线,记切点为,(3) 如图,若直线 与抛物线要条件是“直线 的方程为”和圆依次交于四点,证明:的充9. (10 分) (2020·辽宁模拟) 已知椭圆 C 的中心在原点 O,焦点在 x 轴上,左右焦点分别为 , ,离 心率为 ,右焦点到右顶点的距离为 1.(1) 求椭圆 C 的方程;(2) 过 的直线 l 与椭圆 C 交于不同的两点 , ,则 这个最大值及直线 l 的方程;若不存在,请说明理由.的面积是否存在最大值?若存在,求出10. (10 分) (2018·孝义模拟) 已知抛物线的焦点为 ,为 轴上的点.(1) 当时,过点 作直线 与 相切,求切线 的方程;(2) 存在过点 且倾斜角互补的两条直线 , ,若 , 与 分别交于 , 和 , 四点,且与的面积相等,求实数 的取值范围.11. (10 分)已知椭圆 :的离心率为 , 点和点第 3 页 共 20 页都在椭圆 上,直线 交 x轴于点 M. (1) (Ⅰ)求椭圆 C 的方程,并求点 M 的坐标(用 , 表示); (2) (Ⅱ)设 为原点,点 与点 关于 轴对称,直线 交 X 轴于点 N.问:Y 轴上是否存在点 Q,使得 ?若存在,求点 的坐标;若不存在,说明理由.12. (10 分) (2018 高二上·海口期中) 已知椭圆 C 的中心在原点,离心率等于 ,它的一个短轴端点恰好是抛物线的焦点.(1) 求椭圆 C 的方程; (2) 已知 P(2,3)、Q(2,﹣3)是椭圆上的两点,A,B 是椭圆上位于直线 PQ 两侧的动点,若直线 AB 的斜 率为 ,求四边形 APBQ 面积的最大值;13. (5 分) (2017·淄博模拟) 已知椭圆 C:=1( a>b>0)经过点 (1, ),离心率为 ,点 A 为椭圆 C 的右顶点,直线 l 与椭圆相交于不同于点 A 的两个点 P (x1 , y1),Q (x2 , y2).(Ⅰ)求椭圆 C 的标准方程;(Ⅱ)当 ⋅ =0 时,求△OPQ 面积的最大值; (Ⅲ)若直线 l 的斜率为 2,求证:△APQ 的外接圆恒过一个异于点 A 的定点.14.(5 分)(2020·九江模拟) 在直角坐标系中,已知椭圆左右焦点分别为 , ,过 且斜率不为 0 的直线 l 与椭圆 C 交于 A,B 两点,E,F,的周长为.(Ⅰ)求椭圆 C 的标准方程;第 4 页 共 20 页的离心率为,,的中点分别为(Ⅱ)设的重心为 G,若,求直线 l 的方程.15. (15 分) (2020·平顶山模拟) 已知椭圆, 、 为椭圆的左、右焦点,为椭圆上一点,且.(1) 求椭圆的标准方程;(2) 设直线 直线 于 、,过点 两点,当的直线交椭圆于 、 两点,线段 最小时,求直线 的方程.的垂直平分线分别交直线 、第 5 页 共 20 页一、 解答题 (共 15 题;共 145 分)参考答案1-1、2-1、2-2、第 6 页 共 20 页第 7 页 共 20 页3-1、第 8 页 共 20 页3-2、 4-1、第 9 页 共 20 页第 10 页 共 20 页5-1、5-2、6-1、6-2、7-1、8-1、8-2、8-3、9-1、9-2、10-1、10-2、11-1、11-2、12-1、12-2、14-1、15-1、15-2、。

【课堂新坐标】高三文科数学二轮:1.5.3圆锥曲线中的综合问题(酌情自选)(含答案解析)

【课堂新坐标】高三文科数学二轮:1.5.3圆锥曲线中的综合问题(酌情自选)(含答案解析)

突破点13圆锥曲线中的综合问题(酌情自选)提炼1 解答圆锥曲线的定值、定点问题,从三个方面把握(1)从特殊开始,求出定值,再证明该值与变量无关.(2)直接推理、计算,在整个过程中消去变量,得定值.(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标.提炼2 用代数法求最值与范围问题时从下面几个方面入手(1)若直线和圆锥曲线有两个不同的交点,则可以利用判别式求范围.(2)若已知曲线上任意一点、一定点或与定点构成的图形,则利用圆锥曲线的性质(性质中的范围)求解.(3)利用隐含或已知的不等关系式直接求范围.(4)利用基本不等式求最值与范围.(5)利用函数值域的方法求最值与范围.提炼3与圆锥曲线有关的探索性问题(1)给出问题的一些特殊关系,要求探索出一些规律,并能论证所得规律的正确性.通常要对已知关系进行观察、比较、分析,然后概括出一般规律.(2)对于只给出条件,探求“是否存在”类型问题,一般要先对结论作出肯定存在的假设,然后由假设出发,结合已知条件进行推理,若推出相符的结论,则存在性得到论证;若推出矛盾,则假设不存在.回访1圆锥曲线的定值、定点问题1.(2015·全国卷Ⅱ)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,点(2,2)在C上.(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.[解] (1)由题意有a 2-b 2a =22,4a 2+2b 2=1,2分解得a 2=8,b 2=4.3分 所以C 的方程为x 28+y 24=1.4分(2)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入x 28+y 24=1,得(2k 2+1)x 2+4kbx +2b 2-8=0.6分故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b2k 2+1.8分于是直线OM 的斜率k OM =y M x M =-12k ,即k OM ·k =-12.11分所以直线OM 的斜率与直线l 的斜率的乘积为定值.12分 回访2 圆锥曲线中的最值与范围问题 2.(2014·北京高考)已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.[解] (1)由题意,椭圆C 的标准方程为x 24+y 22=1,2分所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.5分(2)设点A ,B 的坐标分别为(t,2),(x 0,y 0),其中x 0≠0.因为OA ⊥OB ,所以OA →·OB →=0,即tx 0+2y 0=0,解得t =-2y 0x 0.7分又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎫x 0+2y 0x 02+(y 0-2)2=x 20+y 20+4y 20x 20+4=x 20+4-x 202+2 4-x 20 x 20+4=x 202+8x 20+4(0<x 20≤4).12分 因为x 202+8x 20≥4(0<x 20≤4),且当x 20=4时等号成立, 所以|AB |2≥8.故线段AB 长度的最小值为2 2.14分 回访3 与圆锥曲线有关的探索性问题3.(2015·四川高考)如图15-1,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.图15-1(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λP A →·PB →为定值?若存在,求λ的值;若不存在,请说明理由.[解] (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ). 又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2.解得a =2,b = 2.所以椭圆E 的方程为x 24+y 22=1.4分(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0.其判别式Δ=(4k )2+8(2k 2+1)>0,所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1.6分从而,OA →·OB →+λP A →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 = -2λ-4 k 2+ -2λ-1 2k 2+1=-λ-12k 2+1-λ-2.9分所以,当λ=1时,-λ-12k 2+1-λ-2=-3.此时,OA →·OB →+λP A →·PB →=-3为定值.10分 当直线AB 斜率不存在时,直线AB 即为直线CD .此时,OA →·OB →+λP A →·PB →=OC →·OD →+PC →·PD →=-2-1=-3.12分 故存在常数λ=1,使得OA →·OB →+λP A →·PB →为定值-3.13分热点题型1 圆锥曲线中的定值问题题型分析:圆锥曲线中的定值问题是近几年高考的热点内容,解决这类问题的关键是引入变化的参数表示直线方程、数量积、比例关系等,根据等式恒成立,数式变换等寻找不受参数影响的量.(2016·重庆二模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)上一点P ⎝⎛⎭⎫1,32与椭圆右焦点的连线垂直于x 轴,直线l :y =kx +m 与椭圆C 相交于A ,B 两点(均不在坐标轴上).(1)求椭圆C 的标准方程;(2)设O 为坐标原点,若△AOB 的面积为3,试判断直线OA 与OB 的斜率之积是否为定值?【导学号:85952055】[解] (1)由题意知⎩⎪⎨⎪⎧1a 2+94b 2=1,a 2=b 2+1,解得⎩⎪⎨⎪⎧a 2=4,b 2=3,3分∴椭圆C 的标准方程为x 24+y 23=1.4分(2)设点A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +m ,得(4k 2+3)x 2+8kmx +4m 2-12=0,5分 由Δ=(8km )2-16(4k 2+3)(m 2-3)>0,得m 2<4k 2+3.6分 ∵x 1+x 2=-8km 4k 2+3,x 1x 2=4m 2-124k 2+3,∴S △OAB =12|m ||x 1-x 2|=12|m |·434k 2+3-m24k 2+3=3,8分化简得4k 2+3-2m 2=0,满足Δ>0,从而有4k 2-m 2=m 2-3(*),9分∴k OA ·k OB =y 1y 2x 1x 2= kx 1+mkx 2+m x 1x 2=k 2x 1x 2+km x 1+x 2 +m 2x 1x 2=-12k 2+3m 24m 2-12=-34·4k 2-m 2m 2-3,由(*)式,得4k 2-m 2m 2-3=1,∴k OA ·k OB =-34,即直线OA 与OB 的斜率之积为定值-34.12分求解定值问题的两大途径12.先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值.[变式训练1] (2016·北京高考)已知椭圆C :x 2a 2+y 2b 2=1过A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.[解] (1)由题意得a =2,b =1, ∴椭圆C 的方程为x 24+y 2=1.3分又c =a 2-b 2=3,∴离心率e =c a =32.5分(2)证明:设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4.6分又A (2,0),B (0,1),∴直线P A 的方程为y =y 0x 0-2(x -2).令x =0,得y M =-2y 0x 0-2,从而|BM |=1-y M =1+2y 0x 0-2.9分直线PB 的方程为y =y 0-1x 0x +1.令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1.12分∴四边形ABNM 的面积S =12|AN |·|BM |=12⎝⎛⎭⎫2+x 0y 0-1⎝⎛⎭⎫1+2y 0x 0-2 =x 20+4y 20+4x 0y 0-4x 0-8y 0+42 x 0y 0-x 0-2y 0+2=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2. 从而四边形ABNM 的面积为定值.14分热点题型2 圆锥曲线中的最值、范围问题题型分析:圆锥曲线中的最值、范围问题是高考重点考查的内容,解决此类问题常用的方法是几何法和代数法.(2016·全国乙卷)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.[解] (1)因为|AD |=|AC |,EB ∥AC ,所以∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |, 故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4, 所以|EA |+|EB |=4.2分由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0).4分(2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧y =k x -1 ,x 24+y 23=1,得(4k 2+3)x 2-8k 2x +4k 2-12=0, 则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3.所以|MN |=1+k 2|x 1-x 2|=12 k 2+14k 2+3.过点B (1,0)且与l 垂直的直线m :y =-1k (x -1),点A 到直线m 的距离为2k 2+1,6分所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积 S =12|MN || PQ |=121+14k 2+3.8分 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).10分 当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,故四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为[12,83).12分与圆锥曲线有关的取值范围问题的三种解法1.数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解. 2.构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解. 3.构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.[变式训练2] (名师押题)已知抛物线C :x 2=2py (p >0),过其焦点作斜率为1的直线l 交抛物线C 于M ,N 两点,且|MN |=16.(1)求抛物线C 的方程;(2)已知动圆P 的圆心在抛物线C 上,且过定点D (0,4),若动圆P 与x 轴交于A ,B 两点,求|DA ||DB |+|DB ||DA |的最大值.[解] (1)设抛物线的焦点为F ⎝⎛⎭⎫0,p 2,则直线l :y =x +p 2. 由⎩⎪⎨⎪⎧y =x +p 2,x 2=2py ,得x 2-2px -p 2=0, ∴x 1+x 2=2p ,∴y 1+y 2=3p , ∴|MN |=y 1+y 2+p =4p =16,∴p =4, ∴抛物线C 的方程为x 2=8y .4分(2)设动圆圆心P (x 0,y 0),A (x 1,0),B (x 2,0),则x 20=8y 0,且圆P :(x -x 0)2+(y -y 0)2=x 20+(y 0-4)2,令y =0,整理得x 2-2x 0x +x 20-16=0, 解得x 1=x 0-4,x 2=x 0+4,6分 设t =|DA ||DB |=x 0-4 2+16x 0+4 2+16=x 20-8x 0+32x 20+8x 0+32=1-16x 0x 20+8x 0+32, 当x 0=0时,t =1, ①7分 当x 0≠0时,t =1-16x 0+8+32x 0.∵x 0>0,∴x 0+32x 0≥82,∴t ≥1-168+82=3-22=2-1,且t <1, ② 综上①②知2-1≤t ≤1.9分∵f (t )=t +1t 在[2-1,1]上单调递减,∴|DA ||DB |+|DB ||DA |=t +1t ≤2-1+12-1=22, 当且仅当t =2-1,即x 0=42时等号成立. ∴|DA ||DB |+|DB ||DA |的最大值为2 2.12分 热点题型3 圆锥曲线中的探索性问题题型分析:探索性问题一般分为探究条件和探究结论两种类型,若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,否则不存在.若探究结论,则应先写出结论的表达式,再针对表达式进行讨论,往往涉及对参数的讨论.(2016·长沙二模)如图15-2,在平面直角坐标系xOy 中,已知F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A ,B 分别是椭圆E 的左、右顶点,D (1,0)为线段OF 2的中点,且AF 2→+5BF 2→=0.图15-2(1)求椭圆E 的方程;(2)若M 为椭圆E 上的动点(异于点A ,B ),连接MF 1并延长交椭圆E 于点N ,连接MD ,ND 并分别延长交椭圆E 于点P ,Q ,连接PQ ,设直线MN ,PQ 的斜率存在且分别为k 1,k 2.试问是否存在常数λ,使得k 1+λk 2=0恒成立?若存在,求出λ的值;若不存在,说明理由.[解题指导] (1)D 为OF 2的中点→求c →AF 2→+5BF 2→=0→a 与c 的关系→椭圆方程 (2)假设存在常数λ→设点M ,N ,P ,Q 的坐标→直线MD 的方程与椭圆方程联立→用点M 的坐标表示点P ,Q 的坐标→点M ,F 1,N 共线→得到点M ,N 坐标的关系→求k 2→得到k 1与k 2的关系[解] (1)∵AF 2→+5BF 2→=0,∴AF 2→=5F 2B →,∵a +c =5(a -c ),化简得2a =3c ,又点D (1,0)为线段OF 2的中点,∴c =2,从而a =3,b =5,左焦点F 1(-2,0),故椭圆E 的方程为x 29+y 25=1.4分 (2)假设存在满足条件的常数λ,使得k 1+λk 2=0恒成立, 设M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q (x 4,y 4),则直线MD 的方程为x =x 1-1y 1y +1,代入椭圆方程x 29+y 25=1,整理得,5-x 1y 21y 2+x 1-1y 1y-4=0,6分∵y 1+y 3=y 1 x 1-1 x 1-5,∴y 3=4y 1x 1-5,从而x 3=5x 1-9x 1-5,故点P ⎝ ⎛⎭⎪⎫5x 1-9x 1-5,4y 1x 1-5,同理,点Q ⎝⎛⎭⎪⎫5x 2-9x 2-5,4y 2x 2-5.8分∵三点M ,F 1,N 共线,∴y 1x 1+2=y 2x 2+2,从而x 1y 2-x 2y 1=2(y 1-y 2),从而k 2=y 3-y 4x 3-x 4=4y 1x 1-5-4y 2x 2-55x 1-9x 1-5-5x 2-9x 2-5=x 1y 2-x 2y 1+5 y 1-y 2 4 x 1-x 2 =7 y 1-y 2 4 x 1-x 2 =7k 14,故k 1-4k 27=0,从而存在满足条件的常数λ,λ=-47.12分探索性问题求解的思路及策略1.思路:先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.2.策略:(1)当条件和结论不唯一时要分类讨论;(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.[变式训练3] (2016·哈尔滨二模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点分别为F 1(-3,0),F 2(3,0),点P 在椭圆C 上,满足|PF 1|=7|PF 2|,tan ∠F 1PF 2=4 3. (1)求椭圆C 的方程;(2)已知点A (1,0),试探究是否存在直线l :y =kx +m 与椭圆C 交于D ,E 两点,且使得|AD |=|AE |?若存在,求出k 的取值范围;若不存在,请说明理由.【导学号:85952056】[解] (1)由|PF 1|=7|PF 2|,PF 1+PF 2=2a 得PF 1=7a 4,PF 2=a4.2分由余弦定理得cos ∠F 1PF =17=⎝⎛⎭⎫7a 42+⎝⎛⎭⎫a 42- 23 22×7a 4×a 4,∴a =2,∴所求C 的方程为x 24+y 2=1.4分(2)假设存在直线l 满足题设,设D (x 1,y 1),E (x 2,y 2),将y =kx +m 代入x 24+y 2=1并整理得(1+4k 2)x 2+8kmx +4m 2-4=0,由Δ=64k 2m 2-4(1+4k 2)(4m 2-4)=-16(m 2-4k 2-1)>0,得4k 2+1>m 2.①6分又x 1+x 2=-8km1+4k 2.设D ,E 中点为M (x 0,y 0),M ⎝⎛⎭⎫-4km 1+4k 2,m 1+4k 2,k AM k =-1,得m =-1+4k23k ,②8分将②代入①得4k 2+1>⎝⎛⎭⎫1+4k 23k 2,化简得20k 4+k 2-1>0⇒(4k 2+1)(5k 2-1)>0,解得k>55或k <-55,所以存在直线l ,使得|AD |=|AE |,此时k 的取值范围为⎝⎛⎭⎫-∞,-55∪⎝⎛⎭⎫55,+∞.12分。

第3讲 圆锥曲线的综合问题 高考数学(文科)二轮复习

第3讲 圆锥曲线的综合问题 高考数学(文科)二轮复习

第3讲圆锥曲线的综合问题[选题明细表]知识点、方法题号直线与圆锥曲线的位置关系2,3,6,8,9,10 相交弦或中点弦问题1,4,5,7,11 涉及直线与圆锥曲线的几何证明12一、选择题1.(2019·西安模拟)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是( C )(A)4 (B)3 (C)4 (D)8解析:因为y2=4x,所以F(1,0),l:x=-1,直线l 1:y=(x-1),联立解得x=3或x=(舍去),故A(3,2),所以AK=4,所以S △AKF=×4×2=4.故选C.2.(2019·安徽皖南八校联考)若直线ax+by-3=0与圆x2+y2=3没有公共点,设点P的坐标为(a,b),则过点P的一条直线与椭圆+=1的公共点的个数为( C )(A)0 (B)1 (C)2 (D)1或2解析:由题意得,圆心(0,0)到直线ax+by-3=0的距离为>,所以a2+b2<3.又a,b不同时为零,所以0<a2+b2<3.由0<a2+b2<3,可知|a|<,|b|<,由椭圆的方程知其长半轴长为2,短半轴长为,所以P(a,b)在椭圆内部,所以过点P的一条直线与椭圆+=1的公共点有2个,故选C. 3.(2019·郴州模拟)过点P(-,0)作直线l与圆O:x2+y2=1交于A,B 两点,O为坐标原点,设∠AOB=θ,且θ∈(0,),当△AOB的面积为时,直线l的斜率为( B )(A) (B)± (C) (D)±解析:因为△AOB的面积为,所以×1×1×sin θ=,所以sin θ=.因为θ∈(0,),所以θ=,所以圆心到直线l的距离为.设直线l的方程为y=k(x+),即kx-y+k=0,所以=,所以k=±.4.(2019·江西五市八校模拟)已知直线y=1-x与双曲线ax2+by2=1(a>0,b<0)的渐近线交于A,B两点,且过原点和线段AB中点的直线的斜率为-,则的值为( A )(A)-(B)-(C)-(D)-解析:由双曲线ax2+by2=1知其渐近线方程为ax2+by2=0,设A(x 1,y1),B(x2,y2),则有a+b=0①,a+b=0②,由①-②得a(-)=-b(-).即a(x1+x2)(x1-x2)=-b(y1+y2)(y1-y2),由题意可知x1≠x2,且x1+x2≠0,所以·=-,设AB的中点为M(x0,y0),则k OM====-,又知k AB=-1,所以-×(-1)=-,所以=-,故选A.5.(2019·河北石家庄二中模拟)已知直线l1与双曲线C:-=1(a>0,b>0)交于A,B两点,且AB的中点M的横坐标为b,纵坐标不为0,过M且与直线l1垂直的直线l2过双曲线C的右焦点,则双曲线的离心率为( B )(A)(B)(C)(D)解析:由题意知直线l1与l2的斜率存在且都不为0.设A(x1,y1),B(x2,y2),M(b,y M),由得-=0.又则可得a2=bc,即a4=(c2-a2)c2,有e4-e2-1=0,得e2=,所以e=.6.(2019·贵州贵阳模拟)已知双曲线x2-y2=1的左、右顶点分别为A1,A2,动直线l:y=kx+m与圆x2+y2=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1),P2(x2,y2),则x2-x1的最小值为( A )(A)2 (B)2 (C)4 (D)3解析:因为l与圆相切,所以原点到直线的距离d==1,所以m2=1+k2,由得(1-k2)x2-2mkx-(m2+1)=0,所以所以k2<1,所以-1<k<1,由于x1+x2=,所以x2-x1===,因为0≤k2<1,所以当k2=0时,x 2-x1取最小值2.故选A.二、填空题7.过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点.若|AF|=3,则|BF|= .解析:抛物线y2=4x的准线为x=-1,焦点为F(1,0),设A(x1,y1), B(x 2,y2).由抛物线的定义可知|AF|=x1+1=3,所以x1=2,所以y1=±2,由抛物线关于x轴对称,假设A(2,2),由A,F,B三点共线可知直线AB的方程为y-0=2(x-1),代入抛物线方程消去y得2x2-5x+2=0,求得x=2或,所以x2=,故|BF|=.答案:8.已知双曲线-=1(a>0,b>0)的焦距为2c,右顶点为A,抛物线x2=2py(p>0)的焦点为F.若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的渐近线方程为.解析:抛物线x2=2py的准线方程为y=-,与双曲线的方程联立得x2=a2(1+),根据已知得a2(1+)=c2①.由|AF|=c,得+a2=c2②.由①②可得a2=b2,即a=b,所以所求双曲线的渐近线方程是y=±x.答案:y=±x9.(2019·安徽省蚌埠市二中一模)已知椭圆+=1(a>b>0)的离心率为,过椭圆上一点M作直线MA,MB交椭圆于A,B两点,且斜率分别为k1,k2,若点A,B关于原点对称,则k1·k2的值为.解析:因为椭圆+=1(a>b>0)的离心率是e===,化简得a=2b,于是椭圆的方程可化为x2+4y2=4b2.设M(m,n),直线AB的方程为y=kx,可设A(x0,kx0),B(-x0,-kx0).则m2+4n2=4b2,+4k2=4b2,m2-=4k2-4n2,所以k1·k2=·===-,即k1·k2=-.答案:-10.(2019·福建四地六校模拟)已知抛物线C:y2=4x的焦点为F,直线l过点F与抛物线C交于A,B两点,且|AB|=6,若AB的垂直平分线交x 轴于P点,则P点的坐标为.解析:由抛物线y2=4x,得p=2,易知直线l的斜率存在,设经过点F的直线l:y=k(x-1),A(x1,y1),B(x2,y2),将y=k(x-1)代入y2=4x,得k2x2 - (2k2+4)x+k2=0,所以x1+x2=2+,利用抛物线定义得,x1+x2= |AB|-p=6-2=4,即2+=4,所以k=±,因为AB中点坐标为(2,k),所以AB的垂直平分线方程为y-k=-·(x-2),令y=0,得x=4,即P点的坐标为(4,0). 答案:(4,0)三、解答题11.(2018·北京模拟)已知椭圆C:+=1(a>b>0)的离心率为,椭圆的短轴端点与双曲线-x2=1的焦点重合,过点P(4,0)且不垂直于x轴的直线l与椭圆C相交于A,B两点.(1)求椭圆C的方程;(2)求·的取值范围.解:(1)由题意知e==,所以e2===,所以a2=b2.因为双曲线-x2=1的焦点坐标为(0,±),所以b=,所以a2=4,所以椭圆C的方程为+=1.(2)当直线l的倾斜角为0°时,不妨令A(-2,0),B(2,0),则·=-4,当直线l的倾斜角不为0°时,设其方程为x=my+4,由⇒(3m2+4)y2+24my+36=0,由Δ>0⇒(24m)2-4×(3m2+4)×36>0⇒m2>4,设A(my1+4,y1),B(my2+4,y2).因为y1+y2=-,y1y2=,所以·=(my1+4)(my2+4)+y1y2=m2y1y2+4m(y1+y2)+16+y1y2=-4, 因为m2>4,所以·∈(-4,).综上所述,·的取值范围为[-4,).12.(2017·北京卷)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.(1)解:由抛物线C:y2=2px过点P(1,1),得p=.所以抛物线C的方程为y2=x.抛物线C的焦点坐标为(,0),准线方程为x=-.(2)证明:由题意,设直线l的方程为y=kx+(k≠0),l与抛物线C的交点为M(x1,y1),N(x2,y2).由得4k2x2+(4k-4)x+1=0.则x1+x2=,x1x2=.因为点P的坐标为(1,1),所以直线OP的方程为y=x,点A的坐标为(x1,x1).直线ON的方程为y=x,点B的坐标为(x1,).因为y1+-2x1=====0,所以y1+=2x1.故A为线段BM的中点.。

高考文科数学二轮专题复习讲义圆锥曲线的综合问题

高考文科数学二轮专题复习讲义圆锥曲线的综合问题

1.解决圆锥曲线中范围问题的方法
一般题目中没有给出明确的不等关系,首先需要根据已知条件进行转化,利用圆锥曲线的几何性质及曲线上点的坐标确定不等关系;然后构造目标函数,把原问题转化为求函数的值域或引入参数根据参数范围求解,解题时应注意挖掘题目中的隐含条件,寻找量与量之间的转化.
2.圆锥曲线中最值的求解策略
(1)数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解.
(2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.
(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.。

2022届高考数学二轮复习:圆锥曲线的综合问题(大题细做)

2022届高考数学二轮复习:圆锥曲线的综合问题(大题细做)
②根据曲线(包含直线)过定点时与参数没有关系(即方程对参数的任意值都成立),得 到方程组fg((xx,,yy))==00,;
③以②中方程组的解为坐标的点就是曲线所过的定点,若定点具备一定的限制条件, 可以特殊解决.
栏目导航
10
好题精练——练技巧、练规范 1.(2021·安徽宣城9月调研)已知抛物线C:y2=2px(0<p<8)的焦点为F,点Q是抛物 线C上的一点,且点Q的纵坐标为4,点Q到焦点的距离为5. (1)求抛物线C的方程; (2)设直线l不经过点Q且与抛物线C交于A,B两点,直线QA,QB的斜率分别为k1, k2,若k1k2=-2,证明直线AB过定点,并求出此定点.
栏目导航
12
由(1)可得 Q(4,4),易知 x1≠4,x2≠4,则 k1·k2=yx11- -44·yx22- -44=-2, 即(y1-4)(y2-4)=-2(x1-4)(x2-4), 即(y1-4)(y2-4)=-2(my1+b-4)(my2+b-4), 整理可得(1+2m2)y1y2+(2mb-8m-4)(y1+y2)+2b2-16b+48=0, 将 y1+y2=4m,y1y2=-4b 代入,可得 b2-10b+24=16m2+8m,即(b-5)2=(1+4m)2, 所以 b-5=1+4m 或 b-5=-1-4m. 即 b=6+4m 或 b=4-4m. 当 b=6+4m 时,直线 AB 的方程为 x=my+6+4m, 即 x-6-m(y+4)=0,根据xy- +64= =00, ,可得yx==-6,4,此时直线 AB 恒过定点(6,-4).
栏目导航
6
将 x=my+n 代入x92+y2=1,得 (m2+9)y2+2mny+n2-9=0. 卡壳点:直线与椭圆关系的应用 所以 y1+y2=-m22m+n9,y1y2=mn22-+99. 代入③式得(27+m2)(n2-9)-2m(n+3)mn+(n+3)2·(m2+9)=0. 解得 n=-3(舍去)或 n=23. 故直线 CD 的方程为 x=my+23, 关键点:CD的直线方程

高三数学圆锥曲线的综合

高三数学圆锥曲线的综合
2、对于求曲线方程中参数范围问题,应根据 题设条件及曲线的几何性质构造参数满足的不 等式,通过解不等式求得参数的范围;或建立 关于参数的目标函数,转化为函数的值域来解
四.作业: 教材P136 闯关训练。
; 造句网 调养咯三各月,才因为要过新年咯,勉强暂停咯用药,但身体还是很虚弱的,这壹次,被腊月里的刺骨寒风壹吹,冰凝就彻底地倒下咯。 早上起来后,她的头正如她所祈祷的那般地昏昏沉沉起来,但她还是挣扎着起咯床,去霞光苑请咯安。待她头重脚轻地回咯怡然居,吟雪 越看越觉得丫鬟有些不对劲:“丫鬟,您是不是生病咯?怎么脸色这么差?”“没有啊!昨天晚上看书看得有些晚咯。”“啊?奴婢走的 时候,您不是都躺下咯吗?怎么又起来看书咯?”“嗯,躺咯半天都没有睡着,想想反正也是睡不着,索性就起来看咯会子书。”“丫鬟 啊!你身子还没有好,又大夜里看书,这身子怎么受得咯啊!”吟雪壹听冰凝居然大半夜起来看书,惹得身子又不舒服,急得眼泪都快掉 咯下来。冰凝知道吟雪担心,但是她还在拖延,她怕请太医来得太早,病好得太快,明天还要去参加宫宴,她不就白白地生咯壹场病吗? 于是壹上午她都躲着吟雪远远的,生怕她发现自己已经生病咯,早早地地去请太医。终于,当冰凝好不容易耗到午休结束以后,才气若游 丝般地吩咐吟雪去请太医,第壹卷 第188章 除夕此刻,正是大年三十除夕夜。王爷带着福晋和李侧福晋早早出发赶赴宫宴,惜月和韵音 原本就是要好的好姐妹,现在又壹同在府里安心养胎,因此等爷和福晋他们壹走,考虑到惜月的月份比较大,行动不如韵音方便,于是两 各人就集中到咯惜月的院子,主子奴才们聚在壹起,快快乐乐地过起咯年。她们合在壹起过年,奴才们也高兴。因为两各人都怀咯身孕, 她们的饮食全都由王爷的专用厨房承担起来,平时都是分别给两位主子送饭送汤送茶点,今天她们挪到咯壹起,奴才们也可以少跑壹趟路, 相当于少伺候壹各主子,就可以早些收工回去过自己的年,当然是高兴不已。宋格格和武格格同是天涯沦落人,原本两人也没有太多的交 往,但眼看着惜月和韵音两各人合在壹起过年,武格格的心里格外地难过起来。武格格闺名云芳,比春枝、淑清、雅思琦她们进府都晚, 却是在这王府里的位置最尴尬:她没有春枝的资历老,没有淑清的样貌美,没有福晋的地位高,而且她还是这府里唯壹壹各从未曾为王爷 生育过儿女的后院诸人。虽然福晋和春枝的小阿哥、小格格幼年即殇,但毕竟她们还曾经做过母亲。现在,眼看着又年轻又美貌,家世又 显赫的冰凝妹妹嫁进咯王府,同时惜月和韵音接二连三地传来咯好消息,云芳的心中愈发地伤感起来。特别是眼前,这各大年三十就更觉 得凄苦。想来想去,她还是决定来到宋格格的院子。春枝壹见来的是很少私下往来的云芳,十分诧异:“哟,今天是啥啊风啊,把妹妹给 吹到这里来咯?”“春枝姐姐,妹妹见着惜月和韵音她们合到壹
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲圆锥曲线中的综合问题圆锥曲线中的定点、定值问题(5年3考)1.(2017·全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .切入点:①点M 在椭圆C 上,且MN ⊥x 轴;②NP →=2NM →.关键点:将OP →·PQ →=1转化为向量的坐标运算,进而证明直线l 过C 的左焦点F .[解] (1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP →=(x -x 0,y ),NM →=(0,y 0). 由NP →=2NM →得x 0=x ,y 0=22y .因为M (x 0,y 0)在C 上,所以x 22+y 22=1. 因此点P 的轨迹方程为x 2+y 2=2.(2)证明:由题意知F (-1,0).设Q (-3,t ),P (m ,n ),则 OQ →=(-3,t ),PF →=(-1-m ,-n ),OQ →·PF →=3+3m -tn , OP →=(m ,n ),PQ →=(-3-m ,t -n ). 由OP →·PQ →=1得-3m -m 2+tn -n 2=1. 又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以OQ →·PF →=0,即OQ →⊥PF →.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .角度二:定值问题2.(2019·全国卷Ⅰ)已知点A ,B 关于坐标原点O 对称,|AB |=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,|MA |-|MP |为定值?并说明理由. 切入点:①⊙M 过点A ,B ;②⊙M 与直线x +2=0相切.关键点:①确定圆心M 的坐标;②选用合适的参数表示|MA |-|MP |的值. [解] (1)因为⊙M 过点A ,B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线x +y =0上,且A ,B 关于坐标原点O 对称,所以M 在直线y =x 上,故可设M (a ,a ).因为⊙M 与直线x +2=0相切,所以⊙M 的半径为r =|a +2|.由已知得|AO |=2,又MO ⊥AO ,故可得2a 2+4=(a +2)2,解得a =0或a =4. 故⊙M 的半径r =2或r =6.(2)存在定点P (1,0),使得|MA |-|MP |为定值. 理由如下:设M (x ,y ),由已知得⊙M 的半径为r =|x +2|,|AO |=2.由于MO ⊥AO ,故可得x 2+y 2+4=(x +2)2,化简得M 的轨迹方程为y 2=4x . 因为曲线C :y 2=4x 是以点P (1,0)为焦点,以直线x =-1为准线的抛物线,所以|MP|=x+1.因为|MA|-|MP|=r-|MP|=x+2-(x+1)=1,所以存在满足条件的定点P.=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0.即(2k +1)·4m 2-44k 2+1+(m -1)·-8km 4k 2+1=0,解得k =-m +12.当且仅当m >-1时,Δ>0, 于是l :y =-m +12x +m , 即y +1=-m +12(x -2), 所以l 过定点(2,-1).2.(2018·北京高考)已知抛物线C :y 2=2px 经过点P (1,2),过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值. [解] (1)因为抛物线y 2=2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0), 由⎩⎨⎧y 2=4x ,y =kx +1,得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2×1>0, 解得k <0或0<k <1.又P A ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)证明:设A (x 1,y 1),B (x 2,y 2).1.(定点问题)已知抛物线C :y 2=2px (p >0)的焦点为F ,点P (1,a )在此抛物线上,|PF |=2,不过原点的直线l 与抛物线C 交于A ,B 两点,以AB 为直径的圆M 过坐标原点.(1)求抛物线C 的方程; (2)证明:直线l 恒过定点;(3)若线段AB 中点的纵坐标为2,求此时直线l 和圆M 的方程. [解] (1)由题意可得1+p2=2,解得p =2,故抛物线C 的方程为y 2=4x . (2)证明:设直线l 的方程为:x =my +t (t ≠0),A (x 1,y 1),B (x 2,y 2). 联立⎩⎨⎧x =my +t ,y 2=4x ,消去x ,得y 2-4my -4t =0,Δ>0,∴y 1+y 2=4m ,y 1·y 2=-4t . ∵以AB 为直径的圆恒过原点O ,∴OA →·OB →=x 1x 2+y 1y 2=0, 又x 1x 2=(my 1+t )(my 2+t ), ∴(m 2+1)·y 1y 2+mt (y 1+y 2)+t 2=0, ∴-4t (m 2+1)+4m 2t +t 2=0, 化为t 2-4t =0,t ≠0,解得t =4. ∴直线l 的方程为:x =my +4.令y =0,可得x =4.因此直线l 恒过定点(4,0). (3)线段AB 中点的纵坐标为2. ∵y 1+y 2=4m , ∴2m =2,即m =1, ∵直线l 恒过定点(4,0). ∴4=0+t ,即t =4, ∴直线l 的方程为x =y +4,∵线段AB 的中点坐标(6,2)即为圆的圆心坐标, 设圆的方程为(x -6)2+(y -2)2=r 2, 把(0,0)代入可得r 2=40.故圆的方程为(x -6)2+(y -2)2=40.2.(定值问题)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长为4,离心率为12. (1)求椭圆C 的方程;(2)若直线l 1:y =kx 交椭圆C 于A ,B 两点,点M 在椭圆C 上,且不与A ,B 两点重合,直线MA ,MB 的斜率分别为k 1,k 2.求证:k 1,k 2之积为定值.[解] (1)由题意知,2a =4,c a =12, ∴a =2,c =1 ∴b 2=a 2-c 2=3, 即椭圆方程为x 24+y 23=1.(2)证明:把y =kx 代入3x 2+4y 2=12,得(4k 2+3)x 2-12=0, 设A (x 1,y 1),B (x 2,y 2),则:x 1+x 2=0,x 1x 2=-124k 2+3,y 1+y 2=kx 1+kx 2=0,y 1y 2=k 2x 1x 2=-12k24k 2+3,∴k 1k 2=y 1-y x 1-x ·y 2-y x 2-x =y 1y 2-y (y 1+y 2)+y 2x 1x 2-(x 1+x 2)x +x 2,=y 1y 2+y 2x 1x 2+x 2=-12k 24k 2+3+y 2-124k 2+3+x 2=-12k 24k 2+3+3⎝ ⎛⎭⎪⎫1-x 24-124k 2+3+x 2 =-34×-124k 2+3+x 2-124k 2+3+x 2=-34.故k 1,k 2之积为定值-34.圆锥曲线中的最值、范围问题(5年2考)(2016·全国卷Ⅱ)已知A是椭圆E:x4+y3=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(1)当|AM|=|AN|时,求△AMN的面积;(2)当2|AM|=|AN|时,证明:3<k<2.切入点:①MA⊥NA;②|AM|=|AN|;③2|AM|=|AN|.关键点:①由MA⊥NA,|MA|=|NA|确定直线AM的倾斜角,进而求出AM的方程;②借助一元二次方程根与系数的关系及弦长公式,根据2|AM|=|AN|建立关于k的方程,再借助导数解决问题.[解](1)设M(x1,y1),则由题意知y1>0.由已知及椭圆的对称性知,直线AM的倾斜角为π4.又A(-2,0),因此直线AM的方程为y=x+2.将x=y-2代入x24+y23=1得7y2-12y=0.解得y=0或y=127,所以y1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449. (2)证明:设直线AM 的方程为y =k (x +2)(k >0), 代入x 24+y 23=1得(3+4k 2)x 2+16k 2x +16k 2-12=0. 由x 1·(-2)=16k 2-123+4k 2得x 1=2(3-4k 2)3+4k 2,故|AM |=|x 1+2|1+k 2=121+k 23+4k 2.由题意,设直线AN 的方程为y =-1k (x +2), 故同理可得|AN |=12k 1+k 23k 2+4.由2|AM |=|AN |得23+4k 2=k3k 2+4, 即4k 3-6k 2+3k -8=0.设f (t )=4t 3-6t 2+3t -8,则k 是f (t )的零点.f ′(t )=12t 2-12t +3=3(2t -1)2≥0,所以f (t )在(0,+∞)单调递增.又f (3)=153-26<0,f (2)=6>0,因此f (t )在(0,+∞)上有唯一的零点,且零点k 在(3,2)内,所以3<k <2.[教师备选题]1.(2018·浙江高考)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△P AB 面积的取值范围.[解] (1)证明:设P (x 0,y 0),A ⎝ ⎛⎭⎪⎫14y 21,y 1,B ⎝ ⎛⎭⎪⎫14y 22,y 2.因为P A ,PB 的中点在抛物线上, 所以y 1,y 2为方程⎝⎛⎭⎪⎫y +y 022=4·14y 2+x 02,即y 2-2y 0y +8x 0-y 20=0的两个不同的实根. 所以y 1+y 2=2y 0, 因此,PM 垂直于y 轴. (2)由(1)可知,⎩⎨⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20, 所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0, |y 1-y 2|=22(y 20-4x 0). 因此,△P AB 的面积S △P AB =12|PM |·|y 1-y 2|=324(y 20-4x 0)32. 因为x 20+y 24=1(x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5],因此,△P AB 面积的取值范围是⎣⎢⎡⎦⎥⎤62,15104. 2.(2017·山东高考)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆C 截直线y =1所得线段的长度为2 2.(1)求椭圆C 的方程;(2)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |.设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.[解] (1)由椭圆的离心率为22, 得a 2=2(a 2-b 2),又当y =1时,x 2=a 2-a 2b 2,得a 2-a 2b 2=2,所以a 2=4,b 2=2. 因此椭圆方程为x 24+y 22=1.(2)设A (x 1,y 1),B (x 2,y 2). 联立方程,得⎩⎪⎨⎪⎧y =kx +m ,x 24+y 22=1,得(2k 2+1)x 2+4kmx +2m 2-4=0. 由Δ>0得m 2<4k 2+2,(*) 且x 1+x 2=-4km2k 2+1,因此y 1+y 2=2m2k 2+1,所以D ⎝ ⎛⎭⎪⎫-2km 2k 2+1,m 2k 2+1.又N (0,-m ),所以|ND |2=⎝ ⎛⎭⎪⎫-2km 2k 2+12+⎝ ⎛⎭⎪⎫m 2k 2+1+m 2,整理得|ND |2=4m 2(1+3k 2+k 4)(2k 2+1)2.因为|NF |=|m |,所以|ND |2|NF |2=4(k 4+3k 2+1)(2k 2+1)2=1+8k 2+3(2k 2+1)2.令t =8k 2+3,t ≥3, 故2k 2+1=t +14.所以|ND |2|NF |2=1+16t (1+t )2=1+16t +1t +2. 令y =t +1t , 所以y ′=1-1t 2. 当t ≥3时,y ′>0,从而y =t +1t 在[3,+∞)上单调递增, 因此t +1t ≥103,(4)利用已知不等关系构造不等式,从而求出参数的取值范围; (5)利用函数值域的求法,确定参数的取值范围.1.(最值问题)(2019·佛山二模)已知F 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,过原点O 的动直线l 与C 交于A ,B 两点.当A 的坐标为⎝⎛⎭⎪⎫1,255时,|OB |=|BF |. (1)求椭圆C 的标准方程;(2)延长BF 交椭圆C 于Q ,求△QAB 的面积的最大值. [解] (1)由A ⎝ ⎛⎭⎪⎫1,255,得B ⎝ ⎛⎭⎪⎫-1,-255, 而|OB |=|BF |,∴F (-2,0),即c =2. 由⎩⎪⎨⎪⎧1a 2+45b 2=1,a 2=b 2+4,解得a 2=5,b 2=1.∴椭圆C 的标准方程为x 25+y 2=1.(2)当直线BF 斜率不存在时,BF 的方程为:x =-2, 此时B ⎝ ⎛⎭⎪⎫-2,-55,|BQ |=255,A ⎝ ⎛⎭⎪⎫2,55,S △QAB =12×255×2=255;当BF 所在直线斜率存在时,设BF 的方程为:y =k (x +2)(k ≠0).联立⎩⎪⎨⎪⎧y =k (x +2),x 25+y 2=1,得(1+5k 2)x 2+20k 2x +20k 2-5=0.设B (x 1,y 1),Q (x 2,y 2), 则x 1+x 2=-20k 21+5k 2,x 1x 2=20k 2-51+5k 2.则|BQ |=1+k 2(x 1+x 2)2-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫-20k 21+5k 22-80k 2-201+5k 2 =1+k 2·251+k 21+5k 2.O 到BQ 的距离d =|2k |1+k 2,则A 到BQ 的距离为4|k |1+k2. ∴S △QAB =12·1+k 2·251+k 21+5k 2·4|k |1+k 2=45k 4+k 21+5k 2.令1+5k 2=t (t >1),则S △QAB =45·-425⎝ ⎛⎭⎪⎫1t 2+325×1t +125.当1t =38时,(S △QAB )max = 5. 综上,△QAB 的面积的最大值为 5.2.(范围问题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)上的点到右焦点F (c,0)的最大距离是2+1,且1,2a,4c 成等比数列.(1)求椭圆的方程;(2)过点F 且与x 轴不垂直的直线l 与椭圆交于A ,B 两点,线段AB 的中垂线交x 轴于点M (m,0),求实数m 的取值范围.[解](1)由题意可知,⎩⎨⎧a +c =2+1,1·4c =2a 2,a 2=b 2+c 2,解之得⎩⎨⎧a =2,b =1,c =1,故椭圆的方程为x 22+y 2=1.(2)由题意得F (1,0),设AB 的方程为y =k (x -1),由⎩⎨⎧x 2+2y 2=2,y =k (x -1),消去y 得(1+2k 2)x 2-4k 2x +2k 2-2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k 21+2k 2,y 1+y 2=k (x 1+x 2)-2k =-2k 1+2k 2,可得线段AB 的中点N ⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2,当k =0时,直线MN 为y 轴,此时m =0.当k ≠0时,直线MN 的方程为y +k 1+2k 2=-1k ⎝ ⎛⎭⎪⎫x -2k 21+2k 2,令y =0得m =k 21+2k 2=11k 2+2∈⎝ ⎛⎭⎪⎫0,12, 综上可知,实数m 的取值范围为⎣⎢⎡⎭⎪⎫0,12.圆锥曲线中的探索性问题(5年2考)[高考解读] 高考对探究性问题要求较低,考查频次较少,本题考查抛物线的概念和标准方程以及抛物线与直线的关系,考查考生的逻辑推理、数学运算的核心素养以及应用解析几何方法解决几何问题的能力.物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由. 切入点:①l :y =t (t ≠0); ②M 关于点P 的对称点为N ; ③ON 的延长线交C 于点H .关键点:①通过直线l 与y 轴及抛物线C 的交点确定N 点,由此确定H 点,求出N 点、H 点的坐标;②将直线与抛物线的交点问题转化为方程组解的问题. [解] (1)如图,由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t .又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t ,故直线ON 的方程为y =pt x ,将其代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t 2p .因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点.理由如下: 直线MH 的方程为y -t =p 2t x ,即x =2tp (y -t ). 代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t , 即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.1.(最值的存在性问题)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,且经过点⎝⎛⎭⎪⎫1,-32. (1)求椭圆C 的标准方程;(2)[一题多解]过椭圆C 的右焦点F 的直线l 与椭圆C 相交于A ,B 两点,点B 关于x 轴的对称点为H ,试问△AFH 的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.[解] (1)由e =c a =32可设a =2t ,c =3t (t >0),所以b =a 2-c 2=t ,即椭圆C 的方程为x 24t 2+y 2t 2=1, 把点⎝⎛⎭⎪⎫1,-32代入椭圆C 的方程得t =1, 所以a =2,b =1,所以椭圆C 的标准方程为x 24+y 2=1.(2)法一:显然直线l 的斜率存在且不为0,设直线l 的方程为x =my +3,A (x 1,y 1),B (x 2,y 2),则H (x 2,-y 2), 联立⎩⎨⎧x =my +3,x 2+4y 2=4,消去x 得,(m 2+4)y 2+23my -1=0.显然Δ>0,由根与系数的关系得y 1+y 2=-23m m 2+4,y 1y 2=-1m 2+4, 直线AH 的方程为y =y 1+y 2x 1-x 2(x -x 2)-y 2, 令y =0,得x =x 1y 2+x 2y 1y 1+y 2=(my 1+3)y 2+(my 2+3)y 1y 1+y 2=2my 1y 2+3(y 1+y 2)y 1+y 2=433,即直线AH 与x 轴交于一个定点,记为M ⎝ ⎛⎭⎪⎫433,0, 所以S △AFH =12|FM |×|y 1+y 2|=12×33×23|m |m 2+4=1|m |+4|m |≤14. 所以△AFH 的面积存在最大值,且最大值为14.法二:显然直线l 的斜率存在且不为0,设直线l 的方程为x =my +3,A (x 1,y 1),B (x 2,y 2),则H (x 2,-y 2),联立⎩⎨⎧x =my +3,x 2+4y 2=4,消去x 得,(m 2+4)y 2+23my -1=0. 显然Δ>0,由根与系数的关系得y 1+y 2=-23m m 2+4,y 1y 2=-1m 2+4, 作AA 1⊥x 轴于A 1(图略),设HB 交x 轴于点B 1,x 1>x 2,y 1>0,y 2<0,则m >0,△AFH 的面积S =S 梯形AA 1B 1H -S △AA 1F -S △HB 1F =(|y 1|+|y 2|)(x 1-x 2)2-12(x 1-c )|y 1|-12(c -x 2)|y 2|=12[3(y 1+y 2)-x 2y 1-x 1y 2]=12[3(y 1+y 2)-(my 2+3)y 1-(my 1+3)y 2]=-my 1y 2=m m 2+4=1m +4m≤14,所以△AFH 的面积存在最大值,且最大值为14.2.(点的存在性问题)已知动圆C 过定点F (1,0),且与定直线x =-1相切.(1)[一题多解]求动圆圆心C 的轨迹E 的方程;(2)过点M (-2,0)的任一条直线l 与轨迹E 交于不同的两点P ,Q ,试探究在x 轴上是否存在定点N (异于点M ),使得∠QNM +∠PNM =π?若存在,求点N 的坐标;若不存在,请说明理由.[解] (1)法一:依题意知,动圆圆心C 到定点F (1,0)的距离与到定直线x =-1的距离相等,由抛物线的定义,可得动圆圆心C 的轨迹E 是以F (1,0)为焦点,x =-1为准线的抛物线,其中p =2.∴动圆圆心C 的轨迹E 的方程为y 2=4x .法二:设动圆圆心C (x ,y ),依题意得(x -1)2+y 2=|x +1|,化简得y 2=4x ,即为动圆圆心C 的轨迹E 的方程.(2)假设存在点N (x 0,0)满足题设条件.由∠QNM +∠PNM =π可知,直线PN 与QN 的斜率互为相反数,即k PN +k QN =0.①易知直线PQ 的斜率必存在且不为0,设直线PQ :x =my -2,由⎩⎨⎧y 2=4x ,x =my -2,得y 2-4my +8=0. 由Δ=(-4m )2-4×8>0,得m >2或m <- 2.设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4m ,y 1y 2=8.由①得k PN +k QN =y 1x 1-x 0+y 2x 2-x 0=y 1(x 2-x 0)+y 2(x 1-x 0)(x 1-x 0)(x 2-x 0)=0, ∴y 1(x 2-x 0)+y 2(x 1-x 0)=0,即y 1x 2+y 2x 1-x 0(y 1+y 2)=0.消去x 1,x 2,得14y 1y 22+14y 2y 21-x 0(y 1+y 2)=0,即14y 1y 2(y 1+y 2)-x 0(y 1+y 2)=0.∵y 1+y 2≠0,∴x 0=14y 1y 2=2,∴存在点N (2,0),使得∠QNM +∠PNM =π.。

相关文档
最新文档