解答运筹学整数规划作业讲解
整数规划习题解答PPT演示课件
(增加了人工变量x4)
1
练习
(2)不增加人工变量,通过对约束方程组进行行变换得到 初始可行基
max z x2 2 x3
x1 2 x2 x3
s.t
.
x2 x2
3 x3 x3
2
x4
1
x5 2
x1 , x2 , x3 , x4 , x5 , x6 0
以x1 , x4 , x5为基变量,B ( p1 , p4 , p5 ) E为初始可行基, 运用单纯性法求解,得到的最终单纯性表为
11
1
- 2 x4 2 x5 x6 2
加入上面的最终单纯性表,得
4
练习
cj
0 1 -2 0 0 0
CB XB b
x1
x2
x3
x4
x5
x6
0 x1 13/2 1 0 0 -1/2 5/2 0
1 x2 5/2 0 1 0 -1/2 3/2 0
-2 x3 1/2 0 0 1 -1/2 1/2 0
练习
将其标准化: (1)采用M法
max z x2 2 x3 Mx4
x1 2 x2 x3 x42源自s.t .x2 x2
3 x3 x3
x5
1
x6 2
x1 , x2 , x3 , x4 , x5 , x6 0
以x4 , x5 , x6为基变量,B ( p4 , p5 , p6 ) E为初始可行基, 运用单纯性法求解
0 x6 -1/2 0 0 0 -1/2 -1/2 1
-z
-3/2 0 0 0 -1/2 -1/2 0
5
练习
由对偶单纯性法可得
cj
0 1 -2 0 0 0
CB XB
运筹学——.整数规划与分配问题
2.4 匈牙利法实例(2)
第二步:找出矩阵每列的最小元素,再分别从各列中减去。
必定满足:bij = aij–ui–vj
0 11 2 0 0
8 0 3 11 0
7 5 0 11 10 4 2 5 0 9 5 0 5 0
8 2 5 0 5 4 3 0 0 11 4 5
二、分配问题与匈牙利法
2.3 匈牙利法
分配问题可以用单纯形法或运输表求解。 库恩(W.W.Kuhn)于1955年提出了指派问题的解 法,他引用了匈牙利数学家康尼格(D.Kö nig)一 个关于矩阵中零元素的定理:系数矩阵中独立0 元素的最多个数等于能覆盖所有0元素的最少直 线数。这个解法称为匈牙利法。
二、分配问题与匈牙利法
2.2 分配问题实例(1)
例:有一份中文说明书,需要译成英、日、德、 俄四种文字。现有甲、乙、丙、丁四人,他们 将中文说明书译成不同语种的说明书所需时间 如下,问应指派何人去完成工作,使所需总时 间最少? 人员
任务 译成英文 译成日文 译成德文 译成俄文 甲 乙 丙 丁 7 8 11 9 2 15 13 4 10 4 14 15 9 14 16 13
一、整数规划的特点及作用
1.2 0-1整数规划
某公司拟在市东、西、南三区建立门市部。拟 议中有7个位置(点)Ai供选择。规定
在东区,由A1,A2,A3三个点中至多选两个; 在西区,由A4,A5两个点中至少选一个; 在南区,由A6,A7两个点中至少选一个。
如选用Ai点,设备投资估计为bi元,每年可获利 润估计为ci元,但投资总额不能超过B元。 问:应如何选址,可使年利润为最大?
第一步:找出每 行的最小元素, 每行对应减去这 个元素。
运筹学CH4整数规划
使用整数规划求解器进行求解,得到最优的员工任务指派 方案。
05
整数规划软件实现
MATLAB实现整数规划
MATLAB优化工具箱
MATLAB提供了专门的优化工具箱,其中包含用于解决整 数规划问题的函数和算法。
intlinprog函数
该函数用于解决线性整数规划问题,可以处理大规模问题, 并提供多种求解选项。
CPLEX提供了多种建模方式,包括使 用API接口、编程语言(如Python、 Java)和交互式界面等。
CPLEX采用了先进的分支定界算法和启发式 算法,能够快速有效地求解大规模整数规划 问题。同时,CPLEX还提供了多种参数设置 和求解选项,以满足不同问题的需求。
06
整数规划总结与展望
整数规划研究现状
跨学科融合
整数规划与运筹学、计算机科学、数学等多个学 科密切相关,跨学科融合将为整数规划的研究和 应用带来更多机遇。
THANK YOU
感谢聆听
求解过程
在LINGO中,用户需要编写包含目标函数和约束条件的模型文件,然后调用 LINGO求解器进行求解。LINGO会自动选择合适的算法,并输出最优解和相关 信息。
CPLEX实现整数规划
CPLEX优化器
建模方式
求解算法
CPLEX是IBM提供的一款高性能数学 优化软件,支持线性规划、混合整数 规划和二次规划等多种问题类型。
在物流领域,整数规划可用于 优化运输路线和配送计划,以 减少运输时间和成本。
金融投资
在金融领域,整数规划可用于 投资组合优化,选择最佳的投 资组合以最大化收益并降低风 险。
城市规划
在城市规划中,整数规划可用 于优化城市布局和交通网络设 计,以提高城市运行效率和居 民生活质量。
整数规划解法与实际案例分析
整数规划解法与实际案例分析整数规划是运筹学中的一个重要分支,它在实际问题中有着广泛的应用。
整数规划问题是指决策变量被限制为整数的线性规划问题,通常用于需要做出离散决策的情况。
在本文中,我们将介绍整数规划的基本概念和解法,并结合一个实际案例进行分析,以帮助读者更好地理解整数规划的应用。
### 整数规划的基本概念整数规划是一种特殊的线性规划问题,其决策变量被限制为整数。
一般来说,整数规划可以分为纯整数规划和混合整数规划两种情况。
纯整数规划要求所有的决策变量都是整数,而混合整数规划则允许部分决策变量为整数,部分为连续变量。
整数规划可以用数学模型来描述,通常形式如下:$$\begin{aligned}\text{Maximize} \quad & c^Tx \\\text{Subject to} \quad & Ax \leq b \\& x \in \mathbb{Z}^n\end{aligned}$$其中,$c$、$x$、$b$ 分别为目标函数系数向量、决策变量向量和约束条件右端常数向量,$A$ 为约束条件系数矩阵,$x \in\mathbb{Z}^n$ 表示 $x$ 是一个整数向量。
### 整数规划的解法整数规划问题的求解相对复杂,因为整数约束使得问题的解空间不再是连续的,而是离散的。
针对整数规划问题,通常有以下几种解法:1. **穷举法**:穷举法是最直接的方法,即枚举所有可能的整数解,然后逐一计算目标函数值,找出最优解。
然而,穷举法在问题规模较大时会变得非常低效。
2. **分支定界法**:分支定界法是一种常用的整数规划求解方法。
它通过不断将整数规划问题分解为子问题,并对子问题进行求解,直到找到最优解为止。
3. **割平面法**:割平面法是一种基于线性规划的整数规划求解方法。
它通过不断添加线性不等式约束(割平面)来逼近整数解,直到找到最优解为止。
4. **分支定价法**:分支定价法是一种高级的整数规划求解方法,通常用于解决混合整数规划问题。
运筹学中的整数规划问题分析
运筹学中的整数规划问题分析运筹学是运用数学和定量分析方法,通过对系统的建模和优化,来解决实际问题的学科。
其中整数规划是运筹学中的一个重要分支,它在许多实际情况中得到广泛应用。
本文将对整数规划问题进行分析,并探讨其解决方法与应用领域。
一、整数规划问题定义及特点整数规划是一类线性规划问题的扩展,其目标函数和约束条件中的变量取值限定为整数。
通常,整数规划问题可以形式化表示为:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t.a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + a₂₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z为目标函数值,x₁, x₂, ..., xₙ为待求解的整数变量,c₁, c₂, ..., cₙ为目标函数的系数,aᵢₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右端常数。
整数规划问题的特点在于整数约束条件的引入,使其解空间变得有限,增加了问题的复杂性。
与线性规划问题相比,整数规划问题更接近实际情况,能够更准确地描述和解决很多实际问题。
二、整数规划问题的解决方法解决整数规划问题的方法主要有以下几种:穷举法、剪枝法、分支定界法、动态规划法等。
具体使用哪种方法需要根据问题的规模和特点来确定。
1. 穷举法是最简单直观的方法,通过枚举搜索整数解空间中的每一个可能解来寻找最优解。
然而,由于整数解空间往往非常大,这种方法在实际问题中往往是不可行的。
2. 剪枝法是一种通过对解空间进行剪枝操作,减少搜索空间的方法。
通过合理选择剪枝条件,可以避免对明显无解的解空间进行搜索,从而提高求解效率。
3. 分支定界法是一种将整数规划问题不断分解为子问题,并对子问题进行界定的方法。
通过不断缩小问题规模,并计算上下界确定最优解的位置,可以有效地求解整数规划问题。
整数规划求解题技巧
整数规划求解题技巧整数规划(Integer Programming,IP)是线性规划(Linear Programming,LP)的扩展,它要求所有变量的取值必须是整数。
整数规划常用于求解实际问题中的最优决策,具有广泛的应用领域,如运输、生产、资源分配等。
下面我将介绍一些整数规划求解题的技巧。
1. 转化为纯整数规划:将实际问题转化为纯整数规划问题可以简化模型。
纯整数规划要求所有变量的取值都必须是整数,没有连续变量的限制。
通过建立合适的约束条件和目标函数,可以将问题转化为纯整数规划问题进行求解。
2. 松弛约束:对于某些约束条件,如果将其从等式形式变为不等式形式且松弛一些限制,可以增加问题的可行解空间。
这样可以使得模型具有更多的可行解,从而提高求解效率。
3. 分枝定界法:分枝定界法是一种常用的求解整数规划问题的方法。
它将整数规划问题划分为多个子问题,通过不断划分和求解这些子问题,逐步逼近最优解。
分枝定界法通常包括两个步骤:分枝和定界。
分枝是指将问题分解为多个子问题,每个子问题都是原问题的一个可能解。
定界是指通过对子问题的求解,确定上界和下界,从而缩小搜索范围。
4. 启发式算法:启发式算法是一种常用的求解整数规划问题的方法,它通过启发式规则和策略来指导搜索过程。
启发式算法不保证找到最优解,但可以在较短时间内找到近似最优解。
常见的启发式算法包括贪心算法、模拟退火算法、遗传算法等。
5. 接近最优策略:在实际问题中,有时求解整数规划问题的时间复杂度非常高,甚至是NP-hard难题。
面对这种情况,可以采取接近最优的策略。
即对于一个相对较大的整数规划问题,先求解一个近似最优解,然后逐步优化,以此来降低问题的复杂度。
6. 问题分解:对于大规模的整数规划问题,可以将问题分解成多个较小的子问题。
通过对这些子问题的求解,可以逐步逼近整体问题的最优解。
问题分解可以提高求解效率,同时可以充分利用问题的结构特点。
7. 约束松弛法:约束松弛法是一种将整数规划问题转化为线性规划问题进行求解的方法。
运筹学--第四章 整数规划与分配问题
一、整数线性规划问题的提出
引例:生产组织计划问题与选址问题 例4-1(生产组织计划问题)某工厂在一个计划期 内拟生产甲、乙两种大型设备。除了A、B两种部件 需要外部供应且供应受到严格限制之外,该厂有充 分的能力来加工制造这两种设备所需的其余零件, 并且所需原材料和能源也可满足供应。每种设备所 用部件数量和部件的供应限额以及设备的利润由表 3-1-1给出。问该厂在本计划期内如何安排甲、乙 设备的生产数量,才能获取最大利润?
例4-3某人有一背包可以装10公斤重、0.025m3的物
品。他准备用来装甲、乙两种物品,每件物品的重 量、体积和价值如表4-3-1所示。问两种物品各装 多少件,所装物品的总价值最大?
表4-3-1 物品 甲 乙 重量 (公斤/每件) 1.2 0.8 体积 (m3/每件) 0.002 0.0025 价值 (元/每件) 4 3
应寻找仅检查可行的整数组合的一部分,就能定出 分支定界法可用于解纯整数或混合整数线性规划问
最优的整数解的方法。分支定界解法就是其中之一。
题。
–20世纪60年代初由Land Doig和Dakin等提出,是 解整数线性规划的重要方法之一。
–由于这方法灵活且便于用计算机求解,所以现在
它已是解整数规划的重要方法。
了。 但这常常是不行的,因为化整后不见得是可行解; 或虽是可行解,但不一定是最优解。 因此,对求最优整数解的问题,有必要另行研究。
例4-4 说明整数规划问题的求解不能直接在单纯形
法最优解的基础上四舍五入 求下述整数规划问题的最优解(P105)
max z 3x1 2 x2 2 x1 3x2 14 s.t. x1 0.5 x2 4.5 x , x 0, 且均取整数值 1 2
管理运筹学讲义整数规划
管理运筹学讲义整数规划整数规划是管理运筹学中一种重要的优化技术,它在实际问题中具有广泛的应用。
本文将介绍整数规划的基本概念、建模方法以及解决算法,并通过实例展示其在实际问题中的应用。
一、整数规划的基本概念整数规划是线性规划的一种扩展形式,其决策变量被限制为整数。
在实际问题中,往往存在某些变量只能取整数值的约束条件,这时就需要使用整数规划方法进行求解。
与线性规划相比,整数规划的求解难度更大,但可以提供更精确的结果。
二、整数规划的建模方法在进行整数规划建模时,需要确定决策变量、目标函数和约束条件。
1. 决策变量决策变量是问题中需要优化的变量,其取值决定了问题的解。
在整数规划中,决策变量通常表示为整数。
2. 目标函数目标函数是整数规划问题中需要最小化或最大化的目标。
它可以是线性函数或非线性函数,但在整数规划中,通常只考虑线性目标函数。
3. 约束条件约束条件是问题的限制条件,限制了决策变量的取值范围。
在整数规划中,约束条件可以是线性等式或线性不等式。
三、整数规划的解决算法解决整数规划问题的常见算法包括割平面法、分支定界法和动态规划法等。
这些算法通过不断对问题进行优化,逐步逼近最优解。
1. 割平面法割平面法是一种通过添加额外的约束条件来逼近最优解的方法。
它首先求解一个松弛问题,然后根据松弛问题的解加入新的约束条件,直到找到最优解。
2. 分支定界法分支定界法是一种将整数规划问题划分为多个子问题,并对每个子问题进行求解的方法。
它通过不断分支和剪枝来找到最优解。
3. 动态规划法动态规划法是一种通过将问题分解为多个子问题,并通过求解子问题的最优解来求解原始问题的方法。
它采用自底向上的求解方式,将所有可能的决策情况进行组合,得到最优解。
四、整数规划在实际问题中的应用整数规划在实际问题中有着广泛的应用。
以下是一个应用整数规划解决的实际问题示例:某公司生产两种产品A和B,每天的生产时间为8小时。
产品A每单位利润为100元,产品B每单位利润为150元。
运筹学-整数规划 (一)(名校讲义)
5 8
§4 隐枚举法 (9)
从表2-2中看出,经过改进的过滤隐枚举法只需计算16次 即可。 过滤隐枚举法简单实用,但在变量数很大时,计算量仍 很大。为此,下面将介绍另一种方法,即分枝隐枚举法。
§4 隐枚举法 (10)
三、0 1规划求解法之二(分枝隐枚举法) 基本思路:把原0 1规划问题化成标准形(分枝隐枚举 法的标准形),然后从可能获得最佳目标函数的组合进 行检查(不一定可行),直到找出可行解为止。为了清 楚,下面将结合例题阐述其步骤。 1.[例2-8] 已知0 1整数规划模型为
[解]
2x1+x2=8 最优解 x1+2x2=6 1 2 3 4 5 6 7 8 9 图2-1 x1
§3 分枝定界法 (3)
2)因为x1、x2当前均为非整数,故不满足整数要求,任 选1个进取分枝。设选x1进行分枝,把可行集分成2个子 集: x1≤[10/3]=3及x1≥[10/3]+1=4 3)x1≤3时 目标函数 min z=x1+4x2 约束条件 2x1+x2≤8
x2
8 7 6 5 4 3 2 1 x1 = 4 2x1+x2=8 x1+2x2=6 1 2 3 4 5 6 7 8 9 x1 图2-3
§3 分枝定界法 (7)
5)节点④,令x2≤[3/2]=1 目标函数 min z=x1+4x2 约束条件 2x1+x2≤8
x1+2x2≥6
x1≤3 x2≤1 x1、x2≥0,且为整数。 用图解法,知该子集无解,读者可以自己作。
§4 隐枚举法 (1)
隐枚举法适于求解一种特殊的整数规划——01规划。
一、举例说明01规划的现实来源 [例2-6]投资场所的选定(相互排斥计划)。某部门拟在 东、西、南三区建立门市部,可选用的位置共7个,设 为Ai (i=1,2,…,7)。根据计划安排有下述规定: 在东区,由3个候选点A1,A2,A3中至多选2个;
运筹学第6章整数规划资料.
9
2020/7/6
9
分枝定界法
分枝定界法是求解整数规划的一种常用的有效的方法,它既 能解决纯整数规划的问题,又能解决混合整数规划的问题。大多 数求解整数规划的商用软件就是基于分枝定界法而编制成的。
1. 先求解整数规划的线性规划问题(伴随LP)。
2. 如果其最优解不符合整数条件,则求出整数规划的上下界。
管理运筹学
——模型与方法
赵明霞 山西大学经济与管理学院
1
第6章 整数规划
6.1 一般模型 6.2 一般解法 6.3 0-1规划 6.4 指派模型
22
6.1 一般模型
在整数规划(IP,整数线性规划)中: 如果所有的变量都为整数,则称为纯整数规划问题; 如果所有的变量都为0-1变量,则称之为0-1规划。 如果只有一部分变量为整数,则称之为混合整数规划问题。
第三步:判断 z 是否等于z 。若相等,则整数规划最优解即为其目标函
数值等于z的A的那个整数可行解;否则进行第四步。
11
2020/7/6
11
第四步:在B的最优解中任选一个(或最远离整数要求的变量),不妨 设此变量为xj,以[bj]表示小于bj的最大整数,构造以下两个约束条件,并 加入问题B,得到B的两个分枝B1和B2。
A
B
C
D
课时系数
甲
√
√
√
5
乙
√
√
√
6
丙
√
√
8
学分
1.5
2
2
3
学时
24
32
32
48
门次
4
5
3
4
6
7
6.2 一般解法
运筹学习题解答(chap4 整数规划与分配问题)
第四章 整数规划与分配问题一、建立下列问题的数学模型1、P143, 4.1 利用0-1变量对下列各题分别表示成一般线性约束条件 (a) 221≤+x x 或53221≥+x x ; (b) x 取值0,3,5,7中的一个; (c) 变量x 或等于0,或50≥; (d) 若21≤x ,则12≥x ,否则42≤x ; (e) 以下四个约束条件中至少满足两个:6225433121≥+≥≤≤+x x x x x x ,,,。
解:(a) 设⎩⎨⎧=否则。
,个条件起作用;第1i ,0y i (i=1,2),M 为任意大正数。
则有 ⎪⎩⎪⎨⎧=+≥++≤+1y y My -5x 3x 2My 2x x 21221121(b) 设⎩⎨⎧=≠=ix i x y i ,1,0,7,5,3,0=i ,则原条件可表示为⎩⎨⎧=++++++=1753075307530y y y y y y y y x(c) 设⎩⎨⎧≥==50,10,0x x y ,则原条件可表示为⎪⎩⎪⎨⎧≥--≥≤0)1(50x M y x yM x(d)⎩⎨⎧=否则。
,组条件起作用;第1i ,0y i (i=1,2),M 为任意大正数。
则有⎪⎪⎪⎩⎪⎪⎪⎨⎧=++≤->-≥+≤.1,4,2,1,22122211211y y My x My x My x My x (e)设⎩⎨⎧=个条件不成立第个条件成立第i ,1i ,0y i ,4,3,2,1i =,则原条件可表示为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤+++-≥+-≥+≤+≤+2y y y y My 6x x My 2x M y 2x M y 5x x 43214433321121 2、P143, 4.2 某钻井队要从以下10个可供选择的井位确定5个钻井探油,目的是使得总的钻探费用最小。
若10个井位代号为101S ,...,S ,相应的钻探费用为101C ,...,C ,并且井位的选择要满足下列条件:(1)或选择1S 和7S ,或选择8S ;(2)选择了3S 或4S 就不能选择5S ,反过来也一样; (3)在10962S ,S ,S ,S 中最多只能选两个。
运筹学之整数规划
f 130
* 1
f 2* 135
B1 的解 X1* (5,4)T 是整数最优解,它当然也是问题 A0 问题
* * 的整数可行解,故 A0 的整数最优解 Z f1 130.
即此时可将 Z 修改为:
Z f1* 130
同时问题 B1 也被查清, 成为“树叶”。
题 A0 的最优目标函数值决不会比它小,故可令 Z =0.
3. 增加约束条件将原问题分枝 当问题 A0 的最优解 X 0* 不满足整数条件时,在 X 0* 中任选一个
不符合整数条件的变量.如本例选 x1 5.6,
显然问题 A0 的
整数最优解只能是 x1 5 或 x1 6 ,而绝不会在5与6之间.
规划.
问题 A1
max Z 20x1 10x2
问题 A2
max Z 20x1 10x2
5 x1 8 x2 60 x1 8 s.t x2 4 x1 5 x1 , x2 0, 取整数
5 x1 8 x2 60 x1 8 s.t x2 4 x1 6 x1 , x2 0, 取整数
用 图 解法求出最优解 x1=3/2, x2 = 10/3 且有Z = 29/6
x2
3
⑴
⑵
(3/2,10/3)
现求整数解(最优解): 如用“舍入取整法”可得 到4个点即(1,3) (2, 3)(1,4)(2,4)。显然, 它们都不可能是整数规划 的最优解。
3
x1
按整数规划约束条件,其可行解肯定在线性规划问题 的可行域内且为整数点。故整数规划问题的可行解集 是一个有限集,如图所示。
第五章 整数规划(运筹学教程)
什么叫0-1规划
• 0-1型整数规划是整数规划中的特殊情况, 它的变量xi仅取0或1,这时xi称为0-1变量 或二进制变量(binary), • xi仅取0或1这个条件可由下述约束条件所 取代: xi≤1, xi ≥0, Xi整数。 • 但是,0-1变量还有许多其它作用。 • 下面举例说明。
4.1 引入0-1变量的实际问题
定界
0≤ Z≤349
定界 340≤ Z≤341
Z3=340
Z4=327
B5(x2≤1)最优解 X1=5,x2=1.57 Z2=308 B6(x2≥2) 无可行解
定界 340≤ Z≤340
§3 割平面法
• 1、分枝定界法本质上是一种对线性规划可行域的 分割方法,只是分割方式比较单一和规范。每次从 对应线性规划的最优解出发,选定某个取非整数值 的变量,挖掉其中的小数部分,将原可行域一分为 二。如此反复进行,直到发现最优整数解为止。 • 2、割平面法的思路也是采用求解对应线性规划的 方法去解整数规划的问题。通过增加适当的约束条 件,从原可行域中切割掉不含整数解的部分。但其 切割方式灵活多样,每次切割可以切一刀,也可以 同时切几刀。旨在造成一个具有整数坐标的顶点, 恰好对应着原问题的最优解
B5, B6
图5-4
B1(x1≤4)最优解
X1=4,x2=2.1 Z1=349 B3(x2≤2)最优解 X1=4,x2=2
B最优解
定界 0≤ Z≤356
X1=4.81,x2=1.82
Z0=356
B2(x1≥5)最优解
X1=5,x2=1.57 Z2=341 B4(x2≥3)最优解 X1=1.42,x2=3
最优解 X1=4,x2=2:整数可行解 Z3=340 最优解 X1=1.42,x2=3
运筹学4(整数规划)
x2 ① ② 10
由于Z 3 Z1,选择LP3进行分枝,增加约束 x1 4及x1 5,到线性规划 4及LP5: LP
max Z 4 x1 3x2
A
LP4:X=(4,6),Z4=34 1.2 x1 0.8 x2 10
6
LP1 LP3
2 x1 2.5 x2 25 LP 4 : x1 4,x2 6,x1 4 x1 , x2 0 即x1 4, 可行域是一条线段 max Z 4 x1 3x2
max Z 4 x1 3x2 1.2 x1 0.8 x2 10 2 x1 2.5 x2 25 x1 , x2 0
线性规划的可行域如图5—1中的阴影部分所示。
图5-1
用图解法求得点B为松弛问题最优解:X=(3.57,7.14),Z=35.7。
由于x1,x2必须取整数值,整数规划问题的可行解集只是图中可行域内的那 些整数点。 用凑整法来解时需要比较四种组合,但(4,7)、(4,8)(3,8)都不是可行 解,(3,7)虽属可行解,但代入目标函数得Z=33, 并非最优。
工作 人员 甲 乙 丙 丁
A 85 95 82 86
B 92 87 83 90
C 73 78 79 80
D 90 95 90 88
【解】此工作分配问题可以采用枚举法求解,即将所有分配方案 求出,总分最大的方案就是最优解。本例的方案有 4!=4×3×2×1=24种,当人数和工作数较多时,方案数是人数 的阶乘,计算量非常大。用0-1规划模型求解此类分配问题显得非 常简单。 工作 A B D C
运筹学
Operations Research
Hale Waihona Puke Chapter 5 整数规划
运筹学导论第八版8整数线性规划
上例中,对所有的 j,cj=1. 如果 cj 表示位置 j 安装 的费 用,那么这些系数就是这些费用值而不再是1.
习题
MobileCo公司拿出1500万美元,最多建造7个发射台来覆盖15个 相邻社区中尽可能多的人口。下表给出了每个发射台可以覆盖 的社区以及建造这个发射台的费用以及社区人口。确定出需要 建设哪几个发射台。
由上例看出,
将其相应的线性规划的最优解“化整”来解原整数线 性规划,虽是最容易想到的,但往往不可行。
化整后不见得是可行解;或虽是可行解,但不一定是 最优解。
因此有必要对整数线性规划的解法进行专门研究。
此类问题为整数线性规划(Integer Linear Programming , ILP),整数线性规划是最近几十年来发展起来的规划论 中的一个分支。
有部分变量取小数,这不符合实际,若采用舍入方法,则 x1= x5=1,这意味着5个项目都要选择,显然是不可行解,
对于采用“是否”决策问题,舍入法不可行。
习题
某唱片公司与一位新的歌手签约录制8首歌曲,这8首歌曲 的时间长度分别为8,3,5,5,9,6,7,12分钟,公司希望将所有的 歌曲分配在磁带的两面,使得两面的歌曲时间长度尽量相 同。请建立整数规划模型,求出最优解。
发射台
覆盖社区
1
1,2
2
2,3,5
3
1,7,9,10
4
4,6,8,9
5
6,7,9,11
6
5,7,10,12,14
7
12,13,14,15
各个社区人口数目
建造费用(百万) 3.6 2.3 4.1 3.15 2.8 2.65 3.1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 1 0 0 0 4 1 0 0 0
2 0 2 2 0 2 0 2 2 0
7 4 4 0 0 7 4 4 0 0
c) 若 x1≤2,则x2≥1,否则x2≤4 x1 2 yM x 1 yM 2 x1 2 (1 y ) M x 4 (1 y ) M 2 y 0或1
d) 以下四个约束条件中至少满足两个: x1 + x2≤5,x1≤2,x3≥2,x3+x4≥6
量分别为Q1,Q2,…,Q6,生产每个箱的可变费用分别为
c1,c2,…c6 (c1<c2<…<c6),生产不同规格包装箱的固定费用 分别为k1,k2,…k6,并且有
for xi 0 0 C ( xi ) ki ci xi for xi 1
式中xi为生产第i种规格包装箱的数量。若某种规格较小的包 装箱不生产或生产数量不够时,可用比其大的任一规格的包
x2 x6 x9 x10 2
4.4 已知分配问题的效率矩阵如下,试用匈牙利法分别求出 最优解
3 8 6 8 9
2 10 3 7 2 9 7 4 2 7 5 4 2 3 5 10 6 9 10 8
第一步:找出效率矩阵每行的最小元素,并分别从每行中
4.1 试利用0-1变量对下列各题分别表示成一般线性约束条件 a) x1 + x2≤2 或 2x1 + 3x2≥5 b) 变量 x 只能取值0、3、5或7中的一个 c) 若 x1≤2,则x2≥1,否则x2 ≤4 d) 以下四个约束条件中至少满足两个:
x1 + x2≤5,x1≤2,x3≥2,x3+x4≥6
4.3 某钻井队要从以下10个可供选择的井位中确定5个钻井
探油,目的使总的钻探费用最小。若10个井位代号为 S1,S2,…S10,相应的钻探费用为c1,c2,…,c10,并且 井位的选择上要满足下列条件: ① 或选择S1和S7,或选择钻探S8 ② 选择了S3或S4就不能选S5,或反过来也一样 ③ 在S2、S6、S9、S10中最多只能选两个
4 0 7 0 3 0 6 4 0 0 4 2 0 0 0 2 2 0 2 3
+2
-2
-2
0 3 3 5 0
4 1 0 0 2 2 1
第五步:用最少直线覆盖
0 3 3 5 0 0 3 3 5 0
0 设 xj 1
选择第 sj 个井位 不选择第 sj 个井位
① 或选择S1和S7,或选择钻探S8
x1 x8 1 x7 x8 1
② 选择了S3或S4就不能选S5,或反过来也一样
x3 x5 1 x4 x5 1
③ 在S2、S6、S9、S10中最多只能选两个
减去最小元素,有
1 6 0 8 1 3 8 2 10 3 2 6 5 0 7 5 8 7 2 9 7 2 4 2 0 5 3 6 4 2 7 5 2 6 2 0 1 3 8 4 2 3 5 2 3 4 0 3 4 9 10 6 9 10 6 第二步:找出矩阵每列的最小元素,再分别从每列中减去,有 1 6 0 8 1 0 4 0 7 0 6 5 0 7 5 5 3 0 6 4 4 2 0 5 3 3 0 0 4 2 6 2 0 1 3 5 0 0 0 2 3 4 0 3 4 2 2 0 2 3
a) x1 + x2≤2 或 2x1 + 3x2≥5
x1 x2 2 y1M 2 x 3x 5 y M 1 2 2 y1 y2 1 y1 , y2 0或1
b) 变量 x 只能取值0、3、5或7中的一个
x 3 y1 5 y2 7 y3 y1 y2 y3 1 y , y , y 0或1 1 2 3
1 2 0 1 1
第三步:用最少的直线覆盖所有“0”,得
0 5 3 5 2
4 0 7 0 3 0 6 4 0 0 4 2 0 0 0 2 2 0 2 3
覆盖所有零最少需要4条直线,表明矩阵中最多存在4个不同 行不同列的零元素.需要作变换
0 5 3 5 2
x1 x2 5 y1M x 2 y M 2 1 x3 2 y3 M x3 x4 6 y4 M y1 y2 y3 y4 2 y1~ 4 0或1
4.2 某厂经常往外发送零部件。工厂根据长期发货情况决定 专门生产一批为A1,A2,…A6的6种不同规格的包装箱,其中A1 最小,A2次之,…A6最大。已知上述6种规格包装箱的需求
装箱代替。
试为该厂建立一个生产上述6种规格包装箱各多少个的决策的数 学模型,即满足该厂对6种规格包装箱的需求,又使总的费用为 最小
min Z yi (ki ci xi )
i 1
6
for i 1, 2...6 xi Myi 6 6 xi Q j i 1 j 1 5 5 xi Q j i 1 j 1 4 4 xi Q j st. i 1 j 1 3 3 xi Q j i 1 j 1 2 2 xi Q j i 1 j 1 x1 Q1 y 取0或1 ;x1~6 0且为整数 1~6