【高二物理试题精选】高中数学人教A版必修五第一章解三角形测试题B(含答案)
【精品习题】高二数学人教A必修5练习:第一章 解三角形 Word版含解析
第一章 解三角形§1.1 正弦定理和余弦定理 1.1.1 正弦定理(一)课时目标1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2.2.在Rt △ABC 中,C =π2,则a c =sin_A ,bc=sin_B .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =bsin B =csin C,这个比值是三角形外接圆的直径2R .一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2 答案 D2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 答案 C 解析 由正弦定理a sin A =bsin B, 得4sin 45°=bsin 60°,∴b =2 6.3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形D .等腰三角形 答案 A解析 sin 2A =sin 2B +sin 2C ⇔(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定 答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B .5.在△ABC 中,A =60°,a =3,b =2,则B 等于( )A.45°或135° B.60°C.45° D.135°答案 C解析由asin A=bsin B得sin B=b sin Aa=2sin 60°3=22.∵a>b,∴A>B,B<60°∴B=45°.6.在△ABC中,角A,B,C所对的边分别为a,b,c,如果c=3a,B=30°,那么角C等于( )A.120° B.105° C.90° D.75°答案 A解析∵c=3a,∴sin C=3sin A=3sin(180°-30°-C)=3sin(30°+C)=3⎝⎛⎭⎪⎫32sin C+12cos C,即sin C=-3cos C.∴tan C=- 3.又C∈(0°,180°),∴C=120°.二、填空题7.在△ABC中,AC=6,BC=2,B=60°,则C=_________.答案75°解析由正弦定理得2sin A=6sin 60°,∴sin A=22.∵BC=2<AC=6,∴A为锐角.∴A=45°.∴C=75°.8.在△ABC中,若tan A=13,C=150°,BC=1,则AB=________.答案102解析∵tan A=13,A∈(0°,180°),∴sin A=1010.由正弦定理知BCsin A=ABsin C,∴AB=BC sin Csin A=1×sin 150°1010=102.9.在△ABC中,b=1,c=3,C=2π3,则a=________.答案 1解析由正弦定理,得3sin2π3=1sin B,∴sin B =12.∵C 为钝角,∴B 必为锐角,∴B =π6,∴A =π6.∴a =b =1.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A =______.答案 30°解析 ∵b =2a ∴sin B =2sin A ,又∵B =A +60°, ∴sin(A +60°)=2sin A即sin A cos 60°+cos A sin 60°=2sin A ,化简得:sin A =33cos A ,∴tan A =33,∴A =30°.三、解答题11.在△ABC 中,已知a =22,A =30°,B =45°,解三角形.解 ∵a sin A =b sin B =csin C, ∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3.12.在△ABC 中,已知a =23,b =6,A =30°,解三角形. 解 a =23,b =6,a <b ,A =30°<90°. 又因为b sin A =6sin 30°=3,a >b sin A , 所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°.当B =60°时,C =90°,c =a 2+b 2=43;当B =120°时,C =30°,c =a =2 3.所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3. 能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若a =2,b =2,sin B +cos B =2,则角A 的大小为________.答案 π6解析 ∵sin B +cos B =2sin(π4+B )= 2.∴sin(π4+B )=1.又0<B <π,∴B =π4.由正弦定理,得sin A=a sin Bb=2×222=12. 又a <b ,∴A <B ,∴A =π6.14.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求ab的取值范围. 解 在锐角三角形ABC 中,A ,B ,C <90°,即⎩⎪⎨⎪⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知:a b =sin A sin B =sin 2B sin B=2cos B ∈(2,3),故a b的取值范围是(2,3).1.利用正弦定理可以解决两类有关三角形的问题: (1)已知两角和任一边,求其它两边和一角.(2)已知两边和其中一边的对角,求另一边和两角.2.已知两边和其中一边的对角,求第三边和其它两个角,这时三角形解的情况比较复杂,可能无解,可能一解或两解.例如:已知a 、b 和A ,用正弦定理求B 时的各种情况.A 为锐角 a <b sin A a =b sin A b sin A<a <b a ≥b无解 一解(直角) 两解(一锐角,一钝角)一解(锐角)A 为直角或钝角 a ≤b a >b 无解 一解(锐角)1.1.1 正弦定理(二)课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =csin C=2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R.2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 答案 D2.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形 答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin Ccos C,∴tan A =tan B =tan C ,∴A =B =C .3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10) D.⎝⎛⎦⎥⎤0,403答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403.4.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形 答案 A解析 由a =2b cos C 得,sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C , ∴sin(B -C )=0,∴B =C .5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .6∶5∶4B .7∶5∶3C .3∶5∶7D .4∶5∶6 答案 B解析 ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6, ∴b +c 4=c +a 5=a +b 6.令b +c 4=c +a 5=a +b 6=k (k >0),则⎩⎪⎨⎪⎧b +c =4kc +a =5k a +b =6k,解得⎩⎪⎨⎪⎧a =72kb =52kc =32k.∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12D .4 答案 A解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc 4=14,∴abc =1.二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.答案 2 3解析 ∵cos C =13,∴sin C =223,∴12ab sin C =43,∴b =2 3. 8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________.答案 2解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B,∴sin B =12,故B =30°或150°.由a >b ,得A >B ,∴B =30°,故C =90°, 由勾股定理得c =2.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2csin C=________.答案 7解析 ∵△ABC 的外接圆直径为2R =2,∴a sin A =b sin B =csin C =2R =2, ∴a sin A +b 2sin B +2c sin C =2+1+4=7. 10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.答案 12 6解析a +b +c sin A +sin B +sin C =a sin A =6332=12.∵S △ABC =12ab sin C =12×63×12sin C =183,∴sin C =12,∴c sin C =asin A=12,∴c =6.三、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A.证明 因为在△ABC 中,a sin A =b sin B =csin C=2R ,所以左边=2R sin A -2R sin C cos B2R sin B -2R sin C cos A=sin B +C -sin C cos B sin A +C -sin C cos A =sin B cos C sin A cos C =sin B sin A=右边. 所以等式成立,即a -c cos B b -c cos A =sin Bsin A.12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A ⇔a 2sin B cos B =b 2sin A cos A ⇔4R 2sin 2 A sin B cos B =4R 2sin 2B sin A cos A⇔sin A cos A =sin B cos B ⇔sin 2A =sin 2B⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45° B .60° C .75° D .90° 答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°, ∴sin C sin A =sin ()120°-A sin A=sin 120° cos A -cos 120°sin A sin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°. 14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .解 cos B =2cos 2 B 2-1=35,故B 为锐角,sin B=45.所以sin A =sin(π-B -C )=sin ⎝ ⎛⎭⎪⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107, 所以S △ABC =12ac sin B =12×2×107×45=87.1.在△ABC 中,有以下结论:(1)A +B +C =π;(2)sin(A +B )=sin C ,cos(A +B )=-cos C ; (3)A +B 2+C 2=π2;(4)sin A +B 2=cos C 2,cos A +B 2=sin C 2,tan A +B 2=1tanC2.2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.1.1.2 余弦定理(一)课时目标1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C .2.余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab.3.在△ABC 中:(1)若a 2+b 2-c 2=0,则C =90°;(2)若c 2=a 2+b 2-ab ,则C =60°;(3)若c 2=a 2+b 2+2ab ,则C =135°.一、选择题1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3 B .3 C. 5 D .5 答案 A2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( )A.π3 B.π6 C.π4 D.π12 答案 B解析 ∵a >b >c ,∴C 为最小角,由余弦定理cos C =a 2+b 2-c 22ab=72+432-1322×7×43=32.∴C =π6. 3.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A .1 B. 2 C .2 D .4 答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ac =2a 22a=a =2.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a =34.5.在△ABC 中,sin 2A 2=c -b 2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形 答案 B解析 ∵sin 2A 2=1-cos A 2=c -b 2c , ∴cos A =b c =b 2+c 2-a 22bc⇒a 2+b 2=c 2,符合勾股定理.故△ABC 为直角三角形.6.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为( )A .135°B .45°C .60°D .120° 答案 B解析 ∵S =14(a 2+b 2-c 2)=12ab sin C ,∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C .由余弦定理得:c 2=a 2+b 2-2ab cos C , ∴sin C =cos C , ∴C =45° . 二、填空题7.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________. 答案 120°8.△ABC 中,已知a =2,b =4,C =60°,则A =________. 答案 30°解析 c 2=a 2+b 2-2ab cos C=22+42-2×2×4×cos 60° =12∴c =2 3.由正弦定理:a sin A =c sin C 得sin A =12.∵a <c ,∴A <60°,A =30°.9.三角形三边长为a ,b ,a 2+ab +b 2(a >0,b >0),则最大角为________. 答案 120°解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-a 2+ab +b 222ab =-12,∴θ=120°.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________.答案 -2 3解析 S △ABC =12ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13,∴cos C =a 2+b 2-c 22ab =-113,sin C =1213,∴tan C =-12=-2 3.三、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.解 由条件知:cos A =AB 2+AC 2-BC 22·AB ·AC =92+82-722×9×8=23,设中线长为x ,由余弦定理知:x 2=⎝ ⎛⎭⎪⎫AC 22+AB 2-2·AC 2·AB cos A =42+92-2×4×9×23=49 ⇒x =7.所以,所求中线长为7.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长;(3)求△ABC 的面积.解 (1)cos C =cos[π-(A +B )]=-cos(A +B )=-12,又∵C ∈(0°,180°),∴C =120°.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎨⎧a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10, ∴AB =10.(3)S △ABC =12ab sin C =32.能力提升13.(2010·潍坊一模)在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.答案 3解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC =22,∴sin C =22. ∴AD =AC ·sin C = 3.14.在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状. 解 由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab,代入已知条件得 a ·b 2+c 2-a 22bc +b ·a 2+c 2-b 22ac +c ·c 2-a 2-b 22ab =0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0,展开整理得(a 2-b 2)2=c 4. ∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角. 2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =csin C=2R . (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c . 2.余弦定理及其推论(1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc .(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2. (2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( )A .60°B .90°C .120°D .150° 答案 C解析 ∵(a +b -c )(a +b +c )=ab , ∴a 2+b 2-c 2=-ab , 即a 2+b 2-c 22ab =-12,∴cos C =-12,∴∠C =120°.2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 答案 C解析 ∵2cos B sin A =sin C =sin(A +B ), ∴sin A cos B -cos A sin B =0, 即sin(A -B )=0,∴A =B .3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( )A .30°B .60°C .90°D .120° 答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7, 不妨设a =3,b =5,c =7,C 为最大内角,则cos C =32+52-722×3×5=-12.∴C =120°.∴最小外角为60°.4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形 答案 D解析 ∵2b =a +c ,∴4b 2=(a +c )2,即(a -c )2=0. ∴a =c .∴2b =a +c =2a .∴b =a ,即a =b =c .5.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°, c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 答案 A解析 在△ABC 中,由余弦定理得,c 2=a 2+b 2-2ab cos 120° =a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab . ∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .由增加的长度确定 答案 A解析 设直角三角形三边长为a ,b ,c ,且a 2+b 2=c 2,则(a +x )2+(b +x )2-(c +x )2=a 2+b 2+2x 2+2(a +b )x -c 2-2cx -x 2=2(a +b -c )x +x 2>0, ∴c +x 所对的最大角变为锐角. 二、填空题 7.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c =________. 答案 19解析 由题意:a +b =5,ab =2.由余弦定理得:c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab =52-3×2=19, ∴c =19.8.设2a +1,a,2a -1为钝角三角形的三边,那么a 的取值范围是________. 答案 2<a <8解析 ∵2a -1>0,∴a >12,最大边为2a +1.∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2, 化简得:0<a <8.又∵a +2a -1>2a +1, ∴a >2,∴2<a <8.9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 答案 12解析 S △ABC =12AB ·AC ·sin A=12AB ·AC ·sin 60°=23, ∴AB ·AC =8,BC 2=AB 2+AC 2-2AB ·AC ·cos A=AB 2+AC 2-AB ·AC =(AB +AC )2-3AB ·AC ,∴(AB +AC )2=BC 2+3AB ·AC =49, ∴AB +AC =7,∴△ABC 的周长为12.10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________.答案 13π3解析 S △ABC =12bc sin A =34c =3,∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13, ∴a =13.∴2R =a sin A =1332=2393,∴R =393.∴S 外接圆=πR 2=13π3. 三、解答题11.在△ABC 中,求证:a 2-b 2c 2=sin A -Bsin C.证明 右边=sin A cos B -cos A sin B sin C =sin A sin C ·cos B -sin Bsin C·cos A=a c ·a 2+c 2-b 22ac -b c ·b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c 2=左边. 所以a 2-b 2c 2=sin A -B sin C .12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB =53, 且AB ·BC =-21. (1)求△ABC 的面积; (2)若a =7,求角C . 解 (1)∵AB ·BC =-21,∴BA ·BC =21.∴BA ·BC = |BA |·|BC |·cosB = accosB = 21. ∴ac=35,∵cosB = 53,∴sinB =54. ∴S △ABC =21acsinB = 21×35×54= 14. (2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32, ∴b =4 2.由正弦定理:csin C =bsin B.∴sin C =c b sin B =542×45=22.∵c <b 且B 为锐角,∴C 一定是锐角. ∴C =45°. 能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π3 答案 A解析 方法一 (应用正弦定理)∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1,∴0<sin C ≤12.∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆, 则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6,∴0<C ≤π6.14.△ABC 中,内角A 、B 、C 的对边分别为a、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C的值;(2)设BA ·BC =23,求a+c 的值. 解 (1)由cos B =34,得sin B =1-⎝ ⎛⎭⎪⎫342=74.由b 2=ac 及正弦定理得sin 2B =sin A sinC .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin A +C sin 2B =sin B sin 2B =1sin B =477. (2)由BA ·BC =23得ca ·cosB = 23由cos B =34,可得ca =2,即b 2=2.由余弦定理:b 2=a 2+c 2-2ac ·cos B ,得a 2+c 2=b 2+2ac ·cos B =5,∴(a +c )2=a 2+c 2+2ac =5+4=9,∴a +c =3.1.解斜三角形的常见类型及解法在三角形的6个元素中要已知三个(至少有一边)才能求解,常见类型及其解法见下表: 已知条件 应用定理 一般解法一边和两角 (如a ,B ,C ) 正弦定理由A +B +C =180°,求角A ;由正弦定理求出b 与c .在有解时只有一解.两边和夹角 (如a ,b ,C ) 余弦定理正弦定理由余弦定理求第三边c ;由正弦定理求出小边所对的角;再由A +B +C =180°求出另一角.在有解时只有一解.三边 (a ,b ,c ) 余弦定理由余弦定理求出角A 、B ;再利用A +B +C =180°,求出角C .在有一解时只有一解. 两边和其中一边的对角如 (a ,b ,A ) 余弦定理 正弦定理由正弦定理求出角B ;由A +B +C =180°,求出角C ;再利用正弦定理或余弦定理求 c .可有两解、一解或无解.2.根据所给条件确定三角形的形状,主要有两种途径 (1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.§1.2 应用举例(一)课时目标1.了解数学建模的思想;2.利用正、余弦定理解决生产实践中的有关距离的问题.1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做基线.一般来说,基线越长,测量的精确度越高.2.方位角:指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A 点的方位角为α.3.计算不可直接测量的两点间的距离是正弦定理和余弦定理的重要应用之一.一、选择题1.若点P 在点Q 的北偏西45°10′方向上,则点Q 在点P 的( ) A .南偏西45°10′ B .南偏西44°50′ C .南偏东45°10′ D .南偏东44°50′ 答案 C2.已知两灯塔A 和B 与海洋观测站C 的距离都等于a km ,灯塔A 在观测站C 的北偏东20°方向上,灯塔B 在观测站C 的南偏东40°方向上,则灯塔A 与灯塔B 的距离为( )A .a km B.3a km C.2a km D .2a km 答案 B解析 ∠ACB =120°,AC =BC =a , ∴由余弦定理得AB =3a .3.海上有A 、B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是( )A .10 3 n mile B.1063n mileC .5 2 n mileD .5 6 n mile 答案 D解析在△ABC中,∠C=180°-60°-75°=45°.由正弦定理得:BCsin A=ABsin B∴BCsin 60°=10sin 45°解得BC=5 6.4.如图所示,设A、B两点在河的两岸,一测量者在A的同侧,在A所在的河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算A、B两点的距离为( )A.50 2 m B.50 3 mC.25 2 m D.2522m答案 A解析由题意知∠ABC=30°,由正弦定理ACsin∠ABC=ABsin∠ACB,∴AB=AC·sin∠ACBsin∠ABC=50×2212=50 2 (m).5.如图,一货轮航行到M处,测得灯塔S在货轮的北偏东15°,与灯塔S相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N处,又测得灯塔在货轮的东北方向,则货轮的速度为( )A.20(6+2) 海里/小时B.20(6-2) 海里/小时C.20(6+3) 海里/小时D.20(6-3) 海里/小时答案 B解析由题意,∠SMN=45°,∠SNM=105°,∠NSM=30°.由正弦定理得MNsin 30°=MSsin 105°.∴MN=MS sin 30°sin 105°=106+24=10(6-2).则v货=20(6-2) 海里/小时.6.甲船在岛B的正南A处,AB=10千米,甲船以每小时4千米的速度向正北航行,同时,乙船自B出发以每小时6千米的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是( )A.1507 分钟 B.157小时 C .21.5 分钟 D .2.15 分钟 答案 A解析 设行驶x 小时后甲到点C ,乙到点D ,两船相距y km , 则∠DBC =180°-60°=120°. ∴y 2=(10-4x )2+(6x )2-2(10-4x )·6x cos 120°=28x 2-20x +100=28(x 2-57x )+100=28⎝ ⎛⎭⎪⎫x -5142-257+100∴当x =514(小时)=1507(分钟)时,y 2有最小值.∴y 最小. 二、填空题7.如图,A 、B 两点间的距离为________.答案 32- 28.如图,A 、N 两点之间的距离为________.答案 40 39.如图所示,为了测定河的宽度,在一岸边选定两点A 、B ,望对岸标记物C ,测得 ∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度为______.答案 60 m解析 在△ABC 中,∠CAB =30°,∠CBA =75°, ∴∠ACB =75°.∠ACB =∠ABC .∴AC =AB =120 m. 作CD ⊥AB ,垂足为D ,则CD 即为河的宽度.由正弦定理得AC sin ∠ADC =CDsin ∠CAD,∴120sin 90°=CD sin 30°, ∴CD =60(m)∴河的宽度为60 m.10.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.答案 36解析如图,∠CAB=15°,∠CBA=180°-75°=105°,∠ACB=180°-105°-15°=60°,AB=1 km.由正弦定理得BCsin∠CAB=ABsin∠ACB∴BC=1sin 60°·sin 15°=6-223(km).设C到直线AB的距离为d,则d=BC·sin 75°=6-223·6+24=36(km).三、解答题11.如图,某货轮在A处看灯塔B在货轮的北偏东75°,距离为12 6 n mile,在A 处看灯塔C在货轮的北偏西30°,距离为8 3 n mile,货轮由A处向正北航行到D处时,再看灯塔B在北偏东120°方向上,求:(1)A处与D处的距离;(2)灯塔C与D处的距离.解(1)在△ABD中,∠ADB=60°,∠B=45°,由正弦定理得AD=AB sin Bsin ∠ADB=126×2232=24(n mile).(2)在△ADC中,由余弦定理得CD2=AD2+AC2-2AD·AC·cos 30°,解得CD=83≈14(n mile).即A处与D处的距离为24 n mile,灯塔C与D处的距离约为14 n mile.12.如图,为测量河对岸A、B两点的距离,在河的这边测出CD的长为32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A、B两点间的距离.解 在△BDC 中,∠CBD =180°-30°-105°=45°, 由正弦定理得BC sin 30°=CDsin 45°,则BC =CD sin 30°sin 45°=64(km).在△ACD 中,∠CAD =180°-60°-60°=60°,∴△ACD 为正三角形.∴AC =CD =32(km).在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos 45° =34+616-2×32×64×22=38, ∴AB =64(km). 答 河对岸A 、B 两点间距离为64km. 能力提升 13.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时 答案 B解析 设t 小时时,B 市恰好处于危险区,则由余弦定理得:(20t )2+402-2×20t ×40·cos 45°=302.化简得:4t 2-82t +7=0,∴t 1+t 2=22,t 1·t 2=74.从而|t 1-t 2|=t 1+t 22-4t 1t 2=1.14.如图所示,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问乙船每小时航行多少海里?解 如图所示,连结A 1B 2, 由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2,又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形, ∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200.∴B 1B 2=10 2.因此,乙船速度的大小为 10220×60=302(海里/小时). 答 乙船每小时航行302海里.1.解三角形应用问题的基本思路是:实际问题――→画图数学问题――→解三角形数学问题的解――→检验实际问题的解.2.测量距离问题:这类问题的情境一般属于“测量有障碍物相隔的两点间的距离”.在测量过程中,要根据实际需要选取合适的基线长度,测量工具要有较高的精确度.§1.2 应用举例(二)课时目标1.利用正、余弦定理解决生产实践中的有关高度的问题.2.利用正、余弦定理及三角形面积公式解决三角形中的几何度量问题.1.仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线上方时叫仰角,目标视线在水平线下方时叫俯角.(如图所示)2.已知△ABC 的两边a 、b 及其夹角C ,则△ABC 的面积为12ab sin C .一、选择题1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α与β的关系为( ) A .α>β B .α=βC .α<βD .α+β=90° 答案 B2.设甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是( )A .20 3 m ,403 3 mB .10 3 m,20 3 mC .10(3-2) m,20 3 m D.152 3 m ,203 3 m 答案 A解析 h 甲=20tan 60°=203(m).h 乙=20tan 60°-20tan 30°=4033(m).3.如图,为测一树的高度,在地面上选取A 、B 两点,从A 、B 两点分别测得望树尖的仰角为30°,45°,且A 、B 两点之间的距离为60 m ,则树的高度为( )A .30+30 3 mB .30+153mC .15+303mD .15+33m 答案 A解析 在△PAB 中,由正弦定理可得60sin 45°-30°=PBsin 30°,PB =60×12sin 15°=30sin 15°,h =PB sin 45°=(30+303)m.4.从高出海平面h 米的小岛看正东方向有一只船俯角为30°,看正南方向一只船俯角为45°,则此时两船间的距离为( )A .2h 米 B.2h 米 C.3h 米 D .22h 米答案 A解析 如图所示, BC =3h ,AC =h ,∴AB =3h 2+h 2=2h .5.在某个位置测得某山峰仰角为θ,对着山峰在平行地面上前进600 m 后测仰角为原来的2倍,继续在平行地面上前进200 3 m 后,测得山峰的仰角为原来的4倍,则该山峰的高度是( )A .200 mB .300 mC .400 mD .100 3 m 答案 B解析 如图所示,600·sin 2θ=2003·sin 4θ,∴cos 2θ=32,∴θ=15°, ∴h =2003·sin 4θ=300 (m).6.平行四边形中,AC =65,BD =17,周长为18,则平行四边形面积是( ) A .16 B .17.5 C .18 D .18.53 答案 A解析 设两邻边AD =b ,AB =a ,∠BAD =α,则a +b =9,a 2+b 2-2ab cos α=17, a 2+b 2-2ab cos(180°-α)=65.解得:a =5,b =4,cos α=35或a =4,b =5,cos α=35,∴S ▱ABCD =ab sin α=16. 二、填空题7.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,两船相距a 海里,乙船正向北行驶,若甲船是乙船速度的3倍,则甲船应取方向__________才能追上乙船;追上时甲船行驶了________海里.答案 北偏东30° 3a 解析如图所示,设到C 点甲船追上乙船, 乙到C 地用的时间为t ,乙船速度为v , 则BC =tv ,AC =3tv ,B =120°, 由正弦定理知BC sin ∠CAB =ACsin B,∴1sin ∠CAB =3sin 120°,∴sin ∠CAB =12,∴∠CAB =30°,∴∠ACB =30°,∴BC =AB =a ,∴AC 2=AB 2+BC 2-2AB ·BC cos 120°=a 2+a 2-2a 2·⎝ ⎛⎭⎪⎫-12=3a 2,∴AC =3a .8.△ABC 中,已知A =60°,AB ∶AC =8∶5,面积为103,则其周长为________. 答案 20解析 设AB =8k ,AC =5k ,k >0,则 S =12AB ·AC ·sin A =103k 2=10 3. ∴k =1,AB =8,AC =5,由余弦定理: BC 2=AB 2+AC 2-2AB ·AC ·cos A=82+52-2×8×5×12=49.∴BC =7,∴周长为:AB +BC +CA =20.9.已知等腰三角形的底边长为6,一腰长为12,则它的内切圆面积为________.答案 27π5解析 不妨设三角形三边为a ,b ,c 且a =6,b =c =12, 由余弦定理得:cos A =b 2+c 2-a 22bc =122+122-622×12×12=78,∴sin A =1-⎝ ⎛⎭⎪⎫782=158.由12(a +b +c )·r =12bc sin A 得r =3155. ∴S 内切圆=πr 2=27π5.10.某舰艇在A 处测得遇险渔船在北偏东45°,距离为10 n mile 的C 处,此时得知,该渔船沿北偏东105°方向,以每小时9 n mile 的速度向一小岛靠近,舰艇时速21 n mile ,则舰艇到达渔船的最短时间是______小时.答案 23解析 设舰艇和渔船在B 处相遇,则在△ABC 中,由已知可得:∠ACB =120°,设舰艇到达渔船的最短时间为t ,则AB =21t ,BC =9t ,AC =10,则(21t )2=(9t )2+100-2×10×9t cos 120°,解得t =23或t =-512(舍).三、解答题11.如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,求山高CD .解 在△ABC 中,∠BCA =90°+β, ∠ABC =90°-α,∠BAC =α-β,∠CAD =β.根据正弦定理得:AC sin ∠ABC =BCsin ∠BAC ,即AC sin 90°-α=BCsin α-β,∴AC =BC cos αsin α-β=h cos αsin α-β. 在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β=h cos αsin βsin α-β.即山高CD 为h cos αsin βsin α-β.12.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求圆内接四边形ABCD的面积.解连接BD ,则四边形面积S =S △ABD +S △CBD =12AB ·AD ·sin A +12BC ·CD ·sin C .∵A +C =180°,∴sin A =sin C .∴S =12(AB ·AD +BC ·CD )·sin A =16sin A .由余弦定理:在△ABD 中,BD 2=22+42-2×2×4cos A =20-16cos A ,在△CDB 中,BD 2=42+62-2×4×6cos C =52-48cos C , ∴20-16cos A =52-48cos C .又cos C =-cos A ,∴cos A =-12.∴A =120°.∴四边形ABCD 的面积S =16sin A =8 3. 能力提升13.如图所示,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解 作DM ∥AC 交BE 于N ,交CF 于M .DF =MF 2+DM 2=302+1702=10298(m), DE =DN 2+EN 2=502+1202=130(m), EF =BE -FC 2+BC 2=902+1202=150(m). 在△DEF 中,由余弦定理的变形公式,得cos ∠DEF =DE 2+EF 2-DF 22DE ·EF=1302+1502-102×2982×130×150=1665.即∠DEF 的余弦值为1665.14.江岸边有一炮台高30 m ,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连成30°角,求两条船之间的距离.解如图所示:∠CBD=30°,∠ADB=30°,∠ACB=45°∵AB=30,∴BC=30,BD=30tan 30°=30 3.在△BCD中,CD2=BC2+BD2-2BC·BD·cos 30°=900,∴CD=30,即两船相距30 m.1.测量底部不可到达的建筑物的高度问题.由于底部不可到达,这类问题不能直接用解直角三角形的方法解决,但常用正弦定理和余弦定理,计算出建筑物顶部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.2.测量角度就是在三角形内利用正弦定理和余弦定理求角的正弦值或余弦值,再根据需要求出所求的角.第一章解三角形复习课课时目标1.掌握正弦定理、余弦定理的内容,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( ) A .45°或135° B .135°C .45°D .以上答案都不对 答案 C解析 sin B =b ·sin A a =22,且b <a ,∴B =45°.2.在△ABC 中,已知cos A cos B >sin A sin B ,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 答案 C解析 cos A cos B >sin A sin B ⇔cos(A +B )>0, ∴A +B <90°,∴C >90°,C 为钝角.3.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( ) A .(2,+∞) B .(-∞,0) C.⎝ ⎛⎭⎪⎫-12,0 D.⎝ ⎛⎭⎪⎫12,+∞ 答案 D解析 由正弦定理得:a =mk ,b =m (k +1), c =2mk (m >0),∵⎩⎪⎨⎪⎧a +b >c a +c >b 即⎩⎪⎨⎪⎧m 2k +1>2mk3mk >m k +1,∴k >12.4.如图所示,D 、C 、B 三点在地面同一直线上,DC =a ,从C 、D 两点测得A 点的仰角分别是β、α(β<α).则A 点离地面的高AB 等于( )A.a sin αsin βsin α-β B.a sin αsin βcos α-β。
人教版高中数学必修5第一章解三角形测试题及答案
必修五 第一章解三角形测试(总分150)一、选择题(每题5分,共50分)1、在△ABC 中,a =3,b =7,c =2,那么B 等于()A . 30°B .45°C .60°D .120°2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( )A .310+B .()1310-C .13+D .3103、在△ABC 中,a =32,b =22,B =45°,则A 等于()A .30°B .60°C .30°或120°D . 30°或150°4、在△ABC 中,3=AB ,1=AC ,∠A =30°,则△ABC 面积为 ( )A .23 B .43 C .23或3 D .43 或23 5、在△ABC 中,已知bc c b a ++=222,则角A 为( )A .3πB .6πC .32πD . 3π或32π6、在△ABC 中,面积22()Sa b c =--,则sin A 等于()A .1517B .817C .1315D .13177、已知△ABC 中三个内角为A 、B 、C 所对的三边分别为a 、b 、c ,设向量(,)p a c b =+ ,(,)q b a c a =-- .若//p q,则角C 的大小为()A .6π B .3π C .2π D .23π8、已知锐角三角形的边长分别为1,3,a ,则a 的范围是( )A .()10,8B .()10,8C .()10,8D .()8,109、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形 10、在△ABC 中,3,4ABBC AC ===,则AC 上的高为( )A .BC .32D .二、填空题(每小题5分,共20分)11、在△ABC 中,若∠A:∠B:∠C=1:2:3,则=c b a :: 12、已知三角形两边长为11,则第三边长为13、若三角形两边长为1和3,第三边上的中线长为1,则三角形的外接圆半径为 14、在△ABC 中BC=1,3Bπ=,当△ABC tan C =三、解答题(本大题共小题6小题,共80分)15、(本小题14分)在△ABC 中,已知210=AB ,A =45°,在BC 边的长分别为20,3320,5的情况下,求相应角C 。
高中数学人教A版必修五 第一章解三角形 学业分层测评2 Word版含答案
高中数学必修五 解三角形 单元测试(内含答案)一、选择题1.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,若c 2-a 2-b 22ab >0,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .是锐角或直角三角形【解析】 由题意知a 2+b 2-c 22ab <0,即cos C <0,∴△ABC 为钝角三角形.【答案】 C2.△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( )A .19B .14C .-18D .-19【解析】 由余弦定理的推论知cos B =AB 2+BC 2-AC 22AB ·BC=1935, ∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=7×5×⎝ ⎛⎭⎪⎫-1935=-19. 【答案】 D3.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( )A .3B .2 2C .2D . 3【解析】 由a 2=b 2+c 2-2bc cos A ,得4=b 2+12-6b ,解得b =2或4.又b <c ,∴b =2.【答案】 C4.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°【解析】 ∵sin C =23sin B ,由正弦定理,得c =23b ,∴cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,又A 为三角形的内角,∴A =30°.【答案】 A5.在△ABC 中,a ,b ,c 为角A ,B ,C 的对边,且b 2=ac ,则B 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,π3 B.⎣⎢⎡⎭⎪⎫π3,π C.⎝ ⎛⎦⎥⎤0,π6 D .⎣⎢⎡⎭⎪⎫π6,π 【解析】 cos B =a 2+c 2-b 22ac =(a -c )2+ac 2ac=(a -c )22ac +12≥12,∵0<B <π,∴B ∈⎝ ⎛⎦⎥⎤0,π3.故选A. 【答案】 A二、填空题6.在△ABC 中,A =60°,AC =2,BC =3,则AB 等于 .【解析】 ∵A =60°,AC =2,BC =3,设AB =x ,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB cos A ,化简得x 2-2x +1=0,∴x =1,即AB =1.【答案】 17.在△ABC 中,若sin A ∶sin B ∶sin C =5∶7∶8,则B 的大小是 .【解析】 由正弦定理知:a =2R sin A ,b =2R sin B ,c =2R sin C .设sin A =5k ,sin B =7k ,sin C =8k ,∴a =10Rk ,b =14Rk ,c =16Rk ,∴a ∶b ∶c =5∶7∶8,∴cos B =25+64-492×5×8=12,∴B =π3. 【答案】 π38.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =14a,2sin B =3sin C ,则cos A 的值为 .【解析】由2sin B=3sin C及正弦定理得2b=3c,即b=32c.又b-c=14a,∴12c=14a,即a=2c.由余弦定理得cos A=b2+c2-a22bc=94c2+c2-4c22×32c2=-34c23c2=-14.【答案】-1 4三、解答题9.A,B,C,D四个景点,如图1-2-14,∠CDB=45°,∠BCD=75°,∠ADC=15°.A,D 相距2 km,C,D相距(32-6)km,求A,B两景点的距离.图1-2-14【解】在△BCD中,∠CBD=180°-∠BCD-∠CDB=60°,由正弦定理得BDsin ∠BCD =CDsin ∠CBD,即BD=CD·sin 75°sin 60°=2.在△ABD中,∠ADB=45°+15°=60°,BD=AD,∴△ABD为等边三角形,∴AB=2.答:A,B两景点的距离为2 km.10.江岸边有一炮台高30 m,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,求两条船之间的距离.【解】如图所示,∠CBD=30°,∠ADB=30°,∠ACB=45°.∵AB =30(m),∴BC =30(m),在Rt △ABD 中,BD =30tan 30°=303(m).在△BCD 中,CD 2=BC 2+BD 2-2BC ·BD ·cos 30°=900,∴CD =30(m),即两船相距30 m.[能力提升]1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2c 2=2a 2+2b 2+ab ,则△ABC 是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形【解析】 由2c 2=2a 2+2b 2+ab 得,a 2+b 2-c 2=-12ab ,所以cos C =a 2+b 2-c 22ab =-12ab2ab =-14<0,所以90°<C <180°,即三角形为钝角三角形,故选A.【答案】 A2.已知锐角三角形边长分别为2,3,x ,则x 的取值范围是( )A .(5,5)B .(1, 5)C .(5,13)D .(13,5) 【解析】 三边需构成三角形,且保证3与x 所对的角都为锐角,由余弦定理得⎩⎨⎧22+32-x 2>0,22+x 2-32>0,解得5<x <13. 【答案】 C3.在△ABC 中,a =4,b =5,c =6,则sin 2A sin C = .【解析】 由正弦定理得sin A sin C =a c ,由余弦定理得cos A =b 2+c 2-a 22bc ,∵a =4,b =5,c =6,∴sin 2A sin C =2sin A cos A sin C =2·sin A sin C ·cos A =2×46×52+62-422×5×6=1. 【答案】 14.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79.(1)求a ,c 的值;(2)求sin(A -B )的值.【解】 (1)由b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac (1+cos B ),又b =2,a +c =6,cos B =79,所以ac =9,解得a =3,c =3.(2)在△ABC 中,sin B =1-cos 2B =429, 由正弦定理得sin A =a sin B b =223. 因为a =c ,所以A 为锐角,所以cos A =1-sin 2A =13.因此sin(A -B )=sin A cos B -cos A sin B =10227.。
人教版必修5高二年数学第一章解三角形检测卷(含答案)
第一章 解三角形检测卷班级__________座号________学生__________一、 选择题1、某次测量中,A 处测得同一方向的B 点仰角为60o ,C 点俯角为70o ,则∠BAC 等于 ( )A. 10oB. 50oC. 120oD. 130o 2、 ABC 中,已知A =30°,且3a =3b =12,则c 的值为( ) A .4 B .8 C .4或8D .无解3、在高150米山顶上,测得山下一铁塔塔顶与塔底的俯角分别为30,60,o o 则铁塔高( )A . 100米B . 150米C . 200米D .300米4、三角形的两边长为3 cm 、5 cm ,其夹角的余弦是方程5x 2-7x -6=0的根,则此三角形的面积是( )A .6 cm 2 B.152cm 2 C .8 cm 2D .10 cm 25、△ABC 的三边分别为a ,b ,c ,且a =1,B =45°,S △ABC =2,则△ABC 的外接圆的直径为( ) A .4 3B .5C .5 2D .6 26、在△ABC 中,b =8,c =3,A =60°,则此三角形外接圆面积是( ) A.1963B.196π3C.493D.49π37、某人先向正东方向走了x km ,然后他向右转150°,向新的方向走了3 km ,结果他离出发点恰好为 3 km ,那么x 的值为( )A. 3 B .2 3 C .23或 3 D .3 8、如图所示,在河岸AC 测量河的宽度BC ,图中所标的数据a ,b ,c ,α,β是可供测量的数据.下面给出的四组数据中,对测量河宽较适宜的是( )A .c 和αB .c 和bC .c 和βD .b 和α9、△ABC 的三内角A ,B ,C 的对边边长分别为a ,b ,c ,若a =52b ,A =2B ,则cos B =( ) A.53B.54 C.55D.5610、△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则b a=( ) A .2 3B .2 2 C. 3D. 211、△ABC 的三内角A 、B 、C 所对边的长分别为a 、b 、c ,设向量p =(a +c ,b ),q =(b -a ,c -a ),若p ∥q ,则角C 的大小为( )A.π6B.π3C.π2D.2π312、如图,某炮兵阵地位于A 点,两观察所分别位于C ,D 两点.已知△ACD 为正三角形,且DC = 3 km ,当目标出现在B 点时,测得∠CDB =45°,∠BCD =75°,则炮兵阵地与目标的距离是( )A .1.1 kmB .2.2 kmC .2.9 kmD .3.5 km二、 填空题13、ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________. 14、△ABC 为钝角三角形,且∠C 为钝角,则a 2+b 2与c 2的大小关系为________. 15、在△ABC 中,S △ABC =14(a 2+b 2-c 2),b =1,a = 2.则c =________.16、如图,一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这艘船航行的速度为____________.三、解答题17、在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边长,已知b 2=ac ,且a 2-c 2=ac -bc .求:(1)角A 的大小; (2)b sin Bc的值.18、△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,并且a 2=b (b +c ).(1)求证:A =2B ;(2)若a =3b ,判断△ABC 的形状.19、在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -ab,(1)求sin Csin A的值;(2)若cos B =14,b =2,求△ABC 的面积S .20、如图所示,在地面上有旗杆OP ,为测得它的高度h ,在地面上取一基线AB ,AB=20 m,在A 处测得P 点的仰角∠OAP=30o ,在B 处测得P 点的仰角∠OBP=45o ,又测得∠AOB=300,求旗杆的高度.21、△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b ), n =(sin B ,sin A ),p()2,2--=a b .(1)若m ∥n ,求证:△ABC 为等腰三角形; (2)若m ⊥p , c =2,3π=C,求△ABC 的面积S .解三角形检测卷1.D2.C3.A4.A5.C6.D7.C8.D9.B 10.D 11.B 12.C; 13.255 210,14.a 2+b 2<c 2, 15.1,16.1762(海里/小时);17.解:(1)∵b 2=ac ,且a 2-c 2=ac -bc ,∴b 2+c 2-a 2=bc .在△ABC 中,由余弦定理的推论,得cos A =b 2+c 2-a 22bc =bc 2bc =12,∴A =60°.(2)在△ABC 中,由正弦定理得sin B =b sin A a .∵b 2=ac ,A =60°,∴b sin B c =b 2sin 60°ac=sin 60°=32. 18.解:(1)因为a 2=b (b +c ),即a 2=b 2+bc ,所以在△ABC 中,由余弦定理可得,cos B =a 2+c 2-b 22ac =c 2+bc2ac=b +c 2a =a 22ab =a 2b =sin A 2sin B,所以sin A =sin 2B ,故A =2B . (2) 因为a =3b ,所以a b=3,由a 2=b (b +c )可得c =2b ,cos B =a 2+c 2-b 22ac =3b 2+4b 2-b 243b2=32, 所以B =30°,A =2B =60°,C =90°.所以△ABC 为直角三角形.19.解:(1)法一:在△ABC 中,由cos A -2cos C cos B =2c -a b 及正弦定理可得cos A -2cos Ccos B =2sin C -sin Asin B,即cos A sin B -2cos C sin B =2sin C cos B -sin A cos B . 则cos A sin B +sin A cos B =2sin C cos B +2cos C sin B , 即sin(A +B )=2sin(C +B ),而A +B +C =π, 则sin C =2sin A ,即sin Csin A=2.法二:在△ABC 中,由cos A -2cos C cos B =2c -ab可得b cos A -2b cos C =2c cos B -a cos B由余弦定理可得b 2+c 2-a 22c -a 2+b 2-c 2a =a 2+c 2-b 2a -a 2+c 2-b 22c, 整理可得c =2a ,由正弦定理可得sin C sin A =c a =2.法三:利用教材习题结论解题,在△ABC 中有结论a =b cos C +c cos B ,b =c cos A +a cos C ,c =a cos B +b cos A .由cos A -2cos C cos B =2c -ab可得b cos A -2b cos C =2c cos B -a cos B ,即b cos A +a cos B =2c cos B +2b cos C ,则c =2a ,由正弦定理可得sin C sin A =c a =2.(2)由c =2a 及cos B =14,b =2可得4=c 2+a 2-2ac cos B =4a 2+a 2-a 2=4a 2,则a =1,c =2. ∴S =12ac sin B =12×1×2×1-cos 2B =154.20.解:设旗杆的高度为x m 在AOP RT ∆中,x xAO 330tan 0==,BOP RT ∆中,x xBO ==045tan ,在AOB ∆中,022230cos 2⋅⋅-+=BO AO BO AO AB ,22233400x x x -+=解得20=x .答:旗杆的高度为20m.21、解:(1)证明:∵m ∥n ,∴a sin A =b sin B ,即a ·a 2R =b ·b2R ,其中R 是△ABC 外接圆半径,∴a =b ,∴△ABC 为等腰三角形.(2)∵m ⊥p ,∴a (b -2)+b (a -2)=0.∴a +b =ab .由余弦定理可知,c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab =(a +b )2-3ab =4,∴(ab )2-3ab-4=0.∴ab =4或ab =-1(舍去).∴S =12ab sin C =12×4×sin π3= 3.即△ABC 的面积为 3.。
人教新课标版数学高二-人教A版数学必修5第一章《解三角形》综合测试
第一章单元综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.在△ABC 中,若sin A +cos A =712,则这个三角形是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形解析:若A ≤90°,则sin A +cos A ≥1>712,∴A >90°. 答案:A2.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是( )A .0<a <3 B.32≤a <3 C .2<a ≤3D .1≤a <52解析:∵三角形为钝角三角形,∴⎩⎨⎧a +a +1>a +2,0>a 2+(a +1)2-(a +2)22a (a +1)≥-12.∴32≤a <3. 答案:B3.在△ABC 中,如果sin A =3sin C ,B =30°,那么角A 等于( ) A .30° B .45° C .60°D .120°解析:∵a c =sin A sin C =3,∴a =3c .又b 2=a 2+c 2-2ac cos B ,得b =c . ∴B =C =30°,A =120°. 答案:D4.在△ABC 中,若sin A >sin B ,则A 与B 的大小关系为( ) A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定解析:由正弦定理a sin A =b sin B ,∴a >b .∴A >B . 答案:A5.在△ABC 中,角A ,B 满足sin 32A =sin 32B ,则三边a ,b ,c必满足( )A .a =bB .a =b =cC .a +b =2D .(a -b )(a 2+b 2-ab -c 2)=0解析:由sin 32A =sin 32B 且A ,B 是三角形内角,得32A =32B 或32A=π-32B ,所以A =B 或A +B =2π3,第二种情况C =π3.所以a =b 或a 2+b 2-ab =c 2.答案:D6.在△ABC 中,若sin 2A +sin 2B =sin 2C ,则以a +k ,b +k ,c +k (k >0)为边的三角形一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .直角三角形或钝角三角形解析:由正弦定理,得a 2+b 2=c 2.再用余弦定理,证明以a +k ,b +k ,c +k 为边的三角形中最大角为锐角即可.答案:A7.在△ABC 中,若sin B sin C =cos 2A2,则下面等式一定成立的是( )A .A =B B .A =C C .B =CD .A =B =C解析:由sin B sin C =cos 2A2=1+cos A2⇒2sin B sin C =1+cos A ⇒cos(B -C )-cos(B +C )=1+cos A .又cos (B +C )=-cos A ⇒cos(B -C )=1, ∴B -C =0,即B =C . 答案:C8.一角槽的横断面如图所示,四边形ADEB 是矩形,且α=50°,β=70°,AC=90mm,BC=150mm,则DE的长等于()A.210mm B.200mmC.198mm D.171mm解析:∠ACB=70°+50°=120°,在△ABC中应用余弦定理可以求出AB的长,即为DE的长.答案:A9.在△ABC中,已知△ABC的面积为S=a2-(b-c)2,则有() A.sin A-4cos A=4 B.sin A+4cos A=4C.cos A-4sin A=4 D.cos A+4sin A=4解析:因为12bc sin A=a2-(b-c)2,所以b2+c2-a2=2bc-12bc sin A,所以cos A=b2+c2-a22bc=1-14sin A,即sin A+4cos A=4.答案:B10.在△ABC中,角A,B,C所对的边长分别为a,b,c,若C=120°,c=2a,则()A.a>b B.a<bC.a=b D.a与b的大小关系不能确定解析:因为C=120°,c=2a,所以c2=a2+b2-2ab cos C,即2a2=a2+b2-2ab×(-12).所以a 2-b 2=ab ,a -b =aba +b.因为a >0,b >0,所以a -b =aba +b >0,所以a >b .故选A. 答案:A11.在△ABC 中: ①sin(A +B )+sin C ; ②cos(B +C )+cos A ; ③tan A +B 2·tan C 2;④cos B +C 2·tan A2.其中恒为常数的是( ) A .①② B .①③ C .②③D .②④解析:①sin(A +B )+sin C =2sin C ,不恒为常数; ②cos(B +C )+cos A =-cos A +cos A =0; ③tan A +B 2·tan C 2=tan(π2-C 2)tan C2=1;④cos B +C 2·tan A2=cos(π2-A 2)·sin A 2cos A 2=sin 2A 2cos A 2,不恒为常数.答案:C12.设a ,b ,c 是△ABC 的三条边长,对任意实数x ,f (x )=b 2x 2+(b 2+c 2-a 2)x +c 2,有( )A .f (x )=0B .f (x )>0C.f(x)≤0 D.f(x)<0解析:由余弦定理可得f(x)=b2x2+2bc cos A·x+c2,∵Δ=(2bc cos A)2-4b2c2=4b2c2·(cos2A-1)<0,且b2>0,∴f(x)>0.答案:B第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.等腰三角形的底边为a,腰长为2a,则腰上的中线长等于________.解析:如图,等腰△ABC中,BC=a,AB=AC=2a,BM为腰上中线,则CM=a,△BCM为等腰三角形,在Rt△ADC中,cosα=14.在△BMC中,由余弦定理得BM2=BC2+MC2-2BC·MC·cosα=a 2+a 2-2a ·a ·14=32a 2,∴BM =62a .答案:62a 14.在△ABC 中,sin 2A =sin 2B +sin B sin C +sin 2C ,则A =________.解析:由已知得a 2=b 2+bc +c 2, ∴b 2+c 2-a 2=-bc . ∴cos A =b 2+c 2-a 22bc =-12.又0°<A <180°,∴A =120°. 答案:120°15.在△ABC 中,A =60°,b =1,△ABC 的面积为3,则a +b +csin A +sin B +sin C=________.解析:由12bc sin A =3,得c =4.∴a =b 2+c 2-2bc cos A =13. ∴a +b +csin A +sin B +sin C =asin A =2393.答案:239316.在△ABC 中,OA→=(2cos α,2sin α),OB →=(5cos β,5sin β),若OA →·OB→=-5,则S △OAB =________.解析:由OA →·OB →=-5,得cos(α-β)=-12. ∴sin(α-β)=32.S △OAB =12|OA →|·|OB →|·sin(α-β)=12×2×5×32=532.答案:532三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)如图所示,在四边形ABCD 中,AC 平分∠DAB ,∠ABC =60°,AC =7,AD =6,S △ACD =1532,求AB 的长.解:在△ACD 中,S △ACD =12AC ·AD sin ∠1,∴sin ∠1=2S △ACD AC ·AD =2×15327×6=5314,∴sin ∠2=5314.在△ABC 中,BC =AC sin ∠2sin60°=5且cos ∠2=1-sin 2∠2=1114,∴BC 2=AB 2+AC 2-2AB ·AC cos ∠2.即25=AB 2+49-11AB ,(AB -8)·(AB -3)=0. ∴AB =8或AB =3.18.(12分)在△ABC 中,已知c =3,b =1,B =30°. (1)求角A ;(2)求△ABC 的面积. 解:(1)由b sin B =csin C得,sin C =cb sin B =3sin30°=32.∵c >b ,∴C >B ,∴C =60°或C =120°. ∴A =90°或A =30°.(2)S △ABC =12bc sin A =12×1×3sin90°=32.或S △ABC =12bc sin A =12×1×3×sin30°=34.即△ABC 的面积为32或34.19.(12分)在△ABC 中,已知(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状.解:由题意可知a 2[sin(A +B )-sin(A -B )] =b 2[sin(A -B )+sin(A +B )], 即a 2·2sin B cos A =b 2·2sin A cos B . ∵sin A sin B ≠0,∴2sin A cos A =2sin B cos B ,即sin2A =sin2B . ∴A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形.20.(12分)设△ABC 是锐角三角形,a ,b ,c 分别是内角A ,B ,C 所对的边,并且sin 2A =sin(π3+B )·sin(π3-B )+sin 2B .(1)求角A 的值;(2)若AB →·AC→=12,a =27,求b ,c (其中b <c ).解:(1)因为sin 2A =(32cos B +12sin B )(32cos B -12sin B )+sin 2B =34cos 2B -14sin 2B +sin 2B =34, 所以sin A =±32,又因为A 为锐角,所以A =π3. (2)由AB →·AC→=12,可得cb cos A =12.① 由(1)知A =π3,所以cb =24.② 由余弦定理,知a 2=c 2+b 2-2cb cos A ,将a =27及①代入,得c 2+b 2=52,③③+②×2,得(c +b )2=100,所以c +b =10.因此,c ,b 是一元二次方程t 2-10t +24=0的两个根.解此方程并由c >b ,知c =6,b =4.21.(12分)如图,在△ABC 中,AB =AC =a ,以BC 为边向外作正三角形BCD ,求AD 的最大值.解:由题意,得AD 垂直平分BC ,则∠BDA =30°,设∠BAD =α,则∠ABD =150°-α.在△ABD 中,由正弦定理,得AD sin ∠ABD =AB sin ∠ADB, 所以AD =a sin (150°-α)sin30°=2a sin(150°-α). 所以当α=60°,即∠BAC =120°时,AD 取最大值2a .22.(12分)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,设f (x )=a 2x 2-(a 2-b 2)x -4c 2.(1)若f (1)=0,且B -C =π3,求角C 的大小; (2)若f (2)=0,求角C 的取值范围.解:(1)∵f (1)=0,∴a 2-(a 2-b 2)-4c 2=0.∴b 2=4c 2.∴b =2c .∴sin B =2sin C .又B -C =π3, ∴sin(C +π3)=2sin C . ∴sin C ·cos π3+cos C ·sin π3=2sin C . ∴32sin C -32cos C =0.∴sin(C -π6)=0. 又-π6<C -π6<56π,∴C =π6. (2)若f (2)=0,则4a 2-2(a 2-b 2)-4c 2=0, ∴a 2+b 2=2c 2.∴cos C =a 2+b 2-c 22ab =c 22ab .又2c 2=a 2+b 2≥2ab ,∴ab ≤c 2.∴cos C ≥12.∴0<C ≤π3.。
(完整word版)高中数学必修五解三角形测试题及答案,推荐文档
(数学5必修)第一章:解三角形[基础训练A 组]一、选择题1.在△ABC 中,若030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D .Atan 13.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B .23C .3D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .0150二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。
2.在△ABC 中,若=++=A c bc b a 则,222_________。
3.在△ABC 中,若====a C B b 则,135,30,20_________。
4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。
5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。
三、解答题1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (aA bB c a b b a -=-3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。
(完整版)新课标人教A版高中数学必修五第一章《解三角形》单元测试题
解三角形一、选择题(共12小题,每小题5分,只有一个选项正确):1.在△ABC 中,若∠A =60°,∠B =45°,BC =23AC =( ) A .3 B .22 C 332.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形3.在△ABC 中,已知a =11,b =20,A =130°,则此三角形( )A .无解B .只有一解C .有两解D .解的个数不确定 4. 海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60ο的视角,从B 岛望C 岛和A 岛成75ο视角,则B 、C 两岛的距离是( )海里 A. 65 B. 35 C. 25 D. 55.边长为3、7、8的三角形中,最大角与最小角之和为 ( )A .90°B .120°C .135°D .150°6.如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定的一点C ,测出AC 的距离为2m ,45ACB ∠=︒,105CAB ∠=︒后,就可以计算出A ,B 两点的距离为 ( )A. 100mB. 3mC. 2mD. 200m 7.在△ABC 中,已知sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则△ABC 的面积为( )A .1B .2 C. 2 D. 38.如图,四边形ABCD 中,B =C =120°,AB =4,BC =CD =2,则该四边形的面积等于( )A. 3 B .5 3 C .6 3D .7 3 9.在△ABC 中,A =120°,AB =5,BC =7,则sin B sin C的值为( ) A.85 B.58 C.53 D.3510.某海上缉私小分队驾驶缉私艇以40 km/h 的速度由A 处出发,沿北偏东60°方向航行,进行海面巡逻,当行驶半小时到达B 处时,发现北偏西45°方向有一艘船C ,若C 船位于A 处北偏东30°方向上,则缉私艇B 与船C 的距离是( )A .5(6+2) kmB .5(6-2) kmC .10(6+2) kmD .10(6-2) km11.△ABC 的周长为20,面积为3A =60°,则BC 的长等于( )A .5 B.6 C .7 D .812.在ABC △中,角A B C 、、所对的边分别为,,a b c ,若120,2C c a ∠=︒=,则( ) A .a b > B .a b <C .a b =D .a 与b 的大小关系不能确定二、填空题(共4小题,每小题5分):13.三角形的两边分别是5和3,它们夹角的余弦值是方程06752=--x x 的根,则此三角形的面积是 。
人教A版高中数学必修五高二数学解三角形单元测试题.docx
高二数学解三角形单元测试题一、选择题:1. △ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( )A 直角三角形B 等腰直角三角形C 等边三角形D 等腰三角形2. 在△ABC 中,3c=3,B=300,则a 等于( )A 3.3 C 33.23. 已知△ABC 的周长为9,且4:2:3sin :sin :sin =C B A ,则cosC 的值为( ) A .41- B .41 C .32- D .32 4. 在△ABC 中,A =60°,b =1,其面积为3,则CB A c b a sin sin sin ++++等于( ) A .33 B .3392C .338D .239 5. 在△ABC 中,AB =5,BC =7,AC =8,则⋅的值为( ) A .79 B .69 C .5D .-5 6.关于x 的方程02cos cos cos 22=-⋅⋅-C B A x x 有一个根为1,则△ABC 一定是( ) A .等腰三角形 B .直角三角形 C .锐角三角形 D .钝角三角形7. 设m 、m+1、m+2是钝角三角形的三边长,则实数m 的取值范围是( )A.0<m <3B.1<m <3C.3<m <4D.4<m <68. △ABC 中,若c=ab b a ++22,则角C 的度数是( )A.60°B.120°C.60°或120°D.45° 9.在△ABC 中,A B B A 22sin tan sin tan ⋅=⋅,那么△ABC 一定是 ( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形10. 如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 由增加的长度决定11. 在△ABC 中,若b=22,a=2,且三角形有解,则A 的取值范围是( )A.0°<A <30°B.0°<A ≤45°C.0°<A <90°D.30°<A <60°12、已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( )(A )10 (B )9(C )8(D )5二、填空题13.在△ABC 中,有等式:①asinA=bsinB ;②asinB=bsinA ;③acosB=bcosA ;④sin sin sin a b c A B C+=+. 其中恒成立的等式序号为______________ 14. 在等腰三角形 ABC 中,已知sinA ∶sinB=1∶2,底边BC=10,则△ABC 的周长是 。
高二数学必修5解三角形单元检测AB卷附答案
高二数学必修5第一章解三角形单元检测(A 卷)一、选择题:1.ΔABC 中, a = 1, b =3, ∠A=30°,则∠B 等于( ) A .60° B .60°或120° C .30°或150° D .120°2.在△ABC 中,已知b =43,c =23,∠A =120°,则a 等于( )A .221B .6C .221或6D .23615+3.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为( )A .9B .18C .93D .1834.在△ABC 中,A ∶B ∶C = 1∶2∶3,则a ∶ b ∶ c 等于( )A .1∶2∶3B .3∶2∶1C .1∶3∶2D .2∶3∶15.△ABC 中,∠A 、∠B 的对边分别为a 、b ,5,4a b ==,且∠A=60°,那么满足条件的△ABC ( )A .有一个解B .有两个解C .无解D .不能确定6.边长为5,7,8的三角形的最大角与最小角之和为 ( )A. 90°B. 120°C.135°D. 150°二、填空题:请把答案填在题中横线上(每小题5分,共20分).7.在△ABC 中,若,12,10,9===c b a 则△ABC 的形状是_______ __三角形。
8.在△ABC 中,B=1350,C=150,a = 5,则此三角形的最大边长为 .9.在△ABC 中,若∠B =30°,AB =23,AC =2,则△ABC 的面积是___ ___。
10.一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60 ,行驶4h 后,船到达C 处,看到这个灯塔在北偏东15 ,这时船与灯塔的距离为 km .三、解答题:解答应写出文字说明、证明过程或演算步骤(共50分).11.(16分)已知a =33,c =2,B =150°,求边b 的长及S △.12.(16分)在∆ABC 中,设,2tan tan bb c B A -=,求A 的值。
高二数学人教A必修5章末检测:第一章 解三角形 Word版含解析
章末检测一、选择题1.在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,若A +C =2B ,有a =1,b =3,则S △ABC 等于( ) A. 2 B. 3 C.32 D .2答案 C解析 由A +C =2B ,解得B =π3.由余弦定理得(3)2=1+c 2-2c cos π3,解得c =2或c =-1(舍去).于是,S △ABC =12ac sin B =12×1×2sin π3=32.2.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10) D.⎝ ⎛⎦⎥⎤0,403 答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403.3.在△ABC 中,若a =52b ,A =2B ,则cos B 等于( ) A.53 B.54 C.55 D.56答案 B解析 由正弦定理得a b =sin A sin B ,∴a =52b 可化为sin A sin B =52.又A =2B ,∴sin 2B sin B =52,∴cos B =54.4.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c .若C =120°,c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定答案 A解析 由余弦定理得c 2=a 2+b 2-2ab cos C ,又C =120°,∴2a 2=a 2+b 2+ab ,∴a 2=b 2+ab >b 2,∴a >b ,故选A.5.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( )A .(2,+∞)B .(-∞,0)C .(-12,0)D .(12,+∞)答案 D解析 由正弦定理得:a =mk ,b =m (k +1),c =2mk (m >0),∵⎩⎨⎧ a +b >ca +c >b 即⎩⎨⎧ m (2k +1)>2mk3mk >m (k +1),∴k >12.6.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为() A.922 B.924 C.928 D .9 2答案 C解析 设另一条边为x ,则x 2=22+32-2×2×3×13,∴x 2=9,∴x =3.设cos θ=13,则sin θ=223.∴2R =3sin θ=3223=924,R =928.7.在△ABC 中,sin A =sin C ,则△ABC 是( )A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形答案 B解析 ∵sin A =sin C 且A 、C 是三角形内角,∴A =C 或A +C =π(舍去).∴△ABC 是等腰三角形.8.在锐角△ABC 中,BC =1,∠B =2∠A ,则AC 的取值范围是( )A .[-2,2]B .[0,2]C .(0,2]D .(2,3)答案 D解析 由题意得⎩⎪⎨⎪⎧ 0<π-3∠A <π2,0<2∠A <π2⇒π6<∠A <π4,由正弦定理AC sin B =BCsin A 得AC =2cos A .∵∠A ∈⎝ ⎛⎭⎪⎫π6,π4,∴AC ∈(2,3).9.根据下列情况,判断三角形解的情况,其中正确的是( )A .a =8,b =16,A =30°,有两解B .b =18,c =20,B =60°,有一解C .a =5,c =2,A =90°,无解D .a =30,b =25,A =150°,有一解答案 D解析 A 中,因a sin A =bsin B ,所以sin B =16×sin 30°8=1,∴B =90°,即只有一解;B 中,sinC =20sin 60°18=539,且c >b ,∴C >B ,故有两解;C 中,∵A =90°,a =5,c =2,∴b =a 2-c 2=25-4=21,即有解; 故A 、B 、C 都不正确.用排除法应选D.10.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于() A.21 B.106 C.69 D.154答案 B解析 设BC =a ,则BM =MC =a2.在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB , 即72=14a 2+42-2×a2×4·cos ∠AMB ①在△ACM 中,AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC即62=42+14a 2+2×4×a2·cos ∠AMB ②①+②得:72+62=42+42+12a 2,∴a =106.二、填空题11.已知△ABC 中,3a 2-2ab +3b 2-3c 2=0,则cos C 的大小是________.答案 13解析 由3a 2-2ab +3b 2-3c 2=0,得c 2=a 2+b 2-23ab .根据余弦定理,得cos C =a 2+b 2-c 22ab=a 2+b 2-a 2-b 2+23ab2ab =13,所以cos C =13. 12.在△ABC 中,若b +c =2a,3sin A =5sin B ,则角C =________.答案 2π3解析 由已知3sin A =5sin B ,利用正弦定理可得3a =5b .由3a =5b ,b +c =2a ,利用余弦定理得cos C =a 2+b 2-c 22ab =-12.C ∈(0,π),C =23π.13.在△ABC 中,已知cos A =35,cos B =513,b =3,则c =________.答案 145解析 在△ABC 中,∵cos A =35>0,∴sin A =45.∵cos B =513>0,∴sin B =1213.∴sin C =sin [π-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =45×513+35×1213=5665.由正弦定理知b sin B =c sin C ,∴c =b sin C sin B =3×56651213=145.14.太湖中有一小岛C ,沿太湖有一条正南方向的公路,一辆汽车在公路A 处测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 到达B 处后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.答案 36解析 如图,∠CAB =15°,∠CBA =180°-75°=105°,∠ACB =180°-105°-15°=60°,AB =1 (km).由正弦定理得BC sin ∠CAB =AB sin ∠ACB, ∴BC =1sin 60°·sin 15°=6-223(km). 设C 到直线AB 的距离为d ,则d =BC ·sin 75°=6-223·6+24=36 (km). 三、解答题15.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,cos B =35.(1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.解 (1)∵cos B =35>0,且0<B <π,∴sin B =1-cos 2B =45. 由正弦定理得a sin A =b sin B ,sin A =a sin B b =2×454=25.(2)∵S △ABC =12ac sin B =4,∴12×2×c ×45=4,∴c =5.由余弦定理得b 2=a 2+c 2-2ac cos B =22+52-2×2×5×35=17,∴b =17.16.如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/时的速度追击,求我艇追上走私船所需要的时间.解 设我艇追上走私船所需时间为t 小时,则BC =10t ,AC =14t ,在△ABC 中,由∠ABC =180°+45°-105°=120°,根据余弦定理知(14t )2=(10t )2+122-2·12·10t cos 120°,∴t =2(t =-34舍去).答 我艇追上走私船所需要的时间为2小时.17.在△ABC 中,a =3,b =26,∠B =2∠A .(1)求cos A 的值;(2)求c 的值.解 (1)因为a =3,b =26,∠B =2∠A ,所以在△ABC 中,由正弦定理得3sin A =26sin 2A .所以2sin A cos A sin A =263.故cos A =63.(2)由(1)知cos A =63,所以sin A =1-cos 2A =33.又因为∠B =2∠A ,所以cos B =2cos 2A -1=13.所以sin B =1-cos 2B =223.在△ABC 中,sin C =sin(A +B )=sin A cos B +cos A sin B =539.所以c =a sin C sin A =5.18.已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.(1)证明 ∵m ∥n ,∴a sin A =b sin B , 即a ·a 2R =b ·b 2R ,其中R是△ABC外接圆半径,∴a=b.∴△ABC为等腰三角形.(2)解由题意知m·p=0,即a(b-2)+b(a-2)=0.∴a+b=ab.由余弦定理可知,4=a2+b2-ab=(a+b)2-3ab,即(ab)2-3ab-4=0.∴ab=4(舍去ab=-1),∴S△ABC =12ab sin C=12×4×sinπ3= 3.。
高中数学必修五第一章《解三角形》单元测试卷及答案
高中数学必修五第一章《解三角形》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.在ABC △中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3B .3:2:1C .2D .22.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且A >B ,则一定有( ) A .cos A >cos BB .sin A >sin BC .tan A >tan BD .sin A <sin B3.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,2sin sin cos a A B b A +,则ba =( )A .B .C D4.在△ABC 中,∠A =60°,a =,b =4.满足条件的△ABC ( ) A .无解B .有一解C .有两解D .不能确定5.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222a b c =-, 则角B 的大小是( ) A .45°B .60°C .90°D .135°6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若22a b -,sin C B =,则A =( ) A .30°B .60°C .120°D .150°7.在△ABC 中,∠A =60°,b =1,△ABC sin aA为( )A B C D .8.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A .0,6π⎛⎤ ⎥⎝⎦B .,6π⎡⎫π⎪⎢⎣⎭C .0,3π⎛⎤ ⎥⎝⎦D .,3π⎡⎫π⎪⎢⎣⎭9.在△ABC 中,已知B =45°,c =,b =A 的值是( ) A .15°B .75°C .105°D .75°或15°10.在锐角三角形ABC 中,b =1,c =2,则a 的取值范围是( )A .1<a <3B .1a <<C a <D .不确定11.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 22A b cc+=,则 △ABC 的形状为( ) A .直角三角形B .等腰直角三角形C .等腰或直角三角形D .等边三角形12.如图所示,在△ABC 中,已知∠A ∶∠B =1∶2,角C 的平分线CD 把三角形面积分为3∶2两部分,则cos A 等于( )A .13B .12C .34D .0二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.等腰三角形的底边长为6,腰长为12,其外接圆的半径为________. 14.在△ABC 中,若a 2+b 2<c 2,且3sin C ,则∠C =________. 15.在△ABC 中,a =3,26b =B =2∠A ,则cos A =________.16.某人在C 点测得塔AB 在南偏西80°,仰角为45°,沿南偏东40°方向前进10 m 到O ,测得塔A 仰角为30°,则塔高为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .已知()cos cos 3sin cos 0C A A B +=.(1)求角B 的大小;(2)若a +c =1,求b 的取值范围.18.(12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .(1)若sin 2cos 6A A π⎛⎫+= ⎪⎝⎭,求A 的值;(2)若1cos 3A =,b =3c ,求sin C 的值.19.(12分)在△ABC 中,角A 、B 、C 对应的边分别是a 、b 、c ,已知cos2A -3cos(B +C )=1.(1)求角A 的大小;(2)若△ABC 的面积S =b =5,求sin B sin C 的值.20.(12分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且222a b c +=. (1)求C ;(2)设cos cos A B =,()()2cos cos cos A B ααα++,求tan α的值.21.(12分)在△ABC 中,2C A π-=,1sin 3B =. (1)求sin A 的值;(2)设6AC =,求△ABC 的面积.22.(12分)如图,已知扇形AOB ,O 为顶点,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 相交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.答 案一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.【答案】C 【解析】6A π=,3B π=,2C π=,132::sin :sin :sin 3222a b c A B C ===,故选C . 2.【答案】B【解析】∵A B >,∴a b >,由正弦定理,得sin sin A B >,故选B .3.【答案】D【解析】本小题考查内容为正弦定理的应用.∵2sin sin cos a A B b A +=,∴22sin sin sin cos A B B A A +=,sin B A =,∴b =,∴ba.故选D . 4.【答案】A【解析】4sin 60⨯︒=<a <b sin A ,∴△ABC 不存在. 故选A . 5.【答案】A【解析】∵222a b c =-,∴222a c b +-=,由余弦定理,得222cos 2a c b B ac +-===0°<B <180°,所以B =45°. 故选A . 6.【答案】A【解析】由sin C B =及正弦定理,得c =,∴2226a b b -=, 即a 2=7b 2.由余弦定理,2222222cos2b c a A bc +-===,又∵0°<A <180°,∴A =30°.故选A . 7.【答案】B【解析】由1sin 2bc A =c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =13,故a =sin a A ==B . 8.【答案】C【解析】本题主要考查正余弦定理,∵sin 2A ≤sin 2B +sin 2C -sin B sin C , ∴由正弦定理得:a 2≤b 2+c 2-bc ,即b 2+c 2-a 2≥bc ,由余弦定理得:2221cos 222b c a bc A bc bc +-==≥=,∴03A π<≤,故选C .9.【答案】D 【解析】∵sin sin b cB C =,∴sin sin c B C b ==. ∵0°<C <180°.∴C =60°或120°,∴A =75°或15°.故选D . 10.【答案】C【解析】∵b <c ,△ABC 为锐角三角形,∴边c 与边a 所对的角的余弦值大于0,即b 2+a 2-c 2>0且b 2+c 2-a 2>0,∴22140140a a ⎧+->⎪⎨+->⎪⎩.∴3<a 2<5,∴35a <<. 故选C . 11.【答案】A【解析】由21cos cos 222A A b c c ++==,整理得cos bA c=.又222cos 2b c a A bc +-=, 联立以上两式整理得c 2=a 2+b 2,∴C =90°.故△ABC 为直角三角形.故选A . 12.【答案】C【解析】在△ABC 中,设∠ACD =∠BCD =β,∠CAB =α,由∠A ∶∠B =1∶2,得∠ABC =2α.∵∠A <∠B ,∴AC >BC ,∴S △ACD >S △BCD ,∴S △ACD ∶S △BCD =3∶2,∴1sin 3212sin 2AC DC BC DC ββ⋅⋅⋅=⋅⋅⋅,∴32AC BC =.由正弦定理得sin sin AC BC B A =,sin 2sin 2sin cos sin AC BC AC BCααααα=⇒=, ∴133cos 2224AC BC α==⨯=,即3cos 4A =.故选C .二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.815【解析】设△ABC 中,AB =AC =12,BC =6,由余弦定理222222121267cos 2212128AB AC BC A AB AC +-+-===⋅⨯⨯.∵()0,A ∈π,∴15sin A =,∴外接圆半径8152sin BC r A == 14.【答案】23π【解析】∵a 2+b 2<c 2,∴a 2+b 2-c 2<0,即cos C <0.又3sin C ,∴23C π∠=. 15.6【解析】∵a =3,26b =,∠B =2∠A ,由正弦定理326sin sin 2A A=, ∴2sin cos 26sin 3A A A =,∴6cos 3A =. 16.【答案】10 m【解析】画出示意图,如图所示,CO =10,∠OCD =40°,∠BCD =80°,∠ACB =45°, ∠AOB =30°,AB ⊥平面BCO ,令AB =x ,则BC =x ,3BO x ,在△BCO 中,由余弦定理得)()223100210cos 8040xx x =+-⨯⨯︒+︒,整理得25500x x -=-,解得10x =,5x =-(舍去),故塔高为10 m .三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.【答案】(1)3B π=;(2)112b ≤<. 【解析】(1)由已知得()cos cos cos 3cos 0A B A B A B -++-=, 即有sin sin 3sin cos 0A B A B =. 因为sin A ≠0,所以sin 30B B =. 又cos B ≠0,所以tan 3B =.又0<B <π,所以3B π=. (2)由余弦定理,有b 2=a 2+c 2-2ac cos B . 因为a +c =1,1cos 2B =,有2211324b a ⎛⎫=-+ ⎪⎝⎭.又0<a <1,于是有2114b ≤<,即有112b ≤<. 18.【答案】(1)3A π=;(2)1sin 3C =. 【解析】(1)由题设知sin cos cos sin 2cos 66A A A ππ+=.从而sin 3A A ,所以cos A ≠0,tan A =.因为0<A <π,所以3A π=. (2)由1cos 3A =,b =3c 及a 2=b 2+c 2-2bc cos A ,得a 2=b 2-c 2, 故△ABC 是直角三角形,且2B π=.所以1sin cos 3C A ==. 19.【答案】(1)3A π=;(2)5sin sin 7B C =. 【解析】(1)由cos2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0,解得1cos 2A =或cos A =-2(舍去). 因为0<A <π,所以3A π=.(2)由11sin sin 223S bc A bc π====bc =20,又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =. 又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.20.【答案】(1)34C π=;(2)tan α=1或tan α=4.【解析】(1)因为222a b c +=,由余弦定理有222cos 2a b c C ab +-===34C π=. (2)由题意得()()2sin sin cos cos sin sin cos cos cos A A B B ααααα--,因此()()tan sin cos tan sin cos A A B B αα--=,()2tan sin sin tan sin cos cos sin cos cos A B A B A B A B αα-++=,()2tan sin sin tan sin cos cos A B A B A B αα-++=因为34C π=,4A B π+=,所以()sin A B +=因为cos(A +B )=cos A cos B -sin A sin B ,即sin sin 52A B -=,解得sin sin 5210A B =-=.由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4. 21.【答案】(1)sin A ;(2)ABC S =△. 【解析】(1)由2C A π-=和A +B +C =π,得22A B π=-,04A π<<. ∴cos2A =sinB ,即2112sin 3A -=,∴sin A =.(2)由(1)得cos A sin sin BC AC A B =,∴sin 31sin 3AC ABC B===∵2C A π-=,∴2C A π=+,∴sin sin cos 2C A A π⎛⎫=+== ⎪⎝⎭,∴11sin 22ABC S AC BC C =⋅⋅==△. 22.【答案】当θ=30°时,S (θ). 【解析】∵CP ∥OB ,∴∠CPO =∠POB =60°-θ,∠OCP =120°. 在△OCP 中,由正弦定理,得sin sin OP CP OCP θ=∠,即2sin120sin CPθ=︒,∴CP θ.又()2sin 60sin120CO θ=︒-︒,∴()60OC θ=︒-.故△POC 的面积是()1sin1202S CP CO θ=⋅⋅︒()()160sin si 2n 60θθθθ=︒-︒-()1sin sin 21cos 2602θθθθ⎫⎤=-︒=-⎪-⎥⎪⎝⎦⎭,()0,60θ∈︒︒, ∴当θ=30°时,S (θ)单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.在ABC △中,若90C =︒,6a =,30B =︒,则c b -等于( )A .1B .1-C .D .-2.在ABC △中,3AB =,2AC =,BC =BA ·AC 等于( )A .32-B .23-C .23D .323.在△ABC 中,已知a =,b =A =30°,则c 等于( )A .BC .D .以上都不对4.根据下列情况,判断三角形解的情况,其中正确的是( ) A .a =8,b =16,A =30°,有两解 B .b =18,c =20,B =60°,有一解 C .a =5,c =2,A =90°,无解 D .a =30,b =25,A =150°,有一解5.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A B C D .6.在△ABC 中,2cos 22A b cc+⋅=(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( ) A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形7.已知△ABC 中,A 、B 、C 的对边分别为a 、b 、c .若a c =A =75°,则b 等于( )A .2B -C .4-D .4+8.在△ABC 中,已知b 2-bc -2c 2=0,a =7cos 8A =,则△ABC 的面积S 为( )A B C D .9.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( )A B C D10.若sin cos cos A B Ca b c==,则△ABC 是( ) A .等边三角形 B .有一内角是30°的直角三角形 C .等腰直角三角形D .有一内角是30°的等腰三角形11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若()222tan 3a c b B ac +-=,则角B 的值为( ) A .6π B .3π C .6π或56π D .3π或23π12.△ABC 中,3A π=,BC =3,则△ABC 的周长为( ) A .43sin 33B π⎛⎫++ ⎪⎝⎭B .43sin 36B π⎛⎫++ ⎪⎝⎭C .6sin 33B π⎛⎫++ ⎪⎝⎭D .6sin 36B π⎛⎫++ ⎪⎝⎭二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.在△ABC 中,2sin sin sin a b cA B C--=________. 14.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2223a c b ac +-=, 则角B 的值为________.15.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,3b =, A +C =2B ,则sin C =________.16.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/小时的速度追击,求我艇追上走私船所需要的时间.18.(12分)在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且4cos 5A =. (1)求2sin cos22B CA ++的值; (2)若b =2,△ABC 的面积S =3,求a .19.(12分)如图所示,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2. (1)求cos ∠CBE 的值; (2)求AE .20.(12分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,3cos 5B =. (1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.21.(12分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.22.(12分)已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(),a b m =, ()sin ,sin B A =n ,()2,2b a --p =.(1)若m ∥n ,求证:△ABC 为等腰三角形; (2)若m ⊥p ,边长c =2,角3C π=,求△ABC 的面积.答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.【答案】C【解析】tan 30ba=︒,tan30b a =︒=2c b ==,c b -= 故选C . 2.【答案】A【解析】由余弦定理得22294101cos 2124AB AC BC A AB AC +-+-===⋅.∴13cos 3242AB AC AB AC A ⋅=⋅⋅=⨯⨯=.∴32BA AC AB AC ⋅=-⋅=-.故选A .3.【答案】C【解析】∵a 2=b 2+c 2-2bc cos A ,∴2515c c =+-. 化简得:2100c -+=,即(0c c -=,∴c =c = 故选C . 4.【答案】D 【解析】A 中,因sin sin a b A B =,所以16sin30sin 18B ⨯︒==,∴90B =︒,即只有一解;B 中,20sin 60sin 18C ︒==c b >,∴C B >,故有两解; C 中,∵A =90°,a =5,c =2,∴b = 故A 、B 、C 都不正确.故选D . 5.【答案】C【解析】设另一条边为x ,则2221232233x =+-⨯⨯⨯,∴29x =,∴3x =.设1cos 3θ=,则sin θ=.∴32sinR θ==,R =C . 6.【答案】A【解析】由2cos cos 22A b c b A c c+⋅=⇒⋅=,又222cos 2b c a A bc +-⋅=, ∴b 2+c 2-a 2=2b 2⇒a 2+b 2=c 2,故选A . 7.【答案】A【解析】()sin sin 75sin 3045A =︒=︒+︒, 由a =c 知,C =75°,B =30°.1sin 2B =.由正弦定理:4sin sin b aB A===.∴b =4sin B =2.故选A .8.【答案】A【解析】由b 2-bc -2c 2=0可得(b +c )(b -2c )=0. ∴b =2c ,在△ABC 中,a 2=b 2+c 2-2bc cos A ,即22276448c c c =+-⋅.∴c =2,从而b =4.∴11sin 4222ABCS bc A ==⨯⨯△A . 9.【答案】B【解析】设BC =a ,则2aBM MC ==. 在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB ,即22217424cos 42aa AMB =+-⨯⨯⋅∠ ①在△ACM 中,AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC即22216424cos 42aa AMB =++⨯⨯⋅∠ ②①+②得:22222176442a +=++,∴a =B .10.【答案】C 【解析】∵sin cos A Ba b=,∴a cos B =b sin A , ∴2R sin A cos B =2R sin B sin A,2R sin A ≠0.∴cos B =sin B ,∴B =45°.同理C =45°,故A =90°.故C 选项正确. 11.【答案】D【解析】∵()222tan a c b B +-,∴222tan 2a c b B ac +-⋅=,即cos tan sin B B B ⋅=0<B <π,∴角B 的值为3π或23π.故选D . 12.【答案】D 【解析】3A π=,BC =3,设周长为x ,由正弦定理知2sin sin sin BC AC ABR A B C ===, 由合分比定理知sin sin sin sin BC AB BC ACA ABC ++=++,=,∴()sin sin B A B x ⎤+++=⎥⎦,即3sin sin 3sin sin cos cos sin 333x B B B B B π⎤ππ⎛⎫⎫=+++=+++ ⎪⎪⎥⎝⎭⎭⎦133sin sin 3sin 22B B B B B ⎫⎫=+++=++⎪⎪⎪⎪⎭⎭136cos 36sin 26B B B ⎫π⎛⎫=++=++⎪ ⎪⎪⎝⎭⎝⎭.故选D .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】0 14.【答案】6π【解析】∵222a cb +-=,∴222cos 2a c b B ac +-==6B π=. 15.【答案】1【解析】在△ABC 中,A +B +C =π,A +C =2B .∴3B π=. 由正弦定理知,sin 1sin 2a B A b ==.又a <b .∴6A π=,2C π=.∴sin 1C =. 16.【答案】332a ≤< 【解析】由()()()()()()22222212120121212a a a a a a a a a a a ⎧⎪++>+⎪⎪++-+<⎨⎪++-+⎪≥-⎪+⎩,解得332a ≤<.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】2小时.【解析】设我艇追上走私船所需时间为t 小时, 则BC =10t ,AC =14t ,在△ABC 中, 由∠ABC =180°+45°-105°=120°,根据余弦定理知:(14t )2=(10t )2+122-2·12·10t cos 120°,∴2t =. 答:我艇追上走私船所需的时间为2小时. 18.【答案】(1)5950;(2)a = 【解析】(1)()221cos 1cos 59sin cos2cos22cos 122250B C B C A A A A -++++=+=+-=. (2)∵4cos 5A =,∴3sin 5A =.由1sin 2ABC S bc A =△,得133225c =⨯⨯,解得c =5.由余弦定理a 2=b 2+c 2-2bc cos A ,可得24425225135a =+-⨯⨯⨯=,∴a = 19.【答案】(1;(2)AE=.【解析】(1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴()cos cos 4530CBE ∠=︒-︒= (2)在△ABE 中,AB =2,由正弦定理得sin sin AE ABABE AEB=∠∠, 即()()2sin 4515sin 9015AE =︒-︒︒+︒,故122sin 30cos15AE ⨯︒===︒20.【答案】(1)2sin 5A =;(2)b =5c =. 【解析】(1)∵3cos 05B =>,且0<B <π,∴4sin 5B ==. 由正弦定理得sin sin a bA B=,42sin 25sin 45a B Ab ⨯===. (2)∵1sin 42ABC S ac B ==△,∴142425c ⨯⨯⨯=,∴5c =.由余弦定理得2222232cos 25225175b a c ac B =+-=+-⨯⨯⨯=,∴b =21.【答案】(1)120A =︒;(2)△ABC 为等腰钝角三角形. 【解析】(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故1cos 2A =-,120A =︒.(2)方法一 由(1)得sin 2A =sin 2B +sin 2C +sin B sin C , 又A =120°,∴223sin sin sin sin 4B C B C ++=, ∵sin B +sin C =1,∴sin C =1-sin B . ∴()()223sin 1sin sin 1sin 4B B B B +-+-=, 即21sin sin 04B B -+=.解得1sin 2B =.故1sin 2C =.∴B =C =30°. 所以,△ABC 是等腰的钝角三角形.方法二 由(1)A =120°,∴B +C =60°,则C =60°-B , ∴sin B +sin C =sin B +sin(60°-B) 11sin sin sin 22B B B B B =-==sin(B +60°)=1, ∴B =30°,C =30°.∴△ABC 是等腰的钝角三角形.22.【答案】(1)见解析;(2)ABC S =△ 【解析】(1)证明 ∵m ∥n ,∴a sin A =b sin B ,即22a ba b R R⋅=⋅, 其中R 是△ABC 外接圆半径,∴a =b .∴△ABC 为等腰三角形. (2)解 由题意知m ·p =0,即a (b -2)+b (a -2)=0.∴a +b =ab .由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0.∴ab =4(舍去ab =-1),∴11sin 4sin 223ABC S ab C π==⨯⨯=△.。
高中数学必修五第一章《解三角形》单元测试题(含答案)教学内容
高中数学必修五第一章单元测试题
《 解三角形》参考答案
一、选择题 (本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只 有一项是符合题目要求的 )
21. (12 分)如图,
A,B,C,D 都在同一个与水平面垂直的平面内, B,D 为两岛上的两座灯塔的塔顶.测 量船于水面 A 处测得 B 点和 D 点的仰角分别为 75°,30°,于水面 C 处测得 B 点和 D 点的仰 角均为 60 °,AC=0.1 km.试探究图中 B,D 间距离与另外两点间距离哪个相等,然后求 B, D 的距离 (计算结果精确到 0.01 km, 2= 1.414, 6≈ 2.449).
C.asinC= csinA a2+ c2-b2
D.cosB= 2abc
2.已知锐角△ ABC 的面积为 3 3,BC=4,CA=3,则角 C 的大小为 ( )
A.75° C.45°
B. 60° D.30°
3.已知△ ABC 中, c=6,a=4,B=120°,则 b 等于 ( )
A.76
B. 2 19
三、解答题 (本大题共 6 个小题,共 70 分,解答应写出文字说明、证明过程或演算步骤 ) 17. (10 分)已知 A, B, C 为△ ABC 的三个内角,且其对边分别为 a, b, c,若 cosBcosC
1 - sinBsinC= 2.
(1)求 A; (2)若 a=2 3, b+ c= 4,求△ ABC 的面积.
2018-2019学年高中数学必修五第一章解三角形测评B卷(含详细答案)
2018-2019学年高中数学必修五第一章解三角形测评B 卷(考试时间:120分钟 总分:150分)注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦千净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第II 卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷(选择题)一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.在ABC △中,::1:2:3A B C =,则::a b c 等于( ) A .1:2:3B .3:2:1C.2D.22.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且A >B ,则一定有( ) A .cos A >cos BB .sin A >sin BC .tan A >tan BD .sin A <sin B3.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c,2sin sin cos a A B b A +,则ba=( ) A.B.CD4.在△ABC 中,∠A =60°,a =b =4.满足条件的△ABC ( ) A .无解B .有一解C .有两解D .不能确定5.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,且222a b c =-+, 则角B 的大小是( )A .45°B .60°C .90°D .135°6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c,若22a b -=,sin C B =,则A =( ) A .30°B .60°C .120°D .150°7.在△ABC 中,∠A =60°,b =1,△ABCsin aA为( ) ABCD.8.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( ) A .0,6π⎛⎤ ⎥⎝⎦B .,6π⎡⎫π⎪⎢⎣⎭C .0,3π⎛⎤ ⎥⎝⎦D .,3π⎡⎫π⎪⎢⎣⎭9.在△ABC 中,已知B =45°,c =,b =,则A 的值是( ) A .15°B .75°C .105°D .75°或15°10.在锐角三角形ABC 中,b =1,c =2,则a 的取值范围是( ) A .1<a <3B.1a <<Ca <<D .不确定 11.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 22A b cc+=,则 △ABC 的形状为( ) A .直角三角形B .等腰直角三角形C .等腰或直角三角形D .等边三角形12.如图所示,在△ABC 中,已知∠A ∶∠B =1∶2,角C 的平分线CD 把三角形面积分为3∶2两部分,则cos A 等于( )A .13B .12C .34D .0第Ⅱ卷(非选择题)此卷只装订不密封班级 姓名 准考证号 考场号 座位号二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上)13.等腰三角形的底边长为6,腰长为12,其外接圆的半径为________. 14.在△ABC 中,若a 2+b 2<c 2,且sin C =,则∠C =________. 15.在△ABC 中,a =3,b =B =2∠A ,则cos A =________.16.某人在C 点测得塔AB 在南偏西80°,仰角为45°,沿南偏东40°方向前进10 m 到O ,测得塔A 仰角为30°,则塔高为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c.已知()cos cos cos 0C A A B +-=.(1)求角B 的大小;(2)若a +c =1,求b 的取值范围.18.(12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c . (1)若sin 2cos 6A A π⎛⎫+= ⎪⎝⎭,求A 的值;(2)若1cos 3A =,b =3c ,求sin C 的值.19.(12分)在△ABC中,角A、B、C对应的边分别是a、b、c,已知cos2A-3cos(B +C)=1.(1)求角A的大小;(2)若△ABC的面积S=,b=5,求sin B sin C的值.20.(12分)在△ABC中,内角A、B、C的对边分别是a、b、c,且222a b c++=.(1)求C;(2)设cos cosA B=,()()2cos coscosA Bααα++=,求tanα的值.21.(12分)在△ABC 中,2C A π-=,1sin 3B =. (1)求sin A 的值;(2)设AC ABC 的面积. 22.(12分)如图,已知扇形AOB ,O 为顶点,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 相交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.2018-2019学年高中数学必修五第一章解三角形测评B 卷答 案一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.【答案】C【解析】6A π=,3B π=,2C π=,12::sin :sin :sin 222a b c A B C ===, 故选C . 2.【答案】B【解析】∵A B >,∴a b >,由正弦定理,得sin sin A B >,故选B . 3.【答案】D【解析】本小题考查内容为正弦定理的应用.∵2sin sin cos a A B b A +,∴22sin sin sin cos A B B A A +=,sin B A =,∴b =,∴ba=D . 4.【答案】A【解析】4sin 60⨯︒=,即a <b sin A ,∴△ABC 不存在. 故选A . 5.【答案】A【解析】∵222a b c =-,∴222a c b +-,由余弦定理,得222cos 2a c b B ac +-===0°<B <180°,所以B =45°.故选A . 6.【答案】A【解析】由sin C B =及正弦定理,得c =,∴2226a b b -=, 即a 2=7b 2.由余弦定理,2222222cos 2b c a A bc +-===, 又∵0°<A <180°,∴A =30°.故选A .7.【答案】B【解析】由1sin 2bc A =得c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =13,故a =sin a A ==,故选B . 8.【答案】C【解析】本题主要考查正余弦定理,∵sin 2A ≤sin 2B +sin 2C -sin B sin C , ∴由正弦定理得:a 2≤b 2+c 2-bc ,即b 2+c 2-a 2≥bc ,由余弦定理得:2221cos 222b c a bc A bc bc +-==≥=,∴03A π<≤,故选C .9.【答案】D 【解析】∵sin sin b cB C =,∴sin sin c B C b =. ∵0°<C <180°.∴C =60°或120°,∴A =75°或15°.故选D . 10.【答案】C【解析】∵b <c ,△ABC 为锐角三角形,∴边c 与边a 所对的角的余弦值大于0,即b 2+a 2-c 2>0且b 2+c 2-a 2>0,∴22140140a a ⎧+->⎪⎨+->⎪⎩.∴3<a 2<5a 故选C . 11.【答案】A【解析】由21cos cos 222A A b c c ++==,整理得cos bA c =.又222cos 2b c a A bc+-=, 联立以上两式整理得c 2=a 2+b 2,∴C =90°.故△ABC 为直角三角形.故选A . 12.【答案】C【解析】在△ABC 中,设∠ACD =∠BCD =β,∠CAB =α,由∠A ∶∠B =1∶2,得∠ABC =2α.∵∠A <∠B ,∴AC >BC ,∴S △ACD >S △BCD ,∴S △ACD ∶S △BCD =3∶2,此卷只装订不密封班级 姓名 准考证号 考场号 座位号∴1sin 3212sin 2AC DC BC DC ββ⋅⋅⋅=⋅⋅⋅,∴32AC BC =. 由正弦定理得sin sin AC BC B A =,sin 2sin 2sin cos sin AC BC AC BCααααα=⇒=, ∴133cos 2224AC BC α==⨯=,即3cos 4A =.故选C .二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.【解析】设△ABC 中,AB =AC =12,BC =6,由余弦定理222222121267cos 2212128AB AC BC A AB AC +-+-===⋅⨯⨯.∵()0,A ∈π,∴sin A =2sin BC r A ==.14.【答案】23π【解析】∵a 2+b 2<c 2,∴a 2+b 2-c 2<0,即cos C <0.又sin C =,∴23C π∠=. 15.【解析】∵a =3,b =,∠B =2∠A,由正弦定理3sin A =,∴2sin cos sin A A A =,∴cos A =16.【答案】10 m【解析】画出示意图,如图所示,CO =10,∠OCD =40°,∠BCD =80°,∠ACB =45°, ∠AOB =30°,AB ⊥平面BCO ,令AB =x ,则BC =x,BO =,在△BCO 中,由余弦定理得)()22100210cos 8040x x =+-⨯⨯︒+︒,整理得25500x x -=-,解得10x =,5x =-(舍去),故塔高为10 m .三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.【答案】(1)3B π=;(2)112b ≤<. 【解析】(1)由已知得()cos cos cos cos 0A B A B A B -++=,即有sin sin cos 0A B A B =. 因为sin A ≠0,所以sin 0B B =. 又cos B ≠0,所以tan B 0<B <π,所以3B π=. (2)由余弦定理,有b 2=a 2+c 2-2ac cos B .因为a +c =1,1cos 2B =,有2211324b a ⎛⎫=-+ ⎪⎝⎭.又0<a <1,于是有2114b ≤<,即有112b ≤<. 18.【答案】(1)3A π=;(2)1sin 3C =. 【解析】(1)由题设知sin cos cos sin 2cos 66A A A ππ+=.从而sin A A =,所以cos A ≠0,tan A .因为0<A <π,所以3A π=. (2)由1cos 3A =,b =3c 及a 2=b 2+c 2-2bc cos A ,得a 2=b 2-c 2,故△ABC 是直角三角形,且2B π=.所以1sin cos 3C A ==. 19.【答案】(1)3A π=;(2)5sin sin 7B C =. 【解析】(1)由cos2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0,即(2cos A -1)(cos A +2)=0,解得1cos 2A =或cos A =-2(舍去).因为0<A <π,所以3A π=. (2)由11sin sin 223S bc A bc π====bc =20,又b =5,知c =4. 由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =.又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.20.【答案】(1)34C π=;(2)tan α=1或tan α=4. 【解析】(1)因为222a b c ++=,由余弦定理有222cos 2a b c C ab +-===34C π=.(2)由题意得()()2sin sin cos cos sin sin cos cos cos A A B B ααααα--=因此()()tan sin cos tan sin cos A A B B αα--=()2tan sin sin tan sin cos cos sin cos cos A B A B A B A B αα-++=, ()2tan sin sin tan sin cos cos A B A B A B αα-++=因为34C π=,4A B π+=,所以()sin A B +=,因为cos(A +B )=cos A cos B -sin A sin Bsin sin A B -=,解得sin sin A B ==. 由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4. 21.【答案】(1)sin A =(2)ABC S =△ 【解析】(1)由2C A π-=和A +B +C =π,得22A B π=-,04A π<<. ∴cos2A =sinB ,即2112sin 3A -=,∴sin A =.(2)由(1)得cos A =.又由正弦定理,得sin sin BC AC A B=,∴sin 31sin 3AC ABC B===∵2C A π-=,∴2C A π=+,∴sin sin cos 2C A A π⎛⎫=+== ⎪⎝⎭,∴11sin 22ABC S AC BC C =⋅⋅==△. 22.【答案】当θ=30°时,S (θ)【解析】∵CP ∥OB ,∴∠CPO =∠POB =60°-θ,∠OCP =120°. 在△OCP 中,由正弦定理,得sin sin OP CP OCP θ=∠,即2sin120sin CPθ=︒,∴CP θ=.又()2sin 60sin120CO θ=︒-︒,∴()60OC θ=︒-. 故△POC 的面积是()1sin1202S CP CO θ=⋅⋅︒()()160sin si 2n 60θθθθ=︒-=︒-()1sin sin 21cos 2602θθθθ⎫⎤=-︒-⎪-⎥⎪⎝⎦⎭,()0,60θ∈︒︒, ∴当θ=30°时,S (θ)。
高二数学人教A必修5练习:第一章 解三角形 过关检测 Word版含解析
第一章过关检测(时间:90分钟 满分:100分)知识点分布表一、选择题(本大题共10小题,每小题4分,共40分)1.在△ABC 中,若sin A>sin B ,则A 与B 的大小关系为( )A.A>BB.A<BC.A ≥BD.A ,B 的大小关系不能确定 答案:A解析:∵sin A>sin B ,∴2R sin A>2R sin B ,即a>b.∴A>B.2.已知圆的半径为4,a ,b ,c 为该圆的内接三角形的三边,若abc=16√2,则三角形的面积为( ) A.2√2 B.8√2 C.√2D.√22答案:C解析:∵asinA =bsinB =csinC =2R=8,∴sin C=c8,∴S △ABC =12ab sin C=116abc=116×16√2=√2.3.在△ABC 中,A=60°,AC=16,面积S=220√3,则BC 长为( ) A.20√6 B.75 C.51 D.49答案:D解析:由S=1AC ·AB ·sin A=1×16×AB ·sin 60°=4√3AB=220√3,解得AB=55.再用余弦定理求得BC=49. 4.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若asinB +bsinA =2c ,则A 的大小是( ) A.π2 B.π3C.π4D.π6答案:C解析:∵a sinB +bsinA =2c ,∴由正弦定理得2sin C=a b +b a ≥2√a b ·b a =2,当且仅当a b =b a时等号成立,∴sinC=1,C=π2,A=π4.5.在△ABC 中,b=a sin C ,c=a cos B ,则△ABC 一定是 ( )A.等腰三角形但不是直角三角形B.等边三角形C.直角三角形但不是等腰三角形D.等腰直角三角形 答案:D 解析:由c=a cos B 得,c=a×a 2+c 2-b2,∴a 2=b 2+c 2,∴△ABC 为直角三角形, ∴b=a sin C=a×ca =c , ∴△ABC 是等腰直角三角形.6.钝角三角形的三边为a ,a+1,a+2,其最大角不超过120°,则a 的取值范围是( ) A.0<a<3 B.32≤a<3 C.2<a ≤3 D.1≤a<52答案:B解析:∵三角形为钝角三角形,∴{a +a +1>a +2,0>a 2+(a+1)2-(a+2)2≥-1 ⇒32≤a<3.7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 2+c 2-bc=a 2,且a=√3,则角C 的值为( ) A.45° B.60° C.90° D.120°答案:C解析:由b 2+c 2-bc=a 2,得b 2+c 2-a 2=bc ,∴cos A=b 2+c 2-a 22bc=12.∴A=60°,又ab =√3,∴sinAsinB =√3. ∴sin B=√3sin A=√3×√3=1. ∴B=30°,∴C=180°-A-B=90°.8.如图,在△ABC 中,D 是边AC 上的点,且AB=AD ,2AB=√3BD ,BC=2BD ,则sin C 的值为( ) A.√33 B.√36 C.√63 D.√66答案:D解析:设BD=a ,则BC=2a ,AB=AD=√32a.在△ABD 中,由余弦定理,得 cos A=AB 2+AD 2-BD 2=(√32a )2+(√32a )2-a22×√32a ·√32a=13.又∵A 为△ABC 的内角,∴sin A=2√23. 在△ABC 中,由正弦定理得,BC sinA =ABsinC .∴sin C=AB BC ·sin A=√32a 2a ·2√23=√66.9.设a ,b ,c 是△ABC 的三条边长,对任意实数x ,f (x )=b 2x 2+(b 2+c 2-a 2)x+c 2,有( ) A.f (x )=0 B.f (x )>0 C.f (x )≤0 D.f (x )<0答案:B解析:由余弦定理可得f (x )=b 2x 2+2bc cos A ·x+c 2,∵Δ=(2bc cos A )2-4b 2c 2=4b 2c 2·(cos 2A-1)<0,且b 2>0,∴f (x )>0.10.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m,则河流的宽度BC 等于( )A.30(√3+1) mB.120(√3-1) mC.180(√2-1) mD.240(√3-1) m答案:B解析:如图,∠DAB=15°,∵tan 15°=tan(45°-30°)=tan45°-tan30°1+tan45°tan30°=2-√3.在Rt △ADB 中,又AD=60,∴DB=AD ·tan 15°=60×(2-√3)=120-60√3.在Rt △ADC 中,∠DAC=60°,AD=60,∴DC=AD ·tan 60°=60√3.∴BC=DC-DB=60√3-(120-60√3)=120(√3-1)(m). ∴河流的宽度BC 等于120(√3-1) m,故选B . 二、填空题(本大题共4小题,每小题4分,共16分)11.设△ABC 的外接圆半径为4,且sin B sin C+sin 2B+sin 2C=sin 2A ,则a= . 答案:4√3解析:依题意,得bc+b 2+c 2=a 2,即cos A=b 2+c 2-a 2=-bc =-1,∴cos A=-12,A=120°.又∵asinA =2R , ∴a=2R sin A=2×4×sin 120°=4√3.12.在锐角△ABC 中,BC=1,B=2A ,则ACcosA= ,AC 的取值范围为 .答案:2 (√2,√3) 解析:由正弦定理得AC sinB=BCsinA. ∵B=2A ,BC=1,∴ACsin2A =1sinA . ∴ACcosA =2.∵△ABC 是锐角三角形,∴0°<2A<90°且A+B=3A>90°, ∴30°<A<45°.又AC=2cos A ,∴AC ∈(√2,√3).13.如图,在山底测得山顶仰角∠CAB=45°,沿倾斜角为30°的斜坡走1 000 m 至S 点,又测得山顶仰角∠DSB=75°,则山高BC 为 m .答案:1 000解析:如图,∠SAB=45°-30°=15°,又∠SBD=15°,∴∠ABS=30°.又AS=1 000 m,由正弦定理知BSsin15°=1000sin30°,∴BS=2 000sin 15°.∴BD=BS·sin 75°=2 000sin 15°·cos 15°=1 000sin 30°=500(m),且DC=ST=1 000sin 30°=500(m),从而BC=DC+DB=1 000(m).14.已知a,b,c分别为△ABC的内角A,B,C的对边,向量m=(√3,-1),n=(cos A,sin A).若m⊥n,且a cos B+b cos A=c sin C,则角B=.答案:π6解析:由m⊥n,得√3cos A-sin A=0,即A=π3.由余弦定理及a cos B+b cos A=c sin C,有a·a 2+c2-b22ac+b·b2+c2-a22bc=c sin C,即2c2=2c2sin C,∴sin C=1,解得C=π2,∴B=π-π2−π3=π6.三、解答题(本大题共4小题,15、16小题每小题10分,17、18小题每小题12分,共44分)15.在△ABC中,内角A,B,C的对边分别为a,b,c,且b sin A=√3a cos B.(1)求角B的大小;(2)若b=3,sin C=2sin A,求a,c的值.解:(1)由b sin A=√3a cos B及正弦定理asinA =bsinB,得sin B=√3cos B,所以tan B=√3,所以B=π3.(2)由sin C=2sin A及a=c,得c=2a.由b=3及余弦定理b2=a2+c2-2ac cos B, 得9=a2+c2-ac.所以a=√3,c=2√3.16.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A=(2b+c )sin B+(2c+b )sin C. (1)求A 的大小;(2)若sin B+sin C=1,试判断△ABC 的形状.解:(1)由已知,根据正弦定理得2a 2=(2b+c )b+(2c+b )c ,则a 2=b 2+c 2+bc.由余弦定理a 2=b 2+c 2-2bc cos A ,得cos A=-12. 又A ∈(0°,180°),∴A=120°. (2)由(1)中a 2=b 2+c 2+bc ,结合正弦定理, 可得sin 2A=sin 2B+sin 2C+sin B sin C=34. 又sin B+sin C=1,∴sin B=sin C=12.∵0°<B<60°,0°<C<60°,∴B=C. ∴△ABC 是等腰钝角三角形.17.已知a ,b ,c 分别为△ABC 三内角A ,B ,C 的对边,B=π3,c=8,cos C=-17. (1)求b 的值; (2)求△ABC 的面积.解:(1)∵cos C=-17,∴sin C=√1-cos 2C =4√37.∵c sinC =b sinB ,B=π3,∴437=32,即b=7.(2)∵sin A=sin(π-B-C )=sin(B+C ) =sin B cos C+cos B sin C =√32×(-17)+12×4√37=3√314, ∴S △ABC =1bc sin A=1×8×7×3√3=6√3.18.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径,一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C.现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min .在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C.假设缆车匀速直线运行的速度为130 m/min,山路AC 长为1 260 m,经测量,cos A=1213,cos C=35. (1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? 解:(1)在△ABC 中,因为cos A=1213,cos C=35,所以sin A=513,sin C=45.从而sin B=sin[π-(A+C )]=sin(A+C ) =sin A cos C+cos A sin C =513×35+1213×45=6365. 由正弦定理得AB sinC=ACsinB, 得AB=ACsinB ×sin C=1 2606365×45=1 040(m).所以索道AB 的长为1 040 m .(2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t ) m,乙距离A 处130t m, 所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t×(100+50t )×1213 =200(37t 2-70t+50), 因为0≤t ≤1 040130,即0≤t ≤8,故当t=3537(min)时,甲、乙两游客距离最短. (3)由正弦定理BC sinA=ACsinB, 得BC=AC sinB×sin A=1 2606365×513=500(m). 乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C. 设乙步行的速度为v m/min, 由题意得-3≤500v −71050≤3, 解得1 25043≤v ≤62514, 所以为使两位游客在C 处互相等待的时间不超过3 min,乙步行的速度应控制在(1 25043,62514)(单位:m/min)内.。
高中数学人教A版必修五 第一章解三角形 学业分层测评3 Word版含答案
高中数学必修五解三角形单元测试(含答案)一、选择题1.为了测量B,C之间的距离,在河岸A,C处测量,如图1-2-9,测得下面四组数据,较合理的是()图1-2-9A.c与αB.c与bC.b,c与βD.b,α与γ【解析】因为测量者在A,C处测量,所以较合理的应该是b,α与γ.【答案】 D2.轮船A和轮船B在中午12时同时离开海港O,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile/h,15 n mile/h,则14时两船之间的距离是() A.50 n mile B.70 n mileC.90 n mile D.110 n mile【解析】到14时,轮船A和轮船B分别走了50 n mile,30 n mile,由余弦定理得两船之间的距离为l=502+302-2×50×30×cos 120°=70 (n mile).【答案】 B3.如图1-2-10,要测量河对岸A,B两点间的距离,今沿河岸选取相距40米的C,D两点,测得∠ACB=60°,∠BCD=45°,∠ADB=60°,∠ADC=30°,AD=20(3+1),则A,B 间距离是()图1-2-10A.202米B.203米C.206米D.402米【解析】可得DB=DC=40,AD=20(3+1),∠ADB=60°,所以在△ADB中,由余弦定理得AB=206(米).【答案】 C4.在地面上点D处,测量某建筑物的高度,测得此建筑物顶端A与底部B的仰角分别为60°和30°,已知建筑物底部高出地面D点20 m,则建筑物高度为()A.20 m B.30 mC.40 m D.60 m【解析】如图,设O为顶端在地面的射影,在Rt△BOD中,∠ODB=30°,OB=20,BD=40,OD=203,在Rt△AOD中,OA=OD·tan 60°=60,∴AB=OA-OB=40(m).【答案】 C5.如图1-2-11所示,在地面上共线的三点A,B,C处测得一建筑物的仰角分别为30°,45°,60°,且AB=BC=60 m,则建筑物的高度为()图1-2-11A.15 6 m B.20 6 mC.25 6 m D.30 6 m【解析】设建筑物的高度为h,由题图知,P A=2h,PB=2h,PC=233h,∴在△PBA和△PBC中,分别由余弦定理,得cos∠PBA =602+2h2-4h22×60×2h,①cos∠PBC=602+2h2-43h22×60×2h. ②∵∠PBA+∠PBC=180°,∴cos∠PBA+cos∠PBC=0. ③由①②③,解得h=306或h=-306(舍去),即建筑物的高度为30 6 m.【答案】 D二、填空题6.有一个长为1千米的斜坡,它的倾斜角为75°,现要将其倾斜角改为30°,则坡底要伸长千米.【解析】如图,∠BAO=75°,C=30°,AB=1,∴∠ABC=∠BAO-∠BCA=75°-30°=45°.在△ABC中,ABsin C=ACsin ∠ABC,∴AC=AB·sin ∠ABCsin C=1×2212=2(千米).【答案】 27.如图1-2-12,为了测量河的宽度,在一岸边选定两点A,B,望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则河的宽度是m.图1-2-12【解析】tan 30°=CDAD,tan 75°=CDDB,又AD+DB=120,∴AD ·tan 30°=(120-AD )·tan 75°, ∴AD =603,故CD =60. 【答案】 608.一次机器人足球比赛中,甲队1号机器人由点A 开始做匀速直线运动,到达点B 时,发现足球在点D 处正以2倍于自己的速度向点A 做匀速直线滚动,如图1-2-13所示,已知AB =4 2 dm ,AD =17 dm ,∠BAC =45°,若忽略机器人原地旋转所需的时间,则该机器人最快可在距A 点 dm 的C 处截住足球.图1-2-13【解析】 设机器人最快可在点C 处截住足球,点C 在线段AD 上,设BC =x dm ,由题意知CD =2x dm ,AC =AD -CD =(17-2x )dm. 在△ABC 中,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos A , 即x 2=(42)2+(17-2x )2-82(17-2x )cos 45°,解得x 1=5,x 2=373. ∴AC =17-2x =7(dm),或AC =-233(dm)(舍去).∴该机器人最快可在线段AD 上距A 点7 dm 的点C 处截住足球. 【答案】 7 三、解答题 9.在△ABC 中,(1)a =3,b =4,c =37,求最大角. (2)b =6,c =2,B =60°,求a . 【解】 (1)显然角C 最大,∴cos C =a 2+b 2-c 22ab =32+42-372×3×4=-12,∴C =120°.(2)法一 由正弦定理b sin B =c sin C ,得sin C =c sin B b =2sin 60°6=36=22,∴C =45°或C =135°.∵b >c ,∴B >C ,又∵B =60°,∴C =45°.∵A +B +C =180°,∴A =180°-(60°+45°)=75°,∴a 2=b 2+c 2-2bc cos A =6+4-46×cos 75°=10-46×6-24=4+23,∴a =4+23=3+1. 法二 ∵b 2=a 2+c 2-2ac cos B , ∴6=a 2+4-4a cos 60°=a 2+4-2a . ∴a 2-2a -2=0.解得a =1+3或a =1-3(不合题意,舍去), ∴a =1+ 3.10.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos (A +B )=1.(1)求角C 的度数; (2)求AB 的长.【解】 (1)∵cos C =cos [π-(A +B )]=-cos (A +B )=-12,且C ∈(0,π), ∴C =2π3.(2)∵a ,b 是方程x 2-23x +2=0的两根, ∴⎩⎨⎧a +b =23,ab =2, ∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10, ∴AB =10.[能力提升]1.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若3a =2b ,则2sin 2B -sin 2A sin 2A 的值为( )A.19B.13 C .1 D .72 【解析】 ∵a sin A =b sin B ,∴sin B sin A =ba . ∵3a =2b ,∴b a =32. ∴sin B sin A =32.∴2sin 2B -sin 2A sin 2A =2⎝ ⎛⎭⎪⎫sin B sin A 2-1=2×⎝ ⎛⎭⎪⎫322-1 =92-1=72. 【答案】 D2.在△ABC 中,下列关系中一定成立的是( ) A .a >b sin A B .a =b sin A C .a <b sin AD .a ≥b sin A【解析】 由正弦定理a sin A =bsin B ,∴a sin B =b sin A ,在△ABC 中,0<sin B ≤1,故a sin B ≤a ,∴a ≥b sin A .故选D.【答案】 D3.有一道解三角形的题目,因纸张破损有一个条件模糊不清,具体如下:“在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,B =π4,________,求角A .”经推断,破损处的条件为三角形一边的长度,且答案提示A =π6.(试在横线上将条件补充完整)【解析】 分两种情况:(1)若破损处的条件为边b 的长度,则由a sin A =b sin B ,得b =a sin Bsin A =3sin π4sin π6=6;(2)若破损处的条件为边c 的长度,由A +B +C =π,B =π4,A =π6,知C =7π12,再运用正弦定理,得c =32+62. 【答案】 b =6或c =32+624.已知方程x 2-b cos Ax +a cos B =0的两根之积等于两根之和,且a ,b 为△ABC 的两边,∠A 、∠B 为a 、b 的对角,试判断△ABC 的形状.【解】 设方程的两根为x 1,x 2,由根与系数关系得x 1+x 2=b cos A ,x 1x 2=a cos B ,由题意得b cos A =a cos B .由正弦定理得2R sin B cos A =2R sin A cos B . ∴sin A cos B -cos A sin B =0,即sin(A -B )=0. 在△ABC 中,0<∠A <π,0<∠B <π,-π<∠A -∠B <π.∴∠A-∠B=0即∠A=∠B,∴△ABC为等腰三角形.。
【高二数学试题精选】高中数学人教A版必修五第一章解三角形测试题B(含答案)
所以Bc
(2)由正弦定理
所以sin c sin A
因为AB Bc,所以c为锐角,
因此cs c
于是cs(B-c)=cs Bcs c+sin Bsin c
19(10分)在△ABc中,内角A,B,c所对的边分别为a,b,c已知a-c
(1)求cs A的值;
(2)求c
解(1)在△ABc中,
及sin B c,可得b
又由a-c a=2c
所以cs A
(2)在△ABc中,由cs A
可得sin A
所以sin A=cs A,
因为A∈(0,π),所以A
答案c
8在△ABc中,角A,B,c所对的边分别为a,b,c,若tan A=7tan B
A4B3c7D6
解析由tan A=7tan B,
即sin Acs B=7sin Bcs A,
所以sin Acs B+sin Bcs A=8sin Bcs A,
即sin(A+B)=sin c=8sin Bcs A
由正、余弦定理可得c=8b
即c2=4b2+4c2-4a2
c2=4c,即c=4
答案A
9在△ABc中,角A,B,c所对的边分别为a,b,c,若△ABc的面积为S,且2S=(a+b)2-c2,则tan c等于( )
A
c
解析由2S=(a+b)2-c2,得2S=a2+b2+2ab-c2,
高二数学人教A必修5练习:第一章 解三角形 章末检测(B) Word版含解析
第一章 章末检测 (B)姓名:________ 班级:________ 学号:________ 得分:________(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.在△ABC 中,a =2,b =3,c =1,则最小角为( ) A.π12 B.π6 C.π4 D.π32.△ABC 的三内角A 、B 、C 所对边的长分别是a 、b 、c ,设向量p =(a +c ,b ),q = (b -a ,c -a ),若p ∥q ,则角C 的大小为( ) A.π6 B.π3 C.π2 D.2π33.在△ABC 中,已知|AB |=4,|AC →|=1,S △ABC =3,则AB →·AC →等于( ) A .-2 B .2 C .±4 D .±24.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 25.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C的值为( )A.85B.58C.53D.356.已知锐角三角形的边长分别为2,4,x ,则x 的取值范围是( ) A .1<x < 5 B.5<x <13 C .1<x <2 5 D .23<x <2 5 7.在△ABC 中,a =15,b =10,A =60°,则cos B 等于( )A .-223 B.223C .-63 D.638.下列判断中正确的是( )A .△ABC 中,a =7,b =14,A =30°,有两解B .△ABC 中,a =30,b =25,A =150°,有一解 C .△ABC 中,a =6,b =9,A =45°,有两解D .△ABC 中,b =9,c =10,B =60°,无解 9.在△ABC 中,B =30°,AB =3,AC =1,则△ABC 的面积是( )A.34B.32C.3或32D.32或3410.在△ABC 中,BC =2,B =π3,若△ABC 的面积为32,则tan C 为( )A. 3 B .1 C.33 D.3211.在△ABC 中,如果sin A sin B +sin A cos B +cos A sin B +cos A cos B =2,则△ABC 是( )A .等边三角形B .钝角三角形C .等腰直角三角形D .直角三角形12.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则角C 的度数是( ) A .60° B .45°或135° C .120° D .30° 题号 1 2 3 4 5 6 7 8 9 10 11 12答案13.在△ABC 中,若sin A a =cos Bb,则B =________.14.在△ABC 中,A =60°,AB =5,BC =7,则△ABC 的面积为________. 15.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔64海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/小时.16.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c )cos A =a cos C ,则cos A =________.三、解答题(本大题共6小题,共70分)17.(10分)如图,H 、G 、B 三点在同一条直线上,在G 、H 两点用测角仪器测得A 的仰角分别为α,β,CD =a ,测角仪器的高是h ,用a ,h ,α,β表示建筑物高度AB .18.(12分)设锐角三角形ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a =2b sin A . (1)求B 的大小.(2)若a =33,c =5,求b .19.(12分)如图所示,已知⊙O 的半径是1,点C 在直径AB 的延长线上,BC =1,点P 是⊙O 上半圆上的一个动点,以PC 为边作等边三角形PCD ,且点D 与圆心分别在PC 的两侧.(1)若∠POB =θ,试将四边形OPDC 的面积y 表示为关于θ的函数; (2)求四边形OPDC 面积的最大值.20.(12分)为了测量两山顶M 、N 间的距离,飞机沿水平方向在A 、B 两点进行测量,A 、B 、M 、N 在同一个铅垂平面内(如示意图).飞机能够测量的数据有俯角和A ,B 间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M 、N 间的距离的步骤.21.(12分)在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c .已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b . (2)若sin B =2sin A ,求△ABC 的面积.22.(12分) 如图所示,扇形AOB ,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.第一章 解三角形 章末检测 答案 (B)1.B [∵a >b >c ,∴C 最小.∵cos C =a 2+b 2-c 22ab =22+(3)2-122×2×3=32,又∵0<C <π,∴C =π6.]2.B [∵p ∥q ,∴(a +c )(c -a )-b (b -a )=0. ∴c 2=a 2+b 2-ab ,∵c 2=a 2+b 2-2ab cos C ,∴cos C =12,又∵0<C <π,∴C =π3.]∴||·|AC →|·sin A =12×4×1×sin A = 3. ∴sin A =32.又∵0°<A <180°,∴A =60°或120°.·AC →=|AB →|·|AC →|cos A =4×1×cos A =±2.]4.D [由正弦定理得b sin B =csin C,∴sin C =c ·sin B b =2sin 120°6=12,∵c <b ,∴C 为锐角. ∴C =30°,∴A =180°-120°-30°=30°. ∴a =c = 2.]5.D [由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos A ,即72=52+AC 2-10AC ·cos 120°,∴AC =3.由正弦定理得sin B sin C =AC AB =35.]6.D [由题意,x 应满足条件⎩⎪⎨⎪⎧22+42-x 2>022+x 2-42>0解得:23<x <2 5.]7.D [由正弦定理得15sin 60°=10sin B.∴sin B =10·sin 60°15=33.∵a >b ,A =60°,∴B <60°.∴cos B =1-sin 2B =1-(33)2=63.] 8.B [A :a =b sin A ,有一解; B :A >90°,a >b ,有一解; C :a <b sin A ,无解;D :c >b >c sin B ,有两解.]9.D [由余弦定理AC 2=AB 2+BC 2-2AB ·BC cos B ,∴12=(3)2+BC 2-2×3×BC ×32.整理得:BC 2-3BC +2=0. ∴BC =1或2.当BC =1时,S △ABC =12AB ·BC sin B =12×3×1×12=34.当BC =2时,S △ABC =12AB ·BC sin B =12×3×2×12=32.]10.C [由S △ABC =12BC ·BA sin B =32得BA =1,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B ,∴AC =3,∴△ABC 为直角三角形, 其中A 为直角,∴tan C =AB AC =33.]11.C [由已知,得cos(A -B )+sin(A +B )=2, 又|cos(A -B )|≤1,|sin(A +B )|≤1, 故cos(A -B )=1且sin(A +B )=1, 即A =B 且A +B =90°,故选C.]12.B [由a 4+b 4+c 4=2c 2a 2+2b 2c 2,得cos 2C =(a 2+b 2-c 2)2(2ab )2=a 4+b 4+c 4+2a 2b 2-2c 2a 2-2b 2c 24a 2b 2=12⇒cos C =±22.∴角C 为45°或135°.]13.45°解析 由正弦定理,sin A a =sin Bb.∴sin B b =cos B b .∴sin B =cos B .∴B =45°. 14.10 3解析 设AC =x ,则由余弦定理得: BC 2=AB 2+AC 2-2AB ·AC cos A , ∴49=25+x 2-5x ,∴x 2-5x -24=0. ∴x =8或x =-3(舍去).∴S △ABC =12×5×8×sin 60°=10 3.15.8 6解析 如图所示,在△PMN 中,PM sin 45°=MNsin 120°,∴MN =64×32=326,∴v =MN4=86(海里/小时).16.33解析 由(3b -c )cos A =a cos C ,得(3b -c )·b 2+c 2-a 22bc =a ·a 2+b 2-c 22ab,即b 2+c 2-a 22bc =33,由余弦定理得cos A =33.17.解 在△ACD 中,∠DAC =α-β,由正弦定理,得AC sin β=DCsin (α-β),∴AC =a sin βsin (α-β)∴AB =AE +EB =AC sin α+h =a sin βsin αsin (α-β)+h .18.解 (1)∵a =2b sin A ,∴sin A =2sin B ·sin A ,∴sin B =12.∵0<B <π2,∴B =30°.(2)∵a =33,c =5,B =30°.由余弦定理b 2=a 2+c 2-2ac cos B =(33)2+52-2×33×5×cos 30°=7. ∴b =7.19.解 (1)在△POC 中,由余弦定理, 得PC 2=OP 2+OC 2-2OP ·OC ·cos θ =5-4cos θ,所以y =S △OPC +S △PCD =12×1×2sin θ+34×(5-4cos θ) =2sin ⎝⎛⎭⎫θ-π3+534. (2)当θ-π3=π2,即θ=5π6时,y max =2+534.答 四边形OPDC 面积的最大值为2+534.20.解 ①需要测量的数据有:A 点到M 、N 点的俯角α1、β1;B 点到M 、N 点的俯角α2、β2;A 、B 的距离d (如图所示).②第一步:计算AM ,由正弦定理AM =d sin α2sin (α1+α2);第二步:计算AN .由正弦定理AN =d sin β2sin (β2-β1);第三步:计算MN ,由余弦定理MN =AM 2+AN 2-2AM ×AN cos (α1-β1). 21.解 (1)由余弦定理及已知条件得 a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,由此得ab =4.联立方程组⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2. (2)由正弦定理及已知条件得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433.所以△ABC 的面积S =12ab sin C =233.22.解 ∵CP ∥OB ,∴∠CPO =∠POB =60°-θ, ∠OCP =120°.在△POC 中,由正弦定理得OP sin ∠PCO =CPsin θ,∴2sin 120°=CP sin θ,∴CP =43sin θ. 又OC sin (60°-θ)=2sin 120°,∴OC =43sin(60°-θ). 因此△POC 的面积为S (θ)=12CP ·OC sin 120°=12·43sin θ·43sin(60°-θ)×32 =43sin θsin(60°-θ)=43sin θ⎝⎛⎭⎫32cos θ-12sin θ=2sin θ·cos θ-23sin 2θ=sin 2θ+33cos 2θ-33=233sin ⎝⎛⎭⎫2θ+π6-33 ∴θ=π6时,S (θ)取得最大值为33.。
人教A版高中数学必修五第一学期高二数学解三角形单元测试题.doc
第一学期高二数学解三角形单元测试题一、填空题:1.已知△ABC 中,a =2,b =3,B =60°,那么角A 等于________ 2.在ABC ∆中,,75,45,300===C A AB 则BC =_____________3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =3π,a =3,b =1,则c =________ 4.在中,角A,B,C 的对应边分别为a,b,c,若222a cb +-=,则角B 的值为_________5.在△ABC 中,若CcB b A a cos cos cos ==,则△ABC 是_________三角形. 6. ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则cos B = 7.在ABC ∆中,已知C B A sin cos sin 2=,那么ABC ∆一定是_________三角形8.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b =_____ 9.在△ABC 中,AB =1, B C =2, B =60°,则AC =。
10.在△ABC 中,a ,b ,c 分别是角A ,B ,C所对的边,已知3,30,a b c ===︒ 则A = .11.在ABC ∆中,若sin :sin :sin 5:7:8A B C =,则B ∠的大小是___ __. 12. 在ABC △中,若1tan 3A =,150C =o,1BC =,则AB =________. 13.在△ABC 中,三个角A ,B ,C 的对边边长分别为a=3,b=4,c=6,则bc cosA+ca cosB+ab cosC 的值为 .14.在ABC ∆中,若120A ∠=o,5AB =,7BC =,则ABC ∆的面积S=_______ 三.解答题:15.在ABC △中,5cos 13A =-,3cos 5B =. (Ⅰ)求sinC 的值; (Ⅱ)设5BC =,求ABC △的面积.16.在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,(1)求cos C ; (2)若25=•,且9a b +=,求c .17、如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB=90°,BD 交AC 于E ,AB=2。
【测控设计】高二数学人教A版必修5单元测评:第一章解三角形B含解析.doc
第一章测评B(高考体验卷)(时间:90分钟满分:100分)—、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014江西高考)在/\ABC中,内角4,B,C所对的边分别是若3Q=2人则的值为()A.・B. C」 D.解析:9:3a=2b,:.由正弦定理得—-=2x_-l=_-l=_.答案:D2.(2014江西高考)在亠30中,内角A,B,C所对的边分别为”,c,若c2=(a-b)2^C^,^\/\ABC 的面积是()丄丄「A.3B.C.D.3V解析:在f\ABC中,由已知条件及余弦定理可得c2=(/b)2+6=/+/A2dbcos 一,整理得ab=6,再由面积公式S= absin C,得S△仿c= x6xsin .故选C.答案:C3.(2014课标全国II高考)钝角三角形的面积是一HB=1/C=A/L,则/C=()A.5B.V"C.2 D」解析:由题意知S,BC= AB BC slnB,_ _ £即xi x\Tsin 3,解得sin 3=.・・・B=45。
或5=135°此时Ag+AB^BC^/^ABC为直角三角形,不符合题意;当3=135。
时〃="+(/)2-2xlx^符合题意.故选B.答案:B4. (2014四川高考)如图,从气球力上测得正前方的河流的两岸B,C 的俯角分别为75。
,30。
,此时 气球的高是60 m,则河流的宽度BC 等于()A.240(V~ ・ l)mB. 180(、厂・ 1 )mC 」20(V~-l)m D.30C\T+ l)m 解析:如图,作/D 丄3C,垂足为D.由题意,得 Z )C=60x tan 60°=60A / (m),Z)5=60xtan 15°=60xtan(45°-30°)=60x 0°=60x=(120-60/)m.所以 BC=DC-DB=60T-( 120-60\r )= 120\T-120=12061 )(m),故选 C. 答案:C5. (2013课标全国II 高考)/\ABC 的内角A,B,C 的对边分别为a,b,c,己知〃=20=一,C=,则 /\ABC 的面积为()A2\f+2 B.V +1 C.2、厂・2D.V~・1解析:A+C)=7i-由正弦定理得sinB -. TT - - • J Sln6----------------- --- f f则a= 答案:B 6.(2013 辽宁高考)在/\ABC 中,内角 A,B,C 的对边分别为 a,b,c.若 asm BcosC+csin BcosA=~b, 且 则 ):・S,BC = absin C= x2x(vA. B. C. D.解析:根据正弦定理:asin Bcos C+csin BcosA= b 等价于sin/cos C+sin Ceos/=, 即sinU+C)=_.又G>b,・°・ Z/ + ZC=、:、乙B=.故选A.答案:A7.( 20£3山东高考心BC的内角A,B,C所对的边分别为",c.若B=2A,a=l,b=J~^\ c=( ) A.2V" B.2 C.、厂D」_______________ /解析:由正弦定理得:,______ 匚 f又\9B=2A,:. ,£•:cos A=,•: ZA =30°,••• Z5=60°,ZC=90°,••.c=(V) =2.答案:B8.(2013 天津高考)在/\ABC中4BC=4B=yT,BC=3,则sinZB4C=( )7~ V~ /"- 匸A. B. C. D.厂匸解析:在心BC中,由余弦定理得AC2=AB2^-BC2-2AB BCcosZABC=2+9-2xyl x3x =5,即得AC=^T .由正弦定理即,所以sinZBAC=答案:C9.(2013课标全国I高考)已知锐角/\ABC的内角A,B,C的对边分别为a,6,c,23cos2^+cos 2M=0,a=7,c=6,则b=( )A. 10B.9C.8D.5解析:由23cos'/+cos 2/=0,得cos^4=.9:A^ ' ,:.cosA=・Tcos/= ,・••方=5 或(舍).故选D.答案:D10.(2012湖南高考)在/\ABC中MC=/,BC=2,B=60。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C215 minD215 h
解析如图,设经过x h后甲船处于点P处,乙船处于点Q处,两船的距离为s,则在△BPQ中,BP=10-4x,BQ=6x,∠PBQ=14x)2+(6x)2-2(10-4x) 6x cos 12AB AC cos A=4+9-2×2×3
所以BC
(2)由正弦定理
所以sin C sin A
因为AB BC,所以C为锐角,
则cos C
因此sin 2C=2sin C cos C=2
17(8分)在△ABC中,∠A
解设△ABC的内角A,B,C所对边的长分别是a,b,c
由余弦定理得a2=b2+c2-2bccos∠BAC=(
所以a=
又由正弦定理得sin B
由题设知0 B cos B
在△ABD中,由正弦定理得AD
(2)在△ABC中,sin B
由正弦定理,得sin C B
因为a=b c,所以C为锐角,
因此cos C
于是cos(B-C)=cos Bcos C+sin Bsin C
19(10分)在△ABC中,内角A,B,C所对的边分别为a,b,c已知a-c
(1)求cos A的值;
(2)求co
解(1)在△ABC中,
即sin(A+B)=sin C=8sin Bcos A
由正、余弦定理可得c=Байду номын сангаасb
即c2=4b2+4c2-4a2
c2=4c,即c=4
答案A
9在△ABC中,角A,B,C所对的边分别为a,b,c,若△ABC的面积为S,且2S=(a+b)2-c2,则tan C等于( )
A
C
解析由2S=(a+b)2-c2,得2S=a2+b2+2ab-c2,
高中数学人教A版必修五第一章解三角形测试题B(含答案)
w
第一检测(B)
(时间90分钟满分12 AC
由正弦定
所以sin∠BAC
答案C
4在△ABC中,A,B,C的对边分别为a,b,c,且a b c,a2 b2+c2,则A的取值范围是( )
A
C
解析cos A
又a b c,∴A B C
∴A C
答案C
5在△ABC中,sin A
即2 C=a2+b2+2ab-c2,
所以absin C-2ab=a2+b2-c2
由余弦定理可知
cos C
所以cos C+1
即2cos
所以ta
所以tan C
答案D
10甲船在B岛的正南方10 km处,且甲船以4 km/h的速度向正北方向航行,同时乙船自B岛出发以6 km/h的速度向北偏东60°的方向行驶,当甲、乙两船相距最近时它们航行的时间是( )
w
A
C(0,10)D
解析由正弦定理
c sin C C C≤
又c 0,故0 c≤
答案D
6路边一树干被台风吹断后,树尖与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距2bccos A,
又因为b=c,
所以a2=b2+b2-2b×bcos A=2b2(1-cos A)
由已知a2=2b2(1-sin A),
及sin B C,可得b
又由a-c a=2c
所以cos A
(2)在△ABC中,由cos A
可得sin A
于是cos 2A=2cos2A-1= 2A=2sin A cos A
所以co 2A co 2A si
(A+B)]=sin(A+B)
=sin Acos B+cos Asin B
因此△ABC的面积S C
所以sin A=cos A,
因为A∈(0,π),所以A
答案C
8在△ABC中,角A,B,C所对的边分别为a,b,c,若tan A=7tan B
A4B3C7D6
解析由tan A=7tan B,
即sin Acos B=7sin Bcos A,
所以sin Acos B+sin Bcos A=8sin Bcos A,
18(9分)在△ABC中,内角A,B,C的对边分别为a,b,c,且a c已
(1)a和c的值;
(2)cos(B-C)的值
解(1) c acos B=2
又cos B ac=6
由余弦定理,得a2+c2=b2+2accos B
又b=3,所以a2+c2=9+2×2=13
a=2,c=3或a=3,c=2
因为a c,所以a=3,c=2