新课标九年级数学竞赛辅导讲座 第十二讲 方程与函数
九年级数学竞赛讲座(共10讲)
目录第一讲分式方程(组)的解法第二讲无理方程的解法第三讲简易高次方程的解法第四讲有关方程组的问题第五讲函数的基本概念与性质第六讲二次函数第七讲函数的最大值与最小值第八讲根与系数的关系及应用第九讲判别式及其应用第十讲一元二次不等式的解法第一讲分式方程(组)的解法分母中含有未知数的方程叫分式方程.解分式方程的基本思想是转化为整式方程求解,转化的基本方法是去分母、换元,但也要灵活运用,注意方程的特点进行有效的变形.变形时可能会扩大(或缩小)未知数的取值范围,故必须验根.例1 解方程解令y=x2+2x-8,那么原方程为去分母得y(y-15x)+(y+9x)(y-15x)+y(y+9x)=0,y2-4xy-45x2=0,(y+5x)(y-9x)=0,所以y=9x或y=-5x.由y=9x得x2+2x-8=9x,即x2-7x-8=0,所以x1=-1,x2=8;由y=-5x,得x2+2x-8=-5x,即x2+7x-8=0,所以x3=-8,x4=1.经检验,它们都是原方程的根.例2 解方程y2-18y+72=0,所以y1=6或y2=12.x2-2x+6=0.此方程无实数根.x2-8x+12=0,所以x1=2或x2=6.经检验,x1=2,x2=6是原方程的实数根.例3 解方程分析与解我们注意到:各分式的分子的次数不低于分母的次数,故可考虑先用多项式除法化简分式.原方程可变为整理得去分母、整理得x+9=0,x=-9.经检验知,x=-9是原方程的根.例4 解方程分析与解方程中各项的分子与分母之差都是1,根据这一特点把每个分式化为整式和真分式之和,这样原方程即可化简.原方程化为即所以((x+6)(x+7)=(x+2)(x+3).例5 解方程分析与解注意到方程左边每个分式的分母中两个一次因式的差均为常数1,故可考虑把一个分式拆成两个分式之差的形式,用拆项相消进行化简.原方程变形为整理得去分母得x2+9x-22=0,解得x1=2,x2=-11.经检验知,x1=2,x2=-11是原方程的根.例6 解方程次项与常数项符号相反,故可考虑用合比定理化简.原方程变形为所以x=0或2x2-3x-2=2x2+5x-3.例7 解方程分析与解形式与上例相似.本题中分子与分母只是一次项的符号相反,故可考虑用合分比定理化简.原方程变形为当x≠0时,解得x=±1.经检验,x=±1是原方程的根,且x=0也是原方程的根.说明使用合分比定理化简时,可能发生增根和失根的现象,需细致检验.例8 解方程解将原方程变形为例9 解关于x的方程将x1=a-2b或x2=b-2a代入分母b+x,得a-b或2(b-a),所以,当a≠b时,x1=a-2b及x2=b-2a都是原方程的根.当a=b时,原方程无解.例10 如果方程只有一个实数根,求a的值及对应的原方程的根.分析与解将原方程变形,转化为整式方程后得2x2-2x+(a+4)=0.①原方程只有一个实数根,因此,方程①的根的情况只能是:(1)方程①有两个相等的实数根,即△=4-4·2(a+4)=0.(2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为0或2.(i)当x=0时,代入①式得a+4=0,即a=-4.这时方程①的另一个根是x=1(因为2x2-2x=0,x(x-1)=0,x1=0或x2=1.而x1=0是增根).它不使分母为零,确是原方程的唯一根.(ii)当x=2时,代入①式,得2×4-2×2+(a+4)=0,即a=-8.这时方程①的另一个根是x=-1(因为2x2-2x-4=0.(x-2)(x+1)=0,所以x1=2(增根),x2=-1).它不使分母为零,确是原方程的唯一根.因此,若原分式方程只有一个实数根时,所求的a的值分别是练习一1.填空:(3)如果关于x的方程有增根x=1,则k=____.2.解方程3.解方程4.解方程5.解方程6.解方程7.m是什么数值时,方程有根?第二讲无理方程的解法未知数含在根号下的方程叫作无理方程(或根式方程),这是数学竞赛中经常出现的一些特殊形式的方程中的一种.解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法、配方法、因式分解法、设辅助元素法、利用比例性质法等.本讲将通过例题来说明这些方法的运用.例1 解方程解移项得两边平方后整理得再两边平方后整理得x2+3x-28=0,所以x1=4,x2=-7.经检验知,x2=-7为增根,所以原方程的根为x=4.说明用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根.例2 解方程方公式将方程的左端配方.将原方程变形为所以两边平方得3x2+x=9-6x+x2,两边平方得3x2+x=x2+6x+9,例3 解方程即所以移项得例4 解方程解三个未知量、一个方程,要有确定的解,则方程的结构必然是极其特殊的.将原方程变形为配方得利用非负数的性质得所以x=1,y=2,z=3.经检验,x=1,y=2,z=3是原方程的根.例5 解方程所以将①两边平方、并利用②得x2y2+2xy-8=0,(xy+4)(xy-2)=0.xy=2.③例6 解方程解观察到题中两个根号的平方差是13,即②÷①便得由①,③得例7 解方程分析与解注意到(2x2-1)-(x2-3x-2)=(2x2+2x+3)-(x2-x+2).设则u2-v2=w2-t2,①u+v=w+t.②因为u+v=w+t=0无解,所以①÷②得u-v=w-t.③②+③得u=w,即解得x=-2.经检验,x=-2是原方程的根.例8 解方程整理得y3-1=(1-y)2,即(y-1)(y2+2)=0.解得y=1,即x=-1.经检验知,x=-1是原方程的根.整理得y3-2y2+3y=0.解得y=0,从而x=-1.例9 解方程边的分式的分子与分母只有一些项的符号不同,则可用合分比定理化简方程.根据合分比定理得两边平方得再用合分比定理得化简得x2=4a2.解得x=±2a.经检验,x=±2a是原方程的根.练习二1.填空:2.解方程3.解方程4.解方程5.解方程6.解关于x的方程第三讲简易高次方程的解法在整式方程中,如果未知数的最高次数超过2,那么这种方程称为高次方程.一元三次方程和一元四次方程有一般解法,但比较复杂,且超过了初中的知识范围,五次或五次以上的代数方程没有一般的公式解法,这由挪威青年数学家阿贝尔于1824年作出了证明,这些内容我们不讨论.本讲主要讨论用因式分解、换元等方法将某些高次方程化为低次方程来解答.例1 解方程x3-2x2-4x+8=0.解原方程可变形为x2(x-2)-4(x-2)=0,(x-2)(x2-4)=0,(x-2)2(x+2)=0.所以x1=x2=2,x3=-2.说明当ad=bc≠0时,形如ax3+bx2+cx+d=0的方程可这样=0可化为bkx3+bx2+dkx+d=0,即(kx+1)(bx2+d)=0.方程ax4+bx3+cx+d=0也可以用类似方法处理.例2 解方程(x-2)(x+1)(x+4)(x+7)=19.解把方程左边第一个因式与第四个因式相乘,第二个因式与第三个因式相乘,得(x2+5x-14)(x2+5x+4)=19.设(y-9)(y+9)=19,即y2-81=19.说明在解此题时,仔细观察方程中系数之间的特殊关系,则可用换元法解之.例3 解方程(6x+7)2(3x+4)(x+1)=6.解我们注意到2(3x+4)=6x+8=(6x+7)+1,6(x+1)=6x+6=(6x+7)-1,所以利用换元法.设y=6x+7,原方程的结构就十分明显了.令y=6x+7,①由(6x+7)2(3x+4)(x+1)=6得(6x+7)2(6x+8)(6x+6)=6×12,即y2(y+1)(y-1)=72,y4-y2-72=0,(y2+8)(y2-9)=0.因为y2+8>0,所以只有y2-9=0,y=±3.代入①式,解得原方程的根为例4 解方程12x4-56x3+89x2-56x+12=0.解观察方程的系数,可以发现系数有以下特点:x4的系数与常数项相同,x3的系数与x的系数相同,像这样的方程我们称为倒数方程.由例5 解方程解方程的左边是平方和的形式,添项后可配成完全平方的形式.所以经检验,x1=-1,x2=2是原方程的根.例6 解方程(x+3)4+(x+1)4=82.分析与解由于左边括号内的两个二项式只相差一个常数,所以设于是原方程变为(y+1)4+(y-1)4=82,整理得y4+6y2-40=0.解这个方程,得y=±2,即x+2=±2.解得原方程的根为x1=0,x2=-4.说明本题通过换元,设y=x+2后,消去了未知数的奇次项,使方程变为易于求解的双二次方程.一般地,形如(x+a)4+(x+b)4=c例7 解方程x4-10x3-2(a-11)x2+2(5a+6)x+2a+a2=0,其中a是常数,且a≥-6.解这是关于x的四次方程,且系数中含有字母a,直接对x求解比较困难(当然想办法因式分解是可行的,但不易看出),我们把方程写成关于a的二次方程形式,即a2-2(x2-5x-1)a+(x4-10x3+22x2+12x)=0,△=4(x2-5x-1)2-4(x4-10x3+22x2+12x)=4(x2-2x+1).所以所以a=x2-4x-2或a=x2-6x.从而再解两个关于x的一元二次方程,得练习三1.填空:(1)方程(x+1)(x+2)(x+3)(x+4)=24的根为_______.(2)方程x3-3x+2=0的根为_____.(3)方程x4+2x3-18x2-10x+25=0的根为_______.(4)方程(x2+3x-4)2+(2x2-7x+6)2=(3x2-4x+2)2的根为______.2.解方程(4x+1)(3x+1)(2x+1)(x+1)=3x4.3.解方程x5+2x4-5x3+5x2-2x-1=0.4.解方程5.解方程(x+2)4+(x-4)4=272.6.解关于x的方程x3+(a-2)x2-(4a+1)x-a2+a+2=0.第四讲有关方程组的问题在教科书上,我们已经知道了二元一次方程组、三元一次方程组以及简单的二元二次方程组的解法.利用这些知识,可以研究一次函数的图像、二次函数的图像以及与此有关的问题.本讲再介绍一些解方程组的方法与技巧.1.二元二次方程组解二元二次方程组的基本途径是“消元”和“降次”.由一个二次和一个一次方程组成的二元二次方程组的一般解法是代入法,由两个二次方程组成的二次方程组在中学阶段只研究它的几种特殊解法.如果两个方程的二次项的对应系数成比例,可用加减消元法消去二次项.例1 解方程组解②×2-①×3得4x+9y-6=0.方程组中含有某一未知数的对应项的系数的比相等,可用加减消元法消去这个未知数.例2 解方程组解②×(-2)+①得3y2+3y-6=0,所以y1=1,y2=-2.解方程组与得原方程组的解方程组中至少有一个方程可以分解为一次方程的方程组,可用因式分解法解.例3 解方程组解由②得(2x+y)(x-2y)=0,所以2x+y=0或x-2y=0.因此,原方程组可化为两个方程组与解这两个方程组得原方程组的解为如果两个方程都没有一次项,可用加减消元法消去常数项,再用因式分解法求解.例4 解方程组解由①-②×2得x2-2xy-3y2=0,即(x+y)(x-3y)=0,所以x+y=0或x-3y=0.分别解下列两个方程组得原方程组的解为2.二元对称方程组方程中的未知数x,y互换后方程保持不变的二元方程叫作二元对称方程.例如x2-5xy+y2-3x-3y=7,等都是二元对称方程.由二元对称方程组成的方程组叫作二元对称方程组.例如等都是二元对称方程组.我们把叫作基本对称方程组.基本对称方程组通常用代入法或韦达定理求解.例5 解方程组解方程组中的x,y分别是新方程m2-5m+4=0的两个解.解关于m的一元二次方程得m1=1,m2=4,所以原方程组的解是这个方程组亦可用代入法求解(略).由于一般的二元对称式总可以用基本对称式x+y和xy表示,因此在解二元对称方程组时,一定可以用x+y和xy作为新的未知数,通过换元转化为基本对称方程组.例6 解方程组解原方程组可变形为①×2+②得令u=x+y,则即而方程组无实数解.综上所述,方程组的解为例7 解方程组分析本题是一个对称方程组的形式,观察知它可转化为基本对称方程组的形式.解由①得xy=16.④由②,④可得基本对称方程组于是可得方程组的解为例8 解方程组分析本题属于二元轮换对称方程组类型,通常可以把两个方程相减,因为这样总能得到一个方程x-y=0,从而使方程降次化简.解①-②,再因式分解得(x-y)(x+y-10)=0,所以x-y-0或x+x-10=0.解下列两个方程组得原方程组的四组解为例9 解方程组解法1用换元法.设4x+5=A,4y+5=B,则有即③-④并平方得整理得所以因此A-B=0或分别解下列两个方程组与经检验,A=B=9适合方程③,④,由此得原方程组的解是解法2①-②得即所以x-1与y-1同号或同为零.由方程①得所以x-1与y-1不能同正,也不能同负.从而x-1=0,y-1=0.由此解得经检验,x=1,y=1是方程组的解.练习四1.填空:(1)方程组的解有_____组.(2)若x,y是方程组(3)已知3a+b+2c=3,且a+3b+2c=1,则2a+c=_____.(4)已知实数x,y,z满足方程组则xyz=________.2.解方程组:3.设a,b,c,x,y,z都是实数.若4.已知一元二次方程a(x+1)(x+2)+b(x+2)(x+3)+c(x+3)(x+1)=0 有两根0,1,求a∶b∶c.5.(1)解方程组第五讲函数的基本概念与性质函数是中学数学中的一条主线,也是数学中的一个重要概念.它使我们从研究常量发展到研究变量之间的关系,这是对事物认识的一大飞跃,而且对于函数及其图像的研究,使我们把数与形结合起来了.学习函数,不仅要掌握基本的概念,而且要把解析式、图像和性质有机地结合起来,在解题中自觉地运用数形结合的思想方法,从图像和性质对函数进行深入的研究.1.求函数值和函数表达式对于函数y=f(x),若任取x=a(a为一常数),则可求出所对应的y值f(a),此时y的值就称为当x=a时的函数值.我们经常会遇到求函数值与确定函数表达式的问题.例1 已知f(x-1)=19x2+55x-44,求f(x).解法1令y=x-1,则x=y+1,代入原式有f(y)=19(y+1)2+55(y+1)-44=19y2+93y+30,所以f(x)=19x2+93x+30.解法2f(x-1)=19(x-1)2+93(x-1)+30,所以f(x)=19x2+93x+30.可.例3 已知函数f(x)=ax5-bx3+x+5,其中a,b为常数.若f(5)=7,求f(-5).解由题设f(-x)=-ax5+bx3-x+5=-(ax5-bx3+x+5)+10=-f(x)+10,所以f(-5)=-f(5)+10=3.例4 函数f(x)的定义域是全体实数,并且对任意实数x,y,有f(x+y)=f(xy).若f(19)=99,求f(1999).解设f(0)=k,令y=0代入已知条件得f(x)=f(x+0)=f(x·0)=f(0)=k,即对任意实数x,恒有f(x)=k.所以f(x)=f(19)=99,所以f(1999)=99.2.建立函数关系式例5 直线l1过点A(0,2),B(2,0),直线l2:y=mx+b过点C(1,0),且把△AOB分成两部分,其中靠近原点的那部分是一个三角形,如图3-1.设此三角形的面积为S,求S关于m的函数解析式,并画出图像.解因为l2过点C(1,0),所以m+b=0,即b=-m.设l2与y轴交于点D,则点D的坐标为(0,-m),且0<-m≤2(这是因为点D在线段OA上,且不能与O点重合),即-2≤m<0.故S的函数解析式为例6 已知矩形的长大于宽的2倍,周长为12.从它的一个顶点作一条射线,将矩形分成一个三角形和一个梯形,且这条射线与矩形一边x,试写出梯形面积S关于x的函数关系式.解设矩形ABCD的长BC大于宽AB的2倍.由于周长为12,故长与宽满足4<BC<6,0<AB<2.由题意,有如下两种情形:CE1=x,BE1=BC-x,AB=CD=2(BC-x),所以(2AB+x)+AB=6,所以3.含绝对值的函数一次函数的图像是一条直线,含有绝对值符号的函数所对应的图像是由若干条线段和射线所组成的折线;二次函数的图像是抛物线,而y=|ax2+bx+c|的图像是将y=ax2+bx+c 在x轴下方的图像按x轴为对称轴翻到x轴的上方.对于一些其他的含绝对值符号的函数和方程的图像,需要按区间分段讨论.例7 作函数y=|3-x|+|x-1|的图像.解当x<1时,y=(3-x)+(1-x)=-2x+4;当1≤x<3时,y=(3-x)+(x-1)=2;当x≥3时,y=(x-3)+(x-1)=2x-4.所以它的图像如图3-3所示.例8 作函数y=|x2-5x+6|的图像.解当x≤2或x≥3时,x2-5x+6≥0,于是y=x2-5x+6;当2<x<3时,x2-5x+6<0,于是y=-(x2-5x+6).所以于是,得图像如图3-4所示.例9 点(x,y)满足方程|x-1|+|y+2|=2,求它的图像所围成区域的面积.解当x≥1,y≥-2时,x-1+y+2=2,即y=-x+1.当x≥1,x<-2时,x-1-(y+2)=2,即y=x-5.当x<1,y≥-2时,-x+1+y+2=2,即y=x-1.当x<1,y<-2时,-x+1-(y+2)=2,即y=-x-3.于是,所得图像如图3-5所示.由此可知,|x-1|+|y+2|=2的图像是一个对角线长为4,边长为2例10m是什么实数时,方程x2-4|x|+5=m有四个互不相等的实数根?解法1将原方程变形为x2-4|x|+4=m-1.令y=x2-4|x|+4=m-1,则它的图像如图3-6,而y=m-1是一条与x轴平行的直线.原方程有四个互不相等的实根,即直线应与曲线有四个不同的交点.由图像可知,当0<m-1<4,即1<m<5时,直线与曲线有四个不同的交点,所以,当1<m<5时,方程x2-4|x|+5=m有四个互不相等的实数根.说明本题是一个方程问题,我们利用图形来研究,这是一种非常重要的思想方法——数形结合法.当然,本题不用图像也是可以解的,下面给出解法,请读者比较一下.解法2原方程变形为(|x|-2)2=m-1,练习五1.填空:(1)已知f(x-1)=19x2+55x-44,则f(x)=_______.(2)对所有实数x,f(x2+1)=x4+5x2+3,那么对所有实数x,f(x2-1)=_______.(3)设x与y2成反比例,y与z2成正比例.当x=24时,y=2;当y=18时,z=3,则z=1时,x=_______.(4)已知y=2x2+mx+5的值恒为正,且m为实数,则m的范围是_______.函数,且当x=2,x=3时,y的值都为19,则y的解析式为y=_______.(6)如果y+m与x+n成正比例,且当x=1时,y=2;当x=-1时,y=1,则y与x间的函数关系式是y=_______.2.在平面直角坐标系里,点A的坐标是(4,0),点P是第一象限内一次函数y=-x+6的图像上的点,原点是O,如果△OPA的面积为S,P点坐标为(x,y),求S关于x的函数表达式.3.平面直角坐标上有点P(-1,-2)和点Q(4,2),取点R(1,m),试问当m为何值时,PR+RQ有最小值.试求k的取值范围.5.设y=|x+2|+|x-4|-|2x-6|,且2≤x≤8,试求y的最大值与最小值之和.6.作y=2|x-3|,y=x-a的图像,问a取什么值时,它们可以围出一个平面区域,并求其面积.7.m是什么实数时,方程|x2-4x+3|=m有三个互不相等的实数解.第六讲二次函数二次函数是一类十分重要的最基本的初等函数,也是初中数学的主要内容之一,它在中学数学中起着承上启下的作用,它与一元二次方程、一元二次不等式知识的综合运用,是初中代数的重点和难点之一.另外,二次函数在工程技术、商业、金融以及日常生活中都有着广泛的应用.通过对二次函数的学习,使我们能进一步理解函数思想和函数方法,提高分析问题、解决问题的能力.正确掌握二次函数的基本性质是学好二次函数的关键.1.二次函数的图像及其性质例1 (1)设抛物线y=2x2,把它向右平移p个单位,或向下移q个单位,都能使得抛物线与直线y=x-4恰好有一个交点,求p,q的值.(2)把抛物线y=2x2向左平移p个单位,向上平移q个单位,则得到的抛物线经过点(1,3)与(4,9),求p,q的值.(3)把抛物线y=ax2+bx+c向左平移三个单位,向下平移两个单位析式.解(1)抛物线y=2x2向右平移p个单位后,得到的抛物线为y=2(x-p)2.于是方程2(x-p)2=x-4有两个相同的根,即方程2x2-(4p+1)x+2p2+4=0的判别式△=(4p+1)2-4·2·(2p2+4)=0,抛物线y=2x2向下平移q个单位,得到抛物线y=2x2-q.于是方程2x2-q=x-4有两个相同的根,即△=1-4·2(4-q)=0,(2)把y=2x2向左平移p个单位,向上平移q个单位,得到的抛物线为y=2(x+p)2+q.于是,由题设得解得p=-2,q=1,即抛物线向右平移了两个单位,向上平移了一个单位.解得h=3,k=2.原二次函数为说明将抛物线y=ax2+bx+c向右平移p个单位,得到的抛物线是y=a(x-p)2+b(x-p)+c;向左平移p个单位,得到的抛物线是y=a(x+p)2+b(x+p)+c;向上平移q个单位,得到y=ax2+bx +c+q;向下平移q个单位,得到y=ax2+bx+c-q.例2 已知抛物线y=ax2+bx+c的一段图像如图3-7所示.(1)确定a,b,c的符号;(2)求a+b+c的取值范围.解(1)由于抛物线开口向上,所以a>0.又抛物线经过点(0,-1),合a>0便知b<0.所以a>0,b<0,c<0.(2)记f(x)=ax2+bx+c.由图像及(1)知所以a+b+c=a+(a-1)-1=2(a-1),-2<a+b+c<0.例3 已知抛物线y=ax2-(a+c)x+c(其中a≠c)不经过第二象限.(1)判断这条抛物线的顶点A(x0,y0)所在的象限,并说明理由;(2)若经过这条抛物线顶点A(x0,y0)的直线y=-x+k与抛物线的另一解(1)因为若a>0,则抛物线开口向上,于是抛物线一定经过第二象限,所以当抛物线y=ax2-(a+c)x+c的图像不经过第二象限时,必有a<0.又当x=0时,y=c,即抛物线与y轴的交点为(0,c).因为抛物线不经过第二象限,所以c≤0.于是所以顶点A(x0,y0)在第一象限.B在直线y=-x+k上,所以0=-1+k,所以k=1.又由于直线y=-x+1经过-2x2+2x.2.求二次函数的解析式求二次函数y=ax2+bx+c(a≠0)的解析式,需要三个独立的条件确定三个系数a,b,c.一般地有如下几种情况:(1)已知抛物线经过三点,此时可把三点坐标代入解析式,得到关于a,b,c的三元一次方程组,解方程组可得系数a,b,c.或者已知抛物线经过两点,这时把两点坐标代入解析式,得两个方程,再利用其他条件可确定a,b,c.或者已知抛物线经过某一点,这时把这点坐标代入解析式,再结合其他条件确定a,b,c.(2)已知抛物线的顶点坐标为(h,k),这时抛物线可设为y=a(x-h)2+k,再结合其他条件求出a.(3)已知抛物线与x轴相交于两点(x1,0),(x2,0),此时的抛物线可设为y=a(x-x1)(x-x2),再结合其他条件求出a.例4 设二次函数f(x)=ax2+bx+c满足条件:f(0)=2,f(1)=-1,解由f(0)=2,f(1)=-1,得即c=2,b=-(a+3).因此所求的二次函数是y=ax2-(a+3)x+2.由于二次函数的图像在x轴上所截得的线段长,就是方程ax2-(a+3)x+2=0两根差的绝对值,而这二次方程的两根为于是因此所求的二次函数表达式为例5 设二次函数f(x)=ax2+bx+c,当x=3时取得最大值10,并且它的图像在x轴上截得的线段长为4,求a,b,c的值.分析当x=3时,取得最大值10的二次函数可写成f(x)=a(x-3)2+10,且a<0.解因为抛物线的对称轴是x=3,又因为图像在x轴上截得的线段长是4,所以由对称性,图像与x轴交点的横坐标分别是1,5.因此,二次函数又可写成f(x)=a(x-1)(x-5)的形式,从而a(x-3)2+10=a(x-1)(x-5),所以例6 如图3-8,已知二次函数y=ax2+bx+c(a>0,b<0)的图像与x轴、y轴都只有一个公共点,分别为点A,B,且AB=2,b+2ac=0.(1)求二次函数的解析式;(2)若一次函数y=x+k的图像过点A,并和二次函数的图像相交于另一点C,求△ABC的面积.解(1)因二次函数的图像与x轴只有一个公共点,故b2-4ac=0,而b+2ac=0,所以b2+2b=0,b=-2(因为b<0).点B的坐标为(0,c),AB=2,由勾股定理得所以1+a2c2=4a2.因为ac=1,所以4a2=2,练习六1.填空:(1)将抛物线y=2(x-1)2+2向右平移一个单位,再向上平移三个单位,得到的图像的解析式为______.(2)已知y=x2+px+q的图像与x轴只有一个公共点(-1,0),则(p,q)=____.(3)已知二次函数y=a(x-h)2+k的图像经过原点,最小值为-8,且形(4)二次函数y=ax2+bx+c的图像过点A(-1,0),B(-3,2),且它与x轴的两个交点间的距离为4,则它的解析式为________.(5)已知二次函数y=x2-4x+m+8的图像与一次函数y=kx+1的图像相交于点(3,4),则m=___,k=_____.(6)关于自变量x的二次函数y=-x2+(2m+2)x-(m2+4m-3)中,m是不小于零的整数,它的图像与x轴交于点A和点B,点A在原点左边,点B在原点右边,则这个二次函数的解析式为____.2.设抛物线y=x2+2ax+b与x轴有两个不同交点.(1)把它沿y轴平移,使所得到的抛物线在x轴上截得的线段的长度是原来的2倍,求所得到的抛物线;(2)通过(1)中所得曲线与x轴的两个交点,及原来的抛物线的顶点,作一条新的抛物线,求它的解析式.3.已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点为C.(2)若△ABC是等腰直角三角形,求b2-4ac的值;(3)若b2-4ac=12,试判断△ABC的形状.4.有两个关于x的二次函数C1:y=ax2+4x+3a和C2:y=x2+2(b+2)x+b2+3b.当把C1沿x轴向左平移一个单位后,所得抛物线的顶点恰与C2的顶点关于x轴对称,求a,b.5.已知二次函数y=x2-2bx+b2+c的图像与直线y=1-x只有一个公共点,并且顶点在二次函数y=ax2(a≠0)的图像上,求a的取值范围第七讲函数的最大值与最小值我们常常遇到求最大值和最小值的问题,在许多情况下可以归结为求函数的最大值与最小值.这类问题涉及的知识面广,综合性强,解法灵活,因而对于培养学生的数学能力具有重要作用.本讲从四个方面来讨论如何求解函数的最大值与最小值问题.1.一次函数的最大值与最小值一次函数y=kx+b在其定义域(全体实数)内是没有最大值和最小值的,但是,如果对自变量x 的取值范围有所限制时,一次函数就可能有最大值和最小值了.例1 设a是大于零的常数,且a≠1,求y的最大值与最小值.大值a.例2 已知x,y,z是非负实数,且满足条件x+y+z=30,3x+y-z=50.求u=5x+4y+2z的最大值和最小值.分析题设条件给出两个方程,三个未知数x,y,z,当然,x,y,z的具体数值是不能求出的.但是,我们固定其中一个,不妨固定x,那么y,z都可以用x来表示,于是u便是x的函数了.解从已知条件可解得y=40-2x,z=x-10.所以u=5x+4y+2z=5x+4(40-2x)+2(x-10)=-x+140.又y,z均为非负实数,所以解得10≤x≤20.由于函数u=-x+140是随着x的增加而减小的,所以当x=10时,u有最大值130;当x=20时,u有最小值120.2.二次函数的最大值与最小值例3 已知x1,x2是方程x2-(k-2)x+(k2+3k+5)=0解由于二次方程有实根,所以△=[-(k-2)]2-4(k2+3k+5)≥0,3k2+16k+16≤0,例4 已知函数有最大值-3,求实数a的值.解因为的范围内分三种情况讨论.-a2+4a-1=-3例5 已知边长为4的正方形截去一个角后成为五边形ABCDE(如图3-12),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.解设矩形PNDM的边DN=x,NP=y,于是矩形PNDM的面积S=xy,2≤X≤4.易知CN=4-x,EM=4-y,且有二次函数S=f(x)的图像开口向下,对称轴为x=5,故当x≤5时,函数值是随x的增加而增加,所以,对满足2≤x≤4的S来说,当x=4时有最大值例6 设p>0,x=p时,二次函数f(x)有最大值5,二次函数g(x)的最小值为-2,且g(p)=25,f(x)+g(x)=x2+16x+13.求g(x)的解析式和p的值.解由题设知f(p)=5,g(p)=25,f(p)+g(p)=p2+16p+13,所以p2+16p+13=30,p=1(p=-17舍去).由于f(x)在x=1时有最大值5,故设f(x)=a(x-1)2+5,a<0,所以g(x)=x2+16x+13-f(x)=(1-a)x2+2(a+8)x+8-a.由于g(x)的最小值是-2,于是解得a=-2,从而g(x)=3x2+12x+10.3.分式函数的最大值与最小值法是去分母后,化为关于x的二次方程,然后用判别式△≥0,得出y的取值范围,进而定出y的最大值和最小值.解去分母、整理得(2y-1)x2+2(y+1)x+(y+3)=0.△≥0,即△=[2(y+1)]2-4(2y-1)(y+3)≥0,解得-4≤y≤1.时,取最小值-4,当x=-2时,y取最大值1.说明本题求最值的方法叫作判别法,这也是一种常用的方法.但在用判别法求最值时,应特别注意这个最值能否取到,即是否有与最值相应的x值.解将原函数去分母,并整理得yx2-ax+(y-b)=0.因x是实数,故△=(-a)2-4·y·(y-b)≥0,由题设知,y的最大值为4,最小值为-1,所以(y+1)(y-4)≤0,即y2-3y-4≤0.②由①,②得所以a=±4,b=3.4.其他函数的最大值与最小值处理一般函数的最大值与最小值,我们常常用不等式来估计上界或下界,进而构造例子来说明能取到这个上界或下界.解先估计y的下界.又当x=1时,y=1,所以,y的最小值为1.说明在求最小(大)值,估计了下(上)界后,一定要举例说明这个界是能取到的,才能说这就是最小(大)值,否则就不一定对了.例如,本题我们也可以这样估计:但无论x取什么值时,y取不到-3,即-3不能作为y的最小值.例10 设x,y是实数,求u=x2+xy+y2-x-2y的最小值.分析先将u看作是x的二次函数(把y看作常数),进行配方后,再把余下的关于y的代数式写成y的二次函数,再配方后,便可估计出下界来.又当x=0,y=1时,u=-1,所以,u的最小值为-1.例11 求函数的最大值,并求此时的x值,其中[a]表示不超过a的最大整数.练习七。
初三数学复习函数与方程解题思路
初三数学复习函数与方程解题思路初三数学复习:函数与方程解题思路函数与方程是初三数学中的重要内容,对于解题思路的掌握至关重要。
本文将为你介绍一些常见的函数与方程解题思路,帮助你更好地复习数学知识。
以下将从函数和方程两个部分展开。
一、函数解题思路1. 理解函数的定义函数是一种特殊的关系,它将一个自变量的值映射到一个唯一的因变量的值。
在解函数题时,首先要理解函数的定义,并确定自变量和因变量的关系。
2. 掌握函数图像的性质函数图像是函数与自变量和因变量之间的关系的直观呈现。
解题时,可以通过观察函数图像的性质,如增减性、奇偶性、周期性等,来推导函数的性质和解函数方程。
3. 利用函数的性质和特点解题在解题过程中,可以利用函数的性质和特点进行推导。
例如,利用增减性来确定函数的最值;利用奇偶性来简化函数的计算;利用周期性来推导函数的周期等。
4. 联立函数方程解题有时候,需要联立多个函数方程来求解问题。
在联立方程时,可以通过消元法、代入法、变量替换法等方法来简化方程,最终求得函数的解。
二、方程解题思路1. 把握方程的类型方程有不同的类型,如一元一次方程、一元二次方程、三角方程等。
在解题前,需要明确方程的类型,并掌握解不同类型方程的方法。
2. 运用等式性质和等价变形解题过程中,可以利用等式的性质和等价变形的方法来推导方程的解。
例如,使用加法逆元进行等式变形,使用对称性简化方程的计算等。
3. 联立方程组解题当问题需要用多个方程来求解时,需要联立方程组解题。
可以通过消元法、代入法、加减消法等方法,将方程组化简为更简单的形式,并求得方程组的解。
4. 检验解的合理性在解得方程的解之后,需要进行解的合理性的检验。
一般可以将解代入方程进行验证,确保所得解满足原方程的条件。
总结:函数与方程是初三数学中的重要内容,对于解题思路的掌握至关重要。
在解函数题时,要理解函数的定义,掌握函数图像的性质,并利用函数的性质和特点进行推导。
在解方程题时,要明确方程的类型,运用等式性质和等价变形的方法解题,联立方程组时要选择合适的解题方法,并检验解的合理性。
北师大版九年级数学下册 第12讲 二次函数的图象与性质 知识点梳理
当a<0时,抛物线开口向下.
某些特殊形式代数式的符号:
1a±b+c即为x=±1时,y
的值;②4a±2b+c即为x=±2时,y的值.
32a+b的符号,需判断对称
轴-b/2a与1的大小.若对称轴在直线x=1的左边,则-b/2a>1,再根据a的符号即可得出结果.④2a-b的符号,需判断对称轴与-1的大小.
失分点警示:
抛物线平移规律是“上加下减,左加右减”,左右平移易弄反.
例:将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是y=(x-2)2.
知识点四:二次函数与一元二次方程以及不等式
5.二次函数与一元二次方程
二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0的根.
例:当0≤x≤5时,抛物线y=x2+2x+7的最小值为7.
开口
向上
向下
对称轴
x=
顶点坐标
增减性
当x> 时,y随x的增大而增大;当x< 时,y随x的增大而减小.
当x> 时,y随x的增大而减小;当x< 时,y随x的增大而增大.
最值
x= ,y最小= .
x= ,y最大= .
3.系数a、b、c
a
决定抛物线的开口方向及开口大小
a、b
决定对称轴(x=-b/2a)的位置
当a,b同号,-b/2a<0,对称轴在y轴左边;
当b=0时,-b/2a=0,对称轴为y轴;
当a,b异号,-b/2a>0,对称轴在y轴右边.
c
决定抛物线与y轴的交点的位置
当c>0时,抛物线与y轴的交点在正半轴上;
中考数学专题讲座 函数、方程、不等式问题
中考数学专题讲座 函数、方程、不等式问题【知识纵横】函数、方程、不等式的结合,是函数某一变量值一定或在某一范围下的方程或不等式,体现了一般到特殊的观念。
也体现了函数图像与方程、不等式的内在联系,例求两个函数的交点坐标,一般通过函数解析式组成的方程组来解决。
又如例4复合了一次函数、二次函数,并对所得的函数要结合自变量的取值范围来考虑最值,这就需要结合图像来解决。
【典型例题】【例1】(天津市)已知抛物线,(1)若,,求该抛物线与轴公共点的坐标;(2)若,且当时,抛物线与轴有且只有一个公共点,求的取值范围; (3)若,且时,对应的;时,对应的,试判断当时,抛物线与轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.【思路点拨】(Ⅰ)令y=0,求方程的两根;(2)考虑判别式;(3)由不等式及结合图像解之。
c bx ax y ++=2321==b a 1-=c x 1==b a 11<<-x x c 0=++c b a 01=x 01>y 12=x 02>y 10<<x x【例2】(黄石市)如图,已知抛物线与x 轴交于点(20)A -,,(40)B ,,与y 轴交于点(08)C ,. (1)求抛物线的解析式及其顶点D 的坐标;(2)设直线CD 交x 轴于点E .在线段OB 的垂直平分线上是否存在点P ,使得点P 到直线CD 的距离等于点P 到原点O 的距离?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)过点B 作x 轴的垂线,交直线CD 于点F ,将抛物线沿 其对称轴平移,使抛物线与线段EF 总有公共点.试探究:抛 物线向上最多可平移多少个单位长度?向下最多可平移多少个 单位长度?【思路点拨】(2)设(2)P t ,,建立关于t 的方程; (3)考虑抛物线向上平移、向下平移两种情况。
【例3】(吉林长春)已知两个关于x 的二次函数1y 与当x k =时,217y =;且二次函数2y 的图象的对称轴是直线1x =-.222112()2(0)612y y a x k k y y x x =-+>+=++,,(1)求k 的值;(2)求函数12y y ,的表达式;(3)在同一直角坐标系内,问函数1y 的图象与2y 的图象是否有交点?请说明理由. 【思路点拨】(1)2y =(y 1 + y 2)—1y ;(2)由对称轴的方程,求出a 的值;(3)考虑方程根的判别式。
2021年中考数学第十二讲 二次函数的图像和性质(33PPT)
【解析】(1)∵抛物线y=ax2-2ax-3+2a2=a(x-1)2+2a2-a-3.
∴抛物线的对称轴为直线x=1.
(2)∵抛物线的顶点在x轴上,
∴2a2-a-3=0,解得a=3 或a=-1,
2
∴抛物线为y= 3x2-3x+3或y=-x2+2x-1.
2
2
(3)∵抛物线的对称轴为x=1,则Q(3,y2)关于x=1对称点的坐标为(-1,y2),
(x-5)2+2上有两个点(x1,y1)和(x2,y2),若x1>x2>5,则
y1____>__y2.
高频考点·疑难突破
考点一 二次函数的图象和性质 【示范题1】(2020·常德中考)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下 列结论: ①b2-4ac>0;②abc<0; ③4a+b=0;④4a-2b+c>0. 其中正确结论的个数是 ( B ) A.4 B.3 C.2 D.1
二、二次函数y=ax2+bx+c(a≠0)的图象与性质
1.当a>0时
(1)开口方向:向上. (2)顶点坐标: (__2_ba_,4ac b2 ).
4a
(3)对称轴:直线_x_____2b_a_.
(4)增减性:当x<- b 时,y随x的增大而___减__小____;
2a
当x>- b 时,y随x的增大而___增__大____.
考点三 二次函数与方程、不等式
【示范题3】(2020·贵阳中考)已知二次函数y=ax2+bx+c的图象经过(-3,0)与
(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x
第十二讲(2多元函数微分法)
( 西交大 1989 )
u 证: 3 x x y 3 z 3 3x y z
利用轮换对称性可得
u u u 3( x y z
y zx x 3 y 3 z 3 3x y z
2
)
( x y z )( x 2 y 2 z 2 y z z x x y )
例 4. 设 u f ( x, y, z ) ,
y sin x ,
求
( P272 题 16 )
其中
都具有一阶连续偏导数 , 且
2 x 1 d x e y 2 d y 3dz 0
解 : 利用全微分法 , 有
u
x y z x x y x
du 1 e y cos x 2 ) f 3 f1 f 2 cos x ( 2 x1 dx 3
例如 , 设
4. 隐函数微分法
全微分法; 直接方法 ; 代公式法 . 例如 : 设函数 z = z (x,y) 是由方程 F ( x - z , y + z ) = 0
z z , . 所确定 , 其中 F 具有一阶连续偏导数 , 求 x y
方法 1: 全微分法 . 对方程两边求微分
F1 (d x d z ) F2 (d y d z) 0
阶混合偏导数 :
2
(P247 例 5)
z 2y f ( 2) y x
2y y f (1 ) f 2 2 x x x
2y
2
2y f x
y2 (3) z f ( x , ) x
2y 2y z 2 f 2 ( x x x y
2
1) 建立目标函数( 同时注意简化 ),并确定约束条件 ;
九年级数学专题讲座
九年级数学专题讲座一、函数专题1. 一次函数知识点回顾一次函数的表达式为公式(公式,公式为常数,公式)。
当公式时,函数为正比例函数公式。
一次函数的图象是一条直线,公式决定直线的倾斜程度(公式,直线从左到右上升;公式,直线从左到右下降),公式决定直线与公式轴的交点(公式)。
题目解析例:已知一次函数公式,求它的图象与公式轴、公式轴的交点坐标。
解:当公式时,公式,解得公式,所以与公式轴交点坐标为公式。
当公式时,公式,所以与公式轴交点坐标为公式。
2. 二次函数知识点回顾二次函数的表达式一般式为公式(公式,公式,公式为常数,公式)。
顶点式为公式(公式为顶点坐标)。
二次函数图象是抛物线,公式决定抛物线的开口方向(公式开口向上;公式开口向下),对称轴为公式(一般式)或公式(顶点式)。
题目解析例:求二次函数公式的顶点坐标和对称轴。
解:对于二次函数公式,其中公式,公式,公式。
对称轴公式。
把公式代入函数得公式,所以顶点坐标为公式。
3. 反比例函数知识点回顾反比例函数表达式为公式(公式为常数,公式)。
图象是双曲线。
当公式时,双曲线在一、三象限;当公式时,双曲线在二、四象限。
题目解析例:已知反比例函数公式,求当公式时公式的值,以及当公式时公式的值。
解:当公式时,公式。
当公式时,公式,解得公式。
二、几何专题1. 三角形知识点回顾三角形内角和为公式。
三角形的分类:按角分为锐角三角形、直角三角形、钝角三角形;按边分为等边三角形、等腰三角形、不等边三角形。
相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似。
题目解析例:在公式中,公式,公式,求公式的度数。
解:因为三角形内角和为公式,所以公式。
例:已知公式和公式,公式,公式,判断这两个三角形是否相似。
解:因为在公式和公式中,公式,公式,两角分别相等,所以公式。
2. 四边形知识点回顾平行四边形的性质:对边平行且相等,对角相等,对角线互相平分。
中考数学一轮复习学案:第12讲 二次函数
第12讲 二次函数【考纲要求】1.理解二次函数的有关概念.2.会用描点法画二次函数的图象,能从图象上认识二次函数的性质.3.会运用配方法确定二次函数图象的顶点、开口方向和对称轴,并会求解二次函数的最值问题.4.熟练掌握二次函数解析式的求法,并能用它解决有关的实际问题. 5.会用二次函数的图象求一元二次方程的近似解.【命题趋势】二次函数是中考的重点内容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,且一般为压轴题.中考命题不仅考查二次函数的概念、图象和性质等基础知识,而且注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查.【考点探究】考点一、二次函数的图象及性质【例1】(1)二次函数y =-3x 2-6x +5的图象的顶点坐标是( ) A .(-1,8) B .(1,8) C .(-1,2) D .(1,-4)(2)已知抛物线y =ax 2+bx +c (a >0)的对称轴为直线x =1,且经过点(-1,y 1),(2,y 2),试比较y 1和y 2的大小:y 1________y 2.(填“>”“<”或“=”)解析:(1)抛物线的顶点坐标可以利用顶点坐标公式或配方法来求.∵-b2a =--62×(-3)=-1,4ac -b 24a =4×(-3)×5-(-6)24×(-3)=8, ∴二次函数y =-3x 2-6x +5的图象的顶点坐标是(-1,8).故选A.(2)点(-1,y 1),(2,y 2)不在对称轴的同一侧,不能直接利用二次函数的增减性来判断y 1,y 2的大小,可先根据抛物线关于对称轴的对称性,然后再用二次函数的增减性即可.设抛物线经过点(0,y 3),∵抛物线对称轴为直线x =1,∴点(0,y 3)与点(2,y 2)关于直线x =1对称.∴y 3=y 2. ∵a >0,∴当x <1时,y 随x 的增大而减小. ∴y 1>y 3.∴y 1>y 2. 答案:(1)A (2)>方法总结 1.将抛物线解析式写成y =a (x -h )2+k 的形式,则顶点坐标为(h ,k ),对称轴为直线x =h ,也可应用对称轴公式x =-b 2a ,顶点坐标⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a 来求对称轴及顶点坐标. 2.比较两个二次函数值大小的方法: (1)直接代入自变量求值法;(2)当自变量在对称轴两侧时,看两个数到对称轴的距离及函数值的增减性判断; (3)当自变量在对称轴同侧时,根据函数值的增减性判断.触类旁通1 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是( )A .a >0B .当x >1时,y 随x 的增大而增大C .c <0D .3是方程ax 2+bx +c =0的一个根考点二、利用二次函数图象判断a ,b ,c 的符号【例2】如图,是二次函数y =ax 2+bx +c (a ≠0)的图象的一部分,给出下列命题:①a +b +c =0;②b >2a ;③ax 2+bx +c =0的两根分别为-3和1;④a -2b +c >0.其中正确的命题是__________.(只要求填写正确命题的序号)解析:由图象可知过(1,0),代入得到a +b +c =0;根据-b2a=-1,推出b =2a ;根据图象关于对称轴对称,得出与x 轴的交点是(-3,0),(1,0);由a -2b +c =a -2b -a -b =-3b <0,根据结论判断即可.答案:①③方法总结 根据二次函数的图象确定有关代数式的符号,是二次函数中的一类典型的数形结合问题,具有较强的推理性.解题时应注意a 决定抛物线的开口方向,c 决定抛物线与y 轴的交点,抛物线的对称轴由a ,b 共同决定,b 2-4ac 决定抛物线与x 轴的交点情况.当x =1时,决定a +b +c 的符号,当x =-1时,决定a -b +c 的符号.在此基础上,还可推出其他代数式的符号.运用数形结合的思想更直观、更简捷.触类旁通2 小明从如图的二次函数y =ax 2+bx +c 的图象中,观察得出了下面五个结论:①c <0;②abc >0;③a -b +c >0;④2a -3b =0;⑤c -4b >0,你认为其中正确的结论有( )A .2个B .3个C .4个D .5个考点三、二次函数图象的平移【例3】二次函数y =-2x 2+4x +1的图象怎样平移得到y =-2x 2的图象( ) A .向左平移1个单位,再向上平移3个单位 B .向右平移1个单位,再向上平移3个单位C .向左平移1个单位,再向下平移3个单位D .向右平移1个单位,再向下平移3个单位解析:首先将二次函数的解析式配方化为顶点式,然后确定如何平移,即y =-2x 2+4x +1=-2(x -1)2+3,将该函数图象向左平移1个单位,再向下平移3个单位就得到y =-2x 2的图象.答案:C方法总结 二次函数图象的平移实际上就是顶点位置的变换,因此先将二次函数解析式转化为顶点式确定其顶点坐标,然后按照“左加右减、上加下减”的规律进行操作.触类旁通3 将二次函数y =x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数解析式是( )A .y =(x -1)2+2B .y =(x +1)2+2C .y =(x -1)2-2D .y =(x +1)2-2 考点四、确定二次函数的解析式【例4】如图,四边形ABCD 是菱形,点D 的坐标是(0,3),以点C 为顶点的抛物线y =ax 2+bx +c 恰好经过x 轴上A ,B 两点.(1)求A ,B ,C 三点的坐标;(2)求经过A ,B ,C 三点的抛物线的解析式. 解:(1)由抛物线的对称性可知AE =BE . ∴△AOD ≌△BEC . ∴OA =EB =EA .设菱形的边长为2m ,在Rt △AOD 中, m 2+(3)2=(2m )2,解得m =1.∴DC =2,OA =1,OB =3.∴A ,B ,C 三点的坐标分别为(1,0),(3,0),(2,3).(2)解法一:设抛物线的解析式为y =a (x -2)2+3,代入A 的坐标(1,0),得a =- 3. ∴抛物线的解析式为y =-3(x -2)2+ 3.解法二:设这个抛物线的解析式为y =ax 2+bx +c ,由已知抛物线经过A (1,0),B (3,0),C (2,3)三点,得⎩⎪⎨⎪⎧a +b +c =0,9a +3b +c =0,4a +2b +c =3,解这个方程组,得⎩⎪⎨⎪⎧a =-3,b =43,c =-3 3.∴抛物线的解析式为y =-3x 2+43x -3 3.方法总结 用待定系数法求二次函数解析式,需根据已知条件,灵活选择解析式:若已知图象上三个点的坐标,可设一般式;若已知二次函数图象与x 轴两个交点的横坐标,可设交点式;若已知抛物线顶点坐标或对称轴与最大(或小)值,可设顶点式.触类旁通4 已知抛物线y =-12x 2+(6-m 2)x +m -3与x 轴有A ,B 两个交点,且A ,B 两点关于y 轴对称.(1)求m 的值;(2)写出抛物线的关系式及顶点坐标. 考点五、二次函数的实际应用【例5】我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售收益为:每投入x 万元,可获得利润P =-1100(x -60)2+41(万元).当地政府拟在“十二·五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的收益为:每投入x 万元,可获利润Q =-99100(100-x )2+2945(100-x )+160(万元).(1)若不进行开发,求5年所获利润的最大值是多少;(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少; (3)根据(1)、(2),该方案是否具有实施价值?解:(1)当x =60时,P 最大且为41万元,故五年获利最大值是41×5=205(万元). (2)前两年:0≤x ≤50,此时因为P 随x 的增大而增大,所以x =50时,P 值最大且为40万元,所以这两年获利最大为40×2=80(万元).后三年:设每年获利为y 万元,当地额为x 万元,则外地额为(100-x )万元,所以y =P +Q =⎣⎡⎦⎤-1100(x -60)2+41+⎝⎛⎭⎫-99100x 2+2945x +160=-x 2+60x +165=-(x -30)2+1 065,表明x =30时,y 最大且为1 065,那么三年获利最大为1 065×3=3 195(万元),故五年获利最大值为80+3 195-50×2=3 175(万元).(3)有极大的实施价值.方法总结 运用二次函数的性质解决生活和实际生产中的最大值和最小值问题是最常见的题目类型,解决这类问题的方法是:1.列出二次函数的关系式,列关系式时,要根据自变量的实际意义,确定自变量的取值范围.2.在自变量取值范围内,运用公式法或配方法求出二次函数的最大值和最小值.触类旁通5 一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x 倍,则预计今年年销售量将比去年年销售量增加x 倍(本题中0<x ≤11).(1)用含x 的代数式表示,今年生产的这种玩具每件的成本为__________元,今年生产的这种玩具每件的出厂价为__________元;(2)求今年这种玩具的每件利润y (元)与x 之间的函数关系式;(3)设今年这种玩具的年销售利润为w 万元,求当x 为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.【经典考题】1.(乐山)二次函数y =ax 2+bx +1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t =a +b +1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .-1<t <12.(菏泽)已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数y=ax在同一平面直角坐标系中的图象大致是()'3.(上海)将抛物线y=x2+x向下平移2个单位,所得新抛物线的表达式是________.4.(枣庄)二次函数y=x2-2x-3的图象如图所示.当y<0时,自变量x的取值范围是______________.(第4题图)5.(珠海)如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(第5题图)(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.6.(益阳)已知:如图,抛物线y=a(x-1)2+c与x轴交于点A(1-3,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P′(1,3)处.(1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P ′作x 轴的平行线交抛物线于C ,D 两点,将翻折后得到的新图象在直线CD 以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W ,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD )的比非常接近黄金分割比5-12(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:5≈2.236,6≈2.449,结果可保留根号)【模拟预测】1.抛物线y =x 2-6x +5的顶点坐标为( ) A .(3,-4) B .(3,4)C .(-3,-4)D .(-3,4)2.由二次函数y =2(x -3)2+1,可知( ) A .其图象的开口向下B .其图象的对称轴为直线x =-3C .其最小值为1D .当x <3时,y 随x 的增大而增大3.已知函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( ) A .k <4 B .k ≤4C .k <4且k ≠3D .k ≤4且k ≠34.如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( )(第4题图)A .m =n ,k >hB .m =n ,k <hC .m >n ,k =hD .m <n ,k =h5.如图,已知二次函数y =x 2+bx +c 的图象经过点A (-1,0),B (1,-2),该图象与x 轴的另一交点为C ,则AC 长为__________.(第5题图)6.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …-2-1012…y …04664…从上表可知,下列说法中正确的是__________.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=1 2;④在对称轴左侧,y随x增大而增大.7.抛物线y=-x2+bx+c的图象如图所示,若将其向左平移2个单位,再向下平移3个单位,则平移后的解析式为__________.8.长江中下游地区发出了特大旱情,为抗旱保丰收,某地政府制定了农户购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所的金额与政府补贴的额度存在下表所示的函数对应关系.(1)分别求y1和y2的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.9.如图,已知二次函数L1:y=x2-4x+3与x轴交于A,B两点(点A在点B的左边),与y 轴交于点C.(1)写出二次函数L 1的开口方向、对称轴和顶点坐标; (2)研究二次函数L 2:y =kx 2-4kx +3k (k ≠0).①写出二次函数L 2与二次函数L 1有关图象的两条相同的性质;②若直线y =8k 与抛物线L 2交于E ,F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由.参考答案【考点探究】触类旁通1.D触类旁通2.C ∵抛物线开口向上,∴a >0; ∵抛物线与y 轴交于负半轴,∴c <0;对称轴在y 轴右侧,a ,b 异号,故b <0,∴abc >0. 由题图知当x =-1时,y >0, 即a -b +c >0.对称轴是直线x =13,∴-b 2a =13,即2a +3b =0;由⎩⎨⎧a -b +c >0,2a +3b =0,得c -52b >0.又∵b <0,∴c -4b >0.∴正确的结论有4个.触类旁通3.A 因为将二次函数y =x 2向右平移1个单位,得y =(x -1)2,再向上平移2个单位后,得y =(x -1)2+2,故选A.触类旁通4.解:(1)∵抛物线与x 轴的两个交点关于y 轴对称,∴抛物线的对称轴即为y 轴.∴-6-m 22×⎝⎛⎭⎫-12=0.∴m =±6.又∵抛物线开口向下,∴m -3>0,即m >3.∴m =6. (2)∵m =6,∴抛物线的关系式为y =-12x 2+3,顶点坐标为(0,3).触类旁通5.解:(1)(10+7x ) (12+6x ) (2)y =(12+6x )-(10+7x )=2-x . (3)∵w =2(1+x )(2-x )=-2x 2+2x +4, ∴w =-2(x -0.5)2+4.5. ∵-2<0,0<x ≤11,∴当x =0.5时,w 最大=4.5(万元).答:当x 为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.【经典考题】1.B ∵二次函数y =ax 2+bx +1的顶点在第一象限, 且经过点(-1,0),∴a -b +1=0,a <0,b >0.由a =b -1<0得到b <1,结合上面b >0,∴0<b <1①; 由b =a +1>0得到a >-1,结合上面a <0, ∴-1<a <0②.∴由①②得-1<a +b <1,且c =1, 得到0<a +b +1<2, ∴0<t <2.2.C ∵二次函数图象开口向下,∴a <0.∵对称轴x =-b2a<0,∴b <0.∵二次函数图象经过坐标原点,∴c =0.∴一次函数y =bx +c 过第二、四象限且经过原点,反比例函数y =ax 位于第二、四象限,故选C.3.y =x 2+x -2 因为抛物线向下平移2个单位,则y 值在原来的基础上减2,所以新抛物线的表达式是y =x 2+x -2.4.-1<x <3 因为二次函数的图象与x 轴两个交点的坐标分别是(-1,0),(3,0),由图象可知,当y <0时,自变量x 的取值范围是-1<x <3.5.解:(1)由题意,得(1-2)2+m =0,解得m =-1,∴y =(x -2)2-1.当x =0时,y =(0-2)2-1=3,∴C (0,3). ∵点B 与C 关于直线x =2对称,∴B (4,3).于是有⎩⎨⎧ 0=k +b ,3=4k +b ,解得⎩⎨⎧k =1,b =-1.∴y =x -1.(2)x 的取值范围是1≤x ≤4.6.解:(1)∵P 与P ′(1,3)关于x 轴对称, ∴P 点坐标为(1,-3).∵抛物线y =a (x -1)2+c 过点A (1-3,0),顶点是P (1,-3),∴⎩⎨⎧a (1-3-1)2+c =0,a (1-1)2+c =-3,解得⎩⎨⎧a =1,c =-3.则抛物线的解析式为y =(x -1)2-3,即y =x 2-2x -2. (2)∵CD 平行于x 轴,P ′(1,3)在CD 上, ∴C ,D 两点纵坐标为3,由(x -1)2-3=3,得x 1=1-6,x 2=1+6, ∴C ,D 两点的坐标分别为(1-6,3),(1+6,3), ∴CD =26,∴“W ”图案的高与宽(CD )的比=326=64(或约等于0.612 4). 【模拟预测】1.A 2.C3.D 由题意,得22-4(k -3)≥0,且k -3≠0,解得k ≤4且k ≠3,故选D. 4.A5.3 ∵把A (-1,0),B (1,-2)代入y =x 2+bx +c 得⎩⎨⎧ 1-b +c =0,1+b +c =-2,解得⎩⎨⎧b =-1,c =-2,∴y =x 2-x -2,解x 2-x -2=0得x 1=-1,x 2=2,∴C 点坐标为(2,0),∴AC =3.6.①③④ 由图表可知当x =0时,y =6;当x =1时,y =6,∴抛物线的对称轴是直线x =12,③正确;∵抛物线与x 轴的一个交点为(-2,0),对称轴是直线x =12,∴抛物线与x 轴的另一个交点为(3,0),①正确;由图表可知,在对称轴左侧,y 随x 增大而增大,④正确;当x =12时,y取得最大值,②错误.7.y =-x 2-2x 由题中图象可知,对称轴为直线x =1,所以-b-2=1,即b =2.把点(3,0)代入y =-x 2+2x +c ,得c =3.故原图象的解析式为y =-x 2+2x +3,即y =-(x -1)2+4,然后向左平移2个单位,再向下平移3个单位,得y =-(x -1+2)2+4-3,即y =-x 2-2x .8.解:(1)由题意,得5k =2,∴k =25,∴y 1=25x ;⎩⎨⎧4a +2b =2.4,16a +4b =3.2,∴⎩⎨⎧a =-15,b =85,∴y 2=-15x 2+85x . (2)设该农户t 万元购Ⅱ型设备,(10-t )万元购Ⅰ型设备,共获补贴Q 万元.∴y 1=25(10-t )=4-25t ,y 2=-15t 2+85t .∴Q =y 1+y 2=4-25t -15t 2+85t =-15t 2+65t +4=-15(t -3)2+295.∴当t =3时,Q 最大=295.∴10-t=7.即7万元购Ⅰ型设备,3万元购Ⅱ型设备,能获得最大补贴金额,最大补贴金额为5.8万元.9.解:(1)二次函数L 1的开口向上,对称轴是直线x =2,顶点坐标(2,-1).(2)①二次函数L2与L1有关图象的两条相同的性质:对称轴为直线x=2或顶点的横坐标为2;都经过A(1,0),B(3,0)两点.②线段EF的长度不会发生变化.∵直线y=8k与抛物线L2交于E,F两点,∴kx2-4kx+3k=8k,∵k≠0,∴x2-4x+3=8,解得x1=-1,x2=5.∴EF=x2-x1=6,∴线段EF的长度不会发生变化.11 / 11。
初三数学专题讲座-----函数专题
初三数学专题讲座-----函数专题函数是初中数学的重要内容,是研究和解决各种实际问题的有力工具,函数在中学数学中应用广泛,涉及面广,函数与方程,函数与几何,函数应用问题等知识的综合应用是初中数学中常见的重点问题,此外函数思想,方程思想,数形结合思想,分类讨论思想在解题中应用广泛,在解决函数的相关问题时,特别要注意:充分利用图形,使问题形象,直观,便于理解;灵活运用代数计算方法,使问题简单化。
例题剖析【例1】如图,已知一次函数的图像经过第一、二、三象限,并且与反比例函数的图像交于A 、B 两点,与y 轴交于点C ,与x 轴交于点D, OB=10.tan ∠DOB=31. (1)求反比例函数的解析式。
(2)设点A 的横坐标是m ,△ABO 的面积是S 。
求S 与m 的函数解析式,并写出自变量的取值范围。
【例2】已知抛物线点轴交于两点与轴交于与C y B A x x m mx y .4)343(2++-=,如果△ABC 是等腰三角形,求抛物线的解析式。
【例3】如图,在直角坐标系中,经过点A (2,6)、B (10,2)的直线与两条坐标轴分别相交于C 、D 两点,点P 是x 轴上一动点,当点P 运动到什么位置时,△ABP 的面积为16。
【例4】如图,抛物线y=21x 2+bx-2与x 轴交于点A(1x ,0)、B(2x ,0),(其中)(21x x 与y 轴交于点C.抛物线的对称轴是直线x=-23. (1) 求A,B 两点的坐标。
(2) 求证:△ACO ∽△CBO(3) 在抛物线上是否存在一点P(点C 除外)使△APB 的面积等于△ABC 的面积?如果存在,求出点P 的坐标;如果不存在,请说明理由。
【例5】如图,在等腰直角三角形ABC 中,O 是斜边AC 的中点,P 是斜边AC 上的一个动点,D 是射线BC 上的一点,且PB=PD ,过D 点作AC 边上的高DE 。
(1)求证:PE=BO ;(2)设AC=8,AP=x ,y S ABC =∆,①求y 与x 之间的函数关系式,并写出自变量 x 的取值范围;②是否存在这样的P 点,使PBD ∆的面积是ABC ∆面积的83。
初三数学复习函数与方程知识点总结
初三数学复习函数与方程知识点总结函数与方程是初中数学中的重要知识点,对于初三学生来说,掌握好这些知识点对于提高数学成绩至关重要。
下面是初三数学复习函数与方程知识点的总结。
一、函数的基本概念1. 定义:函数是一种特殊的关系,其中每个输入值(自变量)只对应一个输出值(因变量)。
2. 自变量和因变量:函数中自变量是输入的值,通常用x表示;因变量是对应的输出值,通常用f(x)或y表示。
3. 函数的表示方法:函数可以通过图像、表格、公式或文字描述来表示。
4. 定义域和值域:函数的定义域是自变量的取值范围,而值域是因变量的取值范围。
二、一次函数与二次函数1. 一次函数:a. 定义:一次函数是自变量的最高次数为1的多项式函数。
b. 表达式:一次函数的一般形式为:y = kx + b,其中k和b分别为常数,k称为斜率,决定了函数的增减趋势;b称为截距,决定了函数与y轴的交点位置。
c. 图像特征:一次函数的图像是一条直线,斜率为k,正值表示增加,负值表示减少。
2. 二次函数:a. 定义:二次函数是自变量的最高次数为2的多项式函数。
b. 表达式:二次函数的一般形式为:y = ax^2 + bx + c,其中a、b和c为常数,a决定了函数的开口方向和开口大小,正值表示开口向上,负值表示开口向下。
c. 图像特征:二次函数的图像是一个抛物线,开口方向和开口大小由a决定,顶点坐标为(-b/2a, f(-b/2a))。
三、函数的性质1. 奇偶性:若对于定义域内任意x,有f(-x) = -f(x),则函数为奇函数;若对于定义域内任意x,有f(-x) = f(x),则函数为偶函数。
2. 单调性:若对于定义域内的任意两个数x1和x2,若x1<x2,则有f(x1)<f(x2),则函数为增函数;若x1<x2,则有f(x1)>f(x2),则函数为减函数。
3. 周期性:若存在正数T,使得对于定义域内任意x,有f(x+T) =f(x),则函数具有周期性。
高等数学:第十二讲 最大值与最小值
x
m
,宽为
y
m
,则高为
2 xy
m,水箱所用材料的面积为
S 2(xy x 2 y 2 ) 2(xy 2 2)(x 0, y 0)
xy xy
yx
令
S x S y
2( y 2( x
2 x22 y2
) )
0 0
得驻点 ( 3 2 , 3 2 )
由问题的实际意义,水箱所用材料面积的最小值一定存在,又只有一个
驻点,因此,当长、 宽均为
3
2、高为
3
2 23
2
3
2最大值和最小值的一般方法
最值可疑点
驻点
边界上的点
2.在实际问题中如何求解函数的最值
谢谢
dz
对此函数求导,得:
d
x
x(8
3x)
可知函数在区间 (0,4) 内的驻点为 x
在区间的两端点 x 0、x 4处 z
8,函数值为
0,3
z
256 27
.
所以 z 256为函数 z 在区域 D 的边界上的最大值.
27
由于
625 64
22576,所以二元函数
z
在区域
D上的最大值为
z
625 64
,
x2 (5 x 2 y) 0
求得在区域 D 内的驻点为 (5 , 5),在驻点处的函数值为 z 625 .
24
64
例题1:
z x2 y(5 x y)
在边界 x 0, y 0上函数 z 的值恒为零; 在边界 x y 4 上,将 y 4 x 代入函数中,使函数 z 成为变
量 x 的一元函数:z x2 (4 x),0 x 4
初中数学竞赛函数知识点讲解
初中数学竞赛函数知识点讲解函数是数学中一个非常重要的概念,它在初中数学竞赛中也是一个经常出现的知识点。
下面,我将为您讲解一下初中数学竞赛中关于函数的知识点。
1.函数的定义:函数是一个有特定关系的数集,也可以理解为一个数集和另一个数集之间的对应关系。
通常我们用字母表示函数,如f、g、h等。
在函数中,通常有自变量和因变量两个变量,自变量的取值决定了因变量的值,可以用对应关系式表示:y=f(x)。
其中,x是自变量,y是因变量,y=f(x)表示y是x的函数。
2.函数的性质:(1) 定义域:函数中自变量的取值范围称为定义域,常用符号表示为D(f)。
例如,在一元一次函数y = ax + b中,定义域为全体实数(即D(f) = R)。
(2) 值域:函数中因变量的取值范围称为值域,常用符号表示为R(f)。
例如,在一元一次函数y = ax + b中,值域是全体实数(即R(f) = R)。
(3)奇偶性:若对于函数中的每一个x值,都有f(-x)=f(x),则函数为偶函数;若对于函数中的每一个x值,都有f(-x)=-f(x),则函数为奇函数;若奇函数和偶函数的性质都不具备,则函数为非奇非偶函数。
(4)单调性:函数的单调性表示函数在定义域内的递增或递减趋势。
若对于函数中的每一对不等的x1和x2,有x1<x2时,f(x1)<f(x2),则函数为严格递增函数;若对于函数中的每一对不等的x1和x2,有x1<x2时,f(x1)>f(x2),则函数为严格递减函数。
3.常见函数类型:(1) 一元一次函数:一元一次函数的一般表达式为y = ax + b,其中a和b是常数,a≠0。
一元一次函数的图象是一条直线,斜率为a,截距为b。
(2) 二次函数:二次函数的一般表达式为y = ax^2 + bx + c,其中a、b和c是常数,a≠0。
二次函数的图象是一条开口向上或向下的抛物线。
(3)绝对值函数:绝对值函数的一般表达式为y=,x,即y等于x的绝对值。
九年级数学函数与方程的优秀教案范本
九年级数学函数与方程的优秀教案范本教案一:了解函数和方程一、教学目标1. 理解函数和方程的概念;2. 能够区分函数和方程的不同之处;3. 掌握函数和方程在实际问题中的应用。
二、教学重点1. 函数的定义和特点;2. 方程的定义和特点;3. 函数和方程在实际问题中的应用。
三、教学过程1. 导入(5分钟)教师通过提问和实例引导学生思考:你们能给出函数和方程的定义吗?函数和方程有什么区别?2. 理论讲解(15分钟)教师详细讲解函数的定义和特点,以及方程的定义和特点。
同时,在黑板上做出相应的标记和示例,以便学生更好地理解。
3. 示例分析(15分钟)教师给出一些实际问题,鼓励学生用函数和方程的概念来解决。
通过解析问题的过程,学生将会更加深入地理解函数和方程的实际应用。
4. 练习与巩固(20分钟)学生进行小组活动,完成相关练习题,巩固对函数和方程的理解和应用。
教师巡视并指导学生。
5. 拓展与归纳(10分钟)学生展示他们在实际生活中找到的函数和方程的例子,并进行总结和归纳。
教师给予点评和补充。
6. 作业布置(5分钟)布置相应的作业,要求学生找出五个函数和方程在实际问题中的应用,并解释其意义。
教案二:线性方程组的求解一、教学目标1. 理解线性方程组的概念和求解方法;2. 掌握高斯消元法和矩阵法求解线性方程组的步骤;3. 能够应用线性方程组解决实际问题。
二、教学重点1. 线性方程组的定义和特点;2. 高斯消元法的步骤和应用;3. 矩阵法的概念和求解过程。
三、教学过程1. 导入(5分钟)教师通过提问和实例引导学生思考:你们能给出线性方程组的定义吗?线性方程组有哪些解法?2. 讲解高斯消元法(20分钟)教师详细讲解高斯消元法的步骤和应用,以及解方程组的原理。
通过具体的例子演示,让学生理解高斯消元法的思想和具体步骤。
3. 讲解矩阵法(20分钟)教师引入矩阵的概念,并讲解如何用矩阵法解决线性方程组。
通过演示和实例让学生掌握矩阵法的求解过程和应用。
初三数学函数、方程、不等式综合知识精讲
初三数学函数、方程、不等式综合【本讲主要内容】函数、方程、不等式综合包括函数、方程、不等式之间的联系,以及综合应用函数、方程、不等式解数学题。
【知识掌握】【知识点精析】1. 二次函数、二次方程、二次不等式之间的联系若二次函数y ax bx c a =++≠20()中,令y =0,则得ax bx c a 200++=≠(),于是二次函数变成了二次方程。
令y ≠0,则得到ax bx c a 200++>≠()或ax bx c 20++<,于是二次函数变成了二次不等式。
2.a>0y y yO x O x O xa<0y y yO x O xO x【解题方法指导】例1. (2003年天津)已知抛物线y x x =--228,求证:该抛物线与x 轴一定有两个交点。
分析:可令y =0,变成一元二次方程,判断Δ是否大于0。
解:令y =0,得关于x 的方程x x 2280--=∆=--⨯⨯-=>()()24183602∴方程x x 2280--=有两个不相等的实数根即抛物线y x x =--228与x 轴一定有两个交点评析:此题的解法是将二次函数转化为一元二次方程,通过判断方程根的个数加以解决的。
此题也可以画出抛物线的图象作出判断。
例2. 已知:二次函数y x x =++265(1)问抛物线与x 轴是否有交点?(2)若有交点,什么情况下图象在x 轴上方,在x 轴下方,在x 轴上?分析:(1)可先将二次函数转化为二次方程,再用判别式判断;(2)可先求出一元二次方程的根,画出抛物线的示意图,然后结合图象作出判断。
解:(1)令y =0,得x x 2650++=∆=-⨯⨯=>64151602∴方程有两个不等实根即抛物线与x 轴有两个交点(2)解x x 2650++=()()x x ++=150∴=-=-x x 1215,y x x =++265的二次项系数>0∴抛物线开口向上,它的示意图如图所示y-5 -1 x∴当x x <->-51或时,它的图象在x 轴上方;当-<<-51x 时,它的图象在x 轴下方;当x x =-=-51或时,它的图象在x 轴上。
专题12 二次函数与方程、不等式-九年级数学专题讲座之剖析经典总结规律(解析版)
※知识要点抛物线与x轴的交点以及抛物线的轴对称性:求二次函数b,c是常数,与x轴的交点坐标,令,即,解关于x的一元二次方程即可求得交点横坐标决定抛物线与x轴的交点个数:时,抛物线与x轴有2个交点;时,抛物线与x 轴有1个交点;时,抛物线与x轴没有交点.※要点突破1.熟练掌握二次函数的顶点坐标公式与一元二次方程两根之和的关系2.利用二次函数图象解一元二次不等式,从二次函数图象中获取信息是解题的关键.※典例精讲例1..已知二次函数(为常数).(1)求证:不论为何值,该函数的图像与轴总有公共点;(2)当取什么值时,该函数的图像与轴的交点在轴的上方?【答案】(1)证明见解析;(2)时,该函数的图像与轴的交点在轴的上方.例2..在平面直角坐标系xOy中,抛物线y=x2+bx+c经过点A(-1,t),B(3,t),与y y轴交于点C(0,-1).一次函数y=x+n的图象经过抛物线的顶点D.(1)求抛物线的表达式.(2)求一次函数y x n =+的表达式.(3)将直线:l y mx n =+绕其与y 轴的交点E 旋转,使当11x -≤≤时,直线l 总位于抛物线的下方,请结合函数图象,求m 的取值范围.【答案】(1)y=x 2-2x-1;(2)一次函数y=x+n 的表达式是y=x-3;(3)当-5<m <1时,当-1≤x≤1时,直线l 总位于抛物线的下方.(2)二次函数221y x x =--的顶点坐标是(1,−2), 代入y =x +n 得−2=1+n , 解得:n =−3,则一次函数y =x +n 的表达式是y =x −3; (3)如图所示:在221y x x =--中,当x =−1时,y =2; 当x =1时,y =−2.当直线y =mx −3经过点(−1,2)时,−m −3=2,解得:m =−5; 当直线y =mx −3经过点(1,−2)时,m −3=−2,解得:m =1. 则当−5<m <1时,当11x -≤≤时,直线l 总位于抛物线的下方.※课堂精练一、单选题1.抛物线y =x 2+x -1与x 轴的交点的个数是( ) A . 3个 B . 2个 C . 1个 D . 0个 【答案】B2.根据下列表格的对应值,判断方程ax 2+bx+c=0(a≠0,a 、b 、c 为常数)一个解的范围是( )A . 3<x <3.23B . 3.23<x <3.24C . 3.24<x <3.25D . 3.25<x <3.26 【答案】C【解析】根据函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,再根据函数的增减性即可判断方程ax2+bx+c=0一个解的范围.解:函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,函数y=ax2+bx+c的图象与x轴的交点的纵坐标为0;由表中数据可知:y=0在y=-0.02与y=0.03之间,∴对应的x的值在3.24与3.25之间,即3.24<x<3.25.故选C.3.若直线与抛物线有交点,则m的取值范围是A.B.C.D.【答案】A4.已知抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点.以下四个结论:①abc>0;②该抛物线的对称轴在x=﹣1的右侧;③关于x的方程ax2+bx+c+1=0无实数根;④≥2.其中,正确结论的个数为()A.1个B.2个C.3个D.4个【答案】C【解析】由a>0可知抛物线开口向上,再根据抛物线与x轴最多有一个交点可c>0,由此可判断①,根据抛物线的对称轴公式x=﹣可判断②,由ax2+bx+c≥0可判断出ax2+bx+c+1≥1>0,从而可判断③,由题意可得a﹣b+c>0,继而可得a+b+c≥2b,从而可判断④.解:①∵抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点,∴抛物线与y轴交于正半轴,∴c>0,∴abc>0,故①正确;②∵0<2a≤b,∴>1,∴﹣<﹣1,∴该抛物线的对称轴在x=﹣1的左侧,故②错误;③由题意可知:对于任意的x,都有y=ax2+bx+c≥0,∴ax2+bx+c+1≥1>0,即该方程无解,故③正确;④∵抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点,∴当x=﹣1时,y>0,∴a﹣b+c>0,∴a+b+c≥2b,∵b>0,∴≥2,故④正确,综上所述,正确的结论有3个,故选C.5.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y>0时,x的取值范围是()A.-1<x<2 B.x>2C.x<-1 D.x<-1或x>2【答案】D当y>0时,图象在x轴的上方,此时x<-1或x>2,∴x的取值范围是x<-1或x>2,故选D.6.二次函数y=x2+2x﹣m2+1的图像与直线y=1的公共点个数是()A.0 B.1 C.2 D.1或2【答案】C【解析】首先将其转化为一元二次方程,从而根据根的判别式得出方程的解,从而得出函数的交点个数.解:根据题意可得:x2+2x﹣m2+1=1,即=0,∵△=4+4>0,∴方程有两个不相等的实数根,∴两个函数的交点为两个,故选C.7.二次函数与的图像与x轴有交点,则k的取值范围是()A.B.C.D.【答案】D8.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是().A.B.C.D.【答案】A【解析】根据图象可知,该二次函数的对称轴x=2,其中一个点的坐标为(5,0),则根据二次函数图象的对称性,求出与x轴的另一点坐标,即(-1,0);接下来根据图象求出ax2+bx+c>0,即y>0时x的取值范围,即可得到不等式的解集.解:由图象得:对称轴是x=2,其中一个点的坐标为(5,0),∴图象与x轴的另一个交点坐标为(-1,0).利用图象可知:ax2+bx+c>0的解集即是y>0是x的取值范围,∴-1<x<5.故选A.9.二次函数满足以下条件:当时,它的图象位于x轴的下方;当时,它的图象位于x轴的上方,则m的值为A.8 B.C.D.【答案】D解得,,则有当时,它的图象位于x轴的下方;当时,则,令,则,解得,,则有当时,它的图象位于x轴的下方;当时,它的图象位于x轴的上方;故选:D.10.关于x的方程(x-3)(x-5)=m(m>0)有两个实数根,( <),则下列选项正确的是()A.3<<<5 B.3<<5<C.<2<<5 D.<3且>5【答案】D【解析】根据平移可知:将抛物线y=(x-3)(x-5)往下平移m个单位可得出抛物线y=(x-3)(x-5)-m,依此画出函数图象,观察图形即可得出结论.解:将抛物线y=(x-3)(x-5)往下平移m个单位可得出抛物线y=(x-3)(x-5)-m,画出函数图象,如图所示.∵抛物线y=(x-3)(x-5)与x轴的交点坐标为(3,0)、(5,0),抛物线y=(x-3)(x-5)-m与x轴的交点坐标为(α,0)、(β,0),∴<3且>5.故选:D.11.如图,抛物线与双曲线的交点A的横坐标是1,则关于x的不等式的解集是A.B.C.D.【答案】C12.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中,x与y的部分对应值如下表:下列结论:①ac<0;②当x>1时,y随x的增大而增大;③﹣4是方程ax2+(b﹣4)x+c=0的一个根;④当﹣1<x<0时,ax2+(b﹣1)x+c+3>0.其中正确结论的个数为()A.4个B.3个C.2个D.1个【答案】C【解析】∵x=-3时y=0,x=0时,y=-3,x=-1时,y=-4,∴,解得:,∴y=x2+2x-3,∴ac=1×(-3)=-3<0,故①正确;对称轴为直线x=-==-1,所以,当x>-1时,y随x的增大而增大,所以当x>1时,y随x的增大而增大也正确,故②正确;方程ax2+(b-4)x+c=0可化为x2-2x-3=0,解得x1=-1,x2=3,所以-4是方程ax2+(b-4)x+c=0的一个根,错误,故③错误;-1<x<0时,ax2+(b-1)x+c+3<0,故④错误;综上所述,结论正确的是①②,故选C.13.直线y=2x+2与抛物线y=x2+3x的交点坐标为_______.【答案】(-2,2)和(1,4)14.已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k的取值范围是_____.【答案】k<4【解析】∵二次函数y=x2﹣4x+k中a=1>0,图象的开口向上,又∵二次函数y=x2﹣4x+k的图象的顶点在x轴下方,∴抛物线y=x2﹣4x+k的图象与x轴有两个交点,∴△>0,即(-4)2-4k>0,∴k<4,故答案为:k<4.15.平行于x轴的直线分别与一次函数y=-x+3和二次函数y= x2 -2x-3的图象交于A(x1,y1),B(x2,y2),C(x3,y3)三点,且x1<x2<x3,设m= x1+x2+x3,则m的取值范围是____________.【答案】m<7【解析】结合函数的图象,求出直线和抛物线的交点(-2,5)和(3,0),与这两个图形的交点坐标满足x1<x2<x3,直线的纵坐标应该大于5,根据根与系数关系可求得.解:,得:,或,所以直线与抛物线的交点是(-2,5)和(3,0),因为A(x1,y1),B(x2,y2),C(x3,y3)三点,且x1<x2<x所以y1=y2=y3>5所以x1+x2+x3<7,即:m<7故正确答案为:m<716.已知抛物线与轴有两个交点,其中一个交点的坐标为,则抛物线y=ax2-2ax+c与x轴另一个交点的坐标为___________【答案】(3,0)【解析】∵二次函数的对称轴为:x=,与x轴的一个交点坐标为(-1,0),∴与x轴的另一个交点坐标为(3,0).17.行驶中的汽车刹车后,由于惯性的作用,还会继续向前滑行一段距离,这段距离称为“刹车距离”.某车的刹车距离s(m)与车速x(km/h)•之间有下述的函数关系式:s=0.01x+0.002x2,现该车在限速140km/h 的高速公路上出了交通事故,事后测得刹车距离为46.5m,请推测:刹车时,汽车______超速(填“是”或“否”)【答案】是18.的顶点坐标(-1,-3.2)及部分图象(如图所示),由图象可知关于x的一元二次方程的两个根分别是x1=1.3和x2=__.【答案】-3.319.直线y=mx+n和抛物线y=ax2+bx+c在同一坐标系中的位置如图所示,那么不等式mx+n<ax2+bx+c <0的解集是_____.【答案】1<x<2.【解析】从图上可知,mx+n<ax2+bx+c,则有x>1或x<﹣;根据ax2+bx+c<0,可知﹣1<x<2;综上,不等式mx+n<ax2+bx+c<0的解集是1<x<2.解:因为mx+n<ax2+bx+c<0,由图可知,1<x<2.20.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:则关于x的一元二次方程ax2+bx+c=-2的根是______.【答案】x1=-4,x2=0【解析】解:∵x=﹣3,x=﹣1的函数值都是﹣5,相等,∴二次函数的对称轴为直线x=﹣2.∵x=﹣4时,y=﹣2,∴x=0时,y=﹣2,∴方程ax2+bx+c=3的解是x1=﹣4,x2=0.故答案为:x1=﹣4,x2=0.21.如图,抛物线y1=-x2+2x+3与直线y2=4x交于A,B两点.(1)求A,B两点的坐标;(2)当x取何值时,y1>y2?【答案】(1)A点的坐标是(1,4),B点的坐标是(-3,-12);(2)当-3<x<1时,y1>y2.22.已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m 的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.【答案】(1)证明见解析;(2)m=1或m=﹣;(3)4a2﹣n2+8n=16.(2)解:mx2+(1-5m)x-5=0,解得:x1=-,x2=5,由|x1-x2|=6,得|--5|=6,解得:m=1或m=-;(3)解:由(2)得,当m>0时,m=1,此时抛物线为y=x2-4x-5,其对称轴为:x=2,由题已知,P,Q关于x=2对称,∴=2,即2a=4-n,∴4a2-n2+8n=(4-n)2-n2+8n=16.23.利用图象解一元二次方程x2-2x-1=0时,我们采用的一种方法是在直角坐标系中画出抛物线y =x2和直线y=2x+1,两图象交点的横坐标就是该方程的解.(1)请再给出一种利用图象求方程x2-2x-1=0的解的方法;(2)已知函数y=x3的图象(如图),求方程x3-x-2=0的解(结果保留两位有效数字).【答案】(1)见解析(2)x≈1.5(2)在图中画出直线y=x+2,与函数y=x3的图象交于点B,得点B的横坐标x≈1.5,∴方程的解为x≈1.5.24.已知关于x的一元二次方程mx2+(3m+1)x+3=0.(1)当m取何值时,此方程有两个不相等的实数根;(2)当抛物线y=mx2+(3m+1)x+3与x轴两个交点的横坐标均为整数,且m为正整数时,求此抛物线的解析式;(3)在(2)的条件下,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象直接写出实数a的取值范围.【答案】(1)当m≠且m≠0时,方程有两个不相等的实数根;(2)y=x2+4x+3;(3) 当y1>y2时,a>1,或a<-5.【解析】(1)根据一元二次方程的定义和一元二次方程根的判别式进行分析解答即可;(2)用公式法求得关于x的一元二次方程mx2+(3m+1)x+3=0的两根,再结合已知条件求得m的值即可得到抛物线的解析式;(3)根据(2)中所得抛物线的解析式,画出函数的图象,根据图象结合已知条件即可求得对应的a 的取值范围.(1)由题意可知,Δ=b2-4ac=(3m+1)2-4m×3=(3m-1)2>0,解得:m≠,∵mx2+(3m+1)x+3=0是一元二次方程,∴m≠0,∴当m≠且m≠0时,关于x的一元二次方程mx2+(3m+1)x+3=0有两个不相等的实数根;(2)由一元二次方程的求根公式可解得mx2+(3m+1)x+3=0的两实数根为:x1=-3,x2=.∵抛物线与x轴两个交点的横坐标均为整数,且m为正整数,∴m=1,∴抛物线的解析式为y=x2+4x+3;25.已知:抛物线:与抛物线关于y轴对称,抛物线与x轴分别交于点A(-3,0),B(m,0),顶点为M.(1)求b和m的值;(2)求抛物线的解析式;(3)在x轴,y轴上分别有点P(t,0),Q(0,-2t),其中t>0,当线段PQ与抛物线有且只有一个公共点时,求t的取值范围.【答案】(1) m=-1;(2) y=2x2-8x+6;(3) 当1≤t<3或t=时,PQ与抛物线C2有且仅有一个公共点.(2)∵C1:y=2x2+8x+6=2(x+2)2-2,∴M(-2,-2),∴点M关于y轴的对称点N(2,-2),∴C2:y=2(x-2)2-2=2x2-8x+6,(3)由题意,点A(-3,0)与D,点B(-1,0)与C关于y轴对称,∴D(3,0),C(1,0),∵P(t,0),Q(0,-2t),∴PQ:y=2x-2t,26.如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线y=x2+bx+c经过点B,且对称轴是直线x=﹣.(1)求抛物线对应的函数解析式;(2)将图甲中△ABO沿x轴向左平移到△DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D都在该抛物线上.(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MN∥y轴交直线CD于N,设点M的横坐标为t,MN的长度为l,求l与t之间的函数解析式,并求当t为何值时,以M、N、C、E为顶点的四边形是平行四边形.(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴是直线x=﹣.)【答案】(1)y=x2+x+4(2)见解析(3)t=﹣3±2或﹣3时,以M、N、C、E为顶点的四边形是平行四边形(3)设直线CD的解析式为:y=kx+b,依题意,有:,解得∴直线CD:y=﹣x﹣.由于MN∥y轴,设M(t,t2+t+4),则N(t,﹣t﹣);。
九年级数学函数与方程的应用理论讲解与实际问题
九年级数学函数与方程的应用理论讲解与实际问题在九年级数学学科中,函数与方程是一个非常重要的概念和内容。
掌握了函数与方程的应用理论,不仅可以帮助同学们更好地理解和应用数学知识,还可以在解决实际问题中提供思路和方法。
本文将对九年级数学中的函数与方程进行理论讲解,并结合实际问题进行具体分析与应用。
一、函数的基本概念和性质函数是数学中一个重要的概念,它描述了一种对应关系,即对于集合A中的任意一个元素x,都存在集合B中唯一确定的一个元素y与之对应。
函数可以用数学符号表示为:y = f(x),其中x是自变量,y是因变量,f代表函数的规则或定义域与值域之间的对应关系。
函数的性质包括定义域、值域、单调性、奇偶性等。
定义域是函数中自变量的取值范围,值域是函数中因变量的取值范围。
单调性描述了函数图像的变化趋势,可以分为增函数和减函数。
奇偶性描述了函数关于y轴的对称性,奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
二、方程的应用理论方程是数学中另一个重要的概念,它是等式的一种特殊形式。
在九年级数学中,我们主要学习了一元一次方程、二元一次方程和简单的二次方程。
一元一次方程是指只含有一个未知数的一次方程,可以用形如ax + b = 0的方式表示,其中a和b是已知数。
解一元一次方程的方法主要有等式两边相等的性质和移项的性质。
二元一次方程是指含有两个未知数的一次方程,可以用形如ax + by = c的方式表示,其中a、b和c是已知数。
解二元一次方程的方法主要有代入法、消元法和加减消法。
简单的二次方程是指只含有一个未知数的二次方程,可以用形如ax^2 + bx + c = 0的方式表示,其中a、b和c是已知数。
解二次方程的方法可以使用因式分解法、求根公式等。
三、函数与方程的实际问题函数与方程的应用理论在解决实际问题中起着重要的作用。
下面结合几个实际问题进行具体分析和应用。
问题一:一辆汽车以每小时60公里的速度行驶,已经行驶了3小时,求汽车行驶的路程。
数学竞赛九年级第二章教学方案
数学竞赛九年级第二章教学方案第一节:函数与方程本节的教学目标是引导学生掌握函数的概念及其常见表示方法,能够解决一元一次方程和一元一次不等式。
一、教学内容1. 函数的概念及表示方法a. 函数的定义:对于每一个自变量x的值,函数f(x)只有唯一一个确定的函数值。
b. 函数的表示方法:算式表示、图像表示、表格表示。
2. 一元一次方程a. 方程的定义:含有未知数的等式称为方程。
b. 解方程的基本方法:等式性质的保持、等式的逆运算。
3. 一元一次不等式a. 不等式的定义:含有不等号的等式称为不等式。
b. 解不等式的基本方法:不等式性质的保持、不等式的逆运算。
二、教学过程1. 引入函数的概念a. 通过日常生活中的例子解释函数的概念,如温度与时间的关系。
b. 利用图像表示函数的概念,引导学生观察函数图像的特征。
2. 函数的表示方法a. 通过具体的算式、图像以及表格,让学生理解不同的函数表示方法。
b. 练习将一个函数用不同的表示方法来呈现。
3. 引入一元一次方程a. 解释方程的定义,让学生了解方程中未知数的含义。
b. 通过具体的实例演示解方程的过程,培养学生解方程的能力。
4. 解一元一次方程a. 教授解方程的基本方法,包括等式性质的保持和等式的逆运算。
b. 练习解一元一次方程,巩固所学的求解技巧。
5. 引入一元一次不等式a. 解释不等式的定义,让学生了解不等式中不等号的含义。
b. 通过具体的实例演示解不等式的过程,培养学生解不等式的能力。
6. 解一元一次不等式a. 教授解不等式的基本方法,包括不等式性质的保持和不等式的逆运算。
b. 练习解一元一次不等式,巩固所学的求解技巧。
第二节:多项式与因式分解本节的教学目标是引导学生理解多项式的概念,学习多项式的加减乘除运算以及因式分解的方法。
一、教学内容1. 多项式的概念及表示方法a. 多项式的定义:由单项式按照加法组成的代数式称为多项式。
b. 多项式的表示方法:单项式的加减运算。
九年级数学竞赛常考知识点
九年级数学竞赛常考知识点数学是一门需要逻辑思维和严谨性的学科,因此在竞赛中,掌握并熟练运用常考的知识点将会是获胜的关键。
下面就是九年级数学竞赛中常考的几个知识点。
一、方程与不等式在九年级数学竞赛中,方程与不等式是常出现的题型。
学生需要掌握解一元一次方程、二次方程以及简单的不等式的方法。
此外,还需要能运用方程和不等式进行实际问题的解答。
二、函数与图像函数与图像也是常考的知识点之一。
学生需要熟悉一次函数、二次函数等常见函数的特点和性质,并能根据函数的定义域和值域绘制函数图像。
同时,掌握函数方程及其图像在平移、缩放和翻转中的变化规律也是重要的。
三、几何题几何题在九年级数学竞赛中占有一定的比例。
学生需要熟悉基础的几何知识,如平行线的性质、三角形的性质、相似和全等三角形以及圆的性质等。
同时,运用这些知识解决实际问题也是常见的考点。
四、数列与数项数列与数项也是常考的知识点之一。
学生需要掌握等差数列和等比数列的概念,并能求解数列的通项公式、前n项和。
同时,能够应用数列解决实际问题也是重要的。
五、概率与统计在数学竞赛中,概率与统计题也是常见的考点。
学生需要了解事件的概念,熟悉基本概率公式的运用,并能解决与概率相关的实际问题。
此外,统计题也是常考的内容之一,需要熟悉统计数据的处理和分析方法。
六、空间几何空间几何也是九年级数学竞赛中的一个重要知识点。
学生需要掌握空间图形的基本概念和性质,如立体的表面积和体积计算公式,平行立体的判定条件等。
同时,还需要能够根据空间几何模型解决实际问题。
通过掌握以上几个常考的知识点,可以提高在九年级数学竞赛中的得分能力。
在准备竞赛的过程中,学生可以通过练习真题和参加模拟考试来进行复习和巩固。
同时,也要注意理解和分析题意,培养解题的思维能力和逻辑推理能力。
数学竞赛不仅仅是为了获得好成绩,更重要的是培养学生的思维能力和解决问题的能力。
常考的知识点只是为了帮助学生打下牢固的基础,实际解题时还需要运用多个知识点的综合能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二讲 方程与函数
方程思想是指在解决问题时,通过等量关系将已知与未知联系起来,建立方程或方程组,然后运用方程的知识使问题得以解决的方法;函数描述了自然界中量与量之间的依存关系,函数思想的实质是剔除问题的非本质特征,用联系和变化的观点研究问题.转化为函数关系去解决.
方程与函数联系密切,我们可以用方程思想解决函数问题,也可以用函数思想讨论方程问题,在确定函数解析式中的待定系数、函数图象与坐标轴的交点、函数图象的交点等问题时,常将问题转化为解方程或方程组;而在讨论方程、方程组的解的个数、解的分布情况等问题时,借助函数图象能获得直观简捷的解答. 【例题求解】
【例1】 若关于的方程mx x =-1有解,则实数m 的取值范围 .
思路点拨 可以利用绝对值知识讨论,也可以用函数思想探讨:作函数x y -=1,mx y =函数图象,原方程有解,即两函数图象有交点,依此确定m 的取值范围.
【例2】设关于x 的方程09)2(2=+++a x a ax 有两个不相等的实数根1x ,2x ,且1x <1<2x ,那么a 取值范围是( ) A .5272<<-
a B .5
2>a C .72
-<a D .0112<<-a
思路点拨 因根的表达式复杂,故把原问题转化为二次函数问题来解决,即求对应的二次函
数与x 轴的交点满足1x <1<2x 的a 的值,注意判别式的隐含制约.
【例3】 已知抛物线0)21(22=+-+=a x a x y (0≠a )与x 轴交于两点A(1x ,0),B(2x ,0)( 1x ≠2x ).
(1)求a 的取值范围,并证明A 、B 两点都在原点O 的左侧; (2)若抛物线与y 轴交于点C ,且OA+OB =OC 一2,求a 的值.
思路点拨 1x 、2x 是方程0)21(22=+-+a x a x 的两个不等实根,于是二次函数问题就可以转化为二次方程问题加以解决,利用判别式,根与系数的关系是解题的切入点.
【例4】 抛物线)1(2)4
5
(2212+++-=
m x m x y 与y 轴的正半轴交于点C ,与x 轴交于A 、B 两点,并且点B 在A 的右边,△ABC 的面积是△OAC 面积的3倍.
(1)求这条抛物线的解析式;
(2)判断△OBC 与△OCA 是否相似,并说明理由.
思路点拨 综合运用判别式、根与系数关系等知识,可判定对应方程根的符号特征、两实根的关系,这是解本例的关键.对于(1),建立关于m 的等式,求出m 的值;对于(2)依m 的值分类讨论.
【例5】 已知抛物线q px x y ++=2上有一点M(,0y )位于x 轴下方.
(1)求证:此抛物线与轴交于两点;
(2)设此抛物线与x 轴的交点为A(1x ,0),B(,0),且1x <2x ,求证:1x <0x <2x .
思路点拨 对于(1),即要证042>-q p ;对于(2),即要证0))((2010<--x x x x .
注:(1)抛物线与x 轴交点问题常转化为二次方程根的个数、根的符号特征、根的关系来探讨,需综合运用判别式、韦达定理等知识.
(2)对较复杂的二次方程实根分布问题,常转化为用函数的观点来讨论,基本步骤是:在直角坐标系中作出对应函数图象,由确定函数图象大致位置的约束条件建立不等式组. (3) 一个关于二次函数图象的命题:已知二次函数c bx ax y ++=2(0≠a )的图象与x 轴交于A (1x ,0),B(,0)两点,顶点为C .
①△ABC 是直角三角形的充要条件是:△=442=-ac b . ②△ABC 是等边三角形的充要条件是:△=1242=-ac b
学历训练
1.已知关于x 的函数1)1(2)6(2++-++=m x m x m y 的图象与x 轴有交点,则m 的取值范围是 .
2.已知抛物线23)1(2----=k x k x y 与x 轴交于A (α,0),B(β,0)两点,且1722=+βα,则=k .
3.已知二次函数y=kx 2
+(2k -1)x —1与x 轴交点的横坐标为x 1、x 2(x 1<x 2),则对于下列结
论:①当x=-2时,y=l ;②当x>x 2,时,y>O ;③方程kx 2
+l(2k -1)x —l=O 有两个不相等
的实数根x 1、x 2;④x 1<-l ,x 2>-l ;⑤x 2-x 1=k
k 2
41+,其中所有正确的结论是 (只
需填写序号) .
4.设函数)5(4)1(2+-+-=k x k x y 的图象如图所示,它与x 轴交于A 、B 两点,且线段OA 与OB 的长的比为1:4,则k =( ).
A .8
B .一4
C .1l
D .一4或11
5.已知:二次函数y =x 2
+bx+c 与x 轴相交于A(x 1,0)、B(x 2,0)两点,其顶点坐标为P(-2
b ,4
b -4
c 2
),AB =|x 1-x 2|,若S △APB =1,则b 与c 的关系式是 ( ) A .b 2-4c+1= 0 B .b 2
-4c -1=0
C .b 2-4c+4=0
D .b 2
-4c -4=0
6.已知方程1+=ax x 有一个负根而且没有正根,那么a 的取值范围是( )
A .a >-1
B .a =1
C .a ≥1
D .非上述答案
7.已知在平面直角坐标系内,O 为坐标原点,A 、B 是x 轴正半轴上的两点,点A 在点B 的
左侧,如图,二次函数y=ax 2
+bx +c (a ≠0)的图象经过点A 、B ,与y 轴相交于点C . (1)a 、c 的符号之间有何关系?
(2)如果线段OC 的长度是线段OA 、OB 长度的比例中项,试证a 、c 互为倒数; (3)在(2)的条件下,如果b=-4,A B=43,求a 、c 的值.
8.已知:抛物线c bx ax y ++=2过点A(一1,4),其顶点的横坐标为2
1
,与x 轴分别交于B(x 1,0)、C(x 2,0)两点(其中且1x <2x ),且132221=+x x . (1)求此抛物线的解析式及顶点E 的坐标;
(2)设此抛物线与y 轴交于D 点,点M 是抛物线上的点,若△MBO 的面积为△DOC 面积的3
2
倍,求点M 的坐标. 9.已知抛物线m mx x y 22
3
212--=
交x 轴于A (1x ,0)、B (2x ,0),交y 轴于C 点,且1x <0<2x ,()1122+=+CO OB AO .
(1)求抛物线的解析式;
(2)在x 轴的下方是否存在着抛物线上的点P ,使∠APB 为锐角,若存在,求出P 点的横坐标的范围;若不存在,请说明理由.
10.设m 是整数,且方程0232=-+mx x 的两根都大于59-而小于7
3
,则= .
11.函数732+-=x x y 的图象与函数63322+-+-=x x x x y 的图象的交点个数是 .
12.已知a 、b 为抛物线2))((----=d c x c x y 与x 轴交点的横坐标,b a <,则b c c a -+-的值为 .
13.是否存在这样的实数k ,使得二次方程0)23()12(2=+--+k x k x 有两个实数根,且两根都在2与4之间?如果有,试确定k 的取值范围;如果没有,试述理由. 14.设抛物线4
5
2)12(2++++=a x a x y 的图象与x 轴只有一个交点. (1)求a 的值; (2)求61832-+a a 的值.
15.已知以x 为自变量的二次函数23842---=n nx x y ,该二次函数图象与x 轴的两个交点的横坐标的差的平方等于关于x 的方程0)4)(1(2)67(2=++++-n n x n x 的一整数根,求n 的值.
16.已知二次函数的图象开口向上且不过原点O ,顶点坐标为(1,一2),与x 轴交于点A ,B ,与y 轴交于点C ,且满足关系式OB OA OC ⋅=2. (1)求二次函数的解析式;
(2)求△ABC 的面积.
17.设p 是实数,二次函数p px x y --=22的图象与x 轴有两个不同的交点A (1x ,0)、B
(2x ,0).
(1)求证:032221>++p x px ;
(2)若A 、B 两点之间的距离不超过32-p ,求P 的最大值.
参考答案。