仪器分析-质谱图解析

合集下载

质谱法MS 仪器分析章节归纳总结思维导图-高清脑图模板

质谱法MS 仪器分析章节归纳总结思维导图-高清脑图模板

c.离子阱式
d.飞行时间
优点:测离子的质核比没有上限;可获得高分辨质谱,不 同质荷比离子可同时检测,可实现快速的离子传输,结构 简单,便于维护
缺点:要求离子尽可能同时开始飞行,需要脉冲开关
5.离子检测器
接收离子束,将微小离子流放大
a.质量范围
6.主要性能指标
b.分辨率R:质谱仪刚好分开相邻两质谱峰的能力 c.灵敏度
zeV=1/2mv 2 式中,z为电荷数,e为离子的电荷单位,
m为离子的质量,v为离子被加速后运动的速率
表示方法
质谱图/棒图:以质核比为横坐标,以相对强度为纵坐标 质谱表/表格
质谱仪
1.真空系统
避免离子散射以及离子与残余气体分子碰撞引起能量变 化,减小本底与记忆效应
2.样品导入系统
将样品气化送入离子源
β-H转移到饱和杂原子上,伴随α键的断裂 常见于醚,酯,酚,胺,酰胺等化合物质谱中
3.四元环过渡态重排βH+α
简单裂解 重排裂解
分子式确定 裂解类型
质谱法MS
基本原理
基本原理
将样品分子离子化后经加速进入磁场中,在高压电场的作用下,质量为m的正离子在磁感应强度H的磁场作用下作垂直于磁场 方向的圆周运动。其动能与加速电压V及电荷z有关。具有速率v的带电粒子进入质量分析器的电磁场中,根据所选择的不同分 离方式,最终实现各种离子按m/z进行分离,按各离子的m/z顺序对各离子信号相对强度大小进行记录的图谱即为质谱图。
m+
=(m2+
)2

/m1+

主要离子 谱图解析
同位素丰度比
4.同位素离子(计算分子式):含有重同位素的离子(由 同位素离子产生的不同质量的质谱峰称同位素峰)

仪器分析之 串联质谱

仪器分析之 串联质谱

三重四级杆的定性定量方式
三重四级杆的扫描方式
DAU子离子扫描 PAR母离子扫描 CNL中性碎片丢失扫描 SIR选择离子监测 MRM多反应监测
子离子质谱图DAU
MS1
Collision
MS2
Cell
静态
扫描
用MS2质量分析器扫描指定母离子的子离子碎片,所得到的质 谱图只能是由指定母离经碰撞产生。
SIR与单四级杆仪器的SIM方式相当 对于信号强度,SIR方式更强 对于纯净基质,也许SIR的信噪比可能高于
MRM方式 对于复杂样品分析,多数情况下MRM方式
的灵敏度高于SIR方式
TIC\SIM\MRM方式的差别
信噪比(S/N)
信-信号 噪-噪音 用噪音的Standard Derivation表示 信噪比越高,表示结果的可靠性越高
X
去检测器
-
Y+
+
-
来自离子源
X
Y
RF Cycle
四级杆原理2
DC voltage U (volts)
90 80 70 60 50 40 30 20 10
0 0
Y stability boundary
X stable Y unstable
X stability boundary
X unstable Y stable
多电荷离子的MS-MS
一般都用丰度最强的质谱峰进行质谱质谱 分析,即使它是多电荷离子。
多电荷离子一般比单电荷离子需要更高的 碰撞气电压。
碎片离子可能比多电荷离子的质荷比大。
注意要保证流动相pH恒定,否则生成的多 电荷离子比例不同,造成定量误差。
X and Y stable
200

质谱谱图解析

质谱谱图解析
4. 对较大未知物分子,应综合质谱等所取得的信息,列出可能结 构,再根据裂解规律筛选,最后用合成化合物的方法确定
有机化合物的质谱图千变万化,有些
化合物仅仅是取代基的位置不同,其质 谱图几有很大的差异,因此,解析未知 物质谱图很难有统一的格式,要灵活运 用可能取得的结构信息和知识
二、实例
例1
1. 最高峰A峰m/z 126(偶数),与碎片峰m/z 95(奇数)相差31u, 是失去合理中性物,据此判断m/z 126为分子离子峰
3. 分子量为偶数,显著的碎片峰都为奇数,因此未知物不含N
4. 由m/z 206 的丰度14.4%推断,m/z 离子含13个C
5. m/z 207的丰度1.2%暗示未知物分子含1-2个O,若只含一个O则H数 不合理,因此m/z 205合理的化学式为C13H17O2
6. m/z 205离子加一个甲基即为分子离子,因此未知物分子的化学式应 为C14H20O2,环加双键值为5
7. 化合物(2)能产生如右碎片: 化 合 物 ( 2 ) 能 产 生 较 强 m/z72 而在未知物的谱图中,m/z 72 峰的丰度很低,此外,化合物 (2)不易产生m/z 58的显著峰
8. 化合物(3)能产生以下碎片离子
由化合物(3)的结构,能够很好地解释未知物谱图中各个峰的生成途 径,因此,化合物(3)为未知物谱图最可能的答案
(6) 通过上述各方面的研究,提出化合物的结构单元。再根 据化合物的分子量、分子式、样品来源、物理化学性质等, 提出一种或几种最可能的结构。必要时,可根据红外和核 磁数据得出最后结果。
(7)验证所得结果。验证的方法有:将所得结构式按质谱断裂 规律分解,看所得离子和所给未知物谱图是否一致;查该 化合物的标准质谱图,看是否与未知谱图相同;寻找标样, 做标样的质谱图,与未知物谱图比较等各种方法。

仪器分析实验10

仪器分析实验10

实验十气相色谱-质谱法(GC-MS)对酯类混合试样的定性分析一、实验目的1. 了解GC-MS的基本结构和工作原理;2. 初步掌握GC-MS的操作过程;3. 掌握GC-MS对未知化合物定性的分析方法。

二、基本原理气相色谱(GC)-质谱(MS)联用仪可看作是以MS为检测器的GC或以GC为进样、分离装置的MS,因此同时具备GC对混合物的高效分离效能和MS对未知物的强定性能力,可在较短时间内实现对多组分混合物质的定性及定量分析。

在所有联用技术中,GC-MS的发展最为完善,广泛应用于环保、食品、石油化工、轻工、农药、医药、法医毒品及兴奋剂检测等各个领域。

气相色谱(GC)是以气体为流动相的色谱方法,仪器结构见图9-1,待测样品由进样口注入到色谱分离柱柱顶(进样后瞬间被气化),然后在惰性载气(流动相)的带动下进入色谱柱(常为石英毛细管柱,内壁涂覆固定相),组分在随载气运动的同时与固定相发生作用,由于不同组分与相同固定相的作用力大小不同,因此固定相对不同组分的保留能力不同,作用力小的组分会随流动相在较短时间流出色谱柱,作用力大的组分则需较长的时间才能流出色谱柱,因此实现了分离。

利用柱末端的检测器对流出组分的实时测定,就可以获得色谱流出曲线(见图9-2),根据各组分的保留时间(从进样到出现色谱峰值的时间)和峰面积就可分别实现对其的定性和定量分析。

但仅利用保留时间定性(相同测定条件下,同一组分的保留时间不变)的可靠性不高,而常用色谱检测器也无法提供其它可反映结构的信息。

图10-1 气相色谱仪器示意图图10-2 色谱流出曲线质谱法(MS)是在离子源(能量源)的作用下把待测试样转化为运动的气态离子并按核质比(m/z)大小进行分离记录的方法,测量结果可以质谱图(见图9-3)表示。

离子源能量一定时,同一化合物可生成的碎片离子及各离子间的相对强度是一定的,即质谱图可反映化合物的结构特征,因此可用来进行定性及结构解析。

此外离子强度(任一离子或总离子强度和)与进样量在一定条件下存在正比关系,这为定量分析提供了依据。

第14章MS-仪器分析

第14章MS-仪器分析

丰度比% 0.36 0.80 31.98 97.28
同位素峰的强度:含Cl、Br和S化合物
化合物含一个Cl、Br和S时都具有比分子离子高2的同位素峰,它 们的丰度较大,很容易识别 CH3F m/z = 34,由于氟无同位素,其M + 1峰的强度是M+峰的 1%,是由一个13C贡献的 CH3Cl m/z = 50,可看出M + 2 的m/z = 52的相对强度大约是分子 离子的1/3 CH3Br m/z = 94,可见[M] : [M + 2] = 1 : 1。在MS谱中M与M + 2 峰强度相近可推断分子中含一个Br原子
3. 碎片离子(fragment ion)
分子离子产生后可能具有较高的能量,将会通过进一步裂解 或重排而释放能量,裂解后产生的离子称为碎片离子。
断裂方式 均裂:X—Y = X·+Y· 异裂:X—Y = X++Y半异裂:X+•Y = X++ Y· 已电离
1) α断裂
带有电荷的官能团与相连的α碳原子之间的断裂 含饱和杂原子 CH3CH2—I
第十四章
质谱分析法
Mass Spectrometry MS
Spectroscopy n. 光谱学, 波谱学, 光谱仪 Spectrometry n.质谱术,质谱计
主要内容
14.1 概述
14-2 质谱法基本原理及质谱仪器 14-3 质谱解析基础知识
14-4 有机波谱综合解释
§14-1 概 述
质谱法:将气态离子混合物按质荷比m/z大小
加合离子与样品分子反应
CH5
RH CH4 (M + 1)+ 准分子离子: (M ± 1)+

仪器分析-质谱图解析.

仪器分析-质谱图解析.
2、质荷比为偶数,表明分子中不含N或含偶数个N
3、m/z 57为M-17离子,m/z 29为M-45 离子,同时产生m/z 45(COOH)离子峰, 说明化合物可能含有羧基
4、m/z 29为乙基碎片离子峰,说明化合物可能含有乙基
H2 O H3C C C OH
m/z=74
H3C
H2 C
O C m/z=57
分子结构的推导
■ 计算分子的不饱和度推测分子结构
一价原三 子价 数原子数
U四价原 - 子2数
2
1
■ 根据碎片离子的质量及所符合的化学通式,推测离子可能 对应的特征结构或官能团
■ 结合相对分子质量、不饱和度和碎片离子结构及官能团等 信息,合并可能的结构单元,搭建完整分子结构
■ 核对主要碎片,检查是否符合裂解机理。 结合其他分析方法最终确定化合物结构
相对丰度 (%)
100 80 60 40 20
m/z
43 O
71
断裂
H7C3 C
58
99
Rearrangement
β异裂
86
113
40
60
80
100 120
4壬酮的质谱图(M=142)
C5H1 1
1、酮类化合物分子离子 峰较强。
2、α裂解(优先失去大 基团)
烷系列:29+14 n
142(M+·) 3、γ-氢重排
未知化合物质谱图分析
CH2
某化合物C10H4
HH CH2
结构式:
1、计算不饱和度U=4, 2、分子离子峰m/z=134较大,结合不饱和度,说明该化合物含有苯环
3、m/z=91为(M-43)碎片离子峰,说明化合物可能失去C3H7+为烷基苯,m/z=65是 其进一步丢失乙炔分子产生的碎片离子峰。

第8章-质谱法

第8章-质谱法

8.2.1 质谱仪基本组成
质谱仪能产生离子,并将这离子按 m/e 比进行记录仪器。
质谱仪由五大部分:进样系统、离子源、质量分析器、检测记 录系统、真空系统组成。
大气
真空系统
样品入口
离子源
质量分析器
检测器

数据系统
1、真空系统
质谱仪离子源、质量分析器、检测器必须处于高真空状态,若 真空度过低,则:
①大量氧会烧坏离子源灯丝; ②本底增加,干扰质谱图; ③引起额外离子一分子反应,改变裂解模型,质谱复杂化。 ④用作加速离子的几千伏高压会引起放电。 ⑤干扰离子源中电子束正常调节等。
(7)基质辅助激光解析离子源
Matrix-Assisted Laser Desorption Ionization (MALDI)
MALDI的原理是用激光照射样品与基质形成的共结晶薄膜,基质从激光中吸 收能量传递给生物分子,而电离过程中将质子转移到生物分子或从生物分子得 到质子,而使生物分子电离的过程。因此它是一种软电离技术,适用于混合物 及生物大分子的测定。 MALDI常用的基质有2,5二羟基苯甲酸、芥子酸、烟酸、α-氰基-4-羟基肉桂酸等
强电场诱发样品电离。由电压梯度为 107-108V/cm的两个尖细电极组成。 价电子的量子轨道效应发生电离
FI形成的离子主要是分子 离子,碎片离子少,可提 供信息少,常与电子轰击 配合作用。
(4)场解析电离源 Field Desorption(FD)
FD中,样品溶在溶剂中,滴在场发射丝上,或将发射丝浸入溶 液中,待溶剂挥发后,将场发射丝插入离子源,在强电场作用 下,样品不经气化即被电离。
3、灵敏度
绝对灵敏度: 仪器可以检测到最小样品量。
离子源10-3~10-5 Pa,质量分析器10-6 Pa

仪器分析-质谱图解析

仪器分析-质谱图解析
准分子离子: 比分子多或少一个H的离子
[MH]+, [M-H]+
同位素离子: 有些元素具有天然存在的稳定同位素,
所以在质谱图上出现一些M+1,M+2,M+3的峰,由这些 同位素形成的离子峰称为同位素离子峰。
EI 质 谱 的 解 析 步 骤
分子离子峰的识别
■ 假定分子离子峰:
高质荷比区,RI 较大的峰(注意:同位素峰)
H3C CH2
m/z=29
O C OH
m/z=45
HH O
结构式:
H
O
H
CH3
1、不饱和度U=4 2、分子离子峰m/z=122强度较大,结合不饱和度,说明该化合物含有苯环
3、m/z=77为 苯环离子峰,m/z=51是其进一步丢失乙炔分子产生的碎片离子峰
4、m/z=94为 M-28 离子,可能丢失C2H4,说明化合物含有乙基。
RI(M+2) / RI(M) ×100 = (1.1x)2 / 200 + 0.2w
■ 若含硫的样品 RI(M+1) / RI(M) ×100 = 1.1x + 0.37z+ 0.8S RI(M+2) / RI(M) ×100 = (1.1x)2 / 200 + 0.2w +4.4S
例:设 m/z 154为分子离子峰, 154-139=15, 合理
m/z 154 155 156 157 M+2/M=5.1>4.4→分子中含有S RI 100 9.8 5.1 0.5
M/Z=154,偶数,设不含N,含1S
M+1/ M×100 = 1.1x + 0.37z+ 0.8S C数目=(9.80.8)/1.18

现代分析测试技术(仪器分析)

现代分析测试技术(仪器分析)
于研究分子的结构和化学键。
应用
用于有机化合物、高分子化合物、 无机化合物等的结构分析和鉴定。
特点
样品用量少、不破坏样品、分析 速度快、可与其他技术联用。
原子发射光谱法
原理
利用物质在受到激发后发射出特征光谱进行分析。不同元素受到激 发后会发射出不同的特征光谱,可用于元素的定性和定量分析。
应用
广泛应用于金属元素、非金属元素、有机物中元素的定性和定量分 析。
离子色谱法
专门用于离子型物质的分离和分析,如环境监测中的阴阳离子检测。
毛细管电泳色谱法
结合了毛细管电泳和色谱技术的优点,具有高分辨率和高灵敏度等 特点,适用于生物大分子和复杂样品的分析。
05 质谱分析法与联用技术
CHAPTER
质谱法基本原理及仪器结构
质谱法基本原理
通过测量离子质荷比 (m/z)进行成分和结 构分析的方法。
02 光学分析法
CHAPTER
紫外-可见分光光度法
原理
利用物质在紫外-可见光区的吸收 特性进行分析。通过测量物质对 特定波长光的吸收程度,确定物
质的种类和浓度。
应用
广泛应用于无机物、有机物、药物、 生物样品等的定性和定量分析。
特点
灵敏度高、选择性好、操作简便、 分析速度快。
红外光谱法
原理
利用物质在红外光区的吸收特性 进行分析。红外光谱是分子振动 和转动能级的跃迁产生的,可用
03 电化学分析法
CHAPTER
电位分析法
原理
利用电极电位与待测离子浓度之间的关系,通过测量电极电位来 确定待测离子浓度的分析方法。
应用
广泛应用于水质分析、环境监测、生物医学等领域,如pH计测量 溶液酸碱度、离子选择性电极测量特定离子浓度等。

仪器分析课程教案

仪器分析课程教案

仪器分析课程教案一、课程简介1. 课程目标:使学生掌握常见仪器分析方法的基本原理、仪器构造及操作技巧,培养学生分析问题和解决问题的能力。

3. 课程内容:涵盖光学分析、电化学分析、色谱分析、质谱分析等常见仪器分析方法。

二、教学方法1. 讲授:讲解基本原理、仪器构造及操作方法。

2. 演示:进行仪器操作演示,让学生直观了解仪器使用过程。

3. 实验:安排实验课程,让学生动手操作,巩固理论知识。

4. 讨论:组织学生针对实验结果进行分析讨论,提高分析问题和解决问题的能力。

三、教学内容1. 第一章:光学分析法1.1 紫外-可见光谱分析1.2 红外光谱分析1.3 拉曼光谱分析2. 第二章:电化学分析法2.1 电位分析法2.2 电解分析法2.3 库仑分析法3. 第三章:色谱分析法3.1 气相色谱分析3.2 高效液相色谱分析3.3 薄层色谱分析4. 第四章:质谱分析法4.1 质谱仪原理及构造4.2 质谱图解析4.3 质谱在结构鉴定中的应用5. 第五章:现代仪器分析技术5.1 原子光谱分析5.2 核磁共振光谱分析5.3 扫描隧道显微镜分析四、教学安排1. 授课时间:32课时(每周2课时,共16周)2. 实验时间:16课时(每周1课时,共16周)3. 课程设计:理论教学与实验教学相结合,注重实践操作能力的培养。

五、课程评价1. 平时成绩:课堂表现、作业完成情况,占比30%。

2. 实验报告:实验操作、数据处理及分析,占比30%。

3. 期末考试:闭卷考试,占比40%。

4. 综合评价:考察学生的理论知识、实践操作能力和分析问题解决问题的能力。

六、第四章:质谱分析法(续)4.4 质谱在生物化学领域的应用4.5 质谱在材料科学领域的应用七、第五章:现代仪器分析技术(续)5.4 电化学石英晶体微天平分析5.5 光学相干断层扫描分析八、第六章:数据分析与处理8.1 数据分析基础8.2 数据处理方法8.3 仪器分析数据的可靠性评估九、第七章:仪器分析在科研中的应用9.1 仪器分析在化学研究中的应用9.2 仪器分析在生物医学领域的应用9.3 仪器分析在环境监测领域的应用十、第八章:仪器分析实验技巧与安全10.1 实验基本操作技巧10.2 实验中常见问题及解决方法10.3 实验室安全知识六、教学安排1. 授课时间:32课时(每周2课时,共16周)2. 实验时间:16课时(每周1课时,共16周)七、课程评价1. 平时成绩:课堂表现、作业完成情况,占比30%。

26种仪器分析的原理及谱图方法大全

26种仪器分析的原理及谱图方法大全

26种仪器分析的原理及谱图方法大全1.紫外吸收光谱 UV分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息2.荧光光谱法 FS分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息3.红外吸收光谱法 IR分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率4.拉曼光谱法 Ram分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率5.核磁共振波谱法 NMR分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息6.电子顺磁共振波谱法 ESR分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁谱图的表示方法:吸收光能量或微分能量随磁场强度变化提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息7.质谱分析法 MS分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息8.气相色谱法 GC分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关9.反气相色谱法 IGC分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数10.裂解气相色谱法 PGC分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型11.凝胶色谱法 GPC分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:高聚物的平均分子量及其分布12.热重法 TG分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区13.热差分析 DTA分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区14.示差扫描量热分析 DSC分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息15.静态热―力分析 TMA分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态16.动态热―力分析 DMA分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化谱图的表示方法:模量或tgδ随温度变化曲线提供的信息:热转变温度模量和tgδ17.透射电子显微术 TEM分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等18.扫描电子显微术 SEM分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等19.原子吸收AAS原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。

20《仪器分析》质谱法

20《仪器分析》质谱法
然后在磁场中得到分离后加以收集和记录,从所得 到的质谱图推断出化合物结构的方法。 分析速度快 灵敏度高 样 品 量 少 ( 几 微 克 -
10-12g)
要求纯样: GC-MS ,
提供样品分子的相对
分子质量和丰富的结构
LC-MS
信息
质谱仪的基本结构
真空系统 离子产生及经过系统必须处于高真空状态
场解吸源(field desorption, FD) 类似于场电离源,最弱的电离技术,一般只
产生分子离子峰和准分子离子峰。 适合于热不稳定
和非挥发性化合
物。
激光解吸源(laser desorption,LD)
短周期、强脉冲激光轰击,产生共振吸收获
得能量。低浓度样品分散在液体或固体基质中 (摩尔比 1:100-50000 ),而该基质能强烈吸收光, 从而使能量间接转移给样品分子,避免样品分子 的分解。
质谱法
基本要求: 1. 理解质谱法原理和质谱仪主要部件功能 2. 理解各种电离源和质量分析器的原理和优缺点
3. 掌握各类化合物的裂解规律
4. 掌握从质谱图或四谱联用正确பைடு நூலகம்析有机化合物
的结构
质谱法:将样品分子置于高真空中(<10-3Pa),并 受到高速电子流或强电场等作用,失去外层电子而
生成分子离子,或化学键断裂生成各种碎片离子,
准分子离子峰,即 (M + 1) + 峰很强,仍 可提供相对分子质量这一重要信息。
场离子源
阴阳极间电压达为10KV,距离约10-4cm,电压
梯度达为107~108V· cm-1
偶极矩大和极 化率的样品分 子与阳极碰撞, 电子给阳极, 离子被阴极加 速而拉出 ~12eV,分子离子峰强度大 阳极前端必须非常尖锐才能达到电离所要求的电压梯度,采用特 殊处理的电极,在电极表面制造出一些微探针(< 1μm),大量 的微碳针电极称为多尖陈列电极。

仪器分析 质谱图解析

仪器分析 质谱图解析
4、脂肪醇:分子离子峰很弱;易脱水形成M-18的峰;发生α 断裂,生成极强
的特征碎片,31( 伯醇), 45( 仲醇),59 ( 叔醇)。
5、醛、酮:分子离子峰明显;发生麦氏重排和α 断裂。脂肪醛的M-1峰强度与 M相近, HCO+(m/z 29) 很强。
6、芳烃:苯生成77,51峰。
甲苯:卓鎓离子基峰m/z91→C5H5+(m/z 65)和C3H3+(m/z39) 。 麦氏重排产生C7H8+离子(m/z92),特征m/z91和 m/z92 。 苯衍生物:m/z 76,66,65,39。
◆ 质谱的离子类型:分子离子 碎片离子 同位素离 子 亚稳离子 重排离子 多电荷离子
质谱中的离子
分子离子: M+ ·, M - e →M+ ·
在电子轰击下,有机物分子失去一个电子所形成的离子。
分子离子中的电荷位置:
● 若分子中含有杂原子,则分子易失去杂原子的 未成键电子。 ● 若分子中没有杂原子而又双键,则双键电子较 易失去。 ● 若分子中既没有即没有杂原子也没有双键,其 正电荷一般在分支40 20
m/z
43 O
71
断裂
H7C3 C
58
Rearrangement 99
β异裂
86
113
40
60
80
100 120
4壬酮的质谱图(M=142)
C5H11
1、酮类化合物分子离子 峰较强。
2、α裂解(优先失去大 基团)
烷系列:29+14 n
142(M+·) 3、γ-氢重排
.
+
+
m/z 54
重排离子
经过重排,断裂一个以上化学键所生成的离子。

仪器分析-质谱法

仪器分析-质谱法

仪器分析——质谱法质谱法是将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。

质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。

质谱仪一般由四部分组成:进样系统——按电离方式的需要,将样品送入离子源的适当部位;离子源——用来使样品分子电离生成离子,并使生成的离子会聚成有一定能量和几何形状的离子束;质量分析器——利用电磁场(包括磁场、磁场和电场的组合、高频电场、和高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的离子按空间位置,时间先后或运动轨道稳定与否等形式进行分离;检测器——用来接受、检测和记录被分离后的离子信号。

一般情况下,进样系统将待测物在不破坏系统真空的情况下导入离子源(10-6~10-8mmHg),离子化后由质量分析器分离再检测;计算机系统对仪器进行控制、采集和处理数据,并可将质谱图与数据库中的谱图进行比较。

一、进样系统和接口技术将样品导入质谱仪可分为直接进样和通过接口两种方式实现。

1.直接进样在室温和常压下,气态或液态样品可通过一个可调喷口装置以中性流的形式导入离子源。

吸附在固体上或溶解在液体中的挥发性物质可通过顶空分析器进行富集,利用吸附柱捕集,再采用程序升温的方式使之解吸,经毛细管导入质谱仪。

对于固体样品,常用进样杆直接导入。

将样品置于进样杆顶部的小坩埚中,通过在离子源附近的真空环境中加热的方式导入样品,或者可通过在离子化室中将样品从一可迅速加热的金属丝上解吸或者使用激光辅助解吸的方式进行。

这种方法可与电子轰击电离、化学电离以及场电离结合,适用于热稳定性差或者难挥发物的分析。

目前质谱进样系统发展较快的是多种液相色谱/质谱联用的接口技术,用以将色谱流出物导入质谱,经离子化后供质谱分析。

主要技术包括各种喷雾技术(电喷雾,热喷雾和离子喷雾);传送装置(粒子束)和粒子诱导解吸(快原子轰击)等。

仪器分析方法在有机物结构解析中的综合应用(1)

仪器分析方法在有机物结构解析中的综合应用(1)
2构1(292)7时5001的(H( CsNH))3、M、烯R1219δ氢C5a(3Hps00峰p3((m,):)弱)O、、H4)1、.190C70413(04C5酮(C2(aH0s醇2(异)酯c。as构o)、c的)1、=711CC53(H6O5,( C弱酮O)))、、、1413.61141C50H((2(2C酮HO,醇CSq)O异、,C
CH3COCH2COOCH2CH3
例2. 某化合物分子式是C9H10O2,其MS,1H NMR,IR谱 如下图所示,其紫外光谱在230-270nm出现7个精细结构 的峰,试推导其化合物的结构。
108
91 43
150 79 65 39
3030
苯环
C=O
1750
C-H变形振动, 苯环单取代
C-O伸缩振动 750
只可能是酮醇异构产生的叔醇基。由于酮醇异构产生
的醇的含量较少,因此叔醇基的峰较弱。为了证明酮
醇异构现象的存在,还要查看是否有酮醇异构时的烯 基峰。由IR光谱上可以看到在~1640cm-1处出现烯基 峰。
CH3COCH2COOCH2CH3
'CH3C(OH)=CHCOOCH2CH3
cd
ea
b
f
4.核磁共振氢谱 (图3)
综合波谱解析法
定义:利用未知物(纯物质)的下述谱图,进行综合 解析,确定未知物分子结构的方法,称为综合光 谱解析法。
1. 质谱; 2. 紫外吸收光谱; 3. 红外吸收光谱; 4. 核磁共振氢谱; 5. 核磁共振碳谱 (COM、OFR) 等元素分析。
四大或五大光谱
四大光谱 通常把在进行未知物综合光谱解析时常用 的紫外吸收光谱、红外吸收光谱、质子核磁共振谱及 质谱称为四大光谱。
δ2.20 为孤立甲基氢的共振峰,其积分高度相当于3个氢。以此推算,δ1.20、 δ3.34及δ4.11分别相当于3、2及2个氢。氢分布3:3:2:2.

硕士生物仪器分析之质谱3-1

硕士生物仪器分析之质谱3-1

✓ 专家认为,在未 来20年内,生物技 术将蓬勃发展,很 可能成为继信息技 术之后推动经济发 展和社会进步的主 要动力。 ✓ 由3位诺贝尔化 学奖得主发明的 “对生物大分子进 行确认和结构分析 的方法”将在今后 继续发挥重要作用。
Nobel Prize of Chemistry
Francis William Aston (1877-1945) U.K.
质谱法是一种按照离子的质核比(m/z)大小对离子 进行分离和测定的方法,排列成谱,记录下来即为质谱 (Mass Spectroscopy)。 测出了离子的准确质量,就可以 确定离子的化合物组成。
质谱法的主要作用是: (1) 准确测定物质的分子量 (2) 根据碎片特征进行化合物的结构分析
质谱不是波谱,而是物质带电粒子的质量谱。
(1917-2010)
(1959- )
USA
Japan
4. 分类
按用途分
有机质谱 无机质谱 同位素质谱
按联用 方式分
气质联用 液质联用 质质联用
按技术 原理分
磁质谱仪 离子肼质谱仪 四极杆质谱仪 飞行质谱仪 回旋共振质谱仪 轨道肼质谱仪
5. 有机质谱的特点
优点
局限性
① 定分子量准确,其它技术无法比。 ② 灵敏度高,常规10-7~10-8g,单离
样品离子Βιβλιοθήκη 小孔板电喷雾电离Electro spray ionization (ESI)
大气压电离技术
atmospheric pressure ionization (API)
离子源本身不需要真空,使 用方便
• 碎片离子多,结构信息丰富; • 有标准化合物质谱库; • 不能汽化的样品不能分析; • 有些样品得不到分子离子。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
+
+
m/z 54
重排离子
经过重排,断裂一个以上化学键所生成的离子。
R4 CH
H
Z
CH
C
R3 CH
R1
R2
R4 CH CH
R3
ZH
C
HC
R1
R2
麦氏重排
奇电子离子OE+·:带未配对电子的离子,如 M+·, A+····
偶电子离子EE+: 无未配对电子的离子,如 B+, D+ ···
多电荷离子: 如 z =2的离子,存在于稳定的结构中。
(即分子量)为偶数。含奇数N的有机分子, 其分子离
子峰的m/z (即分子量)为奇数。
分子式的推导
■ 同位素相对丰度计算法和查Beynon表法推导分子式
■ 先找分子离子峰,如果高质荷比峰连续有2-4个,说 明存在同位素峰或M+1峰以及M-1峰
■ 读出同位素的相对强度,然后根据同位素的相对强度比 就可判断是否含有Cl, Br, S 等同位素
如果M+2/M的值接近32.4说明含有Cl原子, 如果M+2/M的值接近97.9说明含有Br原子, 如果M+2/M的值接近4.4说明含有S原子
分子式的推导
■ 对于C, H, N, O组成的化合物, 其通式:CxHyNzOw RI(M+1) / RI(M) ×100 = 1.1x + 0.37z
( 2H 0.016, 17O 0.04忽略 )
质谱图
质谱
质谱图基础知识回顾 EI质谱的解析步骤 常见有机化合物质谱图回顾
已知及未知化合物质谱图分析
质谱图基础知识回顾
有机化合物
碎片离子
m/z 质荷比
相对分子质量
丰度
化合物结构
质谱图
◆ 以质荷比(m/z)为横坐标,离子峰相对丰度为 纵坐标。
◆ 峰的高低表示产生该峰的离子数量的多少,最高 的峰称为基峰,将基峰的相对丰度常定为100%
4、脂肪醇:分子离子峰很弱;易脱水形成M-18的峰;发生α 断裂,生成极强
的特征碎片,31( 伯醇), 45( 仲醇),59 ( 叔醇)。
5、醛、酮:分子离子峰明显;发生麦氏重排和α 断裂。脂肪醛的M-1峰强度与 M相近, HCO+(m/z 29) 很强。
6、芳烃:苯生成77,51峰。
甲苯:卓鎓离子基峰m/z91→C5H5+(m/z 65)和C3H3+(m/z39) 。 麦氏重排产生C7H8+离子(m/z92),特征m/z91和 m/z92 。 苯衍生物:m/z 76,66,65,39。
分子结构的推导
■ 计算分子的不饱和度推测分子结构
一价原子数 三价原子数
U 四价原子数 -
2
2
1
■ 根据碎片离子的质量及所符合的化学通式,推测离子可能 对应的特征结构或官能团
■ 结合相对分子质量、不饱和度和碎片离子结构及官能团等 信息,合并可能的结构单元,搭建完整分子结构
■ 核对主要碎片,检查是否符合裂解机理。 结合其他分析方法最终确定化合物结构
■ 判断其是否合理:
与相邻碎片离子(m/z 较小者)之间关系是否合理
m1 2
3
15
16
17 18 20
丢失 H.
H2 H2+ H. .CH3 O. or NH2
OH. H2O HF
m = 4~14, 21~24, 37~38……通常认为是不合理丢失
分子离子峰的识别
■ 判断其是否符合氮律
不含N或含偶数N的有机分子, 其分子离子峰的m/z
m/z 154 155 156 157 M+2/M=5.1>4.4→分子中含有S RI 100 9.8 5.1 0.5
M/Z=154,偶数,设不含N,含1S
M+1/ M×100 = 1.1x + 0.37z+ 0.8S C数目=(9.80.8)/1.18
M+2/ M×100 =(1.1x)2 / 200 + 0.2w +4.4S O数目=1.56 若有1个O,则含有10个H 合
1)分子离子峰强。
2)有烷基取代的,易生成的苄基离子
+
往往是基峰。91+14 n——苄基苯系
CH2
列。
3) 当相对苯环存在 氢时,易发生 m/z 91 重排,m/z 92的峰有相当强度。
4)苯环碎片离子依此失去C2H2,化合
+
物含苯环时,一般可见 m/z 39、51、 65、77等峰。
RI(M+2) / RI(M) ×100 = (1.1x)2 / 200 + 0.2w
■ 若含硫的样品 RI(M+1) / RI(M) ×100 = 1.1x + 0.37z+ 0.8S RI(M+2) / RI(M) ×100 = (1.1x)2 / 200 + 0.2w +4.4S
例:设 m/z 154为分子离子峰, 154-139=15, 合理
碎片离子:
分子离子碎裂产生,广义上指除分子离子以外的所有离子。 1)α断裂 自由基引发的断裂
2)电荷引发(诱导效应,i 断裂)
R O R'
R+ + O R'
3) 断裂
R R'
R+ + R'
4)环状化合物的裂解逆Diels-Alder反应(RDA)
e
.+
+
.
环己烯双键打开,同时引发两 个α键断裂,形成两个新的双 键。
准分子离子: 比分子多或少一个H的离子
[MH]+, [M-H]+
同位素离子: 有些元素具有天然存在的稳定同位素,
所以在质谱图上出现一些M+1,M+2,M+3的峰,由这些 同位素形成的离子峰称为同位素离子峰。
EI 质 谱 的 解 析 步 骤
分子离子峰的识别
■ 假定分子离子峰:
高质荷比区,RI 较大的峰(注意:同位素峰)
常见有机化合物质谱图回顾
1、烷烃:15, 29,43,57,71,…CnH2n+1 奇数系列峰, 43(C3H7+)、 57(C4H9+) 最强,基峰。
2、烯烃:双键β 位置C-C 键断裂(丙烯基裂解)产生的碎片离子, 出现 41, 55,
69, 83 等CnH2n-1;
3、脂肪醚:分子离子峰弱;α裂解形成烷氧基碎片m/z 29,43,57,71 。
◆ 质谱的离子类型:分子离子 碎片离子 同位素离 子 亚稳离子 重排离子 多电荷离子
质谱中的离子
分子离子: M+ ·, M - e →M+ ·
在电子轰击下,有机物分子失去一个电子所形成的离子。
分子离子中的电荷位置:
● 若分子中含有杂原子,则分子易失去杂原子的 未成键电子。 ● 若分子中没有杂原子而又双键,则双键电子较 易失去。 ● 若分子中既没有即没有杂原子也没有双键,其 正电荷一般在分支碳原子上。
相关文档
最新文档