计数原理排列组合二项式定理午练专题练习(一)含答案新高考高中数学

合集下载

易错点15 计数原理、排列组合、二项式定理-备战高考数学考试易错题(新高考专用)(解析版)

易错点15  计数原理、排列组合、二项式定理-备战高考数学考试易错题(新高考专用)(解析版)

专题15 计数原理与排列组合、二项式定理易错分析【正解】一、混淆二项式系数与项的系数致错1.523x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( ) A .10B .20C .90D .80【错解】A ,由题可得()5210315533rrrr r r r T C x C x x --+⎛⎫== ⋅⋅⎪⎝⎭⋅⋅ 令103r 4-=,则r 2=, 所以523x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为2510C =,故选A.【错因】错把二项式系数当成项的系数。

【正解】C ,由题可得()5210315533rrrr r r r T C xC x x --+⎛⎫== ⋅⋅⎪⎝⎭⋅⋅ 令103r 4-=,则r 2=,所以22553390r r C C ⋅⋅==,故选C.2、()11a b -的展开式中,系数最大的项是第 项 【错解】6或7,()11a b -的展开式中共12项,第6项的系数为511C,第7项的系数为611C ,又511C =611C ,所以数最大的项是第6或7项.【错因】错把二项式系数当成项的系数。

【正解】()11a b -的展开式中共12项,第6项的系数为511C -,第7项的系数为611C ,所以数最大的项是第7项.二、忽略二项展开式的通项是第r+1项不是第r 项致错3、二项式62x x ⎛⎫- ⎪⎝⎭的展开式的第二项是( ) A .260xB .260x -C .412xD .412x -【错解】展开式的通项为()662C rrrx x -⎛⎫- ⎪⎝⎭,令2r =,可得展开式的第二项为22462C x x ⎛⎫- ⎪⎝⎭=260x .故选A.【错因】误认为第二项是2r =而错误【正解】展开式的通项为()6162Crrr r T x x -+⎛⎫=- ⎪⎝⎭,令1r =,可得展开式的第二项为11562C x x ⎛⎫- ⎪⎝⎭=412x -.故选D.三、混淆均匀分组与部分均匀分组致错 4、某校高二年级共有六个班,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为()A .2264A CB .22642A CC .2264A AD .262A【错解】选A ,先将4名学生均分成两组方法数为24C ,再分配给6个年级中的2个分配方法数为26A ,根据分步计数原理合要求的安排方法数为2246C A .【错因】该题为均匀分组,忽略除以22A 而错误.【正解】先将4名学生均分成两组方法数为2422C A ,再分配给6个年级中的2个分配方法数为26A ,根据分步计数原理合要求的安排方法数为224622C A A .故选B .5.某小区共有3个核酸检测点同时进行检测,有6名志愿者被分配到这3个检测点参加服务,6人中有4名“熟手”和2名“生手”,1名“生手”至少需要1名“熟手”进行检测工作的传授,每个检测点至少需要1名“熟手”,且2名“生手”不能分配到同一个检测点,则不同的分配方案种数是( )A .72B .108C .216D .432【错解】A ,根据题意,可先把4名“熟手”分为人数为2,1,1的三组,再分配到3个检测点,共有2113421333C C C A A ⋅种分法,然后把2名“生手”分配到3个检测点中的2个,有23A 种分法,所以共有211324213333C C C A A 72A ⋅⋅=种不同的分配方案.【错因】该题为部分均匀分组,应除以22A ,而不是33A .【正解】C ,根据题意,可先把4名“熟手”分为人数为2,1,1的三组,再分配到3个检测点,共有2113421322C C C A A ⋅种分法,然后把2名“生手”分配到3个检测点中的2个,有23A 种分法,所以共有211324213322C C C A A 216A ⋅⋅=种不同的分配方案.四、计数时混淆有序与定序6、某学校举行校庆文艺晚会,已知节目单中共有七个节目,为了活跃现场气氛,主办方特地邀请了三位老校友演唱经典歌曲,并要将这三个不同节目添入节目单,且不改变原来的节目顺序,则不同的安排方式有________种. 【错解】1010A ,原先有七个节目,添加三个节目后,节目单中共有十个节目,则不同的排列方法有1010A 种.【错因】忽略了不改变原来的节目顺序这一条件,即原来的七个节目是定序的。

高考数学热点《计数原理》练习

高考数学热点《计数原理》练习

从新高考考查情况来看,排列组合与二项式定理是新高考命题的热点,主要考查分类、分步计数原理的应用,排列与组合的综合应用,分组分配问题等,二项展开式的通项、二项式系数、特定项的系数、系数和问题、最值问题、参数问题等,一般以选择题和填空题的形式出现,难度中等.主要考查学生的转化与化归、分类讨论思想,数学运算和逻辑推理等核心素养.1、求二项式系数和或各项的系数和的解题技巧:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=(1)(1)2f f +-,偶数项系数之和为a 1+a 3+a 5+…=(1)(1)2f f --. 2、解决排列问题的常见方法:(1)“在”与“不在”的有限制条件的排列问题,既可以从元素入手,也可以从位置入手,原则是谁“特殊”谁优先.不管是从元素考虑还是从位置考虑,都要贯彻到底,不能既考虑元素又考虑位置.(2)解决相邻问题的方法是“捆绑法”,即把相邻元素看作一个整体和其他元素一起排列,同时要注意捆绑元素的内部排列.(3)解决不相邻问题的方法是“插空法”,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中.(4)对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列.热点11 计数原理(5)若某些问题从正面考虑比较复杂,可从其反面入手,即采用“间接法”.3、解决组合问题的常见方法:组合问题的限制条件主要体现在取出的元素中“含”或“不含”某些元素,在解答时可用直接法,也可用间接法.用直接法求解时,要注意合理地分类或分步;用间接法求解时,要注意题目中“至少”“至多”等关键词的含义,做到不重不漏。

二项式定理高考题(含答案)精选全文

二项式定理高考题(含答案)精选全文

精选全文完整版(可编辑修改)二项式定理高考题(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2二项式定理 高考真题一、选择题1.(2012·四川高考理科·T1)相同7(1)x +的展开式中2x 的系数是( D )(A )42 (B )35 (C )28 (D )212.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B )(A )80 (B )40 (C )20 (D )103.(2012·天津高考理科·T5)在5212x x ⎛⎫- ⎪⎝⎭的二项展开式中,x 的系数为 ( D ) (A)10 (B)-10(C)40 (D)-40 4.(2011.天津高考理科.T5)在6的二项展开式中,2x 的系数为 ( C )(A )154- (B )154(C )38- (D )38 5.(2012·重庆高考理科·T4)821⎪⎭⎫ ⎝⎛+x x 的展开式中常数项为( B ) (A)1635 (B)835 (C)435 (D)105 6.(2012·重庆高考文科·T4)5)31(x -的展开式中3x 的系数为( A )(A)270- (B)90- (C)90 (D)2707. (2013·大纲版全国卷高考理科·T7)()()8411++x y 的展开式中22x y 的系数是 ( D )A.56B.84C.112D.1688.(2011·新课标全国高考理科·T8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( D ) (A )-40 (B )-20 (C )20(D )409. (2011·重庆高考理科·T4)n x )31(+(其中n N ∈且6≥n )的展开式中5x 与6x 的系数相等,则=n ( B ) (A)6 (B)7 (C)8(D)93 10.(2011·陕西高考理科·T4)6(42)x x --(x ∈R )展开式中的常数项是 (C )(A )20- (B )15- (C )15 (D )20二、填空题11. (2013·天津高考理科·T10)6x ⎛- ⎝ 的二项展开式中的常数项为 15 . 12.(2011·湖北高考理科·T11)18x ⎛ ⎝的展开式中含15x 的项的系数为 17 .13.(2011·全国高考理科·T13)20的二项展开式中,x 的系数与x 9的系数之差为 0 .14.(2011·四川高考文科·T13)91)x +(的展开式中3x 的系数是 84 (用数字作答).15.(2011·重庆高考文科·T11)6)21(x +的展开式中4x 的系数是 240 . 16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x ++++=- (,则1110a a += 0 .17.(2011·广东高考理科·T10)72()x x x-的展开式中,4x 的系数是___84___ (用数字作答)18.(2011·山东高考理科·T14)若62x x ⎛- ⎝⎭的展开式的常数项为60,则常数a 的值为 4 .19.(2012·大纲版全国卷高考理科·T15)若n xx )1(+的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为__56_____. 20.(2013·安徽高考理科·T11)若8⎛+ ⎝x 的展开式中4x 的系数为7,则实数a ____12_____。

计数原理排列组合二项式定理一轮复习专题练习(二)含答案人教版高中数学高考真题汇编

计数原理排列组合二项式定理一轮复习专题练习(二)含答案人教版高中数学高考真题汇编

高中数学专题复习
《计数原理排列组合二项式定理》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有( C )
(A)70种 (B)112种 (C)140种 (D)168种(汇编四川理)
2.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )
A .2283C A
B .2686
C A
C .2286C A
D .2285C A
3.(汇编安徽理)设88018(1),x a a x a x +=+++则0,18,,a a a 中奇数的个数为
( )。

第04练 计数原理、排列组合、二项式定理-2023年新高考数学一轮复习小题必刷(原卷版)

第04练 计数原理、排列组合、二项式定理-2023年新高考数学一轮复习小题必刷(原卷版)

第04练 计数原理、排列组合、二项式定理1.(2020·呼和浩特开来中学高二期末(理))六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种 2.(2020·广东省高二期末)在()62x +展开式中,二项式系数的最大值为m ,含4x 的系数为n ,则n m=( ) A .3 B .4 C .13 D .143.(2020·青铜峡市高级中学高二期末(理))设2220122(1)...n n n x x a a x a x a x ++=++++,则0a 等于( )A .1B .0C .3D .3n4.(2020·宁夏回族自治区宁夏大学附属中学高二月考(理))3个班分别从5个风景点中选择一处游览,不同的选法有( )A .243B .125C .128D .2645.(2020·洮南市第一中学高二月考(理))求346774C C -的值为( )A .0B .1C .360D .120 6.(2020·洮南市第一中学高二月考(理))522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为 A .10 B .20C .40D .80 7.(2020·山东省高三其他)若62a x x ⎛⎫+ ⎪⎝⎭的展开式中6x 的系数为150,则2a =( ) A .20 B .15 C .10 D .258.(2020·北京高二期末)5(1)a +展开式中的第2项是( )A .35aB .310aC .45aD .410a 9.(2020·北京高二期末)已知有1B ,2B ,⋯,6B 支篮球队举行单循环赛(单循环赛:所有参赛队均能相遇一次),那么比赛的场次数是( )A.15B.18C.24D.3010.(2020·北京高二期末)哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如1257=+,在不超过18的素数2,3,5,7,11,13,17中,随机选取两个不同的数,其和等于18的概率是()A.142B.121C.221D.1711.(2020·江苏省马坝高中高二期中)9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品,抽出产品中至少有2件一等品的抽法种数为()A.81B.60C.6D.1112.(2020·江西省南昌十中高三其他(理))在6212xx⎛⎫-⎪⎝⎭的展开式中,常数项为__________(用数字作答).13.(2020·北京高二期末)()621x-的展开式中2x的系数为__________(用具体数据作答). 14.(2020·福建省厦门一中高三其他(理))2020年初,湖北面临医务人员不足和医疗物资紧缺等诸多困难,厦门人民心系湖北,志愿者纷纷驰援,若将甲、乙、丙、丁4名医生志愿者分配到A,B 两家医院(每人去一家,每家医院至少安排1人),且甲医生不安排在A医院,则共有__________种分配方案.15.(2020·苏州市第四中学校高二期中)中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢.如果让三位同学选取的礼物都满意,则选法有________种.(用数字作答)16.(2020·上海高二期末)请列举出用0,1,2,3,4这5个数字所组成的无重复数字且比3000大的,且相邻的数字的奇偶性不同的所有四位数奇数,它们分别是______.1.(2020·广东省高三二模(文))在此次抗击新冠肺炎疫情过程中,中医治疗起到了重要作用.中医理论讲究食物相生相克,合理搭配饮食可以增强体质,提高免疫力,但不恰当的搭配也可能引起身体的不适.食物相克是指事物之间存在着相互拮抗、制约的关系,若搭配不当,会引起中毒反应.已知猪肉与菊花,猪肉与百合,螃蟹与茄子相克.现从猪肉、螃蟹、茄子、菊花、百合这五种食物中任意选取两种,则它们相克的概率为()A .13B .23C .310D .7102.(2020·江苏省丰县中学高二期中)将4个不同的文件发往3个不同的邮箱地址,则不同的方法种数为( )A .43B .34C .34AD .34C 3.(2020·黑龙江省哈师大附中高二期末(理))为做好社区新冠疫情防控工作,需将四名志愿者分配到甲、乙、丙三个小区开展工作,每个小区至少分配一名志愿者,则不同的分配方案共有( )种A .36B .48C .60D .164.(2020·浙江省衢州二中高三其他)将含有甲、乙、丙、丁等共8人的浙江援鄂医疗队平均分成两组安排到武汉的A 、B 两所医院,其中要求甲、乙、丙3人中至少有1人在A 医院,且甲、丁不在同一所医院,则满足要求的不同安排方法共有( )A .36种B .32种C .24种D .20种5.(2020·吉林省松原市实验高级中学高三其他(理))某校将5名插班生甲、乙、丙、丁、戊编入3个班级,每班至少1人,则不同的安排方案共有( )A .150种B .120种C .240种D .540种6.(2020·广东省高二期末)广东省实施“3+1+2”的新高考改革模式,“3”指全国统一高考的语文、数学、外语,“1”指物理、历史2门中选择1门,“2”指思想政治、地理、化学、生物4门中选择2门. 已知甲选择物理,乙选择地理,则甲乙两人有( )不同的选择组合方案.A .12种B .18种C .36种D .48种7.(2020·广东省高二期末)东莞近三年连续被评为“新一线城市”,“东莞制造”也在加速转型升级步伐,现有4个项目由东莞市政府安排到2个地区进行建设,每个地区至少有一个项目,其中项目A 和B 不能安排在同一个地区,则不同的安排方式有( )A .4种B .8种C .12 种D .16种8.(2020·河北省衡水中学高三其他(理))在2020年初抗击新冠肺炎疫情期间,某医院派出了3名医生和包括甲、乙、丙在内的6名护士前往武汉参加救治工作.现从这9人中任意抽取1名医生、3名护士组成一个应急小组,则甲、乙、丙这3名护士至少选中2人的概率为( )A .13B .12C .49D .34 9.(2020·四川省绵阳南山中学高三其他(理))()()()2111n x x x ++++++的展开式的各项系数和是( )A .12n +B .121n ++C .121n +-D .122n +-10.(2020·山西省高三其他(理))5(2)(1)x x -+的展开式中,3x 的系数是( )A .32B .40C .32-D .40-11.(2020·黑龙江省大庆一中高三三模(理))已知()512345601234567121x x a x a a x a x a x a x a x a x x -⎛⎫+--=++-++++ ⎪⎝⎭,则4a =( ) A .21 B .42 C .35- D .210-12.(2020·汪清县汪清第六中学高二月考(理))已知(1+ax )·(1+x )5的展开式中x 2的系数为5,则a + A .+4B .+3C .+2D .+113.(2020·汪清县汪清第六中学高二月考(文))不透明的袋中装有8个大小质地相同的小球,其中红色的小球6个,白色的小球2个,从袋中任取2个小球,则取出的2个小球中有1个是白色小球另1个是红色小球的概率为( )A .314B .37C .67D .132814.(2020·江苏省高二期末)为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”“乐”“射”“御”“书”“数”六门体验课程,每周一门,连续开设六周.则( )A .某学生从中选3门,共有30种选法B .课程“射”“御”排在不相邻两周,共有240种排法C .课程“礼”“书”“数”排在相邻三周,共有144种排法D .课程“乐”不排在第一周,课程“御”不排在最后一周,共有504种排法15.(2020·江苏省扬中高级中学高二期中)某学生想在物理、化学、生物、政治、历史、地理、技术这七门课程中选三门作为选考科目,下列说法错误的是( )A .若任意选择三门课程,选法总数为37AB .若物理和化学至少选一门,选法总数为1225C CC .若物理和历史不能同时选,选法总数为3175C C -D .若物理和化学至少选一门,且物理和历史不能同时选,选法总数为121255C C C -16.(2020·三亚华侨学校高二开学考试)已知()n a b +的展开式中第5项的二项式系数最大,则n 的值可以为( )A .7B .8C .9D .10 17.(2020·山东省高二期中)若()2345501234512a a x a x a x a x a x x =+++-++,则下列结论中正确的是( )A .01a =B .123452a a a a a ++++=C .50123453a a a a a a -+-+-=D .0123451a a a a a a三、填空题18.(2020·呼和浩特开来中学高二期末(理))4()(1)a x x ++的展开式中,若x 的奇数次幂的项的系数之和为32,则a =________.19.(2020·全国高三其他(理))“赵爽弦图”是中国古代数学的文化瑰宝,由四个全等的直角三角形和一个小正方形组成(如图所示),简洁对称、和谐优美.某数学文化研究会以弦图为蓝本设计会徽,其图案是用红、黄2种颜色为弦图的5个区域着色(至少使用一种颜色),则一共可以绘制备选的会徽图案数为__________.20.(2020·山东省高三其他)2019年世界园艺博览会在北京延庆区举办,这届世界园艺博览会的核心建筑景观是“四馆一心”:中国馆、国际馆、植物馆、生活体验馆以及演艺中心.现将含甲在内的5名大学生志愿者安排到北京世界园艺博览会的4个场馆担任服务工作,要求每个场馆至少安排一人,且每人仅参加一个场馆的服务工作,其中甲不安排到国际馆去,则不同的安排方法种数为_________.21.(2020·江西省南昌二中高二期末(理))62341()x x x x x ⎛⎫++- ⎪⎝⎭的展开式中x 2项的系数为__________.22.(2020·南京市临江高级中学高二期中)将四个不同的小球放入三个分别标有1、2、3号的盒子中,不允许有空盒子的放法有______种(结果用数字表示).1.(2020•海南)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种B.3种C.6种D.8种2.(2020•北京)在(√x−2)5的展开式中,x2的系数为()A.﹣5B.5C.﹣10D.103.(2020•山东)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种4.(2020•新课标Ⅰ)(x+y2x)(x+y)5的展开式中x3y3的系数为()A.5B.10C.15D.205.(2019•全国)(2√x+1)6的展开式中x的系数是()A.120B.60C.30D.156.(2019•新课标Ⅲ)(1+2x2)(1+x)4的展开式中x3的系数为()A.12B.16C.20D.24二.填空题(共7小题)7.(2020•上海)从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有种安排情况.8.(2020•浙江)二项展开式(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=,a1+a3+a5=.9.(2020•新课标Ⅱ)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有种.10.(2020•新课标Ⅲ)(x2+2x)6的展开式中常数项是(用数字作答).11.(2020•天津)在(x+2x2)5的展开式中,x2的系数是.12.(2019•天津)(2x−18x3)8的展开式中的常数项为.13.(2019•浙江)在二项式(√2+x)9展开式中,常数项是,系数为有理数的项的个数是..。

计数原理排列组合二项式定理早练专题练习(一)带答案新高考高中数学

计数原理排列组合二项式定理早练专题练习(一)带答案新高考高中数学

高中数学专题复习《计数原理排列组合二项式定理》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.(汇编年高考浙江理)若多项式=+++++++=+910102910102,)1()1()1(a x a x a x a a x x 则 D(A )9 (B )10 (C )-9 (D )-10【考点分析】本题考查二项式展开式的特殊值法,基础题。

2.(汇编年高考江西理)(1+3x )6(1+41x )10展开式中的常数项为A .1B .46C .4245D .42463.(汇编江苏)(5)10)31(xx -的展开式中含x 的正整数指数幂的项数是 (A )0 (B )2 (C )4 (D )64.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是( )A. C C 61942B. C C 61992C. C C 1003943-D. P P 1003943-(汇编北京春季理)(9) 5.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是(A )72 (B )96 (C ) 108 (D )144 (汇编四川理数)(10)解析:先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个算上个位偶数字的排法,共计3(24+12)=108个6.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有( )A .12种B .18种C .36种D .54种(汇编全国2理)7.在()n a b +的展开式中,若n 为奇数,则中间项是-------------------------------------------( )(A)第12,22n n ++项 (B)第13,22n n ++项 (C)第13,22n n -+项 (D)第23,22n n ++项 8.1.5432(1)5(1)10(1)10(1)5(1)x x x x x -+-+-+-+-=-----------------------------------( )(A )5x (B)51x - (C )51x +(D)5(1)1x --9.在10(3)x -的展开式中,含6x 项的系数是--------------------------------------------------( )(A )61027C - (B)41027C (C )6109C -(D)4109C10.如果2323n x x ⎛⎫- ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为( C )A.10 B.6 C.5 D.311.如果一个三位正整数形如“321a a a ”满足2321a a a a <<且,则称这样的三位数为凸数(如120、363、374等),那么所有凸数个数为( )A .240B .204C .729D .92012.设n x x )3(2131+的二项展开式中各项系数之和为t ,其二项式系数之和为h ,若272=+t h ,则其二项展开式中2x 项的系数为A .21 B . 1 C . 2 D . 3第II 卷(非选择题)请点击修改第I I 卷的文字说明 评卷人得分 二、填空题13. 7(12)x +的展开式中第4项的系数是 (用数字作答) 28014. 89被5除所得的余数是_______▲______.15.(5分)展开式中有理项共有 3 项.16.在二项式81()ax x-的展开式中,若含2x 项的系数为70,则实数a =_____________.17.在7)2(x x -的二项展开式中,2x 的系数是_____________(结果用数字作答)18.2.有1元、2元、5元、10元、50元、100元的人民币各一张,取其中的一张或几张,能组成____________种不同的币值19. 计算10032xx x x ⨯⨯⨯⨯20.若二项式n x x ⎪⎭⎫ ⎝⎛+21的展开式中的第6项是常数项,则n =______________。

计数原理排列组合二项式定理早练专题练习(二)含答案新教材高中数学

计数原理排列组合二项式定理早练专题练习(二)含答案新教材高中数学

高中数学专题复习
《计数原理排列组合二项式定理》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.(汇编江苏)(5)10)31(x
x -的展开式中含x 的正整数指数幂的项数是 (A )0 (B )2 (C )4 (D )6
2.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ( )
(A)140种 (B)120种 (C)35种 (D)34种(汇编江苏)
3.1 .(汇编重庆理)812x x ⎛⎫+ ⎪⎝
⎭的展开式中常数项为 ( ) A .
1635 B .835 C .435 D .105
4.某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为【 B 】
A .14
B .16
C .20
D .48(汇编湖南文)。

计数原理排列组合二项式定理晚练专题练习(二)附答案新高考高中数学

计数原理排列组合二项式定理晚练专题练习(二)附答案新高考高中数学

高中数学专题复习
《计数原理排列组合二项式定理》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人得分
一、选择题
1.1 .(汇编年普通高等学校招生统一考试天津数学(理)试题(含答案))设变量x,
y满足约束条件
360,
20,
30,
x y
y
x y≥
--≤
+-

-≤




则目标函数z = y-2x的最小值为()
A.-7 B.-4
C.1 D.2
2.有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有
..中间行的两张卡片上的数字之和为5,则不同的排法共有()A.1344种B.1248种C.1056种D.960种(汇编天津理)。

高二数学排列组合二项式定理单元测试题(带答案).doc

高二数学排列组合二项式定理单元测试题(带答案).doc

排列、组合、二项式定理与概率测试题一、选择题 (本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一 项是符合题目要求的. )1、 如图所示的是 2008 年北京奥运会的会徽,其中的 “中国印 ”的外边是由四个色块构成,可以用线段在不穿越另两个色块的条件下将其中任意两个色块连接起来 (如同架桥 ),如果用三条线段将这四个色块连接起来,不同的连接方法共有 ()A.8种B.12种C. 16种D.20种2、从 6 名志愿者中选出 4 个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有( ) A .96 种B .180 种C .240 种D .280 种3、五种不同的商品在货架上排成一排,其中 a 、b 两种必须排在一起,而c 、d 两种不能排在一起,则不同的选排方法共有( )A .12 种B .20 种C .24 种D .48 种4、编号为 1、2、 3、4、5 的五个人分别去坐编号为1、2、 3、4、5 的五个座位,其中有且只有两个的编号与座位号一致的坐法是( )A. 10种B. 20 种C. 30 种D . 60 种5、 设 a 、 b 、 m 为整数( m>0),若 a 和 b 被 m 除得的余数相同,则称a 和b 对模 m 同余 .记为 a ≡b(mod m)。

已知12·2+C3 20,则 b 的值可以是( )a=1+C 20 +C 2020 ·22+ +C ·219, b ≡a(mod 10)20.2011 C6、在一次足球预选赛中,某小组共有 5 个球队进行双循环赛 (每两队之间赛两场 ),已知胜一场得 3 分,平一场得1 分,负一场得 0 分.积分多的前两名可出线 (积分相等则要比净胜球数或进球总数).赛完后一个队的积分可出现的不同情况种数为( ) A .22 种B .23 种C .24 种D .25 种n 1n 11、 令 a n 为(1 x) 的展开式中含 x 项的系数,则数列 { } 的前 n 项和为()7a nn(n 3)n(n 1) n 2nA .B .C .D .22n 1n 18、 若 ( x 1)5 a 0 a 1( x 1) a 2 (x 1)2 ... a 5(x 1)5 ,则 a 0 = ()A . 32B .1C . -1D . -32n9、 二项式 3x 22(n N * ) 展开式中含有常数项,则 n 的最小取值是 ()3xA 5B 6C 7D 810、四面体的顶点和各棱中点共 10 个点,在其中取 4 个不共面的点,则不同的取法共有()A .150 种B .147 种C .144 种D . 141 种11、两位到北京旅游的外国游客要与2008 奥运会的吉祥物福娃( 5 个)合影留念,要求排成一排,两位游客相邻且不排在两端,则不同的排法共有 ( )A .1440B . 960C .720D .48012、若 x ∈ A 则 1 ∈ A ,就称 A 是伙伴关系集合,集合 M={ - 1, 0, 1 , 1,1,2,3,4}x3 2的所有非空子集中,具有伙伴关系的集合的个数为()A .15B . 16C . 28D . 25题号 1 23456789101112答案二、填空题 (每小题 5 分,共 20 分,把答案填在题中横线上)13.四封信投入 3 个不同的信箱,其不同的投信方法有_________种.14、在 ( x 2 1)( x 2) 7 的展开式中 x 3 的系数是.15、已知数列 { a n }的通项公式为 a n2n 1 1,则 a 1C n 0 +a 2C 1n + a 3C n 3 + a n 1C n n =16、对于任意正整数,定义“n 的双阶乘n!!如”下:对于n 是偶数时,n!!=n (n ·- 2) (n ·-4)6× ;4×2对于n 是奇数时, n!!=n (n ·- 2) (n ·- 4)5×.3×1现有如下四个命题:① (2005!!) (2006!!)=2006!· ;② 2006!!=2 1003·1003!;③ 2006!! 的个位数是5.正确的命题是 ________.0;④ 2005!! 的个位数是 三、解答题(注意各题要写出简要的解答过程,并要计算出具体的数字,否则不给分)17、某学习小组有 8 个同学,从男生中选2 人,女生中选 1 人参加数学、物理、化学三种竞赛,要求每科均有 1人参加,共有 180 种不同的选法.那么该小组中男、女同学各有多少人18、设 m, n∈ Z+, m、 n≥1,f(x)=(1+x)m+(1+x)n的展开式中, x 的系数为 19.( 1)求 f(x)展开式中 x2的系数的最值;(2)对于使f(x)中x2的系数取最小值时的m、 n 的值,求 x7的系数.19、7 位同学站成一排.问:(1)甲、乙两同学必须相邻的排法共有多少种(2)甲、乙和丙三个同学都相邻的排法共有多少种(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起的排法有多少种20、已知( x1) n 的展开式中前三项的系数成等差数列.2 x(Ⅰ )求n 的值;(Ⅱ)求展开式中系数最大的项.21、由0,1,2,3,4,5这六个数字。

高二数学排列组合二项式定理单元测试题(带答案).doc

高二数学排列组合二项式定理单元测试题(带答案).doc

排列、组合、二项式定理与概率测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、如图所示的是2008年北京奥运会的会徽,其中的“中国印”的外边是由四个色块构成,可以用线段在不穿越另两个色块的条件下将其中任意两个色块连接起来(如同架桥),如果用三条线段将这四个色块连接起来,不同的连接方法共有 ( )A. 8种B. 12种C. 16种D. 20种2、从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有( )A .96种B .180种C .240种D .280种 3、五种不同的商品在货架上排成一排,其中a 、b 两种必须排在一起,而c 、d 两种不能排在一起,则 不同的选排方法共有( )A .12种B .20种C .24种D .48种 4、编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是( )A . 10种 B. 20种 C. 30种 D . 60种 5、设a 、b 、m 为整数(m >0),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余.记为a ≡b (modm )。

已知a =1+C 120+C 220·2+C 320·22+…+C 2020·219,b ≡a (mod 10),则b 的值可以是( ) A.2015 B.2011 C.2008 D.20066、在一次足球预选赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得0分.积分多的前两名可出线(积分相等则要比净胜球数或进球总数).赛完后一个队的积分可出现的不同情况种数为( ) A .22种 B .23种 C .24种 D .25种7、令1)1(++n n x a 为的展开式中含1-n x项的系数,则数列}1{na 的前n 项和为 ( )A .2)3(+n n B .2)1(+n n C .1+n n D .12+n n8、若5522105)1(...)1()1()1(-++-+-+=+x a x a x a a x ,则0a = ( )A .32B .1C .-1D .-329、二项式23nx ⎛⎝*()n N ∈展开式中含有常数项,则n 的最小取值是 ( )A 5B 6C 7D 810、四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,则不同的取法共有( )A .150种B .147种C .144种D .141种 11、两位到北京旅游的外国游客要与2008奥运会的吉祥物福娃(5个)合影留念,要求排成一排,两位游客相邻且不排在两端,则不同的排法共有 ( ) A .1440 B .960 C .720 D .480 12、若x ∈A 则x 1∈A ,就称A 是伙伴关系集合,集合M={-1,0,31,21,1,2,3,4} 的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25二、填空题(每小题4分,共16分,把答案填在题中横线上)13.四封信投入3个不同的信箱,其不同的投信方法有_________种. 14、在72)2)(1(-+x x 的展开式中x 3的系数是 .15、已知数列{n a }的通项公式为121+=-n n a ,则01n C a +12n C a +Λ+33n C a +nn n C a 1+=16、对于任意正整数,定义“n 的双阶乘n!!”如下:对于n 是偶数时,n!!=n·(n -2)·(n -4)……6×4×2;对于n 是奇数时,n!!=n·(n -2)·(n -4)……5×3×1. 现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!的个位数是0;④2005!!的个位数是5.正确的命题是________.三、解答题(本大题共6小题,前5小题每小题12分,最后1小题14分,共74分.解答应写出必要的文字说明、证明过程或演算步骤.)17、某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种竞赛,要求每科均有1人参加,共有180种不同的选法.那么该小组中男、女同学各有多少人?18、设m,n∈Z+,m、n≥1,f(x)=(1+x)m+(1+x)n的展开式中,x的系数为19.(1)求f(x)展开式中x2的系数的最值;(2)对于使f(x)中x2的系数取最小值时的m、n的值,求x7的系数.19、7位同学站成一排.问:(1)甲、乙两同学必须相邻的排法共有多少种?(2)甲、乙和丙三个同学都相邻的排法共有多少种?(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起的排法有多少种?20、已知()2nxx的展开式中前三项的系数成等差数列.(Ⅰ)求n的值;(Ⅱ)求展开式中系数最大的项.21、由0,1,2,3,4,5这六个数字。

高考数学专题:排列、组合与二项式定理问题练习试题、答案

高考数学专题:排列、组合与二项式定理问题练习试题、答案

高考数学专题:排列、组合与二项式定理问题练习试题一.排列与组合问题1.某科技小组有四名男生两名女生,现从中选出三名同学参加比赛,其中至少一名女生入选的不同选法种数为( )A .36CB .1225C C C .12212424C C C CD .36A2.某校需要在5名男生和5名女生中选出4人参加一项文化交流活动,由于工作需要,男生甲与男生乙至少有一人参加活动,女生丙必须参加活动,则不同的选人方式有( )A .56种B .49种C .42种D .14种 3.五人排成一排,甲与乙不相邻,且甲与丙也不相邻的不同排法有( )A .60种B .48种C .36种D .24种4.某单位有7个连在一起的停车位,现有3辆不同型号的车需要停放,如果要求剩余的4个空车位连在一起,则不同的停放方法有( )A .16种B .18种C .24种D .32种5.为迎接2008年北京奥运会,某校举行奥运知识竞赛,有6支代表队参赛,每队2名同学,若12名参赛同学中有4人获奖,且这4人来自3个不同的代表队,则不同获奖情况种数共有( )A .412CB .3111162223C C C C C C .31116322C C C C D .311112622232C C C C C A 6.A 、B 两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4,现从中任取三条网线且使这三条网线通过最大信息量的和大于等于6的方法共有( )A .13种B .14种C .15种D .16种7.有一排7只发光二级管,每只二级管点亮时可发出红光或绿光,若每次恰有3只二级管点亮,但相邻的两只二级管不能同时点亮,根据这三只点亮的二级管的不同位置或不同颜色来表示不同的信息,则这排二级管能表示的信息种数共有( )A .10B .48C .60D .808.数列{}n a 共七项,其中五项为1,两项为2,则满足上述条件的数列{}n a 共有( )A .21个B .25个C .32个D .42个 9.三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过5次传递后,毽又踢回给甲,则不同的传递方式共有( )A .6种B .8种C .10种D .16种 10.5个大小都不同的数按如图形式排列,设第一行中的最大数为a ,第二行中的最大数为b ,则满足a b <的所有排列的个数是( )A .144B .72C .36D .2411.有A ,B ,C ,D ,E ,F 共6个不同的油气罐准备用甲,乙,丙3台卡车运走,每台卡车运两个,但卡车甲不能运A 罐,卡车乙不能运B 罐,此外无其它限制. 要把这6个油气罐分配给这3台卡车,则不同的分配方案种数为( )A .168B .84C .56D .4212.若m 、2210{|1010}n x x a a a ∈=⨯+⨯+,其中(0,1,2){1,2,3,4,5,6}i a i =∈,并且606m n +=,则实数对(,)m n 表示平面上不同点的个数为( )A .32个B .30个C .62个D .60个 13.由0、1、2、3这四个数字,可组成无重复数字的三位偶数有_______个.14.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为奇数的概率是____________(用数字作答).15.如图所示,画中的一朵花,有五片花瓣.现有四种不同颜色的画笔可供选择,规定每片花瓣都要涂色,且只涂一种颜色.若涂完的花中颜色相同的花瓣恰有三片,则不同涂法种数为_______(用数字作答).二.二项式定理1.已知23132nx x ⎛⎫- ⎪⎝⎭的展开式中含有常数项(非零),则正整数n 的可能值是( )A .6B .5C .4D .32.已知622x x p ⎛⎫- ⎪⎝⎭的展开式中,不含x 的项是2720,那么正数p 的值是( ) A .1 B .2 C .3 D .43.已知31nx ⎛⎫ ⎪⎝⎭的展开式中第二项与第三项的系数之和等于27,则n 等于______,系数最大的项是第___________项.4.621x x ⎛⎫- ⎪⎝⎭的展开式中第四项的系数为___________.(用数字作答) 5.6)21(x -展开式中所有项的系数之和为________;63)21)(1(x x -+展开式中5x 的系数为__________.6.62)21(x x -展开式中5x 的系数为______________.7.已知n x )21(+的展开式中含3x 项的系数等于含x 项的系数的8倍,则n 等于__________.8.已知n+的二项展开式的第6项是常数项,那么n =_______. 9.62)2(x x+的展开式中的常数项是______________(用数字作答). 10. 在6(12)x -的展开式,含2x 项的系数为_________________;所有项的系数的和为_______________. 11.在n的展开式中,前三项的系数的绝对值依次组成一个等差数列,则n =______,展开式中第五项的二项式系数为_____(用数字作答). 12.82)2(x +的展开式中12x 的系数等于______________(用数字作答). 13.210(1)x -的展开式中2x 的系数是______________,如果展开式中第4r 项和第2r +项的二项式系数相等,则r 等于____________. 14. 若62a x x ⎛⎫- ⎪⎝⎭的展开式中常数项为160-,则常数a 的值为_________,展开式中各项系数之和为_________.答案一.1.C2.B3.C4.C5.C6.C7.D8.A9.C10.B11.D12.D13.1014.10 2115.240二1.B2.C 3.9,5 4.-20 5.1,-132 6.-160 7.58.10 9.60 10.60,111.8,70 12.112 13.-10,2 14.1,1。

计数原理排列组合二项式定理一轮复习专题练习(一)附答案高中数学

计数原理排列组合二项式定理一轮复习专题练习(一)附答案高中数学

高中数学专题复习
《计数原理排列组合二项式定理》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.1 .(汇编年普通高等学校招生统一考试天津数学(理)试题(含答案))设变量x ,
y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y -2x 的最小值为 ( )
A .-7
B .-4
C .1
D .2
2.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为
A.14
B.24
C.28
D.48(汇编福建理)
3.(汇编山东理)已知2n i x x ⎛⎫- ⎪⎝⎭的展开式中第三项与第五项的系数之比为-143,其中。

计数原理排列组合二项式定理二轮复习专题练习(一)含答案新高考高中数学

计数原理排列组合二项式定理二轮复习专题练习(一)含答案新高考高中数学

高中数学专题复习
《计数原理排列组合二项式定理》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.(汇编上海理)组合数C r n
(n >r ≥1,n 、r ∈Z )恒等于( ) A .r +1n +1C r -1n -1 B .(n +1)(r +1)C r -1n -1 C .nr C r -1n -1 D .n r
C r -1n -1 2.(汇编安徽理)设88018(1),x a a x a x +=+++则0,18,,a a a 中奇数的个数为
( )
A .2
B .3
C .4
D .5
3.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为
A.14
B.24
C.28
D.48(汇编福建理)
4.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )
A .96
B .84
C .60
D .48(汇编全国1理)。

计数原理排列组合二项式定理一轮复习专题练习(二)含答案新教材高中数学

计数原理排列组合二项式定理一轮复习专题练习(二)含答案新教材高中数学

高中数学专题复习
《计数原理排列组合二项式定理》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.(汇编上海理)组合数C r n
(n >r ≥1,n 、r ∈Z )恒等于( ) A .r +1n +1C r -1n -1 B .(n +1)(r +1)C r -1n -1 C .nr C r -1n -1 D .n r
C r -1n -1 2.将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有( )
(A )30种 (B )90种 (C )180种 (D )270种(汇编年高考重庆理)
3.(汇编年高考浙江理)若多项式
=+++++++=+910102910102,)1()1()1(a x a x a x a a x x 则 D
(A)9 (B)10 (C )-9 (D )-10
【考点分析】本题考查二项式展开式的特殊值法,基础题。

4.(汇编全国2理)64(1)(1)x x -+的展开式中x 的系数是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学专题复习
《计数原理排列组合二项式定理》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.(汇编年高考浙江理)若多项式
=+++++++=+910102910102,)1()1()1(a x a x a x a a x x 则 D
(A)9 (B)10 (C )-9 (D )-10
【考点分析】本题考查二项式展开式的特殊值法,基础题。

2.高三(一)班学生要安排毕业晚会的4个音乐节目,2
个舞蹈节目和1个曲艺节目
的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数
是( B )
(A )1800 (B )3600 (C )4320 (D )5040(汇编年高考重庆文)
3.(汇编安徽理)2521(2)(
1)x x +-的展开式的常数项是 ( ) A .3-
B .2-
C .2
D .3。

相关文档
最新文档