第四章变量之间的关系导学案

合集下载

变量间的相关关系与统计案例

变量间的相关关系与统计案例

变量间的相关关系与统计案例一、基础知识1.变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.体现的不一定是因果关系.(2)从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关;点散布在左上角到右下角的区域内,两个变量的这种相关关系为负相关.2.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归方程为y ^=b ^x +a ^,其中(3)通过求Q =∑i =1n(y i -bx i -a )2的最小值而得到回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小,这一方法叫做最小二乘法.(4)相关系数:当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性.3.独立性检验 (1)2×2列联表设X ,Y 为两个变量,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(2×2列联表)如下:(2)独立性检验利用随机变量K 2(也可表示为χ2)的观测值k=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(其中n =a +b +c+d 为样本容量)来判断“两个变量有关系”的方法称为独立性检验.二、常用结论(1)求解回归方程的关键是确定回归系数a ^,b ^,应充分利用回归直线过样本中心点 (x ,y ).(2)根据K 2的值可以判断两个分类变量有关的可信程度,若K 2越大,则两分类变量有关的把握越大.(3)根据回归方程计算的y ^值,仅是一个预报值,不是真实发生的值.考点一 回归分析考法(一) 求线性回归方程[典例] (2019·湘东五校联考)已知具有相关关系的两个变量x ,y 的几组数据如下表所示:(1)(2)请根据上表数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x +a ^,并估计当x =20时y 的值.参考公式:b ^=∑i =1nx i y i -n x y ∑i =1nx 2i -n x2,a ^=y -b ^x .[解] (1)散点图如图所示:(2)依题意,x =15×(2+4+6+8+10)=6,y =15×(3+6+7+10+12)=7.6,∑i =15x 2i =4+16+36+64+100=220,∑i =15x i y i =6+24+42+80+120=272,∴b ^=∑i =15x i y i -5 x y∑i =15x 2i -5 x2=272-5×6×7.6220-5×62=4440=1.1, ∴a ^=7.6-1.1×6=1,∴线性回归方程为y ^=1.1x +1,故当x =20时,y =23.考法(二) 相关系数及应用[典例] 如图是我国2012年至2018年生活垃圾无害化处理量(单位:亿吨)的折线图.由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明. 参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,∑i =17(y i -y )2=0.55, 7≈2.646.参考公式:相关系数r =∑i =1n(t i -t )(y i -y )∑i =1n(t i -t )2∑i =1n (y i -y )2.[解] 由折线图中数据和参考数据及公式得t =4,∑i=17(t i -t )2=28,∑i =17(y i -y )2=0.55,∑i =17(t i -t )(y i -y )=∑i =17t i y i -t ∑i =17y i =40.17-4×9.32=2.89,r ≈ 2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.[解题技法]1.线性回归分析问题的类型及解题方法 (1)求线性回归方程:①利用公式,求出回归系数b ^,a ^.②待定系数法:利用回归直线过样本点中心求系数. (2)利用回归方程进行预测:把回归直线方程看作一次函数,求函数值.(3)利用回归直线判断正、负相关:决定正相关还是负相关的是系数b ^. 2.模型拟合效果的判断(1)残差平方和越小,模型的拟合效果越好. (2)相关指数R 2越大,模型的拟合效果越好.(3)回归方程的拟合效果,可以利用相关系数判断,当|r |越趋近于1时,两变量的线性相关性越强.[题组训练]1.(2019·惠州调研)某商场为了了解毛衣的月销售量y (件)与月平均气温x (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:由表中数据算出线性回归方程y =b x +a 中的b =-2,气象部门预测下个月的平均气温约为6 ℃,据此估计该商场下个月毛衣销售量约为( )A .46件B .40件C .38件D .58件解析:选A 由题中数据,得x =10,y =38,回归直线y ^=b ^x +a ^过点(x ,y ),且b ^=-2,代入得a ^=58,则回归方程y ^=-2x +58,所以当x =6时,y =46,故选A.2.近期,某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每天使用扫码支付的人次,用x 表示活动推出的天数,y 表示每天使用扫码支付的人次,统计数据如下表:根据以上数据,绘制了散点图.参考数据:其中v i =lg y i ,v =17∑i =17v i .(1)根据散点图判断,在推广期内,y =a +bx 与y =c ·d x (c ,d 均为大于零的常数)哪一个适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型(给出判断即可,不必说明理由)?(2)根据(1)的判断结果及上表中数据,建立y 关于x 的回归方程,并预测活动推出第8天使用扫码支付的人次.参考公式:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v ^=α^+β^μ的斜率和截距的最小二乘估计公式分别为β=∑i =1nu i v i -n u v ∑i =1nu 2i -n u2,α^=v -β^U .解:(1)根据散点图可以判断,y =c ·d x 适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型.(2)y =c ·d x 两边同时取常用对数,得lg y =lg(c ·d x )=lg c +x lg d , 设lg y =v ,则v =lg c +x lg d . ∵x =4,v =2.54,∑i =17x 2i =140,∴lg d =∑i =17x i v i -7 x v ∑i =17x 2i -7 x2≈78.12-7×4×2.54140-7×42=0.25,把(4,2.54)代入v =lg c +x lg d ,得lg c =1.54, ∴v ^=1.54+0.25x ,∴y ^=101.54+0.25x =101.54·(100.25)x .把x =8代入上式,得y ^=101.54+0.25×8=103.54=103×100.54=3 470,∴y 关于x 的回归方程为y ^=101.54·(100.25)x ,活动推出第8天使用扫码支付的人次为3 470.考点二 独立性检验[典例] (2018·全国卷Ⅲ节选)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:(2)根据(1)中的列联表,能否有99%的把握认为两种生产方式的效率有差异? 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),[解] (1)由茎叶图知m =79+812=80.列联表如下:(2)因为K 2=40(15×15-5×5)220×20×20×20=10>6.635,所以有99%的把握认为两种生产方式的效率有差异.[解题技法][题组训练]1.(2019·沧州模拟)某班主任对全班50名学生进行了作业量的调查,数据如表:已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025,P (K 2≥6.635)≈0.010.则________(填“有”或“没有”)97.5%的把握认为“学生的性别与认为作业量大 有关”.解析:因为K 2=50×(18×15-8×9)226×24×27×23≈5.059>5.024,所以有97.5%的把握认为“学生的性别与认为作业量大有关”. 答案:有2.为考察某种疫苗预防疾病的效果,进行动物试验,得到统计数据如下:现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为25.(1)求2×2列联表中的数据x ,y ,A ,B 的值.(2)绘制发病率的条形统计图,并判断疫苗是否影响到了发病率?(3)能否在犯错误的概率不超过0.001的前提下认为疫苗有效? 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .临界值表:解:(1)设“从所有试验动物中任取一只,取到‘注射疫苗’动物”为事件M , 由已知得P (M )=y +30100=25,所以y =10,则B =40,x =40,A =60. (2)未注射疫苗发病率为4060=23≈0.67,注射疫苗发病率为1040=14=0.25.发病率的条形统计图如图所示,由图可以看出疫苗影响到了发病率.(3)因为K 2=100×(20×10-40×30)260×40×50×50≈16.67>10.828.所以能在犯错误的概率不超过0.001的前提下认为疫苗有效.[课时跟踪检测]A 级1.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图如图①,对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图如图②.由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关解析:选C 由散点图可得两组数据均线性相关,且图①的线性回归方程斜率为负,图②的线性回归方程斜率为正,则由散点图可判断变量x 与y 负相关,u 与v 正相关.2.(2019·长沙模拟)为了解某社区居民购买水果和牛奶的年支出费用与购买食品的年支出费用的关系,随机调查了该社区5户家庭,得到如下统计表:根据上表可得回归方程y =b x +a ,其中b =0.59,a =y -b x ,据此估计,该社区一户购买食品的年支出费用为3.00万元的家庭购买水果和牛奶的年支出费用约为( )A .1.795万元B .2.555万元C .1.915万元D .1.945万元解析:选A x =15×(2.09+2.15+2.50+2.84+2.92)=2.50(万元),y =15×(1.25+1.30+1.50+1.70+1.75)=1.50(万元),其中b ^=0.59,则a ^=y -b ^ x =0.025,y ^=0.59x +0.025,故年支出费用为3.00万元的家庭购买水果和牛奶的年支出费用约为y ^=0.59×3.00+0.025=1.795(万元).3.下面四个命题中,错误的是( )A .从匀速传递的产品生产流水线上,质检员每15分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样B .对分类变量X 与Y 的随机变量K 2的观测值k 来说,k 越大,“X 与Y 有关系”的把握程度越大C .两个随机变量相关性越强,则相关系数的绝对值越接近于0D .在回归直线方程y ^=0.4x +12中,当解释变量x 每增加一个单位时,预报变量平均增加0.4个单位解析:选C 两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1,故C 错误.4.春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:附表及公式:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .A .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”B .在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别无关”C .在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别有关”D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”解析:选A 由列联表得到a =45,b =10,c =30,d =15,则a +b =55,c +d =45,a +c =75,b +d =25,ad =675,bc =300,n =100,计算得K 2的观测值k = n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=100×(675-300)255×45×75×25≈3.030.因为2.706<3.030<3.841,所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”.5.为了研究工人的日平均工作量是否与年龄有关,从某工厂抽取了100名工人,且规定日平均生产件数不少于80件者为“生产能手”,列出的2×2列联表如下:有________以上的把握认为“工人是否为‘生产能手’与工人的年龄有关”. 解析:由2×2列联表可知,K 2=100×(25×30-10×35)240×60×35×65≈2.93,因为2.93>2.706,所以有90%以上的把握认为“工人是否为‘生产能手’与工人的年龄有关”.答案:90%6.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:则y 关于t 的回归方程是________________.解析:由表中数据得n =5,t =1n ∑i =1n t i =155=3,y =1n ∑i =1n y i =365=7.2.又∑i =1nt 2i -n t 2=55-5×32=10, ∑i =1nt i y i -n t y =120-5×3×7.2=12.从而b ^=∑i =1nt i y i -n t y ∑i =1nt 2i -n t2=1210=1.2, a ^=y -b ^t =7.2-1.2×3=3.6, 故所求回归方程为y ^=1.2t +3.6. 答案:y ^=1.2t +3.67.某电视厂家准备在元旦举行促销活动,现根据近七年的广告费与销售量的数据确定此次广告费支出.广告费支出x (万元)和销售量y (万台)的数据如下:(2)若用y =c +d x 模型拟合y 与x 的关系,可得回归方程y ^=1.63+0.99x ,经计算线性回归模型和该模型的R 2分别约为0.75和0.88,请用R 2说明选择哪个回归模型更好;(3)已知利润z 与x ,y 的关系为z =200y -x .根据(2)的结果,求当广告费x =20时,销售量及利润的预报值.参考公式:回归直线y ^=a ^+b ^x 的斜率和截距的最小二乘估计分别为b ^=∑i =1nx i y i -n x y ∑i =1nx 2i -n x2=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2,a ^=y -b ^x .参考数据:5≈2.24.解:(1)∵x =8,y =4.2,∑i =17x i y i =279.4,∑i =17x 2i =708,∴b ^=∑i =17x i y i -7x y∑i =17x 2i -7x2=279.4-7×8×4.2708-7×82=0.17,a ^=y -b ^x =4.2-0.17×8=2.84, ∴y 关于x 的线性回归方程为y ^=0.17x +2.84.(2)∵0.75<0.88且R 2越大,反映残差平方和越小,模型的拟合效果越好, ∴选用y ^=1.63+0.99x 更好.(3)由(2)知,当x =20时,销售量的预报值y ^=1.63+0.9920≈6.07(万台),利润的预报值z =200×(1.63+0.9920)-20≈1 193.04(万元).B 级1.(2018·江门一模)为探索课堂教学改革,江门某中学数学老师用“传统教学”和“导学案”两种教学方式分别在甲、乙两个平行班进行教学实验.为了解教学效果,期末考试后,分别从两个班级各随机抽取20名学生的成绩进行统计,得到如下茎叶图.记成绩不低于70分者为“成绩优良”.(1)请大致判断哪种教学方式的教学效果更佳,并说明理由;(2)构造一个教学方式与成绩优良的2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .临界值表:解:(1)“理由1:乙班样本数学成绩大多在70分以上,甲班样本数学成绩70分以下的明显更多. 理由2:甲班样本数学成绩的平均分为70.2;乙班样本数学成绩的平均分为79.05. 理由3:甲班样本数学成绩的中位数为68+722=70,乙班样本数学成绩的中位数为77+782=77.5. (2)2×2列联表如下:由上表数据可得K 2=40×(10×4-10×16)20×20×26×14≈3.956>3.841,所以能在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”.2.(2019·广州调研)某基地蔬菜大棚采用无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (单位:小时)都在30小时以上,其中不足50小时的有5周,不低于50小时且不超过70小时的有35周,超过70小时的有10周.根据统计,该基地的西红柿增加量y (千克)与使用某种液体肥料的质量x (千克)之间的对应数据为如图所示的折线图.(1)依据折线图计算相关系数r (精确到0.01),并据此判断是否可用线性回归模型拟合y 与x 的关系;(若|r |>0.75,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较高,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪运行台数受周光照量X 限制,并有如下关系:元;若某台光照控制仪未运行,则该台光照控制仪周亏损1 000元.若商家安装了3台光照控制仪,求商家在过去50周的周总利润的平均值.相关系数公式:r =∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2∑i =1n(y i -y )2,参考数据:0.3≈0.55,0.9≈0.95.解:(1)由已知数据可得x =2+4+5+6+85=5,y =3+4+4+4+55=4.因为∑i =15(x i -x )(y i -y )=(-3)×(-1)+0+0+0+3×1=6,∑i =15(x i -x )2=(-3)2+(-1)2+02+12+32=25,∑i =15(y i -y )2=(-1)2+02+02+02+12=2,所以相关系数r =∑i =15(x i -x )(y i -y )∑i =15(x i -x )2∑i =15(y i -y )2=625×2=0.9≈0.95. 因为|r |>0.75,所以可用线性回归模型拟合y 与x 的关系. (2)由条件可得在过去50周里,当X >70时,共有10周,此时只有1台光照控制仪运行, 每周的周总利润为1×3 000-2×1 000=1 000(元). 当50≤X ≤70时,共有35周,此时有2台光照控制仪运行, 每周的周总利润为2×3 000-1×1 000=5 000(元). 当30<X <50时,共有5周,此时3台光照控制仪都运行, 每周的周总利润为3×3 000=9 000(元). 所以过去50周的周总利润的平均值为 1 000×10+5 000×35+9 000×550=4 600(元),所以商家在过去50周的周总利润的平均值为4 600元.。

八年级上数学第四章一次函数全章导学案

八年级上数学第四章一次函数全章导学案

铁厂中学高效课堂数学导学案第四章:一次函数 4.1 函数年级: 八年级 班级: 学生姓名: 制作人:李兴林 学习目标:1.知道什么是函数;2.了解函数的意义,会举出函数的实例,并能写出简单的函数关系式.学习过程:(一)自主预习 1.常量与变量(1)在某一个变化过程中,数值发生变化的量,我们称之为变量. (2)数值始终不变的量,我们称之为常量. 2. 函数定义(1)一般地,如果在一个变化过程中,有两个变量,例如x 和y ,对于x 的每一个值,y 都有惟一的值与之对应,我们称y 是x 的函数.其中x 是自变量,y 是因变量.(2)如果当x=a 时,y=b,那么b 叫做当自变量的值为a 时的函数值. 3.函数的图像【剖析】:一般地,对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,即(x ,y )那么坐标平面内有这些点组成的图形,就是这个函数的图像。

其中点(x ,y ) 它的横坐标x 表示自变量的某一个值,纵坐标y 表示与它对应的函数值. (二)精讲点拨【例1】写出下列各问题中的关系式,并指出其中的常量与变量: (1)圆的周长C 与半径r 的关系式;(2)火车以60千米/时的速度行驶,它驶过的路程s (千米)和所用时间t (时)的关系式;(3)n 边形的内角和S 与边数n 的关系式. 【例2】下列表达式是函数吗?若是函数,指出自变量与函数,若不是函数,请说明理由:4.能根据自变量的值求对应的函数值 【例3】求下列函数当 时的函数值:(1)(2)(3)(4)(三)小组合作学习1、一个水池接有甲、乙、丙三个水管,先打开甲,一段时间后再打开乙,水池注满水后关闭甲,同时打开丙,直到水池中的水排空.水池中的水量)(3m v 与时间)(h t 之间的函数关系如图,则关于三个水管每小时的水流量,下列判断正确的是( ) A .乙>甲 B . 丙>甲 C .甲>乙 D .丙>乙2、函数y =x 的取值范围是( ).A .2x >-B .2x -≥C .2x ≠-D .2x -≤[今日事,今日毕,日积月累成大器]3、(2009年贵州黔东南州)如图,在凯里一中学生耐力测试比赛中,甲、乙两学生测试的路程s (米)与时间t (秒)之间的函数关系的图象分别为折线OABC 和线段OD ,下列说法正确的是( )A.乙比甲先到终点B.乙测试的速度随时间增加而增大C.比赛进行到29.4秒时,两人出发后第一次相遇D.比赛全程甲的测试速度始终比乙的测试速度快4、(2009重庆綦江)如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( ) A .3 B .4 C .5 D .6 (四)检测巩固 一、选择题 1. 某同学在做电学实验时,记录下电压(伏特)与电流(安培)有如下对应关系:请你估计,若电流是5安培时,电压为( )伏特. A 、10.5 B 、6 C 、80 D 、182.三角形的一条边长为a ,这条边上的高为h ,h 为常量,已知当a=6时,三角形面积S=12,则当a=4时,S 的值为( ). A 、4 B 、6 C 、8 D 、103. 某中学要在校园内划出一块面积是100cm 2的矩形土地做花圃,设这个矩形的相邻两边的长分别为xm 和ym ,那么y 关于x 的函数关系式可表示为( ). A 、y=100x B 、y= 100 – x C 、y=50 – x D 、4.一个正方形的周长p (cm )与这个正方形的面积S (cm 2)之间的关系为( ).A 、S=4p 2B 、S= p 2C 、162p s =D 、42p s =(五)、小结图1 D图2铁厂中学高效课堂数学导学案4.2 一次函数年级:八年级班级:学生姓名:制作人:李兴林学习目标1.理解一次函数、正比例函数的概念.2.根据实际问题列出简单的一次函数的表达式.学习过程(一)自主预习1.正比例函数【剖析】(1)一般地,形如y=kx(k是常数且k≠0)的函数,叫做正比例函数,其中k叫比例系数.2. 一次函数【剖析】(1)一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数.(2)当b=0时, y=kx+b即为y=kx,所以说正比例函数是特殊的一次函数.(二)精讲点拨1.一次函数的判断【例1】下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);(2)长为8(cm)的平行四边形的周长L(cm)与宽b(cm);(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).2.一次函数、正比例函数的定义【例2】已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.(三)合作学习1、已知函数y=(5m-3)x2-n2+(n+1),当m、n为何值时,这个函数(1)是一次函数;(2)是正比例函数.2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费.设每户每月用水量为x米3,应缴水费y元.(1)写出每月用水量不超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数.(2)已知某户5月份的用水量为8米3,求该用户5月份的水费.3、(2009湖北宜昌)由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V(万米3)与干旱的时间t(天)的关系如图所示,则下列说法正确的是( ).A.干旱开始后,蓄水量每天减少20万米3B.干旱开始后,蓄水量每天增加20万米3C.干旱开始时,蓄水量为200万米3D.干旱第50天时,蓄水量为1 200万米34、已知y与x-3成正比例,当x=4时,y=3.(1)写出y与x之间的函数关系式;(2)y与x之间是什么函数关系;(3)求x=2.5时,y的值.[今日事,今日毕,日积月累成大器](四)检测巩固一、选择题1.油箱有油40升,油从管道中匀速流出,100秒可流完,油箱中剩油量Q (升)与流出时间t (秒)间的函数关系式是( )A 、Q=40-52tB 、Q=40+25t C 、Q=40-25t D 、Q=25t 2.已知等腰三角形周长20cm ,将底边长y (cm )表示成腰长x (cm )的函数关系式是y=20-2x ,则自变量x 取值范围是( )A 、0<x <10B 、5<x <10C 、一切实数D 、x >03.下列函数(1)y=πx (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x 2-1中,是一次函数的有( )A 、4个B 、3个C 、2个D 、1个 4.一次函数y=kx+b 中,k 为( )A 、非零实数B 、正实数C 、非负实数D 、任意实数 二、填空题1. 某音像社对外出租光盘的收费方法是:每张光盘在租出后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在租出的第n 天(n 是大于2的自然数)应收租金 元.2.已知某种商品买入价为x 元,销售价为y 元,毛利率为45%(毛利率=100%⨯销售价-买入价买入价),则y 关于x 的函数解析式为 .3. 已知y=28(3)mm x --,y 是x 的正比例函数,则m 的值为 .4.如果等腰三角形顶角为x 度,底角为y 度,则y 关于x 的函数关系式为 . 三、解答题1.已知y -3与x 成正比例,且x =2时,y =7 (1)写出y 与x 之间的函数关系. (2)y 与x 之间是什么函数关系. (3)计算y =-4时x 的值.2.甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元,求总邮资y (元)与包裹重量x (千克)之间的函数解析式,并计算5千克重的包裹的邮资.(五)小结铁厂中学高效课堂数学导学案4.3 一次函数的图象年级: 八年级 班级: 学生姓名: 制作人:李兴林 学习目标1、 会画一次函数的图像;2、 知道一次函数的性质。

七年级数学《生活中的常量与变量》导学案

七年级数学《生活中的常量与变量》导学案

七年级数学《生活中的常量与变量》导学案第一课时【学习目标】1、了解常量、变量的概念,并用关系式表示某些变量之间的关系;2、通过对变量、常量的学习,尝试探索变量之间的对应关系,体验客观世界中的运动和变化;3、会在简单的过程中识别常量和变量。

【学习重点、难点】重点:1、探索具体情境中常量与变量之间的关系过程.2、用关系式表示变量之间的关系难点:区分具体问题中的常量、变量【学习方法】观察、发现、探究【学习过程】一、创设情景,引入新课.问题1:同学们,我们都有过自己购买图书的经历,接下来我将带大家一起用数学的眼光重新思考下这个问题。

若一种杂志每册5.80元,请完成下列表格:总价(元) …y没有发生改变?(2)、如果把y用关于x的代数式表示出来,y= 。

问题2:(1)在5.3节中,小亮的智力竞赛中答对了x个题,得分是100+10x,如果用y(分)代表小亮的得分,则y= 。

①计算当x取下列数值时y的值,并填写下表:答对的题数x/个 1 2 3 4 5 得分y/分(2)如图:一长方形的推拉窗,窗扇高1.5米,若活动窗扇拉开的距离为x米,拉开后的通风面积为y平方米,则y用关于x的代数式表示为y= 。

(3)小亮设计了一个计算机程序,输入和输出的数据如下表:输入(x) … 1 2 3 4 …输出(y) …1/2 2/5 3/8 4/11 …输出的数据y怎样用关于x的代数式表示?(4)在问题(1)、(2)、(3)中,哪些量保持不变?哪些量可以取不同的数值?分别把它们指出来。

二、观察思考。

由上述两个问题我们可以看出在一个过程中,有些量是固定不变的,通常,我们把在某一问题中,保持不变的量叫做常量。

有些量则是会发生改变的,也就是能取不同的数值。

在某一问题中,可以取不同数值的量,叫做变量。

三、辨析定义,尝试应用。

1、一台机器上的轮子的转速为60转/分,轮子旋转的转数n(单位:转)与时间t(单位:分)之间的关系为n=60t,其中常量是,变量是。

高中数学变量间关联教案

高中数学变量间关联教案

高中数学变量间关联教案
教学目标:
1. 熟练掌握变量间的关联性概念;
2. 能够运用相关概念解决实际问题;
3. 提高学生的数学推理和解决问题能力。

教学内容:
1. 变量间的关联性概念介绍;
2. 如何判断变量之间的关联程度;
3. 使用相关系数等工具进行变量间的关联性分析。

教学步骤:
一、导入(5分钟)
通过一个实际的例子引入变量间的关联性概念,激发学生的思考和探索欲望。

二、概念讲解(15分钟)
1. 讲解变量的概念及其分类;
2. 介绍相关系数的定义和计算方法;
3. 分析变量之间的线性关联和非线性关联。

三、案例分析(20分钟)
1. 案例一:某城市的降雨量和地表径流量之间的关系;
2. 案例二:身高和体重之间的关联性分析。

四、实践操作(15分钟)
让学生自行从网上或书籍中搜索相关数据,利用相关系数等工具对两个变量之间的关联性进行分析。

五、总结与展望(5分钟)
总结今天的学习内容,鼓励学生多关注身边的变量间的关联关系,培养数学思维。

教学评估:
1. 学生对变量间关联性概念的理解;
2. 学生分析案例的能力;
3. 学生的实践操作结果和分析能力。

拓展延伸:
1. 鼓励学生自主探索更多关于变量间关联性的案例;
2. 可以让学生设计自己的实验或调查,收集数据进行相关性分析;
3. 拓展学生的数学思维,探讨更多实际应用场景下变量间的关联性。

(注:以上内容仅供参考,具体实施时应根据学生实际情况做出调整。

)。

第四章变量之间的关系导学案(北师大七年级下)(李兴林)

第四章变量之间的关系导学案(北师大七年级下)(李兴林)

第四章变量之间的关系§4.1 用表格表示的变量关系年级:七年级班级:学生姓名:制作人:李兴林一、学习目标:(1分钟)1、知道变量、因变量、自变量和常量的概念;2、能从表格中获得变量之间的关系的信息;3、会用表格表示变量之间的关系。

二、自主探究:(10分钟)(一)、预习教材P96~P97(二)、思考:什么是变量?什么是自变量?什么是因变量?(三)、预习作业:1(1(2)根据表中的数据,你认为老师在第____分钟提出观念比较适宜?说出你的理由.三、学习引导:(15分钟)(一)要点引导:(2分钟)1、在一个变化过程中数值保持不变的量叫做______可以取不同数值的量叫做______,如果一个量随着另外一个量的变化而变化,那么把这个量叫做______,另一个量叫做______.2、本节是通过______形式来表示两个变量之间的关系的.(1)支撑物高度为70厘米时,小车下滑时间是多少?(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?(3)h每增加10厘米,t的变化情况相同吗?(4)估计当h=110时,t的值是多少,你是怎样估计的?(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?(3)当t每增加1秒时,v的变化情况相同吗?在哪1秒钟内,v的增加最大?(4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?2、下表是明明商行某商品的销售情况,该商品原价为560元,随着不同幅度的降价(单位:元),日销量(1)上表反映了哪两个变量之间的关系?其中那个是自变量,哪个是因变量?(2)每降价5元,日销量增加多少件?请你估计降价之前的日销量是多少?(3)如果售价为500元时,日销量为多少?四、小组合作学习:(18分钟)1、完成教材第97页随堂练习:(5分钟)2、完成教材第97-99页习题:(13分钟)五、回顾小结:(2分钟)§4.2 用关系式表示的变量间的关系班级: 学生姓名: 制作人:李兴林1、探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感;2、能根据具体情景,用关系式表示某些变量之间的关系。

变量间的关系教案

变量间的关系教案

变量间的关系教案教案标题:变量间的关系教学目标:1. 学生能够理解变量在数学和科学中的含义及其相互关系。

2. 学生能够使用适当的方法和图形来表示和解释变量间的关系。

3. 学生能够应用变量之间的关系来解决实际问题。

教学重点:1. 变量的定义和使用。

2. 不同变量之间的关系及其表示方法。

3. 解决实际问题时如何应用变量之间的关系。

教学准备:1. 教师准备一份变量之间关系的参考资料,包括图表和实际问题的例子。

2. 学生准备纸和笔,在课堂上进行实际问题的解决。

教学过程:引入:(5分钟)教师向学生提出以下问题:“你有没有听说过变量?在什么情况下我们会用到变量?”鼓励学生自由发表意见,并引导他们对变量的定义进行讨论。

讲解变量的定义和使用:(15分钟)教师给出变量的定义,例如“在数学和科学中,变量是用来代表不确定或可能改变的数量或属性的符号或字母。

”并给出一些常见的变量符号,例如x和y。

教师通过示例和解释展示变量在不同问题中的使用方法。

介绍变量之间的关系:(20分钟)教师向学生介绍不同变量之间的关系,包括正比例、反比例和无关系。

通过图表和图形的展示,帮助学生理解变量之间的关系模式,并引导学生尝试描述和解释图表中的变化趋势。

练习实际问题解决:(20分钟)教师提供一些实际问题,要求学生使用变量之间的关系来解决问题。

例如:“一家工厂生产的产品数量与工人数目成正比,当工人数目为8人时,每天能生产20个产品。

请写出这个变量关系的公式,并求出10个工人能生产的产品数量。

”鼓励学生自己思考解决方法,并互相讨论和交流。

总结:(10分钟)教师引导学生进行讨论和总结,回顾变量之间的关系以及在实际问题中的应用。

教师可以提出一些思考问题,激发学生对变量和变量关系的深入思考。

作业布置:要求学生完成一些实际问题的解决,并用变量关系的方法来表示和解释解决过程。

同时,鼓励学生自己寻找一些实际问题,并使用变量关系的方法进行分析和解决。

教学延伸:(可选)教师可引导学生进一步探索不同变量关系的图像表示,例如正比例关系的直线图和反比例关系的曲线图。

北师大版七年级下第三章变量之间的关系全章导学案

北师大版七年级下第三章变量之间的关系全章导学案

3.1用表格表示的变量间的关系导学案学习目标、重点、难点【学习目标】1、在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间相依关系的例子.2、能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并能根据表格中的数据尝试对变化趋势进行初步的预测.【重点难点】重点:能从表格中发现变量之间存在的关系,并能用自己的语言描述出来难点:通过具体情境理解变量、自变量与因变量的概念,并能运用变量之间的思想描述我们所生活的世界中的变化. 知识概览图变量⎭⎬⎫⎩⎨⎧因变量自变量用表格表示两个变量之间的关系新课导引在现实生活中,我们通过观察可以知道许多量都与另外一个量或几个量有着密切的联系.如在行程问题中,路程与时间、速度的关系;在图形的周长、面积问题中,圆的周长、面积与半径的关系等.教材精华知识点1 常量与变量在某个变化过程中,保持同一数值的量叫常量,可以取不同数值的量叫变量.例如在圆的面积公式S =2r π中,圆周率π是保持同一数值的量,即常量,而半径r 和面积S 可以取不同的数值,所以r 和S 就是变量.【拓展】常量与变量往往是相对的,相对于某个变化过程.比如s ,v ,t ,三者之间,在不同的研究过程中,作为变量与常量的“身份”是可以相互转换的.知识点2 自变量与因变量在客观世界中,存在着各种各样的量,这些量几乎都是变化着的.例如在路程确定的情况下,不同运动员的奔跑速度决定他们各自所用的时间,所用的时间受速度的制约,所用时间随速度的变化而变化.我们就说速度是自变量,时间是因变量.(1)在一个变化过程中,主动发生变化的量是自变量,受其他变量的影响而发生变化的量是因变量.(2)自变量和因变量是相对的,在某个变化过程中是自变量,而在另一个变化过程中可能是因变量.知识点3 借助表格表示两个变量的关系我们可以借助表格表示因变量随自变量的变化而变化的情况,反映两个变量之间的关系,并从表格上获取一些信息,或对某些问题作出相关的预测.例如,表1是我国体育健儿在几届奥运会上所获奖牌总数的情况.表1我们可以把统计表1叫做是一个反映两个变量之间关系的表格,其中时间(年)是自变量,奖牌总数是因变量.课堂检测基本概念题1、下列各题中,哪些量在发生变化?其中的自变量与因变量各是什么?(1)用总长为60 m的篱笆围成一个边长为l(m),面积为S(m2)的长方形场地;(2)正方形的边长是3,若边长增加x,则面积增加y.基础知识应用题2、小红帮助母亲预算4月份的用电量,小红记录了4月初连续8天每天早上电表显示的读数,列成的表格如下:(1)这个表格反映哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)4月5日早上电表的读数是多少?(3)这个月的前5天共用电多少?(小红家每天只在晚上用电) (4)估计在4月9日早上电表的读数是多少; (5)估计4月份的总用电量.3、某商店出售一种瓜子,数量x 与售价C 之间的关系如下表:表内售价栏中的0.05是塑料袋的价钱. (1)试用含x ,的代数式表示C ;(2)若一位顾客购买350克瓜子,请你帮他计算一下应付多少元钱.探索创新题4、下表记录了我国几个城市在夏季某月某日的最高气温.这不是表示两个变量之间关系的表格.请你根据影响气温的主要因素,把这个表格改为一个在一定程度上表示两个变量之间关系的表格,并回答下列问题.(1)自变量和因变量各是什么?(2)随着自变量逐渐变大,因变量的变化趋势是什么?体验中考1、(09·吉林)小敏家距学校1200米,某天小敏从家里出发骑自行车上学,开始她以每分钟V1米的速度匀速行驶了600米,遇到交通堵塞,耽搁了3分钟,然后以每分钟V2米的速度匀速前进一直到学校(V1<V2),你认为小敏离家的距离y与时间x之间的关系图象大致是图6-1中的( )学后反思附: 课堂检测及体验中考答案 课堂检测1、【解析】变量比较容易找,关键是自变量的找法,审清题意,先找出发生变化的 那一个量.解:(1)边长l ,面积S 都在发生变化,其中l 是自变量,S 是因变量. (2)增加的边长x ,增加的面积y 都在发生变化,其x 是自变量,y 是因变量.2、【解析】(1)在表示变量之间关系的表格中,第一行是自变量的数值,第二行是因变量的数值.(2)表格中同一列上的两个数是自变量与因变量的一组对应值.(3)由于每天早上记录电表读数,所以要想知道5天共用了多少电,应该用第6天的读数减去第1天的读数.(4)为了估计第9天电表的读数,应该知道每天大约用多少电.(5)可以根据前7天的用电量估计这个月的用电量.【解题方法】 (1)所给表格实质上是反映了用电天数与用电量之间的关系.(2)上面估计4月份的用电量实际上是利用了求平均数的方法,也可以用其他方法求.解:(1)这个表格反映日期与电表读数这两个变量之间的关系,日期是自变量,电表读数是因变量.(2)4月5日早上电表的读数是35千瓦时.(3)39—21=18,即这个月的前5天共用电18千瓦时. (4)估计4月9日早上电表的读数为49或50.(5)(46—21)÷7×30≈107(千瓦时).3、【解析】 因在表中C 这一栏中的数是两部分的和,所以先看“+”号前的部分与x 的关系:==20080.110090.0…=10009元,也就是说每卖1000克瓜子,售价为9元,因此,得前一部分是x 10009,再加上0.05,得C =x 10009+0.05. 解:(1)由图表可知每100克瓜子售价0.90元,所以每1000克售价9元.故C =x 10009+0.05. (2)当x = 350时,C =x 10009+0.05=⨯10009350+0.05=3.20(元).答:这位顾客应付3.20元钱。

271导学案.第1辑.七年级数学.下.配BS版

271导学案.第1辑.七年级数学.下.配BS版
第 2 课时
多项式除以单项式 …………… 0 2 1
第一章复习学案 ………………………………… 0 2 3
第二章 相交线与平行线 第一章 整式的乘除
第1节 第2节 同底数幂的乘法 ……………………… 0 0 1 幂的乘方与积的乘方 第1节 两条直线的位置关系
第 1 课时 第 2 课时
第2节
两条直线的位置关系 ( 一) …… 0 2 5 两条直线的位置关系 ( 二) …… 0 2 7
第2节 第3节
认识三角形 ( 一 )……………… 0 3 9 认识三角形 ( 二 )……………… 0 4 1 认识三角形 ( 三 )……………… 0 4 3 认识三角形 ( 四 )……………… 0 4 5
完全平方公式
第 1 课时 第 2 课时
第7节
完全平方公式 ………………… 0 1 7 完全平方公式的拓展应用 …… 0 1 9
………… 0 5 9 ……… 0 6 1
第 1 课时 第 2 课时
第3节
事件发生的频率 ……………… 0 8 4 事件发生的概率 ……………… 0 8 5 等可能事件的概率 ( 一) ……… 0 8 6 等可能事件的概率 ( 二) ……… 0 8 8
等可能事件的概率
第 1 课时 第 2 课时
第 1 课时 第 2 课时
用尺规作角 …………………………… 0 3 6
第二章复习学案 ………………………………… 0 3 7
第三章 三角形
第1节 认识三角形
平方差公式
第 1 课时 第 2 课时
第6节
平方差公式 …………………… 0 1 5 平方差公式的验证及应用 …… 0 1 6
第 1 课时 第 2 课时 第 3 课时 第 4 课时

第四章 一次函数回顾与思考导学案

第四章 一次函数回顾与思考导学案

第四章 一次函数回顾与思考导学案课型:新授课 主备人:何平年 审核人: 审核时间学习目标1.进一步感受生活中的常量与变量,领会变量之间的相互依存和制约的函数关系;2.进一步明确函数表示法的灵活性与多样性;3.进一步领会一次函数的定义、图象、性质、应用以及它与正比例函数的关系;4.进一步感知本章课本体现和渗透的重要数学思想方法。

学习难点方程和函数之间的对应关系即数形结合的意识和能力.学习过程一、自主预习:1.复习本章所学相关知识,然后梳理本章基础知识。

2.求下列函数中自变量x 的取值范围:(1)y=2x+3;(2)y=-3x 2 (3)11y x =+ (4)y =3.函数y=5-8x 中,y 随x 的增大而___________,当x =-0.5时,y=_____4.函数3x 21y -=的图象不经过_____象限,它与x 轴的交点坐标是_______,它与y 轴的交点的坐标是_______,与两坐标轴围成的三角形面积是_____。

5.方程组⎩⎨⎧+==-3214x y y x 的解是 ,则一次函数y=4x -1与y=2x+3的图象交点为 。

二、合作研讨:(一)讲授新课1.本章知识网络结构图:(见课本)2.知识点回顾(1)函数的概念及举例。

(2)一次函数,正比例函数的概念及联系。

(3)函数图象的概念,一次函数图象的特征,怎样作一次函数的图象。

一次函数图象的性质(y=kx+b ,b ≠0)①一次函数的图象不过原点,和两坐标轴相交,它是一条直线。

②一次函数图象由k 、b 共同确定,具体情形略。

且当k>0时,y 的值随x 的增大而增大;当k<0时,y 的值随x 的增大而减小。

③作一次函数y=kx+b 的图象时,一般找(0,b )和(-b/k ,0)两点,作正比例函数y=kx 的图象时,一般找(0,0)和(1,k )两点。

(二)例题讲解例1、填空题:(1)有下列函数:①56-=x y ;②x y 2=;③44+=x y ;④34+-=x y 。

4.1.2 函数与方程(2)导学案(学生版)

4.1.2   函数与方程(2)导学案(学生版)

kkk2>0,例3、答案 是5162m -<<-三、课后知能检测答案1.A2.B.3B4.B.5、由y =x -1=0,得x =1,故交点坐标为(1,0),零点是1.【答案】 C 6、【解析】 由题意知,Δ=4-4a <0,∴a >1. 【答案】 B 7、【解析】 ∵f (12)=e 12-2<0,f (1)=e -1>0,∴f (12)·f (1)<0,∴f (x )=e x -1x 的零点所在的区间是(12,1).【答案】 B8、令x 2+2x -3=0,得x =-3或1,将y =x 2+2x -3配方可知顶点坐标为(-1,-4). 【答案】 D9、【解析】 由于f (2)=ln 2-2<0,f (3)=ln 3>0.且函数f (x )在[2,3]上连续,所以f (x )的零点x 0所属区间是(2,3).【答案】 B10、 由于方程2x 2-4x -3=0的Δ=16+24=40>0,所以函数有两个零点.【答案】 C11、【解】 (1)当a =0时,函数为y =-x -1,显然该函数的图像与x 轴只有一个交点,即函数只有一个零点.(2)当a ≠0时,函数y =ax 2-x -1是二次函数.因为y =ax 2-x -1只有一个零点,所以关于x 的方程ax 2-x -1=0有两个相等的实数根, 所以Δ=0,即1+4a =0,12、a<b<c13【自主解答】 (1)当a =0时,方程即为-2x +1=0,只有一根,不符合题意. (2)当a >0时,设f (x )=ax 2-2x +1,∵方程的根分别在区间(0,1),(1,2)上, ∴⎩⎪⎨⎪⎧ f (0)>0,f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧1>0,a -2+1<0,4a -4+1>0,解得34<a <1.(3)当a <0时,设方程的两根为x 1,x 2,则x 1·x 2=1a <0,x 1,x 2一正一负不符合题意.综上,a 的取值范围为(34,1).。

第四章 一次函数 导学案

第四章   一次函数 导学案

子洲三中 “双主”高效课堂 数学 导学案2014-2015学年第一学期 姓名:组名: 使用时间2014年 月日年 级科 目课 题主 备 人 备 课 方 式负责人(签字) 审核领导(签字) 序号八(3) 数学第1节 函数乔智一、【学习目标】1、初步掌握函数概念,能判断两个变量间的关系是否可以看成函数;2、根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值;3、了解函数的三种表示方法。

二、【学习过程】 (一)、学习准备 1、在一个变化过程中,我们把数值发生变化的量称为 ,把数值保持不变的量称为 。

2、表示两个变量之间关系的方法有 、 、 。

3、在平面内,两条互相垂直且有公共原点的数轴组成 。

水平的数轴叫做 ,铅直的数轴叫做 。

两条数轴的交点O 称为直角坐标系的 。

4、阅读教材:第1节《函数》 (二)、教材精读5、理解函数的概念(各位同学请你们认真阅读教材,思考并完成下列三个问题。

相信自己一定能行!)问题1:摩天轮上一点的高度h 与旋转时间t 之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h (米)之间的关系.解:⑴观察右图,共 个变量,自变量是 ,因变量是 。

⑵当t=3时,相应的h= ;当t=6时,相应的h= ;当t=10时,相应的h= ;给定一个t值,你都能找到相应的h 值吗?问题2 .在平整的路面上,某型号汽车紧急刹车后仍将滑行S 米,一般地有经验公式2300v s =,其中v 表示刹车前汽车的速度(单位:千米/时). 解:(1)公式中有 个变量。

当v=50时,s= ;当v=60时,s= ;当v=100时,s= ; (2)给定一个v 值,你都能求出相应的s 值吗?问题3.如图,搭一个正方形需要4根火柴棒,按图中方式,动手做一做,完成下表:解:(1)(2)表格中有 个变量;按图中方式搭100个正方形,需要 根火柴棒;若搭n 个正方形,需要 根火柴棒。

归纳:一般地,如果在一个变化过程中有两个变量x 和y ,并且对于变量x 的每一个值,变量y 都有唯一的值与它对应,那么我们称 。

变量之间的相关关系导学案

变量之间的相关关系导学案

2.3.1变量之间的相关关系(一、二)学习目标1、通过收集现实问题中两个有关联变量的数据认识变量间的相关关系;2、明确事物间的相互关系,现实生活中的变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,了解相关关系与函数关系的异同点;教学重、难点:通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系、相关关系与函数关系的异同点。

自主学习1、变量与变量之间的关系常见的有两类:一类是,如;一类是,即当自变量的取值一定,因变量取值带有一定的随机性,这样的两个变量之间的关系称为____________。

合作探究补充:对于两个变量,如果当一个变量的取值一定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系。

探究一:在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?探究二:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描述生活中两个变量之间的这种关系的成语吗?探究三:上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何?以及对于一个变量,可以控制其数量大小的变量称为可控变量,否则称为随机变量,那么相关关系中的两个变量有哪种类型?探究四:相关关系与函数关系的异同点?课堂小结对于两个变量之间的关系,有函数关系和相关关系两种,其中函数关系是一种确定性关系,相关关系是一种非确定性关系。

课后反思1,下列关系中,是带有随机性相关关系的是①正方形的边长面积之间的关系;②水稻产量与施肥量之间的关系;③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系。

2,下列关系不属于相关关系的是(B)A人的年龄和身高B求的表面积与体积C家庭的收入与支出D人的年龄与体积。

初中数学八年级上册第四章 一次函数函数导学案

初中数学八年级上册第四章 一次函数函数导学案

函数一、课堂探究1.某运动员在110m跨栏比赛中的平均速度达到8m/s,请了解本场比赛中他在每一时刻所跑过的路程?问1:有几个变量?问2:给定一个x的值,能得到y值吗?能得到几个?2.跳远运动员按一定起跳姿势,其跳远的距离s(米)与助跑速度v (米/秒)有关. 根据经验,跳远的距离s=(0<v<),计算当v分别为1,10时,相应的跳远距离s.(1)当v =1时,s= 米;(2)当v =10时,s= 米.3.由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V(万米3)与干旱的时间t(天)的关系如图所示(1)当v =1时,s= 米;(2)当v =10时,s= 米.二、归纳新知一般地,在一个过程中,如果有x和y,并且对于x的每一个确定的值,y都有的值与之对应,则y是x的函数,x是。

函数可以通过哪些形式表示、、三、课中练习1.请你举一个函数的例子2.判断下列y是x的函数吗?(1)(2)y=x2x2=y y=|x|问:x是y的函数吗?四、课堂训练1.写出下列函数关系式(1)汽车在公路上匀速行驶,速度为每小时30千米,则汽车行驶的路程s(千米)与行驶的时间t(时)之间的关系式为.(2)圆的面积S与半径R的关系式为.2.一般地,在某个变化过程中,有个变量x,y.如果给定一个x值,相应地就了一个y值,那么我们称y是x的函数.其中是自变量, 是因变量.3.下列变量间的关系不是函数关系的是( )A.长方形的宽一定,其长与面积B.正方形的周长与面积C.等腰三角形的底边长与面积D.圆的周长与半径4.弹簧挂上物体后伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:下列说法错误的是( )A.没挂物体时,弹簧的长度为10 cmB.弹簧的长度随所挂物体的质量变化而变化,物体的质量是因变量,弹簧的长度是自变量C.在弹簧的弹性限度内,如果物体的质量为mkg,那么弹簧的长度ycm可以表示为y=+10D.当物体的质量为4 kg时,弹簧的长度为20 cm【拓展提高】5.如图(1)所示,在长方形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止.设点E运动的路程为x,ΔBCE的面积为y,如果y关于x的函数图象如图(2)所示,则当x=7时,点E应运动到 ( )A.点C处B.点D处C.点B处D.点A处【中考链接】6.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是()A.体育场离林茂家B.体育场离文具店1kmC.林茂从体育场出发到文具店的平均速度是50m/minD.林茂从文具店回家的平均速度是60m/min。

中考数学一轮复习 位置与坐标、变量之间的关系及函数导学案

中考数学一轮复习 位置与坐标、变量之间的关系及函数导学案

位置与坐标、变量之间的关系及函数
掌握平面直角坐标系内各象限点的坐标符号的规律,
在学习平面直角坐标系中体会数形结合的思想,通过学习变量之间的关系,
因此本节的重点是知道坐标系内点的特征及函数是三节《一次函数的图象》中第
单中
展讲人声音宏亮,语言流畅,运用彩笔分析图形,板书必要的步骤。

对展讲、补充、质疑特别积极的组各加3
坐标系中特殊位置的点的坐标有哪些特点?如何根据点的特征解决问题?



8,3a+2b
过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过。

初一数学下册第四章变量之间的关系导学案

初一数学下册第四章变量之间的关系导学案

初一数学下册第四章变量之间的关系导学案以下是查字典数学网为您推荐的初一数学下册第四章变量之间的关系导学案,希望本篇文章对您学习有所帮助。

初一数学下册第四章变量之间的关系导学案一、知识导航1、主要概念:变量是;自变量是;因变量是。

2、变量之间关系的三种表示方法:。

其特点是:列表:对于表中自变量的每一个值,可以不通过计算,直接把的值找到,查询方便;但是欠,不能反映变化的全貌,不易看出变量间的对应规律。

关系式:简明扼要、规范准确;但有些变量之间的关系很难或不能用关系式表示。

图像:形象直观。

可以形象地反映出事物变化的过程、变化的趋势和某些特征;但图像是近似的、局部的,由图像确定因变量的值欠准确。

3、主要数学思想方法:类比和比较的方法(举例说明);数形结合和数学建模思想(举例说明)。

二、学习导航1、有关概念应用例1下列各题中,那些量在发生变化?其中自变量和因变量各是什么?①用总长为60的篱笆围成一边长为L(m),面积为S(m2)的矩形场地;②正方形边长是3,若边长增加x,则面积增加为y.2、利用表格寻找变化规律例2 研究表明,固定钾肥和磷肥的施用量,土豆的产量与氮肥的施用量有如下关系:施肥量(千克/公顷) 0 34 67 101 135 202 259 336 404 471土豆产量(吨/公顷) 15.18 21.36 25.72 32.29 30.03 39.45 43.15 43.46 40.83 30.75上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?根据表格中的数据,你认为氮肥的使用量是多少时比较适宜?变式(湖南)一辆小汽车在高速公路上从静止到起动10秒后的速度经测量如下表:时间/秒0 1 2 3 4 5 6 7 8 9 10速度/米/秒0 0.3 1.3 2.8 4.9 7.6 11.0 14.1 18.4 24.2 28.9①上表反映了哪两个变量之间的关系?哪个是因变量?②如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?③当t每增加1秒时,v的变化情况相同吗?在哪1秒中,v 的增加最大?④若高速公路上小汽车行驶的速度的上限为120千米/时,试估计大约还需要几秒小汽车速度就将达到这个上限?3、用关系式表示两变量的关系例3.、①设一长方体盒子高为10,底面积为正方形,求这个长方形的体积v与底面边长a的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章变量之间的关系§4.1 用表格表示的变量间关系学习目标:了解变量、自变量和因变量的意义,了解可以表格表示两个变量之间的关系,培养学生分析问题的能力与归纳思维的能力。

学习重点:能从表格的数据中分清什么是变量,自变量、因变量以及因变量随自变量的变化情况。

学习难点:对表格所表达的两个变量关系的理解。

一、预习1、思考:什么是变量?什么是自变量?什么是因变量?2(1)表中反映了哪两个变量之间的关系,哪个是自变量?哪个是因变量?(2)根据表中的数据,你认为老师在第____分钟提出观念比较适宜?说出你的理由.二、学习过程:(一)要点引导1、在一个变化过程中数值保持不变的量叫做______可以取不同数值的量叫做______,如果一个量随着另外一个量的变化而变化,那么把这个量叫做______,另一个量叫做______.2、本节是通过______形式来表示两个变量之间的关系的.(二)例题例1(1)支撑物高度为70厘米时,小车下滑时间是多少?(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?(3)h每增加10厘米,t的变化情况相同吗?(4)估计当h=110时,t的值是多少,你是怎样估计的?变式:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?(3)当t每增加1秒时,v的变化情况相同吗?在哪1秒钟内,v的增加最大?(4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?(三)拓展:1、如图,是一个形如六边形的点阵,它的中心是一个点,算第一层;第二层每边两个点;第三层每边有三个点,依此类推:(1)填写下表:(2)每层点数是如何随层数的变化而变化的?所有层的总点数是如何随层数的变化而变化的?(3)此题中的自变量和因变量分别是什么?(4)写出第n层所对应的点数,以及n层的六边形点阵的总点数;(5)如果某一层的点数是96,它是第几层?(6)有没有一层,它的点数是100?为什么?2、下表是明明商行某商品的销售情况,该商品原价为560元,随着不同幅度的降价(单位:元),日销量(单位:件)发生相应变化如下表:(1)上表反映了哪两个变量之间的关系?其中那个是自变量,哪个是因变量?(2)每降价5元,日销量增加多少件?请你估计降价之前的日销量是多少?(3)如果售价为500元时,日销量为多少?§4.2 用关系式表示的变量间的关系学习目标:1、经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。

2、能根据具体情景,用关系式表示某些变量之间的关系。

3、能根据关系式求值,初步体会自变量和因变量的数值对应关系。

学习重点:1、找问题中的自变量和因变量。

2、根据关系式找自变量和因变量之间的对应关系。

学习难点:根据关系式找自变量和因变量之间的对应关系。

一、预习会议厅共有30排座位,第一排有20个座位,后排每排比前一排多一个座位. (1)你知道第九排有多少个座位吗?第26排呢? (2)每排的座位数y 可用排数x 来表示吗? (3)可不可能某一排的座位数是52?为什么?二、学习过程: (一)要点引导1、通过表格可表示两个变量之间的关系,本节中利用_______也可表示两个变量之间的关系.2、确定关系式的步骤:先找出题目中关于________与________的相等关系,再用_____________的代数式表示________3、半径为R 的圆面积S=___________,当R=3时,S=______________方法小结:1、涉及到图形的面积或体积时,写关系式的关键是利用面积或体积公式写出等式;2、一定要将表示因变量的字母单独写在等号的左边;3、已知一个变量的值求另一个变量的值时,一定要分清已知的是自变量还是因变量,千万不要代错了.(二)例题例1、如图,ABC ∆底边BC 上的高是6厘米,当三角形的顶点C 沿底边所在直线向点B 运动时,三角形的面积发生了变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果三角形的底边长为x (厘米),那么三角形的面积y (厘米2)可以表示为_________(3)当底边长从12厘米变化到3厘米时,三角形的面积从____厘米2变化到____厘米2变式1、 如图,已知梯形的上底为x ,下底为8,高为4. (1)求梯形面积y 与x 的关系;(2)用表格表示,当x 从3到7(每次增加1)时,y 的相应值; (3)当x 每增加1时,y 如何变化? (4)当y=50时,x 为多少?(5)当x=0时,y 等于多少?此时它表示的是什么?例2、将若干张长为20cm 、宽为10cm 的长方形白纸,按下图所示的方法粘合起来,粘合部分的宽为2cm . (1)求4张白纸粘合后的总长度;(2)设x 张白纸粘合后的总长度为ycm ,写出y 与x 之间的关系式;(3)并求当x=20时,y 的值变式2、 声音在空气中传播的速度y (米/秒)与气温x C 之间有如下关系:33315y x =+ (1)在这一变化过程中,自变量是________、因变量是________; (2)当气温15x C =时,声音速度y=________米/秒;(3)当气温22x C =时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放烟花所在地约相距________米;(三)拓展 1、如图,在Rt ABC ∆中,已知90C ∠=,边AC=4cm ,BC=5cm ,点P 为CB 边上一动点,当点P 沿CB 从点C 向点B 运动时,APC ∆的面积发生了变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)如果设CP 长为xcm ,APC ∆的面积为2ycm ,则y 与x 的关系可表示为__________;(3)当点P 从点D (点D 为BC 的中点)运动到点B 时,则APC ∆的面积从______2cm 变到______2cmA CB 123C84 x§4.3 用图象表示的变量间关系学习目标:1、经历从图象中分析变量之间关系的过程,进一步体会变量之间的关系。

2、结合具体情境,理解图象上的点所表示的意义。

3、能从图象中获取变量之间关系的信息,并能用语言进行描述。

学习重点:结合具体情境,理解图象上的点所表示的意义。

并能从图象中获取变量之间关系的信息,学习难点:能从图象中获取变量之间关系的信息,并能用语言进行描述。

一、预习1、如图,是某地某年月平均气温随时间变化的图像.请回答下列问题: (1)二月份平均气温是______C ,十月份平均气温______C ;(2)这一年中,月平均气温最高的是______月,温度大约是______C ; (3)月平均最高气温与最低气温大约相差______C(4)月平均最高气温为10C 的月份是______月,它可能是______季节; (5)上述变化中,自变量是______,因变量是______;(6)估计明年一月份的平均气温会低于0C 吗?二、学习过程: (一)要点引导1、图像是表示________之间关系的一种方法,它的特点是更________、更________地反映了因变量随自变量变化的情况.2、用图像表示变量之间的关系时,通常用水平方向的数轴(横轴)上的点表示________,用竖直方向的数轴(纵轴)上的点表示________(二)例题例1、某山区今年6月中旬的天气情况是:前5天小雨,后5天暴雨,那么反映该地区某河流水位变化的图像大致是( )A B C D变式1、为节约用水,利民学校冲厕水箱经改造后,当水箱水满后就按一定的速度放掉水箱的一半水,随后立即按一定的速度注水,等水箱的水满后,又立即按一定的速度放掉水箱一半的水,下面的图像可以刻画水箱的存水量v (立方米)与放水或注水时间t (分钟)之间的关系的是( )A B C D例2、新成药业集团研究开发了一种新药,在实验药效时发现,如果儿童按规定剂量服用,那么2小时的时候血液中含药量最高,接着逐步衰减,每毫升血液中含药量y (微克)随时间x (小时)的变化如图所示.当儿童按规定剂量服药后:(1)何时血液中含药量最高?是多少微克? (2)A 点表示什么意义?(3)每毫升血液中含药量为2微克以上时在治疗疾病时是有效的,那么这个有效期是多长?(4)你建议该儿童首次服药后几小时再服药?为什么?变式2、 如图,是表示某天小明上学从家到学校时,离家的距离与时间的关系的图像。

(1)小明从家到学校有多远?他一共用了多长时间到校?(2)中途小明停下来子啊路边的商店买了一些练习本,图中那一段曲线表示这一过程?(3)你能想象小明从离家到第4min 时的情况吗?(三)拓展 1、王大爷带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价出售一些后,又降价出售,售出土豆的千克数x 与他手中持有的钱数y (含备用零钱)的关系如图所示。

根据图像回答下列问题: (1)王大爷自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少? (3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?2、如图中的折线ABC 是甲地向乙地打长途电话所需要付的电话费y (元)与通话时间t (分钟)之间的关系的图像。

(1)通话1分钟,要付电话费多少元?通话5分钟要付多少电话费? (2)通话多少分钟以内,所支付的电话费不变?(3)如果通话3分钟以上,电话费y (元)与时间t (分钟)的关系式是 2.5(3)y t =+-,那么通话4分钟的电话费是多少元?§4.4 速度的变化学习目标:通过速度随时间变化的实际情境,进一步经历从图中分析变量之间关系的过程,加深对图象表示的理解,进一步发展从图象中获得信息的能力及有条理地进行语言表达的能力。

学习重点:通过速度随时间变化的实际情境,能分析出变量之间关系。

学习难点:现实中变量的变化关系,判断变化的可能图象。

一、预习1、如图,是某人骑自行车的行驶路程s (千米)与行驶时间t (时)的函数图像, 下列说法不正确的是( ) A.从0时到3时,行驶30千米 B.从1时到2时匀速前进 C.从1时到2时原地不动D.从出发地到1时与从2时到3时的行驶速度相同二、学习过程:(一)要点引导1、观察右图回答下列问题:(1)a 代表物体从____________开始____________运动;(2)b 代表物体________________运动;(3)c 代表物体________________运动;(4)a 表示的速度________d 表的速度(填“>”、“=”或“<”) 2、观察右图回答下列问题:(1)a 代表物体____________运动; (2)b 代表物体____________;(3)c 代表物体______运动直至回到______;(二)例题例1、汽车在行驶的过程中,速度往往是变化的。

相关文档
最新文档