3(1.5条件概率;1.6独立性)
知识讲解 条件概率 事件的相互独立性
条件概率事件的相互独立性【学习目标】1.了解条件概率的概念和概率的乘法公式.2.能运用条件概率解决一些简单的实际问题.3.了解两个事件相互独立的概念,会判断两个事件是否为相互独立事件.4.能运用相互独立事件的概率解决一些简单的实际问题.【要点梳理】要点一、条件概率的概念1.定义设A、B为两个事件,且()0P A>,在已知事件A发生的条件下,事件B发生的概率叫做条件概率。
用符号(|)P B A表示。
(|)P B A读作:A发生的条件下B发生的概率。
要点诠释在条件概率的定义中,事件A在“事件B已发生”这个附加条件下的概率与没有这个附加条件的概率是不同的,应该说,每一个随机试验都是在一定条件下进行的.而这里所说的条件概率,则是当试验结果的一部分信息已知,求另一事件在此条件下发生的概率.2.P(A|B)、P()、P(B)的区别P(A|B)是在事件B发生的条件下,事件A发生的概率。
P()是事件A与事件B同时发生的概率,无附加条件。
P(B)是事件B发生的概率,无附加条件.它们的联系是:() (|)()P ABP A BP B=.要点诠释一般说来,对于概率P()与概率P(A),它们都以基本事件空间Ω为总样本,但它们取概率的前提是不相同的。
概率P(A)是指在整个基本事件空间Ω的条件下事件A发生的可能性大小,而条件概率P()是指在事件B发生的条件下,事件A发生的可能性大小。
例如,盒中球的个数如下表。
从中任取一球,记“取得篮球”,“取得玻璃球”。
基本事件空间Ω包含的样本点总数为16,事件A包含的样本点总数为11,故11 ()P A=。
如果已知取得玻璃球的条件下取得篮球的概率就是事件B发生的条件下事件A发生的条件概率,那么在事件B 发生的条件下可能取得的样本点总数应为“玻璃球的总数”,即把样本空间压缩到玻璃球全体。
而在事件B 发生的条件下事件A 包含的样本点数为蓝玻璃球数,故42(|)63P A B ==。
要点二、条件概率的公式1.计算事件B 发生的条件下事件A 发生的条件概率,常有以下两种方式: ①利用定义计算.先分别计算概率P ()及P (B ),然后借助于条件概率公式()(|)()P AB P A B P B =求解. ②利用缩小样本空间的观点计算.在这里,原来的样本空间缩小为已知的条件事件B ,原来的事件A 缩小为事件,从而(|)AB P A B B =包含的基本事件数包含的基本事件数,即:()(|)()n AB P B A n A =,此法常应用于古典概型中的条件概率求解. 要点诠释概率P()与P()的联系与区别: 联系:事件A ,B 都发生了。
概率论与数理统计
2.和(并):
3.互斥(互不相容):对立:
事件的运算:
伯努利大数定律:当试验次数n足够大时,事件发生的频率就约等于事件发生的概率。
全概率公式、贝叶斯公式
定义:
引入随机变量后,可用随机变量的
等式或不等式来表达随机事件;
随机变量的函数一般也是随机变量
0-1分布是n=1时的二项分布
定义:性质:
定义:
F(x)是X的分布函数,X是连续型随机变量,f(x)是它的概率密度函数,简称概率密度
性质:
均匀分布:
标准正态分布N(0,1)
标准正态分布的分位数
举例:
期望反映了随机变量取值的平均,又称均值。
概率论第一章第六节
(2) P( A1 A2
An )
1 P(A1 A2
An )
1 P( A1 A2 An )
A1 A2 An独立
A1 A2 An独立
1 P( A1 )P( A2 ) P( An ).
9
例1 三人独立地去破译一份密码,已知各人能译出的 概率分别为1/5,1/3,1/4,问三人中至少有一人能将 密码译出的概率是多少?
2
2
P( AB) 0,P( A)P(B) 1 ,
4
由此可见两事件互斥但不独立.
二者之间没 有必然联系
B
AB
AS
B AS
若P( A) 0 , P(B) 0 , A,B相互独立与互不相容
不能同时成立.
20 返回
为p , p 1 2 . 问对甲而言, 采取三局二胜制有利,
还是五局三胜制有利. 设各局胜负相互独立. 解 采用三局二胜制 , 甲最终获胜 ,
胜局情况可能是 :
“甲甲”,“甲乙甲”;“乙甲甲”,
设Ai :“甲第i局胜”(i 1, 2, 3), 设A :“甲最终胜”,
则 A A1 A2 A1 A2 A3 A1 A2 A3
p pp
纯 纯纯
H1: 不纯 纯 纯
q pp
纯 纯纯
p 1 0.01 0.99,
q 1 0.95
H2:不纯 不纯 纯
q qp
纯 纯纯
H3: 不纯 不纯 不纯
q qq
纯 纯纯
0.05.
P(H0)
C936 , C3
100
P(H3 )
C43 C3
100
,
P( H1 )
C926C41 C3
100
,
P( H2 )
概率的计算方法条件概率事件独立性的计算方法
概率的计算方法条件概率事件独立性的计算方法概率的计算方法——条件概率和事件独立性的计算方法概率是数学中的一个重要概念,用于描述事件发生的可能性。
在概率的计算过程中,条件概率和事件独立性是两个重要的概念。
本文将介绍概率中的条件概率和事件独立性的计算方法。
一、条件概率的计算方法条件概率是指在已知某个条件下,事件发生的概率。
表示为P(A|B),读作事件B发生的条件下事件A发生的概率。
计算条件概率的方法:1. 根据条件概率的定义,可以得出P(A|B) = P(AB) / P(B)。
即事件A和事件B同时发生的概率除以事件B发生的概率。
2. 利用频率法进行计算。
通过实验或观察,记录事件A在事件B发生的条件下出现的频次,再除以事件B发生的频次。
举例说明:假设有一个扑克牌的标准牌组,从中随机抽取一张牌。
事件A表示抽到一张红心牌,事件B表示抽到一张大于等于10的牌。
求在事件B发生的条件下,事件A发生的概率。
根据条件概率的计算方法,我们可以得到:P(A|B) = P(AB) / P(B)首先,我们需要计算事件A和事件B同时发生的概率P(AB)。
在扑克牌标准牌组中,红心牌有13张,大于等于10的牌有16张。
其中,大于等于10的红心牌有3张。
因此,P(AB) = 3 / 52。
接下来,计算事件B发生的概率P(B)。
在扑克牌标准牌组中,大于等于10的牌有16张,总共的牌数是52张,所以P(B) = 16 / 52。
将以上结果代入条件概率的计算公式,我们可以得到:P(A|B) = (3 / 52) / (16 / 52) = 3 / 16所以,在事件B发生的条件下,事件A发生的概率为3/16。
二、事件独立性的计算方法事件独立性是指事件A和事件B的发生与否互相独立,即事件A 的发生与否不受事件B的影响。
计算事件独立性的方法:1. 如果P(A|B) = P(A),则事件A和事件B互相独立。
2. 如果P(A|B) ≠ P(A),则事件A和事件B不独立。
条件概率独立
条件概率独立条件概率和独立事件是概率论中的两个重要概念。
在实际应用中,我们常常需要针对某个条件下发生的事件计算概率,而条件概率就为我们提供了一种有效的工具。
而独立事件则是指两个事件之间的关系,这些事件之间互相独立发生,即一个事件的发生不会对另一个事件的发生产生影响。
下面我们将详细介绍条件概率和独立事件的相关内容。
在概率论中,条件概率是指一个事件在满足某个条件下的发生概率。
设A,B为两个事件,P(A)表示A的概率,P(B)表示B的概率,P(A|B)表示在B条件下A的概率。
根据概率的定义,我们可以得到以下公式:P(A|B) = P(AB) / P(B)其中,P(AB)表示A和B同时发生的概率,即交集的概率。
条件概率的计算方法可以通过树形图或者贝叶斯公式计算。
在实际应用中,条件概率通常用于处理具有先后顺序的事件,或者遇到一些限制条件时,以便更精细地描述发生事件的概率。
例如,假设A表示某个人生病,B表示这个人体内含有病毒A,C表示这个人体内含有病毒B,则P(A|B)表示在体内含有病毒A的条件下,这个人生病的概率。
P(A|C)表示在体内含有病毒B的条件下,这个人生病的概率。
这些条件概率在医学领域、生物领域等实际应用中有重要的意义。
独立事件在概率论中,独立事件是指两个事件之间没有影响关系,即一个事件的发生不会影响另一个事件的发生。
具体地说,如果事件A和事件B满足以下条件,则称事件A和事件B 是独立的:(1)P(A|B) = P(A),即B的发生与A的发生概率无关;如果事件A和B不满足独立条件,则称事件A和事件B是相关的。
在实际应用中,独立事件具有非常重要的应用价值。
在进行概率计算时,如果能够确定事件之间的独立性,那么可以大大简化计算的复杂度。
此外,对于一些求解难度较高的问题,如多重条件概率等,通过独立性的假设,可以将这些问题转化为多个单一条件概率的计算,从而更加简便明了。
例如,假设A表示抛掷一枚硬币出现正面,B表示抛掷一枚骰子出现3点,我们可以通过数学推导得到:由此可见,事件A和事件B是独立的。
理学概率论与数理统计浙江大学第四版盛骤概率论部分
例:
✓ ✓ ✓ ✓
抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数; 对某批电子产品测试其输入电压; 对听课人数进行一次登记;
9
§2 样本空间·随机事件
(一)样本空间
定义:随机试验E的所有结果构成的集合称为E的 样本空间,记为S={e},
例:
➢ ➢
称S中的元素e为基本事件或样本点.
一枚硬币抛一次 S={正面,反面}; 记录一城市一日中发生交通事故次数
概率论与数理统计是研究随机现象 数量规律的一门学科。
1
第一章 概率论的基本概念
• 1.1 随机试验 • 1.2 样本空间 • 1.3 概率和频率 • 1.4 等可能概型(古典概型) • 1.5 条件概率 • 1.6 独立性
第二章 随机变量及其分布
• 2.1 随机变量 • 2.2 离散型随机变量及其分布 • 2.3 随机变量的分布函数 • 2.4 连续型随机变量及其概率密度 • 2.5 随机变量的函数的分布
第十二章 平稳随机过程
• 12.1 平稳随机过程的概念 • 12.2 各态历经性 • 12.3 相关函数的性质 • 12.4 平稳过程的功率谱密度
5
概率论
第一章概率论的基本概念
6
第一章 概率论的基本概念
关键词: 样本空间 随机事件 频率和概率 条件概率 事件的独立性
7
§1 随机试验
确定性现象
解:假设接待站的接待时间没有规定,而各来访者在一周 的任一天中去接待站是等可能的,那么,12次接待来 访者都是在周二、周四的概率为 212/712 =0.000 000 3.
人们在长期的实践中总结得到“概率很小的事件在一次 试验中实际上几乎是不发生的”(称之为实际推断原理)。 现在概率很小的事件在一次试验中竟然发生了,因此有理由 怀疑假设的正确性,从而推断接待站不是每天都接待来访者, 即认为其接待时间是有规定的。
条件概率与事件的独立性例题和知识点总结
条件概率与事件的独立性例题和知识点总结在概率论中,条件概率和事件的独立性是两个非常重要的概念。
理解它们对于解决各种概率问题至关重要。
下面,我们将通过一些具体的例题来深入探讨这两个概念,并对相关知识点进行总结。
一、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
其定义为:设 A、B 是两个事件,且 P(A)>0,在事件 A 发生的条件下,事件 B 发生的条件概率记为 P(B|A),且 P(B|A) = P(AB) /P(A) 。
例 1:一个盒子里有 5 个红球和 3 个白球。
从中随机取出一个球,已知取出的是红球,求它是第二个红球的概率。
解:设 A 表示“第一次取出红球”,B 表示“第二次取出红球”。
则P(A) = 5/8 。
P(AB) 表示“第一次和第二次都取出红球”,其概率为 5/8 × 4/7 = 5/14 。
所以 P(B|A) = P(AB) / P(A) =(5/14) /(5/8) =4/7 。
例 2:某班级学生的数学成绩及格率为 80%,英语成绩及格率为70%,已知某学生数学成绩及格,求他英语成绩也及格的概率。
解:设 A 表示“数学成绩及格”,B 表示“英语成绩及格”。
P(A) =08 ,P(AB) 表示“数学和英语成绩都及格”,假设两者相互独立,则P(AB) = 08 × 07 = 056 。
所以 P(B|A) = P(AB) / P(A) = 056 / 08 =07 。
二、事件的独立性如果事件 A 的发生不影响事件 B 发生的概率,事件 B 的发生也不影响事件 A 发生的概率,那么称事件 A 和事件 B 相互独立。
即 P(B|A) = P(B) 且 P(A|B) = P(A) ,等价于 P(AB) = P(A)P(B) 。
例 3:抛掷两枚均匀的硬币,设事件 A 为“第一枚硬币正面朝上”,事件 B 为“第二枚硬币正面朝上”,判断 A、B 是否独立。
概率论与数理统计
A
3)在应用上,那些不便直接求某一事件的概 B2
率时,先找到一个合适的划分,再用全概率公式计算
ቤተ መጻሕፍቲ ባይዱ
7/21
§1.5 条件概率
2.贝叶斯(Bayes)公式 (计算后验概率问题)
事件A的发生,iff构成S划分的事件B1,B2,…,Bn中的一个发生时才发 生,一般在实验之前仅知道Bi的先验概率,那么如果试验后事件A已经发 生了,Bi发生的概率又是多少呢?这种问题我们称他为后验概率问题,有 利于我们查找事件发生的原因。解决此类问题可采用贝叶斯(Bayes)公式
在实际应用 中,对于事 件的独立性 常常根据事 件的实际意 义来判断,
注意:仅满足前三个等式的三个事件称为两两相互独立 见习题33 如果两个事
当然,如果事件A,B,C相互独立
件关联很弱 也可以看作
则 A, B,C; A, B,C; ... ; A, B,C 也相互独立
是独立的。
推广到多个事件
由定义可以得到以下两点推论: 1.若事件A1, A2, … , An相互独立,n2,则其中任意k(2kn)个事件也是相互独立 的。 2.若n个事件A1, A2, … , An(n2)相互独立,则将A1, A2, … , An中任意多个事件换13/成21 他们的对立事件,所得的n个事件仍相互独立
§1.6 独立性
对样本空间适当分解的思想,有利于解决稍微复杂一点的概率问题
首先看一下关于划分的概念
定义:设S为试验E的样本空间,B1,B2,…,Bn为E的一组事件。若
(i) BiBj=Φ,i≠j,i,j=1,2,…,n; (ii) B1∪B2∪…∪Bn=S 则称B1,B2,…,Bn为S的一个划分。
※每次试验,事件B1,B2,…,Bn中有且仅有一个发生
概率论与数理统计教学日历
教学日历
2016—2017学年度第一学期
课程概率论与数理统计
理学院电子信息工程技术专业2017级专科1、2班
任课教师职称副教授
辅导教师职称
周数16周学时3
讲课48课时实习课时
实验0课时复习考试课时
其他课时总时数课时
采用教材《概率论与数理统计》,盛骤,谢式千等
考核方法考试
制定时间:2016年8月27日
第十七周
第十七周
第十八周
本 日 历 完 成
情 况
(7)
承 担 的 教 学
工 作 量 总 计
(ቤተ መጻሕፍቲ ባይዱ)
从 事 的 科 研 、
编 写 教 材 、实
验 室 建 设 工 作
(9)
其他(进修、外出
兼课、讲学、病修
等情况)
(10)
教研室检查
鉴定意见
(11)
系(院)检查
鉴 定 意 见
(12)
备注
附注:1、本日历一式两份,一份存系(院)办公室,一份由讲授者保存。
6.2 直方图和箱线图
6.3 抽样分布
重点:总体,统计量,卡方分布、t分布和F分布,正态分布的常用抽样定理
难点:卡方分布、t分布和F分布
第十二周
第七章 参数估计
7.1 点估计
重点:点估计的概念,矩估计法和最大似然估计法
难点:最大似然估计法
第十三周
7.2 基于截尾样本的最大似然估计
7.3 估计量的评选标准
重点:两个随机变量和的分布,
M=max(X,Y)及N=min(X,Y)的分布,数学期望定义和计算公式
难点:两个连续型随机变量和的分布,M=max(X,Y)及N=min(X,Y)的分布
大学数学易考知识点概率论的条件概率与独立性
大学数学易考知识点概率论的条件概率与独立性大学数学易考知识点:概率论中的条件概率与独立性概率论是数学中一个重要的分支,研究事物发生的可能性。
在大学数学的学习中,概率论是一个比较常见的考点。
其中,条件概率与独立性是概率论中的两个基本概念。
本文将详细介绍条件概率与独立性的概念、性质以及应用。
一、条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率。
其计算公式为:P(A|B) = P(A∩B) / P(B)其中,P(A|B)表示事件B发生的条件下,事件A发生的概率;P(A∩B)表示事件A与事件B同时发生的概率;P(B)表示事件B发生的概率。
条件概率的计算可以通过实际问题的转化来帮助理解。
例如,某班级有60%的男生和40%的女生,已知班级中80%的学生喜欢数学。
现在要求已知一位学生是男生的条件下,他也喜欢数学的概率。
根据条件概率的计算公式,我们可以得到:P(喜欢数学|男生) = P(喜欢数学∩男生) / P(男生)由于已知喜欢数学的学生占总人数的80%,而男生占总人数的60%,则有:P(喜欢数学|男生) = (0.8*0.6) / 0.6 = 0.8所以,在已知一位学生是男生的条件下,他也喜欢数学的概率为0.8。
条件概率的计算方法对于实际问题的解决非常有用。
通过合理的条件划分,我们可以计算出各种条件下的概率,从而更好地理解和解决问题。
二、独立性在概率论中,独立性是指两个事件的发生与否互相不影响。
具体而言,事件A与事件B相互独立的条件为:P(A|B) = P(A)P(B|A) = P(B)即事件A发生的概率与事件B发生与否无关,事件B发生的概率与事件A发生与否无关。
两个独立事件的条件概率相等于事件的边际概率。
例如,某扑克牌中共有52张牌,我们从牌中随机抽取一张,记录下此牌的花色,然后将此牌放回。
再次从牌中随机抽取一张,记录下此牌为红桃。
问第一次所抽取的牌为红色的概率是多少?根据题意,第一次所抽取的牌为红色的概率为1/2,因为扑克牌中共有52张牌,其中红色牌有26张。
1 概率论的基本概念
5、逆事件概率: 对于任一事件A,有P(A )=1-P(A)
6、和事件概率(加法公式): 对于任意两事件A, B有
3、差事件概率:设A,B是两个事件,
若 A ⊂B,则有
18
1.3 频率与概率
可推广到多个事件的和事件
19
1.4 等可能概型(古典概型)
等可能概型的定义与概率的计算
具有如下两个特点的试验,称为等可能概型(又叫古典概型):
5
第一章 概率论的基本概念
1.1 随机试验 1.2 样本空间、随机事件 1.3 频率与概率 1.4 等可能概型(古典概型) 1.5 条件概率
1.6 独立性
6
1.1 随机试验
试验
试验是一个含义广泛的 术语。它包括各种各样 的科学实验,甚至对某 一事物的某一特征的观 察也认为是一种试验.
随机试验
1 、可以在相同的条 件下重复地进行; 2、每次试验的可能 结果不止一个,并 且能事先明确试验 的所有可能结果; 3、进行一次试验之 前不能确定哪一个 结果会出现。 E1、 抛一枚硬币,观察正面H、反面T出 E5: 记录某城市120电话台一昼夜接到 现的情况; 的呼唤次数; E2、 将一枚硬币抛三次,观察正面H、 E6: 在一批灯泡中任意抽取一只,测试 反面T出现的情况; 它的寿命; E3、记录某地一昼夜的最高温度和最低 E7: 将一枚硬币抛三次,观察出现正面 的次数; 温度。 E4、抛一颗骰子,观察出现的点数;
事件A发生(e∈A:)
样本空间S={t|t≥0}
事件A=“寿命不小于500 小时”={t|t≥500};A⊂S
测得某只灯泡得 e=“寿命为600小时”
9
1.2 样本空间、随机事件
1.2.2 随机事件
条件概率与事件的独立性-讲义(学生版)
条件概率与事件的独立性一、课堂目标1.掌握条件概率的定义和计算公式,以及条件概率与乘法公式之间的关系.2.掌握独立事件的定义和性质.3.掌握互斥事件和独立事件的综合应用.4.掌握全概率公式的定义及应用,了解贝叶斯公式.二、知识讲解1. 条件概率知识精讲(1)定义一般地,当事件发生的概率大于时(即),则事件发生的条件下事件发生的概率,称为条件概率,记作.(2)计算公式一般地,设为两个随机事件,且,则:.(3)性质①非负性:条件概率具有的性质,任何事件的条件概率都在0和1之间,即.②若事件A与B互斥,即与不可能同时发生,则.③可加性:如果和是两个互斥事件,则.(4)条件概率的求法①定义法,先求和,再求;②基本事件法,借助古典型概率公式,先求事件包含的基本事件数,再求事件所包含的基本事件数,得.注意:求复杂事件的条件概率时,可以把它分解为若干个互不相容的简单事件,求出这些简单事件的条件概率,再利用概率的可加性,得到最终结果.经典例题A. B.C.D.1.某地气象台预计,月日该地区下雨的概率为,刮风的概率为,既刮风又下雨的概率为,设表示下雨,表示刮风,则().巩固练习A.B.C.D.2.小明早上步行从家到学校要经过有红绿灯的两个路口,根据经验,在第一个路口遇到红灯的概率为,在第二个路口遇到红灯的概率为,在两个路口连续遇到红灯的概率是.某天早上小明在第一个路口遇到了红灯,则他在第二个路口也遇到红灯的概率是().经典例题A. B.C.D.3.一个盒子内装有个红球,个白球,从盒子中取出两个球,已知一个球是红球,则另一个也是红球的概率是().巩固练习A. B.C.D.4.某盒中装有只乒乓球,其中只新球,只旧球,不放回地依次摸出个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为().经典例题A. B.C.D.5.袋中装有形状和大小完全相同的个黑球,个白球,从中不放回地依次随机摸取两个球,则在第一次摸到黑球的条件下,第二次摸到白球的概率是().巩固练习A.B.C.D.6.抛掷一颗质地均匀的骰子的基本事件构成集合,令事件,,则的值为().2.乘法公式知识精讲由条件概率的计算公式可知,这就是说,根据事件发生的概率,以及事件发生的条件下事件发生的概率,可以求出与同时发生的概率.一般地,这个结论称为乘法公式.经典例题7.甲袋中有个白球,个红球;乙袋中有个白球,个红球,从两个袋子中任取一袋,然后从所取到的袋子中任取一球 ,则取到白球的概率是.巩固练习A.B.C.D.8.市场上供应的灯泡中,甲厂产品占,乙厂占,甲厂产品的合格率是,乙厂产品的合格率是,则从市场上买到一个是甲厂生产的合格灯泡的概率是().A.B.C.D.9.已知箱中有红球个,白球个,箱中有白球个,(、箱中所有的球除颜色外完全相同).现随意从箱中取出个球放入箱,将箱中的球充分搅匀后,再从箱中随意取出个球放入箱,则红球从箱移到箱,再从箱返回箱中的概率等于().3. 事件的独立性知识精讲(1)定义当时,与独立的充要条件是这时,我们称事件、相互独立,并把这两个事件叫做相互独立事件.(2)独立事件的性质对于两个独立事件和,有如下两个性质:①与,与,与也相互独立;②.经典例题A. B.C.D.10.袋中有大小形状都相同的个黑球和个白球.如果不放回地依次取次球,每次取出个,那么在第次取到的是黑球的条件下,第次取到白球的概率为().巩固练习A. B.C.D.11.已知件次品和件正品混在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,则在第一次取出次品的条件下,第二次取出的也是次品的概率是().经典例题12.甲、乙、丙三人独立地去破译一个密码,他们能译出的概率分别为,,,则此密码能被译出的概率为.巩固练习13.某学生在上学的路上要经过三个路口,假设在各路口是否遇到红绿灯是相互独立的,遇到红灯的概率都是,则这名学生在上学的路上到第三个路口时第一次遇到红灯的概率为.4. 互斥事件与独立事件知识精讲互斥事件与独立事件的区别:“互斥事件”和“相互独立事件”是两个不同的概念,前者表示两个事件不可能同时发生,后者指一个事件是否发生对另一个事件发生的概率没有影响.知识点睛已知两个事件,它们的概率分别为.将中至少有一个发生记为事件,都发生记为事件,都不发生记为事件,恰有一个发生记为事件,至多有一个发生记为事件,则它们的概率间的关系见下表.概率互斥相互独立1经典例题A.不相互独立事件B.相互独立事件C.互斥事件D.对立事件14.一袋中装有只白球,只黄球,在有放回地摸球中,用表示第一次摸得白球,表示第二次摸得白球,则事件与是( ).巩固练习A.互斥但不相互独立B.相互独立但不互斥C.互斥且相互独立D.既不相互独立也不互斥15.掷一颗骰子一次,设事件:“掷出奇数点”,事件:“掷出点或点”,则事件,的关系( ).经典例题A.B.C.D.16.甲、乙两名学生通过某种听力测试的概率分别为和,两人同时参加测试,其中有且只有一人能通过概率是( ).(1)(2)17.某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为,数学为,英语为,并且该生各科取得第一名相互独立.问一次考试中:三科成绩均未获得第一名的概率是多少?恰有一科成绩未获得第一名的概率是多少?巩固练习18.从应届高中生中选拔飞行员,已知这批学生体型合格的概率为,视力合格的概率为,假设各项标准互不影响,从中任选一名学生,则该学生恰有一项合格的概率为( ).A.B. C.D.A.B.C.D.19.社区开展“建军周年主题活动——军事知识竞赛”,甲乙两人能荣获一等奖的概率分别为和,两人是否获得一等奖相互独立,则这两人中至少有一人获得一等奖的概率为().5. 全概率公式知识精讲(1)公式公式的推导:一般地,如果样本空间为,而为事件,则与是互斥的,且,所以,当且时,由乘法公式得:,所以,.(2)全概率公式的一般结论前面提到的全概率公式,本质上是将样本空间分成互斥的两部分(即与)后得到的.如果将样本空间分成更多互斥的部分,从而得到更一般的结论,如下:定理:若样本空间中的事件满足:①任意两个事均互斥,即;②;③.则对中的任意事件,都有,且.上述公式也称为全概率公式.经典例题20.某射击小组共有名射手,其中一级射手人, 二级射手人, 三级射手人, 四级射手人. 一、二、三、四级射手能通过选拔进入比赛的概率分别是、、、. 求任选一名射手能通过选拔进入比赛的概率.巩固练习(1)(2)21.某仓库有同样规格的产品箱,其中箱、箱、箱依次是由甲、乙、丙三个厂生产的,且三个厂的次品率分别为、、.现从这箱中任取一箱,再从取得的一箱中任意取出一件产品,求:取得一件产品是次品的概率.若已知取得的一件产品为次品,这件次品是乙厂生产的概率.6. 贝叶斯公式知识精讲(1)贝叶斯公式一般地,当且时,有.这称为贝叶斯公式.(2)贝叶斯公式的推广同全概率公式一样,贝叶斯公式也可以进行推广.定理:若样本空间中的事件满足:①任意两个事件均互斥,即;②;③.则对中的任意概率非零事件,有.上述公式也称为贝叶斯公式.经典例题22.甲、乙两厂生产同一种商品.甲厂生产的此商品占市场上的,乙厂生产的占;甲厂商品的合格率为,乙厂商品的合格率为.若某人购买了此商品发现为次品,则此次品为甲厂生产的概率为 .巩固练习23.某地区居民的肝癌发病率为 ,现用甲胎蛋白法进行普查医学研究表明,化验结果是存在错误的已知患有肝癌的人其化验结果呈阳性(有病),而没患肝癌的人其化验结果呈阴性(无病).现某人的检查结果呈阳性,问他真的患肝癌的概率有多少?三、思维导图你学会了吗?画出思维导图总结本课所学吧!四、出门测A.B.C.D.24.下面结论正确的是( ).若,则事件与是互为对立事件若,则事件与是相互独立事件若事件与是互斥事件,则与也是互斥事件若事件与是相互独立事件,则与也是相互独立事件25.根据某地区气象台统计,该地区下雨的概率是,刮风的概率为,既刮风又下雨的概率为,则在刮风天里,下雨的概率为 ,在下雨天里,刮风的概率为 .26.已知件产品中有件次品,现逐一不放回的检验,直到件次品都能被确认为止,则检验次数为的概率为 .27.甲、乙、丙的投篮命中率分别为,,.三人各投篮一次,假设三人投篮相互独立,则至少有一人命中的概率是 .。
条件概率与独立性
条件概率与独立性1、条件概率:一般地,若有两个事件A和B,在已知事件B发生的条件下考虑事件A发生的概率,则称此概率为B 已发生的条件下A的条件概率。
记作:P(A|B)。
2、事件的积的概率:两个事件A、B同时发生时,其概率通常称为事件A与事件B的积的概率。
记作:P(A∩B)或P(AB)。
3、条件概率的有关计算:P(A|B)=P(A B)/ P(B);P(AB)=P(A|B)·P(B)=P(B|A)·P(A)。
4、事件的独立性:若事件A、B满足P(A|B)=P(A),即事件B的发生不影响事件A发生的概率(同样,事件A发生也不影响事件B发生的概率,即P(B|A)=P(B)),则称事件A、B互相独立。
5、当事件A、B 互相独立时,P(AB)=P(A)·P(B)。
若有n个事件(n>2)互相独立,则有P(A1A2……A n)=P(A1)·P(A2)·……·P(A n)。
例1:将一枚硬币抛掷两次,事件A表示两次正面向上,事件B表示至少有一次正面向上,求P(A)、P(B)、P(A B)、P(A|B)、P(B|A)。
例2:抛掷一颗质地均匀的骰子所得点数的样本空间记为S={1,2,3,4,5,6},令事件A={2,3,4},B={1,2,4,6},求P(A)、P(A B)、P(A|B)。
例3:如图一所示的正方形被平均分成A、B、C、D、E、F、G、H、I九个部分,向大正方形区域随机投掷一个点(每次均能投中),若投中左侧3个小正方形区域(即A、B、C)的事件记作M,投中最上面三个小正方形及正中间的一个小正方形事件(即A、D、G、E),记作N,求P(MN)、P(M|N) 。
例4:在一个盒子中有大小相同的10个红球和10个白球,求第一个人摸出一个红球(不放回),第 2 个人摸出一个白球的概率。
例5:连续抛掷一枚硬币n次(n>2),若前n-1次均为正面,求第n次出现反面的概率。
概率论-第一章1.6-独立性
如果两个事件不能同时发生,那么它 们之间没有任何联系?
如果一个事件发生了,我们即可以确 定另外一个事件不会发生!
性质:
当 P( A) > 0, P( B) > 0 时,互不相容与相互独立 不能同时成立。
证: A、B互不相容 P( AB) = 0 ⇒ P( AB) ≠ P( A) P( B) 反之 A、B 相互独立 = P( AB) P( A) P( B) > 0 则 AB ≠ Φ ,故A、B不可能互不相容。
这在直观上很显然,但证明较麻烦. 若B3=A4A5A6,则B2 , B3就不一定独立,因为都 与A4有关.
例:设某型号高炮命中率为0.6,现若干门炮同时发射
(每炮一发),欲以99%以上的把握击中来犯的一架敌机, 至少需要配备几门炮? 解:设n为所需炮数,
i = 1, 2, , n Ai 表示第i门炮击中飞机,
从四个球中任取一个
1 2 3
123
即A 1、A2、A3 两两独立。
1 1 1 1 1 P ( A1 A2 A3 ) = ≠ P ( A1 ) P ( A2 ) P ( A3 ) = ⋅ ⋅ = 4 2 2 2 8
所以A 1、A2、A3 不相互独立。
定理4 设 n个事件A1, A2, …An相互独立,则把它们中的任意 m (1≤m ≤ n)个事件换成各自事件的逆事件,则所得的n个事件 也相互独立.
定理1: 当 P ( A ) > 0 ( 或 P ( B ) > 0)时,
事件A与B 独立的充要条件是:
P ( B A) = P ( B )
(或 P ( A B ) = P ( A) )
P ( AB )= P ( A) P ( B ) ⇔ P ( B A)= P ( B )
计算概率的条件概率与事件独立性
计算概率的条件概率与事件独立性在概率理论中,条件概率和事件的独立性是两个重要的概念。
它们在计算概率、统计分析和决策制定等领域中有广泛的应用。
本文将介绍条件概率和事件的独立性的概念、性质及其应用。
一、条件概率的概念与性质在已知事件B发生的条件下,事件A发生的概率称为事件A在条件B下的条件概率,记作P(A|B),读作“在B条件下A的概率”。
条件概率的计算公式如下:P(A∩B)P(A|B) = ───────────────────P(B)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。
条件概率具有以下重要性质:1.非负性:对于任意事件A和B,条件概率P(A|B) ≥ 0;2.单位概率:当B是必然事件(P(B) = 1)时,条件概率P(A|B) = P(A);3.互斥概率:当事件A与事件B互斥时,条件概率P(A|B) = 0。
二、事件的独立性的概念与性质事件A和事件B的独立性是指事件A的发生与否不受事件B的发生与否的影响,即P(A|B) = P(A)或P(B|A) = P(B)。
换句话说,事件A和事件B的独立性意味着它们的条件概率与边际概率相等。
事件的独立性具有以下重要性质:1.对称性:如果事件A与事件B独立,那么事件B与事件A也独立;2.自反性:事件A与自身独立;3.传递性:如果事件A与事件B独立,事件B与事件C独立,则事件A与事件C独立。
三、条件概率与事件独立性的应用条件概率和事件独立性在实际问题中有着广泛的应用,以下举几个例子。
1.生活中的应用假设某地区有50%的男性和50%的女性,有10%的人患有某种疾病。
已知患病率在男性中为5%,在女性中为15%。
现在我们来计算一个人是男性的条件下,他患病的概率。
根据条件概率的定义,可以得到: P(男性∩患病)P(患病|男性) = ────────────────── = ───── = 0.1P(男性)这个例子中,我们使用了条件概率来计算一个人是男性的条件下,他患病的概率。
大学概率论的条件概率与独立性
大学概率论的条件概率与独立性概率论是数学的一个重要分支,用于研究随机现象和随机事件的规律性。
在大学的概率论课程中,我们学习了许多基本概念和理论。
其中,条件概率和独立性是概率论中重要的概念,对于理解和应用概率论具有重要意义。
一、条件概率条件概率是指在某个事件发生的条件下,另一个事件发生的概率。
设A和B是两个事件,且P(B)>0,则在事件B发生的条件下事件A发生的概率,记为P(A|B),表示为“A在B发生的条件下发生的概率”。
计算条件概率的公式为:P(A|B) = P(A∩B) / P(B)这个公式可以从概率的定义来推导。
根据概率的性质,我们可以得到以下重要性质:性质1:对于任何事件A和B,有P(A∩B) = P(A|B) × P(B)性质2:如果事件A和B相互独立,那么P(A|B) = P(A),P(B|A) = P(B)条件概率的概念和性质为我们研究随机事件之间的联系提供了很好的工具。
在实际问题中,条件概率常常用于解决一些复杂的概率计算问题。
二、独立性独立性是概率论中另一个重要的概念,指的是两个事件的发生不受对方的影响。
设A和B是两个事件,如果P(A∩B) = P(A) × P(B),则称事件A和B是相互独立的。
在独立性的定义下,我们有以下性质:性质1:如果事件A和B相互独立,则P(A|B) = P(A),P(B|A) =P(B)性质2:如果事件A和B相互独立,则事件A与B的补事件也相互独立。
性质3:如果事件A和B相互独立,则事件A与B的并事件、交事件以及差事件也相互独立。
独立性是概率论中非常重要的概念,它能够帮助我们简化概率计算过程,提高问题的求解效率。
三、条件概率与独立性的关系在一般情况下,条件概率与独立性是两个不同的概念。
然而,在特殊情况下,条件概率和独立性之间存在着紧密的联系。
具体来说,对于两个事件A和B,如果P(B)>0,以下两个命题等价:命题1:事件A和B相互独立。
概率问题的条件概率与独立性
概率问题的条件概率与独立性概率论是数学的一个分支,研究随机事件的发生及其规律性。
在概率论中,条件概率与独立性是两个重要的概念。
本文将详细讨论条件概率与独立性的概念、性质以及应用。
一、条件概率的概念与计算方法条件概率是指在已知某一事件发生的前提下,另一事件发生的概率。
设A、B是两个事件,且P(A)>0,则在事件A发生的条件下,事件B发生的概率记为P(B|A),读作“在A发生的条件下B发生的概率”。
条件概率的计算方法如下:P(B|A) = P(A∩B) / P(A)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(A)表示事件A发生的概率。
二、条件概率的性质1. 乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A) × P(B|A) = P(B) × P(A|B)。
2. 独立事件的条件概率:对于独立事件A和B,有P(B|A) = P(B),P(A|B) = P(A),即事件A的发生与否不影响事件B的概率,反之亦然。
三、独立性的概念与判定方法独立性是指两个事件之间的发生与否相互独立,即一个事件的发生不受另一个事件的影响。
设A、B是两个事件,如果满足P(A∩B) =P(A) × P(B),则称事件A和事件B是独立事件,简写为A⊥B。
判定事件的独立性可以通过以下方法:1. 乘法法则:若P(A) × P(B) = P(A∩B),则可以推断A与B是独立事件。
2. 条件概率的性质:若P(B|A) = P(B),则A与B是独立事件。
四、条件独立性的概念与判定方法条件独立性是指在已知某一条件的前提下,两个事件之间仍然相互独立。
设A、B、C是三个事件,若满足P(A∩B|C) = P(A|C) × P(B|C),则称事件A和事件B在条件C下是条件独立的,简写为A⊥B|C。
我们可以通过以下方法判断事件的条件独立性:若满足P(A∩B|C) = P(A|C) × P(B|C),则可以推断在条件C下事件A 与事件B是条件独立的。
随机变量的独立性和条件概率分布
随机变量的独立性和条件概率分布是概率论中的重要概念,在很多领域都有广泛的应用。
独立性的概念是指两个或多个事件之间的关系,而条件概率分布则是指随机变量在给定一些条件下的概率分布。
首先来看独立性。
在数学上,独立性通常指的是两个随机变量之间的关系。
如果两个随机变量X和Y是独立的,那么它们可以分别考虑,而且它们之间的任何影响都不会相互影响。
具体来说,如果两个随机变量X和Y是独立的,那么它们的联合概率分布可以拆分成它们各自的概率分布的乘积。
即,P(X=x, Y=y) = P(X=x) * P(Y=y)。
举个例子,假设我们有两个骰子,我们把它们连续掷两次。
我们可以定义随机变量X为第一次掷出的点数,随机变量Y为第二次掷出的点数。
如果我们假设这两个骰子是六面的,并且它们是公平的,那么每个点数出现的概率都是1/6。
因此,我们可以计算出X和Y的概率分布,分别为P(X=1)=P(X=2)=P(X=3)=P(X=4)=P(X=5)=P(X=6)=1/6和P(Y=1)=P(Y=2)=P(Y=3)=P(Y=4)=P(Y=5)=P(Y=6)=1/6。
现在,假设我们想知道掷出的两个点数是相等的这个事件的概率。
我们可以用独立性来计算。
因为X和Y是独立的,所以P(X=x, Y=y) =P(X=x) * P(Y=y),因此,P(X=Y) = ΣP(X=x, Y=x) = ΣP(X=x) *P(Y=x) = 1/6 * 1/6 + 1/6 * 1/6 +...+1/6 * 1/6 = 1/6。
接下来看条件概率分布。
条件概率分布是指,在给定一些条件下,随机变量的概率分布。
具体来说,如果我们知道了一些关于随机变量的信息,那么我们可以通过条件概率分布来计算在这些信息下随机变量的取值的概率。
条件概率分布通常用P(X|Y)表示,表示给定Y的条件下,X的概率分布。
它可以通过原始的概率分布计算得到。
具体来说,如果我们知道了Y的取值,那么我们可以将联合概率分布进行归一化,得到在Y取值的条件下,X取值的概率分布。
概率与统计中的条件概率与独立性
概率与统计中的条件概率与独立性概率与统计是数学中非常重要的一个分支,它研究事物发展中的不确定性,以及通过数据分析和概率模型来揭示事物背后的规律。
在概率与统计的学习中,条件概率与独立性是两个基本概念,它们在很多实际问题中都有广泛的应用。
本文将介绍条件概率与独立性的概念及其应用,并通过实例来说明这两个概念的重要性。
一、条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
用数学记号来表示,设事件A和事件B是两个事件,表示事件A在事件B发生的条件下发生的概率。
那么条件概率的计算公式可以表示为:P(A|B) = P(AB) / P(B)其中,P(A|B)表示事件A在事件B发生的条件下发生的概率,P(AB)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
条件概率的概念非常重要,它可以用来解决很多实际问题。
例如,我们可以通过条件概率来计算某种疾病在某一群体中的患病率,从而为预防和治疗提供依据;在金融领域中,条件概率可以用来计算某种投资产品的收益率在不同市场环境下的变化概率,从而帮助投资者做出更好的投资决策。
二、独立性独立性是指两个事件之间的相互独立关系。
如果事件A和事件B是相互独立的,那么事件A的发生与事件B的发生是没有关联的,即P(A|B) = P(A),P(B|A) = P(B)。
换句话说,知道了事件B的发生与否对事件A的发生概率没有影响,反之亦然。
独立性是概率与统计中的一个重要概念,它在很多领域都有广泛的应用。
例如,在质量控制中,我们可以通过独立性来判断某种产品是否合格,如果多次独立检测结果都符合要求,那么我们可以认为该产品的质量是可靠的;在科学实验中,独立性可以保证实验结果的可靠性,使得实验数据和观察数据能够得到有效的分析和结论。
三、条件概率与独立性的应用条件概率与独立性在概率与统计的研究中有着广泛的应用。
以下将通过几个实例来说明这两个概念的应用。
1. 癌症筛查假设某种癌症的发病率为0.1%,某种筛查方法的阳性率为90%,即该方法能够准确地检测出90%的患者。
概率模型与事件的独立性判断
概率模型与事件的独立性判断概率模型是数学中的一个重要分支,它通过数学方法来描述和分析随机事件的发生规律。
在概率模型中,独立性是一个重要的概念,它指的是两个或多个事件之间的关系,即一个事件的发生与另一个事件的发生无关。
本文将探讨概率模型中的独立性判断方法,并通过实例来说明。
首先,我们来了解一下概率模型中的基本概念。
在概率模型中,事件是指一个或多个可能结果的集合,而概率是指某个事件发生的可能性大小。
事件的独立性是指一个事件的发生与另一个事件的发生无关,即一个事件的发生不会影响另一个事件的发生概率。
在概率模型中,我们可以通过条件概率来判断事件之间的独立性。
条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
如果两个事件A和B 是独立的,那么事件A发生的概率与事件B发生的概率乘积等于事件A和B同时发生的概率,即P(A) * P(B) = P(A∩B)。
举个例子来说明。
假设有一个袋子里有红色和蓝色两种颜色的球,红色球的数量为3个,蓝色球的数量为5个。
现在我们从袋子中随机抽取两个球,事件A表示第一个球是红色,事件B表示第二个球是蓝色。
我们来判断一下事件A和B是否独立。
首先,我们计算事件A和B的概率。
事件A的概率为3/8,因为袋子里有3个红色球,总共有8个球。
事件B的概率为5/8,因为袋子里有5个蓝色球,总共有8个球。
接下来,我们计算事件A和B同时发生的概率。
因为第一个球是红色,第二个球是蓝色的概率与第一个球是红色的概率和第二个球是蓝色的概率乘积相等,即P(A∩B) = P(A) * P(B) = (3/8) * (5/8) = 15/64。
通过计算可知,事件A和B同时发生的概率等于事件A和B独立发生的概率,即15/64 = 3/8 * 5/8。
因此,我们可以判断事件A和B是独立的。
除了条件概率,我们还可以通过贝叶斯定理来判断事件之间的独立性。
贝叶斯定理是概率论中的一个重要定理,它描述了在已知某个事件发生的条件下,另一个事件发生的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
且
2013-9-16
P ( B1 ) 0.15,
P ( B2 ) 0.80,
P ( B3 ) 0.05,
西安电子科技大学
10
P ( A B1 ) 0.02,
P ( A B2 ) 0.01,
P ( A B3 ) 0.03.
2013-9-16
西安电子科技大学
23
4.三事件相互独立的概念
定义 设 A, B , C 是三个事件, 如果满足等式 P ( AB ) P ( A) P ( B ), P ( BC ) P ( B ) P (C ), P ( AC ) P ( A) P (C ), P ( ABC ) P ( A) P ( B ) P (C ), 则称事件 A, B , C 相互独立 .
则称 A1 , A2 ,, An 为相互独立的事件.
n 个事件相互独立 n个事件两两相互独立
2013-9-16
西安电子科技大学
25
二、几个重要定理
定理一 设 A, B 是两事件, 且 P ( A) 0. 若 A, B 相
互独立, 则 P ( B A) P ( B ). 反之亦然.
P ( AB ) P ( B A) P ( A) P ( A) P ( B ) P( B) P ( A)
0.98 0.95 0.97. 0.98 0.95 0.55 0.05
即当生产出第一件产品是合格品时, 此时机器调 整良好的概率为 0.97.
2013-9-16
西安电子科技大学
14
先验概率与后验概率 上题中概率 0.95 是由以往的数据分析得到的, 叫 做先验概率. 而在得到信息之后再重新加以修正的概率 0.97 叫做后验概率.
2013-9-16
西安电子科技大学
11
P ( A B2 ) P ( B2 ) P ( B2 A) 0.64, P ( A) P ( A B3 ) P ( B3 ) P ( B3 A) 0.12. P ( A)
故这只次品来自第 2 家工厂的可能性最大.
2013-9-16
西安电子科技大学
2013-9-16
西安电子科技大学
15
例8 根据以往的临床记录 , 某种诊断癌症的试 验具有如下的效果: 若以 A 表示事件“试验反应
为阳性” 以 C 表示事件“被诊断者患有癌症”则 , , 有 P ( A C ) 0.95, P ( A C ) 0.95. 现在对自然人群 进行普查, 设被试验的人患有癌症的概率为0.005, 即 P (C ) 0.005, 试求 P (C A).
上次课复习
最简单的随机现象 古典概型
古典概率
P ( A)
试验结果 连续无穷
几何概型
m A 所包含样本点的个数 n 样本点总数
P ( AB ) 条件概率 P ( B A) P ( A)
乘法定理 P ( AB ) P ( B A) P ( A)
2013-9-16
西安电子科技大学
1
三、全概率公式与贝叶斯公式
注意 三个事件相互独立
2013-9-16
三个事件两两相互独立
西安电子科技大学
24
推广 设 A1 , A2 ,, An 是 n 个事件, 如果对于任意
k (1 k n), 任意 1 i1 i2 ik n, 具有等式
P ( Ai1 Ai2 Aik ) P ( Ai1 ) P ( Ai2 ) P ( Aik ),
P( A B j )P(B j )
j 1
n
称此为贝叶斯公式.
2013-9-16
西安电子科技大学
6
证明
P ( Bi A) P ( Bi A) P ( A)
P ( A Bi ) P ( Bi )
P( A B j )P(B j )
j 1
n
, i 1,2,, n.
2013-9-16
B2
B1
A
B3
Bn1
Bn
2013-9-16
西安电子科技大学
5
3. 贝叶斯公式
定理 设试验 E 的样本空间为 S . A 为 E 的事件, B1 B2 ,, Bn 为 S 的一个划分, 且 P ( A) 0, P ( Bi ) 0, ( i 1,2,, n), 则 P ( Bi A) P ( A Bi ) P ( Bi ) , i 1,2,, n.
P ( A B1 ) P ( B1 ) P ( A B2 ) P ( B2 ) P ( A Bn ) P ( Bn ).
图示
B2
B1
A
B3
Bn1
化整为零 各个击破
Bn
西安电子科技大学
4
2013-9-16
说明 全概率公式的主要用处在于它可以将一个 复杂事件的概率计算问题,分解为若干个简单事件 的概率计算问题,最后应用概率的可加性求出最终 结果.
B2
B3
2013-9-16
B1
Bn1 Bn
西安电子科技大学
2
2. 全概率公式
定理 设试验 E 的样本空间为 S , A 为 E 的事件, B1 , B2 ,, Bn为 S 的一个划分, 且 P ( Bi ) 0( i 1, 2,, n), 则 P ( A) P ( A B1 ) P ( B1 ) P ( A B2 ) P ( B2 ) P ( A Bn ) P ( Bn )
西安电子科技大学
7
例6 某电子设备制造厂所用的元件是由三家元
件制造厂提供的.根据以往的记录有以下的数据 : 元件制造厂 1 2 3 无区别的标志. (1) 在仓库中随机地取一只元件 , 求它是次品的 概率;
2013-9-16
次品率 0.02 0.01 0.03
提供元件的份额 0.15 0.80 0.05
则有
P ( B A) P ( B ),
它表示 A 的发生并不影响 B 发生的可能性大小.
2013-9-16
P ( B A) P ( B )
P ( AB ) P ( A) P ( B )
西安电子科技大学
19
2.定义
设 A, B 是两事件 , 如果满足等式 P ( AB ) P ( A) P ( B ) 则称事件 A, B 相互独立, 简称 A, B 独立.
2013-9-16
西安电子科技大学
29
三、例题讲解
AB
A
1 1 若 P ( A) , P ( B ) , 2 2
则 P ( AB ) P ( A) P ( B ).
由此可见两事件相互独立,但两事件不互斥.
2013-9-16
西安电子科技大学
21
1 1 若 P ( A) , P ( B ) 2 2
则 P ( AB ) 0,
B A
12
例7 对以往数据分析结果表明 , 当机器调整得 良好时 , 产品的合格率为 98% , 而当机器发生某
种故障时, 其合格率为 55% . 每天早上机器开动 时 , 机器调整良好的概率为95%.试求已知某日 早上第一件产品是合格品时 , 机器调整得良好的 概率是多少?
“产品合格” , 解 设 A 为事件
设这三家工厂的产品在仓库中是均匀混合的, 且
西安电子科技大学
9
( 2) 在仓库中随机地取一只元件 , 若已知取到的是 次品, 为分析此次品出自何厂, 需求出此次品由三 家工厂生产的概率分别是多少 . 试求这些概率.
解 设 A 表示 “取到的是一只次品” Bi ( i 1,2,3) ,
表示 “所取到的产品是由第i 家工厂提供的” .
全概率公式
2013-9-16
西安电子科技大学
3
证明
A AS A ( B1 B2 Bn ) AB1 AB2 ABn .
由 Bi B j ( ABi )( AB j )
P ( A) P ( AB1 ) P ( AB2 ) P ( ABn )
1. 样本空间的划分
定义 设 S 为试验E的样本空间, B1 , B2 ,, Bn 为 E 的一组事件, 若 (i ) Bi B j , i j , i , j 1, 2,, n ; (ii ) B1 B2 Bn S . 则称 B1 , B2 ,, Bn 为样本空间 S 的一个划分.
B 为事件 “机器调整良好” . 则有 P ( A B ) 0.98, P ( A B ) 0.55,
2013-9-16
西安电子科技大学
13
P ( B ) 0.95,
P ( B ) 0.05,
由贝叶斯公式得所求概率为
P( A B) P( B) P ( B A) P( A B) P( B) P( A B) P( B)
2013-9-16
西安电子科技大学
27
又因为 A、B 相互独立, 所以有
P ( AB ) P ( A) P ( B ),
因而 P ( A B ) P ( A) P ( A) P ( B )
P ( A)(1 P ( B ))
P ( A) P ( B ). 从而 A 与 B 相互独立 .
(1) 由全概率公式得
P ( A) P ( A B1 ) P ( B1 ) P ( A B2 ) P ( B2 ) P ( A B3 ) P ( B3 )
0.0125.
(2) 由贝叶斯公式得
P ( A B1 ) P ( B1 ) 0.02 0.15 0.24. P ( B1 A) 0.0125 P ( A)