南京邮电大学2013-2014《线性代数与空间解析几何》模拟试题四及参考答案
线性代数与空间解析几何-第四章习题解答
(a − d ) × (b − c ) = a × b − a × c − d × b + d × c = a × b − c × d − a × c + b × d = 0 证:
故a − b与b − c共线。
11
证: AB = {− 1,3,3}
AC = {0,4,2}
AD = {3,1,−4}
i j k n= 1 3 2 = − i + 5 j − 7k 2 −1 −1
(3)
所以 法向量为 { -1,5,-7}
由点法式: -(x-1)+5(y-3)-7(z-2)=0 即 x-5y+7z=0 设平面法向量为 { A, B, C },由点法式平面方程:A(x-2)+B(y-3)=0…………* 因为: 平面平行 Z 轴, 所以:法向量垂直 Z 轴 即
设向量的方向余弦为 cos α . cos β . cos γ。由已知β = α
10 ( 加
A
题
)
1 ∆∆ABC中,D为BC边中点,证明AD = (AB + AC) 。 2
B
D
C
证明:由三角形法则 AD = AB + BD 两式相加得 2 AD = AB + AC , 即 AD =
AD = AC + CD 又 ∵ D为BC中点。 ∴BD = −CD
第四章 空间与向量运算
习题一 1 (1) (2)
AB(1,3,0)
BC (−5,0,0) CA(4,−3,0)
AB = (3 − 2) 2 + (2 + 1) 2 + (1 − 1) 2 = 10
2 A (3,4,0) 在 xoy 面上 B(0,4,3)点在 yoz 面上 C(3,0,0)在 x 轴上 D(0,-1,0)在 y 轴上 3 3u-2v=3(a-b+2c)-2(-3b-c)=3a+3b+8c 4 D C O A B 设四边形 ABCD 中 AC 与 DB 交于 O,由已知 AO=OC,DO=OB 因为 AB=AO+OB=OC+DO=DC,AD=AO+OD=OC+BO=BC 所以 ABCD 为平行四边形。 5
南京邮电大学《线性代数与解析几何》期末试卷4
0
−1 1 0 1 −1 0
1
0
当 = 2 时, A − E = 1 − 1 0 → 0 0 0 2 = 1 , 3 = 0 ,
0 0 0 0 0 0
=
25
,故所求平面方程为: 24x + 18 y + 25z − 7 = 0 .
8
五、证明: r ( B) min{ m, n} = n , 又 n = r ( I ) = r ( AB) r ( B) , 故有 r ( B) = n , 即矩阵 B 的
列向量组线性无关.
第 2 页 共 2 页
0 0 0 1
(3)当 = 1 时,同解方程组为 1 + 2 + 3 = 1 , 通解为:
X = (1, 0 , 0 )T + k1 (1, − 1, 0 )T + k2 (1, 0 , − 1)T , k1 , k2 R
1 − a 1 + a 0
4. 解:
(1)二次型的矩阵 A = 1 + a 1 − a 0 , r ( A) = 2 A = 0 a = 0 .
4 = −31 + 2 + 3 .
第 1 页 共 2 页
《线性代数与解析几何》练习册参考解答——期末试卷四
a 1 1
3. 解: A = 1 a 1 = (a + 2)(a − 1) 2 ,
1 1 a
(1)当 ≠ −2且 ≠ 1 时,方程组有唯一解;
1 1 −2 4
南京邮电大学2013-2014模拟考试题一线性代数与解析几何
南京邮电大学2013-2014模拟考试题一线性代数与解析几何说明:)det(A 指方阵A 的行列式,*A 指方阵A 的伴随矩阵,)(A r 指矩阵A 的秩,TA 指矩阵A 的转置矩阵,I 为单位矩阵. 22R ⨯指实数域R 上的二阶实方阵全体按通常矩阵的运算构成的线性空间.2[]F x 表示次数不大于2的一元多项式全体所构成的线性空间。
一、填空题(每小题3分,共12分)(1). 若矩阵201030503⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则det(2)T AA = .(2). 若向量组123111,,111λλλ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααα的秩为2,则λ= .(3). 设矩阵121201 101A a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,已知齐次线性方程组0Ax =的基础解系含有两个向量,则a = .(4). 设矩阵10301131a ⎛⎫⎪- ⎪ ⎪-⎝⎭A =为正定矩阵,则a 的取值范围是 .二、单项选择题(每小题3分,共12分)(1). 设两个非零矩阵,B A ,满足0B =A ,则必有(A) A 的列向量组线性相关. (B) A 的列向量组线性无关.(C) B 的列向量组线性相关. (D) B 的列向量组线性无关. 【 】(2). 曲线22220x y z ⎧-=⎨=⎩绕x 轴旋转一周所形成旋转面的名称是(A) 单叶双曲面. (B) 双叶双曲面. (C)椭圆面. (D) 抛物面. 【 】 (3). 已知3阶矩阵A 的特征值为1,2,3,则*A I -必相似于对角矩阵(A)012⎛⎫ ⎪ ⎪ ⎪⎝⎭; (B)125-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (C)512-⎛⎫ ⎪ ⎪ ⎪⎝⎭; (D)125⎛⎫⎪ ⎪ ⎪⎝⎭; 【 】(4).设矩阵111023004A -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则1*12A -⎛⎫ ⎪⎝⎭=(A)12A . (B) 14A . (C) 18A . (D) 116A . 【 】三、(12分) 设方阵B 满足22I =+*A B B ,其中111111111A -⎛⎫⎪=- ⎪ ⎪-⎝⎭,求矩阵B .四、(12分) 已知直线11:232x y z L -==--,直线2312:212x y z L -++==-. (1)记i L 的方向向量为(1,2)i a i =,求过1L 且与12a a ⨯平行的平面π的方程. (2)求2L 与π的交点.并写出1L 与2L 的公垂线的方程.五、(12分)a 、b 取何值时,线性方程组1234122011231011114423x x x a x a b ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪= ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭ 有唯一解、无解、有无穷多解?并在有无穷多解时,求出该方程组的结构式通解.六、(12分). 设二次型222123123121223(,,)4()f x x x x x x x x x x x x =++++-,(1) 写出二次型123(,,)f x x x =T x Ax 的矩阵A ; (2) 求一个正交矩阵P ,使AP P 1-成对角矩阵; (3) 写出f 在正交变换Py x =下化成的标准形.七、 (12分) 设矩阵12314315a -⎛⎫ ⎪-- ⎪ ⎪⎝⎭A =的全部特征值之积为24.(1) 求a 的值;(2) 讨论A 能否对角化,若能,求一个可逆矩阵P 使1P AP D -=为对角阵。
线性代数4试卷及答案
线性代数4试卷及答案线性代数(经管类)试题B 试卷满分100分考试时间120分钟(出卷人:廖磊) 试卷说明:AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式。
一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.若行列式|A|=0,则A中() A.必有一行全为0 C.有两列成比例a11a12a22a32a13a33B.行向量组线性相关 D.所有元素全为0a11a315a112a125a212a225a312a32a13a23,则D1的值为()a33a23=3,D1=a212.设行列式D=a21a31A.-15 B.-6 C.6 D.15 3.设A,B,C,D均为n阶矩阵,E为n阶单位方阵,下列命题正确的是() A.若A20,则A0B.若A2A,则A0或A E C.若AB AC,且A0,则B CD.若AB BA,则(A B)A2AB B2224.设A、B为n阶方阵,满足A2=B2,则必有() A.A=B C.|A|=|B| 1A.00XX00120B.A= -B D.|A|2=|B|21B.001D.23XX101235.设3阶方阵A的秩为2,则与A等价的矩阵为()1C.20 6.设A,B为同阶可逆方阵,则下列等式中错误的是()..A.|AB|=|A| |B| C.(A+B)-1=A-1+B-17.设2阶矩阵A=,则A=( )*B.(AB)-1=B-1A-1 D.(AB)T=BTATA.B.C.D.a cb,则d8.设2阶矩阵A=A.C.d c b a b a A =()d b d bc a c a*B.d cD.9.设矩阵A=,则A中( ) A.所有2阶子式都不为零B.所有2阶子式都为零 C.所有3阶子式都不为零D.存在一个3阶子式不为零10.设1,2是x1x2x312x1x20,的两个解,则()1A.12是2x1B.12是2x1C.21是2xx x2x301x20,的解,的解x x2x301x20x x2x311x20x x2x311x20,的解,的解 1D.22是2x11.设1,2,3,均为n维向量,又1,2,线性相关,2,3,线性无关,则下列正确的是()A.1,2,3线性相关 B.1,2,3线性无关 C.1可由2,3,线性表示 D.可由1,2线性表示12.设向量1(a1,b1,c1),2(a2,b2,c2),1(a1,b1,c1,d1),2(a2,b2,c2,d2),则下列命题中正确的是()A.若1,2线性相关,则必有1,2线性相关B.若1,2线性无关,则必有1,2线性无关 C.若1,2线性相关,则必有1,2线性无关 D.若1,2线性无关,则必有1,2线性相关13.设A为m×n矩阵,齐次线性方程组Ax=0有非零解的充分必要条件是( ) A.A的列向量组线性相关B.A的列向量组线性无关 C.A的行向量组线性相关D.A的行向量组线性无关14.设α1,α2,α3,α4为向量空间V的一个基,则V的维数=(A.1 B.2 C.3D.4 15.设A与B是两个相似n阶矩阵,则下列说法错误..的是() B B.秩(A)=秩(B) C.存在可逆阵P,使P-1AP=BD.E-A=E-B16.正交矩阵的行列式为() A.0 B.+1 C.-1D.±1 17.矩阵A=的非零特征值为( ) A.4B.3C.2D.118.当矩阵A满足A2=A时,则A的特征值为() A.0或1 B.±1 C.都是0D.都是1) 19.二次型A.0 C.2 f(x,y,z)x的正惯性指数p为()B.1 D.322220.设有二次型f(x1,x2,x3)x1x2x3,则f(x1,x2,x3)()A.正定 C.不定B.负定 D.半正定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数测试题参考答案
3.解因为增广矩阵
所以一般解为 (其中 , 是自由未知量)
4.解因为系数矩阵
A=
所以当= 5时,方程组有非零解.且一般解为
(其中 是自由未知量)
5.解:当 =3时, ,方程组有解.
当 =3时,
一般解为 ,其中 , 为自由未知量.
线性代数测试题参考答.B 3.D 4.A 5.A 6.C
二、填空题
1. 2. 3.0 4. 5. 6.无解7.-1
三、计算题
1.解: =
线性代数期末考试模拟试卷及答案
共7页,第1页学 院: 专 业: 学 号: 姓 名:装 订 线一、 填空题(每小题3分,共24分)1.设A 、B 是n 阶方阵,下列等式正确的是 .(A )AB=BA (B )))((22B A B A B A -+=-(C )22A A = (D )111)(---+=+B A B A2. 设A 为n 阶方阵,则0=A 的必要条件是 .(A) A 中有两行(列)元素对应成比例; (B) A 中必有一行为其余行的线性组合;(C) A 中有一行元素全为零; (D) A 中任意一行为其余行的线性组合.3. 设有向量组1α=(1,-1,2,4),2α=(0,3,1,2),3α=(3,0,7,14),4α=(1,-2,2,0)与5α=(2,1,5,10),则向量组的极大线性无关组是( ) (A )231ααα,,; (B) 241ααα,,;(C)251ααα,,; (D) 2451αααα,,,.(C) A 的行向量线性无关; (D) A 的行向量线性相关.5. 、设3阶矩阵A 与B 相似,矩阵A 的特征值为41,31,21,则=)(det *B ( )共7页,第2页共7页,第3页共7页,第4页答案一、选择题(每小题3分,共24分)1.C2.B3.B4.C5.A6.C7.A8.B 二、填空题(每小题4分, 共24分)1.⎝⎛⎪⎪⎪⎪⎪⎭⎫-11001000003100001 , 2. 332±, 3. ⎝⎛⎪⎪⎭⎫10101, 4. k 不存在 5. 40, 6. 0. 三.(8分)证明:由06))(4(1032=-+-=--I I A I A I A A ……………………5分所以I I A I A 6))(4(=+- ……………………6分 故I A 4-可逆,且逆矩阵为6IA + ……………………8分 四、(12分) 解:2)3(111111111λλλλλ+=+++=A ………………………………………3分当03≠-≠λλ且时,方程组有唯一解………………………………5分当0=λ时,增广矩阵为⎪⎪⎪⎭⎫⎝⎛−→←⎪⎪⎪⎭⎫ ⎝⎛=000010000111011131110111r B 知 )()(B R A R ≠ , 方程组无解…………………………………………8分当3-=λ时,增广矩阵为共7页,第5页⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛----=000021103211 321131210112r B 2)()(==B R A R , 方程组有无穷多解,解为T T c x )0,2,1()1,1,1(--+=,(c 为任意常数)……………………12分 五、(10分)解:设有k x x x x ,,,,210 使得0)()()(22110=+++++++k k x x x x αβαβαββ , (1) )………2分⇒0)(2211210=++++++++k k k x x x x x x x αααβ , (2)………4分 若0210≠++++k x x x x ,则β可由k ααα,,,21 线性表示,⇒是0=Ax 的解,与已知矛盾.故必有0210=++++k x x x x ,从而02211=+++k k x x x ααα ,………………………………………………………7分 由k ααα,,,21 是0=Ax 的一个基础解系知k ααα,,,21 线性无关,⇒021====k x x x ,0)(210=+++-=k x x x x ,因此向量组k αβαβαββ+++,,,,21 线性无关.…………………………………10分六、(10分)解:由已知(2)-=A E X A , …………………………………………2分因为 100386(2,)0102960012129r--⎛⎫⎪-−−→-- ⎪ ⎪-⎝⎭A E A ………………………8分 故1386(2)2962129---⎛⎫ ⎪=-=-- ⎪ ⎪-⎝⎭X A E A …………………………………………10分β共7页,第6页七、(12分)解:)1()1(3240102232-+-=------=-λλλλλλE A =0, ………… 2分1,1321=-==λλλ. ………(4分) (1) ⎪⎪⎪⎭⎫ ⎝⎛--=-224000224)(1E A λ41113~⋅-r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-00000021211, 02121321=-+x x x ,令2312,c x c x ==,2112121c c x +-=,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛1021012121321c c x x x .121-==λλ对应的特征向量⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1021,012121ξξ它们是线性无关的. ………(8分)(2) ⎪⎪⎪⎭⎫ ⎝⎛---=-424020222)(3E A λ~132r r -⎪⎪⎪⎭⎫ ⎝⎛---020*******1123~⋅-r r r ⎪⎪⎪⎭⎫ ⎝⎛--0000201112122~21r r r --⋅⎪⎪⎪⎭⎫⎝⎛-000010101, ⎩⎨⎧==-00231x x x , 令13c x =,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1011321c x x x , 对应的特征向量为⎪⎪⎪⎭⎫⎝⎛=1013ξ. ………(10分)(3)因为321ξξξ,,线性无关,所以A 可以对角化,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛-=11000112121P , ⎪⎪⎪⎭⎫ ⎝⎛--=Λ100010001. ………(12分)共7页,第7页。
江苏省南京邮电大学附中2014届高三数学一轮复习 空间几何体单元训练
南京邮电大学附中2014届高三数学一轮复习单元训练:空间几何体本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.ABCD 是正方形,PA ⊥平面AC ,且PA=AB ,则二面角A-PD-B 的度数为( )A . 060B .090C . 0120D . 0135【答案】C2.如图是某几何体的三视图,则该几何体的体积为( )A .16B .24C .34D .48【答案】A3.某几何体的三视图如图所示,该几何体的表面积是( )A .32B .21616+C .48D .23216+【答案】B4.将正方形(如图所示)截去两个三棱锥,得到图2所示的几何体,该几何体的左视图为( )【答案】B5.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则( )A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==【答案】B6.如图,正三棱柱111ABC A B C -的主视图(又称正视图)是边长为4的正方形,则此正三棱柱的侧视图(又称左视图)的面积为( )A .16B .23C .43D .83【答案】D7.正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==,动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( )A .16B .14C .12D .10 【答案】B8.m 和n 是分别在两个互相垂直的面α、β内的两条直线,α与β交于l ,m 和n 与l 既不垂直,也不平行,那么m 和n 的位置关系是 ( ) A .可能垂直,但不可能平行 B .可能平行,但不可能垂直 C .可能垂直,也可能平行 D .既不可能垂直,也不可能平行 【答案】D9.已知点A 的坐标是(1-t , 1-t , t), 点B 的坐标是(2 , t, t), 则A 与B 两点间距离的最小值为( )A .55 B .555 C .553 D .511 【答案】C10.如图是正方体的平面展开图,则在这个正方体中①BM ∥DE ②CN 与BE 是异面直线③CN 与BM 成600角 ④DM 与BN 是异面直线 以上命题中,正确命题的序号是( )A .①②③B .②④C .③④D .②③④ 【答案】C11.在二面角α-l -β 的半平面α内,线段AB ⊥l ,垂足为B ;在半平面β内,线段CD ⊥l ,垂足为D ;M 为l 上任一点.若AB=2,CD=3,BD=1,则AM+CM 的最小值为( )A .26B .23 C .21 D .19【答案】A12.如图,长方体1111ABCD A BC D -中,交于顶点A 的三条棱长分别为3AD =,14AA =,5AB =,则从A 点沿表面到1C 的最短距离为( )A .52B 74C .45D .310【答案】B第Ⅱ卷(非选择题 共90分)二、填空题 (本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知三棱锥O -ABC ,∠BOC =90°,OA ⊥平面BOC ,其中AB 10BC 13AC 5O ,A ,B ,C 四点均在球S 的表面上,则球S 的表面积为 . 【答案】14π14.在空间直角坐标系O xyz -中,点(1,2,3)-关于坐标平面yOz 的对称点的坐标为 .【答案】(1,2,3)--15.设点B 是点(2,3,5)A -关于xOy 面的对称点,则||AB = . 【答案】1016.棱长为1的正方体1111D C B A ABCD -中11C A 到面ABCD 的距离为 . 【答案】1三、解答题 (本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.如图,正四棱柱1111ABCD A B C D -中,1AD =,12D D =,点P 在棱1CC 上,且1A PB π∠=2.(1)求PC 的长; (2)求钝二面角1A A B P --的大小.【答案】(1)如图,以点D 为原点O ,1DA DC DD , , 分别为x y z , , 轴建立空间直角坐标系O xyz -, 则()000D ,, ,()110B , , ,()1102A , , ,设()01P λ,, ,其中[]02λ∈, , 因为1A PB π∠=2,所以10A P BP ⋅=, 即()()112100λλ--⋅-=,, , , ,得1λ=, 此时()011P , , ,即有1PC =; (2)易得平面1AA B 的一个法向量为()100m DA ==, , ,设平面1A BP 的一个法向量为()n x y z =,, , 则10 0 n n A P BP ⎧⋅=⎪⎨⋅=⎪⎩,,即0 0 x y z x z -+-=⎧⎨-+=⎩,,不妨取1x =,则0y =,1z =-,即()101n =-,, , 所以21cos 212m n m n >m n ⋅<===⨯,, 所以,钝二面角1A A B P --的大小为3π4. 18.如图,直三棱柱///ABC A B C -,90BAC ∠=,2,AB AC ==AA ′=1,点,M N 分别为/A B 和//B C 的中点。
2016线性代数与解析几何期末试卷(A)含参考答案
001⎝⎭⎝⎭010(A ) 12PP (B ) 112P P - (C ) 21PP (D ) 121P P - 2.设A 是3阶矩阵,秩()2r A =,且21,αα是齐次线性方程组0AX =的两个不同的解向量,则0AX =的一个基础解系是 ( D )(A ) 1α (B ) 2α (C ) 12αα+ (D ) 12αα-3.直线1:121x y z L ==-和⎩⎨⎧=+=-326:2z y y x L 的夹角为 ( B ) (A )2π (B )3π (C )4π (D )6π4.若向量组,,αβγ线性无关,,,αβδ线性相关,则 ( C )(A )α必可由,,βγδ线性表示 (B ) α必不可由,,βγδ线性表示(C ) δ必可由,,αβγ线性表示 (D ) δ必不可由,,αβγ线性表示 5.n 阶实对称矩阵A 和B 相似的充分必要条件是 ( D ) (A )A 与B 都有n 个线性无关的特征向量 (B )A 与B 的秩相等(C )A 与B 的主对角线上的元素的和相等 (D )A 与B 的n 个特征值均相等三、(本题10分) 设n 阶矩阵A 和B 满足2A B AB +=,(1)证明:2A I -可逆,其中I 为单位阵;(2)已知110110002B ⎛⎫⎪=- ⎪ ⎪⎝⎭,求矩阵A .(1)证2A B AB +=,222AB B A I I ∴--+=, (2)()2A I B I I --=(2)2B IA I I -∴-⋅=,所以2A I -可逆. ……..4分 (2)2A B AB +=,()2A B I B ∴-=,01010110001B I -=-=≠,B I ∴-可逆,且12()A B B I -=-……3分()B I I -=010100100010001001⎛⎫⎪- ⎪⎪⎝⎭→100010010100001001-⎛⎫ ⎪ ⎪ ⎪⎝⎭,11100102202()2110100220002001004A B B I ---⎛⎫⎛⎫⎛⎫⎪⎪ ⎪∴=-=-= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭……3分四、(本题10分) 设向量组12(1,3,1,1),(1,1,1,3)T T αα=-=---,3(5,8,2,9)T α=-,4(1,1,3,1)T α=-, (1) 求向量组的秩;(2) 求它的一个极大线性无关组,并用该极大线性无关组表示其余向量.解12343115111511002318102740170(,,,2112300040010139100000000αααα⎛⎫----⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪→→⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪-- ⎪⎝⎭⎝⎭⎝⎭初等行变换初等行变换)=1234(,,,R αααα∴)=3,向量组124,,ααα是一个极大线性无关组,3123722ααα=-五、(本题10分) 求过点(1,1,2)M -与平面:32210x y z π+--=平行, 且与直线11:123x y zL +-==相交的直线方程. 解 设所求直线(,)l M s , {,,}s a b c =已知平面π的法向量{3,2,2}n =-,由题意3220a b c +-= ………(1) ……3分 已知直线1(,)L P s ,(1,1,0)P -,1{1,2,3}s =,由题意1[,,]0PM s s =,得 5230a b c --+= ………(2) ……3分由(1),(2)得 ,22ab c a ==,……2分 取{2,1,4}s =,所求直线为112214x y z -+-== ……2分 另解 先求出过M 点平行于已知平面的平面与已知直线的交点(3,3,6)N ---六、(本题12分) 设1101011A λλλ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,11a b ⎛⎫ ⎪= ⎪ ⎪⎝⎭,已知方程组AX b =有无穷多解,(1)求,a λ的值;(2)求方程组AX b =的通解. 解 (1)因为AX b =有无穷多解,所以(,)()3r A b r A =< ……2分由0A =得 2(1)(1)0λλ--=,所以1λ=± ……3分当1λ=时,111(,)00011111a A b ⎛⎫ ⎪= ⎪ ⎪⎝⎭→11100010001a a ⎛⎫ ⎪ ⎪⎪-⎝⎭,(,)()r A b r A ≠,故1λ≠……2分 当1λ=-时,111(,)02011111a A b -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭→11102010002a a -⎛⎫ ⎪- ⎪ ⎪+⎝⎭,(,)()r A b r A =,2a ∴=- ……2分(2) 1λ=-,2a =-时,(,)A b →31012111210201010200000000⎛⎫----⎛⎫⎪ ⎪ ⎪--→ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭, A X b =的通解为31(1,0,1)(,,0)22TTx k -=+ ……3分七、(本题12分) 设二次型22212312313(,,)224f x x x x x x x x =+--,求一个正交变换112233x y x Q y x y ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭将二次型123(,,)f x x x 化成标准形,并指出123(,,)1f x x x =代表的二次曲面的名称.解 二次型的矩阵102020202A -⎛⎫⎪= ⎪ ⎪--⎝⎭, 令0A I λ-=,即102020022λλλ---=---,得 1232,3λλλ===- ……4分 对122λλ==,解方程(2)0A I x -=,其中1021022000000204000A I --⎛⎫⎛⎫ ⎪ ⎪-=→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,得()12,0,1Tξ=-, ()20,1,0Tξ=,两者正交.对33λ=-,解方程(3)0A I x +=,其中402100.53050010201000A I --⎛⎫⎛⎫ ⎪ ⎪+=→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,得()31,0,2Tξ=, ……4分由于123,,ξξξ两两正交,取0001230(,,)0100Q ξξξ== ⎪, ……2分 则正交变换112233x y x Q y x y ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭将123(,,)f x x x 化成标准形222123223y y y +-……1分123(,,)1f x x x =代表单叶双曲面. ……1分八、(本题6分)设12,λλ为矩阵A 的不同特征值,对应12,λλ的特征向量分别为12,αα,试证明:112,()A ααα+线性无关的充分必要条件是20λ≠. 证 由题意12121122()A A A ααααλαλα+=+=+12λλ≠, 12,αα∴线性无关 ……2分112,()A ααα+线性无关⇔11212()0k k A ααα++=当且仅当120k k == 成立⇔1211222()0k k k λαλα++=当且仅当120k k == 成立⇔121220k k k λλ+=⎧⎨=⎩仅有零解⇔12100λλ≠⇔20λ≠ ……4分。
空间解析几何及向量代数测试题及答案
军教院 第八章空间解析几何测试题一、填空题(共7题,2分/空,共20分)1.四点(0,0,0)O ,(1,0,0)A ,(0,1,1)B ,(0,0,1)C 组成的四面体的体积是______.2.已知向量(1,1,1)a →=,)3,2,1(=→b ,(0,0,1)c →=,则→→→⨯⨯c b a )(=__(-2,-1,0)____.3.点)1,0,1(到直线⎩⎨⎧=-=03z x y x 的距离是___66___________.4.点)2,0,1(到平面321x y z ++=的距离是__3147___________. 5.曲线C:2201x y z z x ⎧+-=⎨=+⎩对xoy 坐标面的射影柱面是___2210x x y -+-=____,对yoz 坐标面的射影柱面是__22(1)0z y z -+-=_________,对xoz 坐标面的射影柱面是____10z x --=__________.6.曲线C:220x yz ⎧=⎨=⎩绕x 轴旋转后产生的曲面方程是__4224()x y z =+_____,曲线C 绕y 轴旋转后产生的曲面方程是___222x z y +=_______________.7.椭球面12549222=++z y x 的体积是_________________.二、计算题(共4题,第1题10分,第2题15分,第3题20分, 第4题10分,共55分)1. 过点(,,)P a b c 作3个坐标平面的射影点,求过这3个射影点的平面方程.这里,,a b c 是3个非零实数.解: 设点(,,)P a b c 在平面0z =上的射影点为1(,,0)M a b ,在平面0x =上的射影点为2(0,,)M a b ,在平面0y =上的射影点为3(,0,)M a c ,则12(,0,)M M a c =-u u u u u u r,13(0,,)M M b c =-u u u u u u r于是1M ,12M M u u u u u u r ,13M M u u u u u u r所确定的平面方程是000x ay b z ac bc---=- 即 ()()0bc x a ac y b abz -+-+= .2.已知空间两条直线:1l 010x y z +=⎧⎨+=⎩,:2l 010x y z -=⎧⎨-=⎩.(1)证明1l 和2l 是异面直线;(2)求1l 和2l 间的距离;(3)求公垂线方程. 证明:(1) 1l 的标准方程是1110x y z +==-,1l 经过点1(0,0,1)M -,方向向量1{1,1,0}v =- 2l 的标准方程是2110x y z -==,2l 经过点2(0,0,2)M ,方向向量2{1,1,0}v =,于是1212003(,,)1106110M M v v =-=u u u u u u r0≠,所以1l 和2l 是异面直线。
线性代数模拟试卷及答案4套
线性代数模拟试卷(一)一、 填空题(每小题3分,共6小题,总分18分)1、四阶行列式44434241343332312423222114131211a a a a a a a a a a a a a a a a 展开式中,含有因子3214a a 且带正号的项为___________2、设A 为n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B ,则AB -1=_________3、已知向量组)2- 5, 4,- ,0( , )0 t,0, ,2( , )1 1,- 2, ,1(321'='='=ααα线性相关,则t =_________4、设三阶方阵) , ,(B ), , ,(2121γγβγγα==A ,其中 , ,,21γγβα都是三维列向量且2B 1, ==A ,则=- 2B A _________5、A 为n 阶正交矩阵, , ,,21n ααα 为A 的列向量组,当i ≠j 时,)21 ,31(j i αα=_________ 6、三阶方阵A 的特征值为1,-2,-3,则 A =_______; E+A -1的特征值为______ 二、 单项选择题(每小题2分,共6小题,总分12分) 1、 设齐次线性方程组AX=0有非零解,其中A=()nn ija ⨯,A ij 为a ij (i,j=1,2,…n) 的代数余子式,则( ) (A)0111=∑=ni i i A a(B)0111≠∑=ni i i A a(C)n A ani i i =∑=111(D)n A ani i i ≠∑=1112、若A -1+ E, E+A, A 均为可逆矩阵,E 为单位矩阵,则(A -1+ E)-1=( ) (A) A+E (B) (A+E)-1 (C) A -1+ E (D) A(A+E)-13、设A, B 为n 阶方阵 ,A*,B*分别为A, B 对应的伴随矩阵,分块矩阵⎪⎪⎭⎫ ⎝⎛=B 00 A C ,则C 的伴随矩阵C* =( )(A) ⎪⎪⎭⎫⎝⎛*A B 0 0 *B A (B) ⎪⎪⎭⎫⎝⎛*B A 0 0 *A B(C) ⎪⎪⎭⎫⎝⎛*B B 0 0 *A A (D) ⎪⎪⎭⎫⎝⎛*A A 0 0 *B B 4、若向量组 , ,,21m ααα 的秩为r ,则( )(A) 必有 r<m (B)向量组中任意小于 r 个向量的部分组线性无关 (C) 向量组中任意 r 个向量线性无关(D) 向量组中任意 r+1个向量必线性相关5、已知 ,,321ααα是四元非齐次线性方程组AX=B 的三个解,且r(A)=3, 已知)3 2, 1, ,0( , )4 3, 2, ,1(321'=+'=ααα,C 为任意常数,则AX=B 通解X=( )(A) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛11114321C (B)⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛32104321C(C) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛54324321C (D) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛65434321C6、设A 为三阶方阵,有特征值λ1=1,λ2= -1, λ3=2,其对应的特征向量分别为 ,,321ααα,记P=(132 ,ααα),则P -1AP=( )(A) ⎪⎪⎪⎭⎫⎝⎛1 2 1- (B)⎪⎪⎪⎭⎫⎝⎛1- 1 2(C) ⎪⎪⎪⎭⎫⎝⎛2 1- 1 (D) ⎪⎪⎪⎭⎫⎝⎛2 1 1-三、计算下列行列式 (12分)1、 D=1- 3 3- 131 1 41- 3 0 5-21- 1 3 2、D n = n1 1 1 1.....................1 1 3 1 111 12 111 1 1 1四、已知A 、B 同为3阶方阵,且满足AB=4A+2B (12分) (1)证明:矩阵A-2E 可逆(2)若B=⎪⎪⎪⎭⎫⎝⎛2 0 00 2 10 2- 1 ,求A五、求向量组 )1 1, 1,- ,1( , )3 2, 1, ,1(21'='=αα, , )6 5, 2,- ,4( , )1 3, 3, ,1( 43'='=αα)7- 4,- 1,- ,3(5'-=α的一个极大无关组,并将其余向量用该极大无关组线性表示(10分)六、已知线性方程组⎪⎪⎩⎪⎪⎨⎧=---=+++-=+-=+-+bx x x x x ax x x x x x x x x x 432143214314321 6 - 17231 4 032 ,讨论参数a 、b 为何值方程组有解,在有解时,求出通解 (12分)七、用正交变换化二次型323121232221321222333),,(x x x x x x x x x x x x f ---++=为标准形,并写出相应的正交变换 (16分)八、已知 ,,,4321αααα是AX = 0的一个基础解系,若322211,ααβααβt t +=+=,144433,ααβααβt t +=+=,讨论t 为何值, ,,,4321ββββ是AX = 0的一个基础解系 (8分)线性代数模拟试卷(二)三、 填空题(每小题3分,共5小题,总分15分)1、j i a a a a a 53544231是五阶行列式展开式中带正号的一项,则i=_____, j=_____2、设n 阶方阵A 满足A 2 =A ,则A+E 可逆且(A+E )-1=_______________(E 为n 阶单位阵)3、已知向量组)0 6, 1,- ,1( , )2k - k,- ,3 ,1( , )2- 2, 1, ,1(321'='='=ααα 若该向量组的秩为2,则k =_________4、已知四阶方阵A 相似于B ,A 的特征值为2,3,4,5,E 是单位阵,则=- E B _________5、 向量α=(4,0,5)′在基)1 ,1- ,1(,)0 ,1 ,1( ,)1 ,2 ,1(321'='='=ηηη下的坐标为_________四、 单项选择题(每小题2分,共5小题,总分10分)1、 设 A 是三阶方阵A 的行列式,A 的三个列向量以γβα ,,表示,则 A =( ) (A)αβγ (B) γβα---(C)αγγββα+++ (D) γβαβαα+++2、设A, B ,C 为n 阶方阵, 若 AB = BA, AC = CA, 则ABC=( ) (A) BCA (B) ACB (C) CBA (D) CAB3、 A, B 均为n 阶方阵, A*为A 的伴随矩阵, 3B 2, -==A ,则21-*B A = ( )(A) 32 12--n (B) 32 1--n (C) 23 12--n (D) 23 1--n4、已知向量组 , ,,4321αααα线性无关,则向量组( ) (A)14433221 , , ,αααααααα++++线性无关(B)14433221 , , ,αααααααα----线性无关(C)14433221 , , ,αααααααα-+++线性无关 (D)14433221 , , ,αααααααα--++线性无关5、若A ~ B ,则 有 ( )(A) A 、B 有相同的特征矩阵 (B) B =A(C) 对于相同的特征值λ,矩阵A 与B 有相同的特征向量 (D) A 、B 均与同一个对角矩阵相似三、计算下列行列式 (13分)2、 D=2- 3 0 112 1 - 121 0 331- 2 1 4、D n = 11 1 111 x 1 1 (1)1 1 1 x 1 1 1 1 x x ++++a)设B= ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1 0 0 01- 1 0 00 1- 1 00 0 1- 1 ,C=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2 0 0 01 2 0 03 12 043 12 ,且矩阵A 满足 E C B C E A =''--)(1, 试将关系式化简并求A (12分)b)求向量组, )4 1,- 2, ,1(1'=α )2 3, 1, ,0( 2'=α, , )14 0, 7, 3,(3'=α , )10 1, 5, 2,( 4'=α)0 2,- 2, ,1(5'=α的一个极大无关组,并将其余向量用该极大无关组线性表示 (13分)六、k 为何值时,线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=++---=+++=+++kx x x x x k x x x x x x x x x x x 9 10 5 - 3)5(2 31 6 3 13 2 4321432143214321 有无穷多个解并求出通解 (14分)七、用正交变换化二次型31232221321422),,(x x x x x x x x f +-+=为标准形,并写出相应的正交变换 (16分)八、若矩阵A=⎪⎪⎪⎭⎫ ⎝⎛0y 10 1- 01 x0 有三个线性无关的特征向量,证明:x – y = 0线性代数模拟试卷(三)一、填空题(每小题3分,共18分)1、A 是三阶方阵,且|A|=6,则 |(3A)-1|= 。
南邮2013-2014学年研究生最优化方法期末考试试题-by陈杨
南邮2013-2014学年研究生最优化方法期末考试试题-by陈杨南京邮电大学2013-2014学年研究生最优化方法试题学号____________ 姓名______________ 班级________________一、(3分×8)(1)线性规划,0 153 22 ..3 min 1212121≥-=--≤+-x x x x x t s x x 的对偶规划为,给定一个点,让我们求其有效集,给定可行方向(a,?1)T ,求a 的取值范围。
(2)在二维空间中,集合}00,x ,1|),{(22≥≥≤+y y x y x 的极点构成的集合为。
(3)已知f(x)=x 2?3x +1 用黄金分割法求解某个函数在区间[0,4]上的极小点,则迭代一次后的区间为。
(4)函数6222),(2121222121+--++=x x x ax x x x x f 为严格凸函数,则常数a 的取值范围____________。
(5)求函数2221212),(x x x x f +=的极小点,取T x )1,0()0(=,用最速下降法一步得到的下降方向为___________。
(6)用外罚函数法求解f(x)0 x 01 .. min 212221≥≤-+x t s x x ,其增广目标函数为二、(10分)证明对于无约束最优化问题min f(x),采用最速下降法求最优点,两个相邻的方向是正交的。
三、(10分))设**,s z 分别是两个线性规划问题(I )0x bx .. max 1≥≤=A t s xc z T 与(II )0x kb x .. max 2≥+≤=A t s xc z T 的最优值,*1y 是(I )的对偶问题的最优解。
求证:k y z s T*1**+≤。
四、(18分)(1)用单纯形方法求解下面的线性规划,0 2426 1553 ..2- min 21212121≥≥≤+≤+-x x x x x x t s x x 。
线性代数与空间解析几何试卷答案
线性代数与空间解析几何试卷答案及评分标准试卷编号:A20130116一、单项选择题 (将正确答案填在题中括号内,每小题4分, 共20分) 1、设*A 是n 阶可逆方阵A 的伴随矩阵,下列结论中不正确的是( C ))(A 1-*=n AA )(B A AA 1)(1=-* )(C **=kA kA )( )(D T T A A )()(**= 2、设A 为m 阶可逆方阵,B 为n 阶可逆方阵,下列结论中不正确的是( D ))(A B A BA =00 )(B B A BA mn )1(00-=)(C ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛---1110000B A B A )(D ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛---0000111B A B A 3、方程组0=Ax 仅有零解的充分必要条件是 ( B )()A A 的行向量组线性无关 , ()B A 的列向量组线性无关 , ()C A 的行向量组线性相关 , ()D A 的列向量组线性相关 .4、直线182511:1+=--=-z y x l 与直线⎩⎨⎧=+=-326:2z y y x l 的夹角为( C ) )(A 6π )(B 4π )(C 3π )(D 2π 5、对二次曲面,下列说法不正确的是( D ))(A 方程2222y x z +=表示旋转抛物面; )(B 方程22222y x z +=表示圆锥面; )(C 方程x y =2表示抛物柱面;)(D 方程19141222=--z y x 表示单叶双曲面。
二、填空题(将正确答案填在题中横线上,每小题4分, 共20分) 1、交换矩阵A 1、2两行得到矩阵B ,若⎪⎪⎪⎭⎫ ⎝⎛=-0638527411B,则=-1A ⎪⎪⎪⎭⎫⎝⎛0368257142、向量)4,3,4(-=α在向量)1,2,2(=β上的投影=αβj Pr 23、设4元线性方程组b Ax =的系数矩阵A 的秩为3)(=A R ,321,,ηηη均为此方程组的解,且,)6,4,0,2(21T=+ηη,)2,1,2,1(31T -=+ηη则方程组b Ax =的通解为T T k x )4,3,2,1()3,2,0,1(+=4、已知实二次型),,(321x x x f = 31212322212232x x x x x x x ++++λ是正定二次型, 则参数λ的取值范围为35<<-λ5、二次曲面4222222=++++++yz xz bxy z ay x 经过正交变换⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛ζηξP z y x 化为椭圆柱面:4422=+ζη,则=a 3,=b 1.三、(10分)计算行列式:1023*********102=D解、1021023123113101610260236231631064321=+++c c c c D 5分212313121621203130121031016141312----=-------r r r r r r 8分00500501216231312=-----r r r r 10分 四、(10分) 已知⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛--=654321,1121B A ,又B XA =,求矩阵X解: 1=A ,⎪⎪⎭⎫ ⎝⎛--=-11211A 5分 ⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛==-16111074311216543211BA X 10分五、(10分)设m ααα,,,21K 是两两正交的非零向量组,证明m ααα,,,21K 线性无关。
线性代数与解析几何复习考试题
《线性代数与解析几何》复习题一、矩阵部分(一)填空题.1.设()1123123,(1,,)αβ==,TT B A βαβα==,,则3___________A =.提示:A 3=βαββαβααββαβααTT T T T T T 3)(==2.设方阵A 满足240,,A A I I +-=其中为单位矩阵,1)_____________A I --=则(. 提示:A 2+A-4I=0→A 2+A-2I-2I=0→(A-I)(A+2I)=2I →(A-I)(A+2I)/2=I 3.设方阵A 满足0322=--I A A ,则=-1A ____________.提示:A 2-2A-3I=0 → A(A-2A)=3I4.设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=1301113111211111A ,则=)(A r . 提示: 对矩阵A 施行初等行变换,非零行的行数即为矩阵A 的秩。
5.设⎪⎪⎪⎭⎫ ⎝⎛=a a a a a a A 111,则当a 满足条件 时,A 可逆.提示:矩阵A 的行列式detA ≠0时,矩阵可逆。
(二)选择题1.设n 阶矩阵,,,A B C ABC I I =满足为单位矩阵,则必有 ( )(A )I ACB = (B )I BCA = (C )I CBA = (D )I BAC = 提示:A 的逆矩阵为BC2.12321,,0,312Q t P QP t ⎛⎫ ⎪=-== ⎪ ⎪⎝⎭已知是三阶非零矩阵且则 ( )()1()1()2()2A B C D --提示:P 的列为齐次线性方程组Qx=0的解,P 非零,Qx=0有非零解,故Q 的行列式detQ=0 3.1112132122232122231112131313233311132123313010,100001a a a a a a A a a a B a a a P a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+++⎣⎦⎣⎦⎣⎦设2100010,101P ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦则必有 ( )12211221()()()()A APP B B AP P B C PP A B D P P A B ====提示:矩阵B 由矩阵A 经初等行变换得到,故在C 或D 中选择,P1、P2为初等矩阵,P1为交换第1、2行,P2为将第一行的1倍加到第三行,故选C 4.设n 维向量)21,0,,0,21(=α,矩阵ααααT T I B I A 2,+=-=,其中I 为n 阶单位矩阵,则=AB ( )()()()()T A B IC ID I αα-+提示:AB = (I-αT α)(I+2αT α)=I+αT α-2 αT α αT α= I+αT α-2 αT (α αT )α=I5.A 、B 则必有且阶矩阵均为,))((,22B A B A B A n -=-+ ( ) (A ) B=E (B ) A=E (C )A=B (D )AB=BA提示:(A+B)(A-B)=AA-AB-BA-BB6.矩阵==≠≠⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)(,4,3,2,1,0,0,44342414433323134232221241312111A r i b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a A ii 则其中 ( )A 、1B 、2C 、3D 、4 提示:A=(a 1,a 2,a 3,a 4)T (b 1,b 2,b 3,b 4) (三)计算题1.2101,02010AB I A B A I B ⎛⎫ ⎪+=+= ⎪ ⎪-⎝⎭设,为单位矩阵,求矩阵。
线性代数模拟题及答案
模拟试题一一. 填空题 (将正确答案填在题中横线上。
每小题2分,共10分)1.n 阶行列式D 的值为c, 若将D 的所有元素改变符号, 得到的行列式值为 .2.设矩阵A = ⎪⎪⎪⎭⎫ ⎝⎛101020101 ,矩阵X 满足 E AX + = X A +2 ,则X = ⎪⎪⎪⎭⎫ ⎝⎛2010301023.设n 阶矩阵A 满足 E A A 552+- = 0 ,其中E 为n 阶单位阵,则 1)2(--E A =4.设A ,B 均为3阶方阵,A 的特征值为 1,2,3,则EA +*= .5.当 λ 满足条件 时线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+--=-++-=-++-=+--00004321432143214321x x x x x x x x x x x x x x x x λλλλ 只有零解.二、单项选择题 (每小题仅有一个正确答案, 将正确答案题号填入括号内。
每小题2分,共20分)1.131211232221333231333231232221131211222333 d a a a a a a a a a a a a a a a a a a ---=则=( ).① 6d ② ―6d ③ 4d ④ ―4d 2. 向量组 s ααα,,,21 的秩为s 的充要条件是( )。
① 向量组不含零向量② 向量组没有两个向量的对应分量成比例 ③ 向量组有一个向量不能由其余向量线性表示 ④向量组线性无关3. 当t =( )时,向量组 ),4,5( , )5,2,3( , )0,1,2(321t ===ααα线性相关。
① 5 ② 10③ 15 ④ 204.已知向量组α1,α2,α3线性无关,则向量组( )线性无关。
① α1+2α2+α3, 2α1+4α2+α3, 3α1+6α2 ② α1, α1+α2, α1+α2+α3 ③ α1+α2, α2+α3, α1+2α2+α3 ④ α1-α2, α2-α3, α3-α15. 已知⎪⎪⎪⎭⎫ ⎝⎛---=63322211t A , B 为三阶非零矩阵且AB = 0, 则( ). ① 当t = 4时,B 的秩必为1 ② 当t = 4时,B 的秩必为2 ③ 当t ≠ 4时,B 的秩必为1 ④ 当t ≠ 4时,B 的秩必为26.设非齐次线性方程组A X = b 中未知量个数为n ,方程个数为m ,系数矩阵A 的秩为r ,则 .① r = m 时,方程组A X = b 有解 ② r = n 时,方程组A X = b 有唯一解 ③ m = n 时,方程组A X = b 有唯一解 ④ r < n 时,方程组A X = b 有无穷多解7. 设矩阵A 和B 等价,A 有一个k 阶子式不等于零,则B 的秩( )k.① < ② = ③ ≥ ④ ≤8. 一个向量组的极大线性无关组( ). ① 个数唯一 ② 个数不唯一③ 所含向量个数唯一 ④ 所含向量个数不唯一9. 下列关于同阶不可逆矩阵及可逆矩阵的命题正确的是( ). ① 两个不可逆矩阵之和仍是不可逆矩阵 ② 两个可逆矩阵之和仍是可逆矩阵 ③ 两个不可逆矩阵之积仍是不可逆矩阵 ④ 一个不可逆矩阵与一个可逆矩阵之积必是可逆矩阵10.已知任一n 维向量均可由n ααα,,,21 线性表示,则n ααα,,,21( )。
线性代数模拟试题及答案
...《 线性代数期末模拟试题一 》一、填空(本题20分每小题2分) 1.设)det(ij a 为四阶行列式,若23M 表示元素23a 的余子式,23A 表示元素23a 的代数余子式,则23M +23A = 。
2.三阶行列式3331221311000a a a a a 中只有位于两条对角线上的元素均不为零, 则该三阶行列式的所有项中有 项不为零,这一结论对n 阶行列式(填成立或不成立)。
3.设321,,ααα均为3维列向量,记矩阵),,,(321ααα=A 记矩阵),,2(313221αααααα-+-=B ,若6=B ,则=A 。
4.设矩阵⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=458271,131027241,213012C B A ,则=-C B A T2。
5.设矩阵A 可逆,且矩阵AB C =,所以矩阵C 一定可以由矩阵B 经过(填行或列)初等变换而得到。
6.设向量组43,21,,,αααα,若,3),,(,2),,(432321==ααααααR R 则1α一定可以由向量唯一的线性表示。
得分阅卷人...7.非齐次线性方程组b Ax =有 唯一的解是对应的齐次方程组0=Ax 只有零解的充分但不必要条件。
8.设3阶矩阵A 的行列式0=A ,则矩阵A 一定有一个特征值。
9.n 阶矩阵A 有n 个特征值1,2,, n ,n 阶矩阵B 与A 相似,则=B 。
10.向量组:[][]1,121,1,12121-==p p(填是或不是)向量空间2R 一个规范正交基。
二、单项选择(本题10分,每小题2分)注意:请务必将你的选择题的答案按要求填入下表,否则答案无效!1.设矩阵A 为n 阶方阵,则关于非齐次线性方程组b Ax =的解下列说法( )不正确(A ) 若方程组有解,则系数行列式0≠A ; (B ) 若方程组无解,则系数行列式0=A ;(C ) 若方程组有解,则或者有唯一解或者有无穷多解;...(D ) 系数行列式0≠A 是方程组有唯一解的充分必要条件. 2. 设A 为n 阶可逆矩阵,下列正确的是( ) (A ) (2)2T T A A =; (B) 11(2)2A A --=; (C) 111[()][()]T T A A ---=;(D) 111[()][()]T T T A A ---=。
线性代数考试练习题带答案大全(二)
线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。
(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。
二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。
9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。
线性代数模拟试题(4套)
模拟试题一一、判断题:(正确:√,错误:×)(每小题2分,共10分)1、若B A ,为n 阶方阵,则 B A B A +=+. ……………………( )2、可逆方阵A 的转置矩阵T A 必可逆。
……………………………( )3、n 元非齐次线性方程组b Ax =有解的充分必要条件n A R =)(.…( )4、A 为正交矩阵的充分必要条件1-=A A T .…………………………( )5、设A 是n 阶方阵,且0=A ,则矩阵A 中必有一列向量是其余列向量的线性组合。
…………………………………………………………( ) 二、填空题:(每空2分,共20分)1、,A B 为 3 阶方阵,如果 ||3,||2A B ==,那么 1|2|AB -= 。
2、行列式中元素ij a 的余子式和代数余子式,ij ij M A 的关系是 。
3、在5阶行列式中,项5541243213a a a a a 所带的正负号是 。
4、已知()⎪⎪⎪⎭⎫ ⎝⎛-==256,102B A 则=AB .5、若⎪⎪⎭⎫ ⎝⎛--=1225A ,则=-1A . 6、设矩阵⎪⎪⎪⎭⎫ ⎝⎛--2100013011080101是4元非齐次线性方程组b Ax =的增广矩阵,则b Ax =的通解为 。
7、()B A R + ()()B R A R +。
8、若*A 是A 的伴随矩阵,则=*AA .9、设=A ⎪⎪⎪⎭⎫ ⎝⎛-500210111t ,则当t 时,A 的行向量组线性无关。
10、方阵A 的特征值为λ,方阵E A A B 342+-=,则B 的特征值为 . 三、计算:(每小题8分,共16分)1、已知4阶行列式1611221212112401---=D ,求4131211132A A A A +-+。
2、设矩阵A 和B 满足B AE AB +=+2,其中⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,求矩阵B 。
四、(10分) 求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=++-=-++=--+-=++-0242205230204321432143214321x x x x x x x x x x x x x x x x 的基础解系和它的通解.五、(10分) 设三元非齐次线性方程组b Ax =的增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011λλλλλλλλλλ, 讨论当λ取何值时,b Ax =无解,有唯一解和有无穷多解,并在无穷多解时求出通解。
线性代数试题集与答案解析大全(2)
线性代数期末考试试卷及答案一、单项选择题(每小题2分,共40分)。
1.设矩阵22, B 23, C 32A ⨯⨯⨯为矩阵为矩阵为矩阵,则下列矩阵运算无意义的是【 】A . BAC B. ABC C . BCA D. CAB2.设n 阶方阵A 满足A 2 +E =0,其中E 是n 阶单位矩阵,则必有 【 】A. 矩阵A 不是实矩阵B. A=-EC. A=ED. det(A)=1 3.设A 为n 阶方阵,且行列式det(A)=1 ,则det(-2A)= 【 】A. 2-B. ()n2- C. n 2- D. 14.设A 为3阶方阵,且行列式det(A)=0,则在A 的行向量组中 【 】A.必存在一个行向量为零向量B.必存在两个行向量,其对应分量成比例C. 存在一个行向量,它是其它两个行向量的线性组合D. 任意一个行向量都是其它两个行向量的线性组合5.设向量组321,,a a a 线性无关,则下列向量组中线性无关的是 【 】A .133221,,a a a a a a --- B. 212132,,a a a a - C. 32322,2,a a a a + D. 1321,,a a a a -6.向量组(I): )3(,,1≥m a a m 线性无关的充分必要条件是 【 】A.(I)中任意一个向量都不能由其余m-1个向量线性表出B.(I)中存在一个向量,它不能由其余m-1个向量线性表出C.(I)中任意两个向量线性无关D.存在不全为零的常数0,,,111≠++m m m a k a k k k 使7.设a 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 存在非零解的充分必要条件是【 】A .A 的行向量组线性相关B . A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关8.设i a 、i b 均为非零常数(i =1,2,3),且齐次线性方程组⎩⎨⎧=++=++00332211332211x b x b x b x a x a x a的基础解系含2个解向量,则必有 【 】 A.03221= b b a a B.02121≠ b b a a C.332211b a b a b a == D. 02131= b b a a 9.方程组12312312321 21 3 321x x x x x x x x x a ++=⎧⎪++=⎨⎪++=+⎩有解的充分必要的条件是【 】A. a=-3B. a=-2C. a=3D. a=110. 设η1,η2,η3是齐次线性方程组Ax = 0的一个基础解系,则下列向量组中也为该方程组的一个基础解系的是 【 】A. 可由η1,η2,η3线性表示的向量组B. 与η1,η2,η3等秩的向量组C.η1-η2,η2-η3,η3-η1D. η1,η1-η3,η1-η2-η311. 已知非齐次线性方程组的系数行列式为0,则 【 】A. 方程组有无穷多解B. 方程组可能无解,也可能有无穷多解C. 方程组有唯一解或无穷多解D. 方程组无解12.n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个 【 】A.互不相同的特征值B.互不相同的特征向量C.线性无关的特征向量D.两两正交的特征向量13. 下列子集能作成向量空间R n 的子空间的是 【 】A. }0|),,,{(2121=a a a a a nB. }0|),,,{(121∑==ni in aa a aC. },,2,1,|),,,{(21n i z a a a a i n =∈D. }1|),,,{(121∑==n i inaa a a14.若2阶方阵A 相似于矩阵⎥⎦⎤⎢⎣⎡=3- 201B ,E 为2阶单位矩阵,则方阵E –A 必相似于矩阵【 】A. ⎥⎦⎤⎢⎣⎡4 101 B. ⎥⎦⎤⎢⎣⎡4- 1 01- C. ⎥⎦⎤⎢⎣⎡4 2-00 D. ⎥⎦⎤⎢⎣⎡4- 2-01-15.若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8020001 a a A 正定,则实数a 的取值范围是 【 】 A .a < 8 B. a >4 C .a <-4 D .-4 <a <4二、填空题(每小题2分,共20分)。
线性代数试题和答案(精选版)
线性代数习题和答案第一局部选择题 (共28分)一、单项选择题〔本大题共14小题,每题2分,共28分〕在每题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号。
错选或未选均无分。
1.设行列式a a a a 11122122=m ,a a a a 13112321=n ,那么行列式a a a a a a 111213212223++等于〔 〕 A.m+nB. -(m+n)C. n -mD. m -n2.设矩阵A =100020003⎛⎝ ⎫⎭⎪⎪⎪,那么A -1等于〔 〕 A. 13000120001⎛⎝ ⎫⎭⎪⎪⎪⎪⎪⎪B. 10001200013⎛⎝ ⎫⎭⎪⎪⎪⎪⎪⎪ C. 130********⎛⎝ ⎫⎭⎪⎪⎪⎪⎪D. 12000130001⎛⎝ ⎫⎭⎪⎪⎪⎪⎪⎪ 3.设矩阵A =312101214---⎛⎝ ⎫⎭⎪⎪⎪,A *是A の伴随矩阵,那么A *中位于〔1,2〕の元素是〔 〕 A.–6 B. 6C. 2D.–24.设A 是方阵,如有矩阵关系式AB =AC ,那么必有〔 〕A.A =0B. B ≠C 时A =0C.A ≠0时B =CD. |A |≠0时B =C5.3×4矩阵A の行向量组线性无关,那么秩〔A T 〕等于〔 〕A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs 和β1,β2,…,βs 均线性相关,那么〔 〕A.有不全为0の数λ1,λ2,…,λs 使λ1α1+λ2α2+…+λs αs =0和λ1β1+λ2β2+…λs βs =0B.有不全为0の数λ1,λ2,…,λs 使λ1〔α1+β1〕+λ2〔α2+β2〕+…+λs 〔αs +βs 〕=0C.有不全为0の数λ1,λ2,…,λs 使λ1〔α1-β1〕+λ2〔α2-β2〕+…+λs 〔αs -βs 〕=0D.有不全为0の数λ1,λ2,…,λs 和不全为0の数μ1,μ2,…,μs 使λ1α1+λ2α2+…+λs αs =0和μ1β1+μ2β2+…+μs βs =07.设矩阵A の秩为r ,那么A 中〔 〕A.所有r -1阶子式都不为0B.所有r -1阶子式全为0C.至少有一个r 阶子式不等于0D.所有r 阶子式都不为08.设Ax=b 是一非齐次线性方程组,η1,η2是其任意2个解,那么以下结论错误の是〔 〕A.η1+η2是Ax=0の一个解B.12η1+12η2是Ax=b の一个解 C.η1-η2是Ax=0の一个解 D.2η1-η2是Ax=b の一个解9.设n 阶方阵A 不可逆,那么必有〔 〕A.秩(A )<nB.秩(A )=n -1C.A=0D.方程组Ax=0只有零解10.设A 是一个n(≥3)阶方阵,以下述中正确の是〔 〕A.如存在数λ和向量α使A α=λα,那么α是A の属于特征值λの特征向量B.如存在数λ和非零向量α,使(λE -A )α=0,那么λ是A の特征值C.A の2个不同の特征值可以有同一个特征向量D.如λ1,λ2,λ3是A の3个互不一样の特征值,α1,α2,α3依次是A の属于λ1,λ2,λ3の特征向量,那么α1,α2,α3有可能线性相关11.设λ0是矩阵A の特征方程の3重根,A の属于λ0の线性无关の特征向量の个数为k ,那么必有〔 〕A. k ≤3B. k<3C. k=3D. k>312.设A 是正交矩阵,那么以下结论错误の是〔 〕A.|A|2必为1B.|A |必为1C.A -1=A TD.A の行〔列〕向量组是正交单位向量组13.设A 是实对称矩阵,C 是实可逆矩阵,B =C T AC .那么〔 〕A.A 与B 相似B. A 与B 不等价C. A 与B 有一样の特征值D. A 与B 合同14.以下矩阵中是正定矩阵の为〔 〕A.2334⎛⎝ ⎫⎭⎪B.3426⎛⎝ ⎫⎭⎪ C.100023035--⎛⎝ ⎫⎭⎪⎪⎪D.111120102⎛⎝ ⎫⎭⎪⎪⎪ 第二局部 非选择题〔共72分〕二、填空题〔本大题共10小题,每题2分,共20分〕不写解答过程,将正确の答案写在每题の空格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京邮电大学2013-2014《线性代数与空间解析几何》模拟试题四及参考答案一、单项选择(每小题2分,共10分)111111.,12111x y z x y zλ-+---====-若两直线相互垂直,则 必有( )(A)1λ= (B)2λ= (C)1λ=- (D)2λ=- 2.设A ,B 为任意两个n 阶方阵,则下列等式一定成立的是( )。
(A)AB BA = (B)||||AB BA = (C)111()AB B A ---= (D)()T T T AB A B =3 .矩阵142034043A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭与10000005B x ⎛⎫ ⎪= ⎪ ⎪⎝⎭相似,则x =( )。
(A) 3 (B )3- (C )5 (D )5-4.设A 为m n ⨯矩阵,则线性方程组0Ax =有非零解的充分必要条件为( )。
(A) ()R A m < (B) ()R A n < (C)||0A = (D)()R A n = 5.设,A B 为n 阶正定矩阵,则( )也为正定的矩阵。
(A)A B + (B)A B - (C)AB (D)11B A -- 二、填空题(每小题2分,共12分)1.过点(1,2,1)-且与平面2321x y +-=垂直的直线方程 。
2.行列式103100204199200395301300600= 。
3.向量组123(0,,1),(1,2,1),(1,1,0)aααα===-线性相关,则a = 。
4.设3阶矩阵A 的特征值为1,1,2,,则行列式1A --=。
5.设426a A ⎛⎫= ⎪⎝⎭只有一个线性无关的特征向量,则a = 。
6.设A 为3阶正交矩阵,(1,1,0),(1,0,1)αβ==,则向量,A A αβ的夹角= 。
三、计算题(每小题10分,共30分)1.问λ为何值时,线性方程组1231232123(1)0(1)(1)x x x x x x x x x λλλλλ⎧+++=⎪+++=⎨⎪+++=⎩有唯一解、无解、无穷多解,并求有无穷多解时方程组的通解。
2.求矩阵222121212A ⎛⎫⎪= ⎪⎪⎝⎭的特征值和特征向量,并问A 是否可相似对角化。
3.已知1(1,4,0,2)T α=,2(2,7,1,3)T α=,3(0,1,1,2)T α=-,(3,10,,4)T t β=,当t 为何值时,β可由123,,ααα线性表示,并写出此表达式。
四、计算题(每小题8分,共24分)1.求经过直线1010x y z x y z +--=⎧⎨-++=⎩且与平面5x y z ++=垂直的平面方程。
2.设A 为n 阶矩阵且1||2A =,A *为A 的伴随矩阵,计算行列式11103A A -*⎛⎫- ⎪⎝⎭。
3.已知2221231231213(,,)642f x x x x x ax x x ax x =++++为正定二次型,确定a 的取值范围。
五、证明题(每小题8分,共24分)1.设A 为n 阶矩阵,A *为A 的伴随矩阵,证明:1||||n A A *-=。
2.设n 阶矩阵A 满足:23100A A I --=,证明:,4A A I -都可逆,并求它们的逆矩阵。
3.如果,A B 是n 阶实对称矩阵,且对任意n 维列向量x ,有T T x Ax x Bx ≥,则记为A B ≥。
设A 是n 阶实对称矩阵,满足2A I ≥,证明:(1)A 是正定矩阵;(2)A 满足:112I A -≥。
南京邮电大学2013-2014《线性代数与空间解析几何》模拟试题四参考答案与评分标准一、单项选择(每小题2分,共10分)1.A2.B3.D4.B5.A 二、填空题(每小题2分,共12分)1. 121231x y z -+-==-,2.2000,3. 3,4. 12-,5.12-,6.3π. 三、计算题(每小题10分,共30分)1.解 2111111(3)111λλλλλ++=++,4分 03,5λλ≠≠-当且时方程组有唯一解分3λ=-当时,方程组无解7分(结论1分,过程1分) 0λ=当时,方程组有无穷多解,8分 通解12111001x k k --⎛⎫⎛⎫⎪ ⎪=+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭10分2.解 222||121(1)(5)212I A λλλλλλλ----=---=-----,特征值为1230,1,5λλλ===3分 1122210110,121010,0(0)2120001I A k k λλξ----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=---→=≠ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭当时特征向量,5分222210001,111011,1(0)2110001I A k k λλξ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=---→=-≠ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭1当时特征向量,7分33322108/785,131015/7,5(0)2130007I A k k λλξ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=--→-=≠ ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭当时特征向量,9分A A 有三个不同的特征值,因此可与对角矩阵相似。
10分3.解 β可由123,,ααα线性表示等价于线性方程组112233 x x x αααβ++=有解,3分120312031203100147110011201120102011011001000102324012200020002A t t t t -⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪---⎪ ⎪ ⎪ ⎪=→→→ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭,6分当2t =时,()()3R A R A == 方程组有解,8分 122βαα=-+。
10分四、计算题(每小题8分,共24分)1.解 过已知直线的平面束方程为1(1)0x y z x y z λ+--+-++=,3分1(1,1,1)(1,1,1)n n λλλ=+--+⊥=,得1λ=-,6分 所求的平面方程 10y z --=。
8分2.解 1111131110|310|2||232n n A A A A A -*---+⎛⎫-=-⋅== ⎪⎝⎭分6分8分。
3.解 二次型对应的矩阵122600a A a a ⎛⎫⎪= ⎪ ⎪⎝⎭3分 121210,2026P P =>==>, 3121||2602(13)0030aP A a a a a a===->⇔<<7分 故二次型为正定的充要条件为103a <<。
8分 五、证明题(每小题8分,共24分)1.证:由于||AA A I *=,则||||||n A A A *= , 当||0A ≠时,1||||n A A *-=;4分当||0A =时,0AA *=,如果||0A *≠,则A *可逆,右乘1()A *-得:0A =,从而0,A *=||0A *= 矛盾,所以1||0||n A A *-==。
8分 2.证:由已知得 1[(3)]10A A I I -=,故此A 可逆,且11(3)10A A I -=-。
4分 又由于(4)()A I AI I -+=,1(4)[()]6A I A I I -+=,则4A I -可逆,且11(4)()6A I A I --=+。
8分3. 证:(1)由于2A I ≥,则对任意0x ≠,有222|||0T T x Ax x Ix x ≥=>,所以A 是正定矩阵。
4分(2)(方法1)由(1)知A 是正定矩阵,故此存在正交矩阵Q 使1,0(1,2,,)T i n Q AQ i n λλλ⎛⎫ ⎪=>= ⎪ ⎪⎝⎭,5分则2,T T T A Q Q Q Q B B Q Q ⎫⎫⎫⎪⎪⎪=== ⎪ ⎪⎪ ⎝⎝⎝其中,6分且T B B =,B 为正定矩阵,从而112()A B --=。
7分 对任意x ,有1111111111()()2()()()2()2T T T T T T TT B x A B x B x B x x B AB x x B B x x x x A x ---------≥⇔≥⇔≥, 即112I A -≥。
8分 (2)(方法2)由(1)知A 是正定矩阵,故此存在正交矩阵Q 使1,0(1,2,,)T i n Q AQ i n λλλ⎛⎫⎪=>=⎪ ⎪⎝⎭,5分 1111Tn A Q Q λλ---⎛⎫⎪=⎪ ⎪⎝⎭,6分 则对任意x ,有:2222111()2()()22()T T T T T n n n Qx AQx x Q AQx Qx Qx x x x x x x λλ=≥=⇔+≥+故此2(1,2,,)i i n λ≥=,7分 记T y Q x =,有11111212111111122T T T T T T n n n n x x y y y y y y x Q Q x x A x λλλλλλ-------⎛⎫⎛⎫⎪ ⎪=≥++===⎪⎪ ⎪ ⎪⎝⎭⎝⎭即112I A -≥。
8分。