【红对勾】人教A版高中数学选修2-1单元综合测试一
高中数学人教A版选修2-1模块综合测评 选修2-1(A版).docx
高中数学学习材料马鸣风萧萧*整理制作模块综合测评 选修2-1(A 版)(时间:90分钟 满分:120分) 第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.1.已知命题p :若x 2+y 2=0(x ,y ∈R ),则x ,y 全为0;命题q :若a >b ,则1a <1b .给出下列四个复合命题:①p 且q ;②p 或q ;③綈p ;④綈q .其中真命题的个数是( )A .1个B .2个C .3个D .4个解析:命题p 为真,命题q 为假,故p ∨q 真,綈q 真. 答案:B2.“α=π6+2k π(k ∈Z )”是“cos2α=12”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 解析:当α=π6+2k π(k ∈Z )时,cos2α=cos ⎝ ⎛⎭⎪⎫4k π+π3=cos π3=12. 反之当cos2α=12时,有2α=2k π+π3(k ∈Z )⇒α=k π+π6(k ∈Z ),故应选A.答案:A3.若直线l 的方向向量为b ,平面α的法向量为n ,则可能使l ∥α的是( )A .b =(1,0,0),n =(-2,0,0)B .b =(1,3,5),n =(1,0,1)C .b =(0,2,1),n =(-1,0,-1)D .b =(1,-1,3),n =(0,3,1)解析:若l ∥α,则b·n =0.将各选项代入,知D 选项正确. 答案:D4.已知a =(cos α,1,sin α),b =(sin α,1,cos α),则向量a +b 与a -b 的夹角是( )A .90°B .60°C .30°D .0°解析:∵|a |=|b |=2,∴(a +b )·(a -b )=a 2-b 2=0.故向量a +b 与a -b 的夹角是90°.答案:A5.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB |等于( )A .10B .8C .6D .4解析:由抛物线的定义得|AB |=x 1+x 2+p =6+2=8.答案:B6.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为()A.63B.255C.155D.105解析:建立如图所示空间直角坐标系,得D (0,0,0),B (2,2,0),C 1(0,2,1),B 1(2,2,1),D 1(0,0,1),则DB →=(2,2,0),DD 1→=(0,0,1),BC 1→=(-2,0,1). 设平面BD 1的法向量n =(x ,y ,z ).∴⎩⎪⎨⎪⎧n ·DB →=2x +2y =0,n ·DD 1→=z =0,∴取n =(1,-1,0).设BC 1与平面BD 1所成的角为θ,则sin θ=cos 〈n ,BC 1→〉=|BC 1→·n ||BC 1→|·|n |=25·2=105.答案:D7.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程是( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x解析:y 2=ax 的焦点坐标为⎝ ⎛⎭⎪⎫a 4,0,过焦点且斜率为2的直线方程为y =2⎝⎛⎭⎪⎫x -a 4,令x =0得y =-a2. ∴12×|a |4×|a |2=4,∴a 2=64,∴a =±8. 答案:B8.三棱锥A -BCD 中,AB =AC =AD =2,∠BAD =90°,∠BAC =60°,则AB →·CD →等于( )A .-2B .2C .-2 3D .2 3解析:AB →·CD →=AB →·(AD →-AC →)=AB →·AD →-AB →·AC →=|AB →||AD →|cos90°-2×2×cos60°=-2.答案:A9.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( )A. 3 B .2 C. 5D. 6解析:双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b a x ,∵y =x 2+1与渐近线相切,故x 2+1±b a x =0只有一个实根,∴b 2a 2-4=0,∴c 2-a 2a 2=4,∴c 2a 2=5,∴e = 5. 答案:C10.双曲线x 2a 2-y 2b 2=1与椭圆x 2m 2+y 2b 2=1(a >0,m >b >0)的离心率互为倒数,那么以a 、b 、m 为边长的三角形一定是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形解析:双曲线的离心率e 21=a 2+b 2a 2,椭圆的离心率e 22=m 2-b 2m 2,由已知e 21e 22=1,即a 2+b 2a 2×m 2-b 2m2=1,化简,得a 2+b 2=m 2.∴以a 、b 、m 为边长的三角形为直角三角形.答案:C第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分. 11.双曲线x 2m 2+12-y 24-m 2=1的焦距是__________.解析:依题意a 2=m 2+12,b 2=4-m 2,所以c 2=a 2+b 2=16,c =4,2c =8.答案:812.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件,命题q :函数y =x -3的定义域是[3,+∞),则“p ∨q ”“p ∧q ”“綈p ”中是真命题的有__________.解析:依题意可知p 假,q 真,所以“p ∨q ”为真,“p ∧q ”为假,“綈p ”为真.答案:“p ∨q ” “綈p ”13.已知A (0,-4),B (3,2),抛物线x 2=y 上的点到直线AB 的最短距离为__________.解析:直线AB 为2x -y -4=0,设抛物线y 2=x 上的点P (t ,t 2), d =|2t -t 2-4|5=t 2-2t +45=(t -1)2+35≥35=355.答案:35 5.14.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 和N 分别是A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值为__________.解析:建立空间直角坐标系如图,则M ⎝ ⎛⎭⎪⎫1,12,1,N ⎝ ⎛⎭⎪⎫1,1,12,A (1,0,0),C (0,1,0),∴AM →=⎝⎛⎭⎪⎫0,12,1,CN →=⎝⎛⎭⎪⎫1,0,12.∴cos 〈AM →,CN →〉=AM →·CN →|AM →||CN →|=1254=25.即直线AM 与CN 所成角的余弦值为25. 答案:25三、解答题:本大题共4小题,满分50分.15.(12分)已知命题p :方程x 22m +y 29-m=1表示焦点在y 轴上的椭圆,命题q :双曲线y 25-x 2m =1的离心率e ∈⎝ ⎛⎭⎪⎫62,2,若命题p 、q 中有且只有一个为真命题,求实数m 的取值范围.解:若p 真,则有9-m >2m >0, 即0<m <3.若q 真,则有m >0, 且e 2=1+b 2a 2=1+m 5∈⎝ ⎛⎭⎪⎫32,2,即52<m <5. 若p 、q 中有且只有一个为真命题, 则p 、q 一真一假.(4分) ①若p 真、q 假,则0<m <3,且m ≥5或m ≤52,即0<m ≤52;(6分) ②若p 假、q 真,则m ≥3或m ≤0,且52<m <5, 即3≤m <5.(8分)故所求m 的范围为:0<m ≤52或3≤m <5.(12分)16.(12分)设圆C 与两圆(x +5)2+y 2=4,(x -5)2+y 2=4中的一个内切,与另一个外切.(1)求圆C 的圆心轨迹L 的方程;(2)已知点M ⎝ ⎛⎭⎪⎫355,455,F (5,0),且P 为L 上一动点,求||MP |-|FP ||的最大值及此时点P 的坐标.解:(1)设圆C 的圆心坐标为(x ,y ),半径为r . 圆(x +5)2+y 2=4的圆心为F 1(-5,0),半径为2, 圆(x -5)2+y 2=4的圆心为F (5,0),半径为2.由题意得⎩⎪⎨⎪⎧ |CF 1|=r +2,|CF |=r -2或⎩⎪⎨⎪⎧|CF 1|=r -2,|CF |=r +2,∴||CF 1|-|CF ||=4. ∵|F 1F |=25>4,∴圆C 的圆心轨迹是以F 1(-5,0),F (5,0)为焦点的双曲线,其方程为x 24-y 2=1.(6分)(2)由图知,||MP |-|FP ||≤|MF |,∴当M ,P ,F 三点共线,且点P 在MF 延长线上时, |MP |-|FP |取得最大值|MF |, 且|MF |=⎝ ⎛⎭⎪⎫355-52+⎝ ⎛⎭⎪⎫455-02=2. 直线MF 的方程为y =-2x +25,与双曲线方程联立得⎩⎨⎧y =-2x +25,x 24-y 2=1,整理得15x 2-325x +84=0.解得x 1=14515(舍去),x 2=655. 此时y =-255.∴当||MP |-|FP ||取得最大值2时,点P 的坐标为⎝ ⎛⎭⎪⎫655,-255.(12分)17.(12分)如图,点F 1(-c,0),F 2(c,0)分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1作x 轴的垂线交椭圆C 的上半部分于点P ,过点F 2作直线PF 2的垂线交直线x =a 2c 于点Q .(1)如果点Q 的坐标是(4,4),求此时椭圆C 的标准方程; (2)证明:直线PQ 与椭圆C 只有一个交点. 解:(1)方法一:由条件知,P ⎝ ⎛⎭⎪⎫-c ,b 2a .故直线PF 2的斜率为 kPF 2=b 2a -0-c -c =-b 22ac .∵PF 2⊥F 2Q .∴直线F 2Q 的方程为y =2ac b 2x -2ac 2b 2.故Q ⎝ ⎛⎭⎪⎫a 2c ,2a . 由题设知,a 2c =4,2a =4,解得a =2,c =1. 则b 2=a 2-c 2=3.故椭圆方程为x 24+y 23=1.(6分)方法二:设直线x =a 2c 与x 轴交于点M .由条件知,P ⎝⎛⎭⎪⎫-c ,b 2a . ∵△PF 1F 2∽△F 2MQ ,∴|PF 1||F 2M |=|F 1F 2||MQ |. 即b 2a a 2c -c=2c |MQ |,解得|MQ |=2a .∴⎩⎨⎧a 2c =4,2a =4.解得a =2,c =1.则b 2=3.故椭圆方程为x 24+y 23=1.(6分)(2)直线PQ 的方程为y -2a b 2a -2a =x -a 2c -c -a 2c,即y =c a x +a .将上式代入椭圆方程得,x 2+2cx +c 2=0,解得x =-c ,y =b 2a .∴直线PQ 与椭圆C 只有一个交点.(12分)18.(14分)如图,在五面体ABCDEF 中,F A ⊥平面ABCD ,AD ∥BC∥FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC =FE =12AD .(1)求异面直线BF 与DE 所成的角的大小;(2)证明平面AMD ⊥平面CDE ;(3)求二面角A -CD -E 的余弦值.解:如图所示,建立空间直角坐标系,点A 为坐标原点.设AB =1,依题意得B (1,0,0),C (1,1,0),D (0,2,0),E (0,1,1),F (0,0,1),M ⎝ ⎛⎭⎪⎫12,1,12. (1)BF →=(-1,0,1),DE →=(0,-1,1),于是cos 〈BF →,DE →〉=BF →·DE →|BF →||DE →|=0+0+12×2=12.∴异面直线BF 与DE 所成的角的大小为60°.(4分)(2)证明:由AM →=⎝ ⎛⎭⎪⎫12,1,12,CE →=(-1,0,1), AD →=(0,2,0),可得CE →·AM →=0,CE →·AD →=0. 因此,CE ⊥AM ,CE ⊥AD .又AM ∩AD =A ,故CE ⊥平面AMD .而CE ⊂平面CDE ,所以平面AMD ⊥平面CDE .(8分)(3)设平面CDE 的法向量为u =(x ,y ,z ),则⎩⎪⎨⎪⎧ u ·CE →=0,u ·DE →=0.于是⎩⎪⎨⎪⎧-x +z =0,-y +z =0. 令z =1,可得u =(1,1,1).又∵由题设,平面ACD 的一个法向量为v =(0,0,1).∴cos 〈u ,v 〉=u·v |u |·|v |=0+0+13×1=33. ∵二面角A -CD -E 为锐角,∴其余弦值为33.(14分)。
人教A版高中数学选修2-1单元综合测试一
【红对勾】人教 A 版高中数学选修 2-1 单元综合测试一 篇一:2013 版【名师一号】高中数学(人教 A 版)选修 2-1 全册综合测试题(含详解) 本资料来自于资源最齐全的21世纪教育网 本册综合测试 (时间:120 分钟,满分:150 分) 一、选择题(本大题共 12 小题,每小题 5 分,满分 60 分.在每小题给出的四个选项中, 有且只有一项是符合题目要求的) 1.已知 p:2x-3 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 ?/p. ∴p2A.0) C.(0,1). 答案 C 3.已知命题 p:3 是奇数,q:3 不是质数.由它们构成的“p∨q”“p∧q”“綈 p”形式的命 题中真命题有() A.0 个 B.1 个 C.2 个 D.3 个 解析 命题 p 为真,q 为假,∴“p∨q”为真,“p∧q”、“綈 p”为假,故应选 B. 本资料来自于资源最齐全的21世纪教育网 答案 B x2y24.4k=1 的离心率 e∈(1,2),则 k 的取值范围是() A.(-∞,0)B.(-3,0) C.(-12,0)D.(-60,-12) x2y2 解析 由 4k1 表示双曲线知,k 4-k∵1 ∴4 答案 C 5.下列结论正确的个数是(“?x∈R,x2+1>0p:?x∈R,x2+2x+1≤0,则綈 p:?x∈R,x2 +2xA.0B.C.2 解析 綈 p:?x∈R,x2+2x+1>0.∴①不正确,②正确,③不正确. 答案 B 6.设 α,β,γ 是互不重合的平面,m,n 是互不重合的直线,给出下列命题: ①若 m⊥α, m⊥β, 则 α∥β; ②若 α⊥γ, β⊥γ, 则 α∥β; ③若 m⊥α, m∥β, 则 α⊥β; ④若 m∥α,n⊥α,则 m⊥n. 其中真命题的个数是() 本资料来自于资源最齐全的21世纪教育网 1 / 10A.1B.2 C.3D.4 解析 ①正确,②不正确,③正确,④正确. 答案 C 7.已知 a=(m+1,0,2m),b=(6,2n-1,2),若 a∥b,则 m 与 n 的值分别为() 11A.52B.5,2 11C5,-2D.-5,-2 解析 ∵a∥b,∴a=λb, m? ?∴?0??2∴m 答案 8y2=2px 的准线上,则 p 的值为() A.2B.3 C.4D.42 2p 解析 设双曲线的焦距为 2c,由双曲线方程知 c2=3+16,则其 左焦点为(p316,0). 本资料来自于资源最齐全的21世纪教育网 p 由抛物线方程 y2=2px 知其准线方程为 x=-2, 由双曲线的左焦点在抛物线的准线上知, p2p23+16=4p>0,解得 p=4. 答案 C x2y2 9.已知双曲线 a-b1 的左、右焦点分别为 F1、F2,点 P 在双曲线上,且|PF1|=4|PF2|, 则此双曲线的离心率 e 的最大值为() 43A.3B.2 5C.3D.2 解析 a, 又|又|c∴a 答案 10.如图所示,在直三棱柱 ABC-A1B1C1 中,AB=BC=AA1, 本资料来自于资源最齐全的21世纪教育网 ∠ABC=90°,点 EF 分别是棱 AB,BB1 的中点,则直线 EF 和 BC1 所成的角是() A.45° C.90°B.60° D.120° 解析 建立空间直角坐标如图所示. 1 故 EF 与 BC1 所成的角为 60°. 答案 B 11.给出下列曲线,其中与直线 y=-2x-3 有交点的所有曲线是() 22xx①4x+2y-1=0;②x2+y2=3;③2+y2=12-y2=1. A.①③B.②④ 2 / 10篇二:新人教 A 版高中数学选修 2-2 综合测试题【1】及答案 高中新课标数学选修(2-2)综合测试题 一、选择题 1.在数学归纳法证明“1?a?a? 的左边为() A.1 答案:C B.1?aC.1?aD.1?a2 21?an?1?a?(a?1,n?N?)”时,验证当 n?1 时,等式 1?an 1?∞)上是增函数,2.已知三次函数 f(x)?x3?(4m?1)x2?(15m2?2m?7)x?2 在 x?(?∞,则 3 m 的取值范围为() A.m?2 或 m?4B.?4?m??2 C.2?m?4D.以上皆不正确 答案:C 3.设 f(x)?(ax?b)sinx?(cx?d)cosx,若 f?(x)?xcosx,则 a,b,c,d 的值分别为() A.1,1, 0 ,0 答案:D B.1,0,1,0C.0,1,0,1D.1,0,0,1 ,,且在点 Q(2,?1)处的切线平行于直线 y?x?3,4.已知抛物线 y?ax2?bx?c 通过点 P(11) 则抛物线方程为() A.y?3x2?11x?9 C.y?3x2?11x?9 答案:A 5.数列?an?满足 an?11?2a,0≤a≤,nn?6?2??若 a1?,则 a2004 的值为() 17?2a?1≤a?1, nn??2B.y?3x2?11x?9 D.y??3x2?11x?9 A.67B.57C.37D.1 7 答案:C 6.已知 a, b 是不相等的正数,x?,y?,则 x,y 的关系是() A.x?y 答案:B B.y?x C.x?D.不确定 m?2i(m?R)不可能在() 1?2i A.第一象限B.第二象限C.第三象限 答案:A ,D?A 的运算分别对应下图中的 8.定义 A?B,B?C,C?D7.复数 z? D.第四象限 (1),(2),(3),(4),那么,图中(A),(B)可能是下列 3 / 10()的运算的结果() A.B?D,A?DB.B?D,A?C C.B?C,A?DD.C?D,A?D 答案:B 9.用反证法证明命题“a,b?N,如果 ab 可被 5 整除,那么 a,b 至少有 1 个能被 5 整除.” 则假设的内容是() A.a,b 都能被 5 整除 B.a,b 都不能被 5 整除 C.a 不能被 5 整除 D.a,b 有 1 个不能被 5 整除 答案:B 10.下列说法正确的是() A.函数 y?x 有极大值,但无极小值 B.函数 y?x 有极小值, 但无极大值 C.函数 y?x 既有极大值又有极小值 D.函数 y?x 无极值 答案:B 11. 对于两个复数????11? ,???,有下列四个结论:①???1;②?1;③?1;?22?④?3??3?1.其中正确的个数为() A.1B.2C.3D.4 答案:B 12.设 f(x)在[a,b]上连续,则 f(x)在[a,b]上的平均值是() A.f(a)?f(b)2B.?f(x)dx ab C.1bf(x)dx?a2D.1bf(x)dx ?ab?a 答案:D 二、填空题 13.若复数 z?log2(x2?3x?3)?ilog2(x?3)为实数,则 x 的值为 答案:4 14.一同学在电脑中打出如下图形(○表示空心圆,●表示实心圆) ○●○○●○○○●○○○○● 若将此若干个圆依此规律继续下去,得到一系列的圆,那么前 2006 年圆中有实心圆的个 数为. 答案:61 ,2]上的最大值为 3,最小值为?29,则 a,b 的 15.函数 f(x)?ax3?6ax2?b(a?0)在区间[?1 值分别为. 答案:2,3 16.由 y2?4x 与直线 y?2x?4 所围成图形的面积为 答案:9 三、解答题 17.设 n?N?且 sinx?cosx??1,求 sinnx?cos n,2,3,4 时的值,归纳猜测 x 的值.(先观察 n?1 sinnx?cosnx 的值.) 4 / 10解:当 n?1 时,sinx?cosx??1; 当 n?2 时,有 sin2x?cos2x?1; 当 n?3 时,有 sin3x?cos3x?(sinx?cosx)(sin2x?cos2x?sinxcosx), 而 sinx?cosx??1, ∴1?2sinxcosx?1,sinxcosx?0. ∴sin3x?cos3x??1. 当 n?4 时,有 sin4x?cos4x?(sin2x?cos2x)2?2sin2xcos2x?1. 由以上可以猜测,当 n?N?时,可能有 sinnx?cosnx?(?1)n 成立. 18.设关于 x 的方程 x2?(tan??i)x?(2?i)?0, (1)若方程有实数根,求锐角?和实数根; π(2)证明:对任意??kπ?(k?Z),方程无纯虚数根. 2 解:(1)设实数根为 a,则 a2?(tan??i)a?(2?i)?0, 即(a2?atan??2)?(a?1)i?0. ,?a2?atantan??2?0,?a??1 由于 a,tan??R,那么? ??tan??1.a?1?1?? 又 0???π, 2 ,?a??1?得?π ??.??4 (2)若有纯虚数根?i(??R),使(?i)2?(tan??i)(?i)?(2?i)?0, 即(??2???2)?(?tan??1)i?0, ???2???2?0,由?,tan??R,那么? ?tan??1?0,? 由于??2???2?0 无实数解. π 故对任意??kπ?(k?Z),方程无纯虚数根. 2 0)是函数 f(x)?x3?ax 与 g(x)?bx2?c 的图象的一个公共点,两函数的 19.设 t?0,点 P(t, 图象在点 P 处有相同的切线. (1)用 t 表示 a,b,c; ,3)上单调递减,求 t 的取值范围. (2)若函数 y?f(x)?g(x)在(?1 0),所以 f(t)?0,即 t3?at?0. 解:(1)因为函数 f(x),g(x)的图象都过点(t, 因为 t?0,所以 a??t2. g(t)?0,即 bt2?c?0,所以 c?ab. 0)处有相同的切线, 又因为 f(x),g(x)在点(t, 所以 f?(t)?g?(t),而 f?(x)?3x2?a,g?(x)?2bx,所以 3t2?a?2bt. 将 a??t2 代入上式得 b?t. 因此 c?ab??t3. 故 a??t2,b?t,c??t3. (2)y?f(x)?g(x)?x3?t2x?tx2?t3,y??3x2?2tx?t2?(3x?t)(x?t). 当 y??(3x?t)(x?t)?0 时,函数 y?f(x)?g(x)单调递减. t 由 y??0,若 t?0,则??x?t; 3 t 若 t?0,则 t?x??. 3 t??t??,3)???,t?或(?1,3)??t,??. ,3)上单调递减,则(?1 由题意,函数 y?f(x)?g(x)在 (?13??3?? 所以 t≤?9 或 t≥3. ,3)上不是单调递减的. 又当?9?t?3 时,函数 y?f(x)?g(x)在(?1 ?9?所以 t 的取值范围为??∞,?∞?. ?3, 5 / 1020.下列命题是真命题,还是假命题,用分析法证明你的结论.命题:若 a?b?c,且 a?b?c? 0? 解:此命题是真命题. ∵a?b?c?0,a?b?c,∴a?0,c?0. ? , 即证 b2?ac?3a2,也就是证(a?c)2?ac?3a2, 篇三:【红对勾】2016-2017 学年高中数学必修二(人教 A 版):模块综合测试 模块综合试题 时间:120 分钟 分值:150 分 第Ⅰ卷(选择题,共 60 分) 一、选择题(本大题共 12 小题,每小题 5 分,共 60 分) 1.下列命题正确的是() A.四条线段顺次首尾连接,所得的图形一定是平面图形 B.一条直线和两条平行直线都 相交,则三条直线共面 C.两两平行的三条直线一定确定三个平面 D.和两条异面直线都相 交的直线一定是异面直线 解析:此题主要考查三个公理及推论的应用,两条平行线确定一个平面,第三条直线与 其相交,由公理 1 可知,这三条直线共面,故 B 正确. 答案:B 2.已知直线(a-2)x+ay-1=0 与直线 2x+3y+5=0 平行,则 a 的值为() A.-64C.-5 B.6 4D.5a-22 解析:由题意可知两直线的斜率存在,且-a=-3a=6. 答案:B 3.圆台侧面的母线长为 2a,母线与轴的夹角为 30°,一个底面的半径是另一个底面半径 的 2 倍.求两底面的面积之和是() A.3πa2C.5πa2 B.4πa2 D.6πa2 解析:设圆台上底面半径为 r,则下底面半径为 2r,如图所示,∠ASO=30°, r 在 Rt△ SA′O′中,=sin30°, SA′∴SA′=2r. 2r 在 Rt△ SAO 中,SAsin30°, ∴SA=4r.∴SA-SA′=AA′, 即 4r-2r=2a,r=a. ∴S=S1+S2=πr2+π(2r)2=5πr2=5πa2. 答案:C 4.若直线 l 过点 A(3,4),且点 B(-3,2)到直线 l 的距离最远,则直线 l 的方程为() A.3x-y-5=0C.3x+y+13=0 B.3x-y+5=0 D.3x+y-13=0 解析:当 l⊥AB 时,符合要求. 4-21 ∵kAB=,∴l 的斜率为-3, 3+33 6 / 10∴直线 l 的方程为 y-4=-3(x-3),即 3x+y-13=0. 答案:D 5.过原点且倾斜角为 60°的直线被圆 x2+y2-4y=0 所截得的弦长为() A.3C.6 B.2 D.23 解析: 直线方程为 y3x, 圆的标准方程为 x2+(y-2)2=4, 圆心(0,2)到直线 y3x 的距离 d22 -1=3. 答案:D 6.如图,在三棱锥 S-ABC 中,G1,G2 分别是△ SAB 和△ SAC 的重心,则直线 G1G2 与 BC 的位置关系是( ) A.相交 C.异面 B.平行 D.以上都有可能 |3×0-2|?3?+?-1? 2 2 =1.故所求弦长 l= 题图答图 解析:连接 SG1,SG2 并延长分别交 AB 于点 M,交 AC 于点 SGSGN.∵GM=GN,∴G1G2∥MN. 12 ∵M,N 分别为 AB,AC 的中点, ∴MN∥BC.故 G1G2∥BC. 答案:B 7.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应 的截面面积分别为 S1,S2,S3,则() A.S1 B.S3 S?2?2 解析:设棱锥的底面面积为 S.由截面的性质,可知 S= ??1 ?1S21 =4;S1S2=2;? ?2 1S?32 = =S,故 S1 4 答案:A 8.在圆的方程 x2+y2+Dx+Ey+F=0 中,若 D2=E2>4F,则圆的位置满足() A.截两坐标轴所得弦的长度相等 B.与两坐标轴都相切 C.与两坐标轴相离 D.上述 情况都有可能 解析: 在圆的方程中令 y=0 得 x2+Dx+F=0. ∴圆被 x 轴截得的弦长为|x1-x2|=D-4F. 同理得圆被 y 轴截得的弦长为 E-4F=D-4F.故选 A. 答案:A 7 / 109. 在如图所示的空间直角坐标系 O-xyz 中, 一个四面体的顶点坐标分别是(0,0,2), (2,2,0), (1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别 为( ) A.①和②B.③和①C.④和③D.④和② 解析:由三视图可知,该几何体的正视 图显然是一个直角三角形(三个顶点坐标分别是(0,0,2),(0,2,0),(0,2,2))且内有一虚线(一直角顶 点与另一直角边中点的连线),故正视图是④;俯视图在底面射影是一个斜三角形,三个顶点 坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.故选 D. 答案:D 10.在正方体 ABCD-A1B1C1D1 中,E,F 分别是正方形 ADD1A1 和正方形 ABCD 的中心,G 是 CC1 的中点,设 GF,C1E 与 AB 所成的角分别为 α,β,则 α +β 等于() A.120°B.90°C.75°D.60° 解析:根据异面直线所成角的定义知 α+β=90°. 答案:B 11.已知点 P(x,y)是直线 kx+y+4=0(k>0)上一动点,PA,PB8 / 109 / 1010 / 10。
【红对勾】高中数学 单元综合测试三 新人教A版选修2-1(1)
单元综合测试三时刻:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.直三棱柱ABC -A 1B 1C 1,假设CA →=a ,CB →=b ,CC 1→=c ,那么A 1B →=( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c解析:结合图形,得A 1B →=A 1A →+AC →+CB →=-c -a +b =-a +b -c ,应选D. 答案:D2.已知a =(-5,6,1),b =(6,5,0),那么a 与b ( ) A .垂直 B .不垂直也不平行 C .平行且同向 D .平行且反向 答案:A3.已知a =(2,-1,3),b =(-4,2,x ),c =(1,-x,2),假设(a +b )⊥c ,那么x 等于( ) A .4 B .-4 C.12D .-6 解析:a +b =(-2,1,3+x ),由(a +b )⊥c , ∴(a +b )·c =0.∴-2-x +2(3+x )=0,得x =-4. 答案:B4.假设a =(1,λ,2),b =(2,-1,2),且a ,b 的夹角的余弦值为89,那么λ等于( )A .2B .-2C .-2或255 D .2或-255解析:a·b =2-λ+4=6-λ=5+λ2×3×89.解得λ=-2或255. 答案:C5.已知空间四边形ABCD 每条边和对角线长都等于a ,点E 、F 、G 别离是AB 、AD 、DC 的中点,那么a 2是以下哪个选项的计算结果( )A .2BC →·CA →B .2AD →·DB →C .2FG →·AC →D .2EF →·CB →解析:2BC →·CA →=-a 2,A 错;2AD →·DB →=-a 2,B 错;2EF →·CB →=-12a 2,D 错;只有C 对. 答案:C6.假设A (x,5-x,2x -1),B (1,x +2,2-x ),当|AB →|取最小值时,x 的值等于( ) A .19 B .-87C.87D.1914解析:AB →=(1-x,2x -3,-3x +3),那么|AB →|=1-x 2+2x -32+-3x +32=14x 2-32x +19=14x -872+57,故当x =87时,|AB →|取最小值,应选C. 答案:C7.已知ABCD ,ABEF 是边长为1的正方形,FA ⊥平面ABCD ,那么异面直线AC 与EF 所成的角为( ) A .30° B.45° C .60° D.90°解析:如图1,由于EF ∥AB 且∠BAC =45°,因此异面直线AC 与EF 所成的角为45°,应选B. 答案:B图1图28.如图2所示,正方体ABCD -A ′B ′C ′D ′中,M 是AB 的中点,那么sin 〈DB ′→,CM →〉的值为( ) A.12 B.21015 C.23 D.1115解析:以DA ,DC ,DD ′所在的直线别离为x ,y ,z 轴成立直角坐标系O -xyz ,设正方体棱长为1,那么D (0,0,0),B ′(1,1,1),C (0,1,0),M ⎝ ⎛⎭⎪⎫1,12,0,那么DB ′→=(1,1,1),CM →=⎝ ⎛⎭⎪⎫1,-12,0,cos 〈DB ′→,CM →〉=1515,那么sin 〈DB ′→,CM →〉=21015.答案:B 图39.如图3,AB =AC =BD =1,AB ⊂面M ,AC ⊥面M ,BD ⊥AB ,BD 与面M 成30°角,那么C 、D 间的距离为( )A .1B .2 C.2 D.3解析:|CD →|2=|CA →+AB →+BD →|2=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2AB →·BD →+2CA →·BD →=1+1+1+0+0+2×1×1×cos120°=2.∴|CD →|=2.答案:C10.在以下命题中,不正确的个数为( ) ①|a |-|b |=|a +b |是a 、b 共线的充要条件; ②若a ∥b ,那么存在唯一的实数λ,使a =λb ;③对空间任意一点O 和不共线的三点A 、B 、C ,假设OP →=2OA →-2OB →-OC →,那么P 、A 、B 、C 四点共面;④假设{a ,b ,c }为空间的一个基底,那么{a +b ,b +c ,c +a }组成空间的另一个基底; ⑤|(a ·b )·c |=|a |·|b |·|c |. A .2 B .3 C .4 D .5解析:①错,应为充分没必要要条件.②错,应强调b ≠0.③错,∵2-2-1≠1.⑤错,由数量积的运算性质判别.答案:C11.在三棱锥P -ABC 中,△ABC 为等边三角形,PA ⊥平面ABC ,且PA =AB ,那么二面角A -PB -C 的平面角的正切值为( )A.6 B.3C.66D.62解析:设PA =AB =2,成立空间直角坐标系,平面PAB 的一个法向量是m =(1,0,0),平面PBC 的一个法向量是n =(33,1,1).那么cos 〈m ,n 〉=m ·n |m ||n |=33|m ||n |=331×213=77.∴正切值tan 〈m ,n 〉=6.答案:A 图412.(2020·辽宁高考)如图4,四棱锥S -ABCD 的底面为正方形,SD ⊥底面ABCD ,那么以下结论中不正..确.的是( ) A .AC ⊥SB B .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角解析:∵四边形ABCD 是正方形,∴AC ⊥BD .又∵SD ⊥底面ABCD ,∴SD ⊥AC .其中SD ∩BD =D ,∴AC ⊥面SDB ,从而AC ⊥SB .故A 正确;易知B 正确;设AC 与DB 交于O 点,连结SO .那么SA 与平面SBD 所成的角为∠ASO ,SC 与平面SBD 所成的角为∠CSO ,又OA =OC ,SA =SC ,∴∠ASO=∠CSO .故C 正确;由排除法可知选D.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(每题5分,共20分)13.已知直线l 的方向向量为v =(1,-1,-2),平面α的法向量u =(-2,-1,1),那么l 与α的夹角为________.解析:∵cos 〈v ,u 〉=|-2+1-2|6×6=12,∴〈v ,u 〉=60°.∴l 与α的夹角为30°. 答案:30°14.如图5所示,在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是BD 上一点,BE =3ED ,以{AB →,AC →,AD →}为基底,那么GE →=________.解析:GE →=GA →+AD →+DE →=-23AM →+AD →+14DB →=-23×12(AB →+AC →)+AD →+14(AB →-AD →)=-112AB →-13AC →+34AD →,故GE →=-112AB →-13AC →+34AD →.答案:-112AB →-13AC →+34AD →图5 图615.如图6所示,在三棱锥P -ABC 中,PA =PB =PC =BC ,且∠BAC =90°,那么PA 与底面ABC 所成的角为________.解析:由于PA =PB =PC ,故P 在底面ABC 上的射影为△ABC 外心,由于△ABC 为直角三角形,不妨设OB =OC ,因此OP ⊥面ABC ,∠PAO 为所求角,不妨设BC =1,那么OA =12,cos ∠PAO =12,因此∠PAO =60°.答案:60°16.(2020·全国高考)已知点E 、F 别离在正方体ABCD -A 1B 1C 1D 1的棱BB 1、CC 1上,且B 1E =2EB ,CF =2FC 1,那么面AEF 与面ABC 所成的二面角的正切值等于________.图7解析:延长FE 、CB 相交于点G ,连结AG ,设正方体的棱长为3,那么GB =BC =3,作BH ⊥AG 于H ,连结EH ,那么∠EHB 为所求二面角的平面角.∵BH =322,EB =1,∴tan ∠EHB =EBBH=23.答案:23三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2). (1)求|2a +b |;(2)在直线AB 上,是不是存在一点E ,使得OE →⊥b ?(O 为原点) 解:(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+-52+52=52.(2)OE →=OA →+AE →=OA →+tAB →=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t,4-2t ),假设OE →⊥b ,那么OE →·b =0,因此-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95,因此存在点E ,使得OE →⊥b ,现在E 点坐标为E (-65,-145,25).图818.(12分)如图8,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,点D 是AB 的中点. 求证:(1)AC ⊥BC 1;(2)AC 1∥平面CDB 1. 图9证明:∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,且C 1C 垂直底面. ∴AC 、BC 、C 1C 两两垂直.如图9,以C 为坐标原点,直线CA ,CB ,CC 1别离为x 轴,y 轴,z 轴成立空间直角坐标系. 则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (32,2,0).(1)AC →=(-3,0,0),BC 1→=(0,-4,4),∴AC →·BC 1→=0,∴AC ⊥BC 1.(2)设CB 1与C 1B 的交点为E ,连接DE ,那么E (0,2,2), ∵DE →=(-32,0,2),AC 1→=(-3,0,4),∴DE →=12AC 1→.∴DE ∥AC 1.∵DE ⊂平面CDB 1,AC 1⊄平面CDB 1, ∴AC 1∥平面CDB 1.19.(12分)已知M 为长方体AC 1的棱BC 的中点,点P 在长方体AC 1的面CC 1D 1D 内,且PM ∥BB 1D 1D ,试探讨点P 的确切位置.图10解:以DA 、DC 、DD 1为x 、y 、z 轴,如图10成立空间直角坐标系,设DA =a ,DC =b ,DD 1=c .依照题意可设A (a,0,0),B (a ,b,0),D 1(0,0,c ),P (0,y ,z ),那么M (12a ,b,0).又PM ∥BB 1D 1D ,依照空间向量大体定理,必存在实数对(m ,n ),使得PM →=mDB →+nDD 1→,即(12a ,b -y ,-z )=(ma ,mb ,nc ),等价于⎩⎪⎨⎪⎧12a =mab -y =mb -z =nc⇔⎩⎪⎨⎪⎧m =12,y =12b ,z =-nc ,n ∈R ,那么点P (0,b2,-nc ).∴点P 在面DCC 1D 1的DC 的中垂线EF 上.20.(12分)在正棱锥P -ABC 中,三条侧棱两两相互垂直,G 是△PAB 的重心,E ,F 别离是BC ,PB 上的点,且BE ∶EC =PF ∶FB =1∶2.求证:(1)平面GEF ⊥平面PBC ; (2)EG ⊥PG ,EG ⊥BC .图11证明:(1)以三棱锥的极点P为原点,以PA、PB、PC所在的直线别离为x轴、y轴、z轴,成立空间直角坐标系.令PA=PB=PC=3,那么A(3,0,0),B(0,3,0),C(0,0,3),E(0,2,1),F(0,1,0),G(1,1,0),P(0,0,0).于是PA→=(3,0,0),FG→=(1,0,0).故PA→=3FG→.∴PA∥FG.又PA⊥平面PBC,∴FG⊥平面PBC.又FG⊂平面EFG,∴平面EFG⊥平面PBC.(2)∵EG→=(1,-1,-1),PG→=(1,1,0),BC→=(0,-3,3).∴EG→·PG→=1-1=0,EG→·BC→=3-3=0.∴EG⊥PG,EG⊥BC.图1221.(12分)(2020·天津高考)如图12,在三棱柱ABC-A1B1C1中,H是正方形AA1BB1的中心,AA1=22,C1H⊥平面AA1B1B,且C1H= 5.(1)求异面直线AC与A1B1所成角的余弦值;(2)求二面角A-A1C1-B1的正弦值;(3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.图13解:如图13所示,成立空间直角坐标系,点B为坐标原点.依题意得A(22,0,0),B(0,0,0),C(2,-22,5),A1(22,22,0),B1(0,22,0),C1(2,2,5).(1)易患AC →=(-2,-2,5),A 1B 1→=(-22,0,0),于是cos 〈AC →,A 1B 1→〉=AC →·A 1B 1→|AC →|·|A 1B 1→|=43×22=23.因此异面直线AC 与A 1B 1所成角的余弦值为23.(2)易知AA 1→=(0,22,0),A 1C 1→=(-2,-2,5).设平面AA 1C 1的法向量m =(x ,y ,z ),那么⎩⎨⎧m ·A 1C 1→=0,m ·AA1→=0.即⎩⎪⎨⎪⎧ -22x -2y +5z =0,22y =0.不妨令x =5,可得m =(5,0,2),一样地,设平面A 1B 1C 1的法向量n =(x ,y ,z ),那么⎩⎨⎧n ·A 1C 1→=0,n ·A 1B 1→=0.即⎩⎪⎨⎪⎧-22x -2y +5z =0,-22x =0.不妨令y =5,可得n =(0,5,2),于是cos 〈m ,n 〉=m ·n|m |·|n |=27×7=27,从而sin 〈m ,n 〉=357. 因此二面角A -A 1C 1-B 1的正弦值为357.(3)由N 为棱B 1C 1的中点,得N (22,322,52).设M (a ,b,0),那么MN →=(22-a ,322-b ,52).由MN ⊥平面A 1B 1C 1,得⎩⎨⎧MN →·A 1B 1→=0,MN→·A 1C 1→=0.即⎩⎪⎨⎪⎧22-a ·-22=0,22-a ·-2+322-b ·-2+52×5=0.解得⎩⎪⎨⎪⎧a =22,b =24.故M (22,24,0).因此BM →=(22,24,0),因此线段BM 的长|BM →|=104.图1422.(12分)如图14,在矩形ABCD 中,点E ,F 别离在线段AB ,AD 上,AE =EB =AF =23FD =4.沿直线EF 将△AEF 翻折成△A ′EF ,使平面A ′EF ⊥平面BEF .(1)求二面角A ′-FD -C 的余弦值;(2)点M ,N 别离在线段FD ,BC 上,假设沿直线MN 将四边形MNCD 向上翻折,使C 与A ′重合,求线段FM 的长.解:法一:(1)取线段EF 的中点H ,连结A ′H . 因为A ′E =A ′F 及H 是EF 的中点, 因此A ′H ⊥EF .又因为平面A ′EF ⊥平面BEF ,及A ′H ⊂平面A ′EF , 因此A ′H ⊥平面BEF .如图15成立空间直角坐标系A -xyz , 图15 则A ′(2,2,22),C (10,8,0),F (4,0,0),D (10,0,0),故FA ′→=(-2,2,22),FD →=(6,0,0).设n =(x ,y ,z )为平面A ′FD 的一个法向量,因此⎩⎪⎨⎪⎧ -2x +2y +22z =0,6x =0,取z =2,那么n =(0,-2,2).又平面BEF 的一个法向量m =(0,0,1).故cos 〈n ,m 〉=n ·m|n ||m |=33. 因此二面角的余弦值为33. (2)设FM =x ,那么M (4+x,0,0),因为翻折后,C 与A ′重合,因此CM =A ′M ,故(6-x )2+82+02=(-2-x )2+22+(22)2,得x =214, 经查验,现在点N 在线段BC 上,因此FM =214. 法二:(1)取线段EF 的中点H ,AF 的中点G ,连结A ′G ,A ′H ,GH .图16因为A ′E =A ′F 及H 是EF 的中点,因此A ′H ⊥EF ,又因为平面A ′EF ⊥平面BEF ,因此A ′H ⊥平面BEF ,又AF ⊂平面BEF ,故A ′H ⊥AF ,又因为G ,H 是AF ,EF 的中点,易知GH ∥AB ,因此GH ⊥AF ,于是AG ⊥面A ′GH , 因此∠A ′GH 为二面角A ′-DF -C 的平面角,在Rt △A ′GH 中,A ′H =22,GH =2,A ′G =23,因此cos ∠A ′GH =33. 故二面角A ′-DF -C 的余弦值为33.(2)设FM=x,因为翻折后,C与A′重合,因此CM=A′M,而CM2=DC2+DM2=82+(6-x)2,A′M2=A′H2+MH2=A′H2+MG2+GH2=(22)2+(x+2)2+22,得x=214,经查验,现在点N在线段BC上,因此FM=214.。
高中数学人教版选修2-1模块综合检测(一) Word版含答案
模块综合检测(一)(时间分钟,满分分)一、选择题(本题共小题,每小题分,共分).命题“∃∈->”的否定是( ).∃∈-≤.∀∈->.∀∈-≤.∃∈->解析:选由特称命题的否定的定义即知..已知条件甲:>;条件乙:>,且>,则( ).甲是乙的充分但不必要条件.甲是乙的必要但不充分条件.甲是乙的充要条件.甲是乙的既不充分又不必要条件解析:选甲乙,而乙⇒甲..对∀∈,则方程+=所表示的曲线不可能的是( ).两条直线.圆.椭圆或双曲线.抛物线解析:选分=及>且≠,或<可知:方程+=不可能为抛物线..下列说法中正确的是( ).一个命题的逆命题为真,则它的逆否命题一定为真.“>”与“+>+”不等价.“+=,则,全为”的逆否命题是“若,全不为,则+≠”.一个命题的否命题为真,则它的逆命题一定为真解析:选否命题和逆命题互为逆否命题,有着一致的真假性,故选..已知空间向量=(,),=(-),若-与垂直,则等于( )())())解析:选由已知可得-=()-(-,)=(,-).又∵(-)⊥,∴-+-+=.∴=,=.∴==())..(山东高考)已知直线,分别在两个不同的平面α,β内,则“直线和直线相交”是“平面α和平面β相交”的( ).充分不必要条件.必要不充分条件.充要条件.既不充分也不必要条件解析:选由题意知⊂α,⊂β,若,相交,则,有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则,的位置关系可能为平行、相交或异面.因此“直线和直线相交”是“平面α和平面β相交”的充分不必要条件.故选..已知双曲线的中心在原点,离心率为,若它的一个焦点与抛物线=的焦点重合,则该双曲线的方程是( )-=-=-=-=解析:选由已知得=,=,∴=,=,且焦点在轴,所以方程为-=..若直线=与双曲线-=(>,>)有公共点,则双曲线的离心率的取值范围为( ) .(,) .(,+∞).(,] .[,+∞)解析:选双曲线的两条渐近线中斜率为正的渐近线为=.由条件知,应有>,故===>..已知(-),()是椭圆+=的两个焦点,点在椭圆上,∠=α.当α=时,△面积最大,则+的值是( )....解析:选由△=·=,知点为短轴端点时,△面积最大.此时∠=,得==,==,故+=..正三角形与正三角形所在平面垂直,则二面角的正弦值为( )解析:选取中点,连接,.建立如图所示坐标系,设=,则,,.∴=,=,=.由于=为平面的一个法向量,可进一步求出平面的一个法向量=(,-,),。
(人教版)高中数学选修2-1检测模块综合检测A Word版含答案
模块综合检测一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).命题“存在实数,使>”的否定是( ).对任意实数,都有>.不存在实数,使≤.对任意实数,都有≤.存在实数,使≤解析:利用特称(存在性)命题的否定是全称命题求解.“存在实数,使>”的否定是“对任意实数,都有≤”.故选.答案:.在命题“若∈,()=,则函数()是奇函数”的逆命题、否命题与逆否命题中,真命题的个数是( ) ....解析:原命题与逆否命题是假命题,逆命题与否命题是真命题.答案:.已知直线⊥平面α,直线⊂平面β,则“∥”是“α⊥β”的( ).充要条件.必要条件.充分条件.既不充分也不必要条件解析:⇒⇒α⊥β,∴“∥”是“α⊥β”的充分条件,⇒∥.答案:.已知命题:若+=(,∈),则,全为;命题:若>,则<.给出下列四个复合命题:①且;②或;③¬;④¬.其中真命题的个数是( )....解析:命题为真,命题为假,故或真,¬真.答案:.已知,,是空间直角坐标系中轴、轴、轴正方向上的单位向量,且=,=-+-,则点的坐标为( ).(-,-) .(-,,-).(,-,-) .(-)解析:设点的坐标为(,,),则有=(,,-)=(-,-),∴(\\(=-,=,-=,))解得(\\(=-,=,=.))故选.答案:.如下图所示,正四棱柱-中,=,则异面直线与所成角的余弦值为( )解析:连接,则∥,∠为与所成角,不妨设=,则=∠===.答案:.以-=-的焦点为顶点,顶点为焦点的椭圆方程为( )+=+=+=+=解析:双曲线-=-,即-的焦点为(,±),顶点为(,±).所以对椭圆+=而言,=,=.∴=,因此方程为+=.答案:.如图,在锐二面角α--β的棱上有两点,,点,分别在平面α、β内,且⊥,∠=°,===,与所成角为°,则的长度为( )-.解析:=====-.答案:.设,是双曲线-=(>)的两个焦点,点在双曲线上,且满足:·=,·=,则的值为( )..解析:双曲线方程化为-=(>),∵·=,∴⊥.。
高中数学人教A版选修2-1模块综合测评-含答案解析
人教A 版选修2-1模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“a ∉A 或b ∉B ”的否定形式是( ) A .若a ∉A ,则b ∉B B .a ∈A 或b ∈B C .a ∉A 且b ∉BD .a ∈A 且b ∈B2.已知a ∈R ,则“a <2”是“a 2<2a ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为( )A.54B.52C.32D.544.已知空间向量a =(t ,1,t ),b =(t -2,t ,1),则|a -b |的最小值为( )A. 2B. 3 C .2 D .45.椭圆x 225+y 29=1与椭圆x 2a 2+y 29=1有( ) A .相同短轴 B .相同长轴 C .相同离心率D .以上都不对6.长方体ABCD -A 1B 1C 1D 1中,AB =2,AD =AA 1=1,则二面角C 1AB C 为( )A.π3B.2π3C.3π4D.π47.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( )A .a ≥4B .a ≤4C .a ≥5D .a ≤58.已知p :1x +2<0,q :lg(x +2)有意义,则綈p 是q 的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件9.如图1,过抛物线y 2=2px (p >0)的焦点F 的直线,分别交抛物线的准线l 、y 轴、抛物线于A ,B ,C 三点,若AB →=3BC →,那么直线AF 的斜率是( )图1A .- 3B .-33 C .-22D .-110.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F ,若椭圆的离心率为23,则k 的值为( )A .-13 B.13 C .±13D .±1211.若直线y =kx -2与抛物线y 2=8x 交于A ,B 两个不同的点,抛物线的焦点为F ,且|AF |,4,|BF |成等差数列,则k =( )A .2或-1B .-1C .2D .1± 512.若F 1,F 2为双曲线C :x 24-y 2=1的左、右焦点,点P 在双曲线C 上,∠F 1PF 2=60°,则点P 到x 轴的距离为( )A.55B.155C.2155 D.1520二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知空间三点的坐标为A (1,5,-2),B (2,4,1),C (p ,3,q +2),若A ,B ,C 三点共线,则p +q =________.14.已知命题p :∃x 0∈R ,ax 20+x 0+12≤0.若命题p 是假命题,则实数a 的取值范围是________.15.已知抛物线y 2=4x 的焦点为F ,若点A ,B 是该抛物线上的点,∠AFB =π2,线段AB 的中点M 在抛物线的准线上的射影为N ,则|MN ||AB |的最大值为______.16.四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是正方形,且PD =AB =1,G 为△ABC 的重心,则PG 与底面ABCD 所成的角θ的正弦值为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设集合A ={x |x 2-3x +2=0},B ={x |ax =1}.“x ∈B ”是“x ∈A ”的充分不必要条件,试求满足条件的实数a 组成的集合.【解】 ∵A ={x |x 2-3x +2=0}={1,2}, 由于“x ∈B ”是“x ∈A ”的充分不必要条件.∴B A .当B =∅时,得a =0;当B ≠∅时,由题意得B ={1}或B ={2}. 则当B ={1}时,得a =1;当B ={2}时,得a =12. 综上所述,实数a 组成的集合是⎩⎨⎧⎭⎬⎫0,1,12.18. (本小题满分12分)如图2,四边形MNPQ 是圆C 的内接等腰梯形,向量CM→与PN →的夹角为120°,QC →²QM →=2.图2(1)求圆C 的方程;(2)求以M ,N 为焦点,过点P ,Q 的椭圆方程.【解】 (1)连结CQ ,建立如图坐标系,由题意得△CQM 为正三角形.∴QC →·QM →=r 2·cos 60°=2, ∴r =2,∴圆C 的方程为x 2+y 2=4.(2)易知M (2,0),N (-2,0),Q (1,3), 2a =|QN |+|QM |=23+2.∴c =2,a =3+1,b 2=a 2-c 2=2 3. ∴椭圆的方程为x 24+23+y 223=1.19. (本小题满分12分)如图3,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,P A =AD =2,AB =1,BM ⊥PD 于点M .图3(1)求证:AM ⊥PD ;(2)求直线CD 与平面ACM 所成的角的余弦值.【解】 (1)证明:∵P A ⊥平面ABCD ,AB ⊂平面ABCD ,∴P A ⊥AB .∵AB ⊥AD ,AD ∩P A =A ,∴AB ⊥平面P AD . ∵PD ⊂平面P AD ,∴AB ⊥PD .∵BM ⊥PD ,AB ∩BM =B ,∴PD ⊥平面ABM .∵AM ⊂平面ABM ,∴AM ⊥PD .(2)如图所示,以点A 为坐标原点,建立空间直角坐标系Axyz ,则A (0,0,0),P (0,0,2),B (1,0,0),C (1,2,0),D (0,2,0),M (0,1,1),于是AC→=(1,2,0),AM →=(0,1,1),CD →=(-1,0,0). 设平面ACM 的一个法向量为n =(x ,y ,z ),由n ⊥AC →,n ⊥AM →可得⎩⎪⎨⎪⎧x +2y =0,y +z =0.令z =1,得x =2,y =-1,于是n =(2,-1,1). 设直线CD 与平面ACM 所成的角为α, 则sin α=⎪⎪⎪⎪⎪⎪CD →·n |CD →||n |=63,cos α=33. 故直线CD 与平面ACM 所成的角的余弦值为33.20. (本小题满分12分)如图4,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).图4(1)求证:CD ⊥平面ADD 1A 1;(2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值. 【解】 (1)证明:取CD 的中点E ,连接BE ,如图(1).图(1)∵AB ∥DE ,AB =DE =3k , ∴四边形ABED 为平行四边形, ∴BE ∥AD 且BE =AD =4k .在△BCE 中,∵BE =4k ,CE =3k ,BC =5k , ∴BE 2+CE 2=BC 2,∴∠BEC =90°,即BE ⊥CD . 又∵BE ∥AD ,∴CD ⊥AD .∵AA 1⊥平面ABCD ,CD ⊂平面ABCD ,∴AA 1⊥CD . 又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.(2)以D 为原点,DA →,DC →,DD 1→的方向为x ,y ,z 轴的正方向建立如图(2)所示的空间直角坐标系,则A (4k ,0,0),C (0,6k ,0),B 1(4k ,3k ,1),A 1(4k ,0,1),图(2)∴AC →=(-4k ,6k ,0),AB 1→=(0,3k ,1),AA 1→=(0,0,1). 设平面AB 1C 的法向量n =(x ,y ,z ),则由⎩⎨⎧AC→²n =0,AB 1→²n =0,得⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0. 取y =2,得n =(3,2,-6k ). 设AA 1与平面AB 1C 所成的角为θ,则 sin θ=|cos 〈AA 1→,n 〉|=⎪⎪⎪⎪⎪⎪AA 1→²n |AA 1→||n |=6k 36k 2+13=67,解得k =1,故所求k 的值为1.21. (本小题满分12分)如图5,过抛物线y 2=2px (p >0)的焦点F 作一条倾斜角为π4的直线与抛物线相交于A ,B 两点.图5(1)用p 表示|AB |;(2)若OA→²OB →=-3,求这个抛物线的方程. 【解】 (1)抛物线的焦点为F ⎝⎛⎭⎪⎫p 2,0,过点F 且倾斜角为π4的直线方程为y =x -p 2.设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y 2=2px ,y =x -p 2,得x 2-3px +p 24=0, ∴x 1+x 2=3p ,x 1x 2=p 24, ∴|AB |=x 1+x 2+p =4p .(2)由(1)知,x 1x 2=p 24,x 1+x 2=3p ,∴y 1y 2=⎝ ⎛⎭⎪⎫x 1-p 2⎝ ⎛⎭⎪⎫x 2-p 2=x 1x 2-p 2(x 1+x 2)+p 24=p 24-3p 22+p 24=-p 2,∴OA →·OB →=x 1x 2+y 1y 2=p 24-p 2=-3p 24=-3,解得p 2=4,∴p =2. ∴这个抛物线的方程为y 2=4x .22. (本小题满分12分)如图6,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .图6(1)若点C 的坐标为⎝ ⎛⎭⎪⎫43,13,且BF 2=2,求椭圆的方程;(2)若F 1C ⊥AB ,求椭圆离心率e 的值.【解】 (1)∵BF 2=2,而BF 22=OB 2+OF 22=b 2+c 2=2=a 2,∵点C 在椭圆上,C ⎝ ⎛⎭⎪⎫43,13,∴169a 2+19b 2=1,∴b 2=1,∴椭圆的方程为x 22+y 2=1.(2)直线BF 2的方程为x c +y b =1,与椭圆方程x 2a 2+y 2b 2=1联立方程组,解得A 点坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,-b 3a 2+c 2, 则C 点的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b 3a 2+c 2,又F 1为(-c ,0),kF 1C =b 3a 2+c 22a 2c a 2+c 2+c =b 33a 2c +c 3,又k AB =-b c ,由F 1C ⊥AB ,得b 33a 2c +c 3·⎝ ⎛⎭⎪⎫-b c =-1, 即b 4=3a 2c 2+c 4,所以(a 2-c 2)2=3a 2c 2+c 4,化简得e =c a =55.人教A 版选修2-1模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“a ∉A 或b ∉B ”的否定形式是( ) A .若a ∉A ,则b ∉B B .a ∈A 或b ∈B C .a ∉A 且b ∉BD .a ∈A 且b ∈B【解析】 “p 或q ”的否定为“非p 且非q ”,D 正确. 【答案】 D2.已知a ∈R ,则“a <2”是“a 2<2a ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解析】 ∵a 2<2a ⇔a (a -2)<0⇔0<a <2. ∴“a <2”是“a 2<2a ”的必要不充分条件. 【答案】 B3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为( )A.54B.52C.32D.54【解析】 由题意,1-b 2a 2=⎝ ⎛⎭⎪⎫322=34,∴b 2a 2=14,而双曲线的离心率e 2=1+b 2a 2=1+14=54,∴e =52.【答案】 B4.已知空间向量a =(t ,1,t ),b =(t -2,t ,1),则|a -b |的最小值为( )A. 2B. 3C .2D .4【解析】 |a -b |=2(t -1)2+4≥2,故选C. 【答案】 C5.椭圆x 225+y 29=1与椭圆x 2a 2+y 29=1有( ) A .相同短轴 B .相同长轴 C .相同离心率D .以上都不对【解析】 对于x 2a 2+y 29=1,因a 2>9或a 2<9,因此这两个椭圆可能长轴相同,也可能短轴相同,离心率是不确定的,因此A ,B ,C 均不正确,故选D.【答案】 D6.长方体ABCD -A 1B 1C 1D 1中,AB =2,AD =AA 1=1,则二面角C 1AB C 为( )A.π3B.2π3C.3π4D.π4【解析】 以A 为原点,直线AB ,AD ,AA 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,则平面ABC 的一个法向量为AA 1→=(0,0,1),平面ABC 1的一个法向量为A 1D →=(0,1,-1),∴cos 〈AA 1→,A 1D →〉=-12=-22,∴〈AA 1→,A 1D →〉=3π4,又二面角C 1AB C 为锐角,即π-34π=π4,故选D.【答案】 D7.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( )A .a ≥4B .a ≤4C .a ≥5D .a ≤5【解析】 ∵∀x ∈[1,2],1≤x 2≤4,∴要使x 2-a ≤0为真,则a ≥x 2,即a ≥4,本题求的是充分不必要条件,结合选项,只有C 符合,故选C.【答案】 C8.已知p :1x +2<0,q :lg(x +2)有意义,则綈p 是q 的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件【解析】 不等式1x +2<0的解集为{x |x <-2},则綈p :x ≥-2.q :x >-2.故綈p ⇒/q ,q ⇒綈p ,故选C.【答案】 C9.如图1,过抛物线y 2=2px (p >0)的焦点F 的直线,分别交抛物线的准线l 、y 轴、抛物线于A ,B ,C 三点,若AB →=3BC →,那么直线AF 的斜率是( )图1A .- 3B .-33 C .-22D .-1【解析】 过点B ,C 分别作准线l 的垂线,垂足分别为B 1,C 1,设|BC |=a .因为O 是EF 的中点,BO ∥AE ,所以|AB |=|BF |=3a ,|CF |=|CC 1|=2a ,在△ACC 1中,|AC 1|=23a ,tan ∠AFO =tan ∠ACC 1=3,故直线AF 的斜率是-3,故选A.【答案】 A10.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F ,若椭圆的离心率为23,则k 的值为( )A .-13 B.13 C .±13D .±12【解析】 由题意知点B 的横坐标是c ,故点B 的坐标为⎝ ⎛⎭⎪⎫c ,±b 2a ,则斜率k =±b 2ac +a =±b 2ac +a 2=±a 2-c 2ac +a 2=±1-e 2e +1=±(1-e )=±13,故选C. 【答案】 C11.若直线y =kx -2与抛物线y 2=8x 交于A ,B 两个不同的点,抛物线的焦点为F ,且|AF |,4,|BF |成等差数列,则k =( )A .2或-1B .-1C .2D .1± 5【解析】 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx -2,y 2=8x ,消去y ,得k 2x 2-4(k +2)x +4=0,故Δ=16(k +2)2-16k 2=64(1+k )>0,解得k >-1,且x 1+x 2=4(k +2)k 2.由|AF |=x 1+p 2=x 1+2,|BF |=x 2+p2=x 2+2,且|AF |,4,|BF |成等差数列,得x 1+2+x 2+2=8,得x 1+x 2=4,所以4(k +2)k 2=4,解得k =-1或k =2,又k >-1,故k =2,故选C.【答案】 C12.若F 1,F 2为双曲线C :x 24-y 2=1的左、右焦点,点P 在双曲线C 上,∠F 1PF 2=60°,则点P 到x 轴的距离为( )A.55B.155C.2155D.1520【解析】 设|PF 1|=r 1,|PF 2|=r 2,点P 到x 轴的距离为|y P |,则S △F 1PF 2=12r 1r 2sin 60°=34r 1r 2,又4c 2=r 21+r 22-2r 1r 2cos 60°=(r 1-r 2)2+2r 1r 2-r 1r 2=4a 2+r 1r 2,得r 1r 2=4c 2-4a 2=4b 2=4,所以S △F 1PF 2=12r 1r 2sin 60°=3=12·2c ·|y P |=5|y P |,得|y P |=155,故选B.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知空间三点的坐标为A (1,5,-2),B (2,4,1),C (p ,3,q +2),若A ,B ,C 三点共线,则p +q =________.【解析】 由已知,得AC →=kAB →,所以(p -1,-2,q +4)=k (1,-1,3),得到p =3,q =2,p +q =5.【答案】 514.已知命题p :∃x 0∈R ,ax 20+x 0+12≤0.若命题p 是假命题,则实数a 的取值范围是________.【解析】 因为命题p 为假命题,所以命题“∀x ∈R ,ax 2+x +12>0”为真命题.当a =0时,取x =-1,则不等式不成立; 当a ≠0时,要使不等式恒成立,令ax 2+x +12=0,则有⎩⎪⎨⎪⎧a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,Δ=1-2a <0,所以⎩⎨⎧a >0,a >12,即实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.【答案】 ⎝ ⎛⎭⎪⎫12,+∞16.已知抛物线y 2=4x 的焦点为F ,若点A ,B 是该抛物线上的点,∠AFB =π2,线段AB 的中点M 在抛物线的准线上的射影为N ,则|MN ||AB |的最大值为______.【解析】 如图所示,设|AF |=a ,|BF |=b ,则|AB |=a 2+b 2,而根据抛物线的定义可得|MN |=a +b 2,又a +b2≤a 2+b 22,所以|MN ||AB |=a +b2a 2+b2≤22,当且仅当a =b 时,等号成立,即|MN ||AB |的最大值为22.【答案】 2216.四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是正方形,且PD =AB =1,G 为△ABC 的重心,则PG 与底面ABCD 所成的角θ的正弦值为________.【解析】 如图,分别以DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,由已知P (0,0,1),A (1,0,0),B (1,1,0),C (0,1,0),则重心G ⎝⎛⎭⎪⎫23,23,0,因此DP →=(0,0,1),GP →=⎝⎛⎭⎪⎫-23,-23,1,所以sin θ=|cos 〈DP →,GP →〉|=|DP →·GP →||DP →|·|GP →|=31717.【答案】 31717。
红对勾45分钟RJ数学A版必修2综合测评(一)
必修二模块综合测评(一)限时:120分钟满分:150分答题表1.下列说法中正确的是()A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展成平面图形D.棱柱的各条棱都相等2.在原来的图形中,两条线段平行且相等,则在直观图中对应的两条线段()A.平行且相等B.平行不相等C.相等不平行D.既不平行也不相等3.菱形ABCD在平面α内,PC⊥α,则P A与对角线BD的位置关系是()A.平行B.相交但不垂直C.垂直相交D.异面垂直4.已知M、N分别是正方体AC1的棱A1B1、A1D1的中点,如图是过M、N、A和D、N、C1的两个截面截去两个角后所得的几何体,则该几何体的正视图为()5.设长方体的对角线长是4,过每一顶点有两条棱与对角线的夹角都是60°,则此长方体的体积是()A.39B.8 2C.8 3 D.16 36.已知点A、B、C、D为同一球面上的四点,且AB=AC=AD =2,AB⊥AC,AC⊥AD,AD⊥AB,则这个球的表面积是() A.16π B.20πC.12π D.8π7.一圆过圆x2+y2-2x=0与直线x+2y-3=0的交点,且圆心在y轴上,则这个圆的方程是()A.x2+y2-4x-4y+6=0B.x2+y2+4y-6=0C.x2+y2-2x=0D .x 2+y 2+4x -6=08.设直线过点(0,a ),其斜率为1,且与圆x 2+y 2=2相切,则a 的值为( )A .±4B .±2 2C .±2D .±29.若实数x ,y 满足x 2+y 2=1,则y -2x -1的最小值等于( )A.14B.34C.32D .210.圆(x -3)2+(y -3)2=9上到直线3x +4y -11=0的距离等于1的点有( )A .1个B .2个C .3个D .4个11.在正四棱柱ABCD -A 1B 1C 1D 1中,AB =3,BB 1=4,长为1的线段PQ 在棱AA 1上移动,长为3的线段MN 在棱CC 1上移动,点R 在棱BB 1上移动,则四棱锥R -PQMN 的体积是( )A .12B .10C .6D .不确定12.若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-33,33B.⎝ ⎛⎭⎪⎫-33,0∪⎝ ⎛⎭⎪⎫0,33C.⎣⎢⎡⎦⎥⎤-33,33D.⎝ ⎛⎭⎪⎫-∞,-33∪⎝ ⎛⎭⎪⎫33,+∞二、填空题(每小题5分,共20分)13.如图是一个空间几何体的三视图,其中正视图和侧视图都是半径为2的半圆,俯视图是半径为2的圆,则该几何体的体积等于________.答案1.B 2.A3.D 菱形ABCD 中,AC ⊥BD .又PC ⊥平面α. ∴PC ⊥BD ,∴BD ⊥平面P AC . 又P A ⊂平面P AC ,∴BD ⊥P A .显然P A 与BD 异面,故P A 与BD 异面垂直. 4.B 由正视图的性质知,几何体的正投影为一正方形,正面有可见的一棱和背面有不可见的一棱,故选B.5.B 设长方体的过一顶点的三条棱长为a ,b ,c ,并且长为a ,b 的两条棱与对角线的夹角都是60°,则a =4cos60°=2,b =4cos60°=2.根据长方体的对角线性质,有a 2+b 2+c 2=42,即22+22+c 2=42.∴c =2 2.因此长方体的体积V =abc =2×2×22=8 2.6.C 把这四点再补四点可作为一个正方体的顶点,则这八个顶点都在球面上,球为正方体的外接球,所以23=2R ,R =3,S =4πR 2=12π,故选C.7.B 设所求圆的方程为x 2+y 2-2x +λ(x +2y -3)=0,即x 2+y 2+(λ-2)x +2λy -3λ=0.依题意,-λ-22=0,λ=2. 故圆的方程为x 2+y 2+4y -6=0. 8.C9.B y -2x -1表示圆x 2+y 2=1上的点P (x ,y )与A (1,2)连线的斜率.由A (1,2)作圆的两条切线,较小的斜率即为所求.10.C 圆心(3,3)到直线3x +4y -11=0的距离为d =|3×3+4×3-11|5=2,圆的半径是3. ∴圆上的点到直线3x +4y -11=0的距离为1的点有3个. 11.C 设四棱锥R -PQMN 的高为d ,则d =322,S四边形PQMN=12(1+3)×32=62,V R -PQMN =13S 四边形PQMN ·d =13×62×322=6,故选C.12.B ∵y (y -mx -m )=0, ∴y =0或y -mx -m =0.当y =0时,显然与圆x 2+y 2-2x =0有两个不同的交点,要使两曲线有四个不同的交点,只需y -mx -m =0与圆x 2+y 2-2x =0有两个不同的交点,且m ≠0.由方程组⎩⎪⎨⎪⎧y -mx -m =0,x 2+y 2-2x =0,消去y ,得关于x 的一元二次方程,再令Δ>0,解得m ∈⎝ ⎛⎭⎪⎫-33,0∪⎝⎛⎭⎪⎫0,33.13.16π3解析:由三视图知该几何体是半径为2的半球,所以其体积为12×43π×23=16π3.14.直线ax -y +3=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点且|AB |=23,则实数a =________.15.一个横放的圆柱形水桶,桶内的水漫过底面周长的四分之一,那么当桶直立时,水的高度与桶的高度的比为________.16.如图,三棱柱ABC-A1B1C1中,侧棱AA1垂直于底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是________.①CC1与B1E是异面直线;②AC⊥平面ABB1A1;③AE与B1C1为异面直线,且AE⊥B1C1;④A1C1∥平面AB1E.三、解答题(写出必要的计算步骤,解答过程,只写最后结果的不得分,共70分)17.(10分)已知一个组合体的三视图,如图所示,请根据具体的数据,计算该组合体的体积.18.(12分)在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠BAC 的角平分线所在的直线方程为y =0.若点B 的坐标为(1,2),求点A 和点C 的坐标.答案14.0解析:因为圆的圆心坐标为(1,2),半径r =2,且|AB |=23,故圆心到直线的距离d =r 2-(|AB |2)2=4-(3)2=1,即|a -2+3|a 2+1=1,所以|a +1|=a 2+1,平方得a 2+2a +1=a 2+1,解得a =0.15.(π-2)4π解析:设圆柱形水桶的底面半径为R ,高为h ,桶直立时,水的高度为x .横放时水桶底面在水内的面积为(14πR 2-12R 2),水的体积为V 水=(14πR 2-12R 2)h .直立时水的体积不变,则有V 水=πR 2x , ∴x h =(π-2)4π. 16.③解析:①中,直线CC 1与B 1E 都在面BCC 1B 1中,不是异面直线;②中,面ABC ⊥面ABB 1A 1,而AC 与AB 不垂直,则AC 与平面ABB 1A 1不垂直;③中,AE 与B 1C 1不平行也不相交,是异面直线,又由已知得面ABC ⊥面BCC 1B 1,由△ABC 为正三角形,且E 为BC 的中点知AE ⊥BC ,所以AE ⊥面BCC 1B 1,则AE ⊥B 1C 1;④中,A 1C 1与平面AB 1E 相交,故错误.17.解:由三视图可知此组合体的结构为:上部是一个圆锥,中部是一个圆柱,下部也是一个圆柱,由题图中的尺寸可知:V 圆锥=13πr 2h 1=13π×22×2=8π3,V 圆柱=πr 2h 2=π×22×10=40π,V 圆柱′=πr 2h 3=π×42×1=16π,所以此组合体的体积为V =8π3+40π+16π=1763π.18.解:由方程组⎩⎪⎨⎪⎧ x -2y +1=0,y =0,得⎩⎪⎨⎪⎧x =-1,y =0.所以点A 的坐标为(-1,0).所以直线AB 的斜率k AB =1,又x 轴是∠BAC 的角平分线,所以k AC =-1,则AC 边所在直线的方程为y =-(x +1). ① 又已知BC 边上的高所在直线的方程为x -2y +1=0, 故直线BC 的斜率k BC =-2, 所以BC 边所在的直线方程为 y -2=-2(x -1). ②由①②得⎩⎪⎨⎪⎧x =5,y =-6,即点C 的坐标为(5,-6).19.(12分)已知圆C 经过A (2,4)、B (3,5)两点,且圆心C 在直线2x -y -2=0上.(1)求圆C 的方程;(2)若直线y =kx +3与圆C 总有公共点,求实数k 的取值范围.20.(12分)如图,AA 1B 1B 是圆柱的轴截面,C 是底面圆周上异于A 、B 的一点,AA 1=AB =2.(1)求证:平面A 1AC ⊥平面BA 1C ;(2)求VA 1-ABC 的最大值.答案19.解:(1)由于AB 的中点坐标为(52,92),k AB =1,则线段AB 的垂直平分线的方程为y =-x +7,圆心C 是直线y =-x +7与直线2x -y -2=0的交点,由⎩⎪⎨⎪⎧ y =-x +7,2x -y -2=0,解得⎩⎪⎨⎪⎧x =3,y =4,即圆心C (3,4), 又半径为|CA |=(2-3)2+(4-4)2=1,故圆C 的方程为(x -3)2+(y -4)2=1.(2)圆心C (3,4)到直线y =kx +3的距离d =|3k -4+3|1+k2,由题意d ≤1,化简得4k 2-3k ≤0,解得0≤k ≤34. 20.解:(1)证明:∵C 是底面圆周上异于A 、B 的一点,且AB 为底面圆的直径,∴BC ⊥AC .又AA 1⊥底面ABC ,∴BC ⊥AA 1,∴BC ⊥平面A 1AC .由面面垂直的判定定理知,平面A 1AC ⊥平面BA 1C .(2)在Rt △ACB 中,设AC =x ,则BC =AB 2-AC 2=4-x 2(0<x <2).故VA 1-ABC =13S △ABC ×AA 1=13×12AC ×BC ×AA 1=13x 4-x 2(0<x <2).VA 1-ABC =13x 4-x 2=13x 2(4-x 2) =13-(x 2-2)2+4.∵0<x <2,∴0<x 2<4.∴当x 2=2,即x =2时,VA 1-ABC 的值最大,即(VA 1-ABC )max =23.21.(12分)已知动点M 到点A (2,0)的距离是它到点B (8,0)的距离的一半,求:(1)动点M 的轨迹方程;(2)若N 为线段AM 的中点,试求点N 的轨迹.22.(12分)如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点.(1)求证:PB∥平面ACM;(2)求证:AD⊥平面P AC;(3)求直线AM与平面ABCD所成角的正切值.答案21.解:(1)设动点M (x ,y )为轨迹上任意一点,则点M 的轨迹就是集合P ={M ||MA |=12|MB |}.由两点间距离公式,点M 适合的条件可表示为(x -2)2+y 2=12(x -8)2+y 2.平方后再整理,得x 2+y 2=16.可以验证,这就是动点M 的轨迹方程.(2)设动点N 的坐标为(x ,y ),M 的坐标是(x 1,y 1).由于A (2,0),且N 为线段AM 的中点,所以x =2+x 12,y =0+y 12.所以有x 1=2x -2,y 1=2y .①由(1)知,M 是圆x 2+y 2=16上的点,所以M 的坐标(x 1,y 1)满足x 21+y 21=16.②将①代入②整理,得(x -1)2+y 2=4.所以N 的轨迹是以(1,0)为圆心,2为半径的圆.22.解:(1)证明:连接BD ,MO ,在平行四边形ABCD 中,因为O 为AC 的中点,所以O 为BD 的中点.又M 为PD 的中点,所以PB ∥MO .因为PB ⊄平面ACM ,MO ⊂平面ACM ,所以PB ∥平面ACM .(2)证明:因为∠ADC =45°,且AD =AC =1,所以∠DAC =90°,即AD ⊥AC .又PO ⊥平面ABCD ,AD ⊂平面ABCD , 所以PO ⊥AD .而AC ∩PO =O ,所以AD ⊥平面P AC .(3)取DO 的中点N ,连接MN ,AN .因为M 为PD 的中点,所以MN ∥PO ,且MN =12PO =1.由PO ⊥平面ABCD ,得MN ⊥平面ABCD ,所以∠MAN 即是直线AM 与平面ABCD 所成的角.在Rt △DAO 中,AD =1,AO =12,所以DO =52,从而AN =12DO =54.在Rt △ANM 中,tan ∠MAN =MN AN =154=455, 即直线AM 与平面ABCD 所成角的正切值为455.。
高中数学人教A版选修2-1 章末综合测评1 Word版含答案
章末综合测评(一) 常用逻辑用语(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若x2<1,则-1<x<1”的逆否命题是()A.若x2≥1,则x≥1,或x≤-1B.若-1<x<1,则x2<1C.若x>1,或x<-1,则x2>1D.若x≥1或x≤-1,则x2≥1【解析】命题“若p,则q”的逆否命题为“若綈q,则綈p”.【答案】 D2.命题“所有能被2整除的整数都是偶数”的否定是()A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【解析】把全称量词改为存在量词并把结论否定.【答案】 D3.命题p:x+y≠3,命题q:x≠1或y≠2,则命题p是q的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】命题“若p,则q”的逆否命题为:“若x=1且y=2,则x+y=3”,是真命题,故原命题为真,反之不成立.【答案】 A4.设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y -1=0上”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】当x=2且y=-1时,满足方程x+y-1=0, 即点P(2,-1)在直线l上.点P′(0,1)在直线l上,但不满足x=2且y=-1,∴“x=2且y=-1”是“点P(x,y)在直线l上”的充分而不必要条件.【答案】 A5.“关于x的不等式f(x)>0有解”等价于()A.∃x0∈R,使得f(x0)>0成立B.∃x0∈R,使得f(x0)≤0成立C.∀x∈R,使得f(x)>0成立D.∀x∈R,f(x)≤0成立【解析】“关于x的不等式f(x)>0有解”等价于“存在实数x0,使得f(x0)>0成立”.故选A.【答案】 A6.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD 为菱形”是“AC⊥BD”的() 【导学号:18490031】A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】若四边形ABCD为菱形,则AC⊥BD,反之,若AC⊥BD,则四边形ABCD不一定是菱形,故选A.【答案】 A7.命题p:函数y=lg(x2+2x-c)的定义域为R;命题q:函数y =lg(x2+2x-c)的值域为R.记命题p为真命题时c的取值集合为A,命题q为真命题时c的取值集合为B,则A∩B=()A.∅B.{c|c<-1}C.{c|c≥-1} D.R【解析】命题p为真命题,即x2+2x-c>0恒成立,则有Δ=4+4c<0,解得c<-1,即A={c|c<-1};令f(x)=x2+2x-c,命题q为真命题,则f(x)的值域包含(0,+∞).即Δ=4+4c≥0,求得c≥-1,即B={c|c≥-1}.于是A∩B=∅,故选A.【答案】 A8.对∀x∈R,kx2-kx-1<0是真命题,则k的取值范围是() A.-4≤k≤0 B.-4≤k<0C.-4<k≤0 D.-4<k<0【解析】由题意知kx2-kx-1<0对任意x∈R恒成立,当k=0时,-1<0恒成立;当k ≠0时,有⎩⎨⎧k <0,Δ=k 2+4k <0,即-4<k <0,所以-4<k ≤0.【答案】 C9.已知命题p :若(x -1)(x -2)≠0,则x ≠1且x ≠2;命题q :存在实数x 0,使2x 0<0.下列选项中为真命题的是( )A .綈pB .綈p ∨qC .綈q ∧pD .q【解析】 很明显命题p 为真命题,所以綈p 为假命题;由于函数y =2x ,x ∈R 的值域是(0,+∞),所以q 是假命题,所以綈q 是真命题.所以綈p ∨q 为假命题,綈q ∧p 为真命题,故选C.【答案】 C10.设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 等比数列{a n }为递增数列的充要条件为⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1.故“q >1”是“{a n }为递增数列”的既不充分也不必要条件. 【答案】 D11.已知命题p :∀x >0,总有(x +1)e x >1,则綈p 为( )A .∃x 0≤0,使得(x 0+1)e x 0≤1B .∃x 0>0,使得(x 0+1)e x 0≤1C .∀x >0,总有(x +1)e x ≤1D .∀x ≤0,使得(x +1)e x ≤1【解析】 因为全称命题∀x ∈M ,p (x )的否定为∃x 0∈M ,綈p (x ),故綈p :∃x 0>0,使得(x 0+1)e x 0≤1.【答案】 B12.已知p :点P 在直线y =2x -3上;q :点P 在直线y =-3x +2上,则使p ∧q 为真命题的点P 的坐标是( )A .(0,-3)B .(1,2)C .(1,-1)D .(-1,1)【解析】 因为p ∧q 为真命题,所以p ,q 均为真命题.所以点P为直线y =2x -3与直线y =-3x +2的交点.解方程组⎩⎨⎧y =2x -3,y =-3x +2,得⎩⎨⎧x =1,y =-1,即点P 的坐标为(1,-1). 【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件,命题q :函数y =x -3的定义域是[3,+∞),则“p ∨q ”“p ∧q ”“綈p ”中是真命题的为________.【解析】 p 为假命题,q 为真命题,故p ∨q 为真命题,綈p 为真命题.【答案】 p ∨q 与綈p14.(2016·临川高二检测)“末位数字是1或3的整数不能被8整除”的否定形式是________________,否命题是________________.【解析】 命题的否定仅否定结论,所以该命题的否定形式是:末位数字是1或3的整数能被8整除;而否命题要同时否定原命题的条件和结论,所以否命题是:末位数字不是1且不是3的整数能被8整除.【答案】 末位数字是1或3的整数能被8整除 末位数字不是1且不是3的整数能被8整除15.已知f (x )=x 2+2x -m ,如果f (1)>0是假命题,f (2)>0是真命题,则实数m 的取值范围是______.【解析】 依题意,⎩⎨⎧f (1)=3-m ≤0,f (2)=8-m >0,∴3≤m <8. 【答案】 [3,8)16.给出以下判断:①命题“负数的平方是正数”不是全称命题;②命题“∀x ∈N ,x 3>x 2”的否定是“∃x 0∈N ,使x 30>x 20”; ③“b =0”是“函数f (x )=ax 2+bx +c 为偶函数”的充要条件; ④“正四棱锥的底面是正方形”的逆命题为真命题.其中正确命题的序号是________. 【导学号:18490032】【解析】 ①②④是假命题,③是真命题.【答案】 ③三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定,并判断其真假,同时说明理由.(1)q :所有的矩形都是正方形;(2)r :∃x 0∈R ,x 20+2x 0+2≤0;(3)s :至少有一个实数x 0,使x 30+3=0.【解】 (1)綈q :至少存在一个矩形不是正方形,真命题.这是由于原命题是假命题.(2)綈r :∀x ∈R ,x 2+2x +2>0,真命题.这是由于∀x ∈R ,x 2+2x +2=(x +1)2+1≥1>0恒成立.(3)綈s :∀x ∈R ,x 3+3≠0,假命题.这是由于当x =-33时,x 3+3=0.18.(本小题满分12分)指出下列命题中,p 是q 的什么条件?(1)p :{x |x >-2或x <3};q :{x |x 2-x -6<0};(2)p :a 与b 都是奇数;q :a +b 是偶数;(3)p :0<m <13;q :方程mx 2-2x +3=0有两个同号且不相等的实根.【解】 (1)因为{x |x 2-x -6<0}={x |-2<x <3},所以{x |x >-2或x <3}⇒/ {x |-2<x <3},而{x |-2<x <3}⇒{x |x >-2或x <3}.所以p 是q 的必要不充分条件.(2)因为a ,b 都是奇数⇒a +b 为偶数,而a +b 为偶数⇒/ a ,b 都是奇数,所以p 是q 的充分不必要条件.(3)mx 2-2x +3=0有两个同号不等实根⇔⎩⎪⎨⎪⎧Δ>0,3m >0⇔⎩⎪⎨⎪⎧4-12m >0,m >0⇔⎩⎨⎧m <13,m >0⇔ 0<m <13.所以p 是q 的充要条件.19.(本小题满分12分)已知命题p :不等式2x -x 2<m 对一切实数x 恒成立,命题q :m 2-2m -3≥0,如果“綈p ”与“p ∧q ”同时为假命题,求实数m 的取值范围. 【导学号:18490033】【解】 2x -x 2=-(x -1)2+1≤1,所以p 为真时,m >1.由m 2-2m -3≥0得m ≤-1或m ≥3,所以q 为真时,m ≤-1或m ≥3.因为“綈p ”与“p ∧q ”同时为假命题,所以p 为真命题,q 为假命题,所以得⎩⎨⎧m >1,-1<m <3,即1<m <3,即m 的取值范围为(1,3).20.(本小题满分12分)已知两个命题p :sin x +cos x >m ,q :x 2+mx +1>0,如果对任意x ∈R ,有p ∨q 为真,p ∧q 为假,求实数m 的取值范围.【解】 当命题p 是真命题时,由于x ∈R ,则sin x +cos x =2sin ⎝⎛⎭⎪⎪⎫x +π4≥-2, 所以有m <- 2.当命题q 是真命题时,由于x ∈R ,x 2+mx +1>0,则Δ=m 2-4<0,解得-2<m <2.由于p ∨q 为真,p ∧q 为假,所以p 与q 一真一假.考虑到函数f (x )=x 2+mx +1的图象为开口向上的抛物线,对任意的x ∈R ,x 2+mx +1≤0不可能恒成立.所以只能是p 为假,q 为真,此时有⎩⎨⎧m ≥-2,-2<m <2,解得-2≤m <2,所以实数m 的取值范围是[-2,2).21.(本小题满分12分)已知命题p :对数log a (-2t 2+7t -5)(a >0,且a ≠1)有意义;命题q :实数t 满足不等式t 2-(a +3)t +a +2<0.(1)若命题p 为真,求实数t 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.【解】 (1)因为命题p 为真,则对数的真数-2t 2+7t -5>0,解得1<t <52.所以实数t 的取值范围是⎝ ⎛⎭⎪⎫1,52. (2)因为p 是q 的充分不必要条件,所以⎩⎨⎧⎭⎬⎫t ⎪⎪⎪1<t <52是不等式t 2-(a +3)t +a +2<0的解集的真子集.法一 因为方程t 2-(a +3)t +a +2=0的两根为1和a +2,所以只需a +2>52,解得a >12.即实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞. 法二 令f (t )=t 2-(a +3)t +a +2,因为f (1)=0,所以只需f ⎝ ⎛⎭⎪⎫52<0,解得a >12. 即实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞. 22.(本小题满分12分)设a ,b ,c 为△ABC 的三边,求证:方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.【证明】 充分性:∵∠A =90°,∴a 2=b 2+c 2.于是方程x 2+2ax +b 2=0可化为x 2+2ax +a 2-c 2=0,∴x 2+2ax +(a +c )(a -c )=0.∴[x +(a +c )][x +(a -c )]=0.林老师网络编辑整理林老师网络编辑整理 ∴该方程有两根x 1=-(a +c ),x 2=-(a -c ), 同样另一方程x 2+2cx -b 2=0也可化为x 2+2cx -(a 2-c 2)=0, 即[x +(c +a )][x +(c -a )]=0,∴该方程有两根x 3=-(a +c ),x 4=-(c -a ). 可以发现,x 1=x 3,∴方程有公共根.必要性:设x 是方程的公共根,则⎩⎨⎧x 2+2ax +b 2=0, ①x 2+2cx -b 2=0, ②由①+②,得x =-(a +c ),x =0(舍去). 代入①并整理,可得a 2=b 2+c 2.∴∠A =90°.∴结论成立.。
高中数学人教A版选修2-1选修2-1综合检测(A卷)及详细解答.docx
选修2-1综合检测(A 卷)时间:120分钟 满分:150分一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.“a =b ”是“直线y =x +2与圆(x -a)2+(y -b)2=2相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件 [答案] A[解析] 圆心(a ,b),半径r =2,若a =b ,则圆心(a ,b)到直线y =x +2的距离d =2=r.∴直线与圆相切;若直线与圆相切,则|a -b +2|2=2,此时a =b 或a -b =-4,∴是充分不必要条件,故应选A .2.设直线l 1、l 2的方向向量分别为a =(2,-2,-2),b =(2,0,4),则直线l 1、l 2的夹角是( )A .arccos 1515 B .π-arcsin 21015 C .arcsin 21015D .arccos(-1515) [答案] A[解析] a ·b =-4,|a |=23,|b |=25, cos 〈a ,b 〉=a ·b |a |·|b |=-1515,∴l 1与l 2夹角为arcocs1515. 3.(2010·陕西文,9)已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( )A.12B .1C .2D .4[答案] C[解析] 本题考查抛物线的准线方程,直线与圆的位置关系. 抛物线y 2=2px (p >0)的准线方程是x =-p 2,由题意知,3+p2=4,p =2.4.设P 为双曲线x 2-y 212=1上的一点,F 1,F 2是该双曲线的两个焦点,若|PF 1|∶|PF 2|=3∶2,则ΔPF 1F 2的面积为( )A .6 3B .12C .12 3D .24[答案] B[解析] ∵|PF 1|∶|PF 2|=3∶2,又有|PF 1|-|PF 2|=2,∴|PF 1|=6,|PF 2|=4 又∵|F 1F 2|=2c =213∵(213)2=62+42,∴∠F 1PF 2=90° ∴S △PF 1F 2=12×6×4=12.5.已知集合A ={x |x 2-3x -10≤0},集合B ={x |m +1≤x ≤2m -1},若B 是A 的充分条件,则实数m 的取值范围是( )A .[-3,3]B .[3,+∞)C .[0,3]D .(-∞,3][答案] D[解析] A ={x |-2≤x ≤5},由条件知B ⊆A , 当B =∅时显然适合题意,即m +1>2m -1得m <2 当B ≠∅时需⎩⎪⎨⎪⎧m ≥2m +1≥-22m -1≤5解得2≤m ≤3,故m ∈(-∞,3],选D.6.在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算的结果为向量BD 1→的是( )①(A 1D 1→-A 1A →)-AB →; ②(BC →+BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→; ④(B 1D 1→+A 1A →)+DD 1→. A .①② B .②③ C .③④D .①④[答案] A[解析] ①(A 1D 1→-A 1A →)-AB →=AD 1→-AB →=BD 1→;②(BC →+BB 1→)-D 1C 1→ =BC 1→+C 1D 1→=BD 1→;③(AD →-AB →)-2DD 1→=BD →-2DD 1→=-(DB →+DD 1→)-DD 1→=-DB 1→-DD 1→=-(DB 1→+DD 1→)≠BD 1→;④(B 1D 1→+A 1A →)+DD 1→=(B 1D 1→+B 1B →)+DD 1→ =B 1D →+DD 1→=B 1D 1→≠BD 1→.7.(2010·上海文,16)“x =2k π+π4(k ∈Z )”是“tan x =1”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] 本题考查了任意角的三角函数值及充要条件问题. ∵tan(2k π+π4)=1,而tan x =1⇒x =k π+π4k ∈Z ,故选A.8.如图所示,椭圆的中心在原点,焦点F 1、F 2在x 轴上,A 、B 是椭圆的顶点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB ,则此椭圆的离心率是( )A.12B.55C.13D.22[答案] B[解析] 点P 的坐标(-c ,b 2a ),于是k AB =-b a ,kPF 2=-b 22ac ,由k AB =kPF 2得b =2c ,故e =c a =55.9.设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点P (k ,-2)与点F 的距离为4,则k 等于( )A .4B .4或-4C .-2D .-2或2[答案] B[解析] 由题设条件可设抛物线方程为x 2=-2py (p >0),又点P 在抛物线上,则k 2=4p ∵|PF |=4∴p2+2=4,即p =4,∴k =±4.10.设有语句p :x =-9,綈q :x 2+8x -9=0,则下面给出的命题中是真命题的一个是( )A .若p 则qB .若綈p 则綈qC .若q 则綈pD .若綈p 则q[答案] C[解析] p :x =-9,綈q :x 2+8x -9=0, 即綈q :x =1或x =-9. ∴p ⇒綈q ,即q ⇒綈p .11.如图,在正三棱锥P —ABC 中,D 是侧棱P A 的中心,O 是底面ABC 的中点,则下列四个结论中正确的是( )A .OD ∥平面PBCB .OD ⊥P AC .OD ⊥AC D .P A =2OD [答案] D[解析] PO ⊥底面ABC ,即△P AO 为直角三角形.又D 为P A 中点,则P A =2OD . 12.双曲线x 2-y 2=1的左焦点为F 1,点P 在双曲线左支下半支上(不含顶点),则直线PF 1的斜率为( )A .(-∞,-1)∪(1,+∞)B .(-∞,0)∪(1+∞)C .(-∞,-1)∪(0,+∞)D .(-∞,0)∪(0,+∞) [答案] B[解析] 如图l 1与渐近线平行,l 2与x 轴垂直,当过F 1的直线由l 1逆时针转到l 2时,与左下支相交,此时k >1;当过F 1的直线逆时针由l 2转到x 轴时,与左下支相交,此时k <0,故选B.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.在空间中,①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线;以上两个命题中,逆命题为真命题的是______________.(把符合要求的命题序号都填上).[答案] ②[解析] ①中的逆命题是:若四点中任何三点都不共线,则这四点不共面.我们用正方体AC 1做模型来观察:上底面A 1B 1C 1D 1中任何三点都不共线,但A 1B 1C 1D 1四点共面.所以①中逆命题不真.②中的逆命题是:若两条直线是异面直线,则这两条直线没有公共点. 由异面直线的定义可知,成异面直线的这两条直线不会有公共点. 所以②中逆命题是真命题.14.如图所示,正方形ABCD 所在平面与正方形ABEF 所在平面成60°的二面角,则异面直线AD 与BF 所成角的余弦值是________.[答案]24[解析] 解法一:∵四边形ABCD 与四边形ABEF 都是正方形,∴CB ⊥AB ,EB ⊥AB , ∴∠CBE =60°.连结CE ,如图所示,设正方形的边长为1, ∵BC =BE ,∠CBE =60°,∴△CEB 为正三角形,CE =BC =1. 连结CF ,∵BC ∥AD ,∴∠CBF 就是两异面直线AD 与BF 所成的角. 又∵AB ⊥平面CBE ,∴AB ⊥CE .又FE ∥AB ,∴FE ⊥CE ,∴CF =CE 2+EF 2= 2. 又在△CBF 中,CB =1,BF =2, ∴cos ∠CBF =CB 2+BF 2-CF 22CB ·BF =122=24.解法二:设AB →=a ,AD →=b ,AF →=c ,设正方形边长为1,则由题意知a ·b =0,a ·c =0,|a |=|b |=|c |=1,∵AD ⊥AB ,AF ⊥AB ,∴∠DAF =60°,∴b ·c =12.|BF →|2=(c -a )2=|c |2+|a |2-2a ·c =2, ∴|BF →|=2,BF →·AD →=(c -a )·b =b ·c -a ·b =12,∴cos 〈BF →,AD →〉=BF →·AD →|BF →|·|AD →|=24,即异面直线AD 与BF 所成角的余弦值为24. 15.椭圆x 24+y 23=1上有n 个不同的点P 1,P 2,……,P n ,椭圆的右焦点为F ,数列{|P n F |}是公差大于1100的等差数列,则n 的最大值为________.[答案] 200[解析] 欲使n 取最大值,则|P 1F |应取最小值|P n F |应取最大值,∴|P 1F |=a -c =1,|P n F |=a +c =3,|P n F |=|P 1F |+(n -1)·d , 当d =1100时,n =201.而d >1100,∴n 的最大值为200. 16.与椭圆x 29+y 24=1有公共焦点,且两条渐近线互相垂直的双曲线方程为________.[答案] x 2-y 2=52[解析] 椭圆焦点(±5,0),由条件知,双曲线的焦点为(±5,0),渐近线方程为y =±x , 故设双曲线方程为x 2-y 2=λ (λ>0),∴2λ=5,∴λ=52.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)已知△ABC ,A (-2,0),B (0,-2),第三个顶点C 在曲线y =3x 2-1上移动,求△ABC 的重心的轨迹方程.[解析] 设△ABC 重心为G (x ,y ),顶点C 的坐标为(x 1,y 1)由重心坐标公式得 ⎩⎨⎧x =-2+0+x13y =0-2+y 13,∴⎩⎪⎨⎪⎧x 1=3x +2,y 1=3y +2. 代入y 1=3x 21-1,得3y +2=3(3x +2)2-1.∴y =9x 2+12x +3即为所求轨迹方程.18.(本小题满分12分)四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,且PB =4PM ,PB 与平面ABC 成30°角.(1)求证:CM ∥平面P AD ; (2)求证:平面P AB ⊥平面P AD .[解析] 如图所示,建立空间直角坐标系C -xyz . (1)∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABC 所成的角,∠PBC =30°. ∵|PC |=2,∴|BC |=23,∴|PB |=4,得D (0,1,0)、B (23,0,0,)、A (23,4,0)、P (0,0,2), 又|PB |=4|PM |,∴|PM |=1,M (32,0,32), ∴CM →=(32,0,32),DP →=(0,-1,2),DA →=(23,3,0),设CM →=λDP →+μDA →, 则23μ=32,-λ+3μ=0,2λ=32, ∴λ=34,μ=14,即CM →=34DP →+14DA →,∴CM →,DP →,DA →共面.∵C ∉平面P AD ,∴CM ∥平面P AD . (2)作BE ⊥P A 于E ,|PB |=|AB |=4, ∴E 为P A 的中点,∴E (3,2,1),∴BE →=(-3,2,1).∵BE →·DA →=(-3,2,1)·(23,3,0)=0, BE →·DP →=(-3,2,1)·(0,-1,2)=0, ∴BE ⊥DA ,又BE ⊥DP ,∴BE ⊥平面P AD ,由于BE ⊂平面P AB ,则平面P AB ⊥平面P AD .[点评] ①证明线面平行,既可以用判定定理直接求证,也可以用向量证,用向量证明时,既可以证明两向量共线,也可以证明向量共面,还可以证明直线的方向向量与平面的法向量垂直.②证明面面垂直,既可以应用判定定理直接证,也可以用向量证用向量证明时,可证明其法向量垂直.③常常将几何证明方法与代数证明方法结合使用.19.(本小题满分12分)设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点A 、B .(1)求双曲线C 的离心率e 的取值范围;(2)设直线l 与y 轴的交点为P ,且P A →=512PB →,求a 的值.[解析] (1)由C 与l 相交于两个不同的点,故知方程组⎩⎪⎨⎪⎧x 2a 2-y 2=1,x +y =1有两组不同的实数解,消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0.①所以⎩⎪⎨⎪⎧1-a 2≠0,4a 2+8a 2(1-a 2)>0.解得0<a <2且a ≠1,双曲线的离心率e =1+a 2a =1a 2+1, ∵0<a <2且a ≠1,∴e >62,且e ≠2, 即离心率e 的取值范围为(62,2)∪(2,+∞) (2)设A (x 1,y 1),B (x 2,y 2),P (0,1),∵P A →=512PB →,∴(x 1,y 1-1)=512(x 2,y 2-1).由此得x 1=512x 2,由于x 1、x 2都是方程①的根,且1-a 2≠0,所以1712x 2=-2a 21-a 2,512x 22=-2a 21-a 2.消去x 2得,-2a 21-a2=28960.由a >0,所以a =1713.20.(本小题满分12分)已知条件p :|5x -1|>a 和条件q :12x 2-3x +1>0,请选取适当的实数a 的值,分别利用所给的两个条件作为A ,B 构造命题:若A 则B .使得构造的原命题为真命题,而其逆命题为假命题,并说明为什么这一命题是符合要求的命题.[解析] 已知条件p 即5x -1<-a 或5x -1>a ,∴x <1-a 5或x >1+a5.已知条件q 即2x 2-3x +1>0,∴x <12或x >1.令a =4,则p 即x <-35或x >1,此时必有p ⇒q 成立,反之不然,故可以选取的一个实数是a =4.由以上过程可知,这一命题的原命题为真命题,但它的逆命题的假命题.[点评] 只要使P Q 的a 的值都满足题设要求,∴⎩⎨⎧1-a 5≤121+a 5≥1,(等号不同时成立)∴a ≥4.因此选取的a 的值满足a ≥4的都可以.21.(本小题满分12分)已知斜三棱柱ABC -A 1B 1C 1中,面A 1ACC 1⊥面ABC ,∠ABC =90°,BC =2,AC =23,且AA 1⊥A 1C ,AA 1=A 1C ,求侧面A 1ABB 1与底面ABC 所成的锐二面角的大小.[解析] 过A 1作A 1O ⊥AC ,∵平面A 1ACC 1⊥平面ABC ,∴A 1O ⊥平面ABC ,以O 为原点,OC 、OA 1分别为y 轴、z 轴建立坐标系,易证A (0,-3,0),B (263,33,0),A 1(0,0,3),则AB →=(263,433,0),AA 1→=(0,3,3),则平面ABC 的法向量n 1=(0,0,3).则平面A 1ABB 1的法向量为n 2=(x ,y ,z ),则n 2·AB →=(263,433,0)·(x ,y ,z )=263x +433y =0,∴x =-2y .∵n 2·AA 1→=(0,3,3)·(x ,y ,z )=3y +3z =0, ∴y =-z .令z =1,则x =2,y =-1,∴n 2=(2,-1,1). 又设平面A 1ABB 1与平面ABC 所成的二面角的大小为θ, 则cos θ=n 1·n 2|n 1|·|n 2|=12,∴θ=60°.∴面ABC 与面A 1ABB 1所成的锐二面角的大小为60°.22.(本小题满分14分)(2010·安徽理,19)已知椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率e =12.(1)求椭圆E 的方程;(2)求∠F 1AF 2的角平分线所在直线l 的方程;[解析] 本题考查椭圆的定义及标准方程,椭圆的简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式.点关于直线的对称等基础知识;考查解析几何的基本思想、综合运算能力、探究意识与创新意识.解题思路是:(1)利用待定系数法求标准方程.(2)利用向量法或角平分线的性质求直线方程.(3)利用平方差法或代数法判定是否存在这样一点.解:(1)设椭圆E 的方程为x 2a 2+y 2b 2=1,(a >b >0)由e =12,即c a =12,a =2c ,得b 2=a 2-c 2=3c 2.∴椭圆的方程具有形式x 24c 2+y 23c2=1.将A (2,3)代入上式,得1c 2+3c 2=1,解得c =2,∴椭圆E 的方程为x 216+y 212=1.(2)解法1:由(1)知F 1(-2,0),F 2(2,0),所以直线AF 1的方程为:y =34(x +2),即3x -4y +6=0.直线AF 2的方程为:x =2.由点A 的椭圆E 上的位置知,直线l 的斜率为正数. 设P (x ,y )为l 上任一点,则 |3x -4y +6|5=|x -2|. 若3x -4y +6=5x -10,得x +2y -8=0(因其斜率为负,舍去). 于是,由3x -4y +6=-5x +10得2x -y -1=0, 所以直线l 的方程为:2x -y -1=0. 解法2:∵A (2,3),F 1(-2,0),F 2(2,0), ∴AF 1→=(-4,-3),AF 2→=(0,-3).∴AF 1→|AF 1→|+AF 2→|AF 2→|=15(-4,-3)+13(0,-3)=-45(1,2).∴k l =2,∴l :y -3=2(x -1),即2x -y -1=0.。
高中数学人教A版选修2-1 模块综合测评 Word版含答案
模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“a ∉A 或b ∉B ”的否定形式是( ) A .若a ∉A ,则b ∉B B .a ∈A 或b ∈B C .a ∉A 且b ∉BD .a ∈A 且b ∈B【解析】 “p 或q ”的否定为“綈p 且綈q ”,D 正确. 【答案】 D2.已知a ∈R ,则“a <2”是“a 2<2a ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解析】 ∵a 2<2a ⇔a (a -2)<0⇔0<a <2. ∴“a <2”是“a 2<2a ”的必要不充分条件. 【答案】 B3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为( )A.54B.52C.32D.54【解析】 由题意,1-b 2a 2=⎝ ⎛⎭⎪⎫322=34,∴b 2a 2=14,而双曲线的离心率e 2=1+b 2a 2=1+14=54,∴e =52.【答案】 B4.已知空间向量a =(t ,1,t ),b =(t -2,t ,1),则|a -b |的最小值为( )A. 2B. 3 C .2D .4【解析】 |a -b |=2(t -1)2+4≥2,故选C. 【答案】 C5.椭圆x 225+y 29=1与椭圆x 2a 2+y 29=1有( ) A .相同短轴 B .相同长轴 C .相同离心率D .以上都不对【解析】 对于x 2a 2+y 29=1,因a 2>9或a 2<9,因此这两个椭圆可能长轴相同,也可能短轴相同,离心率是不确定的,因此A ,B ,C 均不正确,故选D.【答案】 D6.长方体ABCD -A 1B 1C 1D 1中,AB =2,AD =AA 1=1,则二面角C 1AB C 为( )A.π3B.2π3C.3π4 D.π4【解析】 以A 为原点,直线AB ,AD ,AA 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,则平面ABC 的一个法向量为AA 1→=(0,0,1),平面ABC 1的一个法向量为A 1D →=(0,1,-1),∴cos 〈AA 1→,A 1D →〉=-12=-22,∴〈AA 1→,A 1D →〉=3π4,又二面角C 1AB C 为锐角,即π-34π=π4,故选D.【答案】 D7.(2016·湖北省黄冈市质检)命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( )A .a ≥4B .a ≤4C .a ≥5D .a ≤5【解析】 ∵∀x ∈[1,2],1≤x 2≤4,∴要使x 2-a ≤0为真,则a ≥x 2,即a ≥4,本题求的是充分不必要条件,结合选项,只有C 符合,故选C.【答案】 C8.已知p :1x +2<0,q :lg(x +2)有意义,则綈p 是q 的( )【导学号:18490126】 A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件【解析】 不等式1x +2<0的解集为{x |x <-2},则綈p :x ≥-2.q :x >-2.故綈p ⇒/ q ,q ⇒綈p ,故选C.【答案】 C9.如图1,过抛物线y 2=2px (p >0)的焦点F 的直线,分别交抛物线的准线l 、y 轴、抛物线于A ,B ,C 三点,若AB →=3BC →,那么直线AF 的斜率是( )图1A .- 3B .-33 C .-22D .-1【解析】 过点B ,C 分别作准线l 的垂线,垂足分别为B 1,C 1,设|BC |=a .因为O 是EF 的中点,BO ∥AE ,所以|AB |=|BF |=3a ,|CF |=|CC 1|=2a ,在△ACC 1中,|AC 1|=23a ,tan ∠AFO =tan ∠ACC 1=3,故直线AF 的斜率是-3,故选A.【答案】 A10.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F ,若椭圆的离心率为23,则k 的值为( )A .-13 B.13 C .±13D .±12【解析】 由题意知点B 的横坐标是c ,故点B 的坐标为⎝ ⎛⎭⎪⎫c ,±b 2a ,则斜率k =±b 2ac +a =±b 2ac +a 2=±a 2-c 2ac +a 2=±1-e 2e +1=±(1-e )=±13,故选C. 【答案】 C11.若直线y =kx -2与抛物线y 2=8x 交于A ,B 两个不同的点,抛物线的焦点为F ,且|AF |,4,|BF |成等差数列,则k =( )A .2或-1B .-1C .2D .1± 5【解析】设A (x 1,y 1),B (x 2,y 2).由⎩⎨⎧y =kx -2,y 2=8x ,消去y ,得k 2x 2-4(k +2)x +4=0,故Δ=16(k +2)2-16k 2=64(1+k )>0,解得k >-1,且x 1+x 2=4(k +2)k 2.由|AF |=x 1+p 2=x 1+2,|BF |=x 2+p2=x 2+2,且|AF |,4,|BF |成等差数列,得x 1+2+x 2+2=8,得x 1+x 2=4,所以4(k +2)k 2=4,解得k =-1或k =2,又k >-1,故k =2,故选C. 【答案】 C12.(2016·上海杨浦模考)若F 1,F 2为双曲线C :x 24-y 2=1的左、右焦点,点P 在双曲线C 上,∠F 1PF 2=60°,则点P 到x 轴的距离为( )A.55B.155C.2155D.1520【解析】 设|PF 1|=r 1,|PF 2|=r 2,点P 到x 轴的距离为|y P |,则S △F 1PF 2=12r 1r 2sin 60°=34r 1r 2,又4c 2=r 21+r 22-2r 1r 2cos 60°=(r 1-r 2)2+2r 1r 2-r 1r 2=4a 2+r 1r 2,得r 1r 2=4c 2-4a 2=4b 2=4,所以S △F 1PF 2=12r 1r 2sin 60°=3=12·2c ·|y P |=5|y P |,得|y P |=155,故选B.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知空间三点的坐标为A (1,5,-2),B (2,4,1),C (p ,3,q +2),若A ,B ,C 三点共线,则p +q =________.【解析】 由已知,得AC →=kAB →,所以(p -1,-2,q +4)=k (1,-1,3),得到p =3,q =2,p +q =5.【答案】 514.已知命题p :∃x 0∈R ,ax 20+x 0+12≤0.若命题p 是假命题,则实数a 的取值范围是________.【解析】 因为命题p 为假命题,所以命题“∀x ∈R ,ax 2+x +12>0”为真命题.当a =0时,取x =-1,则不等式不成立; 当a ≠0时,要使不等式恒成立,令ax 2+x +12=0,则有⎩⎨⎧a >0,Δ<0,即⎩⎨⎧a >0,Δ=1-2a <0,所以⎩⎪⎨⎪⎧a >0,a >12,即实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.【答案】 ⎝ ⎛⎭⎪⎫12,+∞ 15.已知抛物线y 2=4x 的焦点为F ,若点A ,B 是该抛物线上的点,∠AFB =π2,线段AB 的中点M 在抛物线的准线上的射影为N ,则|MN ||AB |的最大值为______. 【导学号:18490127】【解析】 如图所示,设|AF |=a ,|BF |=b ,则|AB |=a 2+b 2,而根据抛物线的定义可得|MN |=a +b 2,又a +b2≤a 2+b 22,所以|MN ||AB |=a +b 2a 2+b 2≤22,当且仅当a =b 时,等号成立,即|MN ||AB |的最大值为22.【答案】 2216.四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是正方形,且PD =AB =1,G 为△ABC 的重心,则PG 与底面ABCD 所成的角θ的正弦值为________.【解析】 如图,分别以DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,由已知P (0,0,1),A (1,0,0),B (1,1,0),C (0,1,0),则重心G ⎝ ⎛⎭⎪⎫23,23,0,因此DP →=(0,0,1),GP →=⎝ ⎛⎭⎪⎫-23,-23,1,所以sin θ=|cos 〈DP →,GP →〉|=|DP →·GP →||DP →|·|GP →|=31717.【答案】 31717三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设集合A ={x |x 2-3x +2=0},B ={x |ax =1}.“x ∈B ”是“x ∈A ”的充分不必要条件,试求满足条件的实数a组成的集合.【解】 ∵A ={x |x 2-3x +2=0}={1,2}, 由于“x ∈B ”是“x ∈A ”的充分不必要条件.∴B A .当B =∅时,得a =0;当B ≠∅时,由题意得B ={1}或B ={2}. 则当B ={1}时,得a =1;当B ={2}时,得a =12. 综上所述,实数a 组成的集合是⎩⎨⎧⎭⎬⎫0,1,12. 18. (本小题满分12分)如图2,四边形MNPQ 是圆C 的内接等腰梯形,向量CM→与PN →的夹角为120°,QC →·QM →=2.图2(1)求圆C 的方程;(2)求以M ,N 为焦点,过点P ,Q 的椭圆方程.【解】 (1)连结CQ ,建立如图坐标系,由题意得△CQM 为正三角形.∴QC →·QM →=r 2·cos 60°=2, ∴r =2,∴圆C的方程为x2+y2=4.(2)易知M(2,0),N(-2,0),Q(1,3),2a=|QN|+|QM|=23+2.∴c=2,a=3+1,b2=a2-c2=2 3.∴椭圆的方程为x24+23+y223=1.19. (本小题满分12分)如图3,在四棱锥P-ABCD中,底面ABCD 是矩形,P A⊥平面ABCD,P A=AD=2,AB=1,BM⊥PD于点M.图3(1)求证:AM⊥PD;(2)求直线CD与平面ACM所成的角的余弦值.【解】(1)证明:∵P A⊥平面ABCD,AB⊂平面ABCD,∴P A⊥AB.∵AB⊥AD,AD∩P A=A,∴AB⊥平面P AD.∵PD⊂平面P AD,∴AB⊥PD.∵BM⊥PD,AB∩BM=B,∴PD⊥平面ABM.∵AM⊂平面ABM,∴AM⊥PD.(2)如图所示,以点A为坐标原点,建立空间直角坐标系Axyz,则A(0,0,0),P(0,0,2),B(1,0,0),C(1,2,0),D(0,2,0),M(0,1,1),于是AC→=(1,2,0),AM →=(0,1,1),CD →=(-1,0,0). 设平面ACM 的一个法向量为n =(x ,y ,z ),由n ⊥AC →,n ⊥AM →可得⎩⎨⎧x +2y =0,y +z =0.令z =1,得x =2,y =-1,于是n =(2,-1,1). 设直线CD 与平面ACM 所成的角为α, 则sin α=⎪⎪⎪⎪⎪⎪CD →·n |CD →||n |=63,cos α=33.故直线CD 与平面ACM 所成的角的余弦值为33.20. (本小题满分12分)如图4,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).图4(1)求证:CD ⊥平面ADD 1A 1;(2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.【解】 (1)证明:取CD 的中点E ,连接BE ,如图(1).图(1)∵AB ∥DE ,AB =DE =3k , ∴四边形ABED 为平行四边形, ∴BE ∥AD 且BE =AD =4k .在△BCE 中,∵BE =4k ,CE =3k ,BC =5k , ∴BE 2+CE 2=BC 2,∴∠BEC =90°,即BE ⊥CD . 又∵BE ∥AD ,∴CD ⊥AD .∵AA 1⊥平面ABCD ,CD ⊂平面ABCD ,∴AA 1⊥CD . 又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.(2)以D 为原点,DA →,DC →,DD 1→的方向为x ,y ,z 轴的正方向建立如图(2)所示的空间直角坐标系,则A (4k ,0,0),C (0,6k ,0),B 1(4k ,3k ,1),A 1(4k ,0,1),图(2)∴AC →=(-4k ,6k ,0),AB 1→=(0,3k ,1),AA 1→=(0,0,1). 设平面AB 1C 的法向量n =(x ,y ,z ),则由⎩⎨⎧AC→·n =0,AB 1→·n =0,得⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0. 取y =2,得n =(3,2,-6k ). 设AA 1与平面AB 1C 所成的角为θ,则 sin θ=|cos 〈AA 1→,n 〉|=⎪⎪⎪⎪⎪⎪AA 1→·n |AA 1→||n |=6k 36k 2+13=67,解得k =1,故所求k 的值为1.21. (本小题满分12分)如图5,过抛物线y 2=2px (p >0)的焦点F 作一条倾斜角为π4的直线与抛物线相交于A ,B 两点.图5(1)用p 表示|AB |;(2)若OA→·OB →=-3,求这个抛物线的方程. 【解】 (1)抛物线的焦点为F ⎝ ⎛⎭⎪⎫p 2,0,过点F 且倾斜角为π4的直线方程为y =x -p2.设A (x 1,y 1),B (x 2,y 2),由 ⎩⎪⎨⎪⎧y 2=2px ,y =x -p 2,得x 2-3px +p 24=0, ∴x 1+x 2=3p ,x 1x 2=p 24,∴|AB |=x 1+x 2+p =4p .(2)由(1)知,x 1x 2=p 24,x 1+x 2=3p ,∴y 1y 2=⎝ ⎛⎭⎪⎫x 1-p 2⎝ ⎛⎭⎪⎫x 2-p 2=x 1x 2-p 2(x 1+x 2)+p 24=p 24-3p 22+p 24=-p 2,∴OA →·OB →=x 1x 2+y 1y 2=p 24-p 2=-3p 24=-3,解得p 2=4,∴p =2.∴这个抛物线的方程为y 2=4x .22. (本小题满分12分)如图6,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .图6(1)若点C 的坐标为⎝ ⎛⎭⎪⎫43,13,且BF 2=2,求椭圆的方程;【导学号:18490128】(2)若F 1C ⊥AB ,求椭圆离心率e 的值.【解】 (1)∵BF 2=2,而BF 22=OB 2+OF 22=b 2+c 2=2=a 2,∵点C 在椭圆上,C ⎝ ⎛⎭⎪⎫43,13,∴169a 2+19b 2=1,∴b 2=1,∴椭圆的方程为x22+y 2=1.(2)直线BF 2的方程为x c +y b =1,与椭圆方程x 2a 2+y 2b 2=1联立方程组,解得A 点坐标为⎝ ⎛⎭⎪⎪⎫2a 2c a 2+c 2,-b 3a 2+c 2, 则C 点的坐标为⎝ ⎛⎭⎪⎪⎫2a 2c a 2+c 2,b 3a 2+c 2, 又F 1为(-c ,0),kF 1C =b 3a 2+c 22a 2c a 2+c 2+c=b 33a 2c +c 3, 又k AB =-b c ,由F 1C ⊥AB ,得b 33a 2c +c3·⎝ ⎛⎭⎪⎫-b c =-1, 即b 4=3a 2c 2+c 4,所以(a 2-c 2)2=3a 2c 2+c 4,化简得e =c a =55.。
【红对勾】高中数学 单元综合测试二 新人教A版选修2-1(1)
单元综合测试二时刻:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.椭圆x 2+4y 2=1的离心率为( ) A.32 B.34 C.22 D.23解析:∵a =1,b =12,∴c =a 2-b 2=32,∴e =c a =32,应选A. 答案:A2.(2020·新课标全国卷)已知双曲线E 的中心为原点,F (3,0)是E 的核心,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),那么E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1 解析:∵F (3,0),AB 的中点N (-12,-15), ∴k AB =-15-0-12-3=1.又∵F (3,0),可设双曲线的方程为x 2a 2-y 2b 2=1,易知a 2+b 2=9①再设A (x 1,y 1),B (x 2,y 2),那么有x 21a 2-y 21b 2=1②x 22a 2-y 22b 2=1③由②-③可得x 21-x 22a 2=y 21-y 22b 2,即x 1-x 2x 1+x 2a 2=y 1+y 2y 1-y 2b 2∴y 1-y 2x 1-x 2=b 2a 2·x 1+x 2y 1+y 2=k AB =1.*又∵x 1+x 22=-12,y 1+y 22=-15,∴*式可化为b 2a 2×(-12-15)=1,∴b 2a 2=54④由①和④可知b 2=5,a 2=4, ∴双曲线的方程为x 24-y 25=1,应选择B.答案:B3.双曲线x 24+y 2k =1的离心率e ∈(1,2),那么k 的取值范围是( )A .(-∞,0)B .(-12,0)C .(-3,0)D .(-60,-12)解析:∵a 2=4,b 2=-k ,∴c 2=4-k .∵e ∈(1,2),∴c 2a2=4-k4∈(1,4),k ∈(-12,0).答案:B4.假设点P 到直线x =-1的距离比它到点(2,0)的距离小1,那么点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线 D .抛物线解析:设M (2,0),由题设可知,把直线x =-1向左平移一个单位即为直线x =-2,那么点P 到直线x =-2的距离等于|PM |,因此动点P 的轨迹为抛物线,应选D.答案:D5.已知两定点F 1(-1,0),F 2(1,0),且12|F 1F 2|是|PF 1|与|PF 2|的等差中项,那么动点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .线段解析:依题意知|PF 1|+|PF 2|=|F 1F 2|=2,作图可知点P 的轨迹为线段,应选D. 答案:D6.(2020·课标全国高考)设直线l 过双曲线C 的一个核心,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,那么C 的离心率为( )A.2 B.3C .2D .3解析:不妨设双曲线C 为x 2a 2-y 2b 2=1(a >0,b >0),并设l 过F 2(c,0)且垂直于x 轴,那么易求得|AB |=2b 2a,∴2b 2a=2×2a ,b 2=2a 2,∴离心率e =ca=1+b 2a 2=3,应选B.答案:B7.过抛物线y 2=4x 的核心作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,那么如此的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在解析:由概念|AB |=5+2=7,∵|AB |min =4,∴如此的直线有且仅有两条. 答案:B8.已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,那么l 的方程是( )A .x -2y =0B .x +2y -4=0C .2x +3y +4=0D .x +2y -8=0解析:设l 与椭圆的两交点别离为(x 1,y 1)、(x 2,y 2),那么得y 21-y 22x 21-x 22=-936,因此y 1-y 2x 1-x 2=-12.故方程为y -2=-12(x -4),即x +2y -8=0.答案:D9.过椭圆x 24+y 22=1的右核心作x 轴的垂线交椭圆于A 、B 两点,已知双曲线的核心在x 轴上,对称中心在座标原点且两条渐近线别离过A 、B 两点,那么双曲线的离心率e 为( )A.12B.22C.62D.32解析:A (2,1),B (2,-1),设双曲线为x 2a 2-y 2b 2=1(a >0,b >0),渐近线方程为y =±bax ,因为A 、B在渐近线上,因此1=b a·2,b a=22,e =c a=a 2+b 2a 2=1+b a2=62. 答案:C10.双曲线x 2m-y 2n=1(mn ≠0)有一个核心与抛物线y 2=4x 的核心重合,那么m +n 的值为( )A .3B .2C .1D .以上都不对解析:抛物线y 2=4x 的核心为F (1,0),故双曲线x 2m-y 2n=1中m >0,n >0,且m +n =c 2=1.答案:C11.设F 1,F 2是双曲线x 2a2-y 2b2=1(a >0,b <0)的左、右核心,点P 在双曲线上,假设PF 1→·PF 2→=0,且|PF 1→|·|PF 2→|=2ac (c =a 2+b 2),那么双曲线的离心率为( )A.1+52B.1+32C .2 D.1+22解析:由PF 1→·PF 2→=0可知△PF 1F 2为直角三角形,那么由勾股定理,得|PF 1→|2+|PF 2→|2=4c 2,①由双曲线的概念,得(|PF 1→|-|PF 2→|)2=4a 2,② 又|PF 1→|·|PF 2→|=2ac ,③由①②③得c 2-ac -a 2=0,即e 2-e -1=0, 解得e =1+52或e =1-52(舍去).答案:A12.已知F 1,F 2别离为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右核心,P 为双曲线右支上的任意一点,假设|PF 1|2|PF 2|的最小值为8a ,那么双曲线的离心率e 的取值范围是( )A .(1,+∞) B.(1,2] C .(1,3] D .(1,3] 解析:|PF 1|2|PF 2|=2a +|PF 2|2|PF 2|=4a 2|PF 2|+|PF 2|+4a ≥4a +4a =8a ,当且仅当4a 2|PF 2|=|PF 2|,即|PF 2|=2a 时取等号.这时|PF 1|=4a .由|PF 1|+|PF 2|≥|F 1F 2|,得6a ≥2c ,即e =ca≤3,得e ∈(1,3],应选D.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(每题5分,共20分)13.假设双曲线的渐近线方程为y =±13x ,它的一个核心是(10,0),那么双曲线的标准方程是________.解析:由双曲线的渐近线方程为y =±13x ,知b a =13,它的一个核心是(10,0),知a 2+b 2=10,因此a =3,b =1,故双曲线的方程是x 29-y 2=1.答案:x 29-y 2=114.椭圆x 29+y 22=1的核心为F 1,F 2,点P 在椭圆上,假设|PF 1|=4,那么|PF 2|=__________,∠F 1PF 2的大小为________.解析:由椭圆的概念知|PF 1|+|PF 2|=2a =2×3=6,因为|PF 1|=4,因此|PF 2|=2. 在△PF 1F 2中,cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=-12.∴∠F 1PF 2=120°. 答案:2 120°15.已知F 1、F 2是椭圆x 2a2+y 2b 2=1的左、右核心,点P 是椭圆上任意一点,从F 1引∠F 1PF 2的外角平分线的垂线,交F 2P 的延长线于M ,那么点M 的轨迹方程是________.解析:由题意知|MP |=|F 1P |, ∴|PF 1|+|PF 2|=|MF 2|=2a . ∴点M 到点F 2的距离为定值2a .∴点M 的轨迹是以点F 2为圆心,以2a 为半径的圆,其方程为(x -a 2-b 2)2+y 2=4a 2.答案:(x -a 2-b 2)2+y 2=4a 216.(2020·浙江高考)设F 1,F 2别离为椭圆x 23+y 2=1的左,右核心,点A ,B 在椭圆上,假设F 1A →=5F 2B →,那么点A 的坐标是________.解析:设A (x 1,y 1),B (x 2,y 2),由F 1(-2,0),F 2(2,0)且F 1A →=5F 2B →得x 2=15(x 1+62),y 2=15y 1.又A 、B 两点在椭圆上,故有⎩⎪⎨⎪⎧x 213+y 21=1,x 1+622-x 2175+y 2125=1,消去y 1得x 1+622-x 213=24,有x 1=0,从而y 1=±1,故点A 的坐标为(0,1)和(0,-1).答案:(0,±1)三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)求与椭圆x 29+y 24=1有公共核心,而且离心率为52的双曲线方程.解:由椭圆方程x 29+y 24=1,知长半轴a 1=3,短半轴b 1=2,焦距的一半c 1=a 21-b 21=5,∴核心是F 1(-5,0),F 2(5,0),因此双曲线的核心也是F 1(-5,0),F 2(5,0),设双曲线方程为x 2a2-y 2b 2=1(a >0,b >0),由题设条件及双曲线的性质,得⎩⎪⎨⎪⎧c =5,c 2=a 2+b 2,c a =52,解得⎩⎪⎨⎪⎧a =2,b =1.故所求双曲线的方程为x 24-y 2=1.18.(10分)(2020·天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,连接椭圆的四个极点取得的菱形的面积为4.(1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点A ,B .已知点A 的坐标为(-a,0),点Q (0,y 0)在线段AB 的垂直平分线上,且QA →·QB →=4,求y 0的值.解:(1)由e =ca =32,得3a 2=4c 2.再由c 2=a 2-b 2,得a =2b . 由题意可知12×2a ×2b =4,即ab =2.解方程组⎩⎪⎨⎪⎧a =2b ,ab =2,得a =2,b =1.因此椭圆的方程为x 24+y 2=1.(2)由(1)可知A (-2,0).设B 点的坐标为(x 1,y 1),直线l 的斜率为k ,那么直线l 的方程为y =k (x +2).于是A ,B 两点的坐标知足方程组⎩⎪⎨⎪⎧y =k x +2,x24+y 2=1.由方程组消去y 并整理,得(1+4k 2)x 2+16k 2x +(16k 2-4)=0. 由-2x 1=16k 2-41+4k 2,得x 1=2-8k 21+4k 2.从而y 1=4k1+4k 2. 设线段AB 的中点为M ,则M 的坐标为(-8k 21+4k 2,2k1+4k 2).以下分两种情形:①当k =0时,点B 的坐标为(2,0),线段AB 的垂直平分线为y 轴,于是QA →=(-2,-y 0),QB →=(2,-y 0). 由QA →·QB →=4,得y 0=±22.②当k ≠0时,线段AB 的垂直平分线方程为 y -2k1+4k 2=-1k (x +8k 21+4k 2).令x =0,解得y 0=-6k1+4k 2.由QA →=(-2,-y 0),QB →=(x 1,y 1-y 0).QA →·QB →=-2x 1-y 0(y 1-y 0)=-22-8k 21+4k 2+6k1+4k 2(4k1+4k 2+6k1+4k 2) =416k 4+15k 2-11+4k 22=4, 整理得7k 2=2,故k =±147.因此y 0=±2145.综上,y 0=±22或y 0=±2145.19.(12分)已知过抛物线y 2=2px (p >0)的核心F 的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点.求证: (1)x 1x 2为定值; (2)1|FA |+1|FB |为定值.证明:(1)抛物线y 2=2px的核心为F ⎝ ⎛⎭⎪⎫p 2,0,设直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2(k ≠0).由⎩⎪⎨⎪⎧y =k ⎝ ⎛⎭⎪⎫x -p 2,y 2=2px ,消去y ,得k 2x 2-p (k 2+2)x +k 2p 24=0.由根与系数的关系,得x 1x 2=p 24(定值).当AB ⊥x 轴时,x 1=x 2=p 2,x 1x 2=p 24,也成立.(2)由抛物线的概念,知|FA |=x 1+p2,|FB |=x 2+p2.1|FA |+1|FB |=1x 1+p2+1x 2+p2=x 1+x 2+p p2x 1+x 2+x 1x 2+p 24=x 1+x 2+pp2x 1+x 2+p 22=x 1+x 2+pp2x 1+x 2+p=2p(定值).当AB ⊥x 轴时,|FA |=|FB |=p ,上式仍成立. 20.(12分)已知A (2,0)、B (-2,0)两点,动点P 在y 轴上的射影为Q ,PA →·PB →=2PQ →2.(1)求动点P 的轨迹E 的方程;(2)设直线m 过点A ,斜率为k ,当0<k <1时,曲线E 的上支上有且仅有一点C 到直线m 的距离为2,试求k 的值及现在点C 的坐标.解:(1)设动点P 的坐标为(x ,y ),那么点Q (0,y ),PQ →=(-x,0),PA →=(2-x ,-y ),PB →=(-2-x ,-y ),PA →·PB →=x 2-2+y 2.∵PA →·PB →=2PQ →2,∴x 2-2+y 2=2x 2, 即动点P 的轨迹方程为y 2-x 2=2. (2)设直线m :y =k (x -2)(0<k <1),依题意,点C 在与直线m 平行且与m 之间的距离为2的直线上,设此直线为m 1:y =kx +b .由|2k +b |k 2+1=2,即b 2+22kb =2.①把y =kx +b 代入y 2-x 2=2,整理,得(k 2-1)x 2+2kbx +(b 2-2)=0, 则Δ=4k 2b 2-4(k 2-1)(b 2-2)=0, 即b 2+2k 2=2.② 由①②,得k =255,b =105. 现在,由方程组⎩⎪⎨⎪⎧y =255x +105,y 2-x 2=2,解得⎩⎪⎨⎪⎧x =22,y =10,即C (22,10).21.(14分)(2020·江西高考) 图2设椭圆C 1:x 2a 2+y 2b 2=1(a >b >0),抛物线C 2:x 2+by =b 2.(1)假设C 2通过C 1的两个核心,求C 1的离心率; (2)设A (0,b ),Q (33,54b ),又M ,N 为C 1与C 2不在y 轴上的两个交点,假设△AMN 的垂心为B (0,34b ),且△QMN 的重心在C 2上,求椭圆C 1和抛物线C 2的方程.解:(1)因为抛物线C 2通过椭圆C 1的两个核心F 1(-c,0),F 2(c,0),可得c 2=b 2.由a 2=b 2+c 2=2c 2,有c 2a 2=12, 因此椭圆C 1的离心率e =22. (2)由题设可知M ,N 关于y 轴对称,设M (-x 1,y 1),N (x 1,y 1),(x 1>0),那么由△AMN 的垂心为B ,有BM →·AN →=0,因此-x 21+(y 1-34b )(y 1-b )=0① 由于点N (x 1,y 1)在C 2上,故有x 21+by 1=b 2② 由①②得y 1=-b 4,或y 1=b (舍去), 因此x 1=52b ,故M (-52b ,-b 4),N (52b ,-b4), 因此△QMN 的重心为(3,b4), 由重心在C 2上得:3+b 24=b 2,因此b =2,M (-5,-12),N (5,-12), 又因为M ,N 在C 1上,因此±52a 2+-1224=1,得a 2=163.因此椭圆C 1的方程为:x 2163+y 24=1, 抛物线C 2的方程为:x 2+2y =4.22.(12分)(2020·江西高考)P (x 0,y 0)(x 0≠±a )是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)上一点,M ,N 别离是双曲线E 的左、右极点,直线PM ,PN 的斜率之积为15. (1)求双曲线的离心率;(2)过双曲线E 的右核心且斜率为1的直线交双曲线交于A ,B 两点,O 为坐标原点,C 为双曲线上一点,知足OC →=λOA →+OB →,求λ的值.解:(1)点P (x 0,y 0)(x 0≠±a )在双曲线x 2a 2-y 2b 2=1上,有x 20a 2-y 20b 2=1.由题意又有y 0x 0-a ·y 0x 0+a =15,可得a 2=5b 2,c 2=a 2+b 2=6b 2,那么e =c a =305. (2)联立⎩⎪⎨⎪⎧ x 2-5y 2=5b 2y =x -c 得4x 2-10cx +35b 2=0,设A (x 1,y 1),B (x 2,y 2),那么⎩⎪⎨⎪⎧ x 1+x 2=5c 2,x 1x 2=35b 24.①设OC →=(x 3,y 3),OC →=λOA →+OB →,即⎩⎪⎨⎪⎧x 3=λx 1+x 2,y 3=λy 1+y 2. 又C 为双曲线上一点,即x 23-5y 23=5b 2, 有(λx 1+x 2)2-5(λy 1+y 2)2=5b 2,化简得λ2(x 21-5y 21)+(x 22-5y 22)+2λ·(x 1x 2-5y 1y 2)=5b 2.②又A (x 1,y 1),B (x 2,y 2)在双曲线上,因此x 21-5y 21=5b 2,x 22-5y 22=5b 2.由①式又有x 1x 2-5y 1y 2=x 1x 2-5(x 1-c )·(x 2-c )=-4x 1x 2+5c (x 1+x 2)-5c 2=10b 2,得:λ2+4λ=0,解出λ=0或λ=-4.。
人教版高中数学选修2-1 模块综合检测卷(附答案解析)
a2 a 6 ∴ a 6 0
a 2 a 3 0 即 a 6
解得 a 3 或 6 a 2 ,故选 D.
2 y2 5. 如图, 椭圆 x 1 上的点 M 到焦点 F1 的距离为 2, N 为 MF1 的中点,则 ON ( O 为坐标原点)的值为 25 9 y A. 8 B.2 M C .4 D. 3 2 N 【答案】 C. x F1 O F2 【解析】∵ O 为 F1 F2 的中点, N 为 MF1 的中点,
PA n 【解析】 PA 1, 2, 4 , n 2, 2,1 ,∴ 点 P 2,1, 4 到平面 的距离为 d 10 . 3 n
15. 设抛物线 y 2 mx m 0 的准线与直线 x 1 的距离为 3,则抛物线的方程为 【答案】 y 8 x 或 y 16 x .
∴ ON / / MF2 且 ON 1 MF2 . ∵ MF1 MF2 2a 10 2 ∴ MF2 10 MF1 10 2 8 ,∴ ON 4 .
2 y2 6.已知椭圆的标准方程为 x 2 2 1 a b 0 的左焦点为 F ,右顶点为 A , 点 B 在椭圆上,且 BF x a b 轴,直线 AB 交 y 轴于点 P .若 AP 2PB ,则椭圆的离心率为
二、填空题.(每小题 5 分,共 4 小题) 13. 命题“ n N * , f n N * 且 f n n ”的否定形式为 【答案】 n0 N , f n0 N 或 f n0 n0 .
* *
4
3 ,∴ b 2 , a 2 4
最新-【红对勾】人教A版高中数学选修2-1单元综合测试一1 精品
【红对勾】人教A版高中数学选修2-1单元综合测试一篇一:【红对勾】人教版高中数学选修2-1单元综合测试二单元综合测试二时间:120分钟分值:150分第Ⅰ卷(选择题,共60分)1.椭圆2+42=1的离心率为()33242223133解析:∵=1,==-=,∴==,故选222答案:2.(2019·新课标全国卷)已知双曲线的中心为原点,(3,0)是的焦点,过的直线与相交于,两点,且的中点为(-12,-15),则的方程为()2222=1=136452222=1=16354解析:∵(3,0),的中点(-12,-15),-15-0∴=1-12-322又∵(3,0),可设双曲线的方程为=1,易知2+2=9①再设(1,1),(2,2),则有22-1②22-1③22221-21-2由②-③可得=?1-2??1+2??1+2??1-2?即=1-221+2∴==11-21+21+21+2又∵12=-15,22∴2-12式可化为(=1,-1525∴=④4由①和④可知2=5,2=4,22∴双曲线的方程为-=1,故选择45答案:223.双曲线1的离心率∈(1,2),则的取值范围是()4.(-∞,0).(-12,0).(-3,0).(-60,-12)24-解析:∵=4,=-,∴=4-∵∈(1,2),∴∈4222(1,4),∈(-12,0).答案:4.若点到直线=-1的距离比它到点(2,0)的距离小1,则点的轨迹为().圆.椭圆.双曲线.抛物线解析:设(2,0),由题设可知,把直线=-1向左平移一个单位即为直线=-2,则点到直线=-2的距离等于||,所以动点的轨迹为抛物线,故选答案:15.已知两定点1(-1,0),2(1,0),且|12|是|1|与|2|的等2差中项,则动点的轨迹是().椭圆.双曲线.抛物线.线段解析:依题意知|1|+|2|=|12|=2,作图可知点的轨迹为线段,故选答案:6.(2019·课标全国高考)设直线过双曲线的一个焦点,且与的一条对称轴垂直,与交于,两点,||为的实轴长的2倍,则的离心率为()23.2.322解析:不妨设双曲线为-=1(>0,>0),并设过2(,0)2222且垂直于轴,则易求得||=,∴=2×2,2=22,∴离心率=答案:1+=3,故选7.过抛物线2=4的焦点作一条直线与抛物线相交于、两点,它们的横坐标之和等于5,则这样的直线().有且仅有一条.有且仅有两条.有无穷多条.不存在解析:由定义||=5+2=7,∵||=4,∴这样的直线有且仅有两条.答案:228.已知(4,2)是直线被椭圆1所截得的线段的中点,则369的方程是().-2=0.+2-4=0.2+3+4=0.+2-8=0221-2解析:设与椭圆的两交点分别为(1,1)、(2,2),则得21-221-291,所以=-3621-21故方程为-2=-(-4),即+2-8=02答案:229.过椭圆=1的右焦点作轴的垂线交椭圆于、两点,42已知双曲线的焦点在轴上,对称中心在坐标原点且两条渐近线分别过、两点,则双曲线的离心率为()1222632222解析:2,1),(2,-1),设双曲线为=1(>0,>0),2渐近线方程为=,因为、在渐近线上,所以1=2=2,=+=621+?=2答案:2210.双曲线=1(≠0)有一个焦点与抛物线2=4的焦点重合,则+的值为().3.2.1.以上都不对22解析:抛物线=4的焦点为(1,0),故双曲线-=1中>0,2>0,且+=2=1答案:2211.设1,2是双曲线-1(>0,<0)的左、右焦点,点→·→=0,且|→|·→|=2(=+),则双在双曲线上,若|1212曲线的离心率为()1+51+3221+2.22→·→解析:由则由勾股定理,12=0可知△12为直角三角形,→|2+|→|2=42,①得|12→|-|→|)2=42,②由双曲线的定义,得(|12→|·→又|1|2|=2,③由①②③得2--2=0,即2--1=0,篇二:【红对勾】人教版高中数学选修2-1单元综合测试三单元综合测试三时间:120分钟分值:150分第Ⅰ卷(选择题,共60分)→=,→=,→=,则→1.直三棱柱-111,若11=().+-.-+.-++.-+-→→→→解析:结合图形,得1=1++=--+=-+-,故选答案:2.已知=(-5,6,1),=(6,5,0),则与().垂直.不垂直也不平行.平行且同向.平行且反向答案:3.已知=(2,-1,3),=(-4,2,),=(1,-,2),若(+)⊥,则等于().4.-41.-62解析:+=(-2,1,3+),由(+)⊥,∴(+)·=0∴-2-+2(3+)=0,得=-4答案:4.若=(1,λ,2),=(2,-1,2),且,的夹角的余弦值为8λ等于()9.2.-222.-2或.2或-555582解析:·=2-λ+4=6-λ=5+λ×3×解得λ=-2或955答案:5.已知空间四边形每条边和对角线长都等于,点、、分别是、、的中点,则2是下列哪个选项的计算结果()→·→.2→·→.2→·→.2→·→.2→·→=-2,错;2→·→=-2,错;2→·→=解析:212-,错;只有对.2答案:→|取最小值时,6.若(,5-,2-1),(1,+2,2-),当|的值等于()8.19.-7819714→=(1-,2-3,-3+3),则|→|=解析:?1-?+?2-3?+?-3+3?=14-32+19=858→|取最小值,故选14?-2+,故当=|777答案:7.已知,是边长为1的正方形,⊥平面,则异面直线与所成的角为().30°.45°.60°.90°解析:如图1,由于∥且∠=45°,所以异面直线与所成的角为45°,故选答案:图1图28.如图2所示,正方体-′′′′中,是→→〉的值为()的中点,则〈′,1210215211315解析:以,,′所在的直线分别为,,轴建立直角坐标系-,设正方体棱长为1,则(0,0,0),′(1,1,1),(0,1,0),?1??1?→→→→〉???120,则′=(1,1,1),=1,-2,0?,〈′,????15→→〉=210〈′,1515答案:图39.如图3,===1,?面,⊥面,⊥,与面成30°角,则、间的距离为().1.223→|2=|→+→+→|2=|→|2+|→|2+|→|2+2→·→+解析:|→·→+2→·→=1+1+1+0+0+2×1×1×120°→|2=2∴|2答案:10.在以下命题中,不正确的个数为()①||-||=|+|是、共线的充要条件;②若∥,则存在唯一的实数λ,使=λ;→=2→-③对空间任意一点和不共线的三点、、,若→-→,则、、、四点共面;2④若{,,}为空间的一个基底,则{+,+,+}构成空间的另一个基底;⑤|(·)·|=||·||·||.2.3.4.5解析:①错,应为充分不必要条件.②错,应强调≠0③错,∵2-2-1≠1⑤错,由数量积的运算性质判别.答案:11.在三棱锥-中,△为等边三角形,⊥平面,且=,则二面角--的平面角的正切值为()636662解析:设==2,建立空间直角坐标系,平面的一个法向量是=(1,0,0),平面的一个法向量是=(3,1,1).33333·7则〈,==∴正切值〈,||||||||2171×3〉=6答案:图412.(2019·辽宁高考)如图4,四棱锥-的底面为正方形,⊥底面,则下列结论中不正确的是()....⊥篇三:新人教版高中数学选修2-2综合测试题【1】及答案高中新课标数学选修(2-2)综合测试题一、选择题1.在数学归纳法证明“1???的左边为()A.1答案:CB.1?C.1?D.1?221??1??(?1,??)”时,验证当?1时,等式1?1?∞)上是增函数,2.已知三次函数()?3?(4?1)2?(152?2?7)?2在?(?∞,则3的取值范围为()A.?2或?4B.?4???2C.2??4D.以上皆不正确答案:C3.设()?(?)?(?),若?()?,则,,,的值分别为()A.1,1,0,0答案:DB.1,0,1,0C.0,1,0,1D.1,0,0,1,,且在点(2,?1)处的切线平行于直线??3,4.已知抛物线?2??通过点(11)则抛物线方程为()A.?32?11?9C.?32?11?9答案:A5.数列??满足?11?2,0≤≤,?6?2??若1?,则2019的值为()17?2?1≤?1,??2B.?32?11?9D.??32?11?9A.67B.57C.37D.17答案:C6.已知,是不相等的正数,?,?,则,的关系是()A.?答案:BB.?C.?D.不确定?2(?)不可能在()1?2A.第一象限B.第二象限C.第三象限答案:A,?的运算分别对应下图中的8.定义?,?,?7.复数?D.第四象限(1),(2),(3),(4),那么,图中(A),(B)可能是下列()的运算的结果()A.?,?B.?,?C.?,?D.?,?答案:B9.用反证法证明命题“,?,如果可被5整除,那么,至少有1个能被5整除.”则假设的内容是()A.,都能被5整除B.,都不能被5整除C.不能被5整除D.,有1个不能被5整除答案:B10.下列说法正确的是()A.函数?有极大值,但无极小值B.函数?有极小值,但无极大值C.函数?既有极大值又有极小值D.函数?无极值答案:B11.对于两个复数????11?,???,有下列四个结论:①???1;②?1;③?1;?22?④?3??3?1.其中正确的个数为()A.1B.2C.3D.4答案:B12.设()在[,]上连续,则()在[,]上的平均值是()A.()?()2B.?()C.1()?2D.1()??答案:D二、填空题13.若复数?2(2?3?3)?2(?3)为实数,则的值为答案:414.一同学在电脑中打出如下图形(○表示空心圆,●表示实心圆)○●○○●○○○●○○○○●若将此若干个圆依此规律继续下去,得到一系列的圆,那么前2019年圆中有实心圆的个数为.答案:61,2]上的最大值为3,最小值为?29,则,的15.函数()?3?62?(?0)在区间[?1值分别为.答案:2,316.由2?4与直线?2?4所围成图形的面积为答案:9三、解答题17.设??且???1,求?,2,3,4时的值,归纳猜测的值.(先观察?1?的值.)解:当?1时,???1;当?2时,有2?2?1;当?3时,有3?3?(?)(2?2?),而???1,∴1?2?1,?0.∴3?3??1.当?4时,有4?4?(2?2)2?222?1.由以上可以猜测,当??时,可能有??(?1)成立.18.设关于的方程2?(??)?(2?)?0,(1)若方程有实数根,求锐角?和实数根;π(2)证明:对任意??π?(?),方程无纯虚数根.2解:(1)设实数根为,则2?(??)?(2?)?0,即(2???2)?(?1)?0.,?2???2?0,???1由于,??,那么?????1.?1?1??又0???π,2,???1?得?π??.??4(2)若有纯虚数根?(??),使(?)2?(??)(?)?(2?)?0,即(??2???2)?(???1)?0,???2???2?0,由?,??,那么????1?0,?由于??2???2?0无实数解.π故对任意??π?(?),方程无纯虚数根.20)是函数()?3?与()?2?的图象的一个公共点,两函数的19.设?0,点(,图象在点处有相同的切线.(1)用表示,,;,3)上单调递减,求的取值范围.(2)若函数?()?()在(?10),所以()?0,即3??0.解:(1)因为函数(),()的图象都过点(,因为?0,所以??2.()?0,即2??0,所以?.0)处有相同的切线,又因为(),()在点(,所以?()??(),而?()?32?,?()?2,所以32??2.将??2代入上式得?.因此???3.故??2,?,??3.(2)?()?()?3?2?2?3,??32?2?2?(3?)(?).当??(3?)(?)?0时,函数?()?()单调递减.由??0,若?0,则???;3若?0,则???.3????,3)???,?或(?1,3)??,??.,3)上单调递减,则(?1由题意,函数?()?()在(?13??3??所以≤?9或≥3.,3)上不是单调递减的.又当?9??3时,函数?()?()在(?1?9?所以的取值范围为??∞,?∞?.?3,20.下列命题是真命题,还是假命题,用分析法证明你的结论.命题:若??,且???0?解:此命题是真命题.∵???0,??,∴?0,?0.?,即证2??32,也就是证(?)2??32,。
【红对勾】高中数学 模块综合测试 新人教A版选修2-1(1)
模块综合测试时刻:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.已知命题p :“x ∈R 时,都有x 2-x +14<0”;命题q :“存在x ∈R ,使sin x +cos x =2成立”.那么以下判定正确的选项是( )A .p ∨q 为假命题B .p ∧q 为真命题C .綈p ∧q 为真命题D .綈p ∨綈q 是假命题 解析:易知p 假,q 真,从而可判定得C 正确. 答案:C2.已知a ,b ∈R ,那么“ln a >ln b ”是“(13)a <(13)b ”的( ) A .充分没必要要条件 B .必要不充分条件 C .充要条件 D .既不充分也没必要要条件解析:∵ln a >ln b ⇔a >b >0,(13)a <(13)b ⇔a >b .而a >b >0是a >b 的充分而没必要要条件. ∴“ln a >ln b ”是“(13)a <(13)b ”的充分而没必要要条件. 答案:A3.已知抛物线C :y 2=x 与直线l :y =kx +1,“k ≠0”是“直线l 与抛物线C 有两个不同交点”的( ) A .充分没必要要条件 B .必要不充分条件 C .充要条件 D .既不充分又没必要要条件 答案:B4.以双曲线x 24-y 212=-1的核心为极点,极点为核心的椭圆方程为( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 解析:由x 24-y 212=-1,得y 212-x 24=1.∴双曲线的核心为(0,4)、(0,-4),极点坐标为(0,23)、(0,-23).∴椭圆方程为x 24+y 216=1. 答案:D5.以双曲线x 24-y 25=1的中心为极点,且以该双曲线的右核心为核心的抛物线方程是( )A .y 2=12xB .y 2=-12xC .y 2=6xD .y 2=-6x解析:由x 24-y 25=1,得a 2=4,b 2=5,∴c 2=a 2+b 2=9.∴右核心的坐标为(3,0),故抛物线的核心坐标为(3,0),极点坐标为(0,0). 故p2=3.∴抛物线方程为y 2=12x . 答案:A6.已知椭圆x 23m 2+y 25n 2=1和双曲线x 22m 2-y 23n 2=1有公共的核心,那么双曲线的渐近线方程是( )A .x =±152y B .y =±152xC .x =±34y D .y =±34x解析:由已知椭圆与双曲线有公共核心得3m 2-5n 2=2m 2+3n 2,∴m 2=8n 2.而由双曲线x 22m 2-y 23n 2=1,得渐近线为y =±3n 22m 2x =±34x .答案:D7.关于空间任意一点O 和不共线的三点A 、B 、C ,有如下关系:6OP →=OA →+2OB →+3OC →,那么( )A .四点O 、A 、B 、C 必共面 B .四点P 、A 、B 、C 必共面 C .四点O 、P 、B 、C 必共面D .五点O 、P 、A 、B 、C 必共面解析:由已知得OP →=16OA →+13OB →+12OC →,而16+13+12=1,∴四点P 、A 、B 、C 共面.答案:B 图18.如图1,在正方体ABCD -A 1B 1C 1D 1中,M 、N 别离为A 1B 1、CC 1的中点,P 为AD 上一动点,记α为异面直线PM 与D 1N 所成的角,那么α的集合是( )A .{π2}B .{α|π6≤α≤π2}C .{α|π4≤α≤π2} D .{α|π3≤α≤π2} 解析:取C 1D 1的中点E ,PM 必在平面ADEM 上,易证D 1N ⊥平面ADEM .此题也可成立空间直角坐标系用向量求解.答案:A 图29.如图2,将边长为1的正方形ABCD 沿对角线BD 折成直二面角,假设点P 知足BP →=12BA →-12BC →+BD →,那么|BP →|2的值为( )A.32 B .2 C.10-24D.94解析:由题可知|BA →|=1,|BC →|=1,|BD →|=2.〈BA →,BD →〉=45°,〈BD →,BC →〉=45°,〈BA →,BC →〉=60°.∴|BP →|2=(12BA →-12BC →+BD →)2=14BA 2→+14BC 2→+BD 2→-12BA →·BC →+BA →·BD →-BC →·BD → =14+14+2-12×1×1×12+1×2×22-1×2×22=94.答案:D10.在正方体ABCD -A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值为( ) A.24 B.23 C.33 D.32解析:成立如图3所示的空间直角坐标系.设正方体的棱长为1, 则D (0,0,0),A 1(1,0,1),B (1,1,0),C 1(0,1,1). ∴DA 1→=(1,0,1),DB →=(1,1,0),BC 1→=(-1,0,1).设平面A 1BD 的法向量为n =(x ,y ,z ),那么n ·DA 1→=0,n ·DB →=0.∴⎩⎪⎨⎪⎧x +z =0,x +y =0.令x =1,那么n =(1,-1,-1), 图3∴cos 〈n ,BC 1→〉=n ·BC 1→|n ||BC 1→|=-23·2=-63.∴直线BC 1与平面A 1BD 所成角的正弦值为63.∴直线BC 1与平面A 1BD 所成角的余弦值为33.答案:C 11.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个核心为F 1、F 2,假设P 为其上一点,且|PF 1|=2|PF 2|,那么双曲线离心率的取值范围为( )A .(1,3)B .(1,3]C .(3,+∞) D.[3,+∞) 图4解析:由题意知在双曲线上存在一点P ,使得|PF 1|=2|PF 2|,如图4. 又∵|PF 1|-|PF 2|=2a ,∴|PF 2|=2a ,即在双曲线右支上恒存在点P 使得|PF 2|=2a ,即|AF 2|≤2a . ∴|OF 2|-|OA |=c -a ≤2a .∴c ≤3a . 又∵c >a ,∴a <c ≤3a . ∴1<ca≤3,即1<e ≤3.答案:B12.(2020·全国高考)已知平面α截一球面得圆M ,过圆心M 且与α成60°二面角的平面β截该球面得圆N .假设该球面的半径为4,圆M 的面积为4π,那么圆N 的面积为( )A .7πB .9πC .11πD .13π 图5解析:由圆M 的面积知圆M 的半径为2,|OM |=42-22=23.|ON |=|OM |·sin30°=3.从而圆N 的半径r =42-3=13,因此圆N 的面积S =πr 2=13π.应选D.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(每题5分,共20分) 图613.在四面体O —ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,那么OE →=________.(用a ,b ,c 表示)解析:OE →=12(OA →+OD →)=12OA →+12(12OB →+12OC →)=12OA →+14OB →+14OC →=12a +14b +14c .答案:12a +14b +14c14.假设命题p :一元一次不等式ax +b >0的解集为{x |x >-b a},命题q :关于x 的不等式(x -a )(x -b )<0的解集为{x |a <x <b },那么“p ∧q ”“p ∨q ”及“綈p ”形式的复合命题中的真命题是________.解析:p 为假命题,因为a 符号不定,q 为假命题,因为a 、b 大小不确信.因此p ∧q 假,p ∨q 假,綈p 真.答案:綈p15.已知点P 是抛物线y 2=4x 上一点,设P 到此抛物线准线的距离为d 1,到直线x +2y -12=0的距离为d 2,那么d 1+d 2的最小值是________.图7解析:如图7,依照概念,d 1即为P 到核心(1,0)的距离,∴d 1+d 2的最小值也确实是核心到直线的距离. ∴(d 1+d 2)min =|1+2×0-12|5=1155.答案:115516.有以下命题:①双曲线x 225-y 29=1与椭圆x 235+y 2=1有相同的核心;②“-12<x <0”是“2x 2-5x -3<0”的必要不充分条件;③若a 与b 共线,那么a ,b 所在直线平行;④若a ,b ,c 三向量两两共面,那么a ,b ,c 三向量必然也共面;⑤∀x ∈R ,x 2-3x +3≠0.其中正确的命题有________.(把你以为正确的命题的序号填在横线上)解析:①中,双曲线c 21=25+9=34,椭圆c 22=35-1=34,故①正确;②中,∵2x 2-5x -3<0,∴-12<x <3.又-12<x <0⇒-12<x <3,小范围推出大范围,而大范围推不出小范围,∴是充分而没必要要条件,故②错;③中,a 和b 所在直线可能重合,故③错;④中,a ,b ,c 能够不共面,例如平行六面体以一个极点为起点引出的三个向量,故④错; ⑤中,Δ=9-12<0,故对∀x ∈R ,x 2-3x +3≠0成立. 答案:①⑤三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知p :“直线x +y -m =0与圆(x -1)2+y 2=1相交”;q :“mx 2-x +m -4=0有一正根和一负根”.假设p ∨q 为真,綈p 为真,求m 的取值范围.解:对p :∵直线与圆相交, ∴d =|1-m |2<1.∴-2+1<m <2+1.对q :方程mx 2-x +m -4=0有一正根一负根, ∴令f (x )=mx 2-x +m -4.∴⎩⎪⎨⎪⎧ m >0,f 0<0或⎩⎪⎨⎪⎧m <0,f 0>0.解得0<m <4. 又∵綈p 为真,∴p 假.又∵p ∨q 为真,∴q 为真. 由数轴可得2+1≤m <4.故m 的取值范围是2+1≤m <4.18.(12分)已知椭圆D :x 250+y 225=1与圆M :x 2+(y -m )2=9(m ∈R),双曲线G 与椭圆D 有相同的核心,它的两条渐近线恰好与圆M 相切.当m =5时,求双曲线G 的方程.解:椭圆D :x 250+y 225=1的两核心为F 1(-5,0)、F 2(5,0),故双曲线的中心在原点,核心在x 轴上,且c =5.设双曲线G 的方程为x 2a 2-y 2b 2=1(a >0,b >0),那么G 的渐近线方程为y =±bax ,即bx ±ay =0,且a 2+b 2=25.当m =5时,圆心为(0,5),半径为r =3. ∴|5a |a 2+b 2=3⇒a =3,b =4.∴双曲线G 的方程为x 29-y 216=1. 19.(12分)已知ABCD -A ′B ′C ′D ′是平行六面体, (1)化简12AA ′→+BC →+23AB →,并在图中标出其结果;(2)设M 是底面ABCD 的中心,N 是侧面BCC ′B ′对角线BC ′上的34分点,设MN →=αAB →+βAD →+γAA ′→,试求α,β,γ的值.图8解:(1)如图8,取AA ′的中点E ,D ′F =2FC ′,EF →=12AA ′→+BC →+23AB →.(2)MN →=MB →+BN →=12DB →+34BC ′→=12(DA →+AB →)+34(BC →+CC ′→) =12AB →+14AD →+34AA ′→, ∴α=12,β=14,γ=34.20.(12分)已知f (x )=ax 2+bx +c 的图象过点(-1,0),是不是存在常数a 、b 、c ,使不等式x ≤f (x )≤1+x 22对一切实数x 均成立?解:假设存在常数a 、b 、c 使不等式x ≤f (x )≤1+x 22对一切实数x 均成立,∵f (x )的图象过点(-1,0), ∴a -b +c =0.①∵x ≤f (x )≤1+x 22对一切x ∈R 均成立,∴当x =1时,也成立,即1≤f (1)≤1, ∴f (1)=a +b +c =1,②由①②得b =12,故原不等式可化为⎩⎪⎨⎪⎧ax 2-12x +12-a ≥0,1-2a x 2-x +2a ≥0恒成立.当a =0或1-2a =0时,上述不等式组可不能恒成立,∴⎩⎪⎨⎪⎧Δ1≤0,Δ2≤0,a >0,1-2a >0,即⎩⎪⎨⎪⎧14-4a 12-a ≤0,1-8a 1-2a ≤0,a >0,1-2a >0.∴a =14.∴c =12-a =14.∴存在一组常数:a =14,b =12,c =14,使不等式x ≤f (x )≤1+x 22对一切实数x 均成立.图921.(12分)(2020·辽宁高考)如图9,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ; (2)求二面角Q -BP -C 的余弦值. 图10解:如图10,以D 为坐标原点,线段DA 的长为单位长,射线DA 为x 轴的正半轴成立空间直角坐标系D -xyz .(1)证明:依题意有Q (1,1,0),C (0,0,1),P (0,2,0),那么DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0). 因此PQ →·DQ →=0,PQ →·DC →=0. 即PQ ⊥DQ ,PQ ⊥DC . 故PQ ⊥平面DCQ . 又PQ ⊂平面PQDC , 因此平面PQC ⊥平面DCQ .(2)依题意有B (1,0,1),CB →=(1,0,0),BP →=(-1,2,-1). 设n =(x ,y ,z )是平面PBC 的法向量,那么⎩⎨⎧n ·CB →=0,n ·BP →=0,即⎩⎪⎨⎪⎧x =0,-x +2y -z =0.因此可取n =(0,-1,-2). 设m 是平面PBQ 的法向量,那么⎩⎨⎧m ·BP →=0,m ·PQ →=0.可取m =(1,1,1), 因此cos 〈m ,n 〉=-155. 故二面角Q -BP -C 的余弦值为-155. 22.(12分)已知椭圆C 的中心在座标原点,核心在x 轴上,椭圆C 上的点到核心距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)假设直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左右极点),且以AB 为直径的圆过椭圆C 的右极点.求证:直线l 过定点,并求出该定点的坐标.解:(1)由题意设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知得:a +c =3,a -c =1,∴a =2,c =1.∴b 2=a 2-c 2=3. ∴椭圆的标准方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0,Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,即3+4k 2-m 2>0,那么⎩⎪⎨⎪⎧ x 1+x 2=-8mk 3+4k 2,x 1·x 2=4m 2-33+4k 2.又y 1y 2=(kx 1+m )(kx 2+m ) =k 2x 1x 2+mk (x 1+x 2)+m 2=3m 2-4k 23+4k 2, ∵以AB 为直径的圆过椭圆的右极点D (2,0), ∴k AD ·k BD =-1,即y 1x 1-2·y 2x 2-2=-1.∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0. ∴3m 2-4k 23+4k 2+4m 2-33+4k 2+16mk3+4k 2+4=0. ∴7m 2+16mk +4k 2=0.解得m 1=-2k ,m 2=-2k 7,且均知足3+4k 2-m 2>0. 当m 1=-2k 时,l 的方程为y =k (x -2),直线过定点(2,0),与已知矛盾.当m 2=-27k 时,l 的方程为y =k (x -27), 直线过定点(27,0). ∴直线l 过定点,定点坐标为(27,0).。
人教A版高中数学选修2-1综合测试卷学生版.docx
高中数学学习材料唐玲出品高中数学选修2-1综合测试卷一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题“如果-1≤a≤1,那么关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集为 ”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A.0个B.1个C.2个D.4个2.(2014·蚌埠高二检测)设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A.m∥β且l1∥αB.m∥l1且n∥lC.m∥β且n∥βD.m∥β且n∥l23.(2014·吉林高二检测)“1<m<3”是“方程+=1表示椭圆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(2014·广州高二检测)已知抛物线y2=2px(p>0)与双曲线-=1(a>0,b>0)有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为( )A. B.+1 C.+1 D.5.(2014·昌平高二检测)已知命题p:∀x∈R,x≥2,那么下列结论正确的是 ( )A.命题p:∀x∈R,x≤2B.命题p:∃x0∈R,x0<2C.命题p:∀x∈R,x≤-2D.命题p:∃x0∈R,x0<-26.已知矩形ABCD中,AB=1,BC=,将矩形ABCD沿对角线AC折起,使平面ABC与平面ACD垂直,则B与D之间的距离为( )A.1B.C.D.7.(2014·东城高二检测)过抛物线y2=4x焦点的直线交抛物线于A,B两点,若=10,则AB 的中点到y轴的距离等于( )A.1B.2C.3D.48.(2014·牡丹江高二检测)在四边形ABCD中,“∃λ∈R,使得=λ,=λ”是“四边形ABCD为平行四边形”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.已知在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为( )A.60°B.90°C.45°D.以上都不正确10.设F1,F2是双曲线x2-4y2=4a(a>0)的两个焦点,点P在双曲线上,且满足:·=0,||·||=2,则a的值为( )A.2B.C.1D.二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.(2014·广州高二检测)抛物线焦点在y轴上,且被y=x+1截得的弦长为5,则抛物线的标准方程为.12.在△ABC中,若∠ACB=90°,∠BAC=60°,AB=8,PC⊥平面ABC,PC=4,M是AB上一点,则PM 的最小值为.13.(2014·青岛高二检测)在四棱锥P-ABCD中,ABCD为平行四边形,AC与BD交于O,G为BD上一点,BG=2GD,=a,=b,=c,试用基底{a,b,c}表示向量= .14.(2014·武汉高二检测)曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2的点的轨迹.给出下列四个结论:①曲线C过点(-1,1);②曲线C关于点(-1,1)对称;③若点P在曲线C上,点A,B分别在直线l1,l2上,则+不小于2k.④设P0为曲线C上任意一点,则点P0关于直线x=-1、点(-1,1)及直线y=1对称的点分别为P1,P2,P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是.15.(2014·长沙高二检测)点P是棱长为1的正方体ABCD-A1B1C1D1的底面A1B1C1D1上一点,则·的取值范围是 .三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)设p:关于x的不等式a x>1(a>0且a≠1)的解集为{x|x<0},q:函数y=l g(ax2-x+a)的定义域为R.如果p和q有且仅有一个正确,求a的取值范围.18.(12分)(2014·黄山高二检测)如图,正方体ABCD-A1B1C1D1中,M,N分别为AB,B1C的中点.(1)用向量法证明平面A1BD∥平面B1CD1. (2)用向量法证明MN⊥平面A1BD.19.(12分)已知抛物线C:y2=2px(p>0)过点A(1,-2).(1)求抛物线C的方程,并求其准线方程.(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l 的距离等于?若存在,求直线l的方程;若不存在,说明理由.20.(12分)(2014·秦皇岛高二检测)设F1,F2为椭圆+=1的两个焦点,P是椭圆上一点,已知P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|.(1)求|PF1|的长度. (2)求的值.21.(13分)如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.(1)求直线BE和平面ABB1A1所成角的正弦值.(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.22.(14分)(2013·天津高考)如图,四棱柱ABCD -A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE.(2)求二面角B1-CE-C1的正弦值.(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.。
高中数学人教A版选修2-1选修2—1综合测练卷一.docx
模块综合测评 选修2-1(时间:120分钟 满分:150分)一、选择题:(本大题共12小题,每小题5分,共60分.)1.已知命题p :若x 2+y 2=0(x ,y ∈R ),则x ,y 全为0;命题q :若a >b ,则1a <1b .给出下列四个复合命题:①p 且q ;②p 或q ;③﹁ p ;④﹁q .其中真命题的个数是( )A .1个B .2个C .3个D .4个 2.“α=π6+2k π(k ∈Z )”是“cos2α=12”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.若直线l 的方向向量为b ,平面α的法向量为n ,则可能使l ∥α的是( ) A .b =(1,0,0),n =(-2,0,0) B .b =(1,3,5),n =(1,0,1) C .b =(0,2,1),n =(-1,0,-1) D .b =(1,-1,3),n =(0,3,1)4.已知a =(cos α,1,sin α),b =(sin α,1,cos α),则向量a +b 与a -b 的夹角是( ) A .90° B .60° C .30° D .0°5.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6, 那么|AB |等于( )A .10B .8C .6D .46.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A.63 B.255C.155D.1057.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程是( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x8.三棱锥A -BCD 中,AB =AC =AD =2,∠BAD =90°,∠BAC =60°,则AB →·CD →等于( ) A .-2 B .2 C .-2 3 D .2 39.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( )A. 3 B .2 C. 5 D. 610.双曲线x 2a 2-y 2b 2=1与椭圆x 2m 2+y 2b 2=1(a >0,m >b >0)的离心率互为倒数,那么以a 、b 、m 为边长的三角形一定是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形11.已知抛物线28y x =的焦点为F ,直线(2)y k x =-与此抛物线相交于,P Q 两点,则11||||FP FQ +=( ) A. 12B. 1C. 2D. 412.椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P ∆为等腰三角形,则椭圆C 的离心率的取值范围是( ) A.12(,)33 B.1(,1)2 C. 2(,1)3 D.111(,)(,1)322二、填空题:(本大题共4小题,每小题5分,共20分.) 13.双曲线x 2m 2+12-y 24-m 2=1的焦距是__________.14.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件,命题q :函数y =x -3的定义域是[3,+∞),则“p ∨q ”“p ∧q ”“ ﹁p ”中是真命题的有__________.15.已知A (0,-4),B (3,2),抛物线x 2=y 上的点到直线AB 的最短距离为__________. 16.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 和N 分别是A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值为__________.三、解答题:本大题共4小题,满分70分.17.(10分)已知命题p :方程x 22m +y 29-m =1表示焦点在y 轴上的椭圆,命题q :双曲线y 25-x 2m =1的离心率e ∈⎝⎛⎭⎫62,2,若命题p 、q 中有且只有一个为真命题,求实数m 的取值范围.18.(12分)设圆C 与两圆(x +5)2+y 2=4,(x -5)2+y 2=4中的一个内切,与另一个外切. (1)求圆C 的圆心轨迹L 的方程; (2)已知点M ⎝⎛⎭⎫355,455,F (5,0),且P 为L 上一动点,求||MP |-|FP ||的最大值及此时点P的坐标.19.(12分)如图,点F 1(-c,0),F 2(c,0)分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1作x 轴的垂线交椭圆C 的上半部分于点P ,过点F 2作直线PF 2的垂线交直线x =a 2c于点Q .(1)如果点Q 的坐标是(4,4),求此时椭圆C 的标准方程; (2)证明:直线PQ 与椭圆C 只有一个交点.20.(12分)如图,在五面体ABCDEF 中,F A ⊥平面ABCD ,AD ∥BC ∥FE ,AB ⊥AD ,M 为EC的中点,AF =AB =BC =FE =12AD .(1)求异面直线BF 与DE 所成的角的大小; (2)证明平面AMD ⊥平面CDE ; (3)求二面角A -CD -E 的余弦值.20. (本小题满分12分)已知一条曲线C 在y 轴右侧,C 上每一点到点)0,1((F 的距离减去它到y 轴距离的差都是1. (1)求曲线C 的方程;(2)已知点P 是曲线C 上一个动点,点Q 是直线052=++y x 上一个动点,求||PQ 的最小值. (3)是否存在正数m ,对于过点)0,(m M 且与曲线C 有两个交点B A ,的任一直线,都有FA ·0<FB ?若存在,求出m 的取值范围;若不存在,请说明理由.22.(本小题满分12分)已知椭圆M :)0(12222>>=+b a by a x ,直线)0(≠=k kx y 与椭圆M 交于B A 、两点,直线x ky 1 -=与椭圆M 交于D C 、两点,P 点坐标为(,0)a ,直线PA 和PB 斜率乘积为21-.(1)求椭圆M 离心率;(2)若弦AC 的最小值为362,求椭圆M 的方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元综合测试一时间:120分钟分值:150分第Ⅰ卷(选择题,共60分)题号123456789101112 答案一、选择题(每小题5分,共60分)1.下列语句不是命题的有()①x2-3=0;②与一条直线相交的两直线平行吗?;③3+1=5;④5x-3>6.A.①③④B.①②③C.①②④D.②③④答案:C2.命题“若A⊆B,则A=B”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是()A.0 B.2C.3 D.4解析:可设A={1,2},B={1,2,3},满足A⊆B,但A≠B,故原命题为假命题,从而逆否命题为假命题.易知否命题、逆命题为真.答案:B3.给定空间中的直线l及平面α,条件“直线l与平面α内两条相交直线都垂直”是“直线l与平面α垂直”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件解析:直线l与平面α内两相交直线垂直⇔直线l与平面α垂直,故选C.答案:C4.已知p:若a∈A,则b∈B,那么命题綈p是()A.若a∈A,则b∉B B.若a∉A,则b∉BC.若b∉B,则a∉A D.若b∈B,则a∈A解析:命题“若p,则q”的否定形式是“若p,则綈q”.答案:A5.命题“p且q”与命题“p或q”都是假命题,则下列判断正确的是()A.命题“非p”与“非q”真假不同B.命题“非p”与“非q”至多有一个是假命题C.命题“非p”与“q”真假相同D.命题“非p且非q”是真命题解析:p且q是假命题⇒p和q中至少有一个为假,则非p和非q至少有一个是真命题.p或q是假命题⇒p和q都是假命题,则非p 和非q都是真命题.答案:D6.已知a,b为任意非零向量,有下列命题:①|a|=|b|;②(a)2=(b)2;③(a)2=a·b,其中可以作为a=b的必要非充分条件的命题是()A.①B.①②C.②③D.①②③解析:由向量的运算即可判断.答案:D7.已知A和B两个命题,如果A是B的充分不必要条件,那么“綈A”是“綈B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由于“A⇒B,A⇐/ B”等价于“綈A⇐綈B,綈A⇒/ 綈B”,故“綈A”是“綈B”的必要不充分条件.答案:B8.若向量a=(x,3)(x∈R),则“x=4”是“|a|=5”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:由“x=4”,得a=(4,3),故|a|=5;反之,由|a|=5,得x=±4.所以“x=4”是“|a|=5”的充分而不必要条件.答案:A9.下列全称命题中,正确的是()A.∀x,y∈{锐角},sin(x+y)>sin x+sin yB.∀x,y∈{锐角},sin(x+y)>cos x+cos yC.∀x,y∈{锐角},cos(x+y)<sin x+cos yD.∀x,y∈{锐角},cos(x-y)<cos x+sin y解析:由于cos(x-y)=cos x cos y+sin x sin y,而当x,y∈{锐角}时,0<cos y<1,0<sin x<1,所以cos(x-y)=cos x cos y+sin x sin y<cos x+sin y,故选项D正确.答案:D10.以下判断正确的是()A.命题“负数的平方是正数”不是全称命题B.命题“∀x∈Z,x3>x2”的否定是“∃x∈Z,x3<x2”C.“φ=π2”是“函数y=sin(x+φ)为偶函数”的充要条件D.“b=0”是“关于x的二次函数f(x)=ax2+bx+c是偶函数”的充要条件解析:A为全称命题;B中否定应为∃x0∈Z,x30≤x20;C中应为充分不必要条件.答案:D11.已知命题p:函数f(x)=log0.5(3-x)的定义域为(-∞,3);命题q:若k<0,则函数h(x)=kx在(0,+∞)上是减函数,对以上两个命题,下列结论中正确的是()A.命题“p且q”为真B.命题“p或綈q”为假C.命题“p或q”为假D.命题“綈p”且“綈q”为假解析:由题意知p真,q假.再进行判断.答案:D12.已知向量a=(x,y),b=(cosα,sinα),其中x,y,α∈R,若|a|=4|b|,则a·b<λ2成立的一个必要不充分条件是() A.λ>3或λ<-3 B.λ>1或λ<-1C.-3<λ<3 D.-1<λ<1解析:由已知|b|=1,∴|a|=4|b|=4.又∵a·b=x cosα+y sinα=x2+y2sin(α+φ)=4sin(α+φ)≤4,由于a·b<λ2成立,则λ2>4,解得λ>2或λ<-2,这是a·b<λ2成立的充要条件,因此a·b<λ2成立的一个必要不充分的条件是λ>1或λ<-1.故选B.答案:B第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.“对顶角相等”的否定为________,否命题为________.解析:“对顶角相等”的否定为“对顶角不相等”,否命题为“若两个角不是对顶角,则它们不相等”.答案:对顶角不相等若两个角不是对顶角,则它们不相等14.令p (x ):ax 2+2x +1>0,如果对∀x ∈R ,p (x )是真命题,则a 的取值范围是________.解析:由已知∀x ∈R ,ax 2+2x +1>0恒成立.显然a =0不合题意,所以⎩⎨⎧a >0Δ=4-4a <0⇒a >1. 答案:a >115.试写出一个能成为(a -2)2(a -1)>0的必要不充分条件________.解析:(a -2)2(a -1)>0的解集记为B ={a |a >1且a ≠2},所找的记为集合A ,则B A .答案:a >1(不惟一)16.给定下列结论:①已知命题p :∃x ∈R ,tan x =1;命题q :∀x ∈R ,x 2-x +1>0.则命题“p ∧綈q ”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是a b =-3;③若sin(α+β)=12,sin(α-β)=13,则tan α=5tan β; ④圆x 2+y 2+4x -2y +1=0与直线y =12x ,所得弦长为2. 其中正确命题的序号为________(把你认为正确的命题序号都填上).解析:对于①易知p 真,q 真,故命题p ∧綈q 假,①正确;对于②l 1与l 2垂直的充要条件应为a +3b =0;对于③利用两角和与差的正弦公式展示整理即得;对于④可求得弦长为455,④错. 答案:①③三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知命题p :∀非零向量a 、b 、c ,若a ·(b -c )=0,则b =c .写出其否定和否命题,并说明真假.解:綈p :∃非零向量a 、b 、c ,若a ·(b -c )=0,使b ≠c .綈p 为真命题.否命题:∀非零向量a 、b 、c ,若a ·(b -c )≠0,则b ≠c .否命题为真命题.18.(12分)给定两个命题P :对任意实数x 都有ax 2+ax +1>0恒成立;Q :关于x 的方程x 2-x +a =0有实数根.如果P ∧Q 为假命题,P ∨Q 为真命题,求实数a 的取值范围.解:命题P :对任意实数x 都有ax 2+ax +1>0恒成立,则“a =0”,或“a >0且a 2-4a <0”.解得0≤a <4.命题Q :关于x 的方程x 2-x +a =0有实数根,则Δ=1-4a ≥0,得a ≤14. 因为P ∧Q 为假命题,P ∨Q 为真命题,则P ,Q 有且仅有一个为真命题,故綈P ∧Q 为真命题,或P ∧綈Q 为真命题,则⎩⎨⎧ a <0或a ≥4a ≤14或⎩⎨⎧ 0≤a <4a >14.解得a <0或14<a <4. 所以实数a 的取值范围是(-∞,0)∪(14,4). 19.(12分)求证:一元二次方程ax 2+2x +1=0(a ≠0)有一个正根和一个负根的充分不必要条件是a <-1.证明:一元二次方程ax 2+2x +1=0(a ≠0)有一个正根和一个负根的充要条件是:Δ=4-4a >0⇔a <1,并且a <0,从而a <0.有一个正根和一个负根的充分不必要条件应该是{a |a <0}的真子集,a <-1符合题意.所以结论得证.20.(12分)已知p :2x 2-9x +a <0,q :⎩⎪⎨⎪⎧x 2-4x +3<0,x 2-6x +8<0,且綈p 是綈q 的充分条件,求实数a 的取值范围.解:由⎩⎪⎨⎪⎧ x 2-4x +3<0,x 2-6x +8<0,得⎩⎪⎨⎪⎧1<x <3,2<x <4,即2<x <3.∴q :2<x <3. 设A ={x |2x 2-9x +a <0},B ={x |2<x <3},∵綈p ⇒綈q ,∴q ⇒p .∴B ⊆A .∴2<x <3包含于集合A ,即2<x <3满足不等式2x 2-9x +a <0.∴2<x <3满足不等式a <9x -2x 2.∵当2<x <3时,9x -2x 2=-2(x 2-92x +8116-8116)=-2(x -94)2+818∈(9,818], 即9<9x -2x 2≤818,∴a ≤9. 21.(12分)给出命题p :“在平面直角坐标系xOy 中,已知点P (2cos x +1,2cos2x +2)和Q (cos x ,-1),∀x ∈[0,π],向量OP→与OQ →不垂直.”试判断该命题的真假,并证明.解:命题p 是假命题,证明如下:由OP →和OQ →不垂直,得cos x (2cos x+1)-(2cos2x +2)≠0,变形得:2cos 2x -cos x ≠0,所以cos x ≠0或cos x ≠12.而当x ∈[0,π]时,cos π2=0,cos π3=12,故存在x =π2或x =π3,使向量OP→⊥OQ →成立,因而p 是假命题. 22.(12分)已知ab ≠0,求证:a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.证明:必要性:∵a +b =1,∴b =1-a ,∴a 3+b 3+ab -a 2-b 2=a 3+(1-a )3+a (1-a )-a 2-(1-a )2=a3+1-3a+3a2-a3+a-a2-a2-1+2a-a2=0.充分性:∵a3+b3+ab-a2-b2=0,即(a+b)(a2-ab+b2)-(a2-ab+b2)=0,∴(a2-ab+b2)(a+b-1)=0,又ab≠0,即a≠0且b≠0,∴a2-ab+b2=(a-b2)2+3b24≠0,只有a+b=1.综上可知,当ab≠0时,a+b=1的充要条件是a3+b3+ab-a2-b2=0.。