6.2.2 立方根估值、小数点移动规律
人教版数学七年级下册第20课时《6.2立方根(2)》教学设计
人教版数学七年级下册第20课时《6.2立方根(2)》教学设计一. 教材分析《6.2立方根(2)》是人教版数学七年级下册的教学内容,这部分内容是在学生已经掌握了立方根的定义和求法的基础上进行进一步的拓展。
本节课主要让学生进一步了解立方根的概念,掌握求立方根的方法,并能运用立方根解决实际问题。
教材中通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析学生在进入七年级下学期之前,已经学习了一定的数学知识,对于基本的算术运算和几何概念有一定的了解。
但是,由于学生的学习背景和学习能力各不相同,对于立方根的理解和应用可能存在差异。
因此,在教学过程中,需要关注学生的个体差异,针对不同程度的学生进行有针对性的教学。
三. 教学目标1.知识与技能:让学生掌握立方根的概念,学会求立方根的方法,并能运用立方根解决实际问题。
2.过程与方法:通过学生的自主学习、合作交流,培养学生的数学思维能力和问题解决能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生积极思考、勇于探索的精神。
四. 教学重难点1.重点:立方根的概念和求法,以及运用立方根解决实际问题。
2.难点:立方根在实际问题中的应用,以及与其他数学概念的关联。
五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,让学生在实际情境中理解立方根的意义。
2.自主学习法:鼓励学生自主探究立方根的求法,培养学生的独立思考能力。
3.合作交流法:学生进行小组讨论,分享学习心得,互相学习,共同进步。
4.案例教学法:通过分析实际问题,引导学生运用立方根解决问题,提高学生的应用能力。
六. 教学准备1.教学课件:制作精美的课件,辅助教学,提高学生的学习兴趣。
2.练习题:准备一定数量的练习题,用于巩固所学知识,提高学生的解题能力。
3.教学资源:收集与立方根相关的教学资源,如视频、文章等,丰富教学内容。
七. 教学过程1.导入(5分钟)利用生活中的实例,如冰雪融化、肥料稀释等,引导学生思考立方根的实际意义,激发学生的学习兴趣。
《6.2 立方根》同步测试及答案(共两套)
《6.2 立方根》同步测试一(第1课时)一、选择题1.-8的立方根为( ).A.2 B.-2 C.±2 D.±4考查目的:考查立方根的概念.答案:B.解析:由于,根据立方根的概念可得-8的立方根为-2.2.下列说法正确的是( ).A.负数没有立方根 B.8的立方根是±2C.立方根等于本身的数只有±1 D.考查目的:考查立方根的概念和性质.答案:D.解析:根据立方根的概念和性质可判断:所有的数都有立方根,且立方根只有一个,所以选项A、B错误;立方根等于本身的数有三个,分别为0,±1,所以选项C错误;由可知,选项D正确.3.的平方根是( ).A.±4 B.4 C.±2 D.不存在考查目的:考查立方根和平方根的概念以及立方根的符号表示.答案:C.解析:表示64的立方根,根据立方根的概念,得=4,再根据平方根的概念,得4的平方根为±2.二、填空题4.如果,则的值是.考查目的:考查立方根的性质.答案:.解析:由已知可知,,根据立方根的性质,.5.的立方根是 (结果用符号表示).考查目的:考查算术平方根与立方根的概念以及算术平方根、立方根符号表示.答案:.解析:=9,9的立方根为.6.-27的立方根与64的平方根的和是.考查目的:考查平方根与立方根的概念和计算.答案:-11或5.解析:根据平方根与立方根的概念,可得:-27的立方根是-3,64的平方根是±8,所以-27的立方根与4的平方根的和是5或-11.三、解答题7.求下列各式的值:(1);(2);(3);(4).答案:(1);(2);(3);(4).解析:本题考查求立方根的方法,需要注意的是:在求带分数的立方根时,必须先把它化成假分数.(1);(2);(3);(4).8.有一棱长为6的正方体容器中盛满水,将这些水倒入另一正方体容器时,还需再加水127才能盛满,求另一正方体容器的棱长.考查目的:考查立方根的实际应用.答案:7.解析:原正方体容器的容积=(),另一正方体容器的容=216+127=343(),其棱长为.(第2课时)一、选择题1.估算10 000的立方根的范围大概是( ).A.10~15 B.15~20 C.20~25 D.25~30考查目的:考查无理数的估算能力.答案:C.解析:因为,,,,,又8000<10000<15625,所以10000的立方根应在20和25之间,故答案选C.2.已知:,,则等于( ).A.-17.38 B.-0.01738 C.-806.7 D.-0.08067考查目的:考查被开方数与立方根之间的小数点变化规律.答案:D.解析:根据可知,须先求出的值.0.000525是把525的小数点向左移动6位得到的,根据规律:被开方数的小数点每向右或向左移动3位,立方根的小数点向右或向左移动1位,可知,0.000525的立方根应把的立方根8.067向左移动2位,即0.08067.所以=-0.08067.4.在,1,-4,0这四个数中,最大的数是( ).A. B.1 C.-4 D.0考查目的:考查立方根的定义和大小比较.答案:.解析:因为正数大于负数和零,所以最大数应在和1中选,因为>,即>1,故答案选A.二、填空题4.估计在哪两个相邻整数之间:<<.考查目的:考查估算能力.答案:8 9.解析:因为<700<,所以8<<9.5.比较大小:______.考查目的:考查对平方根和立方根估算能力以及大小比较.答案:<.解析:因为,,所以5<<6,;因为,,所以10<<11.故<.6.一个正方形的面积变为原来的倍,则边长变为原来的倍;一个正方体的体积变为原来的倍,则棱长变为原来的倍.考查目的:考查算术平方根和立方根的概念和变化规律.答案:,.解析:由于正方形的面积为边长的平方,故边长变化的倍数是面积变化倍数的算术平方根;同理,棱长变化的倍数为体积变化倍数的立方根.三、解答题7.求下列各式中x的值:(1);(2).考查目的:考查立方根的应用.答案:(1);(2).解析:(1)由立方根的概念,可得,;(2),由立方根的概念,可得,.8.不用计算器,研究解决下列问题:(1)已知,且为整数,则的个位数字一定是;∵8000=<10648<=27000,∴的十位数字一定是;∴;(2)若,且为整数,按照(1)的思考方法,直接写出的值为.考查目的:考查对于一个能开方开得尽的较大的整数,其立方根的大小估计.答案:(1)2 2 22 (2)95.解析:(1)个位为1的两位数的立方,其个位数为1;个位为2的两位数的立方,其个位数为8;依此类推,可以判断的个位数字一定是2,十位数字一定是2,故10648的立方根为22.(2)按照(1)中的方法可以推测(2)中857375的立方根为95.《6.2 立方根》同步测试二课前预习:要点感知1一般地,如果一个数的立方等于a,那么这个数叫做a的_______,即如果x3=a,那么__________叫做__________的立方根.预习练习1-1 -8的立方根是( )A.-2B.±2C.2D.-1 21-2 -64的立方根是__________,-13是__________的立方根.要点感知2 求一个数的立方根的运算,叫做开立方,开立方与立方互为逆运算.正数的立方根是__________;负数的立方根是__________;0的立方根是__________.预习练习2-1下列说法正确的是( )A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是0要点感知3一个数a表示,读作“__________”,其中__________是被开方数,__________是根指数.预习练习3-1=__________.当堂练习:知识点1 立方根1.( )A.-1B.0C.1D.±12.若一个数的立方根是-3,则该数为( )B.-27C.D.±273.下列判断:①一个数的立方根有两个,它们互为相反数;②若x3=(-2)3,则x=-2;③15.其中正确的有( )A.1个B.2个C.3个D.4个4.立方根等于本身的数为__________.的平方根是__________.6.若x-1是125的立方根,则x-7的立方根是__________.7.求下列各数的立方根:(1)0.216; (2)0; (3)-21027; (4)-5.8.求下列各式的值:;. 知识点2 用计算器求立方根9.( )A.3.049B.3.050C.3.051D.3.05210.估计96的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间11.≈__________(精确到百分位).12.13.(1)填表:(2)由上表你发现了什么规律?请用语言叙述这个规律:_______________.(3)根据你发现的规律填空:=1.442,;课后作业:14.下列说法正确的是( )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根比这个数平方根小C.如果一个数有立方根,那么它一定有平方根15.( )A.7B.-7C.±7D.无意义16.正方体A的体积是正方体B的体积的27倍,那么正方体A的棱长是正方体B 的棱长的( )A.2倍B.3倍C.4倍D.5倍17.-27__________.18.计算:=__________=__________.19.已知2x+1的平方根是±5,则5x+4的立方根是__________.20.求下列各式的值:21.比较下列各数的大小:;与-3.4.22.求下列各式中的x:(1)8x3+125=0; (2)(x+3)3+27=0.23.(b-27)2的立方根.24.很久很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,人们找不到水喝,于是大家一起到神庙里去向神祈求.神说:“我之所以不给你们降水,是因为你们给我做的正方体祭坛太小,如果你们做一个比它大一倍的祭坛放在我面前,我就会给你们降雨.”大家觉得很好办,于是很快做好了一个新祭坛送到神那里,新祭坛的棱长是原来的2倍.可是神愈发恼怒,他说:“你们竟敢愚弄我.这个祭坛的体积不是原来的2倍,我要进一步惩罚你们!”如图所示,不妨设原祭坛边长为a,想一想:(1)做出来的新祭坛是原来体积的多少倍?(2)要做一个体积是原来祭坛的2倍的新祭坛,它的棱长应该是原来的多少倍?挑战自我25.请先观察下列等式:,,,…(1)请再举两个类似的例子;(2)经过观察,写出满足上述各式规则的一般公式.参考答案课前预习要点感知1立方根(或三次方根) x a预习练习1-1 A1-2 -4 -1 27要点感知2 正数负数 0预习练习2-1 D要点感知3 三次根号a a 3预习练习3-1 3当堂训练1.C2.B3.B4.0,1或-15.±26.-17.(1)∵0.63=0.216,∴0.216的立方根是0.6=0.6;(2)∵03=0,∴0的立方根是0;(3)∵-21027=-6427,且(-43)3=-6427,∴-21027的立方根是-4343;(4)-58.(1)0.1;(2)-75;(3)-23.9.B 10.C 11.2.92 12.10.38 -0.482 0 13.(1)0.01 0.1 1 10 100(2)被开方数扩大1 000倍,则立方根扩大10倍(3)14.42 0.144 2 7.696课后作业14.D 15.B 16.B 17.0或-6 18.-4 -3419.420.(1)-10;(2)4;(3)-1;(4)0.21.;<-3.4.22.(1)8x3=-125,x3=-1258,x=-52;(2)(x+3)3=-27,x+3=-3,x=-6.23.由题意知a=-8,b=27,24.(1)8倍;.25.(n≠1,且n为整数).。
人教版七年级数学下册精品教学课件 第六章 实数 立方根
学习目标:
1.了解立方根的概念,会用开立方运算求一个数的立方根. 2.了解立方根的性质,并学会用计算器计算一个数的立方根或立 方根的近似值.
重点难点:
1.掌握立方根的概念. 2.了解立方根与平方根的区别与联系.
情景导入
某化工厂使用半径为1米的一种球形储气罐储藏气体,现 在要造一个新的球形储气罐,如果要求它的体积必须是原来 体积的8倍,那么它的半径应是原来储气罐半径的多少倍?
(2)因为 ( 3 3)3 = 3
( 3)3 27 28
所以 3 < 27
8
所以 3 3
<
3 2
5.若 3 x =2,y2 =4,求 x 2y 的值.
解:∵ 3 x =2, y2 =4. ∴x = 23,y2 = 16, ∴x = 8,y = ±4. ∴x + 2y = 8 + 2×4 = 16 或 x + 2y = 8 – 2×4 = 0. ∴ x 2 y = 16 = 4 或 x 2 y = 0 = 0.
课堂小结
定义 正数的立方根是正数,
立
负数的立方根是负数;
方
性质 0的立方根是0.
根
3 -a 3 a
用计算 被开方数的小数点向左或向右移动 器计算
3n位时立方根的小数点就相应的向
左或向右移动n位(n为正整数).
知识精讲
知识点一 立方根的概念及性质 问题:要制作一种容积为 27 m³的正方体形状的包装箱, 这种包装箱的棱长应该是多少? 设这种包装箱的棱长为 x m,则 x³= 27. 这就是要求一个数,使它的立方等于 27. 因为 3³= 27,所以 x = 3. 因此这种包装箱的棱长应为 3 m.
人教版数学七年级下册6.2.2《用计算器求立方根、用有理数估计一个数立方根的大小》教案设计
6.2 立方根第二课时教学设计一、教材分析:这节课的内容是人教版数学七年级下册第六章实数中6.2立方根的第2课时。
由于本章的前两节“平方根”“立方根”在内容上基本是平行的,知识的展开顺序基本相同,因此可以充分利用类比的方法:在第一课时类比得出立方根的概念、开立方运算、立方与开立方运算的互逆关系等的基础上。
类比平方根估算方法研究立方根的估算方法,类比平方根计算器的使用研究立方根计算器的使用,类比平方根的小数点的移动研究立方根的小数点的移动等。
通过类比旧知识学习新知识,使学生的学习形成正迁移。
二、学情分析:本节课需要面向七年级学生进行教学,由于七年级学生年龄低、好表现、具有形象思维等特征,所以这节课我主要采用情境教学法、动手操作法、探究交流法。
通过创设生动有趣的情境,本着结论让学生得,疑难让学生议,思路让学生想,错误让学生析,规律让学生找,小结让学生讲的原则,在方法的设计上,把重点放在了逐步展示知识的形成过程上,激发学生对数学学习的兴趣。
三、学习目标:1.知识与技能:熟练掌握求一个数立方根的方法。
会用计算器求一个数的立方根。
2.过程与方法:经历探究被开方数与立方根的关系,能够运用规律解决实际问题。
3.情感、态度与价值观:学生经历观察、动手操作、发现讨论等数学活动,感受数学活动充满探索性与创造性。
并通过小组互助学习培养学生的合作意识和解决问题的能力。
教学重点:探究被开方数与立方根的关系的过程。
教学难点:运用探索的规律解决实际问题。
四、教学方法:归纳和类比的方法。
五、教学过程:活动一、自主学习,探究规律预习课本第50~51页,自学完成下列问题。
问题1:如果一个正方体的体积是2㎝³,则这个正方体的棱长是多少呢?解:设这个正方体的棱长为xcm,则有 x3 =2解得:。
归纳:1.实际上,很多有理数的立方根是无限不循环小数,如,等都是无限不循环小数。
我们可以用有理数近似的表示它们。
2.要求一个数的立方根(或近似值),我们可以利用计算器中的键来计算。
人教版七年级数学下册学案设计:6.2.2-立方根估值、小数点移动规律
第六章 实数 6.2.2 立方根的估值、小数点移动规律一、新知探究探究1:小数点移动规律=3000216.0 ; =3216.0 ; =3216 ; 3216000=1293.000216.03≈;≈316.2 ; ≈32160 ; ≈32160000你发现什么规律:被开方数的小数点向左(或右)每移动 位,相应的立方根的小数点向 (或 )移动 位。
练习:已知:642.41003≈,154.2103≈,则≈30001.0 ,≈3001.0 ,≈301.0 ,≈31.0 ,≈310000 ,≈3100000 。
探究2:立方根的估值1、370在哪两个连续整数之间?3100-呢?2、比较大小:(1;-;5--3100(2;3323;二、课堂练习1.求下列各数的立方根.(1)1- (2)10001(3)343- (4)8515(5)512 (6)827-(7)0 (8)216.0- 2.求下列各式的值.(1)38- (2)327- (3)3125.0-- (4)33)001.0(--(5)3512 (6)36427--(7)0196.0- (8)22)74()73(+的算术平方根(9)33a - (10)33a (11)327173- (12)34112213⨯3、(1)若642=x ,则3x =___.(2)立方根是-8的数是___, 64的立方根是__。
(3)若1253=x ,则x =___;336=x ,则x =___,若33)4(-=x ,则x =____.(4)当x <7时,27)(-x = ,33)7(-x =____.(5)-27的立方根与81的平方根之和是____. 如果x 2=64,那么3x = .(6)81的算术平方根是 ;64-的立方根是 .化简2-3)(π= . (7)若1.1001.102=,则0201.1±±= .若3728.1=1.2,则3728.1= .(8)若33670.0=0.7160,3670.3=1.542,则3367= .3、计算:4332381)21()4()4()2(--⨯-+-⨯-.4、已知01134=+++y x ,其中x ,y 为实数,求3x -1998y -的值.5、已知A =n m m n -+-3是n -m +3的算术平方根,B =322+-+n m n m 是m +2n 的立方根,求B -A 的立方根。
初一数学下册(人教版)第六章6.2知识点总结含同步练习及答案
第六章 实数 6.2 立方根
一、学习任务 1. 了解立方根的概念,会用根号表示数的立方根,熟练的求 100 以内整数的立方根,会用计 算器求一个数的立方根. 2. 会估算一个无理数的大致范围. 1 1 3. 一个数扩大 1000 (或缩小 ),立方根也扩大10(或缩小 ). 1000 10 二、知识清单
例题: 写出下列各数的立方根.
125 ;(4) 0.027. 216 解:(1) 因为 2 3 = 8 ,所以 8 的立方根是 2 ; (2) 因为 (−3)3 = −27,所以 −27 的立方根是 −3; 5 125 125 5 (3) 因为 (− )3 = − ,所以 − 的立方根是 − ; 6 216 216 6 (4) 因为 (−0.3)3 = −0.027 ,所以 −0.027 的立方根是 0.3.
B.0 C.1 D.±1
3 2. √ (−1)2 的立方根是 (
− − − − −
A.−1
答案: C
− 的平方根与 −8 的立方根之和为 ( 3. √− 16
A.−
答案: D
)
C.−6 或 2 D.−4 或 0
B.0
4. 下列说法中错误的是 ( A.−1 的立方根是 −1 C.−1 的立方是 −1
答案: B
)
B.−1 的平方根是 −1 D.−1 的平方是 1
高考不提分,赔付1万元,关注快乐学了解详情。
(1) 8 ;(2) −27 ;(3) −
四、课后作业
(查看更多本章节同步练习题,请到快乐学)
1. 一个正方体的水晶砖的体积为 100 ,它的棱长大约在 ( A.4 和 5 之间
答案: A 解析: 棱长为
人教版七年级数学下册教案:6.2《立方根》
2.教学难点
-立方根的符号问题:学生容易在计算过程中忽略立方根的符号,特别是负数的立方根。
-立方根的计算精度:在计算立方根时,学生可能难以精确到小数点后几位,需要指导学生掌握估算和精确计算的方法。
-立方根与平方根的区别:学生可能会混淆立方根与平方根的概念,需要通过对比讲解和练习来加强区分。
举例:在讲解立方根的符号问题时,可以通过具体的计算题目,如(-8)^1/3,强调负数的立方根符号规律。对于计算精度问题,可以引导学生通过近似计算和迭代法来提高计算精度。在区分立方根与平方根时,可以通过对比两者的定义和应用场景,加深学生理解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《立方根》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算一个立方体体积的情况?”(如玩积木时)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索立方根的奥秘。
-两者之间的联系与区别
6.课后习题
-巩固立方根的定义、性质及运算方法
-提高解决实际问题的能力
��生能力”的目标。通过本章节的学习,学生能够:
1.理解立方根的定义,掌握立方根的性质和运算方法;
2.能够运用立方根解决实际问题,提高解决问题的能力;
3.培养学生的逻辑思维能力和数学素养,激发学生对数学学科的兴趣。
3.优化问题设置,使学生在思考问题时能够更加聚焦到立方根这一核心概念上。
4.关注学生的个别差异,针对不同学生的学习需求,给予个性化的指导。
在今后的教学中,我会根据今天的反思,调整教学策略,以期提高学生对立方根知识点的掌握程度。同时,我也将不断学习,提升自己的教学水平,为学生们提供更加优质的教学。
6.2.2用计算器求一个数的立方根课课练习及答案
-5 平方
③ 根
是
±2.其
中
正
确
语
句
的
序号是
.
3.若 3125=a, 64=b,则a+b=
.
4.如 果 a2= (-3)2,b3= (-3)3,那 么 a+b=
.
重 难 疑 点 ,一 网 打 尽 .
5.用 计 算 器 计 算 328.36的 值 约 为 ( ).
A .3.049
B.3.050
C.3.051
B.0.0184
C.1.84
D.0.00184
12.利用计算 器 ,比 较 下 列 各 组 数 的 大 小 ,用“>”“<”或“=”填 空
( ) 14
3 56;
(2)3100
. 21;
1 (3)- 0.2
3 -0.07;
(4)- 26
3 -128.
13.将下表补充 完 整 :(用 计 算 器 求 值 ,结 果 保 留 4 个 有 效 数 字 )
(2)由上表 你发 现 了 什 么 规 律 ? 请 用 语 言 叙 述这个 规 律 :
. (3)根据你 发现 的 规 律 填 空 :
① 已知33=1.442,则 33000=
,30.003=
;
② 已 知 30.000456=0.07697,则3 456=
.
七 年 级 数 学 (下 )
9.一 个 人 每 天 平 均 要 饮 用 大 约 0.0015m3 的 各 种 液 体 ,按 寿 命 70岁 计 算 ,此 人 一 生 所 饮 用 的 液 体 总 量 大 约 为 40m3 .如 果 用 一 圆 柱 形 的 容 器 (底 面 直 径 等 于 高 )来 装 这 些 液 体 , 这个容器 大约有 多 高 ? (π取 3.14,结 果 精 确到 0.1m)
人教版七年级下数学6.2立方根(2用计算器求立方根、用有理数估计一个数立方根的大小)教案
《§6.2立方根(2)》一、教材分析:1、说教材的地位和作用这一节课是人教版(2012年版)义务教育教科书数学七年级下册第六章《实数》§6.2立方根,本节共两课时,这节课的内容为第二课时。
本章内容是在前面学习有理数的基础上,把有理数的范围进行扩大,也可以看成是其后的代数内容的起始章,是学习二次根式、一元二次方程以及解三角形的基础,因此本章内容起着承上启下的作用,在中学数学中占有重要的地位。
通过本章的学习,学生对数的范围的认识就由有理数扩大到实数,而无理数的概念正是由数的平方根和立方根引入的。
在此之前,学生已学习了数的平方根内容和研究方法,这为过渡到本节的学习起着铺垫作用。
通过本节课的学习,学生可以更深入的了解无理数,为后面学习实数奠定基础。
2、说教学目标知识与技能:(1)会正确使用计算器求一个数的立方根。
(2)能用有理数估计一个立方根的大致范围,使学生形成估算的意识,培养估算能力。
过程与方法:经历运用计算器探求数学规律的过程,发展合情推理能力。
情感态度与价值观:培养学生严谨的数学学习态度,科学的探索精神。
4、说教学重点和难点(1)重点:计算器的使用方法和用有理数估计一个立方根的大致范围。
(2)难点:探索立方根的变化规律及应用。
二、学情分析七年级具有学生年龄低、好奇心强、发言积极、爱好表现,有话就说,小组合作初步形成,兼有一定的形象思维和初步的逻辑思维能力,知识经验不够丰富的特点,因此探索的结论还需要同学公认和老师把关。
三、教法分析针对以上学生基础知识薄弱,主动参与学习的积极性高,学习探究能力较差的这种情况及本节课的特点,我采用“类比探究----验证结论-----归纳概括----巩固应用”为主线的教学程序。
通过创设生动有趣的情境,本着结论让学生得,疑难让学生议,思路让学生想,错误让学生析,规律让学生找,小结让学生讲的原则,在方法的设计上,把重点放在了逐步展示知识的形成过程上,激发学生对数学学习的兴趣。
人教版数学七年级下册6.2《立方根》教案1
人教版数学七年级下册6.2《立方根》教案1一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容。
本节主要让学生掌握立方根的概念,理解立方根的性质,学会求一个数的立方根。
通过本节的学习,为学生进一步学习实数及其运算打下基础。
二. 学情分析学生在七年级上册已经学习了乘方,对乘方的概念和性质有一定的了解。
但立方根的概念与乘方有所不同,需要学生能够从中找出规律,理解并掌握。
另外,学生可能对求一个数的立方根运算存在困难,因此在教学过程中,需要引导学生掌握运算方法。
三. 教学目标1.理解立方根的概念,掌握立方根的性质。
2.学会求一个数的立方根,能熟练运用立方根解决实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.立方根的概念和性质。
2.求一个数的立方根的方法。
五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,让学生在实际情境中感受立方根的意义。
2.讲授法:讲解立方根的性质和求法,引导学生理解和掌握。
3.实践操作法:让学生动手计算,巩固所学知识。
4.问题驱动法:设置问题,引导学生探究,培养学生的解决问题的能力。
六. 教学准备1.PPT课件:制作与教学内容相关的PPT课件,以便进行直观教学。
2.练习题:准备一些有关立方根的练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些生活中的实例,如冰雪融化、爆米花等,引导学生思考:这些现象与数学中的哪个概念有关?从而引出立方根的概念。
2.呈现(15分钟)讲解立方根的定义,让学生理解立方根的概念。
通过PPT课件展示立方根的性质,让学生掌握立方根的性质。
3.操练(10分钟)让学生动手计算一些立方根的例子,巩固所学知识。
教师巡回指导,解答学生疑问。
4.巩固(5分钟)设置一些有关立方根的问题,让学生独立解答。
教师选取部分学生的答案进行讲评,巩固所学知识。
5.拓展(10分钟)引导学生思考:立方根有哪些应用?让学生举例说明,培养学生的应用意识。
立方根总结知识点
一、立方根的定义在数学中,对于任意实数a,如果存在一个实数b使得b³=a,那么b就是a的立方根,记作b=³√a。
从定义可以看出,立方根是求一个数的立方根的运算,即使得一个数的立方等于给定的数。
二、立方根的性质1. 立方根的性质(1)立方根的性质1:一个非负实数有且只有一个实数的立方等于它。
(2)立方根的性质2:一个非负实数的立方根也是一个非负实数。
(3)立方根的性质3:一个非负实数的立方根与它的相反数的立方根互为相反数。
2. 立方根的运算法则(1)立方根的运算法则1:³√(ab)=³√a*³√b。
(2)立方根的运算法则2:³√(a/b)=³√a/³√b。
(3)立方根的运算法则3:³√(aⁿ)=aⁿ/3。
三、立方根的求解方法1. 立方根的求解方法1:开方法。
对于一个由非负实数构成的数a,我们可以通过开方法来求解它的立方根。
具体步骤如下:(1)将a进行因式分解,得到素因数分解式。
(2)对于得到的素因数p,将其对于立方根成对提出。
(3)对提出的p,按照p³=a进行计算得到立方根。
(4)将计算得到的立方根合并,得到a的立方根。
2. 立方根的求解方法2:牛顿迭代法。
在数值计算中,可以通过牛顿迭代法来求解一个数的近似立方根。
具体步骤如下:(1)选取一个适当的初始值x0。
(2)通过牛顿迭代公式x_(n+1) =(2x_n+a/(x_n²))⁄3来迭代计算,直到达到精确度要求。
1. 几何中的应用立方根在几何中有广泛的应用。
例如,可以用立方根来计算立方体的对角线长度,立方体的表面积等。
2. 代数中的应用在代数中,立方根也有重要的应用。
例如,可以利用立方根来求解代数方程,或者用立方根来简化复杂的代数表达式等。
3. 物理中的应用在物理中,利用立方根可以对一些物理现象进行分析和计算。
例如,可以用立方根来求解一些物理量的立方根值,来描述物理世界中的一些规律等。
6.2.2 立方根的估算和应用
3 2
3
27 8
3 3 3 8
∴1.5 3 3
二 用计算器求立方根
由于一个数的立方根可能是无限不循环小数,所以我们可以 利用计算器求一个数的立方根或它的近似值.
例 用计算器求下列各数的立方根:343,-1.331. 解:依次按键:3 3 4 3 =
显示:7
练习 现有一个表面积为1.5 m2的正方体铝块,问这个正 方体铝块的体积是多少.
0.125m³
课后检测
1. 2.
3.课后检测4.5 Nhomakorabea6.
7.比较下列各组数的大小:
3 10与2.5
3 30与 8
8. 计算:
(1)23
4 2
3
43
1 2 2
3
27
(2) 3 0.125 0.0121 3 216000
3 100 4.642
三 立方根的应用
现有一个体积为0.216 m³的大正方体铝块改铸成8个一样 大的小正方体铝块,求每个小正方体铝块的表面积.
解: 由题意知,小正方体铝块的体积为 0.216 ÷8 =0.027(m³), 则棱长为 3 0.027 =0.3(m),表面积为6×0.3 ²=0.54(m²).
回顾 估算 10 的值
在哪两个整数之间?
夹值法
变式 3 10 的整数部分是___2___;小数部分是__3 _1_0___2_.
3 10 1的整数部分是___1___, 10 3 10 的整数部分是___7___.
针对训练
解:∵ 3 27 3 50 3 64
例 比较 3,4,3 50 的大小.
立方根2
1845 ≈12.3
自主学习
• 2、(1)用计算器计算
3
0.000216 0.216 216 216000
= = = =
0.06 0.6
3
你能发现什 么规律吗?
3
6
60
3
被开方数的小数点向右或向左移动3位,它的立方根的小数 点相应地向右或向左移动1位。 【应用】 完成 2(2)
交流展示
• 1、比较3,4, 50 的大小;(类比平方根 的大小比较)
3
因为33=27,43=64,
3
27 <
3
50 <
3
64பைடு நூலகம்
所以 3 50 位于3和4之间
交流展示
(提示:假设原正方体的棱长为a)
合作探究
小结反思
通过这节课的学习, 能说说你的收获和体会吗? 你有什么经验与收获让同学们共享呢?
6.2 立方根(2)
知识回顾
1、什么叫数a的立方根或三次方根?什么叫开立方?
2、一个数a的立方根用符号怎么表示?-27的立方根 怎么表示,结果是多少?
自主学习
• 1.(1)立方根概念的起源与正方体有关, 如果一个正方体的体积为V,它的棱长为多 少?
棱长为
3
V
•
(2)如果正方体的体积为1845,它的棱 长为多少呢?
立方根和开立方知识讲解
立方根和开立方知识讲解(总4页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除立方根和开立方【学习目标】1. 了解立方根的含义;2. 会表示、计算一个数的立方根,会用计算器求立方根.【要点梳理】要点一、立方根的定义如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果3x a=,那么x叫做a的立方根.求一个数的立方根的运算,叫做开立方.要点诠释:一个数a a是被开方数,3是根指数. 开立方和立方互为逆运算.要点二、立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.要点诠释:任意一个实数都有立方根,而且只有一个立方根,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数.要点三、立方根的性质==a3=a要点诠释:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题.要点四、立方根小数点位数移动规律被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.0.060.66,60.要点五、n次方根如果一个数的n次方(n是大于1的整数)等于a,那么这个数叫做a的n次方根.当n为奇数时,这个数为a的奇次方根;当n为偶数时,这个数为a的偶次方根.求一个数a的n次方根的运算叫做开n次方,a叫做被开方数,n叫做根指数.要点诠释:实数a的奇次方根有且只有一个,正数a的偶次方根有两个,它=.们互为相反数;负数的偶次方根不存在.;零的n0【典型例题】类型一、立方根的概念1、下列结论正确的是( )A .64的立方根是±4B .12-是16-的立方根C .立方根等于本身的数只有0和1D .332727-=-【答案】D ;【解析】64的立方根是4;12-是18-的立方根;立方根等于本身的数只有0和±1. 【总结升华】一个非零数与它的立方根符号相同; 33a a -=-.举一反三:【变式】(2015春•滑县期末)我们知道a+b=0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若与互为相反数,求1﹣的值. 【答案】解:(1)∵2+(﹣2)=0, 而且23=8,(﹣2)3=﹣8,有8﹣8=0,∴结论成立;∴即“若两个数的立方根互为相反数,则这两个数也互为相反数.”是成立的.(2)由(1)验证的结果知,1﹣2x+3x ﹣5=0, ∴x=4,∴1﹣=1﹣2=﹣1.类型二、立方根的计算2、求下列各式的值:(1)327102-- (2)3235411+⨯ (3)336418-⋅ (423327(3)1---(5)10033)1(412)2(-+÷-- 【答案与解析】 解:(1)310227-(23321145⨯+(3)331864-3642743== 33=116425=729=9⨯+ 1=241=2⎛⎫⨯- ⎪⎝⎭- (4)23327(3)1-+---=331=1-++(5)310031(2)2(1)4--÷+-3=21247=1=33÷++ 【总结升华】立方根的计算,注意符号和运算顺序,带分数要转化成假分数再开立方.举一反三:【变式】计算:(1)30.008-=______;(2)=364611______; (3)=--312719______.(4)=-33511)(______. 【答案】(1)-;(2)54;(3)23;(4)45. 类型三、利用立方根解方程 3、 (2015春•罗平县期末)求下列各式中x 的值:(1)3(x ﹣1)3=24.(2)(x+1)3=﹣64. 【思路点拨】先整理成x 3=a 的形式,再直接开立方解方程即可.【答案与解析】解:(1)3(x ﹣1)3=24,(x ﹣1)3=8,x ﹣1=2,x=3.(2)开立方得:x+1=﹣4,解得:x=﹣5. 【总结升华】本题是用开立方的方法解一元三次方程,要灵活运用使计算简便.举一反三:【变式】求出下列各式中的a :(1)若3a =,则a =______;(2)若3a -3=213,则a =______;(3)若3a +125=0,则a =______;(4)若()31a -=8,则a =______. 【答案】(1)a =;(2)a =6;(3)a =-5;(4)a =3.类型四、立方根实际应用4、在做物理实验时,小明用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱体烧杯中,并用一量筒量得铁块排出的水的体积为643cm ,小明又将铁块从水中提起,量得烧杯中的水位下降了169πcm .请问烧杯内部的底面半径和铁块的棱长各是多少?【思路点拨】铁块排出的643cm 水的体积,是铁块的体积,也是高为169πcm 烧杯的体积.【答案与解析】解:铁块排出的643cm 的水的体积,是铁块的体积.设铁块的棱长为y cm ,可列方程364,y =解得4y = 设烧杯内部的底面半径为x cm ,可列方程216649x ππ⨯=,解得x =6. 答:烧杯内部的底面半径为6cm ,铁块的棱长 4cm .【总结升华】应该熟悉体积公式,依题意建立相等关系(方程),解方程时,常常用到求平方根、立方根,要结合实际意义进行取舍.本题体现与物理学科的综合.举一反三:【变式】将棱长分别为和的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为____________。
初中数学立方根与估算
立方根 知识讲解
立方根责编:杜少波【学习目标】1. 了解立方根的概念,会用根号表示数的立方根;2. 了解开立方与立方互为逆运算,会用立方运算求某些数的立方根;3. 会用计算器求立方根. 【要点梳理】要点一、立方根的定义如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,记作3a 表示,其中a 是被开方数,3是根指数.符号“3”读作“三次根号”.求一个数的立方根的运算,叫做开立方. 要点诠释:开立方和立方互为逆运算. 要点二、立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.要点诠释:任何数都有立方根,一个数的立方根有且只有一个,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数. 要点三、立方根的性质33a a -=-33a a =()33aa =要点诠释:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题. 要点四、立方根小数点位数移动规律被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.例如,30.000 2160.06=,30. 2160.6=,3 2166=,3216000 60=. 【典型例题】 类型一、立方根的概念1、下列结论正确的是( ) A .64的立方根是±4B .12-是16-的立方根 C .立方根等于本身的数只有0和1 D 332727-=【答案】D ;【解析】64的立方根是4;12-是18-的立方根;立方根等于本身的数只有0和±1.【总结升华】一个非零数与它的立方根符号相同;33a a -=举一反三:【变式】下列说法正确的是( )A .一个数的立方根有两个B .一个非零数与它的立方根同号C .若一个数有立方根,则它就有平方根D .一个数的立方根是非负数 【答案】B ;提示:任何数都有立方根,但是负数没有平方根.2、(2016春•南昌期末)已知实数x 、y 满足4216240,2-3x x y x y -+-+=求的立方根.【思路点拨】先由非负数的性质求得x 、y 的值,然后在求得代数式的值,最后再求得它的立方根即可. 【答案与解析】解:由非负数的性质可知:2x -16=0,x -2y +4=0, 解得:x =8,y =6.∴442-=28-6=833x y ⨯⨯. ∴42-3x y 的立方根是2.【总结升华】本题考查了非负数的性质、立方根的定义,求得x 、y 的值是解题的关键. 类型二、立方根的计算3、求下列各式的值:(1)327102-- (2)3235411+⨯ (3)336418-⋅ (423327(3)1---(5)10033)1(412)2(-+÷-- 【答案与解析】解:(1)310227-(23321145⨯+(3)331864-3642743==33=116425=729=9⨯+ 1=241=2⎛⎫⨯- ⎪⎝⎭-(4)23327(3)1---=331=1-++(5)310031(2)2(1)4--÷+-3=21247=1=33÷++【总结升华】立方根的计算,注意符号和运算顺序,带分数要转化成假分数再开立方.举一反三:【变式】(2015春•武汉校级期末)计算= .【答案】.解:.类型三、利用立方根解方程4、(2015春•黄梅县校级月考)若8x 3﹣27=0,则x= . 【思路点拨】先求出x 3的值,然后根据立方根的定义解答. 【答案】. 【解析】解:8x 3﹣27=0,x 3=,∵()3=,∴x=;【总结升华】本题考查了利用立方根求未知数的值,熟记立方根的定义是解题的关键. 举一反三:【变式】求出下列各式中的a :(1)若3a =0.343,则a =______;(2)若3a -3=213,则a =______; (3)若3a +125=0,则a =______;(4)若()31a -=8,则a =______.【答案】(1)a =0.7;(2)a =6;(3)a =-5;(4)a =3.类型四、立方根实际应用5、在做物理实验时,小明用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱体烧杯中,并用一量筒量得铁块排出的水的体积为643cm ,小明又将铁块从水中提起,量得烧杯中的水位下降了169πcm .请问烧杯内部的底面半径和铁块的棱长各是多少?【思路点拨】铁块排出的643cm 水的体积,是铁块的体积,也是高为169πcm 烧杯的体积. 【答案与解析】解:铁块排出的643cm 的水的体积,是铁块的体积.设铁块的棱长为y cm ,可列方程364,y =解得4y =设烧杯内部的底面半径为x cm ,可列方程216649x ππ⨯=,解得x =6. 答:烧杯内部的底面半径为6cm ,铁块的棱长 4cm .【总结升华】应该熟悉体积公式,依题意建立相等关系(方程),解方程时,常常用到求平方根、立方根,要结合实际意义进行取舍.本题体现与物理学科的综合. 举一反三:【变式】将棱长分别为和的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 实数 6.2.2 立方根的估值、小数点移动规律
一、新知探究
探究1:小数点移动规律
=3
000216.0 ; =3216.0 ; =3216 ; 3216000=
1293.000216.03
≈; ≈316.2 ; ≈32160 ; ≈32160000
你发现什么规律:被开方数的小数点向左(或右)每移动 位,相应的立方根的小数点向 (或 )移动 位。
练习:已知:642.41003≈,154.2103≈,则≈30001.0 ,≈3001.0 ,
≈3
01.0 ,≈31.0 ,≈310000 ,≈3100000 。
探究2:立方根的估值
1、370在哪两个连续整数之间?3100-呢?
2、比较大小:(1
310-
;5-
-3
100 (2;
3
3
2
3
;
二、课堂练习
1.求下列各数的立方根. (1)1- (2)1000
1 (3)343- (4)8515
(5)512 (6)8
27
- (7)0 (8)216.0- 2.求下列各式的值.
(1)3
8- (2)3
27- (3)3
125.0-- (4)3
3
)001.0(--
(5)3
512 (6)3
64
27-
-
(7)0196.0- (8)22)74()73(+的算术平方根 (9)33a - (10)3
3
a (11)
3
27
17
3- (12)3
4
112213⨯
3、(1)若642=x ,则3x =___.(2)立方根是-8的数是___, 64的立方根是__。
(3)若1253=x ,则x =___;336=x ,则x =___,若33)4(-=x ,则x =____.
(4)当x <7时,27)(-x = ,33)7(-x =____.
(5)-27的立方根与81的平方根之和是____. 如果x 2
=64,那么= .
(6)的算术平方根是 ;﹣
的立方根是 .化简= . (7)若=10.1,则±= .若
=1.2,则
= .
(8)若=0.7160,=1.542,则
= .
(9)已知≈2.078,
≈20.78,则y= .
(10)
的平方根是x ,64的立方根是y ,则x+y 的值为 .
(11)若x 2
=16,则x= ;若x 3
=﹣8,则x= ;
的平方根是 .
(12)已知
,则
= .
3、计算:4
3
3
2
3
81)2
1()4()4()2(--⨯-+-⨯-.
4、已知01134
=++
+y x ,其中x ,y 为实数,求3x -1998y -的值.
5、已知A =n m m n -+-3是n -m +3的算术平方根,B =322+-+n m n m 是m +2n 的立方根,求
B -A 的立方根。