武侯区2018年中考数学“一诊”试卷
18年成都市一诊考试数学试题及答案word(理科)
2018年成都市一诊考试数学试题及答案word(理科)理科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集U?R,集合A?xx??2,B?xx??1,则eU(A?B)?A.??????2,1??B.(?2,?1)C.???,?2????1,?????D.(?2,1) 2在复平面内对应的点位于1?i2.复数z?A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.空气质量指数AQI是检测空气质量的重要参数,其数值越大说明空气污染状况越严重,空气质量越差.某地环保部门统计了该地区12月1日至12月24日连续24天空气质量指数AQI,根据得到的数据绘制出如图所示的折线图.则下列说法错误的是.. A.该地区在12月2日空气质量最好 B.该地区在12月24日空气质量最差 C.该地区从12月7日到12月12日AQI持续增大D.该地区的空气质量指数AQI与日期成负相关4.已知锐角?ABC的三个内角分别为A,B,C,则“sinA>sinB”是“tanA>tanB”的A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 5. “更相减损术”是我国古代数学名著《九章算术》中的算法案例,其对应的程序框图如图所示.若输入的x,y,k的值分别为4,6,1,则输出的k的值为 6.若关于x的不等式x?2ax?1?0在?0,则实数a的取值范+??上恒成立, 2 围为 A.(0,??) B.?1,???C.?1,1 ???D.?0,??? 6.若关于x的不等式x2?2ax?1?0在?0,???上恒成立,则实数a的取值范围为(A)(0,??)??????????????(B)??1,????????? ???????(C)??1,1??????????????(D)?0,??? x2y27.如图,已知双曲线E:2?2?1(a?0,b?0),长方形ABCD的顶点A,abBC?B分别为双曲线E的左,右焦点,且点C,D在双曲线E上.若AB?6,则此双曲线的离心率为5, B. 22x2y28.如图已知双曲线E:2?2?1(a?0,b?0),长方形ABCD的顶点A,B分别为双曲线E的左、右焦点,且ab5点C,D在双曲线E上,若AB?6,BC?,则双曲线的离心率为 2 8.已知sin(???3?)?,??(0,),则cos?的值为652A. 43?343?34?3333?4 B.101010 109.在三棱锥P?ABC中,已知PA?底面ABC,?BAC?120?,PA?AB?AC?2.若该三棱锥的顶点都在同一个球面上,则该球的表面积为????10.已知定义在R上的奇函数f(x)满足f(x?2)?f(x)?0,且当x?0,1时,f(x)?log2(x?1).则下列不等式正确的是A. f?log27??f??5??f?6? B. f?log27??f?6??f??5? C. f??5??f?log27??f?6? D. f??5??f?6??f?log27? 11.设函数f(x)?sin(2x????),若x1x2??,且f(x1)?f(x2)?0,则x2?x1的取值范围为3B.(,+?)C.(A.(,+?)?6?32?4?,??),??)D.(33xex?m=0有三个不相等的实数根x1,x2,x3,且x1?0?x2第II卷二、填空题:本大题共4道小题,每小题5分,共20分.13.(x+2y)5的展开式中的第三项系数为???????????????????????????????????.?x?y?1?14.若实数x,y满足线性约束条件?y?x,则x?2y的最大值为??????????????????. ?2x?y?4? E15.如图,在直角梯形ABDE中,已知?ABD??EDB?90,C是BD上一点,?AB?3?3,?ACB?15?,?ECD?60 ?,?EAC?45?,则线段DE的长度为?????????. ABCDABCD为正方形,P为A1D1的中点,AD?2,AA116.在长方体ABCD?A1BC11D1中,已知底面正方形ABCD所在平面内的一个动点,且QC?...?3,点Q是2QP,则线段BQ的长度的最大值为?????????????????. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. 已知等差数列求数列?an?的前n项和为Sn,a2?3,S4?16,n?N*. ?an?的通项公式;n设bn?2an,求数列?bn?的前n项和Tn.18. 某部门为了解一企业在生产过程中的用水量情况,对每天的用水量作了记录,得到了大量的该企业的日用水量的统计数据.从这些统计数据中随机抽取12天的数据作为样本,得到如图所示的茎叶图. 若用水量不低于95,则称这一天的用水量超标. 从这12天的数据中随机抽取3个,求至多有1天是用水量超标的概率;以这12天的样本数据中用水量超标的频率作为概率,估计该企业未来3天中用水量超标的天数.记随机变量X为未来这3天中用水量超标的天数,求X的分布列和数学期望.19. 如图①,在边长为5的菱形ABCD中,AC?6.现沿对角线AC把?ADC 翻折到?APC的位置得到四面体P?ABC,如图②所示.已知PB?42. 求证:平面PAC?平面ABC;????1????若Q是线段AP上的点,且AQ=AP,求二面角Q?BC?A的余弦值. 3DPACABBC 图①图②20. x2y2已知椭圆C:2?2?1(a?b?0)的右焦点F(3,0),长半轴与短半轴之比等于2. ab求椭圆C 的标准方程;设不经过点B(0,1)的直线l与椭圆C相交于不同的两点M,N.若线段MN的中点H满足MN=2BH,证明直线l过定点,并求出该定点的坐标.21. 已知函数f(x)?e,其中e????为自然对数的底数. x 若曲线y?f(x)在点P(x0,e0)处的切线方程为y?kx?b,求k?b的最小值;当常数m??2,+??时,已知函数g(x)?(x?1)f(x)?mx2?2在(0,??)上有两个零点x1,x2?x1?x2?.证明:ln x4?x2?x1?m. e请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.22.选修4-4:极坐标与参数方程1?x?2?t?2?(t为参数).在以坐标原点O为极点,x轴的正在平面直角坐标系xOy中,直线l的参数方程为??y?2?3t??2半轴为极轴的极坐标系中,曲线C的极坐标方程为?sin2??4sin???. 写出直线l的普通方程和曲线C的直角坐标方程;已知点M的直角坐标为(2,2).若直线l与曲线C相交于不同的两点A,B,求MA?MB 的值.23.选修4-5:不等式选讲已知函数f(x)?x?2?kx?1,k?R. 当k?1时,若不等式f(x)?4的解集为?x|x1若关于x的不等式f(x)?k当x?R时恒成立,求k的最大值.数学参考答案及评分意见第I卷一.选择题:(每小题5分,共60分) ;;;;;;;;;;;第II卷二.填空题:(每小题5分,共20分) ;;;三.解答题:(共70分) 17.解:设数列?an?的公差为d.?a2?3,S4?16,?a1?d?3,4a1?6d?16. 解得d?2,a1?1.???4分?an?2n?1.???6分题意,bn?(2n?1)?2n. ?Tn?1?21?3?22?????( 2n?3)?2n?1?(2n?1)?2n.? 2Tn??????????1?22?????(2n?3)?2n?(2n?1 )?2n?1.??-?,可得?Tn?1?21?2?(22?23?????2n)?(2n ?1)?2n?1.???9分??Tn?2?23(2n?1?1)?(2n?1)?2n?1??6?( ?2n?3)?2n?1. ???11分?Tn?6?(2n?3)?2n?1.? ??12分18.解:记“从这12天的数据中随机抽取3个,至多有1天是用水量超标” 为事件 A. 23C1CC16842488则P(A)????.???4分33C12C12220551以这12天的样本数据中用水量超标的频率作为概率,易知其概率为. 3 随机变量X表示未来三天用水量超标的天数,∴X的取值分别为:0,1,2,3. 易知X?B(3,13),P(X?k)?Ck123(3)k(3)3?k,k?0,1 ,2,3. 则P(X?0)?827,P(X?1)?49,P(X?2)?29,P(X?3)?127. ???8分∴随机变量X的分布列为X 0 1 2 3 P 8 4 212799 27 ???10分数学期望E(X)?3?13?1.???12分解:取AC的中点O,连接PO,BO得到?PBO. ?ABCD是菱形,?PA?PC,PO?AC. ?DC?5,AC?6,?OC?3,PO?OB?4, ?PB?42,?PO2?OB2? PB2. ?PO?OB. ?BO?AC?O,?PO?平面ABC. ?PO?平面PAC,?平面ABC?平面PAC.???4分?AB?BC,?BO?AC. 易知OB,OC,OP两两相互垂直. 以O为坐标原点,???OB?,???OC?,???OP?分别为x轴,y轴,z轴的Oxyz,如图所示.则B(4,0,0),C(0,3,0),P(0,0,4),A(0,?3,0). 设点Q(x,y,z). ???AQ??1???3AP?,得Q(0,?2,4).???6分3正方19.向建立空间直角坐标系????????4?BC?(?4,3,0),BQ?(?4,? 2,). 3设n1?(x1,y1,z1)为平面BCQ 的一个法向量. 3??????4x?3y?0?x?y1???n1?BC?0?1?141. ??.解得??????44?4x?2y?z=011?n1?BQ?0?1?y= z?3??1151?取z1=15,则n1?(3,4,15).???8分取平面ABC的一个法向量n2?(0,0,1). ?cosn1,n2?n1?n215310?? ?11分??,222n1n210 3?4?15310.???12分10?二面角Q?BC?A的余弦值为20.解:?c?3,∴a?2,b?1. a?2,a2?b2?c2,bx2???4分?椭圆的标准方程为?y2?易知当直线l的斜率不存在时,不合题意. 设直线l的方程为y?kx?m(m?1),点M(x1,y1),N(x2,y2). 联立??y?kx?m222消去y 可得(4k?1)x?8kmx?4m?4?0. ,22?x?4y?4????4k2?1?m2?0??8km???x1?x 2?2.4k?1??4m2?4?x1x2?4k2?1?MN=2BH,可知点B在以MN为直径的圆上. ??????????BM?BN. ?BM?BN ?0.???7分??????????BM?BN?(x1,kx1?m?1 )?(x2,kx2?m?1) ?(k2?1)x1x2?k( m?1)(x1?x2)?(m?1)2?0,4m2?4?8km?(k?1)2?k(m?1)2?(m?1)2?0. 4k?14k?12整理,得5m?2m?3?0. 解得m??23或m?1. 5∴直线l的方程为y?kx?. 35故直线l经过定点,且该定点的坐标为(0,?).3???12分521.解:曲线在点P(x0,ex0)处的切线为y?ex0x?x0ex0?ex0. ?k?ex0,b??x0e x0?ex0. ?k?b?x0ex0.???3分设H(x)?xex. H?(x)?(x?1)ex?0,解得x??1. 当x???时,H?(x)?0,∴H(x)单调递增; 当x???时, H?(x)?0,∴H(x)单调递减. 1?H(x)的极小值为H(?1)??. e∴k?b的最小值为?.1???5分e当x?0时,g?(x)?x(ex?2m)?0,解得x?ln2m. 当x?ln2m时,g?(x)?0,∴g(x)在(ln2m,??)上单调递增;当0?x?ln2m时,g?(x)?0,∴g(x)在(0,ln2m)上单调递减. ∴g(x)的极小值为g(ln2m).???7分?g(ln2m)?0. ∵g(1)?2?m?0,x?ln2m?ln4?1,又?g(0)?1?0,g(1)?2?m?0,??x1?(0,1),使得g(x1)?0. 4???9分?x2?ln2m?ln4,?x2?x1?ln4?1?当x?m时,g(m)?(m?1)em?m3?2,m?2. ?g?(m)? mem?3m2?m(em?3m). 设G(m)?em?3m,m?2. ?G?(m)?em?3?0, ?G(m)在(2,??)上单调递增. ?G(m)?G(2)?e2?6?0.?g?(m)?0恒成立. ?g(m)?g(2)?e2?6?0.??x2?(ln2m, m),使得g(x2)?0. ?m?x2.?m?x2?x1. 故ln4?x2?x1?m成立.???12分e1?x?2?t?2?22.解:?消去参数t可得y?3(x?2)?2.,?y?2?3t??2∴直线l的普通方程为3x?y?2?23?0.???2分??sin2??4sin???,??2sin2??4?sin ???2. ??sin??y,?2?x2?y2, 故曲线C 的直角坐标方程为x?4y.???4分21?x?2?t?1232?2t).将?代入抛物线方程x?4y,可得(2?t)?4(2?22 ?y?2?3t??2即t?(8?83)t?16?0.???8分设点A,B对应的参数分别为t1,t2. 则??0,t1+t2?83?8,t1t2??16, 2∴MA?MB?t1t2?16.???10分23.解:题意,得x?2?x?1?4.(i)当x?2时,原不等式即2x?5.∴2?x?5;2 3;(ii)当x???时,原不等式即?2x?3.∴??x??1 2(iii)当???x?2时,原不等式即3???∴?1?x?2. 综上,原不等式的解集为?x|???3?x?2355?x??,x?,即. ?12222??x1?x2?1.??? 5分题意,得x?2?kx?1?k. 当x?2时,即不等式3k?k成立.?k?0. (i)当x??2或x?0时, ?x?1?1?不等式|x?2|?k|x?1|?k恒成立. ,(ii)当?2?x??1时, 原不等式可化为2?x?kx?k?k.可得k?2?x4??1?.x?2x?2 ?k?3. (iii)当?1?x?0时, 原不等式可化为2?x?kx?k?k.可得k?1?2. x?k?3. 综上,可得0?k?3,即k的最大值为3.???10分3;(ii)当x???时,原不等式即?2x?3.∴??x??1 2(iii)当???x?2时,原不等式即3???∴?1?x?2. 综上,原不等式的解集为?x|???3?x?2355?x??,x?,即. ?12222??x1?x2?1.??? 5分题意,得x?2?kx?1?k. 当x?2时,即不等式3k?k成立.?k?0. (i)当x??2或x?0时, ?x?1?1?不等式|x?2|?k|x?1|?k恒成立. ,(ii)当?2?x??1时, 原不等式可化为2?x?kx?k?k.可得k?2?x4??1?.x?2x?2 ?k?3. (iii)当?1?x?0时, 原不等式可化为2?x?kx?k?k.可得k?1?2. x?k?3. 综上,可得0?k?3,即k的最大值为3.???10分。
┃精选3套试卷┃2018年成都某名校初中中考数学第一次联考试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.关于x 的不等式21x a --的解集如图所示,则a 的取值是( )A .0B .3-C .2-D .1- 【答案】D【解析】首先根据不等式的性质,解出x≤12a -,由数轴可知,x≤-1,所以12a -=-1,解出即可; 【详解】解:不等式21x a -≤-,解得x<12a -, 由数轴可知1x <-,所以112a -=-, 解得1a =-;故选:D .【点睛】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )A .B .C .D .【答案】C【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C 左视图与俯视图都是,故选C. 3.如图,在平面直角坐标系中,A (1,2),B (1,-1),C (2,2),抛物线y=ax 2(a≠0)经过△ABC 区域(包括边界),则a 的取值范围是( )A .1a ≤- 或 2a ≥B .10a -≤< 或 02a <≤C .10a -≤< 或112a <≤D .122a ≤≤ 【答案】B【解析】试题解析:如图所示:分两种情况进行讨论:当0a >时,抛物线2y ax =经过点()1,2A 时,2,a =抛物线的开口最小,a 取得最大值2.抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:0 2.a <≤当0a <时,抛物线2y ax =经过点()1,1B -时,1,a =-抛物线的开口最小,a 取得最小值 1.-抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:10.a -≤<故选B.点睛:二次函数()20,y ax bx c a =++≠ 二次项系数a 决定了抛物线开口的方向和开口的大小, 0,a >开口向上,0,a <开口向下.a 的绝对值越大,开口越小.4.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A.2 B.3 C.5 D.7【答案】C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.5.如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则CFCD的值是()A.1 B.12C.13D.14【答案】C【解析】由题意知:AB=BE=6,BD=AD﹣AB=2(图2中),AD=AB﹣BD=4(图3中);∵CE∥AB,∴△ECF∽△ADF,得12 CE CFAD DF==,即DF=2CF,所以CF:CD=1:3,故选C.【点睛】本题考查了矩形的性质,折叠问题,相似三角形的判定与性质等,准确识图是解题的关键. 6.如图,等边△ABC的边长为1cm,D、E分别AB、AC是上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分的周长为()cmA.1 B.2 C.3 D.4【答案】C【解析】由题意得到DA′=DA,EA′=EA,经分析判断得到阴影部分的周长等于△ABC的周长即可解决问题.【详解】如图,由题意得:DA′=DA,EA′=EA,∴阴影部分的周长=DA′+EA′+DB+CE+BG+GF+CF=(DA+BD)+(BG+GF+CF)+(AE+CE)=AB+BC+AC=1+1+1=3(cm)故选C.【点睛】本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.7.如图所示,数轴上两点A,B分别表示实数a,b,则下列四个数中最大的一个数是()A.a B.b C.1aD.1b【答案】D【解析】∵负数小于正数,在(0,1)上的实数的倒数比实数本身大.∴1a <a<b<1b,故选D.8.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 【答案】D 【解析】根据分式的基本性质,x ,y 的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.【详解】根据分式的基本性质,可知若x ,y 的值均扩大为原来的3倍,A 、23233x x x y x y++≠--,错误; B 、22629y y x x≠,错误; C 、3322542273y y x x≠,错误; D 、()()22221829y y x y x y --=,正确;故选D .【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.9.如图,△ABC 中,∠B =70°,则∠BAC =30°,将△ABC 绕点C 顺时针旋转得△EDC .当点B 的对应点D 恰好落在AC 上时,∠CAE 的度数是( )A .30°B .40°C .50°D .60°【答案】C 【解析】由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE ,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.【详解】∵∠B =70°,∠BAC =30°∴∠ACB =80°∵将△ABC 绕点C 顺时针旋转得△EDC .∴AC =CE ,∠ACE =∠ACB =80°∴∠CAE =∠AEC =50°故选C.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.10.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是()A.6B.5C.4D.3【答案】B【解析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】综合主视图和俯视图,底层最少有4个小立方体,第二层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是5个.故选:B.【点睛】此题考查由三视图判断几何体,解题关键在于识别图形二、填空题(本题包括8个小题)11.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB 于G,连接EF,则线段EF的长为_____.【答案】1【解析】在△AGF和△ACF中,{GAF CAF AF AF AFG AFC∠=∠=∠=∠,∴△AGF≌△ACF,∴AG=AC=4,GF=CF,则BG=AB−AG=6−4=2.又∵BE=CE,∴EF是△BCG的中位线,∴EF=12BG=1. 故答案是:1.12.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A 处修建通往百米观景长廊BC 的两条栈道AB ,AC .若∠B=56°,∠C=45°,则游客中心A 到观景长廊BC 的距离AD 的长约为_____米.(sin56°≈0.8,tan56°≈1.5)【答案】60【解析】根据题意和图形可以分别表示出AD 和CD 的长,从而可以求得AD 的长,本题得以解决.【详解】∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米, ∴BD=tan 56AD ︒,CD=tan 45AD ︒, ∴tan 56AD ︒+tan 45AD ︒=100, 解得,AD≈60 考点:解直角三角形的应用.13.一次函数y=kx+3的图象与坐标轴的两个交点之间的距离为5,则k 的值为______.【答案】34± 【解析】首先求出一次函数y=kx+3与y 轴的交点坐标;由于函数与x 轴的交点的纵坐标是0,可以设横坐标是a ,然后利用勾股定理求出a 的值;再把(a ,0)代入一次函数的解析式y=kx+3,从而求出k 的值.【详解】在y=kx+3中令x=0,得y=3,则函数与y 轴的交点坐标是:(0,3);设函数与x 轴的交点坐标是(a ,0),根据勾股定理得到a 2+32=25,解得a=±4;当a=4时,把(4,0)代入y=kx+3,得k=34-; 当a=-4时,把(-4,0)代入y=kx+3,得k=34; 故k 的值为34或34- 【点睛】 考点:本体考查的是根据待定系数法求一次函数解析式解决本题的关键是求出函数与y 轴的交点坐标,然后根据勾股定理求得函数与x 轴的交点坐标,进而求出k 的值.14.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).【答案】①②④【解析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-2b a =1, ∴ab <0,①正确;∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.15.随意的抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全相同),那么这粒豆子落在黑色方格中的可能性是_____.【答案】13【解析】根据面积法:求出豆子落在黑色方格的面积与总面积的比即可解答.【详解】∵共有15个方格,其中黑色方格占5个,∴这粒豆子落在黑色方格中的概率是515=13, 故答案为13.【点睛】此题考查了几何概率的求法,利用概率=相应的面积与总面积之比求出是解题关键.16.已知关于x 的一元二次方程20x mx n ++=的两个实数根分别是x 1 =-2,x 2 =4,则+m n 的值为________.【答案】-10【解析】根据根与系数的关系得出-2+4=-m ,-2×4=n ,求出即可.【详解】∵关于x 的一元二次方程20x mx n ++=的两个实数根分别为x 1 =-2,x 2 =4,∴−2+4=−m ,−2×4=n ,解得:m=−2,n=−8,∴m+n=−10,故答案为:-10【点睛】此题考查根与系数的关系,掌握运算法则是解题关键17.若正六边形的边长为2,则此正六边形的边心距为______. 【答案】3.【解析】连接OA 、OB ,根据正六边形的性质求出∠AOB ,得出等边三角形OAB ,求出OA 、AM 的长,根据勾股定理求出即可.【详解】连接OA 、OB 、OC 、OD 、OE 、OF ,∵正六边形ABCDEF ,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF ,∴∠AOB=60°,OA=OB ,∴△AOB 是等边三角形,∴OA=OB=AB=2,∵AB ⊥OM ,∴AM=BM=1,在△OAM 中,由勾股定理得:318.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____.【答案】43【解析】试题分析:1204=2180r ππ⨯,解得r=43. 考点:弧长的计算.三、解答题(本题包括8个小题)19.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【答案】羊圈的边长AB,BC分别是20米、20米.【解析】试题分析:设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.试题解析:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得x1=20,x2=1.则100﹣4x=20或100﹣4x=2.∵2>21,∴x2=1舍去.即AB=20,BC=20考点:一元二次方程的应用.20.请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)【答案】(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.【解析】(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n乙商场所需费用为5×40+(n﹣5×2)×8=120+8n则∵n>10,且n为整数,∴160+6.4n﹣(120+8n)=40﹣1.6n讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,∴选择乙商场购买更合算.当n >25时,40﹣1.6n <0,即 160+0.64n <120+8n ,∴选择甲商场购买更合算.【点睛】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.21.已知关于x 的一元二次方程 2(1)(4)30m x m x -+--=(m 为实数且1m ≠).求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数...m 的值.【答案】 (1)证明见解析;(2)2m =或4m =.【解析】(1)求出△的值,再判断出其符号即可;(2)先求出x 的值,再由方程的两个实数根都是整数,且m 是正整数求出m 的值即可.【详解】(1)依题意,得()()()24413m m =---⨯- 28161212m m m =-++-,244m m =++,()22m =+.∵()220m +≥,∴方程总有两个实数根.(2)∵()()1130x m x ⎡⎤+--=⎣⎦,∴11x =-,231x m =-. ∵方程的两个实数根都是整数,且m 是正整数,∴11m -=或13m -=.∴2m =或4m =.【点睛】本题考查的是根的判别式,熟知一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 的关系是解答此题的关键.22.先化简:2222421121x x x x x x x ---÷+--+,然后在不等式2x ≤的非负整数解中选择一个适当的数代入求值. 【答案】21x +;2. 【解析】先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式=()()()()2221 21112x xxx x x x---⋅++--=()21 211xxx x--++=21 x+2x≤的非负整数解有:2,1,0,其中当x取2或1时分母等于0,不符合条件,故x只能取0∴将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.23.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及△AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围.【答案】(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.【解析】(1)先把B点坐标代入代入y=mx,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;(2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和△AOB的面积=S△AOC+S△BOC 进行计算;(3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方.【详解】解:∵B(2,﹣4)在反比例函数y=mx的图象上,∴m=2×(﹣4)=﹣8,∴反比例函数解析式为:y=﹣8x,把A(﹣4,n)代入y=﹣8x,得﹣4n=﹣8,解得n=2,则A点坐标为(﹣4,2).把A(﹣4,2),B(2,﹣4)分别代入y=kx+b,得4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩, ∴一次函数的解析式为y =﹣x ﹣2;(2)∵y =﹣x ﹣2,∴当﹣x ﹣2=0时,x =﹣2,∴点C 的坐标为:(﹣2,0),△AOB 的面积=△AOC 的面积+△COB 的面积 =12×2×2+12×2×4 =6;(3)由图象可知,当﹣4<x <0或x >2时,一次函数的值小于反比例函数的值.【点睛】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.24.在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x ,王芳在剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点M 的坐标()x,y()1画树状图列表,写出点M 所有可能的坐标;()2求点()M x,y 在函数y x 1=+的图象上的概率.【答案】()1见解析;()124. 【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)找出点(x ,y)在函数y=x+1的图象上的情况,利用概率公式即可求得答案.【详解】()1画树状图得:共有12种等可能的结果()1,2、()1,3、()1,4、()2,1、()2,3、()2,4、()3,1、()3,2、()3,4、()4,1、()4,2、()4,3;()2在所有12种等可能结果中,在函数y x 1=+的图象上的有()1,2、()2,3、()3,4这3种结果,∴点()M x,y 在函数y x 1=+的图象上的概率为31124=. 【点睛】 本题考查的是用列表法或树状图法求概率,一次函数图象上点的坐标特征.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.25.如图,在△ABC 中,AB=AC ,点P 、D 分别是BC 、AC 边上的点,且∠APD=∠B,求证:AC•CD=CP•BP ;若AB=10,BC=12,当PD ∥AB 时,求BP 的长.【答案】(1)证明见解析;(2)253. 【解析】(2)易证∠APD=∠B=∠C ,从而可证到△ABP ∽△PCD ,即可得到BP AB CD CP=,即AB•CD=CP•BP ,由AB=AC 即可得到AC•CD=CP•BP ; (2)由PD ∥AB 可得∠APD=∠BAP ,即可得到∠BAP=∠C ,从而可证到△BAP ∽△BCA ,然后运用相似三角形的性质即可求出BP 的长.解:(1)∵AB=AC ,∴∠B=∠C .∵∠APD=∠B ,∴∠APD=∠B=∠C .∵∠APC=∠BAP+∠B ,∠APC=∠APD+∠DPC ,∴∠BAP=∠DPC ,∴△ABP ∽△PCD ,∴BP AB CD CP=, ∴AB•CD=CP•BP .∵AB=AC ,∴AC•CD=CP•BP ;(2)∵PD ∥AB ,∴∠APD=∠BAP .∵∠APD=∠C ,∴∠BAP=∠C .∵∠B=∠B ,∴△BAP ∽△BCA ,∴BA BP BC BA=. ∵AB=10,BC=12, ∴101210BP =,∴BP=253.“点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP转化为证明AB•CD=CP•BP是解决第(1)小题的关键,证到∠BAP=∠C进而得到△BAP∽△BCA是解决第(2)小题的关键.26.边长为6的等边△ABC 中,点D ,E 分别在AC ,BC 边上,DE∥AB,EC =23如图1,将△DEC 沿射线EC 方向平移,得到△D′E′C′,边D′E′与AC 的交点为M ,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.如图2,将△DEC 绕点C 旋转∠α(0°<α<360°),得到△D ′E′C,连接AD′,BE′.边D′E′的中点为P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;②连接AP ,当AP 最大时,求AD′的值.(结果保留根号)【答案】(1) 当3时,四边形MCND'是菱形,理由见解析;(2)①AD'=BE',理由见解析;②221【解析】(1)先判断出四边形MCND'为平行四边形,再由菱形的性质得出CN=CM,即可求出CC';(2)①分两种情况,利用旋转的性质,即可判断出△ACD≌△BCE'即可得出结论;②先判断出点A,C,P三点共线,先求出CP,AP,最后用勾股定理即可得出结论.【详解】(1)当3MCND'是菱形.理由:由平移的性质得,CD∥C'D',DE∥D'E',∵△ABC是等边三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°-∠ACB=120°,∵CN是∠ACC'的角平分线,∴∠D'E'C'=12∠ACC'=60°=∠B,∴∠D'E'C'=∠NCC',∴D'E'∥CN,∴四边形MCND'是平行四边形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等边三角形,∴MC=CE',NC=CC',∵E'C'=23,∵四边形MCND'是菱形,∴CN=CM,∴CC'=1E'C'=3;2(2)①AD'=BE',理由:当α≠180°时,由旋转的性质得,∠ACD'=∠BCE',由(1)知,AC=BC,CD'=CE',∴△ACD'≌△BCE',∴AD'=BE',当α=180°时,AD'=AC+CD',BE'=BC+CE',即:AD'=BE',综上可知:AD'=BE'.②如图连接CP,在△ACP中,由三角形三边关系得,AP<AC+CP,∴当点A,C,P三点共线时,AP最大,如图1,在△D'CE'中,由P为D'E的中点,得AP⊥D'E',3∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,22=221+'.AP PD【点睛】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(1)的关键是四边形MCND'是平行四边形,解(2)的关键是判断出点A,C,P三点共线时,AP最大.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为().A.50°B.40°C.30°D.25°【答案】B【解析】解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,根据平角为180°可得,∠2=90°﹣50°=40°.故选B.【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.2.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144【答案】D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.3.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-3【答案】B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键. 4.如图所示,在平面直角坐标系中,抛物线y=-x 2+23x 的顶点为A 点,且与x 轴的正半轴交于点B ,P 点为该抛物线对称轴上一点,则OP +12AP 的最小值为( ).A .3B .23C .32214+D .3232+ 【答案】A 【解析】连接AO,AB,PB,作PH ⊥OA 于H,BC ⊥AO 于C,解方程得到-x 2+23x=0得到点B,再利用配方法得到点A ,得到OA 的长度,判断△AOB 为等边三角形,然后利用∠OAP=30°得到PH=12AP,利用抛物线的性质得到PO=PB,再根据两点之间线段最短求解.【详解】连接AO,AB,PB,作PH ⊥OA 于H,BC ⊥AO 于C,如图当y=0时-x 2+3,得x 1=0,x 23所以B (3),由于y=-x 2+332+3,所以A 3,3),所以3,所以三角形AOB 为等边三角形,∠OAP=30°得到PH= 12AP,因为AP 垂直平分OB,所以PO=PB ,所以OP +12AP=PB+PH ,所以当H,P,B 共线时,PB+PH 最短,而BC=32AB=3,所以最小值为3. 故选A.【点睛】本题考查的是二次函数的综合运用,熟练掌握二次函数的性质和最短途径的解决方法是解题的关键. 512233499100+++++的整数部分是( ) A .3B .5C .9D .6 【答案】C【解析】解:∵21+21,23+3299100+=99100,∴原式2﹣1+3﹣2+…﹣99+100=﹣1+10=1.故选C.6.cos30°=()A.12B.22C.32D.3【答案】C【解析】直接根据特殊角的锐角三角函数值求解即可.【详解】3 cos30︒=故选C.【点睛】考点:特殊角的锐角三角函数点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.7.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°【答案】D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.8.如图,在△ABC中,分别以点A和点C为圆心,大于12AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E,若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A .16cmB .19cmC .22cmD .25cm【答案】B 【解析】根据作法可知MN 是AC 的垂直平分线,利用垂直平分线的性质进行求解即可得答案.【详解】解:根据作法可知MN 是AC 的垂直平分线,∴DE 垂直平分线段AC ,∴DA=DC ,AE=EC=6cm ,∵AB+AD+BD=13cm ,∴AB+BD+DC=13cm ,∴△ABC 的周长=AB+BD+BC+AC=13+6=19cm ,故选B .【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.9.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数k y x(x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k 的值是( )A .92B .74C .245D .12【答案】C【解析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a ,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【详解】∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上,∴4ab =k , ∴E (a , k a ), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a )=9, ∴k=245, 故选:C 【点睛】考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键.10.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP,CP 分别平分∠EDC 、∠BCD ,则∠P 的度数是( )A .60°B .65°C .55°D .50°【答案】A 【解析】试题分析:根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE 的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠P 的度数.解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD 、∠CDE 的平分线在五边形内相交于点O ,∴∠PDC+∠PCD=(∠BCD+∠CDE )=120°,∴∠P=180°﹣120°=60°.故选A .考点:多边形内角与外角;三角形内角和定理.二、填空题(本题包括8个小题)11.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为_____.【答案】5000x =8000600x 【解析】设甲每小时搬运x 千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg 所用时间与乙搬运8000kg 所用时间相等建立方程求出其解就可以得出结论.【详解】解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,由题意得:5000x=8000600+x.故答案是:5000x=8000600+x.【点睛】本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.12.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣4x图象上的两个点,则y1与y2的大小关系为__________.【答案】y1<y1【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y1的大小,从而可以解答本题.详解:∵反比例函数y=-4x,-4<0,∴在每个象限内,y随x的增大而增大,∵A(-4,y1),B(-1,y1)是反比例函数y=-4x图象上的两个点,-4<-1,∴y1<y1,故答案为:y1<y1.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.13.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是_____.【答案】40°【解析】根据外角的概念求出∠ADC的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【详解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为40°.【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.14.如图,在边长为3的菱形ABCD 中,点E 在边CD 上,点F 为BE 延长线与AD 延长线的交点.若DE=1,则DF 的长为________.【答案】1.1【解析】求出EC ,根据菱形的性质得出AD ∥BC ,得出相似三角形,根据相似三角形的性质得出比例式,代入求出即可.【详解】∵DE=1,DC=3,∴EC=3-1=2,∵四边形ABCD 是菱形,∴AD ∥BC ,∴△DEF ∽△CEB , ∴DF DE BC CE=, ∴132DF =, ∴DF=1.1,故答案为1.1.【点睛】此题主要考查了相似三角形的判定与性质,解题关键是根据菱形的性质证明△DEF ∽△CEB ,然后根据相似三角形的性质可求解.15.已知同一个反比例函数图象上的两点()111P x ,y 、()222P x ,y ,若21x x 2=+,且21111y y 2=+,则这个反比例函数的解析式为______.【答案】y=4x【解析】解:设这个反比例函数的表达式为y=k x .∵P 1(x 1,y 1),P 2(x 2,y 2)是同一个反比例函数图象上的两点,∴x 1y 1=x 2y 2=k ,∴11y =121x k y ,=2211112x k y y =+.,∴21y ﹣11y =12,∴21x x k k -=12,∴21x x k -=12,∴k=2(x 2﹣x 1).∵x 2=x 1+2,∴x 2﹣x 1=2,∴k=2×2=4,∴这个反比例函数的解析式为:y=4x.故答案为y=4x. 点睛:本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.同时考查了式子的变形.16.设[x)表示大于x的最小整数,如[3)=4,[−1.2)=−1,则下列结论中正确的是______ .(填写所有正确结论的序号)①[0)=0;②[x)−x的最小值是0;③[x)−x的最大值是0;④存在实数x,使[x)−x=0.5成立.【答案】④【解析】根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.【详解】①[0)=1,故本项错误;②[x)−x>0,但是取不到0,故本项错误;③[x)−x⩽1,即最大值为1,故本项错误;④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.故答案是:④.【点睛】此题考查运算的定义,解题关键在于理解题意的运算法则.17.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____.【答案】1【解析】观察给出的数,发现个位数是循环的,然后再看2019÷4的余数,即可求解.【详解】由给出的这组数21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…,个位数字1,3,1,5循环出现,四个一组,2019÷4=504…3,∴22019﹣1的个位数是1.故答案为1.【点睛】本题考查数的循环规律,确定循环规律,找准余数是解题的关键.18.已知图中的两个三角形全等,则∠1等于____________.【答案】58°【解析】如图,∠2=180°−50°−72°=58°,∵两个三角形全等,∴∠1=∠2=58°.故答案为58°.三、解答题(本题包括8个小题)19.某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;求销售单价为多少元时,该文具每天的销售利润最大;商场的营销部结合上述情况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由【答案】(1) w=-10x2+700x-10000;(2) 即销售单价为35元时,该文具每天的销售利润最大;(3) A方案利润更高.【解析】试题分析:(1)根据利润=(单价-进价)×销售量,列出函数关系式即可.(2)根据(1)式列出的函数关系式,运用配方法求最大值.(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.【详解】解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴当x=35时,w有最大值2250,即销售单价为35元时,该文具每天的销售利润最大.(3)A方案利润高,理由如下:A方案中:20<x≤30,函数w=-10(x-35)2+2250随x的增大而增大,∴当x=30时,w有最大值,此时,最大值为2000元.B方案中:10x50010x2025-+≥⎧⎨-≥⎩,解得x的取值范围为:45≤x≤49.∵45≤x≤49时,函数w=-10(x-35)2+2250随x的增大而减小,∴当x=45时,w有最大值,此时,最大值为1250元.∵2000>1250,∴A方案利润更高20.知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A 地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C。
2018年初三一诊考试数学试卷及答案
2018年初三一诊考试数学试题答案及解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣的相反数是()A.5B.C.﹣D.﹣52.(3分)已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()A.1.239×10﹣3g/cm3B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3D.12.39×10﹣4g/cm33.(3分)如图,立体图形的俯视图是()A.B.C.D.4.(3分)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.πD.π5.(3分)如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为()A.40°B.36°C.50°D.45°(6.(3分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5D.47.3分)使得关于x的不等式组有解,且使分式方程有非负整数解的所有的m的和是()A.﹣1B.2C.﹣7D.08.(3分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为△x,AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)因式分解:9a3b﹣ab=.10.(3分)如图,直线a∥b,∠P=75°,∠2=30°,则∠1=.11.(3分)已知一组数据:3,3,4,5,5,则它的方差为.12.(3分)今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商F (品共支付 16 元,B 购 5 件甲商品和 3 件乙商品共支付 25 元,求一件甲商品和一件乙商品各售多少元.设甲商品售价 x 元/件,乙商品售价 y 元/件,则可列出方程组.13.(3 分)如图,在 Rt △ABC 中,∠A=30°,BC=2 ,以直角边 AC 为直径作⊙O 交 AB 于点 D ,则图中阴影部分的面积是.14.(3 分)已知 x 1,x 2 是关于 x 的方程 x 2+ax ﹣2b=0 的两实数根,且 x 1+x 2=﹣2, x 1•x 2=1,则 b a 的值是.15.(3 分)对于实数 a ,b ,我们定义符号 max {a ,b }的意义为:当 a ≥b 时, max {a ,b }=a ;当 a <b 时,max {a ,b ]=b ;如:max {4,﹣2}=4,max {3,3}=3,若关于 x 的函数为 y=max {x +3,﹣x +1},则该函数的最小值是.16.(3 分)如图,在正方形 ABCD 中,AC 为对角线,E 为 AB 上一点,过点 E 作EF ∥AD ,与 AC 、DC 分别交于点 G , ,H 为 CG 的中点,连接 DE ,EH ,DH ,FH .下列结论:①EG=DF ;②∠AEH +∠ADH=180°;③△EHF ≌△DHC ;④若,其中结论正确的有 .△DHC= ,则 3S △EDH =13S三、解答题(本大题共 8 个题,共 72 分)17.(10 分)(1)计算:|﹣2|﹣(π﹣2015)0+( )﹣2﹣2sin60°+;(2)先化简,再求值:÷(2+ ),其中 a=.18. 6 分)如图,分别过点C 、B 作△ABC 的 BC 边上的中线 AD 及其延长线的垂线,垂足分别为 E 、F .求证:BF=CE .(19.8分)“热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.20.(8分)某商城销售A,B两种自行车.A型自行车售价为2100元/辆,B型自行车售价为1750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80000元购进A型自行车的数量与用64000元购进B型自行车的数量相等.(1)求每辆A,B两种自行车的进价分别是多少?(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13000元,求获利最大的方案以及最大利润.21.(8分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)22.(10分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.23.(10分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若tan∠BAD=,且OC=4,求BD的长.24.(12分)如图,已知抛物线y=+bx+c经过△ABC的三个顶点,其中点A (0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的一个动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.2参考答案一、选择题(本大题共 8 小题,每小题 3 分,共 24 分)1-8.B A C B B A CA二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)9. ab (3a +1)(3a ﹣1) .10. 45° .11.12.13.14...﹣ π ..15. 2 .16. ①②③④ .三、解答题(本大题共 8 个题,共 72 分)17.(1)|﹣2|﹣(π﹣2015)0+( )﹣﹣2sin60°+=2﹣1+4﹣2×+2=2﹣1+4﹣+2=5+ ;(2)==÷(2+ )=,当 a=时,原式= = ﹣1.( (18.证明:根据题意,知 CE ⊥AF ,BF ⊥AF ,∴∠CED=∠BFD=90°,又∵AD 是边 BC 上的中线,∴BD=DC ;在 Rt △BDF 和 Rt △CDE 中,∠BDF=∠CDE (对顶角相等),BD=CD ,∠CED=∠BFD ,∴△BDF ≌△CDE (AAS ),∴BF=CE (全等三角形的对应边相等).19.解:(1)四个年级被抽出的人数由小到大排列为 30,45,55,70,∴中位数为 50;(2)根据题意得:3000×(1﹣25%)=2250 人,则该校帮助父母做家务的学生大约有 2250 人;(3)画树状图,如图所示:所有等可能的情况有 12 种,其中恰好是甲与乙的情况有 2 种,则 P== .20、解:1)设每辆 B 型自行车的进价为 x 元,则每辆 A 型自行车的进价为(x +400)元,根据题意,得= ,解得 x=1600,经检验,x=1600 是原方程的解,x +400=1 600+400=2 000,答:每辆 A 型自行车的进价为 2 000 元,每辆 B 型自行车的进价为 1 600 元;(2)由题意,得 y=(2100﹣2000)m +(1750﹣1600) 100﹣m )=﹣50m +15000,根据题意,得,解得:33≤m≤40,∵m为正整数,∴m=34,35,36,37,38,39,40.∵y=﹣50m+15000,k=﹣50<0,∴y随x的增大而减小,∴当m=34时,y有最大值,最大值为:﹣50×34+15000=13300(元).答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.21.解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt△ADF中,AF=AB﹣BF=70m,∠ADF=45°,∴DF=AF=70m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(70﹣10)m.答:障碍物B,C两点间的距离为(70﹣10)m.22.解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),∵OA∥BC,∴S△ABC=S △OBC=×BO×xC=×3×4=6.23.解:(1)连结OB,则OA=OB.如图1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连结BE.如图2,∵在Rt△AOC中,tan∠BAD=tan∠CAO==,且OC=4,∴AC=6,则 BC=6.在 Rt △APO 中,∵AC ⊥OP ,∴△PAC ∽△AOC ,∴AC 2=OC•PC ,解得 PC=9,∴OP=PC +OC=13.在 Rt △ PBC 中 , 由 勾 股 定 理 , 得PB==3,∵AC=BC ,OA=OE ,即 OC 为△ABE 的中位线.∴OC= BE ,OC ∥BE ,∴BE=2OC=8.∵BE ∥OP ,∴△DBE ∽△DPO ,∴=,即=,解得 BD=.24.解:(1)将 A (0,1),B (﹣ 9,10)代入函数解析式,得,解得,抛物线的解析式 y=+2x +1;(2 分)(2)∵AC ∥x 轴,A (0,1),∴ x 2+2x +1=1,解得 x 1=﹣6,x 2=0(舍),即 C 点坐标为(﹣6,1),∵点 A ( 0,1),点 B (﹣9,10),∴直线 AB 的解析式为 y=﹣x +1,设 P (m ,m 2+2m +1),∴E (m ,﹣m +1),∴PE=﹣m +1﹣( m 2+2m +1)=﹣ m 2﹣3m ,∵AC⊥PE,AC=6,(4分)∴S四边形AECP =S△AEC+S△APC=AC•EF+AC•PF,=AC•(EF+PF)=AC•EP=×6(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵﹣6<m<0,∴当m=﹣时,四边形AECP的面积最大值是,此时P(﹣,﹣);(6分)(3)∵y=x2+2x+1=(x+3)2﹣2,∴顶点P(﹣3,﹣2).∴PF=2+1=3,CF=6﹣3=3,∴PF=CF,PC=3,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∵A(0,1),B(﹣9,10),∴AB==9,∴在直线AC上存在满足条件得点Q,设Q(t,1),∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,,CQ=2,(7分)∴Q(﹣4,1);(8分)②当△CPQ∽△ACB时,则=,,∴=,CQ=9,(9分)∴Q(3,1);综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似,Q点的坐标为(﹣4,1)或(3,1).(10分)11/11。
成都市武侯区2018-2019年九年级数学期末试题卷及答案
武侯区2018~2019学年度上期期末质量测评试题卷九年级数学说明:1、本试卷分为A 卷和B 卷,其中A 卷共100分,B 卷共50分,满分150分,考试时间120分钟. 2、此试卷上不答题,所有题的答案请一律答在答题卷上.题号 A 卷A 卷B 卷B 卷 全卷 一 1-10 二 11-14 三 15,16四 17, 18 五 19,20一 21-25 二 26 三 27 四 28 得分A 卷(满分100分)一、选择题:(每小题3分,共30分)1.用配方法解方程x 2+x =2,要使方程左边为x 的完全平方式,应把方程两边同时A .加41 B .加21C .减41 D .减212.如图,⊙O 的直径CD ⊥AB ,∠AOC =60°,则∠CDB =A .20°,B .30°,C .40°,D .50°3.如图,科丽村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离 为5米,那么这两树在坡面上的距离AB=()米A . αcos 5B .αcos 5C . αsin 5D .αsin 54.双曲线y =与直线y =2x +1的一个交点横坐标为﹣1,则k =A .﹣2B .﹣1C . 1D .2 5.对于抛物线21(1)2y x =---3的说法错误的是A.抛物线的开口向下B.抛物线的顶点坐标是(1,-3)C.抛物线的对称轴是直线1x =D.当1x >时,y 随x 的增大而增大6.如图,小明设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆直径为A .9个单位B .10个单位C .12个单位D .15个单位7.△ABC 中,∠A 、∠B 都是锐角,且sinA=21,cosB=23,则△ABC 的形状是 A . 锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 8. 已知反比例函数k y x=的图象如图所示,二次函数222y kx x k =-+的图象大致为9.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠PCA= A .30° B .45° C .60° D .67.5°10.如果关于x 的一元二次方程kx 2-1k 3+x +1=0有两个不相等的实数根,那么k 的取值范围是A . -31≤k <1且k ≠0 B .k <1且k ≠0 C .-31≤k <1 D .k <1二、填空题(每小题4分,共16分)11.方程x(3x-2)=4(3x-2)的根为 .12.已知方程22350--=x x 两根为5,12-,则抛物线2235=--y x x 与x 轴两个交点间距离为 .13.如图,△ABC 的外接圆的圆心坐标为 .14.如图,菱形ABCD 中,对角线AC =10 cm ,BD =6 cm ,则sin∠DAC = . 三、(第15题每小题6分,第16题6分,共18分)15.(1)解方程:2x 2-6x +1=0. ⑵ 计算:︒︒︒sin60cos60tan45-·tan 30°16.一艘轮船自西向东航行,在A 处测得东偏北21.3°方向有一座小岛C ,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近?(参考数据:sin21.3°≈925,tan21.3°≈25, sin63.5°≈910,tan63.5°≈2)四、(第17题9分,第18题9分,共18分) 17.已知甲同学手中藏有三张分别标有数字12,14,1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a ,b .(1)请你用树形图或列表法列出所有可能的结果.题号 1 2 3 4 5 6 7 8 9 10 答案α5米AB(第2题图)ABO CD B C D A (第3题图) (第6题图)B F0 E AODCAB(第14题图)C DAOPB (第9题图)(第13题图)OABxyDC(2)现制定这样一个游戏规则:若所选出的a ,b 能使得210ax bx ++=有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.18.如图,△ABC 是等边三角形,CE 是外角平分线,点D 在AC 上,连结BD 并延长与CE 交于点E . (1)求证:△ABD ∽△CED .(2)若AB =6,AD =2CD ,求BE 的长.五、(第19题9分,第20题9分,共18分)19.4月初某地香菇价格大幅度下调,下调后每斤香菇价格是原价格的23,原来用60元买到的香菇下调后可多买2斤.香菇价格4月底开始回升,经过两个月后,香菇价格上调为每斤14.4元.(1)求4月初香菇价格下调后每斤多少元?(2)求5、6月份香菇价格的月平均增长率.20. 如图,已知A 、B 两点的坐标分别为A (0,23),B (2,0)直线AB 与反比例函数y =mx的图象交与点C 和点D (-1,a ). (1)求直线AB 和反比例函数的解析式; (2)求∠ACO 的度数.B 卷(共50分)一、填空题(每小题4分,共20分)21.设04-x x x x 221=+是方程、两个实数根,则1052231+-x x =_______.22. 已知a 、b ≠0,且,02b -ab 3a 22=+则=+abb a -a b -b a 22________.23.已知:Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D 点,AB =2m ,BD =m -1, 54cos =A .则m=___________.24.如图,AB 是⊙O 的直径,AB =4,过点B 作⊙O 的切线,C 是切线上一点,且BC =2,P 是线段OA 中点,连结PC 交⊙O 于点D ,过点P 作PC 的垂线,交切线BC 于点E ,交⊙O 于点F ,连结DF 交AB 于点G ,则PE 的长为 .25.如图,已知双曲线(k 为常数)与直线l 相交于A 、B 两点,第一象限内的点M (点M 在A 的左侧)在双曲线上,设直线AM 、BM 分别与y 轴交于P 、Q 两点.若AM=m•MP ,BM=n•MQ ,则m ﹣n 的值是______.二、解答题(共9分)26.某商店经销某玩具每个进价60元,每个玩具不得低于80元出售.玩具的销售单价m (元/个)与销售数量n (个)之间的函数关系如图所示.(1)试求表示线段AB 的函数的解析式,并求出当销售数量n=20时单价m 的值;(2)写出该店当一次销售n (n >10)个时,所获利润w (元)与n (个)之间的函数关系式:(3)店长李明经过一段时间的销售发现:卖27个赚的钱反而比卖30个赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他条件不变的情况下,店长应把售价最低价每个80元至少提高到多少?(第24题图) A D EB F CA DOP FG(第25题图)。
2024学年四川省成都市武侯区九年级上学期一诊数学模拟试题
2024学年四川省成都市武侯区九年级上学期一诊数学模拟试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.某几何体的三视图如图所示,则这个几何体是( )A .圆柱B .正方体C .球D .圆锥 2.若方程3x -=□是关于x 的一元二次方程,则“W ”可以是( )A .2x -B .22C .22xD .2y 3.已知四条线段a ,b ,c ,d 成比例,则下列结论正确的是( )A .a b d c =B .a c b d =C .d b a c =D .a d c b = 4.若M 表示平行四边形,N 表示矩形,P 表示菱形,Q 表示正方形,它们之间的关系用下列图形来表示,正确的是( )A .B .C .D . 5.若关于x 的方程()221x m -=+有实数根,则m 的取值范围是( )A .1m >B .1m >-C .m 1≥D . 1m ≥-6.如图,在平面直角坐标系中,矩形OABC 的顶点坐标分别是()0,0O ,()6,0A ,()6,4B ,()0,4C ,已知矩形OA B C '''与矩形OABC 位似,位似中心是原点O ,且矩形OA B C '''的面积等于矩形OABC 面积的14,则点B '的坐标为( )A .()3,2B .()3,2或()3,2--C .()3,2--D .()2,3或()2,3--7.王丽同学在一次用频率估计概率的试验中,统计了某一结果出现的频率,绘出的统计图如图所示,则该试验可能是( )A .关于“从装有2张红桃和1张黑桃的扑克牌盒子中,随机摸出一张(这些扑克牌除花色外都相同),这张扑克牌是黑桃”的试验B .关于“50个同学中,有2个同学生日相同”的试验C .关于“抛一枚质地均匀的硬币,正面朝上”的试验D .关于“掷一枚质地均匀的正方体骰子,出现的点数是1”的试验8.已知反比例函数k y x=的图象如图所示,关于下列说法:①常数0k >;②y 的值随x 值的增大而减小;③若点A 为x 轴上一点,点B 为反比例函数图象上一点,则2ABO S k =V ;④若点(),P m n 在反比例函数的图象上,则点(),P m n --也在该反比例函数的图象上.其中说法正确的是( )A .①②③B .③④C .①④D .②③④二、填空题9.将方程()13x x -=化成一元二次方程的一般形式为 .10.一个口袋中装有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中.不断重复这一过程,共摸了100次球,发现有69次摸到红球,则可估计这个口袋中红球的数量是 . 11.如图,小强自制了一个小孔成像装置,其中纸筒的长度为15cm .他准备了一支长为20cm 的蜡烛,想要得到高度为5cm 的像.蜡烛应放在距离纸筒 cm 的地方.12.在平面直角坐标系xOy 中,一次函数111y k x b =+,222y k x b =+的图象与反比例函数()0m y x x=>的图象如图所示,则当12y y y >>时,自变量x 的取值范围是 .13.如图,先将一张正方形纸向上对折、再向左对折,然后沿着图中的虚线剪开,得到①②两部分,将①展开后得到的平面图形是 .三、解答题14.解方程:(1)221x x +=;(2)()()421321x x x +=+.15.如图,在正方形ABCD 中,延长BC 至点E ,使得:AD CE =连接AC ,AE ,AE 交CD 于点F .(1)试探究ACE △的形状;(2)求AFD ∠的度数.16.2023年9月21日,“天宫课堂”第四课在中国空间站开讲,“太空教师”景海鹏、朱杨柱、桂海潮为广大青少年带来一场精彩的太空科普课,航天员们演示了“球形火焰”“奇妙乒乓球”“动量守恒”和“又见陀螺”四个实验.本次授课活动分别在北京、内蒙古阿拉善盟、陕西延安、安徽桐城及浙江宁波设置了5个地面课堂.(1)若航天员们随机连线一个地面课堂,求北京地面课堂被连线的概率;(请直接写出结果,不必写求解过程)(2)某班组织同学们收看了本次太空科普课,并随机对李明和张敏两位同学进行了关于“你最感兴趣的实验”的采访,若将以上四个实验分别记为1M ,2M ,3M ,4M ,请利用画树状图或列表的方法,求他们两人最感兴趣的实验恰好是同一个实验的概率. 17.如图,在ABC V 中,D ,E 是边AC 上的两点,连接BD ,BE ,且满足AE AB =,BE 平分CBD ∠.(1)求证:ABD ACB ∽△△;(2)若6AB =,8AC =,且90CBD ∠=︒,求BC 的长.18.如图,在平面直角坐标系xOy 中,一次函数32y kx k =+-的图象与反比例函数m y x=的图象相交于(2)A a ,,B 两点,与y 轴正半轴,x 轴分别相交于C ,D 两点.(1)求点A 的坐标及反比例函数的表达式;(2)求证:AC BD =;(3)若点P 是位于点C 上方的y 轴上的动点,过P ,A 两点的直线与该反比例函数的图象交于另一点E ,连接PB BE ,.当2A D B D =,且PBE △的面积为18时,求点E 的坐标.四、填空题19.已知()304a cb d b d ==-≠,则代数式ac bd --的值为 .20.已知方程2240x kx +=-1,则另一个根是 .21.在一次趣味运动会中,设计了一个掷飞镖的游戏.如图,在ABC V “靶”中,点M ,N 分别是线段BC 的两个黄金分割点,我们把AMNV 的内部称为“黄金区域”(图中阴影部分).游戏规定:投掷的飞镖落在“黄金区域”即为获胜.假设投掷的飞镖都能落在“靶”内,现小明随机向该“靶”投掷一枚飞镖,则小明获胜的概率是 .22.如图,在ABCD Y 中,10AB =,BC =AC 与BD 相交于点O ,过点O 作OE BD ⊥交DA 的延长线于点E ,交AB 于点F .若32OF EF =,则对角线BD 的长为 .23.对于平面直角坐标系xOy 中的图形M 和直线m ,给出如下定义:若图形M 上有点到直线m 的距离为d ,那么称这个点为图形M 到直线m 的“d 距点”.如图,双曲线C :()40y x x=>和直线l :y x n =-+,若图形C 到直线l 的”只有2个,则n 的取值范围是 .五、解答题24.《义务教育课程方案和课程标准(2022年版)》优化了课程内容结构,设立跨学科主题学习活动,以强化实践性要求.在一堂数学、美术的融合课中,每个同学桌上都有一段长60cm 的铁丝,需要将铁丝剪成两段,并把每一段铁丝做成一个配件.(1)填空:小东想做两个正方形配件,若设其中一个正方形配件的边长为cm x ,则另一个正方形配件的边长为cm (请用含x 的代数式表示);(2)在(1)的基础上,若小东想让做成的两个正方形配件满足面积之和等于2100cm ,请问小东的想法能否实现?为什么?25.如图,在平面直角坐标系xOy 中,直线3(0)y kx k =->与反比例函数k y x=的图象相交于A ,B 两点(点A 在点B 的右侧),与y 轴相交于点C .(1)当2k =时.(ⅰ)分别求A ,B 两点的坐标;(ⅱ)P 为x 轴上一动点,当APC ABP ∠=∠时,求点P 的坐标;(2)取点(0,1)M ,连接AM BM ,,当90AMB ∠=︒时,求k 的值.26.如图,在菱形ABCD 中,120B ∠=︒,E 为BC 边上一动点(点E 不与B ,C 重合),连接AE ,将线段AE 绕点E 顺时针旋转120︒得到线段FE ,连接AC ,AF ,AF 交CD 边于点H ,设BE x CE =,FH y AH=.(1)如图1,求证:ABC AEF V V ∽;(2)如图2,连接CF ,当1x =时,探究得出y 的值为1,请写出证明过程;(3)结合(2)的探究经验,从特殊到一般,最后得出y 与x 之间满足的关系式为21x y x =+.请根据该关系式,解决下列问题:连接EH ,若12AB =,当EHF V 为等腰三角形时,求BE 的长.。
2019成都市武侯区九年级数学一诊试题
C.
2 3
D.
3 2
4. 如图,E 是平行四边形 ABCD 的对角线 BD 上的点,连接 AE 并延长交
BC
于点
F,且BBFC =
1 3
,则DBEE的值是
摇 摇 摇 摇 (第 3 题图)
A.
1 3
B.
1 2
C.
2 3
D.
3 4
摇 摇 摇 摇 (第 4 题图)
5. 若二次函数 y = 3x2 +x-2m 的图象与 x 轴有两个交点,则关于 x 的一元二次方程 3x2 +x = 2m
D. (2,3) 或(0,3)
学业质量监测试题九年级数学第摇2 页,共 8 页
第域卷( 非选择题,共 70 分)
二、填空题( 本大题共 4 个小题,每小题 4 分,共 16 分,答案写在答题卡上)
11.
已知实数
a,b
满足
a b
=
2 3
,则aa+-bb的值是
.
12.
如图, 已 知 二 次 函 数
y
=
某商店购进一批单价为 20 元的节能灯,如果以单价 30 元出售,那么一个月内能售出 400 个. 根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高 1 元,销售量相应减 少 10 个,设节能灯的销售单价提高 x 元.
(1) 一个月内商店要获得利润 6000 元,并且能尽可能多卖出以推广节能灯的使用,那么 节能灯的销售单价应为多少元?
A. 点 P 在已O 外
B. 点 P 在已O 内
C. 点 P 在已O 上
D. 点 P 在已O 上或在已O 外
10. 将抛物线 y = 2 ( x+1)2 +1 向右平移 2 个单位长度,所得到的抛物线与直线 y = 3 的交点坐标
四川省成都市武侯区2017-2018学年九年级下第二次诊断性检测数学试题(无答案)
成都市武侯区2018年九年级第二次诊断性检测试题数 学A 卷(共100分)第Ⅰ卷(选择题 ,共30分)一、选择题(本大题共 10个小题,每小题 3 分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.如果 a 与21互为相反数,则 a 等于 A.21 B.21- C.2 D.-2 2.如图所示的几何体是由 6 个完全相同的小立方块搭成,则这个几何体的左视图是A B C D3.从成都经川南到贵阳的成贵客运专线正在建设中,这项工程总投资约 780亿元,预计2019 年12月建成通车,届时成都到贵阳只要 3 小时,这段铁路被称为“世界第一条山区高速铁路”. 将数据780亿用科学计数法表示为A.91078⨯B.8108.7⨯C.10108.7⨯D.11108.7⨯4.下列计算正确的是A.()63262a a -=-B.3332a a a =+C.236a a a =÷D.933a a a =∙5.在平面直角坐标系中,若直线12-+=k x y 经过第一、二、三象限,则 k 的取值范围是A.1>kB.2>kC.1<kD.2<k6.如图,直线 a ∥b ,直线 c 与直线 a 、b 分别相交于点 A 、B 过 A 作 AC ⊥b ,垂足为 C ,若∠1=48°,则∠2的度数为第6题 第9题 第10题A.58°B.52°C.48°D.42°7.武侯区部分学校已经开展“分享学习”数学课堂教学,在刚刚结束的 3 月份的月考中,某班 7 个共学小组的数学平均成绩分别为 130 分、128 分、126 分、130 分、127 分、129 分、131 分,则这组数据的众数和中位数分别是A.131分,130分B.130分,126分C.128分,128分D.130分,129分8.关于x 的一元二次方程5322-=-x x 的根的情况,下列说法正确的是A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定9. 如图,在4×4的正方形网格中,每个小正方形的边长都为 1,△AOB 的三个顶点都在格点上,现将△AOB 绕点O 逆时针旋转 90°后得到对应的△COD ,则点A 经过的路径弧AC 的长为A.π23B.πC.2πD.3π10.如图,抛物线()02≠++=a c bx ax y 与 x 轴的一个交点坐标为 ( 3,0),对称轴为直线1-=x ,则下列说法正确的是A.0<aB.042<ac b -C.0=++c b aD.y 随x 的增大而增大第Ⅱ卷(非选择题 ,共70分)二、填空题(本大题共 4个小题,每小题 4分,共 16分,答案写在答题卡上) 11.49的算术平方根是______.12.已知22=+b a ,42-=-b a ,则=-224b a ______.13.如图,在△ABC 中,D 为AB 的中点,E 为AC 上一点,连接 DE ,若AB=12,AE=8,∠ABC =∠AED ,则AC=______.第13题 第14题14.如图,将矩形纸片ABCD 沿直线AF 翻折,使点B 恰好落在CD 边的中点E 处,点F 在BC 边上,若CD=6,则AD=______.三、解答题(本大题共 6个小题,共 54分,解答过程写在答题卡上)15.(本小题满分 12 分,每题 6 分)(1)计算:()2360sin 220183101-+︒+--⎪⎭⎫ ⎝⎛-π(2)求不等式组()⎪⎩⎪⎨⎧--≤-13242-32x x x >的整数解.16.(本小题满分6分)先化简,再求值:121113++÷⎪⎭⎫ ⎝⎛+--a a a a ,其中13+=a .17.(本小题满分 8分)为了减轻二环高架上汽车的噪音污染,成都市政府计划在高架上的一些路段的护栏上方增加隔音屏. 如图,工程人员在高架上的车道 M 处测得某居民楼顶的仰角∠ABC的度数是 20°,仪器 BM 的高是 0.8m,点M 到护栏的距离 MD 的长为 11m,求需要安装的隔音屏的顶部到桥面的距离 ED 的长(结果保留到 0.1m,参考数据:sin20°≈0.34,cos20°≈ 0.94,tan20°≈0.36)18.(本小题满分8分)为了弘扬中国传统文化,“中国诗词大会”第三季已在中央电视台播出. 某校为了解九年级学生对“中国诗词大会”的知晓情况,对九年级部分学生进行随机抽样调查,并将调查结果绘制成如下两幅不完整的统计图,请根据统计图的信息,解答下列问题:(1)求在本次抽样调查中,“基本了解”中国诗词大会的学生人数;(2)根据调查结果,发现“很了解”的学生中有三名同学的诗词功底非常深厚,其中有两名女生和一名男生. 现准备从这三名同学中随机选取两人代表学校参加“武侯区诗词大会”比赛,请用画树状图或列表的方法,求恰好选取一名男生和一名女生的概率.19.(本小题满分10分)如图,一次函数b kx y +=的图象与反比例函数xm y =的图象相交于A( n,3),B(3, 2)两点,过 A 作AC ⊥x 轴于点C ,连接 OA.(1)分别求出一次函数与反比例函数的表达式;(2)若直线 AB 上有一点 M ,连接 MC ,且满足AOC ABC S S △△2=,求点 M 的坐标.20.(本小题满分 10 分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,连接 CB ,过 C 作 CD ⊥AB 于点 D ,过 C 作∠BCE ,使∠BCE=∠BCD ,其中 CE 交 AB 的延长线于点 E.(1)求证:CE 是⊙O 的切线;(2)如图 2,点 F 在⊙O 上,且满足∠FCE=2∠ABC ,连接 AF 并延长交 EC 的延长线于点 G.ⅰ)试探究线段 CF 与 CD 之间满足的数量关系;ⅱ)若CD=4,21tan =∠BCE ,求线段 FG 的长.图1 图2B 卷(共50分)一、填空题(本大题共 5个小题,每小题 4 分,共20分,答案写在答题卡上)21.若 a 为实数,则代数式6-a 4a 2+的最小值为______.22.对于实数 m ,n 定义运算“※”:m ※n=mn(m+n),例如:4※2=4×2(4+2)=48,若x 1、x 2是关于 x 的一元二次方程03x 5-x 2=+的两个实数根,则x 1※x 2= ______.23.如图,有 A 、B 、C 三类长方形(或正方形)卡片(a >b ),其中甲同学持有 A 、B 类卡片各一张,乙同学持有 B 、C 类卡片各一张,丙同学持有 A 、C 类卡片各一张,现随机选取两位同学手中的卡片共四张进行拼图,则能拼成一个正方形的概率是______.第23题 第24题 第25题24.如图,在平面直角坐标系中,平行四边形ABCD 的边OB 在x 轴上,过点C(3, 4)的双曲线与 AB 交于点 D ,且AC=2AD ,则点 D 的坐标为______.25.如图,有一块矩形木板 ABCD ,AB=13dm ,BC=8dm ,工人师傅在该木板上锯下一块宽为x dm 的矩形木板 MBCN ,并将其拼接在剩下的矩形木板 AMND 的正下方,其中'M 、'B 、'C 、'N 分别与 M 、B 、C 、N 对应. 现在这个新的组合木板上画圆,要使这个圆最大,则 x 的取值范围是______,且最大圆的面积是______2dm二、解答题(本大题共 3个小题,共30分,解答过程写在答题卡上)26.(本小题满分 8 分)成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点. 如图,已知该矩形空地长为 90m ,宽为 60m ,按照规划将预留总面积为 45362m 的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这 45362m 的区域(阴影部分)进行种植花草的绿化任务,该m的绿化任务后,将工作效率提高 25%,结工程队先按照原计划进行施工,在完成了 5362果提前 2 天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?27.(本小题满分 10 分)如图,已知△ABC 是等边三角形,点 D、E 分别在 AC、AB 上,且 CD =AE,BD 与 CE 相交于点P.(1)求证:△ACE≌△CBD;(2)如图 2,将△CPD 沿直线 CP 翻折得到对应的△CPM,过 C 作 CG∥AB,交射线 PM 于点 G,PG与 BC 相交于点 F,连接 BG.ⅰ)试判断四边形 ABGC 的形状,并说明理由;6,PF=1,求 CE 的长.ⅱ)若四边形 ABGC 的面积为328.(本小题满分12分) 在平面直角坐标系中,抛物线46212+-=x x y 的顶点 A 在直线2-=kx y 上. (1)求直线的函数表达式;(2)现将抛物线沿该直线方向进行平移,平移后的抛物线的顶点为'A ,与直线的另一交点为'B ,与x 轴的右交点为 C (点 C 不与点'A 重合),连接C B '、C A '.ⅰ)如图,在平移过程中,当点'B 在第四象限且'''C B A △的面积为 60 时,求平移的距离'AA 的长;ⅱ)在平移过程中,当'''C B A △是以''B A 为一条直角边的直角三角形时,求出所有满足条件的点'A 的坐标.。
2019年成都市武侯区九年级一诊数学标准答案
∵四边形 BCPQ 是平行四边形,
∴PQ 平行且等于 BC.
∴平移线段 BC 后可以得到对应的线段 PQ.
ห้องสมุดไป่ตู้
∵点 B 向上平移 4 个单位长度后再向右平移 OQ 长度得到对应点 Q,
∴点 C 向上平移 4 个单位长度后再向右平移 OQ 长度就可以得到对应点 P.
由 C( 5 ,1),可得点 P 的纵坐标为 5.
11.﹣5
12. y3 y1 y2
13. 2 3
三、解答题(本大题共 6 个小题,共 54 分)
15.(本小题满分 12 分,每题 6 分)
解:(1)原式= 3 2 3 1 2 3 1
=﹣3. (2)x2﹣2x﹣99=0
x2﹣2x=99 x2﹣2x+1=99+1 (x﹣1)2=100 ∴x﹣1=±10 ∴x1=11 或 x2=﹣9.
16.(本小题满分 6 分)
解:(1) 3 . 4
(2)列表如下:
第一次
第二次 鸡(0.8)
猴(1.2)
14.( 2,4 ).
······4 分 ······6 分
……2 分 ……4 分 ……6 分
……2 分
猴(1.2) 猴(1.2)
鸡(0.8)
(0.8,1.2) (0.8,1.2) (0.8,1.2)
猴(1.2)
(0.8,1.2)
(1.2,1.2) (1.2,1.2)
猴(1.2)
(0.8,1.2) (1.2,1.2)
(1.2,1.2)
猴(1.2)
(0.8,1.2) (1.2,1.2) (1.2,1.2)
……4 分
共有 12 种可能的结果,且每种结果出现的可能性相同,其中“两张邮票组合起来刚好可以邮寄
武侯区初三数学一诊试卷
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. $\sqrt{2}$B. $\pi$C. $\frac{1}{3}$D. $\sqrt[3]{-8}$2. 已知函数$f(x)=2x+1$,若$f(x)=7$,则$x=$()A. 3B. 2C. 1D. 03. 在平面直角坐标系中,点A(2,3)关于直线y=x的对称点B的坐标是()A. (3,2)B. (2,3)C. (-3,-2)D. (-2,-3)4. 若等差数列$\{a_n\}$中,$a_1=2$,$a_3=8$,则$a_5=$()A. 14B. 12C. 10D. 85. 下列命题中,正确的是()A. 函数$y=x^2$在R上的单调递增B. 平方根的定义域是RC. 相似三角形的对应边成比例D. 等腰三角形的底角相等6. 已知一次函数$y=kx+b$($k\neq0$)的图象经过点A(1,2),则下列选项中,$k$的值是()A. 1B. 2C. -1D. -27. 在等腰三角形ABC中,AB=AC,若$AD$是底边BC上的高,则下列结论正确的是()A. $\angle ADB=\angle ADC$B. $\angle ADB=\angle BAC$C. $\angle ADC=\angle BAC$D. $\angle ADB=\angle BDC$8. 若函数$y=ax^2+bx+c$($a\neq0$)的图象开口向上,且顶点坐标为(1,-3),则下列选项中,$a$的值是()A. 2B. -2C. 1D. -19. 已知正方体ABCD-A1B1C1D1的棱长为1,则体积V=()A. 1B. $\sqrt{2}$C. 2D. $\sqrt{3}$10. 在△ABC中,若$\angle A=\frac{\pi}{3}$,$a=2\sqrt{3}$,$b=4$,则$sinB=$()A. $\frac{\sqrt{3}}{2}$B. $\frac{1}{2}$C. $\frac{\sqrt{3}}{3}$D. $\frac{1}{3}$二、填空题(每题5分,共50分)11. 若$\sqrt{3}+2$是方程$2x^2+mx+1=0$的解,则m=______。
四川省成都市武侯区中考数学一模试卷及解析
四川省成都武侯区中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1、下列计算正确的是()A、|﹣3|=3B、﹣2﹣2=0C、20=0D、(﹣5)2=﹣102、(2005•武汉)过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM的长为()A、3cmB、6cmC、cmD、9cm3、2010年春节黄金周节前,节后,成都交通部门7天累计发送旅客约412.02万人次,数“412.02万”用科学记数法可记为()A、412.02×104B、4.1202×106C、4.1202×102D、4.1202×1044、(2008•黄冈)已知反比例函数,下列结论中,不正确的是()A、图象必经过点(1,2)B、y随x的增大而增大C、图象在第一、三象限内D、若x>1,则y<25、(2003•滨州)如图,A、B两点被池塘隔开,在AB外任选一点C,连接AC,BC分别取其三等分点M,N,量得MN=38m.则AB的长是()A、76mB、104mC、114mD、152m6、如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A、B、C、D、7、(2009•济宁)将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线(直角三角形的中位线)剪去上面的小直角三角形,将留下的纸片展开,得到的图形是()A、B、C、D、8、(2008•南通)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A、B、C、D、9、(2004•无锡)如图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有()A、1个B、2个C、3个D、4个10、关于二次函数y=ax2+bx+c的图象有下列命题:①当c=0时,函数的图象经过原点;②当b=0时,函数的图象关于y轴对称;③函数图象最高点的纵坐标是;④函数图象的对称轴为x=;⑤当c>0,且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根,其中正确命题的个数是()A、1个B、2个C、3个D、4个二、填空题(共9小题,每小题4分,满分36分)11、(1)在函数y=中,自变量x的取值范围是_________.(2)22009+32010的个位数字是_________.12、如图,明敏用一块有一个锐角为30°的直角三角板测量树高,他离树的距离为4米,DE为1.70米,那么这棵树大约有_________米高.(精确到0.1米,参考数据=1.732)13、(2008•南通)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.先从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是_________.14、(2007•淄博)如图所示,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,DC=3,AB=,则⊙O的直径等于_________.15、方程x+2y=7的非负整数解是_________.16、如图,等腰梯形ABCD中,AD∥BC,∠DBC=45°.翻折梯形ABCD,使点B重合于点D,折痕分别交边AB、BC 于点F、E.若AD=2,BC=8,则BE的长是_________,CD:DE的值是_________.17、(2003•滨州)如果规定两数a、b通过符号“#”构成运算a#b=,且a#b≠b#a.那么方程x#5=x#4+1的解是_________.18、如图,点P是▱ABCD内一点,S△PAB=7,S△PAD=4,则S△PAC=_________.19、二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根.x1=_________,x2=_________;(2)写出不等式ax2+bx+c>0的解集._________;(3)写出y随x的增大而减小的自变量x的取值范围._________;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围._________.三、解答题(共9小题,满分84分)20、解答下列各题:(1)计算:++2sin60°﹣|1﹣tan60°|.(2)先化简再求值:,其中21、(2002•南京)如图,在正方形ABCD中,点E、F分别是AD,BC的中点.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.22、(2009•湖州)某校为了解九年级男生1000米长跑的成绩,从中随机抽取了50名男生进行测试,根据测试评分标准,将他们的得分进行统计后分为A,B,C,D四等,并绘制成下面的频数分布表和扇形统计图.(1)试直接写出x,y,m,n的值;(2)求表示得分为C等的扇形的圆心角的度数;200名男生中成绩达到A等和B等的人数共有多少人?23、(2007•芜湖)如图,在△ABC中,AD是BC上的高,tanB=cos∠DAC.(1)求证:AC=BD;(2)若sin∠C=,BC=12,求AD的长.24、(2005•沈阳)如图,已知直线y1=x+m与x轴、y轴分别交于点A、B,与双曲线(x<0)分别交于点C、D,且C点的坐标为(﹣1,2).(1)分别求出直线AB及双曲线的解析式;(2)求出点D的坐标;(3)利用图象直接写出:当x在什么范围内取值时,y1>y2.25、某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.26、(2008•孝感)锐角△ABC中,BC=6,S△ABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN 为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0)(1)△ABC中边BC上高AD=_________;(2)当x=_________时,PQ恰好落在边BC上(如图1);(3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少?27、(2007•莱芜)如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中上一点,延长DA至点E,使CE=CD.(1)求证:AE=BD;(2)若AC⊥BC,求证:AD+BD=CD.28、(2010•丹东)如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(﹣8,0),点N的坐标为(﹣6,﹣4).(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N 的对应点为B,点H的对应点为C);(2)求出过A,B,C三点的抛物线的表达式;(3)截取CE=OF=AD=m,且E,F,D分别在线段CO,OA,AB上,求四边形BEFD的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(4)在(3)的情况下,四边形BEFD是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.答案与评分标准一、选择题(共10小题,每小题3分,满分30分)1、下列计算正确的是()A、|﹣3|=3B、﹣2﹣2=0C、20=0D、(﹣5)2=﹣10考点:零指数幂;绝对值;有理数的减法;有理数的乘方。
武侯区初中数学一诊试卷
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-16C. πD. 2√22. 下列代数式中,正确的是()A. a + b = b + aB. a - b = b - aC. ab = baD. a ÷ b = b ÷ a3. 已知x² - 5x + 6 = 0,则x的值为()A. 2 或 3B. 1 或 4C. 2 或 4D. 1 或 34. 在直角坐标系中,点P(-2,3)关于x轴的对称点是()A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,-3)5. 下列图形中,是轴对称图形的是()A. 等边三角形B. 等腰梯形C. 矩形D. 等腰直角三角形6. 已知三角形ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 75°B. 105°C. 120°D. 135°7. 一个长方体的长、宽、高分别为a、b、c,则其体积V为()A. abcB. a²bC. b²cD. c²a8. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x²D. y = √x9. 已知一次函数y = kx + b,当x = 1时,y = 2;当x = 2时,y = 4,则k和b的值分别是()A. k = 1,b = 1B. k = 2,b = 1C. k = 1,b = 2D. k = 2,b = 210. 下列各数中,是正数的是()A. -1/2B. -√4C. 0D. √9二、填空题(每题5分,共20分)11. 3a² - 2a + 1的因式分解为__________。
12. 若x + 2 = 5,则x的值为__________。
13. 直线y = 2x + 1的斜率是__________。
成都市武侯区2018-2019学年九年级上期期末(一诊)数学试卷精美排版word版
成都市武侯区2018-2019学年九年级<上>期末考试(一诊)数 学 试 卷A 卷(100分)一、选择题(每小题3分,共30分)1. 如图所示的支架(一种零件)的两个台阶的高度和宽度分别相等,则它的主视图为( )A 、B 、C 、D 、 2.已知反比例函数xky =(0≠k )的图象经过点(-4,2),那么下列四个点中,在这个函数图象上的是( )A 、(1,8)B 、(3,-38) C 、(21,16) D 、(-2,-4) 3.如图,△ABC 的顶点都在正方形网格的格点上,则tan ∠BAC 的值是( )A 、21 B 、2 C 、32 D 、234.如图,E 是平行四边形ABCD 的对角线BD 上的点,连接AE 并延长交BC 于点F ,且31=BC BF ,则DEBE的值是( ) A 、31 B 、21 C 、32 D 、435.若二次函数m x x y 232-+=的图象与x 轴有两个交点,则关于x 的方程m x x 232=+的根的情况是( )A 、有两个不相等的实数根B 、有两个相等的实数根C 、没有实数根D 、不能确定 6.下列命题中,是假命题的是( ) A 、一组邻边相等的平行四边形是菱形 B 、对角线互相垂直的平行四边形是矩形C 、一组邻边相等的的矩形是正方形D 、一组对边平行且相等的四边形是平行四边形 7.如图,在△ABC 中,D 、E 分别在边AB 、AC 上,且DE ∥BC ,21=BC AD ,若2=∆A D E S ,则ABC S ∆的值是( )A 、6B 、8C 、18D 、12第3题 第4题 第7题8.中国十七届西博会于2018年9月20日到24日在成都西博城举办,期间某纪念品的标价为150元,连续两次涨价%a 后售价为216元.下面所列方程中正确的是( )A 、216%)21(150=+aB 、216%)21(1502=+aC 、2162%)21(150=⨯+aD 、216%)21(150%)21(1502=+++a a 9.在平面直角坐标系中,以原点O 为圆心,5为半径作圆,若点P 的坐标是(3,4),则点P 与⊙O 的位置关系是( )A 、点P 在⊙O 外B 、点P 在⊙O 内C 、点P 在⊙O 上D 、点P 在⊙O 上或在⊙O 外 10.将抛物线1)1(22++=x y 向右平移2个单位长度,所得到的抛物线与直线3=y 的交点坐标是( )A 、(2,3)B 、(-2,3)C 、(-2,3)或(-4,3)D 、(2,3)或(0,3)二、填空题(每小题4分,共16分)11.已知实数a 、b 满足32=b a ,则ba ba -+的值是12.如图,已知二次函数m x y +-=221的图象上有三点A (-1,1y )、B (0,2y )、C (3,3y ),则1y 、2y 、3y 的大小关系是13.如图,△ABC 是⊙O 的内接三角形,连接OB ,作OD ⊥AB 于点D.若⊙O 的半径为2,∠ACB=60°,则弦AB 的长是第12题 第13题 14.已知正比例函数x y 2=的图象与反比例函数x ky =(0≠k )的图象相交于A (2,m )、B 两点,则点B 的坐标是三、解答下列各题(共54分)15.(每小题6分,共12分) (1)计算:|321|)3(12)31(01-+-+---π(2)09922=--x x16.(6分)如图,有一张鸡年生肖邮票和三张猴年生肖邮票(鸡年生肖邮票每张面值“80分”,猴年生肖邮票每张面值“1.20元”),四张邮票除花色不一样之外,其余都相同,现将四张邮票花色朝下,打乱顺序后放置在桌面上.(注:1元=100分) (1)随机抽取一张,是猴年生肖邮票的概率是 ;(2)先随机抽取一张不放回,再抽取一张,求抽到的两张邮票组合起来刚好可以邮寄一封2元邮资的信件的概率.17.如图是成都市某在建大楼,准备上市销售,大楼前有一座装有高压线的铁塔BC 经过,市民想知道高压线的电辐射对居住是否有影响,则需要测量大楼到铁塔的水平距离DC 的长以及铁塔BC 的高度.为了安全,不能直接测量铁塔的高度,现在大楼屋顶A 处测得铁塔顶B 的仰角∠BAE=58°,测得铁塔底C 的俯角∠EAC=30°,大楼的高度AD=10m ,求铁塔BC 的高度.(参考数据:tan58°≈1.60,sin58°≈0.85,cos58°≈0.53,3≈1.73) 18.(8分)如图,在正方形ABDD 中,点E 、F 分别在边AB 、AD 上,EF ⊥CE 于E. (1) 求证:△AEF ∽△BCE ; (2) 若21=AE BE ,求CEEF的值.19.(10分)如图,已知一次函数4-=mx y (0≠m )的图象分别交x 轴、y 轴于A (-4,0)、B 两点,与反比例函数xky =(0≠k )的图象在第二象限的交点为C (-5,n ). (1) 求一次函数的和反比例函数的表达式;(2) 点P 在该反比例函数的图象上,点Q 在x 轴上,且P 、Q 两点在直线AB 的同侧.若以B 、C 、P 、Q 为顶点的四边形是平行四边形,求满足条件的点P 和点Q 的坐标.20.(10分)如图1,四边形ABCD 是⊙O 的内接四边形,AC 平分∠DAB ,B 是弧AC 的中点. (1) 求证:AB=CD ;(2) 如图2,连接BO 并延长分别交AC ,AD 于点E 、F ,交⊙O 于点G ,连接FC. ① 试判断四边形ABCF 的形状,并说明理由; ② 若53=AD DC ,AC=46,求⊙O 的半径.图1 图2B 卷(50分)一、填空题:(每小题4分,共20分)21.在△ABC 中,若∠C=90°,sinA=32,则sinB=22.已知1x 、2x 是一元二次方程0522=--x x 的两个实数根,则21222`3x x x x ++=23.如图,在平面直角坐标系中,⊙O 的半径为4,弦AB 的长为3,过点O 作OC ⊥AB 于点C ,则OC的长度是 ;⊙O 内一点D 的坐标是(-2,1),当弦AB 绕点O 顺时针旋转时,点D 到AB 的距离的最小值是24.如图,在矩形ABCD 中,AB=6,BC=8,点E 在边BC 上(不与B 、C 重合),连接AE ,把△ABE 沿直线AE 折叠,点B 落在B '处.当△CEB '为直角三角形时,△CEB '的周长是 25.如图,将双曲线xky =(0<k )在第四象限的一支沿直线x y -=方向向上平移到点E 处,交该双曲线在第二象限的一支于A 、B 两点,连接AB 并延长并x 轴于点C.双曲线xmy =(0>m )与直线x y =在第三象限的交点为点D ,将双曲线xmy =在第三象限的一支沿射线OE 方向平移,点D 刚好可以与点C 重合,此时该曲线与前两支曲线围成一条“鱼”(如图中阴影部分).若点C 的坐标为(-5,0),AB=32,则mk 的值是第23题 第24题 第25题二、解答下列各题(共30分)26.(8分)某商店购进一批单价为20元的节能灯,如果以单价30元出售,那么一个月内能售出400个.根据销售经验,提高销售单价会导致销售量减少,即销售单价每提高1元,销售量相应减少10个.设节能灯的销售单价提高x 元.(1) 一个月内商店要求要获得利润6000元,并且能尽可能多卖出以推广节能灯的使用,那么节能灯的销售单价应为多少元?(2) 当销售单价为多少元时,该商店一个月内获得的利润最大?最大利润是多少元?27.(10分)如图,点E、F分别在矩形ABCD的边AB、BC上,连接EF,将△BEF沿直线EF翻折得到△HEF,AB=8,BC=6,AE:EB=3:2.(1)如图1,当∠BEF=45°时,EH的延长线交DC于点M,求HM的长;(2)如图2,当FH的延长线经过点D时,求tan∠FEH的值;(3)如图3,连接AH、HC,当点F在线段BC上运动时,试探究四边形AHCD的面积是否存在最小值?若存在,求出四边形AHCD的面积的最小值;若不存在,请说明理由. 28.(12分)如图,在平面直角坐标系中,直线3+=mxy与抛物线交于点A(9,-6),与y轴交于点B,抛物线的顶点C的坐标是(4,-11).(1)求直线和抛物线的函数表达式;(2)D是抛物线上位于对称轴左侧的点,若△ABD的面积为281,求点D的坐标;(3)在y轴上是否存在一点P,使∠APC=45°?若存在,求出满足条件的点P的坐标;若不存在,请说明理由.。
2018年四川成都武侯区初三一模数学试卷
答案 (1)
,
.
(2)
.
(3) 当 时, 取得最大值 .
解析 (1) 如图 ,设 ,
过,,
解得
,
∴
,
.
(2) 令
,顶点为 ,
∴
,
∴
,
又∵
过,
∴
,
,
∴
.
(3)
,
∴当 时, 取得最大值 .
考点
函数 一次函数 求一次函数解析式 已知两点求一次函数解析式
二次函数 待定系数法求二次函数解析式
A.
B.
C.
D.
答案 D
解析 选项主视图是正方形, 选项主视图是长方形, 选项主视图是圆.
考点
投影与视图 视图 简单几何体的三视图
3 反比例函数
的图象经过的象限是( ).
A. 第一、二象限
B. 第一、三象限
C. 第二、三象限
D. 第二、四象限
答案 B
解析 反比例函数解析式中, , ∴反比例函数的图像经过的象限是第一、三象限.
.
或
.
解析 (1) 由题,
过
,
,
∴
,,
∴
,
,
∵
过,,
∴
,解得
,
∴
.
(2)
与 轴交于 点,
∴
,
∴
,
∴
,
∴
,
∴
,
∴
,
∴
或
.
考点
函数 一次函数 一次函数与坐标轴交点
求一次函数解析式 已知两点求一次函数解析式
一次函数综合题 一次函数与三角形面积
初2018届成都市武侯区中考数学九年级一诊数学试卷
成都市武侯区2018届一诊数学试卷(考试时间:120分 满分:150分)A 卷(共100分)一、选择题(每小题3分,共30分)1、︒30cos 的值是( ) A.21 B.22 C.23 D.332、下列四个几何体中,主视图是三角形的是( )A. B. C D.3、反比例函数x y 4=的图象经过的象限是( )A.第一二象限B.第一三象限C.第二三象限D.第二四象限4、一元二次方程x x 7522=+的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断5、下列抛物线中,与抛物线132+-=x y 的形状、开口方向完全相同,且顶点坐标为(-1,2)的是()A.()2132++-=x yB.()2232+--=x yC.()2132++-=x yD.()2132+--=x y6、已知某斜坡的坡角为α,坡度4:3=i ,则αsin 的值为( ) A.43 B.53 C.34 D.547、如图,AB 是⊙O 的直径,若︒=∠30BAC ,则D ∠的度数是( )A.30°B.45°C.60°D.75°8、已知关于x 的一元二次方程062=--kx x 的一个根为3=x ,则另一个根为( )A.2-=xB.3-=xC.2=xD.3=x9、如图,点F 在平行四边形ABCD 的边CD 上,且32=AB CF ,连接BF 并延长交AD 的延长线于点E ,则BCDE 的值是( ) A.31 B.32 C.21 D.5210、如图,抛物线()02≠++=a c bx ax y 与直线x y -=相交于B A ,两点,则下列说法正确的是( )A.0<ac ,()0412<-+ac bB.0<ac ,()0412>-+ac b C.0>ac ,()0412<-+ac b D.0>ac ,()0412>-+ac b 二、填空题(每小题4分,共16分)11、李明同学利用影长测学校旗杆的高度,某一时刻身高1.8米的李明的影长为1米,同时测得旗杆的影长为7米,则学校的旗杆的高为 米。
四川省成都市武侯区2018~2019学年度上期期末学业质量监测试题九年级数学
九年级数学
注意事项
1.全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。
2.考生使用答题卡作答。
3.在作答前,考生务必将自己的姓名、考生号和座位号填写在答题卡上.考试结束,监考人员将试卷和答题卡一并收回。
4.选择题部分请使用2B铅笔填涂;非选择題部分请使用0.5毫米黑色墨水签字笔书写字体工整、笔迹清楚。
10.将抛物线y=2(x+1)2+1向右平移2个单位长度,所得到的抛物线与直线y=3的交点坐标
是( )
A.(2,3)B.(-2,3C.(-2,3)或(-4,3)D.(2,3)或(0,3)
第Ⅱ卷(非选择题,共70分)
二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)
11.已知实数a,b满足 2=2,则 的值是
A.一组邻边相等的平行四边形是菱形B.对角线互相垂直的四边形是矩形
C.一组邻边相等的矩形是正方形D.一组对边平行且相等的四边形是平行四边形
7.如图,在△ABC中,点D,E分别在边AB,AC上,且DE∥BC, ,若S△ADE=2,则S△ABC的值是( )
A.6B.8C.18D.32
8.中国第十七届西博会于2018年9月20日至24日在成都西博城举办,期间某纪念品的标价为150元,连续两次涨价a%后售价为216元.下面所列方程中正确的是( )
三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)
15.(本小题满分12分,每题6分)
(1)计算: (2)解方程:x2-2x-99=0
16.(本小题满分6分)
如图,有一张鸡年生肖邮票和三张猴年生肖邮票(鸡年生肖邮票面值“80分”,猴年生肖邮