化工原理精馏塔课程设计(公式已全部编辑,输数即可出结果)
化工原理课程设计板式精馏塔设计[1]
PPT文档演模板
2023/5/7
化工原理课程设计板式精馏塔设计[1]
PPT文档演模板
2023/5/7
化工原理课程设计板式精馏塔设计[1]
PPT文档演模板
2023/5/7
化工原理课程设计板式精馏塔设计[1]
四. 塔体结构
PPT文档演模板
2023/5/7
化工原理课程设计板式精馏塔设计[1]
PPT文档演模板
常操作所允许的气、液负荷波动范围。这个范围通
常以塔板负荷性能图的形式表示。
PPT文档演模板
2023/5/7
化工原理课程设计板式精馏塔设计[1]
•Vs ,m3/ s
•(1)雾沫夹带线
•(5) 液 相 负荷下限 线
•B Vs,max
•(2) 液 泛 线
•P操作点
•(3)液相上限线
PPT文档演模板
•A Vs,min
• 大致估计一下加料管路上的管件和阀门。
• (2)高位槽、贮槽容量和位置
• 高位槽以一次加满再加一定裕量来确定其容积。
• 贮槽容积按加满一次可生产10天计算确定。
• (3)换热器选型
• 对原料预热器,塔底再沸器,塔顶产品冷却器等进行选型。
• (4)塔顶冷凝器设计选型
• 根据换热量,回流管内流速,冷凝器高度,对塔顶冷凝器 进行选型设计。
化工原理课程设计板式精馏塔设计[1]
PPT文档演模板
化工原理课程设计板式精馏塔设计[1]
PPT文档演模板
2023/5/7
化工原理课程设计板式精馏塔设计[1]
PPT文档演模板
化工原理课程设计板式精馏塔设计[1]
PPT文档演模板
2023/5/7
化工原理课程设计板式精馏塔设计[1]
化工原理课程设计精馏塔
最常用的塔设备可分为两大类:板式塔和填料塔。此外,还 有多种内部装有机械运动构件的塔,例如脉动塔河转盘塔等,则 主要用于萃取操作。
1 概述 均相物系的分离方法有吸收、萃取、干燥、精馏等操作,其 中工业上分离均相液体混合物最常用的过程是蒸馏。利用液体混 合物中组分挥发性能的差异,以热能为媒介使其部分汽化,从而 在气相富集易挥发组分,液相富集难挥发组分,使混合物得以分
-2-
化工原理课程设计
离的方法称为蒸馏。根据操作方式,蒸馏分为简单蒸馏、平衡蒸 馏和精馏。前两种只能实现初步分离,而精馏能实现混合物的高 纯度分离,无需与外界进行热量交换,采用多次平衡级的蒸馏过 程来实现混合液的高纯度分离,这种多级蒸馏过程的组合就是精 馏。
3.2、物料衡算
-6-
化工原理课程设计
3.2.1、质量流量 全塔物料横算式:
mF=mD+mW mFωF=mDωD+mwωw 已知mF=9200kg·h-1,代入数据得 9200=mD+mW 9200 × 0.248=mD × 0.893+mw × 0.0095 联立,解方程得
mD=2383.531 kg·h-1
4、选择进料泵进料,进料温度为 20℃冷液。 5、塔釜采用分离式间接蒸汽加热、塔顶蒸汽采用全凝器冷凝。 三、塔型
板式塔型自选 四、设计内容
1、二元物系精馏用筛板塔的工艺设计,主要包括精馏系统工艺流 程的确定、物料衡算、热量衡算、理论塔板数的计算、精馏塔的工艺 条件及有关物性数据设计计算、精馏塔的工艺尺寸计算,气体通过塔 板的压力降、降液管内液体停留时间和液面高度的计算,塔顶冷凝器 及管道的工艺计算和选型,泵的工艺选型等附属设备的选型计算。
化工原理课程设计——精馏塔设计
南京工程学院课程设计说明书(论文)题目乙醇—水连续精馏塔的设计课程名称化工原理院(系、部、中心)康尼学院专业环境工程班级K环境091学生姓名朱盟翔学号240094410设计地点文理楼A404指导教师李乾军张东平设计起止时间:2011年12月5日至 2011 年12月16日符号说明英文字母A a——塔板开孔区面积,m2;A f——降液管截面积,m2;A0——筛孔面积;A T——塔截面积;c0——流量系数,无因此;C——计算u max时的负荷系数,m/s;C S——气相负荷因子,m/s;d0——筛孔直径,m;D——塔径,m;D L——液体扩散系数,m2/s;D V——气体扩散系数,m2/s;e V——液沫夹带线量,kg(液)/kg(气);E——液流收缩系数,无因次;E T——总板效率,无因次;F——气相动能因子,kg1/2/(s·m1/2);F0——筛孔气相动能因子,kg1/2/(s·m1/2);g——重力加速度,9.81m/s2;h1——进口堰与降液管间的距离,m;h C——与干板压降相当的液柱高度,m液柱;h d——与液体流过降液管相当的液柱高度,m;h f——塔板上鼓泡层液高度,m;h1——与板上液层阻力相当的高度,m液柱;h L——板上清夜层高度,m;h0——降液管底隙高度,m;h OW——堰上液层高度,m;h W——出口堰高度,m;h'W——进口堰高度,m;Hσ——与克服表面张力的压降相当的液柱高度,m液柱;H——板式塔高度,m;溶解系数,kmol/(m3·kPa);H B——塔底空间高度,m;H d——降液管内清夜层高度,m;H D——塔顶空间高度,m;H F——进料板处塔板间距,m;H P——人孔处塔板间距,m;H T——塔板间距,m;K——稳定系数,无因次;l W——堰长,m;L h——液体体积流量,m3/h;L S——液体体积流量,m3/h;n——筛孔数目;P——操作压力,Pa;△P——压力降,Pa;△P P——气体通过每层筛板的压降,Pa;r——鼓泡区半径,m,t——筛板的中心距,m;u——空塔气速,m/s;u0——气体通过筛孔的速度,m/s;u0,min——漏气点速度,m/s;u'0——液体通过降液管底隙的速度,m/s;V h——气体体积流量,m3/h;V s——气体体积流量,m3/h;W c——边缘无效区宽度,m;W d——弓形降液管宽度,m;W s——破沫区宽度,m;x——液相摩尔分数;X——液相摩尔比;y——气相摩尔分数;Y——气相摩尔比;Z——板式塔的有效高度,m。
化工原理课程设计任务书精馏塔
化工原理课程设计任务书精馏塔本篇文档主要介绍化工原理课程设计任务书中关于精馏塔的要求和内容。
一、设计任务设计一座丙酮-甲醇精馏塔,要求:1. 产品:A级丙酮、B级丙酮、水、甲醇2. 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%3. 操作压力:常压4. 输出流量:1000kg/h,A级丙酮90%,B级丙酮10%5. 设计基准:精馏32个板层二、设计步骤1. 精馏塔的结构设计(1) 塔的类型:管式塔(2) 塔的高度:设定32个板层,按传质条件设计最小高度(3) 填料类型:采用网格填料(4) 塔的直径:根据输入流量、精馏塔高度和填料设计(5) 塔的材质:不锈钢(6) 填料厚度:1.5cm2. 精馏塔的操作参数及控制(1) 操作压力:常压(2) 丙酮的重心温度:58℃(3) 甲醇的重心温度:52℃(4) 塔顶压力:1atm(5) 塔底压力:1atm(6) 板间压力降:0.015atm(7) 蒸汽进口管直径:50mm(8) 汽液分离器直径:100mm(9) 泵的扬程:15m3. 精馏塔的热力学计算(1) 设定板层数:32(2) 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%(3) 设定塔顶压力:1atm(4) 设定塔底压力:1atm(5) 设定塔板温度,参考数值文献或软件计算(6) 根据塔板温度确定物质的蒸汽压(7) 根据物质的蒸汽压计算物质的分馏、回流比等参数4. 精馏塔的动力学模拟(1) 建立模型:使用MATLAB或其他模拟软件建立动力学模型(2) 确定控制方案:根据设定的输出要求,确定控制方案(3) 模拟仿真:进行塔的动态仿真,查找可能的故障及出现的问题(4) 评价:对模拟结果进行评价,并应对出现的问题进行处理三、设计成果1. 绘制精馏塔的结构图:包含填料、板层、进口出口等2. 绘制精馏塔的液相、气相平衡图3. 计算精馏塔流程图:包括输入和输出物质流量、温度、压力等参数4. 编写精馏塔的操作说明:包括操作控制、参数设定、操作步骤等5. 输出精馏塔的动态模拟成果:包括MATLAB或其他模拟软件的代码和仿真结果以上是化工原理课程设计的精馏塔任务书的要求和内容,本文档中介绍了设计步骤和要求,设计成果等部分,可以为读者提供一定帮助,同时也展示了精馏塔设计工作的一般流程和方法。
精馏塔课程设计
七、塔板结构
塔板有整块式和分块式两种类型。
当塔直径小于800mm时,一般将塔板加工成整块式;当
塔直径大于800mm,一般将塔板加工成分块式。
分块式塔板由两块弓形板、一块通道板和数个矩形板构 成。
29
第四部分 塔辅助设备的选用与校核
塔顶冷凝器的选用与校核 塔顶再沸器的选用
30
一、塔顶冷凝器的选用与校核
1、冷凝器热负荷的计算 冷凝器的热负荷是塔顶饱和蒸汽从露 点气相冷凝为泡点液相所放出的热量,可 用以下办法计算。
露点气 相,Td HV 液相,Td Qc 泡点液 相,Tb HL=Cp(Td-Tb)
Qc=Hv+HL
15
2、再沸器热负荷的计算 再沸器的热负荷是塔底液相部分汽化成饱 和蒸汽所吸收的热量,蒸汽的量就是塔内气相 流量,可用全塔热平衡计算。 QB+FHF=DHLD+WHLW+QC+Q损 QB=DHLD+WHLW+QC+Q损-FHF Q损=5% QB 或近似由下式计算 QB=V’w(HV’W-HLW)
4
5
化工原理课程设计
化工原理课程设计 化工原理课程设计: 化工传递与单元操作课程设计 常用化工单元设备设计 石油炼制图表计算机处理方法
刘雪暖
裴世红
石油大学
大连理工
6
7 8
贾绍义
李功样 金桂三
天津大学
华南理工 石油化工
9
传热学
杨世铭
高等教育
8
第二部分 工艺计算设计要点
物料衡算
塔顶和塔底温度和压力的确定
27
塔板的负荷性能图绘制 ⒈过量雾沫夹带线 ⒉淹塔线(液泛线) ⒊过量泄漏线(气相负荷下限线) ⒋降液管超负荷线(液相负荷上限线) ⒌液相负荷下限线 ⒍操作线: Origin 绘制塔板负荷性能图, 并计算塔的操作弹性K,要求K不小于3。 根据塔板的流体力学计算结果和塔板的负荷性能图,分析讨 论所设计塔板的特点及优缺点。
化工原理课程设计(化工机械设计部分)精馏塔
化工机械设计部分设计条件:设计压力0.1Mpa ,工作温度130℃,设计温度150℃,介质名称为苯—氯苯,介质密度为973㎏/3m ,基本风压300N/㎡[1],地震烈度为8,场地类别Ⅱ,塔板数量22,塔高26m ,保温层材料厚度为100mm ,保温层密度为300㎏/3m一 塔体及封头厚度设计1壳体材料选取 该塔工作温度为130℃,设计压力为0.12Mpa ,塔体内径3400mm ,塔高21米。
介质苯-氯苯有轻微的腐蚀性,选用强度较好的16MnR ,16MnR 在设计温度下的许用应力[]t σ=170Mpa ,Rel=345Mpa ,腐蚀裕量2C =2mm ,采用双面对接焊缝,局部无损探伤,焊接系数为Φ=1.02塔体厚度计算计算压力:0.12c p MPa = 2C mm = []170tMPa σ= D=4600mm 1.0φ=圆筒的计算厚度:[]0.1246001.35217010.12c i tcp D mm p δσφ⨯===⨯⨯--设计厚度:2 1.352 3.35d C mm δδ=+=+=考虑到其受到风载荷、地震载荷、偏心载荷和介质压力作用,取名义厚度:8n mm δ= 有效厚度:.8 2.8 5.2e n C mm δδ=-=-=3封头厚度计算 (封头采用标准椭圆形封头,材料与筒体相同)计算压力:0.12c p MPa = 2C mm = []170tMPa σ= 4600i D mm = 1φ=封头厚度:[]0.146001.35217010.50.120.5c itcp D mm p δσφ⨯===⨯⨯-⨯-设计厚度:2 1.352 3.35d C mm δδ=+=+= 取名义厚度:8n mm δ=有效厚度:.8 2.8 5.2e n C mm δδ=-=-=二 塔设备质量载荷计算1 筒体、圆筒、封头、裙座的质量【8】 2附件的质量 3塔内构件的质量筛板塔塔盘单位质量265/N q kg m = 塔内构件的质量:22020.785 4.62265237534i m D Nq kg πN ==⨯⨯⨯=4 保温层的质量 5平台、扶梯的质量查得平台单位质量2150/P q kg m = 笼式扶梯单位质量40/F q kg m = 其中平台数3n =,笼式扶梯高度为26000mm 平台、扶梯的质量㎏()()222204002340210.785 4.6162 4.616150389754f p m q H D D q kg π⎡⎤⎡⎤=⨯++-⨯⨯=⨯+⨯+-⨯⨯=⎣⎦⎣⎦6操作时物料的质量 7水压试验质量 8 操作质量: 9 全塔最大质量m max =m 01+ m 02+ m 03+ m 04+ m a + m w =377326 10 全塔最小质量m min =m 01+0.2 m 02+ m 03+ m 04=43256kg计算前先对塔进行分段,以地面为0-0截面,裙座人孔为1-1截面,塔低封三塔的自振周期四 风载荷与风弯矩的计算【6】① 0-0截面风弯矩0031241213124123()()()2222w l l l lM P P l P l l P l l l -=+++++++++=91.00510(mm)N ⨯ ②1-1截面风弯矩2-2截面风弯矩五地震弯矩的计算第一振型脉动系数: 0.02 衰减指数:0.95 塔总高:26m 自振周期 T1=0.36场地特征周期:0.35g T =(表8-2) 地震影响系数最大值:max 0.24α=(表8-3) 地震影响系数:10.077α= H (0-0)=0mmH (1-1)=1000mm H (2-2)=7000mm底截面处地震弯矩:00810161.259.691035E M m gH N mm α-=⨯=⨯⋅ 1—1截面处地震弯矩:()113.5 2.5 3.58102.581.25101449.1710175E m g M H H h h N mm H α-=-⋅+=⨯⋅2—2截面处地震弯矩:1.1 偏心弯矩的计算不设置再沸器所以不考虑1.2 各种载荷引起的轴向应力1.2.1 计算压力引起的轴向应力 1.2.2 操作质量引起的轴向应力各截面操作质量: 0—0截面1—1截面 2—2截面 8634585437799891.2.3 最大弯矩引起的轴向应力最大弯矩:1.3 塔体和裙座危险截面强度与稳定性校核1.3.1 截面的最大组合轴向拉应力校核截面2-2,塔体的最大组合轴向拉应力发生在正常操作的2-2截面上,其中[]170tMpa σ=,[]t1.0, 1.2=1.21701=204pa K K M σΦ==Φ⨯⨯⎡⎤⎣⎦载荷组合系数,塔体的最大组合轴向啦应力发生在正常时的截面2-2上所以满足要求1.3.2 塔体与裙座稳定性校核塔体截面2-2上的最大组合轴向压应力 所以满足要求 其中0.0940.000212i eA R δ== 查图5-9得(16MnR ,200℃) E=1.86×510 []170tMpa σ=【6】 塔体1-1截面上的最大组合轴向压应力查图5-9得(Q235-B 150℃)E=2×510[]113tMpa σ= 塔体截面0-0上的最大组合轴向压应力1.4 塔体水压试验和吊装时的应力校核1.4.1 水压试验时各种载荷引起的应力液柱静压:1000260.26H g MPa γ=⨯=试验压力:[][]1.250.125T t p p MPa σσ==试验压力和液柱静压力引起的环向应力: 试验压力引起的轴向啦应力: 最大质量引起的轴向压应力 :弯矩引起的轴向应力1.4.2 水压试验时应力校核筒体环向应力校核0.9310.5s K MPa σ= 16MnR (345s MPa σ=)170.48310.5T MPa MPa σ=〈,满足要求 最大组合轴向拉应力校核22max 20.070.9310.5s MPa Mpa σσφ-=-〈=,满足要求最大组合轴向压应力校核1.5 基础环设计1.5.1 基础环尺寸裙座外径:4600164616os D mm =+= 基础环外径:046004005000b D mm =+=基础环内径:46004004200ib D mm =-=基础环伸出宽度:()()115000461619222ob os b D D mm =-=-=基础环面积:()22257776004obos b A D D mm π=-= 基础环截面系数:()448361.61032obos b obD D Z mm D π-==⨯1.5.2 基础环的动力校核所以取以上俩者较大的max 1.56MPa σ=。
化工原理课程设计精馏塔
化工原理课程设计精馏塔
在化工原理课程设计中,精馏塔是一个非常重要的主题。
精馏塔是化工生产中
用来进行精馏分离的装置,其原理和设计对于化工工程师来说至关重要。
本文将对精馏塔的原理、结构和设计进行详细介绍,希望能对化工原理课程设计有所帮助。
首先,我们来介绍一下精馏塔的原理。
精馏塔利用不同组分的沸点差异来进行
分离,通过在塔内加热并在塔顶冷凝,使得液体沸腾蒸发,然后在塔顶冷凝成液体,从而实现组分的分离。
在精馏塔内,通常会设置填料或塔板,增加塔内表面积,促进传质和传热,提高分离效率。
其次,我们将介绍精馏塔的结构。
精馏塔通常由塔底、塔体和塔顶三部分组成。
塔底主要用来加热液体,使其蒸发;塔体内设置填料或塔板,用来增加接触面积;塔顶则用来冷凝蒸发的液体,使其凝结成液体。
此外,精馏塔还包括进料口、顶部产品出口和底部残液出口等部件。
最后,我们将讨论精馏塔的设计。
精馏塔的设计需要考虑诸多因素,如进料组分、产品要求、操作压力和温度等。
在设计精馏塔时,需要进行热力学计算和传质计算,确定塔板或填料的高度和类型,保证塔内的传热和传质效果。
此外,还需要考虑塔底加热方式、塔顶冷凝方式以及塔内液体分布等问题,确保精馏塔能够稳定、高效地进行分离操作。
总之,精馏塔作为化工生产中常用的分离设备,其原理、结构和设计都是化工
工程师需要掌握的重要知识。
通过本文的介绍,相信读者对精馏塔有了更深入的了解,希望能够对化工原理课程设计有所帮助。
化工原理 精馏塔 公式计算
x3
x3
0.9082
y3
y4
0.9380
x4
x4
0.8721
y4
y5
0.9171
x5
x5
0.8332
y5
y6
0.8946
x6
x6
0.7930
y6
y7
0.8714
x7
x7
0.7535
y7
y8
0.8486
x8
x8
0.7166
y8
y9
0.8273
x9
x9
0.6837
y9
y10
0.8083
x10
x
y
x10
0.6554
精馏段
y1 0.9787 y5 0.9171 y9 0.8273 y13 0.7675
x1 0.9540 x5 0.8332 x9 0.6837 x13 0.5982
y2 0.9644 y6 0.8946 y10 0.8083 y14 0.7589
提馏段
x0 0.6002
x4 0.5900
x8 0.5117
23
0.7784
24
0.6131
25
0.7675
26
0.5982
27
0.7589
28
0.5868
29
0.7523
30
0.5781
31
0.747274669
32
33
1.1 30
1.1 15 16 30
最大汽相负荷线 最小汽相负荷线 降液管液泛线
1.2
1.3
1.4
1.5
26
24
化工原理课程设计---精馏塔
前言精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。
有板式塔与填料塔两种主要类型。
根据操作方式又可分为连续精馏塔与间歇精馏塔。
蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸气中转移,蒸气中的难挥发(高沸点)组分不断地向下降液中转移,蒸气愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。
由塔顶上升的蒸气进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。
塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸气返回塔中,另一部分液体作为釜残液取出。
精馏原理蒸馏的基本原理是将液体混合物部分气化,利用其中各组份挥发度不同(相对挥发度,α)的特性,实现分离目的的单元操作。
蒸馏按照其操作方法可分为:简单蒸馏、闪蒸、精馏和特殊精馏等。
本节以两组分的混合物系为研究对象,在分析简单蒸馏的基础上,通过比较和引申,讲解精馏的操作原理及其实现的方法,从而理解和掌握精馏与简单蒸馏的区别(包括:原理、操作、结果等方面)。
目录第1章设计方案的论证 (1)1.1 装置流程的确定 (1)1.2操作压力的选择 (2)1.3进料状况和加热方式的选择 (2)1.4回流比的选择 (2)1.5塔板的类型和选择 (3)第2章精馏塔设计任务书 (4)2.1.设计题目 (4)2.2.工艺条件 (4)2.3.设计内容 (4)2.4.设计结果总汇 (4)第3章设计计算 (7)3.2塔的物料衡算 (7)3.2.1进料液及塔顶塔底产品的摩尔分数 (7)3.2.2 物料衡算 (7)3.3塔板数的确定 (8)3.3.1 理论板NT的求法 (8)3.4塔工艺条件及物性数据计算 (10)3.4.1操作温度的计算 (10)3.4.2平均摩尔质量计算 (10)3.4.3平均密度计算 (10)3.4.4液体平均表面张力 (10)3.4.5 液体平均粘度 (13)3.4.6 精馏塔气液负荷计算 (14)3.4.7 精馏塔的塔体工艺尺寸的计算 (14)3.4.8 塔板主要工艺尺寸的计算 (15)3.4.9筛板的流体力学验算 (17)3.4.10精馏塔的工艺设计计算结果总表 (22)参考文献 (24)心得体会 (25)第1章设计方案的论证1.1 装置流程的确定蒸馏装置包括精馏塔,原料预热器,蒸馏釜(再沸器),冷凝器,釜液冷却器和产品冷却器等设备。
化工原理 课程设计 精馏塔
化工原理课程设计精馏塔
化工原理课程设计:精馏塔
一、设计题目
设计一个年产10万吨的乙醇-水溶液精馏塔。
该精馏塔将采用连续多级蒸馏的方式,将乙醇与水进行分离。
乙醇的浓度要求为95%(质量分数),水含量要求低于5%。
二、设计要求
1. 设计参数:
操作压力:常压
进料流量:10万吨/年
进料组成:乙醇40%,水60%(质量分数)
产品要求:乙醇95%,水5%
2. 设计内容:
完成精馏塔的整体设计,包括塔高、塔径、填料类型、进料位置、塔板数、回流比等参数的计算和选择。
同时,还需完成塔内件(如进料口、液体分布器、再沸器等)的设计。
3. 绘图要求:
需要绘制精馏塔的工艺流程图和结构示意图,并标注主要设备参数。
4. 报告要求:
完成设计报告,包括设计计算过程、结果分析、经济性分析等内容。
三、设计步骤
1. 确定设计方案:根据题目要求,选择合适的精馏塔类型(如筛板塔、浮阀塔等),并确定进料位置、塔板数和回流比等参数。
2. 计算塔高和塔径:根据精馏原理和物料性质,计算所需塔高和塔径,以满足分离要求。
3. 选择填料类型:根据物料的特性和分离要求,选择合适的填料类型,以提高传质效率。
4. 设计塔内件:根据塔板数和填料类型,设计合适的进料口、液体分布器、再沸器等塔内件。
5. 进行工艺计算:根据进料组成、产品要求和操作条件,计算每块塔板的温度和组成,以及回流比等参数。
6. 进行经济性分析:根据设计方案和工艺计算结果,分析项目的投资成本和运行成本,评估项目的经济可行性。
化工原理课程设计_乙醇-水连续浮阀精馏塔的设计 (1)
第一章:塔板的工艺设计一、精馏塔全塔物料衡算F:进料量(kmol/s ) F x :原料组成(摩尔分数,同下) D:塔顶产品流量(kmol/s ) D x :塔顶组成 W:塔底残液流量(kmol/s ) :W x 塔底组成原料乙醇组成:%91.8%10018/8046/2046/20x =⨯+=F塔顶组成:%98.85%10018/646/9446/94=⨯+=D x塔底组成:%12.0%10018/7.9946/3.046/3.0=⨯+=W x进料量:F=25万吨/年=4706.036002430010182.01462.0102543=⨯⨯⨯⎪⎭⎫ ⎝⎛-+⨯⨯(kmol/s ) 物料衡算式为:F=D+W Fx F =Dx D +W W x 联立带入求解:D=0.0482 kmol/s W=0.4424 kmol/s二、常压下乙醇-水气液平衡组成(摩尔)与温度关系1. 温度利用表中数据由差值法可求得t F 、t D 、t W①t F :21.791.80.89t 66.921.77.860.89F --=--, t F =87.41 ℃②t D :72.7498.8541.78t 72.7443.8941.7815.78--=--D , t D =78.21 ℃③t W :12.0100t 90.105.95100W --=--, t W =99.72 ℃ ④精馏段的平均温度:81.82221.7841.872t t t 1=+=+=F D ℃ ⑤提馏段的平均温度:57.93272.9941.872t t t 2=+=+=F W ℃ 2. 密度已知:混合液密度:B B A A Lραραρ+=1(α为质量分数,M 为平均相对分子质量) 混合气密度:004.22TP MP T V =ρ塔顶温度:t D =78.21 ℃ 气相组成43.8910015.7821.7843.8915.7815.7841.78y --=--D D y :, %88.86=D y进料温度:t F =87.41℃ 气相组成FF y 10091.3841.870.8975.4391.387.860.89y --=--:, %26.42y =F塔底温度:t W =99.72℃气相组成WW y 100072.991000.1705.95100y --=--:, W y =1.06%⑴ 精馏段液相组成1x :1x =2x x FD +, %445.47x 1= 气相组成2y y y y 11FD +=:, %545.64y 1= 所以 286.31)4745.01(184745.0461=-⨯+⨯=L M kg/mol 074.36)6455.01(186455.0462=-⨯+⨯=L M kg/mol三、理论塔板的计算理论板:指离开此板的气液两相平衡,而且上液相组成均匀。
化工原理课程设计--丙酮水连续精馏塔的设计
07 安全环保措施与节能优化 建议
安全防护措施考虑
防火防爆措施
采用防爆电器、设置可燃气体检 测报警装置、确保塔内压力稳定 等,以防止火灾和爆炸事故的发 生。
操作安全
制定严格的操作规程,对操作人 员进行专业培训,确保他们熟悉 设备的操作和维护,减少人为操 作失误。
设备安全
选用高质量的材料和可靠的制造 工艺,确保设备的稳定性和安全 性;对关键设备进行定期检查和 维护,及时发现并处理潜在的安 全隐患。
根据冷却水温度、冷却水量、蒸汽量等条件,计算冷凝器传热面积 、冷却水流速等参数。
再沸器
根据加热蒸汽量、加热温度等条件,计算再沸器传热面积、加热蒸 汽流速等参数。
辅助系统(如冷凝器、再沸器等)设计
冷凝器设计
选择合适的冷凝器类型(如列管式、板式等),确定冷却 水进出口温度、冷却水量等参数,进行传热计算和结构设 计。
产品收集
塔顶蒸出的丙酮经过冷凝器冷凝 后收集,塔底排出的水经过处理
后排放或回收利用。
操作条件选择
操作压力
根据丙酮和水的性质及工艺要求 ,选择合适的操作压力。一般来
说,常压精馏可以满足要求。
操作温度
根据丙酮和水的沸点及传质传热要 求,选择合适的操作温度。通常, 操作温度略高于丙酮的沸点。
回流比
回流比对精馏塔的分离效果和能耗 有重要影响。在保证分离效果的前 提下,应尽量降低回流比以减少能 耗。
THANKS FOR WATCHING
感谢您的观看
对设计结果进行仿真验证,分析 设计方案的可行性和经济性。
02 精馏塔工艺设计
工艺流程确定
原料预处理
将丙酮和水按一定比例混合,经 过预热器加热至适宜温度,进入
化工原理课程设计精馏塔
化工原理课程设计任务书1.设计题目:分离乙醇—正丙醇二元物系旳浮阀式精馏塔2.原始数据及条件:进料:乙醇含量45%(质量分数,下同),其他为正丙醇分离规定:塔顶乙醇含量 93%;塔底乙醇含量 0.01%生产能力:年处理乙醇-正丙醇混合液 25000 吨,年动工 7200 小时操作条件:间接蒸汽加热;塔顶压强 1.03atm(绝压);泡点进料; R=53.设计任务:⑴完毕该精馏塔旳各工艺设计,包括设备设计及辅助设备选型。
⑵画出带控制点旳工艺流程图、塔板版面布置图、精馏塔设计条件图。
⑶写出该精馏塔旳设计阐明书,包括设计成果汇总和设计评价。
概述本次设计针对二元物系旳精馏问题进行分析、计算、核算、绘图,是较完整旳精馏设计过程。
精馏设计包括设计方案旳选用,重要设备旳工艺设计计算、辅助设备旳选型、工艺流程图旳制作、重要设备旳工艺条件图等内容。
通过对精馏塔旳核算,以保证精馏过程旳顺利进行并使效率尽量旳提高。
本次设计成果为:理论板数为 20 块,塔效率为 42.2%,精馏段实际板数为 40块,提馏段实际板数为 5 块,实际板数 45 块。
进料位置为第 17 块板,在板式塔重要工艺尺寸旳设计计算中得出塔径为 0.8 米,设置了四个人孔,塔高 22.19 米,通过浮阀板旳流体力学验算,证明各指标数据均符合原则。
关键词:二元精馏、浮阀精馏塔、物料衡算、流体力学验算。
目录第一章绪论 (5)第二章塔板旳工艺设计 (7)一、精馏塔全塔物料衡算 (7)二、乙醇和水旳物性参数计算 (7)1.温度 (7)2.密度 (8)三、理论塔板旳计算 (11)四、塔径旳初步计算 (12)五、溢流装置 (14)六、塔板分布、浮阀数目与排列 (15)第三章塔板旳流体力学计算 (16)一、气相通过浮阀塔板旳压降 (16)二、淹塔 (17)三、物沫夹带 (18)四、塔板负荷性能图 (19)1.物沫夹带线 (19)2.液泛线 (19)3.液相负荷上限 (20)4.漏液线 (20)5.液相负荷下限 (20)第四章塔附件旳设计 (21)一、接管 (21)二、筒体与封头 (23)三、除沫器 (23)四、裙座 (24)五、人孔 (24)第五章塔总体高度旳设计 (24)一、塔旳顶部空间高度 (24)二、塔总体高度 (24)第六章附属设备旳计算 (24)8.1热量衡算 (24)8.1.10℃旳塔顶气体上升旳焓Qv (24)258.1.2回流液旳焓QR..................................................................8.1.3塔顶馏出液旳焓Q D (25)8.1.4冷凝器消耗旳焓Q C (25)8.1.5进料口旳焓Q F (25)8.1.6塔釜残液旳焓Q W (26)8.1.7再沸器Q B (26)8.2冷凝器旳设计 (26)8.3冷凝器旳核算 (27)8.4泵旳选择 (27)浮阀塔工艺设计计算成果列表 (28)重要符号阐明 (29)参照文献 (31)第一章绪论精馏旳基本原理是根据各液体在混合液中旳挥发度不一样,采用多次部分汽化和多次部分冷凝旳原理来实现持续旳高纯度分离。
化工原理课程设计甲醇丙醇精馏塔完美排版
目录化工原理课程设计任务书 0一、设计方案与工艺流程图 (1)1、设计方案 (1)2、工艺流程图 (1)二、基础数据 (1)1、主要物性数据 (1)2、进料流量及组成 (1)3、分离要求 (2)4、原料热力学状态 (2)5、冷却介质及其温度,加热介质及其温度 (2)三、物料衡算 (2)四、确定操作条件 (2)1、确定操作压力 (2)2、确定操作温度 (2)五、回流比 (3)六、理论板数与实际板数 (4)七、塔径、塔高的计算及板间距的确定 (5)1.汽液相流率 (5)2.将上述求得的流率转换成体积流率 (5)3.塔径的计算 (6)4.塔高的确定 (8)八.堰及降液管的设计 (8)1.塔堰长 (8)2.取堰宽及降液管面积 (8)3.停留时间 (8)4.堰高 (9)5.降液管底端与塔板之间的距离,即降液管底隙 (9)九.塔板布置极其筛板塔的主要结构参数 (9)2.筛孔直径d0,孔中心距离,板厚 (9)3.开孔率 (9)4.孔数 (10)十.水力学计算 (10)1.塔板阻力 (10)2、漏液点 (11)3.雾沫夹带 (11)4.液泛的校核 (12)十一.负荷性能图 (13)1、精馏段 (13)2、提馏段 (15)十二、冷凝器的设计 (18)1.估算传热面积,初选换热器型号 (18)2.核算压降 (19)3.核算总传热系数 (21)4、确定换热器型号 (22)设计感想与总结..........................................错误!未定义书签。
参考文献 (24)化工原理课程设计任务书一、设计题目:筛板塔的设计二、设计任务:甲醇—丙醇精馏塔的设计三、设计条件四、设计内容与要求一、设计方案与工艺流程图1、设计方案本次课程设计的任务是甲醇—丙醇精馏塔,塔型为筛板塔,二组分进料(甲醇、丙醇)。
二组分在常压下均为液相,为节约材料,采用常压精馏,无需预热器,塔顶设置冷凝器,塔底设置再沸器。
化工原理课程设计精馏塔详细版
广西大学化学化工学院化工原理课程设计任务书专业:班级:姓名:学号:设计时间:设计题目:乙醇——水筛板精馏塔工艺设计(取至南京某厂药用酒精生产现场)设计条件: 1. 常压操作,P=1 atm(绝压)。
2. 原料来至上游的粗馏塔,为95——96℃的饱和蒸汽。
因沿程热损失,进精馏塔时原料液温度降为90℃。
3. 塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为 40吨/日。
4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分率)。
5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝器,泡点回流。
6.操作回流比R=(1.1——2.0)R。
min设计任务: 1. 完成该精馏塔工艺设计,包括辅助设备及进出口接管的计算和选型。
2.画出带控制点的工艺流程图,t-x-y相平衡图,塔板负荷性能图,筛孔布置图以及塔的工艺条件图。
3.写出该精流塔的设计说明书,包括设计结果汇总和对自己设计的评价。
指导教师:时间1设计任务1.1 任务1.1.1 设计题目乙醇—水筛板精馏塔工艺设计(取至南京某厂药用酒精生产现场)1.1.2 设计条件 1.常压操作,P=1 atm(绝压)。
2.原料来至上游的粗馏塔,为95-96℃的饱和蒸气。
因沿程热损失,进精馏塔时原料液温度降为90℃。
3.塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为40吨/日。
4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分率)。
5.塔釜采用饱和水蒸气加热(加热方式自选);塔顶采用全凝器,泡点回流。
6.操作回流比R=(1.1—2.0)R。
min1.1.3 设计任务1.完成该精馏塔工艺设计,包括辅助设备及进出口接管的计算和选型。
2.画出带控制点的工艺流程示意图,t-x-y相平衡图,塔板负荷性能图,筛孔布置图以及塔的工艺条件图。
3.写出该精馏塔的设计说明书,包括设计结果汇总和对自己设计的评价。
1.2 设计方案论证及确定1.2.1 生产时日设计要求塔日产40吨92.41%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。
化工原理课程设计——精馏塔
(二)
塔板的类型与选择
塔板是板式塔的主要构件,分为错流式塔板和逆流式塔板两类,工业应用以错 流式塔板为主,常用的错流式塔板主要有下列几种。
1. 泡罩塔板
泡罩塔板是工业上应用最早的塔板,其主要元件为升气管及泡罩。泡罩安装 在升气管的顶部,分圆形和条形两种,国内应用较多的是圆形泡罩。泡罩尺寸分 为ϕ80 mm、ϕ100 mm、ϕ150mm三种,可根据塔径的大小选择。通常塔径小于 1 OOO mm,选用ϕ80 mm的泡罩;塔径大于 2 000 mm,选用ϕ150 mm的泡罩。 泡罩塔板的主要优点是操作弹性较大,液气比范围大,不易堵塞,适于处理各 种物料,操作稳定可靠。其缺点是结构复杂,造价高; 板上液层厚, 塔板压降大, 生产能力及板效率较低。近年来,泡罩塔板已逐渐被筛板、浮阀塔板所取代。在 设计中除特殊需要(如分离粘度大、易结焦等物系)外一般不宜选用。
σ,m
N m
双组分混合液体的表面张力 σm 可按下式计算
m
式中
x x
A B A A B
B
m
-混合液体的平均表面张力 ,
A
B
-纯组分 A,B 的表面张力
xA,xB-A,B 组分的摩尔分率 4、氯苯的汽化潜热 常压沸点下的汽化潜热为 35.3×103kJ/kmol 纯组分的汽化潜热与温度的关系可用下式计算:
纯组分在任何温度下得密度可由下式计算: 苯 ρA=912-1.187t 氯苯 ρB=1127-1.111t 3、组分的表面张力 σ 温度,℃ 80 苯 氯苯 21.2 26.1 85 20.6 25.7 110 17.3 22.7 115 16.8 22.2 120 16.3 21.6 131 15.3 20.4 式中 t 为温度,℃
化工原理课程设计-精馏塔
化工原理课程设计任务书(一)设计题目在抗生素类药物生产过程中,需要用甲醇溶液洗涤晶体,洗涤过滤后产生废甲醇溶液,其组成为含甲醇46%、水54%(质量分数),另含有少量的药物固体微粒。
为使废甲醇溶液重复利用,拟建立一套填料精馏塔,以对废甲醇溶液进行精馏,得到含水量≤0.3%(质量分数)的甲醇溶液。
设计要求废甲醇溶液的处理量为 3.6万吨/年,塔底废水中甲醇含量≤0.5%(质量分数)。
(二)操作条件1)操作压力常压2)进料热状态自选3)回流比自选4)塔底加热蒸汽压力 0.3Mpa(表压)(三)填料类型因废甲醇溶液中含有少量的药物固体微粒,应选用金属散装填料,以便于定期拆卸和清洗。
填料类型和规格自选。
(四)工作日每年工作日为300天,每天24小时连续运行。
(五)设计内容1、设计说明书的内容1)精馏塔的物料衡算;2)塔板数的确定;3)精馏塔的工艺条件及有关物性数据的计算;4)精馏塔的塔体工艺尺寸计算;5)填料层压降的计算;6)液体分布器简要设计;7)精馏塔接管尺寸计算;8)对设计过程的评述和有关问题的讨论。
摘要甲醇最早由木材和木质素干馏制的,故俗称木醇,这是最简单的饱和脂肪组醇类的代表物。
无色、透明、高度挥发、易燃液体。
略有酒精气味。
近年来,世界甲醇的生产能力发展速度较快。
甲醇工业的迅速发展,是由于甲醇是多种有机产品的基本原料和重要的溶剂,广泛用于有机合成、染料、医药、涂料和国防等工业。
由甲醇转化为汽油方法的研究成果,从而开辟了由煤转换为汽车燃料的途径。
近年来碳化学工业的发展,甲醇制乙醇、乙烯、乙二醇、甲苯、二甲苯、醋酸乙烯、醋酐、甲酸甲酯和氧分解性能好的甲醇树脂等产品,正在研究开发和工业化中。
甲醇化工已成为化学工业中一个重要的领域。
目前,我国的甲醇市场随着国际市场的原油价格在变化,总体的趋势是走高。
随着原油价格的进一步提升,作为有机化工基础原料——甲醇的价格还会稳步提高。
国内又有一批甲醇项目在筹建。
这样,选择最好的工艺利设备,同时选用最合适的操作方法就成为投资者关注的重点。
化工原理设计精馏塔
《化工原理课程设计》报告40000 吨/年苯和甲苯精馏装置设计班级:专业:化工工艺及工程设计者姓名:指导老师:学号:完成日期: 2012年 6月 20 日化工原理课程设计任务书一、设计题目:苯——甲苯混合液筛板(浮阀)精馏塔设计本课程设计是依据实际生产情况加以一定程度的简化而提出的。
二、设计任务及操作条件1、进精馏塔的料液含苯55%(质量),其余为甲苯2、产品的苯含量≥97%(质量),取97%3、釜液中苯含量≥2%(质量),取2%4、年处理原料量:40000吨5、每年实际生产天数:330天(一年中有一个月检修)6、操作条件⑴精馏塔塔顶压强 0.04MPa(表压)⑵进料热状况泡点液体(q=1)⑶回流比 R=1.6Rmin⑷加热水蒸气压强 3.0kg/cm² (表压)⑸单板压降 <8mmHg⑹设备型式筛板⑺厂址徐州地区三、设计项目(设计说明书内容)⒈流程的确定及说明⒉塔板数的计算⒊塔径计算⒋塔板结构设计⑴塔板结构尺寸的确定⑵流体力学验算⑶计算、绘制塔板负荷性能图⒌其它⑴塔釜加热蒸汽消耗量的计算⑵塔顶冷凝器或分凝器(设计者确定)的换热面积和选型,冷却水消耗量的计算⑶灵敏板位置的确定(并图示)⒍应绘制的各幅图⑴实际设计的工艺流程图⑵塔板布置图⑶塔局部侧剖图苯-甲苯饱和蒸汽压的安托尼公式:logp︒=A-B/(C+t) p︒的单位:kPa t的单位:℃组分 A B C苯 6.023 1206.35 220.24甲苯 6.078 1343.94 219.58四、苯的生产工艺流程在炼焦过程产生的焦炉煤气,其中含有30~45%(g/标m 3)的粗苯。
粗苯的主要成分是:苯(约70%)、甲苯(约14%)、二甲苯(约3%)和三甲苯。
生产中一般采用煤焦油中230~300℃的洗油馏分将粗苯从煤气中吸收下来。
洗油在低温(20~80℃)下具有选择吸收煤气中粗苯的性质,而在升高温度(140~180℃)时又能从富油中将粗苯释放出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热量横算 Q(KW) cp r G(kg/s) p 加料+Qf 2382.807844 4.317357 回流+Qr 5032.634334 3.23656 塔顶蒸汽-QV 10873.02529 3.23656 981.089 残液-Qw 1379.927765 4.217576 散入周围热量-Ql 537.5012081 加热蒸汽+Qb 5375.012081 2205.2 2.437426121 198.63Kpa 全凝器C 5035.941729 4.1785 981.089 120.5203238
l 0.03
Σ Hf1 ξ 阀 35 11.77345
13
出口t2 30
tm 25
L 4.5 μ 乙醇 4.97E-04 Re 1.43E+05 η 2.05E-01
DN 0.7
N 4
n 256 α 外 1709.094 α 内 1.77E+04
d2 0.025
δ r 0.002
μ 水 μ *1E3 3.64E-04 0.000479 Pr 5.43E+00 0.1-0.25 符合
顶 底 顶 底 顶 底 板 塔高
H5 1.2
H6(10min) 1.662123713
管道尺寸 塔顶蒸汽管 塔底回流管 进料管 塔釜出料管 塔釜蒸汽管 罐 原料罐 回流罐 产品罐 泵 进料泵
d内 管材 0.45 承插式铸铁管 0.05 冷拨无缝钢管 0.03 冷拨无缝钢管 0.032 冷拨无缝钢管 0.45 承插式铸铁管 D 65.34043188 200.5814594 34.03636277 3.814231323 3.241803018 3.068980126
排空时间(h) 装料系数 高径比 并联个数 8 0.8 1.5 8 0.8 1.5 8 0.8 1.5
进料高度Z2 Z1 ΔZ U1 7.297123713 4.577078 2.720046 Fh(m3/h) n 6.534043188 50-32-250
U2 Δ ρ /2g 0 2.569019104 3.958556416 1450 6.3 20
L' 10735.78174 586.3391534 11.27318787 0.003131441 2.982161595 0.086078556 0.102761187 h ow 0.0198873 0.016519638 d0 0.004 0.003 hd 0.117626978 0.145149175
V 17407.07071 412.5691763 11895.49112 3.304303088 4.835297419 uF 1.944533393 4.08351116 hw 0.0301127 0.033480362 开孔率 10% 10.00% hr 0.006058316 0.002528281
Hp δ 0.146613 0.174007
3 3
ξ 弯管 Σ Hf2 Σ Hf H 1.5 5.382148 17.1556 24.17058
μ shui 0.364069 0.291119 0.34401
塔顶 最小回流 塔底 回流系数 进料口 R取值 3.304303 3.48158
R 2.72 2.3 6.256
Af 0.178564 0.100443
u系数回算 0.926905 0.826782
HT 0.45 0.Байду номын сангаас3
hf 0.125 0.125
H7 2.5 流速回算 20.78668295 2.839086474 2.569019104 1.15451739 21.90189278 H罐 5.721346984 4.862704527 4.603470189
H8 0.645
Δ 2.5
H 23.29962
符合 符合 符合 符合 符合 H液体 4.577078 3.890164 3.682776
Δ t2
K
选A 118.6759539 140 λ 乙醇 λ 水 λ 0.1715 0.6728 0.239678882 ρ 水 Cp u 995.7 4.18E+03 5.463155503 dm K A需 0.022941912 8.53E+02 1.11E+02 800
A
原料预热器 预热器1 预热器2 塔釜再沸器
0.942 0.863996 W 3181.702 173.77 3.34097 0.000928 0.883806 22.6 69.94 E图横坐标 15.10935 17.43205 r 0.75 0.55 C0 0.74615 0.74615 提 4 H3 0.4025 圆整d 0.45 0.056 0.038 0.038 0.45
A0 0.128883 0.069541 停留时间 6.413603 7.174833
ua u0 F 2.551793 25.6380678 3.086862 4.983057 50.06516847 3.868541 ev 压力降 u0m K hp 0.060599 0.003078967 7.051029 3.636075 0.146613 0.178792 0.00998179 6.006278 8.335473 0.174007 0.07 0.010433
质量流量 摩尔流量 体积流量 M³/s kg/s 顶C20 底C20
0.42 0.220794 D 2546.698 56.85904 3.403636 0.000945 0.707416 塔顶张力 塔底张力 Lw 1.12 0.84 x 0.463006 0.340878 x2 0.070302 0.067436 精 27 H2 1.29 d 0.512915 0.059572 0.034001 0.038442 0.496383
进口t1 20
换热器设计 α 外 α 内 总传热系数K
Δ t1
Δ tm 48.2 53.04299 Ws Gs ρ D 17407.07071 95.94445 748.2287 d1 μ 水 λ 水 0.021 8.01E-04 0.6171 λ Rs外 Rs内 62.8 1.76E-04 2.60E-04 58.2
V' 7554.079588 412.5691763 12533.68667 3.481579631 2.098355441 u系数 0.68 0.68 h0 0.025 0.029 t 0.012046576 0.009034932 Hd 0.202671517 0.226535285
t 78.2 97.05 82.65
0.026 0.010333321 L 15008.08081 355.7101388 20.05814594 0.005571707 4.168911336 顶C 底C E 1.023 1.03 Aa 1.294894465 0.698683426 充气系数 0.579724444 0.577156578 加料 28 H4 1.4 壁厚 0.0134 0.003 0.04 0.03 0.0134 V 1 5 1
流量 12,20 3.304303 1.5,2.5 0.005572 1.5,2.6 0.001815 0.5,1.0 0.000928 10,25 3.48158 流量 6.534043 20.05815 3.403636
Re
μ ε ε /d λ 166187.142 0.000396 0.00015 0.005 32 1.07
u F lv D 1.322283 0.038129 1.868027 2.776788 0.035753 1.32319
Af/AT 圆整后D An 0.7 0.087738 1.6 1.856636 0.7 0.087738 1.2 1.044357
9389.331888
n 10261.36 9843.023 要求小于 0.240056 0.24174
Pv 1.463334 0.602702 0.829282 Ls
乙醇密度 水密度 Pl Mm μ chun 737.7221 973.3805053 748.2287 42.19188 0.497211 720.2147 960.5928804 952.3288 18.30985 0.370058 733.6304 970.5789304 854.6447 24.21328 0.470456 顶 底 0.005571707 0.003131441 lw/D Vs 顶 底
给定条件
19000 F 5584.285534 230.6290147 6.534043188 0.001815012 1.551190426 0.084 0.08 hL 0.05 0.05 Wd 0.266994458 0.189121675 x1 0.5 0.5 总 31 H1 11.7 经济流速u 16 2 2 0.8 18
F af tf 残热冷却 热负荷Qf 5584.285534 0.45 82.45 35 229149.6582 tm cp QF Qf2 51.325 3988.562 387616.8 158467.13 V' aw r 热负荷Qb(Kw) 2.098355441 0.026 2257.987 4738.059307