第10讲假设法解题(一)

合集下载

六年级奥数分册第10周 假设法解题-精华版

六年级奥数分册第10周 假设法解题-精华版

第十周 假设法解题(一)专题简析:假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

例题1 甲、乙两数之和是185,已知甲数的14 与乙数的15的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15 ”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15 。

解: 乙:(185-42×4)÷(1-15 ×4)=85答:甲数是100,乙数是85。

练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱? 2. 甲、乙两个消防队共有338人。

抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人? 3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25 少70吨,还有420吨没完成,第二季度原计划生产多少吨?例题2彩色电视机和黑白电视机共250台。

如果彩色电视机卖出19,则比黑白电视机多5台。

问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。

黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。

(250+5)÷(1+1-19 )=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。

练习21. 姐妹俩养兔120只,如果姐姐卖掉17 ,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个? 3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只 例题3。

小学奥数讲座标准教案-学案-六年级第10讲 假设法解题

小学奥数讲座标准教案-学案-六年级第10讲  假设法解题

第10讲假设法解题五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。

解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。

1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。

抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?【例题2】彩色电视机和黑白电视机共250台。

如果彩色电视机卖出1/9,则比黑白电视机多5台。

问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。

黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。

(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。

1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。

小学六年级奥数举一反三--假设法解题

小学六年级奥数举一反三--假设法解题

小学奥数举一反三假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。

解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。

练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。

抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。

如果彩色电视机卖出1/9,则比黑白电视机多5台。

问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。

黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。

(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。

练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。

(完整word版)六年级奥数假设法解题答案

(完整word版)六年级奥数假设法解题答案

第十周 假设法解题(一)例题1甲、乙两数之和是185,已知甲数的14 与乙数的15 的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15。

解: 乙:(185-42×4)÷(1-15 ×4)=85答:甲数是100,乙数是85。

练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱?2. 甲、乙两个消防队共有338人。

抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人?3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25 少70吨,还有420吨没完成,第二季度原计划生产多少吨?彩色电视机和黑白电视机共250台。

如果彩色电视机卖出19 ,则比黑白电视机多5台。

问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。

黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。

(250+5)÷(1+1-19)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。

练习21. 姐妹俩养兔120只,如果姐姐卖掉17 ,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个?3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的38 与徒弟加工零件个数的47的和为49个,师、徒各加工零件多少个? 【思路导航】假设师、徒两人都完成了47 ,一个能完成(105×47 )=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的38 与完成加工零件的47 相差的个数。

小学六年级数学假设法解题讲解提高练习(附答案及解析)

小学六年级数学假设法解题讲解提高练习(附答案及解析)

假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的41与乙数的51的和是42,求两数各是多少?练习1:1、甲、乙两人共有钱150元,甲的21与乙的101的钱数和是35元,求甲、乙两人各有多少元钱?2、甲、乙两个消防队共有338人。

抽调甲队人数的71,乙队人数的31,共抽调78人,甲、乙两个消防队原来各有多少人?【例题2】彩色电视机和黑白电视机共250台。

如果彩色电视机卖出91,则比黑白电视机多5台。

问:两种电视机原来各有多少台?练习2:1、姐妹俩养兔120只,如果姐姐卖掉71,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2、学校有篮球和足球共21个,篮球借出31后,比足球少1个,原来篮球和足球各有多少个?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的83与徒弟加工零件个数的74的和为49个,师、徒各加工零件多少个?练习3:1、某商店有彩色电视机和黑白电视机共136台,卖出彩色电视机的52和黑白电视机的73,共卖出57台。

问:原来彩色电视机和黑白电视机各有多少台?【例题4】甲、乙两数的和是300,甲数的52比乙数的41多55,甲、乙两数各是多少? 解析:本题主要考查一元一次方程的应用。

根据题意设甲数是,则乙数是,根据题意可得方程,解得。

练习4:1、畜牧场有绵羊、山羊共800只,山羊的2/5比绵羊的21多50只,这个畜牧场有山羊、绵羊各多少只?2、师傅和徒弟共加工零件840个,师傅加工零件的个数的85比徒弟加工零件个数的32多60个,师傅和徒弟各加工零件多少个?【例题5】育红小学上学期共有学生750人,本学期男学生增加61,女学生减少51,共有710人,本学期男、女学生各有多少人?练习5:1、金放在水里称,重量减轻191,银放在水里称,重量减少101,一块重770克的金银合金,放在水里称是720克,这块合金含金、银各多少克?2、某中学去年共招新生475人,今年共招新生640人,其中初中招的新生比去年增加48%,高中招的新生比去年增加20%,今年初、高中各招收新生多少人?三、课后作业1、海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的31多50吨,五月份完成总数的52少70吨,还有420吨没完成,第二季度原计划生产多少吨?2、小明甲养的鸡和鸭共有100只,如果将鸡卖掉201,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?3、学校买来足球和排球共64个,从中借出排球个数的41和足球个数的31后,还剩下46个,买来排球和足球各是多少个?4、某校六年级甲、乙两个班共种100棵树,乙班种的101比甲班种的31少16棵,两个班各种多少棵?5、袋子里原有红球和黄球共119个。

假设法解题一附答案

假设法解题一附答案

假设法解题(一)假设是解决较复杂的应用题时常用的一种解题策略,一般针对题目中出现了2种或2种以上的未知量的应用题。

思考时可以先假设全部是一种未知量,然后按照题目的意思进行推算,并根据已知条件把数量上出现的矛盾加以适当的调整,最后找到答案。

例题1:鸡兔同笼,共100个头,320只脚,鸡兔各有多少只例2 :甲每小时走12千米,乙每小时走8千米。

某日甲从A地到B地,乙同时从B地到A地,已知乙到A地时,甲已先到B地5小时。

求AB两地距离例3:小王骑车从甲地到乙地往返一次。

去的时候速度是每小时20千米,回来的时候速度是每小时12千米,求他往返的平均速度。

例题1:鸡兔同笼,共100个头,320只脚,鸡兔各有多少只思路导航:实际上,鸡兔脚的数量是不同的。

我们假设鸡兔脚的数量相同,一只鸡2只脚,一只兔也2只脚。

我们能够得出一个新数量,鸡兔共100只,有100×2=200只脚。

问题出来了,实际上多出了320-200=120只脚,为什么其实,这些多出来的脚是兔子的脚。

从假设看,一只兔子我们要补充给它2条腿,才符合实际。

实际上多出的脚,一共有多少个“2条腿”呢有120÷2=60个。

这就是兔子的只数。

列算式兔子(320-100×2)÷2=(320-200)÷2=120÷2=60(只)鸡100-60=40(只)答:鸡有40只,兔有60只。

例2 :甲每小时走12千米,乙每小时走8千米。

某日甲从A地到B地,乙同时从B地到A地,已知乙到A地时,甲已先到B地5小时。

求AB两地距离思路导航:假设甲到B地后,继续往前走,那么当乙到达A地时,甲又走了12×5=60(千米),这是在相同时间内,甲比乙多走的路,由于甲每小时比乙多走12-8=4(千米),因此,看60千米里面有几个4千米,就得出乙行完全程的时间,再用乙的速度×时间,就可以得出AB两地的距离。

关键词:速度差、行走距离差(假设时间相同后有行走距离差)假设提示:题目没有多少个数量,一个是速度,一个是时间。

第十周 假设法解题

第十周  假设法解题

第十周假设法解题(鸡兔同笼 5.4)姓名等级例题:笼子里有兔子和鸡共35只,鸡脚和兔脚共94只,鸡兔各多少?思路指引:假设全是鸡,那么相对应的脚总数=2×35=70(只),与实际的脚相比减少了94-70=24(只)。

少的原因是把每只兔子当作一只鸡时,要少4-2=2(只)脚,所以,兔子有24÷(4-2)=12(只),则鸡有35-12=23(只)。

方法一假设全是鸡:兔子:(94- 2×35)÷(4-2)=12(只)鸡: 35-12=23(只)方法二假设全是兔子:鸡:( 4×35-94)÷(4-2)=23(只)兔子:35-23=12(只)基础探究1.鸡和兔子共有30只,共有脚70只,鸡和兔子各有多少只?2.小亮有面值2元和5元的代金券共27张,总面值99元,这两种代金券个多少张?3.鸡和兔子共有100只,鸡得脚比兔子的脚多80只,鸡和兔子各多少?4.猴子去采松子,晴天每天可以采20个,雨天每天可以采12个。

他一连几天共采112个,平均每天采14个,这几天有几天下雨?5.一批水泥,用小车装载要用45辆;用大车装载要用36辆。

已知每辆大车比小车多装4吨,问这批水泥有多少吨?6.某市为4.20雅安灾区捐赠救灾物品,大货车要16辆,,如果用小货车要48辆,已知大货车比小货车每辆多装4人,问有多少吨货物?7、某搪瓷厂为一个大型商场运送1000个茶杯,双方商定每个运费为1元,如果打碎一个,这个不给运费而且要赔偿3元,结果运送完结账时,搪瓷厂共得运费920元,求打碎了几个茶杯?8、在某次数学竞赛中共有20题,评分标准答对一题得5分,答错或者不做一题倒扣1分,刘明同学参加了这次比赛,共得分64分,刘明同学答对多少题?9、某足球比赛售出30元、40元、50元门票共200张,收入7800元,其中40元和50元门票数相等,各种门票个多少张?10、有8个谜语让60个人猜,共猜对338人次,每个人至少猜对3个,猜对3个的有6人,猜对4个的有10人,猜对5个和7个的人同样多,猜对8个的有多少人?11、有甲、乙、丙三种练习本,价钱分别是0.7元、0.3元、0.2元,一共买了47个练习本,付了21.2元,买乙种练习本的数量是丙种练习本的2倍,问这三种练习本各买了多少本?。

假设法解题一附答案

假设法解题一附答案

假设法解题(一)假设是解决较复杂的应用题时常用的一种解题策略,一般针对题目中出现了2种或2种以上的未知量的应用题。

思考时可以先假设全部是一种未知量,然后按照题目的意思进行推算,并根据已知条件把数量上出现的矛盾加以适当的调整,最后找到答案。

例题1:鸡兔同笼,共100个头,320只脚,鸡兔各有多少只例2 :甲每小时走12千米,乙每小时走8千米。

某日甲从A地到B地,乙同时从B地到A地,已知乙到A地时,甲已先到B地5小时。

求AB两地距离例3:小王骑车从甲地到乙地往返一次。

去的时候速度是每小时20千米,回来的时候速度是每小时12千米,求他往返的平均速度。

例题1:鸡兔同笼,共100个头,320只脚,鸡兔各有多少只思路导航:实际上,鸡兔脚的数量是不同的。

我们假设鸡兔脚的数量相同,一只鸡2只脚,一只兔也2只脚。

我们能够得出一个新数量,鸡兔共100只,有100×2=200只脚。

问题出来了,实际上多出了320-200=120只脚,为什么其实,这些多出来的脚是兔子的脚。

从假设看,一只兔子我们要补充给它2条腿,才符合实际。

实际上多出的脚,一共有多少个“2条腿”呢有120÷2=60个。

这就是兔子的只数。

列算式兔子(320-100×2)÷2=(320-200)÷2=120÷2=60(只)鸡100-60=40(只)答:鸡有40只,兔有60只。

例2 :甲每小时走12千米,乙每小时走8千米。

某日甲从A地到B地,乙同时从B地到A地,已知乙到A地时,甲已先到B地5小时。

求AB两地距离思路导航:假设甲到B地后,继续往前走,那么当乙到达A地时,甲又走了12×5=60(千米),这是在相同时间内,甲比乙多走的路,由于甲每小时比乙多走12-8=4(千米),因此,看60千米里面有几个4千米,就得出乙行完全程的时间,再用乙的速度×时间,就可以得出AB两地的距离。

关键词:速度差、行走距离差(假设时间相同后有行走距离差)假设提示:题目没有多少个数量,一个是速度,一个是时间。

第十讲 假设法解题-小学奥数

第十讲  假设法解题-小学奥数

第十讲 假设法解题告诉你本讲的重点、难点假设法解题是一种常用的思维方法,在一些应用题中,要求两个或两个以上的未知鼍,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知鼍是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案.这种解题的思考方法叫做假设法.看老师画龙点睛,教给像解题诀窍【例l 】妈妈有5元和10元的人民币共14张,共100元.5元和10元的人民币各有多少张?分析与解假设14张全是5元的,则总数是70元,比实际少了30元,所以这30元就是把10元的当成了5元少算的,每张10元的少算了(10-5)元,因此10元人民币的张数是)510(30-÷6=(张).5元人民币的张数是8614=-(张).也可以假设14张全是10元的,则总数是140元,比实际多了40元,所以这40元就是把5元 的当成了10元多算的,每张5元的多算了(10-5)元,因此5元的人民币张数是8)510(40=-÷ (张).10元人民币的张数是6814=-(张).所以,5元的人民币有8张,10元的人民币有6张.【例2】小兔子采蘑菇,晴天每天采20个,雨天每天采12个,它一共采了112个,平均每天采14个,这几天中有几天是雨天?分析与解 因为平均每天采14个,它一共采了112个,所以小兔子一共采了814112=÷(天).假设这8天全部是晴天,则小兔子一共采了160820=⨯(个):比实际多了48112160=-(个).由于把雨天当成了晴天,每天多算81220=-(个),所以共有雨天6848=÷(天).【例3】东方商城委托运输公司送2000只花瓶,双方商定每只运费4元,如果损坏1只要赔偿70元,结果运输公司共得运费7112元,运输公司在运送过程中损坏了多少只花瓶?分析与解 假设2000只花瓶都没有损坏应得运费800020004=⨯(元),而实际只得了7112元,实际比假设少得88871128000=-(元).损坏1只花瓶不仅拿不到运费4元,还要赔偿70元,因此损坏1只花瓶运输公司就要少得74704=+(元),一共损失了888元,1274888=÷(只),所以运输公司在运送过程中损坏了12只花瓶.【例4】有10元、20元、50元的人民币共50张,总面值为1160元.已知10元的比20元的多2张,三种面值的人民币各有多少张?分析与解 题目中出现了三个未知数,我们可以在总张数里减少2张10元的,或者增加2张20元的,使10元和20元的张数相同,这样就可以按照有两个未知数的题目的方法解答了.若增加2张20元的,则有人民币)(250+张,共计1200)2201160(=⨯+元,这时10元和20元的张数相同,假设这52张人民币全是50元的,应有26005052=⨯(元),比实际多了12002600-1400= (元),2张50元去换一张10元和一张20元,每换-次可以补差702010250=--⨯(元).由于1400元要换20701400=÷次,所以有20张10元的和20张20元的,因开始增加了2张,所以20元的实际只有18张,剩下的就是50元的了,有12182050=--张.所以,10元的人民币有20张,20元的人民币有18张,50元的人民币有12张,【例5】有一堆黑、白棋子,其中黑子个数是白子个数的3倍.如果从这堆棋子中每次同时取出6个黑子,3个白子,那么取多少次后,白子余5个,黑子余36个?分析与解 假设每次取的黑子不是6个,而是9个),933(=⨯也就是黑子每次取的个数也是白子的3倍,那么白子余下5个的时候,黑子余下的个数应该正好是白子个数的3倍,余下15个(3×5=15).现在余下36个,比假设多了36-15 - 21个,因为实际每次取6个黑子,比假设每次取9个黑子相比,少取了9-6=3(个),这样就可以求出一共取的次数了.7)633()5336(=-⨯÷⨯-(次)所以,取了7次后,白子余5个,黑子余36个.快来试一试你的身手吧!1. 笼中共有鸡、兔共30只,数一数,鸡和兔的脚正好100只,笼中鸡、兔各多少只?2.甲组工人生产一种零件,每天生产250个,按规定每合格1个记4分,每不合格1个要倒扣27分,该组工人4天共得了3752分.问:生产合格的零件有多少个?3.有3元、5元和7元的邮票共400枚,一共价值1920元,其中7元的和5元的枚数相等,三种价值的邮票各有多少枚?4.一条船从东港到西港,去时每小时行15千米,返回时,每小时行10千米,问:这条船往返一次平均每小时行多少千米?做题也有小窍门噢!当题目中既要求甲,又要求乙时,可以假设全是甲,先求出乙的个数,也可以假设全是乙,先求出甲的个数,两种方法都可以,也可以与列方程结合起来解.通往初中名校的班车1. 甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶一次倒扣6分.两人各投10次,共得 152分,其中甲比乙多得16分,问:两人各中多少次?2. 运来一批西瓜,准备分两类卖,大西瓜每千克0.4元,小西瓜每千克0.3元,这样卖这批西瓜共可得290元.如果每千克西瓜降价0.05元,这批西瓜只能卖250元.问:有多少千克大西瓜?3. 某农民饲养鸡、兔若干只,鸡比兔多13只,鸡的脚比兔的脚多16只,鸡和兔各有多少只?4.操场上有一群学生,男生人数是女生的4倍,每次同时有2名男生和1名女生回教室.若干 次后,男生剩下8人,女生剩下1人,操场上共有多少名学生?5. 学校修建教学楼,有2个工人用1根扁担1个筐抬土,有1个工人用1根扁担2个筐挑土,共用了38根扁担和58个筐,问:有多少人抬土?多少人挑土?答 案。

假设法解题

假设法解题

解法一:假设全是5 解法一:假设全是5元币。 (1)5×14=70(元) 14=70(元) (2)100-70=30(元) 100-70=30(元) (3)10元币:30÷(10-5) 10元币:30÷ 10=30÷ =30÷5 =6(张) =6(张) (4)5元币:14-6=8(张) 元币:14-6=8(张)
数学游戏
1、 1个大和尚带着2个小和尚 去河对岸的寺院,河上没有桥,他 们又不会游泳。为了过河,他们找 来一只空船,这只船最多能载50千 克的物体。大和尚正好重50千克, 2个小和尚各重25千克。问:他们 怎样才能全部过河?
数学游戏
2、你能只移动3个圆,将图形 倒过来吗?
假设法解题
专题简析
假设法是解决问题时常用的一种思维 方法。在一些实际问题中, 方法。在一些实际问题中,要求两个或 两个以上的未知量, 两个以上的未知量,思考时可以先假设 要求的两个或几个未知数相等, 要求的两个或几个未知数相等,或者先 假设两种要求的未知量是同一种量, 假设两种要求的未知量是同一种量,然 后按题中的已知条件进行推算, 后按题中的已知条件进行推算,并对照 已知条件, 已知条件,把数量上出现的矛盾加以适 当的调整,最后找到答案。 当的调整,最后找到答案。
还可以用方程解。 解:设5 解:设5元币有 x张,则 10元币有(1410元币有(14-x)张。 5x+10 (14-x)=100 14解这个方程就求出了5 解这个方程就求出了5元币 的张数。
大显神通
ห้องสมุดไป่ตู้
1、有2元和5元币15张, 元和5元币15张 共值45元 请问2元和5 共值45元。请问2元和5元 币各有多少张? 币各有多少张?
大显神通
2、一堆20元和50元的纸币共39 、一堆20元和50元的纸币共39 张,共值1500元。问20元和50 张,共值1500元。问20元和50 元的各有多少张? 3、营业员把一张5元人币和一张5 、营业员把一张5元人币和一张5 角的人民币换成了28张票面为一 角的人民币换成了28张票面为一 元和一角的人民币,求换来这两 种人民币各多少张?

假设法解题

假设法解题

假设法解题
这是一个经典的逻辑问题,通常使用假设法来解决。

假设法是一种通过假设某一条件成立或不成立,然后根据这个假设进行推理,最后得出结论的解题方法。

假设法解题的一般步骤如下:
假设某一条件成立或不成立。

根据这个假设进行推理,得出结论。

如果结论与题目中的已知条件矛盾,则说明假设不成立,需要调整假设。

如果结论与题目中的已知条件一致,则说明假设成立。

现在,我们用这个方法来解决这个问题:
题目:有100匹马跟100块石头,马分3种,大型马;中型马跟小型马.其中一匹大马一次可以驮3块石头,中型马可以驮2块,而小型马2头可以驮一块石头.问需要多少匹大马,中型马跟小型马?(问题的关键是刚好必须是用完100匹马)
假设需要 x 匹大马,y 匹中型马和 z 匹小型马。

根据题目,我们可以建立以下方程:
x + y + z = 100 (因为总共有100匹马)
3x + 2y + z/2 = 100 (因为总共有100块石头)
现在我们要来解这个方程组,找出 x, y 和 z 的值。

计算结果为: [{x: 7, y: 31, z: 62}]
所以,需要 7 匹大马,31 匹中型马和 62 匹小型马。

用假设法解决问题(一)

用假设法解决问题(一)

用假设法解决问题(一)①河北省平乡县大刘庄小学李明亮先举一个简单的例子:甲班有学生45人,乙班比甲班多3人。

两班共有学生多少人解此题的一般方法是,先求出乙班人数,再求学生总数。

如果列式为45×2+3就是用了假设法——假设乙班也是45人,则两班共有45×2=90(人)。

但乙班实际人数比45人多3人,所以两班的实际总人数比90人多3人。

有些数学题的数量关系不明显,不容易找到解题的方法。

如果我们做一些适当、合理的假设,就有可能使数量关系明显,从而找到解题的方法。

这种解题方法叫做假设法。

假设的方法有多种,要灵活运用。

一、把“缺少”的条件假设为已知例1.甲、乙、丙三人出了同样多的钱在粮店买了若干千克大米。

回家后,乙要的大米比甲、丙都少6千克,因此,甲、丙都又退给乙6元钱。

每千克大米多少元、分析:不知道三人共买了多少千克大米,也不知道三人各要多少千克,求大米的单价似乎很难。

但是,我们可以假设大米的数量。

假设乙要了1千克大米,则甲、丙都要了7千克,三人共买了7+7+1=15(千克)每人平均15÷3=5(千克)。

在粮店,他们平均出钱,每人出的都是5千克大米的钱。

回家后,甲、丙要的大米都比平均数多7-5=2(千克),所以甲或丙退给乙的6元钱就是多要的2千克大米的价钱。

乙要的大米比平均数少5-1=4(千克),所以甲①此文原题目为《用假设法解应用题》,初稿完成于1993年11月,1994年12月第一次修改,1997年8月第二次修改。

11v1.0 可编辑可修改和丙退给他的12元钱就是少要的这4千克大米的价钱。

这样,就可求出大米的单价。

解法÷[7-(7+7+1)÷3]=3(元)解法×2÷[(7+7+1)÷3-1]=3(元)本题还可以用下面的方法解(这里只画出线段图,分析略)解法÷(6-6×2÷3)=3(元)解法×2÷(6×2÷3)=3(元)例2.小王骑车去火车站。

用假设法解题(一)答案

用假设法解题(一)答案

假设法解题(一)“假设法”是解应用题常用的一种思维方法,在有些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设要求的两个未知量是同一种量,然后按照题里的已知条件进行推算,并对照已知条件把数量上出现的矛盾加以适当调整,然后找到答案,这就是假设法。

我们古代算术中的“鸡兔同笼”问题,通常就是用假设法解答。

例1.买来5角、2角、1角5分三种邮票,共20张,总值5元5角。

其中5角和1角5分的邮票张数相等,问三种邮票各购几张?解题思路:因为5角和1角5分的邮票张数相等,所以一般假设20张邮票都是2角的,那么20×20=400(角),比实际少了550-400=150(角);为什么会少?因为拿一张5角和一张1角5分换两张2角,会少50+15-20×2=25分,所以150÷25=6(组)——5角和1角5分的各6张,2角的邮票有20-6×2=8(张)例2.蜘蛛有8只脚,蜻蜓有6只脚和两对翅膀,蝉有6只脚和一对翅膀,现在有这三种小虫18只,共有脚118只,翅膀20对,问每种小虫各有几只?解题思路:先从脚的数量考虑,因为蜻蜓和蝉的脚数相等,所以假设18只都是6条腿,那么有18×6=108条腿,比实际少118-108=10条,每把一只8条腿的蜘蛛换成6条腿的昆虫就少8-6=2条腿,10÷2=5只-----是蜘蛛的数量。

剩下的13只是蜻蜓和蝉,再从翅膀数量考虑,假设13只都是一对翅膀的蝉,那么翅膀就比实际少了20-13=7对,每把一只蜻蜓换成蝉,就少一对翅膀,所以蜻蜓有7只,蝉有6只。

1.笼中共有30只鸡和兔,数一数足数正好是100只。

问鸡兔各多少只?解题思路:假设30只都是鸡,那么足数就少了100-2×30=40条,每把一只兔换成鸡,就少2条腿,所以40÷(4-2)=20只兔,鸡30-20=10只同理也可把30只都假设成兔。

第十讲 假设法解题(一)

第十讲 假设法解题(一)

第十讲 假设法解题(一)基础卷1、苹果和梨共145筐,如果苹果卖出15 ,则比梨多8筐。

问苹果和梨原来各有多少筐?2、兄弟俩共存钱2300元,如果弟弟取出13 ,还比哥哥多200元,兄弟俩各存钱多少元?3、甲、乙两数的和是125,甲数的25 比乙数的16 多16,甲、乙两数各是多少?4、饲养场有黄牛和奶牛共66头,奶牛的13 比黄牛的16多4头,这个饲养场有黄牛和奶牛各多少头?5、光明小学上学期共有学生1450人,本学期男生人数增加125 ,女人数减少135 ,共1460人,本学期男、女生各有多少人?6、甲、乙两人共做了184个零件,其中甲做的零件的58 与乙做的零件的34 共有123个。

问甲、乙两人各做了多少个零件?提高卷1、一项工程,甲、乙两人合做5天可以完成,中途甲因事停工2天,因此用了6天完成这项工程甲独做这项工程要用多少天?2、一项工程,甲、乙合作2天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的120 。

甲、乙单独做这项工程各需多少天?3、某人向银行申请A 、B 两种贷款共80万元,每年共需付利息5万元。

A 种贷款的年利率为6%,B 种贷款的年利率为7%,该公司申请了A 种贷款多少万元?4、甲、乙两筐中共有苹果100千克。

从甲筐里取出14 的苹果,从乙筐里取出15 的苹果,结果两筐中共剩下76千克苹果。

甲乙两筐里原来各有苹果多少千克?5、有两堆棋子,甲堆有百子50粒和黑子20粒,乙堆有白子60粒和黑子30粒。

为了使甲堆中黑子占30%,乙队中黑子占40%,要从乙堆中拿到甲堆黑、白子各多少粒?6、桌上原有黑、白棋子共56粒,将黑子增加34 ,白子减少38后,黑、白棋子的总数变为53粒。

原来桌上有黑、白子各多少粒?。

六年级举一反三a答案

六年级举一反三a答案

六年级举一反三a答案【篇一:小学奥数举一反三(六年级)】>第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。

答:甲数是100,乙数是85。

练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。

抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。

如果彩色电视机卖出1/9,则比黑白电视机多5台。

问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。

黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。

答:彩色电视机原有135台,黑白电视机原有115台。

练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?- 1 -六年级数学奥数培训资料姓名:__________________=56(个)徒弟:105-56=49(个)答:师傅加工了56个,徒弟加工了49个。

假设法解题

假设法解题

假设法解题假设法解题的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解题思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配率求出这个分率对应的和,最后依据它与实际条件的矛盾来求解。

例题1:一批零件,甲独做8天完成,乙独做10天完成,现在由两人合作这批零件,中途甲因事请假一天,完成这批零件共用多少天?做一做1:一件工作,甲独做15天完成,乙独做10天完成,两队合作若干天后甲休息了几天,结果共用8天才完成任务。

甲休息了几天?例题2:彩色电视机和黑白电视机共250台,如果彩色电视机卖出91,则比黑白电视机多5台,问:两种电视机原来各有多少台?做一做2:姐妹俩养兔120只,如果姐姐卖掉71,还比妹妹多10只,姐姐和妹妹各养了多少只兔?例题3:某公司向银行申请A 、B 两种贷款共60万元,每年共需付利息5万元。

A 种贷款年利率为8%,B 种贷款年利率为9%,该公司申请了A 种贷款多少万元?做一做3:二年级两个班共有学生90人,其中少先队员71人。

一班少先队员占本班人数的75%,二班少先队员占本班人数的65,一班少先队员比二班少先队员多几人?例题4:甲、乙两数的和是300,甲数的52比乙数的41多55,甲、乙两数各是多少?做一做4:师傅和徒弟共加工零件800个,师傅加工零件个数的52比徒弟加工零件个数的21还多50个,师傅和徒弟各加工零件多少个?例题5:育才中学上学期共有学生750人,本学期男同学增加61,女同学减少51,共有710人,本学期男、女同学各有多少人?做一做5:袋子里原有红球和黄球共119个。

将红球增加83,黄球减少52后,红球和黄球的总数变为121个。

原来袋子里有红球和黄球各多少个?巩固练习:1、一项工程,甲、乙两人合作12天可以完成。

中途甲因事停工5天,因此用了15天完成。

假设法解题

假设法解题

假设法解题【专题导引】假设法是解应用题时常用的一种思维方法。

在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。

【典型例题】【C】(1)如果把一只鸡假设成是一只兔,那么它的头和脚发生了什么变化?1(2)把10只鸡和8只兔关在一起,假设这18只动物都是兔,一共有多少条腿?比实际多了多少条腿?【试一试】1、把10只鸡和8只兔关在一起,假设这18只动物全是鸡,一共有有多少条腿?比实际少了多少条腿?2、7张2元纸币和9张5元纸币叠成一叠,假设这16张纸币都是2元的,则一共有多少元?比实际少了多少元?】鸡和兔同笼,共有10个头,32条腿,这个笼中有几只鸡?几只兔?【C2【试一试】1、鸡和兔同笼,共有8个头,24条腿,这个笼中有几只鸡?几只兔?2、2元和5元纸币一叠共9张,合30元,这叠纸币中2元的有几张?5元的有几张?】有5元的和10元的人发币共14张,共100元。

问5元币和10元币各多【B1少张?【试一试】1、笼中共有鸡兔100只,鸡和兔的脚共248只。

求笼中鸡兔各有多少只?2、一堆2分和5分的硬币共39枚,共值1.5元。

问2分和5分的各有多少枚?】有一元、二元、五元的人民币50张,总面值为116元。

已知一元的比二【B2元的多2张,问三种面值的人民币各有几张?【试一试】1、有3元、5元和7元的电影票400张,一共价值1920元。

其中7元的和5元的张数相等,三种价格的电影票各有多少张?2、有一元、五元、十元的人民币共14张,总计66元,其中一元的比十元的多2张,问三种人民币各有多少张?】有黑白棋子一堆,其中黑子个数是白子个数的2倍,如果从这堆棋子中每【B3次同时取出黑子4个,白子3个,那么取了多少次后,白子余1个,而黑子还剩18个?【试一试】1、有黑白棋子一堆,其中黑子个数是白子个数的3倍。

假设法解题(试题)六年级上册数学人教版

假设法解题(试题)六年级上册数学人教版

假设法解题(一)1、一件工作,甲独做15天完成,乙独做10天完成,两队合作若干天后甲休息了几天,结果共用8天才完成了任务。

甲休息了几天?2、学校阅览室有文艺书和科技书一共125本,如果文艺书借出17,比科技书还多5本。

原来文艺书和科技书各有多少本?3、姐妹俩养兔120只,如果姐姐卖掉17,还比妹妹多10只。

姐姐和妹妹各养了多少只兔?4、学校有篮球和足球共21个,篮球借出13后,比足球少1个。

原来篮球和足球各有多少个?5、小明家养的鸡和鸭共有 100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?6、二年级两个班共有学生90人,其中少先队员71人。

一班少先队员人数占本班人数的75%,二班少先队员人数占本班人数的56,一班少先队员比二班少先队员多几人?7、甲、乙两数的和是300,甲数的25比乙数的14多55,甲、乙两数各是多少?8、师傅和徒弟共加工零件840个,师傅加工零件个数的58比徒弟加工零件的23多60个。

师傅和徒弟各加工零件多少个?9、畜牧场有绵羊、山羊共800只,山羊的25比绵羊的12多50 只。

这个畜牧场有山羊、绵羊各多少只?10、某校六年级甲、乙两个班共种100棵树,乙班种的110比甲班种的13少16棵。

两个班各种多少棵?11、袋子里原有红球和黄球共119个。

将红球增加38,黄球减少25后,红球与黄球的总数变为121个。

原来袋子里有红球和黄球各多少个?12、金放在水里称,重量减少119,银放在水里称,重量减少110,一块重770克的金银合金,放在水里称是720克,这块合金含金、银各多少克?假设法解题(二)1、红星幼儿园里白皮球的个数与红皮球的个数的比是3:5,给每个班发4个白皮球和10个红皮球,结果发现红皮球刚好发完,还多18个白皮球。

红星幼儿园有多少个班?2、食堂里面粉的质量是大米的12,每天吃去30吨面粉,45吨大米。

若干天后,面粉正好吃完,大米还有150吨,食堂里原有面粉多少吨?3、水果店里西瓜个数与白兰瓜个数的比为7:5,如果每天卖白兰瓜40个、西瓜50个,若干天后白兰瓜正好卖完,西瓜还剩36个。

用假设法解题(一)答案

用假设法解题(一)答案

用假设法解题(一)答案假设法解题(一)“假设方法”是解决应用问题的常用思维方法。

在某些应用问题中,需要两个或多个未知数。

在思考时,你可以先假设所需的两个或两个以上的未知数相等,或者先假设所需的两个未知数是相同的量,然后根据问题中的已知条件进行计算,并根据已知条件适当调整数量上的矛盾,然后找到答案。

这是假设方法。

我国古代算术中的“鸡兔同笼”问题,通常是用错误的方法来解决的。

例1.买来5角、2角、1角5分三种邮票,共20张,总值5元5角。

其中5角邮票的数量等于15美分。

这三种邮票各买几张?解决问题的想法:因为5角和1角5分的邮票张数相等,所以一般假设20张邮票都是2角的,那么20×20=400(角),比实际少了550-400=150(角);为什么会少?因为拿一张5角和一张1角5分换两张2角,会少50+15-20×2=25分,所以150÷25=6(组)――5角和1角5分的各6张,2角的邮票有20-6×2=8(张)例2。

蜘蛛有八只脚,蜻蜓有六只脚和两对翅膀,蝉有六只脚和一对翅膀有这三种小虫18只,共有脚118只,翅膀20对,问每种小虫各有几只?解题思路:首先,考虑脚的数量。

因为蜻蜓和蝉的足数相等,假设18只蜻蜓有6条腿,则有18×6=108条腿,比实际数少118-108=10。

每次一只8条腿的蜘蛛被6条腿的昆虫取代,8-6=2条腿,10÷2=5------是蜘蛛的数量。

剩下的13只是蜻蜓和蝉。

考虑到翅膀的数量,假设13只蝉有一对翅膀,那么翅膀比实际的少20-13=7对。

每次用蝉代替蜻蜓,就会少一对翅膀,因此有7只蜻蜓和6只蝉。

1.笼中共有30只鸡和兔,数一数足数正好是100只。

问鸡兔各多少只?解题思路:假设30只都是鸡,那么足数就少了100-2×30=40条,每把一只兔换如果你变成一只鸡,你将失去两条腿,因此40÷(4-2)=20只兔子和30-20=10只鸡同理也可把30只都假设成兔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10讲假设法解题(一)
一、知识要点
假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

二、精讲精练
【例题1】
甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?
【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。

解:乙:(185-42×4)÷(1-1/5×4)=85
答:甲数是100,乙数是85。

练习1:
1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?
2.甲、乙两个消防队共有338人。

抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?
3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?
【例题2】
彩色电视机和黑白电视机共250台。

如果彩色电视机卖出1/9,则比黑白电视机多5台。

问:两种电视机原来各有多少台?
【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。

黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。

(250+5)÷(1+1-1/9)=135(台)
250-125=115(台)
答:彩色电视机原有135台,黑白电视机原有115台。

练习2:
1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?
2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?
3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?
【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?
【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工
零件的4/7相差的个数。

这样就可以求出师傅加工了【11÷(4/7-3/8)】=56个。

即:
师傅:(105×4/7-49)÷(4/7-3/8)=56(个)
徒弟:105-56=49(个)
答:师傅加工了56个,徒弟加工了49个。

练习3:
1.某商店有彩色电视机和黑白电视机共136台,卖出彩色电视机的2/5和黑白电视机的3/7,共卖出57台。

问:原来彩色电视机和黑白电视机各有多少台?
2.甲、乙两个消防队共有336人,抽调甲队人数的5/7、乙队人数的3/7,共抽调188人参加灭火。

问:甲、乙两个消防队原来各有多少人?
3.学校买来足球和排球共64个,从中借出排球个数的1/4和足球个数的1/3后,还剩下46个,买来排球和足球各是多少个?
【例题4】甲、乙两数的和是300,甲数的2/5比乙数的1/4多55,甲、乙两数各是多少?
【思路导航】甲数的2/5与乙数的2/5的和就是甲、乙两数的2/5,是300×2/5=120,因为甲数的2/5比乙数的1/4多55,所以从120中减去55所得的差就可以看成是乙数的1/4与乙数的2/5的和。

乙:(300×2/5-55)÷(2/5+1/4)=100
甲:300-100=200
答:甲数是200,乙数是100。

练习4:
1.畜牧场有绵羊、山羊共800只,山羊的2/5比绵羊的1/2多50只,这个畜牧场有山羊、绵羊各多少只?
2.师傅和徒弟共加工零件840个,师傅加工零件的个数的5/8比徒弟加工零件个数的2/3多60个,师傅和徒弟各加工零件多少个?
3.某校六年级甲、乙两个班共种100棵树,乙班种的1/10比甲班种的1/3少16棵,两个班各种多少棵?
【例题5】育红小学上学期共有学生750人,本学期男学生增加1/6,女学生减少1/5,共有710人,本学期男、女学生各有多少人?
【思路导航】假设本学期女学生不是减少1/5,而是增加1/6,半学期应该有750×(1+1/6)=875人,比实际多875-710=165人,这165人是假设女学生也增加1/6多出的人数,而实际女学生减少1/5,所以,这165人对应着女学生的(1/5+1/6)=11/30。

上学期女生:【750×(1+1/6)-710】÷(1/5+1/6)=450(人)
本学期女生:450×(1-1/5)=360(人)
本学期男生:710-360=350(人)
答:本学期男学生有350人,女学生有360人。

练习5:
1.金放在水里称,重量减轻1/19,银放在水里称,重量减少1/10,一块重770克的金银合金,放在水里称是720克,这块合金含金、银各多少克?
2.某中学去年共招新生475人,今年共招新生640人,其中初中招的新生比去年增加48%,高中招的新生比去年增加20%,今年初、高中各招收新生多少人?
3.袋子里原有红球和黄球共119个。

将红球增加3/8,黄球减少2/5后,红球与黄球的总数变为121个。

原来袋子里有红球和黄球各多少个?。

相关文档
最新文档