用比例解决问题练习题(六年级)
用比例解决问题 六年级下册数学同步练习 人教版(含答案)
第四单元:比例第7课时:用比例解决问题班级:姓名: 等级:【基础训练】一、选择题1.甲有图书120本,乙有图书60本,甲给乙()本后,乙的图书与甲的图书比是4∶5。
A.20 B.40 C.602.一块长方形的耕地(如图),已知其中三小块长方形的面积分别是15km2、16km2和20km2,则阴影部分的面积是()km2A.19 B.12 C.11 D.213.一个玻璃瓶内原有一些盐水,盐与盐水的质量比为1∶12,加入15克盐后,盐与盐水的质量比为1∶9。
瓶内原有盐水()克。
A.480 B.440 C.360 D.3004.如下图:一辆汽车早上8:00从A地出发,以平均每小时60千米的速度行驶,11:30到达目的地.目的地应该是().A.甲城B.乙城C.丙城5.下面的问题,还需要确定一个信息才能解决,是()B.玫瑰、三种花总数的比是1:3C.三种花的数量是百合的6倍D.玫瑰的数量是百合的二、填空题6.一个三角形中三个内角的度数的比是2∶3∶7,它最大内角的度数是( ),这是一个( )三角形。
7.某小学五、六年级参加数学竞赛的人数比是8∶7,六年级获奖人数是五年级获奖人数的37,两个年级各有50名同学未获奖,六年级有( )名同学获奖。
8.甲、乙两人从武汉长江大桥的两端出发,相向而行,乙先走556.8米,然后甲从桥的另外一端开始出发。
已知甲、乙两人的速度是3∶2,甲、乙相遇时所走的路程是2∶3,问武汉长江大桥全长( )米。
9.已知平行四边形ABCD周长为80厘米,以BC为底时,高为21厘米.以CD为底时高为27厘米,那么平行四边形的面积为()平方厘米.10.甲、乙、丙三人进行200米赛跑,当甲到达终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑时的速度都不变,那么,当乙到达终点时,丙离终点还有( )米。
三、判断题11.时间和速度成反比例.( )12.变速自行车蹬同样的圈数时,前后轮齿数比的比值越大,自行车走得越远。
2023春人教版六年级数学下册 用比例解决问题练习(课件)
下图是小明和他最喜欢的篮球运动员的合影,这名篮球运动员的身高
是多少米?
我身高1.4米。
小明
小明图上身高 运动员图上身高 小明实际身高 = 运动员实际身高
小东
小明图上身高 小明实际身高 =比例尺
厘米 米 厘米 米
兰兰
下图是小明和他最喜欢的篮球运动员的合影,这名篮球运动员的身高
是多少米?
我身高1.4米。
兰兰
厘米 千米
在同一幅地图上,量得甲、乙两地的距离是12cm,甲、丙两地 的距离是8厘米,如果甲、乙两地的实际距离是2100km,那么甲、丙 两地的实际距离是多少?
文文
在同一幅地图上,量得甲、乙两地的距离是12cm,甲、丙两地 的距离是8厘米,如果甲、乙两地的实际距离是2100km,那么甲、丙 两地的实际距离是多少?
我身高1.4米。
小明
4.5cm
2.8cm
在同一幅地图上,量得甲、乙 两地的距离是12cm,甲、丙两地的 距离是8厘米,如果甲、乙两地的 实际距离是2100km,那么甲、丙两 地的实际距离是多少?
ห้องสมุดไป่ตู้ 下图是小明和他最喜欢的篮球运动员的合影,这名篮球运动员的身高
是多少米?
我身高1.4米。
小明
小明图上身高 小明实际身高 =比例尺 兰兰
小东
食品加工厂用500kg的稻谷加工出350kg大米。照这样计算, 6吨稻谷可以加工出多少吨大米?(用比例方法解答)
稻谷千克数 稻谷吨数 大米千克数 = 大米吨数
小东
兰兰
食品加工厂用500kg的稻谷加工出350kg大米。照这样计算, 6吨稻谷可以加工出多少吨大米?(用比例方法解答)
大米千克数 大米吨数 稻谷千克数 = 稻谷吨数
六年级数学用比例解决问题试题
六年级数学用比例解决问题试题1.甲乙丙三人共同生产100个零件,甲完成了三成,乙和丙完成的数量比是2:5,乙和丙各完成多少个?【答案】乙完成20个,丙完成50个。
【解析】现已知乙丙完成的数量之比,只要找到他们两个完成的总数,就很容易“按比例分配”了。
解:100×(1-)=70(个),2+5=7,70×=20(个),70×=50(个)答:乙完成20个,丙完成50个。
【考点】比的应用。
2.某工厂采用最新技术,每天用料14吨,这样原来7天的用料,现在可用10天,原来每天用料几吨?【答案】20吨【解析】先求出木料的总量,再用这个总量除以原来使用的天数即可。
解:14×10=140(吨)140÷7=20(吨)答:原来每天用料20吨。
3.师徒两人加工一种零件.用同样的时间,徒弟可以加工3个,师傅可以加工5个。
如果两人共同加工200个这样的零件,师傅、徒弟分别要加工多少个?【答案】师傅加工125个,徒弟加工75个【解析】根据“用同样的时间,徒弟可以加工3个,师傅可以加工5个,”知道徒弟和师傅的工作效率的比是3:5,由此知道徒弟的工作效率是两人工作效率的和的,再根据在时间一定时,工作量与工作效率成正比例,即徒弟的工作量是两人工作量和的,进而解决问题。
解:他们的效率之比是3:5。
徒弟加工零件的个数:200×=200×=75(个)师傅加工零件的个数:200-75=125(个)答:师傅加工125个,徒弟加工75个。
4.某俱乐部男、女会员的人数之比是,分为甲、乙、丙三组.已知甲、乙、丙三组的人数比是,甲组中男、女会员的人数之比是,乙组中男、女会员的人数之比是.求丙组中男、女会员人数之比.【答案】5:9【解析】以总人数为1,则甲组男会员人数为,女会员为,乙组男会员为,女会员为;丙组男会员为,女会员为;所以,丙组中男、女会员人数之比为.5.一班和二班的人数之比是,如果将一班的名同学调到二班去,则一班和二班的人数比变为.求原来两班的人数.【答案】48 42【解析】原来一班的人数为两班总人数的,调班后一班的人数是两班人数的,调班前后一班人数的比值为,所以一班原来的人数为人,二班原来的人数为人.6.甲本月收入的钱数是乙收入的,甲本月支出的钱数是乙支出的,甲节余240元,乙节余480元.甲本月收入多少元?【答案】600【解析】甲、乙本月收入的比是,分别节余240元和480元,支出的钱数之比是.如果乙节余480元,甲节余元,那么两人支出的钱数之比也是,现在甲只节余240元,多支出了60元,结果支出的钱数之比从变成了(即),所以这60元就对应份,那么甲支出了元,所以甲本月收入为元.7.甲、乙两车分别从、两地同时相向开出,甲车速度是千米/小时,乙车速度是千米/小时,当甲车驶过、距离的多千米时与乙车相遇,、两地相距()千米.【答案】225【解析】在相同的时间内,两车行驶的路程比等于两车的速度之比,由于两车的速度之比等于,那么、距离的多千米即是、距离的,所以千米的距离相当于全程的,全程的距离为(千米).8.甲、乙、丙三个数,已知,,求。
六年级下册数学—14用比例解决问题(有解释)
(3-0.6)x=3×96
2.4x÷2.4=288÷2.4
x=120
答:这堆煤现在可以烧120天。
【点睛】本题考查了用反比例解决问题,积一定是反比例关系。
6.444千米
【分析】设A、B两城相距x千米,根据路程÷时间=速度(一定),列出正比例算式,解答即可。
【详解】解:设A、B两城相距x千米。
(3)在(2)成立的基础上,若圆柱的底面半径为10厘米,则放入7块铁块后,容器内有水多少毫升?
40.学校图书馆有科技书、文艺书和故事书,其中科技书与文艺书的比是4∶9,科技书与故事书的比是2∶3,故事书有900本,文艺书有多少本?
41.某部队行军演习,4小时走了22.4km,照这样的速度又走了6小时,一共走了多少km?(用比例知识来解)
34.机械厂工人8小时加工440个机器零件,照这样计算,要加工1100个需要多少小时。
35.某车队往四川运送一批救灾物资。原计划每小时行60千米,6.5小时到达,实际每小时行了78千米。照这样计算,行完全程需要多少小时?(用比例解)
36.生产一批零件,计划20天完成任务,由于实际每天比原计划多生产150个,结果提前5天完成任务,这批零件有多少个?(列方程解)
37.学校发起“圆贫困地区孩子一个读书梦”爱心捐书公益活动,短短一周时间,就收到了同学们捐赠的大量书籍。学校决定将书打包后邮寄,现要求每包内装书的本数相同,用这批书的 打包了14份还多42本,剩下的书连同第一次余下的刚好又打包了11份。这批书共有多少本?
38.大华把3米长的竹竿直立在地上,测得它的影子长是1.5米,同时测得一棵树影子长3.8米,求这棵树的高?
(4)解:设需要药液 ,需要水 ;
50x=816-x
小学六年级简单比例运算练习题
小学六年级简单比例运算练习题一、简答题:1. 将3∶5与9∶15两个比例进行等比例的扩展。
2. 将4∶7与36∶63两个比例进行等比例的缩写。
3. 一条跑道有2000米长,如果按照比例1∶5降低长度,最后的跑道长度是多少?4. 营养饼干中蛋白质和脂肪的比例是3∶2,如果一块饼干中含有30克脂肪,那么这块饼干中蛋白质的含量是多少克?5. 一杯果汁中,橙汁和苹果汁的比例是2∶5,如果有8杯果汁,其中橙汁的杯数是多少?二、计算题:1. 小明用了50元钱买了2本书,如果每本书的价格都相同,那么一本书的价格是多少元?2. 小华用了30分钟走了7公里,如果小华以相同的速度继续行走,那么他用多少时间可以走完14公里?3. 在某学校的六年级班级中,有48个男生,比例是3∶5,那么这个班级中的女生人数是多少?4. 小明和小红一起做一个作业,小明用了1小时完成了四分之一的作业,小红用了50分钟完成了剩下的部分,请问小红用了多少时间完成了整个作业?5. 一块土地上80%是农田,剩下的部分是果园和花园,果园占土地的比例是5∶6,那么花园占土地的比例是多少?三、应用题:1. 小刚用18元钱买了2个苹果和3个梨,小华用24元钱买了4个苹果和若干个梨,请问小华买了多少个梨?2. 一栋高楼上有40层,电梯升一层需要4秒钟,小张从1楼坐电梯到了顶楼,耗时多长?3. 小明每天早上以相同的速度骑自行车上学,平均每分钟骑行3公里。
如果上学的路程是12公里,那么小明骑自行车上学需要多少时间?4. 甲、乙两个人按照比例1∶3分配了一堆零食,甲分到了12个,那么乙分到了多少个?5. 李明学习了40分钟,休息了20分钟,学习了30分钟,然后休息了10分钟。
李明一天中学习的时间和休息的时间各是多少?四、挑战题:1. 在一辆自行车上有4个轮子,如果一扇车门有5个轮子,那么需要多少扇车门才能和这辆车轮的数量比例相同?2. 一桶水中蓝色颜料和白色颜料的比例是3∶4,如果用相同的比例往桶中加入蓝色颜料和白色颜料,一共需要加多少次才可以使蓝色颜料和白色颜料达到相同的比例?3. 一块地上有80%是草地,剩下的部分是麦地和花园。
六年级数学下册用比例解决问题
用比例解决问题班级姓名1、在比例尺是1:30000000的地图上量得甲乙两面地相距12厘米,一架飞机从早上的8:30以每小时800千米的速度从甲地飞往乙地。
到达乙地的时间是几时几分?2、甲乙两地相距300千米,在比例尺是的地图上应画多少厘米?如果画在比例尺是1:6000000的地图上应画多少厘米?3、在比例尺是1:4000的图纸上量得一个圆形运动场的直径是8厘米,这个圆形运动场的实际面积是多少平方米?4、在比例尺是1:2000的图纸上量得一块长方形菜地的周长是25厘米,且长与宽的比是3:2,这块长方形菜地的实际面积是多少平方米?5、一个篮球场的长是28米,宽是15米。
请选择一个合适的比例尺画出这个篮球场的平面图?6、一辆汽车5小时行驶140千米,照这样的速度,从甲地到乙地行了8小时,甲乙两地相距多少千米?(用比例解)7、用一批纸装订同样的练习本,每本40页,可装订90本,现在要装订100本,每本多少页?(用比例解)8、一个自来水龙头3天要浪费600升水,照这样计算六月份要浪费多少升水?(用比例解)9、一本书3天看了51,照这样计算剩下的还要多少天看完?(用比例解)10、一辆汽车从甲地到乙地去时每小行40千米,10小时到达,返回时,速度提高41,可节约几小时?(用比例解)11、给教室铺方砖,用面积是4平方分米的方砖需要200块,若改用面积是5平方分米的方砖需要多少块?(用比例解)0 40 80km12、给教室铺方砖,用边长是4分米的方砖需要200块,若改用面积是8平方分米的方砖需要多少块?(用比例解)13、给教室铺方砖,用边长是4分米的方砖需要200块,若改用边长是5分米的方砖需要多少块?(用比例解)14、一件商品原价80元,现打七五折出售,原来买12件商品的钱,现在可以买多少件?(用比例解)15、两个圆柱体积相等,一个圆柱的底面积是30平方米,高6米,另一个圆柱的底面积是45平方米,它的高是多少米?(用比例解)16、一段木料锯成3段要12分钟,照这样,锯成8段要多少分钟?(用比例解)17、一个服装店的所有服装都打同样的折扣销售①、李阿姨买了一件上衣,原价250元,现价150元,李阿姨还想买一条裤子,原价180元,现价多少钱?(用比例解)②、张伯伯有一笔钱,如果买现价90元一件的衬衫,正好买4件,如果想买原价200元一件的夹克衫,能买多少件?(用比例解)18、一个长方形长8厘米,宽6厘米,按3:1放大后,它的面积是多少平方厘米?19、在一幅比例尺是1:2000000的地图上,量得甲乙两地的距离是厘米,如果画在比例尺是1:5000000的地图上,应画多少厘米?20、希望小学装修多媒体教室。
六年级数学下册《用比例解决问题》练习题及答案解析
六年级数学下册《用比例解决问题》练习题及答案解析学校:___________姓名:___________班级:_____________一、选择题1.一条2厘米的线段,选用下面比例尺()画出的平面图最大。
A.1∶200B.1∶5000C.1∶1D.2∶12.老师买了同样数目的田格本、横线本和练习本。
他发给每个同学1个田格本、3个横线本和5个练习本。
这时横线本还剩24个,那么田格本和练习本共剩了()个。
A.48B.50C.54D.563.把一个圆柱削成一个最大的圆锥,削去的体积是48立方分米,圆柱的体积是()立方分米。
A.144B.24C.724.一幅地图的比例尺是1∶1000000,下列说法不正确的是()。
A.这是一个数值比例尺B.说明要把实际距离缩小为11000000后,再画在图纸上C.图上距离相当于实际距离的1 1000000D.图上1厘米相当于实际1000000米5.下列各数中,()不能与2、8、10组成比例。
A.58B.85C.52D.406.甲乙两个容积相同的瓶子分别装满盐水,已知甲瓶中盐、水的比是2∶3,乙瓶中盐、水的比是3∶5,现在把甲、乙两瓶水混合在一起,则混合盐水中,盐与盐水的比是()。
A.519B.521C.524D.31807.一个水池有甲乙两个水管。
单独开甲管,2小时可以把空池注满;单独开乙管,3小时可以把空池注满。
如果同时打开甲乙两管,()小时可以把空池注满。
A.1B.15C.115D.58.希望小学合唱队共有队员108人,则()一定不是男队员和女队员人数的比。
A.5∶4B.7∶5C.8∶7D.19∶17 9.表示x和y成正比例关系的式子是().A.x+y=9B.y=1.5x C.=0D.xy+1=510.学校把560棵树的种植任务,按照六年级三个班的人数分配给各班。
一班有47人,二班有45人,三班有48人。
二班应种树()。
A.192棵B.188棵C.180棵11.在一幅地图上,用20厘米的线段表示50千米的实际距离,那么这幅地图的比例尺是()。
六年级解比例练习题三道
六年级解比例练习题三道1. 某校的学生有男生和女生两个团体,其中男生团体有30人,女生团体有40人。
如果男生团体的人数增加了20%,女生团体的人数增加了30%,那么两个团体的人数比是多少?解答:首先,计算男生团体增加后的人数:男生团体增加了20%,所以增加的人数为 30 × 20% = 30 × 0.2 = 6 人。
增加之后男生团体的人数为 30 + 6 = 36 人。
接下来,计算女生团体增加后的人数:女生团体增加了30%,所以增加的人数为 40 × 30% = 40 × 0.3 = 12 人。
增加之后女生团体的人数为 40 + 12 = 52 人。
最后,计算两个团体的人数比:男生团体人数:女生团体人数 = 36 : 52。
2. 一辆车行驶了300公里所需要的时间是4小时。
如果以相同的速度行驶,行驶600公里需要多少时间?解答:首先,计算每小时的行驶公里数:车行驶了300公里所需时间为4小时,所以每小时行驶的公里数为300 / 4 = 75 公里/小时。
接下来,计算行驶600公里所需的时间:行驶600公里所需时间为 600 / 75 = 8 小时。
所以,以相同的速度行驶600公里需要8小时。
3. 一个长方形花坛的长和宽的比是3:2,如果长方形的周长是30米,那么长方形花坛的面积是多少平方米?解答:首先,根据长和宽的比值,设长方形花坛的长为3x,宽为2x。
根据周长的定义,周长 = 2(长 + 宽)。
根据题目中给出的周长是30米,可以得到方程:2(3x + 2x) = 30。
解方程得到:2(5x) = 30,化简为 10x = 30,再化简为 x = 3。
代入长方形花坛的长和宽的表达式,可以得到长为3x = 3 × 3 = 9米,宽为2x = 2 × 3 = 6米。
最后,计算长方形花坛的面积:面积 = 长 ×宽 = 9 × 6 = 54 平方米。
六年级数学下册用比例解决问题
六年级数学下册用比例解决问题姓名:班级:1、学校食堂买来900千克大米,6天吃了180千克,照这样计算,剩下的还能吃几天?2、两根同样长的钢筋,其中一根锯成3段用了12分钟,另一根要锯成6段,需要多少分钟?3、电信公司要铺设一条通信光缆线,计划由20人工作12天完成。
因任务紧急,现在必须提前2天完成,如果工作效率不变,应增加多少人才能按时完成任务?4、某小区维修线路,需停电半小时,妈妈找来一根长20厘米的蜡烛,蜡烛燃烧8分钟后,还剩15厘米,请问:这根蜡烛能够燃烧到来电吗?5、一块圆柱形钢坯的底面半径是3cm,高是36cm。
如果把它熔铸成一个底面积是113.04平方厘米的圆锥,那么高是多少厘米?6、如果教室要用方砖铺地,用边长为3分米的方砖,需要96块,如果改用边长是4分米的方砖,需要多少块?7、如果教室要用方砖铺地,用面积为9平方分米的方砖,需要96块,如果改用面积是16平方分米的方砖,需要多少块?8、8、如果教室要用方砖铺地,用面积为9平方分米的方砖,需要96块,如果改用边长是4分米的方砖,需要多少块?9、聪聪在图书馆借到了《三体》第三册,计划每天看10页,需要51天刚好全部看完。
如果聪聪最后还书时共交了0.4元的延时服务费,那么他平均每天看了多少页?10、某工程队铺一段铁路,原计划每天铺3.6千米,实际每天比原计划多铺25%,实际铺完这段铁路用了8天。
原计划用多少天铺完?11、加工一批零件,若每天加工200个,则比原计划提前3天就能完成任务;若每天加工150个,则比原计划延迟5天才能完成任务。
原计划多少天完成任务?这批零件一共有多少个?12、甲乙两人骑自行车从A,B两地同时出发,相向而行。
甲行完全程要6小时,甲、乙相遇时所行的路程比是3:2,乙行完全程要多少小时?(甲、乙速度均保持不变)13、如图,平行四边形ABCD的周长为50厘米,以AD为底边时,高CE是8厘米;以AB 为底边时,高CF是12厘米,那么平行四边形ABCD的面积是多少平方厘米?14、甲、乙两车同时从A,B两城相对开出,经过8小时相遇,相遇后甲车继续开到B城还要4小时。
六年级数学用比例解决问题练习
六年级数学用比例解决问题练习学校:姓名:用比例知识解决下面问题:1、用边长40厘米的方砖给教室铺地,需要432块,如果用边长60厘米的方砖铺地,需要多少块方砖?解答:由于铺地面积不变,所以两种方砖的面积成比例。
设用60厘米边长的方砖需要x块,则有:40×40×432=60×60×x解得:x=192,所以需要192块60厘米边长的方砖。
2、一辆客车3小时行135千米,照这样计算,如果行315千米,需要多少小时?解答:客车的行驶速度不变,所以行驶时间与行驶距离成反比例。
设需要的时间为x,则有:3×135=315×x解得:x=1.35,所以需要1.35小时。
3、一种农药,用药液和水按1:1500配制而成。
如果只有3千克的药液,应加水多少千克?解答:药液和水的重量成比例。
设应加水x千克,则有:3:1500=x:(3+x)解得:x=4497,所以应加4497千克水。
4、运一批药品,每箱装36瓶,需要40只箱子,如果每箱装24瓶,需要多少只箱子?解答:药品的总瓶数不变,所以需要的箱子数与每箱装瓶数成反比例。
设需要的箱子数为x,则有:36×40=24×x解得:x=60,所以需要60只箱子。
5、一块长方形地长120米,宽90米。
把它画在比例尺是1:1000的图纸上,长和宽各应画多少厘米?解答:地的长度和宽度与图纸上的长度和宽度成比例。
设地在图纸上的长度为x厘米,则有:120:1000=x:1解得:x=12,所以地在图纸上的长度为12厘米。
同理可得,地在图纸上的宽度为9厘米。
6、在一幅比例尺是1:的地图上,量得甲乙两地的距离是12厘米,甲乙两地的实际距离是多少千米?解答:地图上的长度与实际长度成比例。
设甲乙两地的实际距离为x千米,则有:1:=12:x解得:x=420,所以甲乙两地的实际距离为420千米。
7、___用24元买了6本笔记本,___也想买几本,可是他妈妈只给他16元,他最多可以买到多少本笔记本?解答:笔记本的数量与钱数成正比例。
六年级数学下册 《用比例解决问题》练习题
1.小亮半小时能打900个字,照这样的速度,往电脑里输入一篇1500字的文章,小亮需要多长时间?解:设小亮需要x分钟。
半小时=30分1500:x=900:30900x=1500×30x=50答:小亮需要50分钟。
2.某女裤工厂计划生产6500条女裤,3天已经生产了1500条,按照这样的工作效率,剩下的女裤还需要多少天能生产完?解:设剩下的女裤还需要x天能生产完。
6500-1500=5000(条)5000:x=1500:31500x=5000×3x=10答:剩下的女裤还需要10天能生产完。
3.100千克黄豆可以榨豆油13千克,按照这样的出油率,要榨豆油6.5吨,需黄豆多少吨?解:设需黄豆x吨。
100:13=x:6.513x=100×6.5x=50答:需黄豆50吨。
4.小明在100m短跑到达终点时领先小刚10m,领先小华15m。
如果小刚和小华按原来的速度继续跑向终点,那么当小刚到达终点时,小华还差多少米到达终点?解:设当小刚到达终点时,小华还差x米到达终点100-10 100-15=100 100-x18 17=100100-xx=50 9答:当小刚到达终点时,小华还差509米到达终点。
5.一张照片长4厘米,宽3厘米,如果按4∶1的比把这张照片放大,放大后照片的长、宽分别是多少厘米?如果要使放大后照片的宽是9厘米,那么放大后照片的长应是多少厘米?4×4=16(厘米)3×4=12(厘米)解:设放大后照片的长是x厘米4∶3=x∶93x=4×93x=363x÷3=36÷3x=12答:放大后照片的长是16厘米,宽是12厘米。
如果要使放大后照片的宽是9厘米,那么放大后照片的长应是12厘米。
6.客车和货车同时从甲,乙两地相向开出,客车每小时行全程的1 4,货车每小时行60千米,相遇时客车和货车所行路程的比是3∶2。
甲、乙两地相距多少?由分析可得:两车的速度比是3 2客车的速度是:60×32=90(千米/时)甲、乙两地相距:90÷14=360(千米)答:甲、乙两地相距360千米。
六年级下册解比例练习题
六年级下册解比例练习题解题1:已知2:5和40:100是等比例关系,求未知数。
解答:根据等比例关系的定义,两个比例的比值应该相等。
因此,我们可以设置一个等式来解决这个问题。
2/5 = 40/100在等式两边进行简化运算,消去分子分母中的公共因子。
2/5 = 2/5得到2/5 = 2/5,两边相等。
因此,未知数为2。
解题2:已知3:8和9:24是等比例关系,求未知数。
解答:同样地,根据等比例关系的定义,我们可以得到以下等式:3/8 = 9/24接下来,我们要进行简化运算。
首先,我们可以将3/8和9/24分别化简为最简形式。
3/8 = (3/1)/(8/1) = 3/89/24 = (9/3)/(24/3) = 3/8可以看到,两个比例化简后的结果相等。
因此,未知数为3。
解题3:已知4:7和16:28是等比例关系,求未知数。
解答:利用等比例关系的定义,我们可以得到以下等式:4/7 = 16/28接下来,我们进行简化运算。
首先,我们将4/7化简为最简形式。
4/7 = (4/1)/(7/1) = 4/7然后,我们将16/28化简为最简形式。
16/28 = (16/4)/(28/4) = 4/7可以看到,两个比例化简后的结果相等。
因此,未知数为4。
通过以上练习题的解答,我们可以深入理解和应用等比例关系的概念。
掌握解题方法和技巧,能够帮助我们更好地解决类似的问题。
对于六年级的学生来说,掌握解比例练习题的方法是提高数学能力的重要一步。
希望同学们能够通过多做类似的题目,不断巩固知识,提高成绩。
小学数学比例练习题六年级
小学数学比例练习题六年级在小学六年级数学学习中,比例是一个重要的知识点。
通过练习比例题,不仅可以提高学生的计算能力,还能培养他们的逻辑思维和问题解决能力。
本文将给出一些适合小学六年级的数学比例练习题。
练习题一:果汁配料比例某商店准备生产一种新的果汁,需要调配苹果汁、橙汁和葡萄汁。
根据市场调研,市场对苹果汁、橙汁和葡萄汁的需求比例为3比4比5。
现在要生产300升的果汁,请计算需要调配多少升的苹果汁、橙汁和葡萄汁。
解答:根据需求比例,我们可以得到苹果汁:橙汁:葡萄汁的比例为3:4:5。
将总升数300升按照比例进行分配,得到:苹果汁 = 300 × (3/12) = 75升橙汁 = 300 × (4/12) = 100升葡萄汁 = 300 × (5/12) = 125升因此,调配果汁时,需要用75升苹果汁、100升橙汁和125升葡萄汁。
练习题二:食物中的营养比例下面是某种食物中的营养含量表。
营养成分每100克食物中的含量蛋白质 15克脂肪 10克碳水化合物 30克纤维素 5克请计算蛋白质、脂肪、碳水化合物、纤维素在这种食物中的比例。
解答:根据表格中的数据,我们可以计算出蛋白质、脂肪、碳水化合物、纤维素的比例。
蛋白质比例 = 15 / (15 + 10 + 30 + 5) × 100% = 30%脂肪比例 = 10 / (15 + 10 + 30 + 5) × 100% = 20%碳水化合物比例 = 30 / (15 + 10 + 30 + 5) × 100% = 60%纤维素比例 = 5 / (15 + 10 + 30 + 5) × 100% = 10%因此,蛋白质、脂肪、碳水化合物和纤维素在这种食物中的比例分别为30%、20%、60%和10%。
练习题三:图书馆读者男女比例某图书馆对读者的男女比例进行了调查,结果显示男性读者占总读者数的40%,女性读者占总读者数的60%。
小学数学比例应用题(共6篇)
小学数学比例应用题〔共6篇〕篇1:六年级数学比例应用题练习题六年级数学比例应用题练习题(1)水果店一天运进苹果、香蕉、梨共390千克,苹果的重量是梨的1.5倍,香蕉的重量是梨的3/4,三种水果各运进多少千克?(2)一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?(3)有一快棱长20厘米的正方体木料,刨成一个底面直径的圆柱体,刨去木料的体积是多少?(4)一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?(5)两个小组装配收音机,甲组每天装配50台,第一天完成了总任务的10%,这时乙组才开场装配,每天装配40台,完成这批任务时,甲组做了多少天?(6)修筑一条公路,完成了全长的2/3后,离中点16。
5千米,这条公路全长多少千米?(7)师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?(8)两队修一条公路,甲队每天修全长的1/5,乙队独做7.5天修好。
假如两队合修2天后,其余由乙队独修,还要几天完成?(9)仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?(10)前轮在720米的间隔里比后轮多转40周,假如后轮的周长是2米,求前轮的周长。
11、为创立海华公司,张、王、李三人分别投资100万元、120万元和80万元。
在他们三人的共同努力下,到年末,公司共盈利60万元,你认为该如何合理分配这笔钱,每人分别得多少?12、甲乙两地相距360千米,一辆汽车从甲地到乙地方案7小时行完全程,汽车的速度如下表,问能否在规定的时间内行完全程?(计算后简要说明)13、在比例尺是的地图上,量得甲乙两地的间隔为4.5厘米,假如一辆客车和货车同时从甲乙两地相对开出,经过3小时相遇。
客车每小时行65千米,那么这辆货车每小时行多少千米?14、在比例尺是1:3000000的地图上,量得A、B两城之间的间隔是2.4厘米。
人教版六年级下册“用比例解决问题”(一题型多练,适合基础中等学生)
5.在比例尺是 的地图上,量得乐昌到清远的距离是4.5厘米。一辆汽车以每小时60千米的速度从乐昌开往清远,几时可以到达?
6.某工作小组装订一批课外读物,计划每天装订80本,20天可装订完;实际每天装订200本,照这样计算,多少天可以完成任务?(用比例解)
20.学校食堂的阿姨到超市买了28个同样的塑料桶,需要付448元。照这样计算,如果想买48个塑料桶,需要付多少元?(用比例解)
参考答案:
1.30平方米
【分析】设360块方砖能铺地x平方米,根据方砖数量∶铺的面积=每平方米方砖数量(一定),列出正比例算式解答即可。
【详解】解:设360块方砖能铺地x平方米。
2x=9×0.8
2x÷2=7.2÷2
x=3.6
答:大树有3.6米高。
【点睛】用比例解决问题只要等号两边的比统一即可。
3.2小时
【分析】根据比例尺的意义可知:实际距离=图上距离÷比例尺,求出实际距离,然后再化成千米即可;再根据关系式:距离÷速度和=相遇时间,解决问题。
【详解】A、B两地的实际距离:
16÷
17.一辆运货车从甲地到乙地,平均每小时行72千米,10小时到达。回来时空车原路返回,每小时可行80千米。多长时间能够返回原地?
18.工厂四月份组装一批产品,原计划每天组装2.7万台正好完成任务。受新冠疫情影响,实际每天只能组装1.5万台,实际需要多少天才能完成四月份任务?(用比例解)
19.某区用条形统计图表示各小学一周接受核酸检测的人数。纵轴4格表示阳光小学本周一测试人数为1000人,那么如果春晖小学有2375人,纵轴上应该用多少格表示?(用比例解答)
六年级用比例解决问题
六年级比例知识应用题1、甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?2、修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完?(用比例方法解)3、一台织补袜机2小时织袜26双,照这样计算,7小时可以织补多少双?4、一种铁丝长30米,重量是7 千克,现有这种铁丝950千克,长多少米?5.用同样的砖铺地,铺18平方米用砖618砖,如果铺24平方米,要用砖多少块?6、一个晒盐场用100克海水可以晒出3克盐,如果一块盐用一次放入585000吨海水,可以晒出多少吨盐?7、一篮苹果,如果8个人分,每人正好分6个,如果12个人来分,每人可以分几个?8、同学们排队做操,每行站20人,正好站8行,如果每行站24人,可以站多少行?9、一间房子要用砖铺地,用面积是9平方分米的方砖,需要96块,如果用面积是6平方分米的方砖,需要多少块?10、一艘轮船3小时航行80千米,照这样的速度航行200千米需要多少小时?11、一间房五铺地砖,用面只是9平方分米的方砖需要96块,如果改用面积是4平方分米的方砖,需要多少块?12、农场收小麦,前3天收割了16公顷,照这样计算,8天可以收割多少公顷小麦?13、一辆汽车2小时行驶64千米,用这样的速度从甲地到乙地行驶5小时,甲、乙两地之间的公路长多少千米?14、一个榨油厂用100千克黄豆可以榨出13千克豆油,照这样计算,用3吨黄豆可以榨出多少吨豆油?15.同学们做操,每行站20人,正好站18行。
如果每行站24人,可以站多少行?(用比例方法解)16.飞机每小时飞行480千米,汽车每小时行60千米。
飞机行4小时的路程,汽车要行多少小时?(用比例方法解)17.修一条公路,每天修0.5千米,36天完成。
如果每天修0.6千米,多少天可修完?(用比例方法解)18.一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答)19.一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?(用比例方法解)20.生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?(用比例方法解)21.小明买4本同样的练习本用了4.8元,3.6元可以买多少本这样的练习本? (用比例方法解)22.配制一种农药,药粉和水的比是1:500(1) 现有水6000千克,配制这种农药需要药粉多少千克?(2) 现有药粉3.6千克,配制这种农药需要水多少千克?。
小学六年级下册比例练习题
小学六年级下册比例练习题一、填空题1. 在一本书中,每页有4个插图。
如果这本书共有120页,那么一共有__480__个插图。
2. 一辆汽车每天行驶100公里,已知它行驶了5天,那么它行驶的总里程是__500__公里。
3. 某商品原价为60元,打八折出售。
现在它的价格是__48__元。
4. 甲乙两个学校的比例是4:5,如果甲校有160名学生,那么乙校有__200__名学生。
5. 一辆火车以每小时80公里的速度行驶,已知它行驶了3小时,那么它行驶的距离是__240__公里。
二、选择题1. 甲校共有300名学生,其中男生有200人,那么男生的比例是:A. 1:2B. 2:3C. 3:2D. 2:12. 某商品原价为50元,现在打六折出售,那么现价为:A. 50元B. 30元C. 20元D. 10元3. 一根木棍长12米,已知它被等分为6段,那么每段的长度是:A. 2米B. 4米C. 6米D. 8米4. 某商店为了促销,将原价60元的商品降价到48元,降价的折扣比例是:A. 1:4B. 4:5C. 4:3D. 3:45. 一辆汽车以每小时60公里的速度行驶,已知它行驶了5小时,那么它行驶的总距离是:A. 120公里B. 300公里C. 360公里D. 400公里三、解答题1. 甲乙两个班的男女比例都是3:2,如果甲班有30名男生,那么乙班男生的人数是多少?女生的人数呢?2. 一袋米重5公斤,已知小明买了3袋米共计花费75元,那么他买的米的总重量是多少?3. 某种牛奶原价每瓶20元,现在打八折出售,小明花了80元购买了多少瓶牛奶?4. 一条绳子长420厘米,小明按照1:4的比例分成了几段?每段的长度分别是多少?5. 小红学习时每天花费2小时做作业,已知她连续学习了10天,那么她总共花费多少时间在做作业上?以上是小学六年级下册比例练习题,希望对你的学习有所帮助。
解比例的练习题六年级
解比例的练习题六年级如今我们生活在一个充满数字和数据的时代,对于学生来说,数学是一门非常重要的学科。
在数学的学习过程中,比例是一个基础概念,也是应用广泛的数学工具。
本文将为六年级学生提供一些解比例的练习题,帮助他们巩固和加深对比例的理解。
练习题一:求比假设一个菜市场有10公斤的西红柿,6公斤的黄瓜,8公斤的胡萝卜,请问西红柿和黄瓜的比是多少?黄瓜和胡萝卜的比是多少?解答:西红柿和黄瓜的比可以用西红柿的重量除以黄瓜的重量,即10÷6=1.67。
所以西红柿和黄瓜的比是1.67。
黄瓜和胡萝卜的比可以用黄瓜的重量除以胡萝卜的重量,即6÷8=0.75。
所以黄瓜和胡萝卜的比是0.75。
练习题二:求比例某班级有30名男生和40名女生,请问男生的人数与女生的人数的比例是多少?解答:男生的人数与女生的人数的比例可以用男生的人数除以女生的人数,即30÷40=0.75。
所以男生的人数与女生的人数的比例是0.75。
练习题三:求未知量已知一项工程需要5天完成,若增加工人的数量,能否缩短工程的完成时间?解答:我们假设增加工人的数量为x,工程的完成时间为y。
根据题意,可以列出比例关系:5÷y=x÷1。
根据比例关系,我们可以得到y=5÷x。
当增加工人的数量x时,工程的完成时间y会减少。
练习题四:求比例和未知量甲、乙、丙三人一起做一项工作,甲一天可以做1/5的工作量,乙一天可以做1/4的工作量,丙一天可以做1/10的工作量。
他们一起工作4天,请问他们完成了工作的几分之几?解答:甲、乙、丙三人一起工作4天,他们总共完成的工作量可以表示为:1/5 + 1/4 + 1/10 = 13/20。
所以他们完成了工作的13/20。
练习题五:求比例和未知量(应用题)某校参加足球比赛的男生人数与女生人数的比是3∶2,如果再增加80名男生和60名女生,比例将变为5∶3。
请问该校原来的男生和女生各有多少人?解答:我们假设原来的男生人数为3x,女生人数为2x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用正反比例解决问题的对比练习
广园小学曾燕芳
设计背景:学生学习了用正比例解决问题,作业反馈很好。
第二天继续学习用反比例解决问题,课堂学习效果非常好,正确率相当高,作业反馈:大部份都不错,但有一题是关于用正比例解决问题的,却几乎有一半的同学做错,这使我对这两节课的教学进行了深一层的思考。
调查结果发现,出现错误的原因有:1、有的同学认为今天所学的内容是用反比例来解决问题,而前面的题目都是用反比例来解决问题的,所以不审题,理所当然地认为这一题也用反比例来解决;2、对正反比例的知识混淆了。
判断是否成正反比例的量已经有一段时间了,有的学生对这部份知识已有点模糊了。
为了让学生更好地理解正比例和反比例的关系,灵活地运用比例知识来解决问题,特意增加了这一节对比练习课。
下面是这节课的练习设计:
铺垫练习:
一、下面每题中的两种量是否成比例?如果成比例,成什么比例关系?
1、速度一定,路程和时间。
()
2、单价一定,总价和数量。
()
3、学生总人数一定,每行站的人数和站的行数。
()
4、铺地面积一定,方砖面积与所需块数。
()
5、货车的载重量一定,运送货物的总量和辆数。
()
设计功能:复习比例的知识,巩固正比例、反比例两个概念,避免混淆,清楚知识间的联系,并为后面用正反比例知识解决问题打下基础。
组织方式:先让学生独立完成,再指名回答。
让学生按一定的格式作答。
如第1题:成正比例关系,因为速度=路程÷时间。
二、根据条件说出数量关系,并判断成什么比例。
1、食堂买3桶油用了780元,照这样计算,买10桶油需要多少元?
因为()一定,相关联的两种量是()和()
=
所以()和()成()比例关系。
2、生产一批自行车,计划每天生产30辆,需要生产20天;实际每天生产了50辆,实际生产了几天?
因为()一定,相关联的两种量是()和()
=
所以()和()成()比例关系。
正、反比例解决问题的方法:(1)找“一定”;(2)写数量关系;(3)列方程;(4)检验。
]
对比练习:
一、课本P63第4题。
(1)王叔叔开车从甲地到乙地,前2小时行了100km。
照这样的速度,从甲地
到乙地一共要用3小时,甲乙两地相距多远?
(2)王叔叔开车从甲地到乙地一共用了3小时,每小时行50km ,返回时每小时行60km ,返回时用了多长时间?
[设计功能:通过这一题的对比练习,使学生更好地理解“正比例”和“反比例”这两个概念,避免了知识间的混淆。
虽然本节课是从学生的作业反馈中增设的一节数学练习课,但同样不忽视课本资源,而是利用好课本中现有的资源。
组织方式:让学生读题,通过小组讨论发现题中需要注意的地方。
如“照这样的速度”,说明速度一定,题中的路程和时间成正比例关系,得出等量关系式: 11时间路程=2
2时间路程;又如“返回”说明路程是一定的,题中的速度和时间成反比例关系,得数量关系式:速度1×时间1=速度2×时间2。
]
二、选择题。
学校音乐室要用方砖铺地。
(1)用面积是9平方分米的方砖,需要96块。
如果改用面积是4平方分米的方砖,需要( )块。
(2)用边长3分米的方砖铺,需要96块;如果改用边长2分米的方砖铺地,需要( )块砖。
解:设需要方砖X 块。
A 9×96=4X
B 9×9×96=4×4×X
C 3×96=2X
D 3×3×96=2×2×X
[设计功能:这也是一组对比练习题,是用反比例解决问题中联系生活实际的对比,需要学生更深入分析题意。
有利于学生进一步理解用反比例解决问题的题型及提高学生的审题能力。
组织方式:我先让学生把这两道题的题目都读完了,让他们通过小组讨论分析这两道题的异同点后,通过PPT 演示突出两道题的不同点再让学生独立解决问题的。
这两题都是用“反比例”来解决问题的题目,我们要更切合生活实际来解决
问题,注意“面积是9平方米的方砖”与“边长3分米的方砖”的区别。
] 变式练习:
小明家到学校共1200米。
今天早上上学3分钟共走了180米,照这样的速度,还要走多少分钟才能到学校?
学生的板演:
方法一:解:设还要走X 分钟才能到学校。
X 1801200-=3
180 60X =1020
X =17
答:还要走17分钟才能到学校。
方法二:解:设一共要走X 分钟才能到校。
X 1200=3
180 180X=3600
X=20
20-3=17(分)
答:还要走17分钟才能到学校。
[设计功能及组织方式:通过谈话引导学生找出关键句“照这样的速度”,以及区别好“还要走多少分钟”与“一共要走多少分钟”的区别。
这样的问题设计一方面提高了学生的审题能力,另一方面更能提高学生解决问题的能力]
拓展练习:
袋子里有绿球7个,黄球24个。
增加多少个绿球,可使袋子里绿球与黄球的个数比是5:3?
学生板演:
方法一: 解:设增加X 个绿球。
247X +=3
5 3(7+X )=120
X =33
答:增加33个绿球。
方法二:解:设一共有X 个绿球。
24X =3
5 3X=120
X=40
40-7=33(个)
答:增加33个绿球。
[设计功能及组织方式:有了前面习题的铺垫,本拓展练习题只要学生“跳一跳”就能摘到果子了,并且解决问题的方法很多,非常有利于激发学生的思维动力,使学生获得成功感。
]
练习效果及反思:
这是一节单项练习课,是针对正比例和反比例这两个容易混淆的概念安排的练习,以提高学生的辨别能力和解决问题的能力。
这节课主要通过“练”达到巩固和提高,自始至终让学生参与体验解决问题的全过程。
在整节课的学习过程中,学生都能积极的思考,积极地参与,恰逢学校领导“推门听”,给予了高度的评价:“朴实、灵动、有内涵”。
下面是我在上完这节课后所作的反思:
1、 练习设计目的性强,有内涵。
这节课是围绕教学的重难点——灵活运用比例知识解决问题、在具体的问题情境中正确判断题中的量成什么比例关系——所设计的练习,通过对学生访谈,发现了存在的问题而设计的一节对比练习课。
在整节课的练习中,始终要求学生一:找出哪一个量一定,二:判断另外两个相关联的量成什么比例,从而找出等量关系。
本节课目标明确,精心设计练习,避免了题海战术,每一道题的功能和作用都非常明确,并根据学生的知识水平差异,对教材里的习题、课后的习题等作了适当的调整(如铺垫练习二)、组合(如变式练习二)、补充(如变式练习和拓展练习),使每道习题都能用好,用到位,发挥习题的价值。
2、 练习设计层次分明,有挑战。
练习的设计要由易到难,由浅入深,由单一到综合,要有一定的坡度。
多层
的训练有利于暴露差异,发展学生的思维能力。
这节课以“铺垫练习——对比练习——变式练习——拓展练习”为主线精心设计练习,使学生在这多层次的练习中,理解和掌握知识,能力得到发展。
这节课选取的练习题都是非常典型的,如对比练习一中的两道题都是典型的用正比例和反比例解决问题的题型,并且是常见的关于“行程问题”的题型,只要学生找到“速度、时间、路程”这几种量就不难解决了。
同时练习设计难易适当,也照顾到全班不同层次的学生的学习水平,使他们都获得成功的喜悦,情感得到满足。
3、练习过程有“个性”、有“自我”。
练习课我们也要留给学生充足的探索、练习和交流的时间,要让学生感觉“我在练习”、“我在思考”,而不是让学生感觉“老师在统治课堂,老师让我练习”,要避免“走过场”。
这节课我充分发挥学生的主体性,让学生多说,多思考,通过说解题思路突出重点,突破难点。
如每题都根据如下的解题模式说解题思路:因为()一定,相关联的两种量是()和()
所以()和()成()比例关系。
这样,练习效率更高。
值得一提的是,学生一般都不喜欢用比例方法,而喜欢用算术方法解答,我想这与我没有很好地想办法让学生体会“用比例解决问题”的优势有关吧,下一阶段要注意这一问题的学习了。