八年级初二数学二次根式总复习
八年级下册数学二次根式知识点整理
二次根式1、 算术平方根的定义:一般地,如果一个正数x 的平方等于a ,那么这个正数x 叫做a 的算术平方根。
2、 解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x >4,不等式两边同除以-2得x <-2。
不等式组的解集是两个不等式解集的公共部分。
如3、 分母≠04、 绝对值:|a |=a (a ≥0);|a |= - a (a <0)一、 二次根式的概念一般地,我们把形如 a (a ≥0)的式子叫做二次根式,“ ”称为二次根号。
★ 正确理解二次根式的概念,要把握以下五点:(1) 二次根式的概念是从形式上界定的,必须含有二次根号“ ”,“ ”的根指数为2,即“2 ”,我们一般省略根指数2,写作“ ”。
如25 可以写作 5 。
(2) 二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3) 式子 a 表示非负数a 的算术平方根,因此a ≥0, a ≥0。
其中a ≥0是 a 有意义的前提条件。
(4) 在具体问题中,如果已知二次根式 a ,就意味着给出了a ≥0这一隐含条件。
(5) 形如b a (a ≥0)的式子也是二次根式,b 与 a 是相乘的关系。
要注意当b 是分数时不能写成带分数,例如83 2 可写成8 2 3 ,但不能写成2 232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ; (2)-18 ; (3)x 2+1 ;(4)3-8 ; (5)x 2+2x+1 ; (6)3|x | ; (7)1+2x (x <- 12 )二、当x 取什么实数时,下列各式有意义?(1)2-5x ; (2)4x 2+4x+1二、二次根式的性质:练习:计算(1)(35 )2 (2) (4 3 )2 (3) (-62) (4)- (- 18)2 (6)x 2-2x+1 + x 2-6x+9 (1≤x ≤3) ★( a )2(a ≥0)与a 2 的区别与联系:三、代数式用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫代数式。
八年级数学二次根式重点知识点大全
一、二次根式的概念与性质1.二次根式的定义:形如√a的式子称为二次根式,其中a≥0。
2.二次根式的性质:a)若a≥0,则√a≥0;b)若a≥b≥0,则√a≥√b;c)若a>b≥0,则√a>√b;d)若a≥0,则√(a²)=,a,其中,a,表示a的绝对值。
二、二次根式的化简与运算1.化简二次根式的常用方法:a)提取因式法:将二次根式中的平方数作为因式提取出来;b)合并相同根号下的项:将根号内的同类项进行合并;c)利用平方公式:将二次根式作为平方差或平方和进行化简。
2.二次根式的四则运算:a)加减运算:合并同类项后,进行加减运算;b)乘法运算:利用分配律,进行乘法运算;c)除法运算:有理化分母,化为二次根式的形式,然后进行乘法运算。
三、含有二次根式的方程1.含有二次根式的方程的解法:a)平方意义法:将方程两边平方,去掉二次根式,解得方程的解;b)分离根号法:将方程中含有二次根式的项移到一边,不含二次根式的项移到另一边,然后平方消去二次根式;c)倒数意义法:将方程两边取倒数,再次运用平方意义法;d)降次法:将方程中的二次根式通过化简变为一次根式,然后解得方程的解。
2.二次根式的绝对值方程:a)若,√a,=√a,则√a为方程的解;b)若,√a,=-√a,则方程无解。
四、二次根式的应用1.二次根式的图像:a)当a>0时,图像为右开口的抛物线;b)当a=0时,图像为直线;c)当a<0时,图像为左开口的抛物线。
2.二次根式的应用:a)二次根式可以表示边长、面积等与几何相关的量;b)二次根式可以表示物质的含量、体积等与实际问题相关的量。
五、解二次根式的几种常用方法1.合并相同根号下的项,然后联立方程求解;2.代入法:将选项代入原方程,判断是否满足等式,找出符合条件的解;3.倒置法:将选项的倒数代入原方程,再运用倒数意义法求解;4.拆解法:将二次根式进行拆解,再利用等式的性质进行求解;5.分离根号法:将方程中含有二次根式的项移到一边,不含二次根式的项移到另一边,然后平方消去二次根式。
初二数学二次根式知识点归纳
初二数学二次根式知识点归纳1.二次根式定义:形如(a≥0)的式子,叫做二次根式.2.二次根式的性质:①≥0(a≥0)这是因为(a≥0)表示a的算术平方根,根据算术平方根的意义,当a>0时,>0,当a=0时,= 0 . ∴≥0.利用这一性质,可以解决下面问题:若,则x=-2,y=2;②()2= a (a≥0),在探究这一性质时,教科书所采用的方法是不完全归纳法,而根据算术平方根的意义有:如果x2=a(x≥0),则x=,所以代入上式得()2=a.③= a (a≥0) ,根据算术平方根的意义该性质的推导过程应是:因为当a≥0时,a2的算术平方根是a, 所以.3.代数式:用基本运算符号(基本运算符号包括加、减、乘、除、乘方、开方)把数和表示的数的字母连接起来的式子,叫代数式.4.利用二次根式性质化简:利用=a(a≥0)化简某些代数式时,一般应将被开方数化为完全平方式,如化简(x>-1)=.典例讲解例1、填空题:(1)式子中x的取值范围是______________.(2)当x满足条件______________时,式子有意义.(3)当x=______________时,有最小值,最小值是______________. (4)如果是正整数,那么x能取的最小自然数是______________.答案:(1)x>-2 (2)x≥0且x≠1(3)-25;9 (4)6例2、选择题:(1)化简的值为()A. 4B.-4C.±4D. 16(2)下列各组数中,互为相反数的是()A. -2与B.C.-2和D. 2和(3)若x≥0,那么等于()A. xB.-xC.-2xD. 2x(4)当a≥1,则=()A.2a-1B. 1-2aC.-1D. 1(5)在实数范围内分解因式:x2-3=()A. (x+3)(x-3)B. (x+)(x-)C. (x+)(x-)D. (x+9)(x-9)答案:(1)A (2)A (3)B (4)A (5)C 例3、用带有根号的式子表示:(1)已知一个正方体的表面积是S.求它的棱长.解:设它的棱长为x,则所以.故它的棱长为.(2)一个圆的半径是10cm,是它面积2倍的正方形的边长为多少?解:设这个正方形的边长为xcm.则所以.正方形的边长为㎝.例4、计算:(1)(2)(3)(4)解:(1)=(2)=63(3)=3+2=5(4)=例5、已知|x+y-7|+,求x2+y2的值.解:由已知得:∴所以,原式=(x+y)2-2xy=72-2×12=25.例6、已知实数a满足,求a-20082的值. 解:因为所以a≥2009,所以2008-a<0,所以原等式可化为:,所以,所以a-2009=20082,所以a-20082=2009.1. 二次根式的乘法:①法则,=(a≥0,b≥0);②利用这一法则,可以求出某些特殊的二次根式的值,如:15,7;③这一法则的探究我们采用的方法是不完全归纳法.2. 积的算术平方根的性质:①性质,与二次根式的乘法法则相比较互逆;②利用这一性质和二次根式的乘法法则,可以化简二次根式,如=3a2b,=;③性质应用:在化简二次根式时,通常要结合二次根式的性质,因此方法上应注意将被开方数进行因数分解或直接开算术平方根的原则是将开得尽方的因数分解出来. 化简实质上是将根号内完全平方的因数(式)移到根号外.典例讲解例1、填空题(1)化简:_____________;(2)计算:_____________;(3)计算:= _____________.答案:(1);(2);(3)6例2、把下列各式中根号外的因式移到根号内:;.解:;=-(-a).例3、计算:(1)(2)(3)(4)解:(1)==(2) ==x(x+y)=x2+xy(3)===(4)===2xy例4、比较下列各组中两个数的大小.(1)解:∵2,,而44<45∴,∴.(2)解:∵,,而32<,∴.例5、观察下列各式及其验证过程.验证:验证:3=.(1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果并进行验证:(2)针对上述各式反映的规律,写出n(n为任意自然数,且n≥2)表示的等式,并给出证明.解:(1)验证:(2)反映的规律为:证明:n=.1.二次根式的除法:①法则:;②法则中规定b>0的理由是分母不为零;③作用是化去分母中的根号.2.商的算术平方根:①性质(≥0,>0);②用语言叙述上述性质:算术平方根等于被除式的算术平方根除以除式的算术平方根;③作用是化去根号下的分母.3.最简二次根式:①最简二次根式必须满足两个条件是被开方数不含分母和被开方数中不含开得尽的因数或因式;②二次根式的乘除法运算,最后的结果一定要是最简二次根式或有理式.例1、化简下列二次根式(1);(2);(3)答案:(1);(2);(3)例2、选择题1.下列各式中正确的是()A. B.C. D.答案:B2.在化简时,甲、乙、丙三位同学的解法如下:甲:乙:丙:正确的是()A.甲B.乙C.丙D.甲、乙、丙均正确答案:D3.在下列根式、、、中,最简二次根式的个数是()A. 4个B. 3个C. 2个D. 1个答案:C例3、计算:(1)(2)(3)(4)(5)解:(1)(2)(3)(4)(5)例4、已知,,求与的近似值.解:∵,,∴,(此处视频中0.577误为0.5713).1、二次根式的加减法法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.2、二次根式的加减法运算步骤:(1)如果有括号,根据去括号法则去掉括号.(2)把不是最简二次根式的二次根式进行化简.(3)被开方数相同的二次根式进行合并.3、二次根式的加、减、乘、除、混合运算:①二次根式的加、减、乘、除、混合运算与实数的加、减、乘、除、混合运算一样,先算乘除,后算加减,如果含有括号,就先算括号里的.②如果二次根式中出现了形如多项式相乘的算式,则乘法公式都能适用.4、二次根式的运算可以类比实数的运算,实数的各运算律都适合于二次根式的运算,所以在二次根式运算中要充分运用实数的运算律,使运算更为简单.典例讲解例1、填空题1、计算:(1)=__________.(2)=__________.答案:(1)(2)2、若三角形的两边长分别为和,其周长为()cm,则第三边长为__________.答案:例2、选择题(1)下列各式中运算正确的是()A.B.C.D.答案:A(2)已知、,则a、b的关系为()A.a=b B.a+|b|=0C.ab=1 D.ab=-1答案:D例3、计算(1)(2)()-()(3)()()(4)解:(1)(2)()-()(3)()()(4)==例4、已知求的值.解:原式=∵,∴,∴.∴原式=.例5、利用乘法公式计算:,……(n为正整数)从以上计算中你发现了什么规律?请利用这一规律计算:答案:2007。
八年级数学二次根式常考必考知识点总结
二次根式是指形如√a的表示形式,其中a为一个非负实数。
在八年级数学中,二次根式是一个非常重要且常考的知识点。
下面是对八年级数学二次根式常考必考知识点的总结:1.二次根式的定义:√a表示一个非负实数x,使得x的平方等于a。
其中,a被称为被开方数,x被称为开方根。
2.二次根式的性质:-非负实数的二次根式是唯一确定的。
-如果a≥0,则√a≥0。
-如果a≥0,则(√a)²=a。
3.二次根式的化简:-如果被开方数是一个完全平方数,则可以直接得出其简化形式,如√4=2-如果被开方数可以分解为两个完全平方数的乘积,则可以使用分解法简化,如√12=√(4×3)=2√3-如果被开方数是一个分数,则可以使用有理化方法简化,如√(1/4)=1/√4=1/24.二次根式的运算:-二次根式可以进行加减运算,只要被开方数相同,可以直接相加或相减。
如√2+√2=2√2-二次根式可以进行乘法运算,使用分配律进行展开相乘,然后根据二次根式的性质进行简化。
如(√2+√3)(√2-√3)=2-3=-1-二次根式可以进行除法运算,使用有理化方法进行化简,然后根据二次根式的性质进行简化。
如(√5)/(√2)=(√5)/(√2)×(√2)/(√2)=(√10)/25.二次根式的混合运算:-二次根式可以与整数、分数和其他二次根式进行混合运算。
-混合运算的步骤是先进行内部运算(例如,括号中的运算),然后进行外部运算(例如,开方)。
-在混合运算中,注意运算顺序和运算法则的正确应用,避免出错。
6.二次根式的应用:-二次根式经常出现在几何问题中,如计算边长、面积和体积。
-二次根式也经常出现在实际生活中的计算中,如物体的质量和长度的计算。
以上是八年级数学中关于二次根式的常考必考知识点的总结。
掌握这些知识点,可以帮助学生正确理解和运用二次根式,提高解题能力和数学思维能力。
同时,通过反复练习相关题目,也能够加深对二次根式的理解和掌握。
初二数学二次根式知识点大全
第1关 二次根式(讲义部分)知识点1 二次根式1.二次根式的定义二次根式的定义:一般地,我们把形如(0≥a )的式子叫做二次根式. (1)“”称为二次根号;(2)a (0≥a )是一个非负数. 2.二次根式有意义的条件(1)二次根式的概念.形如(0≥a )的式子叫做二次根式.(2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数. (3)二次根式具有非负性.(0≥a )是一个非负数. 3.二次根式的双重非负性(1)0≥a 被开方数的非负性;(2)0≥a (算数平方根的非负性). 4.二次根式化简(1)把被开方数分解因式;(2)利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来; (3)化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.题型1 二次根式定义【例1】0)y 0,0)a b <<中,是二次根式的有( ) A .3个B .4个C .5个D .5个【解答】0)y 0,0)a b <<是二次根式,共4个, 故选:B .【点评】此题主要考查了二次根式定义,关键是注意被开方数为非负数.【例2】y( ) A .0x B .0x 且0y >C .x 、y 同号D .0x ,0y >或0x ,0y <【解答】解:依题意有20x y 且0y ≠,即0xy且0y ≠. 所以0x ,0y >或0x ,0y <. 故选:D .【点评】0)a 叫二次根式.二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0.题型2 二次根式有意义的条件【例3】若a 、b 为实数,且4b =+,则a b +的值为( ) A .1± B .4 C .3或5 D .5【解答】解:由题意得,210a -,210a -,则21a =,解得,1a =±,4b ∴=,则3a b +=或5, 故选:C .【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.【例4】若2y =,求x y 的值. 【解答】解:22y x =,24x ∴=,解得:2x =±, 故2y =-,则2(2)4x y =-=或21(2)4x y -=-=. 【点评】此题主要考查了二次根式有意义的条件,正确得出x 的值是解题关键.题型3 二次根式化简求值【例5】已知a 、b 、c ||||a bb c ++.【解答】解:如图所示:0a <,0a b +<,0c a ->,0b c +<,||||a b b c ++a ab c a bc =-+++---a=-.【点评】此题主要考查了二次根式的性质和数轴,正确得出各部分符号是解题关键.【例6】设a ,b ,c 为ABC ∆的三边,化简:【解答】解:根据a ,b ,c 为ABC ∆的三边,得到0a b c ++>,0a b c --<,0b a c --<,0c b a --<,则原式||||||||4a b c a b c b a c c b a a b c b c a a c b a b cc=+++--+--+--=++++-++-++-=. 【点评】此题考查了二次根式的性质与化简,以及三角形的三边关系,熟练掌握运算法则是解本 题的关键.【例7】数a ,b【解答】解:如图得,21a-<<-,12b <<,0a b ∴-<,10b ->,10a +<,∴1(1)b a b a =-+----, 211b a a =--++, 2b =.【点评】本题考查了二次根式的性质与化简以及实数与数轴,掌握二次根式的化简是解题的关键.知识点2 二次根式运算1.最简二次根式(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式. 2.分母有理化(1)分母有理化是指把分母中的根号化去.分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.(2)两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理 化因式. 3.同类二次根式(1)定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这 几个二次根式叫做同类二次根式. (2)合并同类二次根式的方法:只合并根式外的因式,即系数相加减,被开方数和根指数不变. 4.二次根式的混合运算(1)二次根式的混合运算是二次根式乘法、除法及加减法运算法则的综合运用.学习二次根式 的混合运算应注意:与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括 号的先算括号里面的.(2)二次根式的运算结果要化为最简二次根式.(3)在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解 题途径,往往能事半功倍.题型4 最简二次根式【例8】下列说法错误的是( )A . BC .是一个非负数D 的最小值是4【解答】解:A |3|a =-,说法错误,故本选项正确;BC 是一个非负数说法正确,故本选项错误;D 、4说法正确,故本选项错误. 故选:A .【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分 母;(2)被开方数不含能开得尽方的因数或因式.题型5 分母有理化【例9】阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①2525555==;②1===等运算都是分母有理化.根据上述材料, (1(2.【解答】解:(1)原式==(2)原式11.【点评】此题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键. 【例10】观察下列运算①由1)1=1=;②由1=③由1=④由1==;⋯(1)通过观察,将你发现的规律用含有n 的式子表示出来. (2)利用你发现的规律,+⋯+.【解答】解:(1n =为正整数);(2)原式1)=+++⋯+,1=1=.【点评】此题考查了分母有理化,弄清阅读材料中的方法是解本题的关键.题型6 同类二次根式【例11】( )A B CD【解答】解:,∴ 故选:A .【点评】本题主要考查同类二次根式,解题的关键是掌握同类二次根式的概念.【例12】 是同类二次根式的是( )A .①和②B .②和③C .①和④D .③和④【解答】解:=2==3==,∴故选:C .【点评】本题考查了同类二次根式的定义: 化成最简二次根式后, 被开方数相同, 这样的二 次根式叫做同类二次根式 .【例13】是同类二次根式,则a = .【解答】解:38172a a ∴-=-,解得:5a =.【点评】此题主要考查最简二次根式和同类二次根式的定义.【例14】计算:(1)-.(2)-.(3)2132 3+(4)【解答】解:(1)原式==(2)原式22=-1812=-6=;(3)原式23=-+5=;(4)原式13932=⨯⨯=【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.题型7 二次根式化简求值【例15】先化简,再求值(6(4-,其中32x=,27y=.【解答】解:32x=,27y=,∴原式=-=-====【点评】本题考查了二次根式的化简求值,正确对二次根式进行化简是关键.【例16】已知x=,y=,求代数式22242x xy y-+的值.【解答】解:353x+==+-5y ==-∴原式222(2)x xy y =-+22()x y =-22(55=++2= 296=⨯ 192=.【点评】本题考查了二次根式的化简求值,先化简x ,y 的值是解题的关键.第1关 二次根式(题册部分)【课后练1】下列各式中,不属于二次根式的是( )A 0)xB C D【解答】解:当0aA ∴、属于二次根式,故本选项错误;B 、属于二次根式,故本选项错误;C 、属于二次根式,故本选项错误;D 、210x --<不属于二次根式,故本选项正确; 故选:D .【课后练2】实数a ,b 在数轴上的位置如图所示,( )A .3a b -+B .1a b +-C .1a b --+D .1a b -++【解答】解:由数轴可知:102a b -<<<<,10a ∴+>,20b ->, ∴原式|1||2|a b =+--12a b =+-+ 3a b =-+, 故选:A .【课后练3】a 的值可能是( ) A .2- B .2C .32D .8【解答】解:0a ∴,且a故选项中2-,32,8都不合题意,a ∴的值可能是2. 故选:B .【课后练4】,那么x 的取值范围是( )A .12xB .12x <C .2xD .2x >【解答】解:由题意可得,10x -且20x ->,解得2x >. 故选:D .【课后练5】下列根式中,与是同类二次根式的是( )A .BC D【解答】与A 错误;=B 错误;C 错误;=是同类二次根式,D 正确; 故选:D .【课后练6】的结果是( )A .BC .D .3-【解答】解:原式6===. 故选:B .【课后练7】x 的取值范围是 .【解答】1200x x -⎧⎨≠⎩. 解得12x且0x ≠, 故答案为:12x 且0x ≠.【课后练8】实数a 化简后为 .【解答】解:由数轴可得,48a <<,∴310a a =-+- 7=,故答案为:7.【课后练9】先观察下列的计算,再完成:(11==;====请你直接写出下面的结果:= ;= ; (2)根据你的猜想、归纳,运用规律计算:1)+⨯.【解答】解:(12==;==(2)根据题意得:原式111==.故答案为:(12【课后练10】计算题:①②(2+-③④⑤⑥2314()22+⨯--.【解答】解:①原式==,②原式43=- 1=,③原式==1311=⨯ 143=,④原式==89=⨯ 72=,⑤原式328=-- 7=-.【课后练11】已知1a =,1b =,分别求下列各式的值.(1)22a b +; (2)b a a b+.【解答】解:当1a =,1b =时,(1)原式221)1)=+44=-+8=;(2)原式22a b ab+=22=82= 4=.【课后练12】化简求值(1)23)3)+;(2)已知x =-【解答】解:(1)原式59119=-+-16=-.(2)原式(2x =-,1212x ==+,∴原式1(2(1)xx x x -=--1(2x x =+,当2x =原式(2(2=-++9=-。
初二数学二次根式知识点大全
初二数学二次根式知识点大全知识点1 二次根式1.二次根式的定义一般地,我们把形如 $\sqrt{a}$($a\geq0$)的式子叫做二次根式。
其中,$\sqrt{}$ 称为二次根号,$a$($a\geq0$)是一个非负数。
2.二次根式有意义的条件二次根式的概念是形如 $\sqrt{a}$($a\geq0$)的式子叫做二次根式。
二次根式中被开方数是非负数,且具有非负性,即 $a\geq0$。
3.二次根式的双重非负性二次根式的双重非负性包括被开方数的非负性和算数平方根的非负性,即 $a\geq0$ 和 $\sqrt{a}\geq0$。
4.二次根式化简化简二次根式的方法包括把被开方数分解因式,利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来,化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数 2.题型1 二次根式定义例1】在式子 $\pi$,$a^2+b^2$,$a+5$,$-3y(y\geq0)$,$m^2-1$ 和 $ab$($a<0,b<0$)中,是二次根式的有()A。
3个B。
4个C。
5个D。
5个解答】解:式子 $\pi$,$a^2+b^2$,$-3y(y\geq0)$,$ab$($a<0,b<0$)是二次根式,共 4 个,故选 B。
点评】此题主要考查了二次根式定义,关键是注意被开方数为非负数。
题型2 二次根式有意义的条件例2】若 $\frac{\sqrt{2x}}{\sqrt{y}}$ 是二次根式,则下列说法正确的是()A。
$x<y$B。
$x$ 且 $y>\frac{2x^2}{y^2}$C。
$x$、$y$ 同号D。
$x,y>0$ 或 $x,y<0$解答】解:依题意有 $\frac{\sqrt{2x}}{\sqrt{y}}$,即$\sqrt{\frac{2x}{y}}$,是二次根式。
则 $\frac{2x}{y}>0$,即$x,y$ 同号且 $y\neq0$。
初二下册数学二次根式知识点
初二下册数学二次根式知识点
一、二次根式的定义
二次根式是一种常见的函数,是表示二次函数y = ax2+ bx+ c (a≠ 0) 的根的简写形式。
它一般由一个未知数 x 和一些常数 a、b、c 组成,它的形式如:ax2+ bx+ c= 0。
二次根式又称二次方程根,二次根式中的常数 a、b、c 可以推倒出
二次函数 y = ax2+ bx+ c,这时 x 可以表示为 ax2+ bx+ c = 0中它的解,也就是 y 轴上的两个变化点,这样 x 就变成了 ax2+ bx+ c = 0 中
一个变量,而不是一个常数。
二、二次根式的解法
1、求根公式法
即已知二次根式 ax2+ bx+ c = 0,求解 x 的一般解法,首先用根公
式法,即设 x1、x2 是该方程的根,则有:
x1+x2=-b/a
x1x2=c/a
根据以上两式可求出:
x1 = [-b + √(b2- 4ac)]/2a x2 = [-b - √(b2- 4ac)]/2a
2、分部分求根法
即将二次根式分成两部分,一部分是首项与其系数之积 ax2,另一部
分是常数项 c,将两部分分别化简。
(1) 首先将 ax2 化简为 A,求出 bx + c = 0 的解 x1;
(2) 然后将 A + bx = 0 化简为 ax2 + bx = -c,求出其解 x2
二次根式的解有一般解和特殊解,当a、b、c中有变数时,可以用一般解;当a、b、c中有常数时,可以用特殊解。
三、二次根式的应用
1、二次根式可以用来求解一元二次方程,根据一元二次方程 y = ax2+ bx+ c = 0 的特点,可以求出两个不同的解,分别为 x1、x2。
八年级数学 二次根式知识点专题归纳复习
y 5 y 6 =0,则第三边长为______.
2005
A.-2b
B.2b
C.-2a
D.2a
a b 1
a b 与 a 2b 4 互为相反数,则
_____________
b
a
o
。
举 一 反 三 : 实 数 a 在 数 轴 上 的 位 置 如 图 所 示 : 化 简 :
1. 非负性: a ( a 0) 是一个非负数. 注意:此性质可作公式记住,后面根式运算中经常用到.
1 【例 2】若式子 有意义,则 x 的取值范围是 x3
.[来源:学*科*网 Z*X*X*K]
2. ( a ) 2 a (a 0) .
注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数
2、在二次根式:① 12 ;②
2 3 ;③
2 ;④ 27 中,能与 3 合并的二次根式是 3
则 a=__________.
小结:一般常见的互为有理化因式有如下几类:
。 ① ③ 与 与 ; ; ④ ② 与 与 ; .
3、如果最简二次根式
3a 8 与 17 2a 能够合并为一个二次根式,
知识点四:二次根式计算——分母有理化
2
等于( D. 2a 1
a
1 化简,正确的结果是( ) a B. a C. a
D.
a
B. 1 2a
C. 2a 5
2、把根号外的因式移到根号内:当 b >0 时, ) 7-2a
4、若 a-3<0,则化简 (A) -1
2
a 6a 9 4 a
(C) 2a-7
b x= x
D. a≤1
八年级数学二次根式初步专题复习
y
20 ,求 y 的值.
2
25
y
【答案: 16 】
练 11. 化简 a 1 2a a2 【答案:当 a 1 时 ,原式 2a 1 ;当 a 1 时,原式 1 .】
a 3b 练 12. 已知 a b 4 2 , a b 2 2 ,求 a
bb a
【答案: 6 6 .】
练 13. 若 x, y 是实数,且 y
练 5. 已知 x 1,化简 ( x 4)2 【答案: 6 3x 】
( x 1)2
x2 6x 9 .
练 6. 将下列各二次根式化成最简二次根式:
( 1) 3a5 ; ( 3) a3 (x y)2 (x y)( x y 0) ;
ab3
(2)
(b 0) ;
4
p2
(4)
( p q 0) .
pq
【答案: a2 3a ; b ab ; a x y
不符合最简二次根式的条件
1 11
1,
,
x
m2
m4 不符合最简二次根式的条件
2.】
例 12、把下列各式化为最简二次根式:
( 1) 32 ;
3
(2)
;
49
( 3) 0.12 ;
1 (4) 9 ;
3
( 5)
45
;
(m n)3
11 (6) ab a4 b4 .
【答案:( 1)4
2 ;( 2)
3 ;( 3)
例 9、 如果 a 0, a 0 ,求 (b a 4)2 b
【答案: 3】
(a b 1)2 的值.
例 10、计算:
( 1)
1
1 2
0
3
( 2)2 ;
2019人教版八年级数学下册第十六章 二次根式 二次根式知识点归纳及题型总结
2019人教版八年级数学下册第十六章二次根式二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如√a(a≥0)的式子称为二次根式,其中a为被开方数,√为根号符号。
2.二次根式的双重非负性:对于任何实数a,有√a≥0,且(√a)²=a。
3.二次根式的有理化:将二次根式的分母中含有根号的有理数化为分母中不含根号的有理数。
4.积的算术平方根的性质:√(ab)=√a×√b(a≥0,b≥0)。
5.商的算术平方根的性质:√(a/b)=(√a)/(√b)(b>0)。
6.若a≥0,则√a²=a。
知识点二、二次根式的运算1.二次根式的乘除运算:1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。
2) 注意每一步运算的算理。
3) 乘法公式的推广:(a+b)²=a²+2ab+b²,(a-b)²=a²-2ab+b²。
2.二次根式的加减运算:先化简,再运算。
3.二次根式的混合运算:1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。
2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。
例题:1.下列各式中一定是二次根式的是()。
A、3;B、x;C、x²+1;D、x-12.x取何值时,下列各式在实数范围内有意义。
1)√(2x-1);(2)√(x+4)/(2x+1);(3)1/(x+1);(4)√(3-x)+1;(5)3-x+√(1/x);(6)2x-1.7)若x(x-1)=1,则x的取值范围是()。
8)若(x+3)/(x-3)=(x+3)/(x+3),则x的取值范围是。
3.若3m-1有意义,则m能取的最小整数值是;若20m是一个正整数,则正整数m的最小值是________。
初二数学二次根式知识点归纳
初二数学二次根式知识点归纳一、二次根式的概念二次根式是指形如√a的表达式,其中a是一个非负实数。
根号下的数字a称为被开方数,√a称为二次根式的基数。
二、二次根式的化简化简二次根式是指将二次根式写成最简形式的过程。
化简的基本原则是将被开方数a的因数分解,并利用数的乘法法则和开方的运算性质进行合理的变形。
1. 同底合并当两个二次根式的基数相同时,可以将它们合并为一个二次根式,并进行化简。
2. 分解因数当被开方数a是一个完全平方数时,可以将其分解因数,再进行化简。
例如,√16可以分解为√(4×4),再利用根号的运算性质进行合并得到4。
3. 有理化分母当二次根式的分母中含有二次根式时,为了方便计算和比较,需要对分母进行有理化处理。
有理化分母的基本原则是将分母中的二次根式去掉,即将其乘以一个合适的形式为√a的因式。
三、二次根式的运算二次根式可以进行加减、乘除等运算。
在进行二次根式的运算时,需要注意以下几点:1. 加减运算当二次根式的基数和被开方数相同时,可以直接进行加减运算,并保持根号下的数字不变。
2. 乘除运算二次根式的乘法和除法运算可以通过化简和合并同类项的方式进行。
在乘法运算中,可以将二次根式的被开方数相乘,并将基数相乘;在除法运算中,可以将二次根式的被开方数相除,并将基数相除。
四、二次根式的应用二次根式在实际问题中有着广泛的应用。
以下是二次根式常见的应用场景:1. 长方形的对角线当已知长方形的长和宽时,可以利用勾股定理和二次根式的概念求出长方形的对角线长度。
2. 面积和体积在计算面积和体积时,常常会遇到含有二次根式的公式,如三角形的面积公式、球的体积公式等。
3. 几何图形的边长和面积比较通过比较含有二次根式的几何图形的边长和面积,可以判断它们的大小关系。
五、二次根式的性质二次根式有一些重要的性质,掌握这些性质有助于更好地理解和应用二次根式。
1. 非负性二次根式的基数必须是非负实数,即根号下的数字不能为负数。
八年级初二数学二次根式知识点总结及解析
八年级初二数学二次根式知识点总结及解析一、选择题1.如果0,0a b <<,且6a b -= )A .6B .6-C .6或6-D .无法确定2.下列计算正确的是( )A =B =C =D =3.下列计算正确的是( )AB CD4.下列各式中,运算正确的是( )A =﹣2B +C 4D .=25.下列二次根式是最简二次根式的是( )A BCD 6.下列各式是二次根式的是( )A B C D7. ) A .-3 B .3或-3 C .9 D .38.x 的取值范围是( ) A .0x < B .0xC .2xD .2x9.下列计算正确的是( )A =B 1-=C =D 6==10.下列二次根式是最简二次根式的是( )AB C D11.已知实数x 、y 满足2y =,则yx 值是( )A .﹣2B .4C .﹣4D .无法确定12.下列各组二次根式中,能合并的一组是( )A B 和C D 二、填空题13.=___________.14.定义:对非负实数x “四舍五入”到个位的值记为()f x z ,即:当n 为非负整数时,如果1122n x n -<+≤,则()f x n =z .如:(0)(0.48)0f f ==z z ,(0.64)(1.49)1f f ==z z ,(4)(3.68)4f f ==z z ,试解决下列问题:①(3)f =z __________;②2(33)f +=z __________;③222222111(11)(22)(22)(33)(33)(44)f f f f f f ++++⋅++⋅++⋅+z z z z z z221(20172017)(20182018)f f +=+⋅+z z __________.15.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 满足32016p q +=,则整数对()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 16.实数a 、b 满足22a -4a 436-12a a 10-b 4-b-2+++=+,则22a b +的最大值为_________.17.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.18.把1a-19.若实数23a =-,则代数式244a a -+的值为___. 20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积S =ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若4a =,5b =,7c =,则ABC 面积是_______. 三、解答题21.计算:(1(2))((222+-+.【答案】(1) 【分析】(1)先化简二次根式,再合并同类二次根式即可; (2)根据平方差公式化简,再化简、合并同类二次根式即可. 【详解】(1==(2))((222+-+=2223--+ =5-4-3+2 =022.先阅读材料,再回答问题:因为)111=1=;因为1=,所以=1== (1= ,= ; (2⋅⋅⋅+的值.【答案】(12)9 【分析】(1)仿照例子,由1+=的值;由1+=1的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案. 【详解】解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.23.解:设x222x =++2334x =+,x 2=10 ∴x =10.0.【分析】根据题意给出的解法即可求出答案即可. 【详解】设x两边平方得:x 2=2+2+即x 2=4+4+6, x 2=14∴x =.0,∴x . 【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.24.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46. 【解析】 试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,∵a b m n 、、、都为正整数,∴12m n =⎧⎨=⎩或21m n =⎧⎨=⎩ ,∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++ ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.25.计算 (1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:请计算两组数据的方差. 【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差. 试题解析:(1)原式=4﹣3+2=6﹣3; (2)原式=﹣3﹣2+﹣3 =-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65;乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点: 二次根式的混合运算;方差.26.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+- =a ba b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.27.已知x y ==求下列各式的值: (1)22x xy y -+; (2).y xx y+ 【答案】(1) 72;(2)8. 【分析】计算出xy=12, (1)把x 2-xy+y 2变形为(x+y )2-3xy ,然后利用整体代入的方法计算;(2)把原式变形为2()2x y xyxy+-,然后利用整体代入的方法计算.【详解】∵x =,y ==32∴xy=12, (1)22x xy y -+ =(x+y )2-3xy,=2132-⨯ =72; (2)y x x y +=2212()22812x y xy xy-⨯+-==.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.28.计算下列各式: (1;(2【答案】(12 ;(2) 【分析】先根据二次根式的性质化简,再合并同类二次根式即可. 【详解】 (1)原式2=- 2=;(2)原式==. 【点睛】本题考查了二次根式的加减,熟练掌握性质是解答本题的关键(0)(0)a a a a a ≥⎧==⎨-<⎩,)0,0a b =≥≥=(a ≥0,b >0).29.(1)计算:21)-(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2 【分析】(1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题. 【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数, ∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.30.计算:(1 ;(2)))213【答案】(1)2)1-.【分析】(1)根据二次根式的混合运算法则可以算得答案.(2)结合整式的乘法公式和二次根式的运算法则计算.【详解】(1)原式==(2)原式=212---=1-.【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】=-a-(-b)=b-a=-6.故选B2.B解析:B【分析】根据二次根式加法法则,二次根式的乘法法则计算后判断即可得到答案.【详解】=,=3∴A、C、D均错误,B正确,故选:B.【点睛】此题考查二次根式的加法法则,二次根式的乘法法则,熟记计算法则是正确解题的关键. 3.A解析:A【解析】分析:根据二次根式的加、减、乘、除的法则计算逐一验证即可.详解: , 此选项正确;≠此选项错误;, 此选项错误;,此选项错误.故选A.点睛:本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.4.C解析:C【分析】根据二次根式的性质对A进行判断;根据二次根式的加减法法则对B、D进行判断;根据二次根式的乘法法则对C进行判断.【详解】A、原式=2,故该选项错误;B=,故该选项错误;C4,故该选项正确;D故选:C.【点睛】此题主要考查了二次根式的运算及性质,熟练掌握二次根式乘法、性质及加减法运算法则是解题关键.5.B解析:B【分析】直接利用最简二次根式的定义分析得出答案.【详解】解:ABC0.1,故此选项错误;D2故选:A.【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.6.A解析:A【分析】根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.【详解】解:A、符合二次根式有意义条件,符合题意;B、-1<0B选项不符合题意;C、是三次根式,所以C选项不符合题意;D、π-4<0D选项不符合题意.故选:A.【点睛】a≥0.7.D解析:D【分析】根据二次根式的性质进行计算即可.【详解】|3|3=.故选:D.【点睛】(0)0(0)(0)a aa aa a><⎧⎪===⎨⎪-⎩.8.D解析:D【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】即:20x-≥,解得:2x,故选:D;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键. 9.A解析:A【分析】本题涉及二次根式化简,在计算时,需要针对每个选项分别进行计算,然后根据实数的运算法则求得计算结果.【详解】====,故本项错误;D. 6故选:A.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的运算.10.B解析:B【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A、被开方数含分母,故A错误;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B正确;C、被开方数含能开得尽方的因数,故C错误;D、被开方数含分母,故D错误;故选B.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.11.C解析:C【分析】依据二次根式中的被开方数是非负数求得x的值,然后可得到y的值,最后代入计算即可.【详解】y=,∵实数x、y满足2∴x=2,y=﹣2,-⨯=-4.∴yx=22故选:C.【点睛】本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.12.B解析:B【分析】先化简,再根据同类二次根式的定义解答即可.【详解】解:A 、是最简二次根式,被开方数不同,不是同类二次根式;BCD故选B .【点睛】本题考查的知识点是同类二次根式的定义,解题关键是熟记同类二次根式的定义.二、填空题13.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解. 14.3【解析】1、;2、根据题意,先推导出等于什么,(1)∵,∴,(2)再比较与的大小关系,①当n=0时,;②当为正整数时,∵,∴,∴,综合(1)、(2)可得:,解析:320172018【解析】1、(1.732)2z z f f ==;2、根据题意,先推导出f 等于什么,(1)∵2221142n n n n n ⎛⎫+<++=+ ⎪⎝⎭,12n <+, (2)12n -的大小关系,①当n=012n >-; ②当n 为正整数时,∵2212n n n ⎛⎫+-- ⎪⎝⎭1204n =->, ∴2212n n n ⎛⎫+>- ⎪⎝⎭,12n >-,综合(1)、(2)可得:1122n n -<+,∴f n =z ,∴3f =z .3、∵f n =z ,∴(2017z f +111112233420172018=++++⨯⨯-⨯ 111111112233420172018=-+-+-++- 112018=- 20172018=. 故答案为(1)2;(2)3;(3)20172018. 点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n 为非负整数时,1122n n -<+,从而得到f n =z ;(2)解题③的要点是:当n 为正整数时,111(1)1n n n n =-++. 15.(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,∴=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵,∴,p=20解析:(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)==∴p=14x 3(其中x 为正整数),同理可得:q=14y 2(其中y 为正整数),则x+3y=12(x 、y 为正整数)∴963,,123x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩,∴整数对有(p,q )=(14⨯81,141⨯),或(1436,144)⨯⨯ ,或(149,149⨯⨯)。
初二下册知识点总结
初二下册知识点总结一、数学。
1. 二次根式。
- 二次根式的定义:形如√(a)(a≥0)的式子叫做二次根式。
- 二次根式的性质:- √(a)≥0(a≥0);- (√(a))^2 = a(a≥0);- √(a^2)=| a|=a(a≥0) -a(a<0)。
- 二次根式的运算:- 二次根式的乘法:√(a)·√(b)=√(ab)(a≥0,b≥0)。
- 二次根式的除法:(√(a))/(√(b))=√((a/b))(a≥0,b>0)。
- 二次根式的加减:先将二次根式化为最简二次根式,再合并同类二次根式。
2. 勾股定理。
- 勾股定理:直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形的两直角边长度分别为a和b,斜边长度为c,那么a^2+b^2=c^2。
- 勾股定理的逆定理:如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
- 常见的勾股数:如3、4、5;5、12、13等。
3. 平行四边形。
- 平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
- 平行四边形的性质:- 边:对边平行且相等。
- 角:对角相等,邻角互补。
- 对角线:对角线互相平分。
- 平行四边形的判定:- 两组对边分别平行的四边形是平行四边形。
- 两组对边分别相等的四边形是平行四边形。
- 一组对边平行且相等的四边形是平行四边形。
- 对角线互相平分的四边形是平行四边形。
4. 一次函数。
- 一次函数的定义:形如y = kx + b(k,b为常数,k≠0)的函数叫做一次函数。
当b = 0时,y=kx(k≠0)叫做正比例函数。
- 一次函数的图象:一次函数y = kx + b的图象是一条直线,b是直线与y轴交点的纵坐标。
- 一次函数的性质:- 当k>0时,y随x的增大而增大;- 当k<0时,y随x的增大而减小。
- 一次函数与方程(组)、不等式的关系:- 一次函数y = kx + b与x轴交点的横坐标就是方程kx + b = 0的解。
数学 初二 二次根式知识点复习
二次根式知识点讲解与练习1、 二次根式的概念 我们把形如)0(≥a a 的式子叫做二次根式, 如)1(1,1,32,51,32≥-+x x x 等,都是二次根式注意:① 二次根式都含有二次根号"";② 在二次根式中,被开方数a 必须满足0≥a ,当0<a 时,根式无意义; ③ 在二次根式中,a 可以是数也可以是一个代数式;④ 二次根式)0(≥a a 是a 的算术平方根,所以0≥a 。
例1、当x 为任意实数时,下列各式有意义的是( )A .x 2-B .x 21C .32+-xD .2)1003(-x例2、当x 为何值时,下列各式有意义?⑪12+x ; ⑫ xx --1132、 二次根式的性质性质:⎩⎨⎧<-≥==)0()0(2a a a a a a 注意:性质a a =2表明:一个数的平方的算术平方根等于这个数的绝对值,需注意的是2a 不是等于a ,而是等于a ,再根据a 的正、负确定最后的结果。
例3 已知2<x ,则442+-x x 的结果是______________例4 已知x 满足x x x =-+-20062005,那么22005-x 的值为( )A .2004B .2005C .2006D .2007练习:二次根式的意义及性质题组1:(0a ≥),叫做二次根式)1.下列各式中一定是二次根式的是( )A B C D 2.下列各式中,是二次根式的有_____________________________。
(填序号); ;; ; ;3.下列各式中,是二次根式的有_____________________。
(填序号); 4.若01x <<,则下列各式中,是二次根式的是( )A B C D题组2:(二次根式有意义的条件)1.当a 是怎样的实数时,下列各式在实数范围内有意义?(1;(2;(3;(4。
2.当x 是什么值时,下列各式在实数范围内有意义?(1______;(2______;(3_________;(4;3.已知5y =,则2x y -的值是_______________。
八年级二次根式知识点免费
八年级二次根式知识点免费八年级二次根式知识点二次根式是数学中的一种基础的代数表达式,八年级学生也需要学会一些相关的知识点以应对学习和考试。
以下是八年级二次根式知识点的详细介绍:一、二次根式的定义二次根式是指根号内含有变量的代数表达式。
通常形式为:√a(a≥0)或者√(a+b)(a≥0,b≥0)其中,a、b为非负实数,并且“√”表示开方符号,即求平方根的运算。
二、二次根式的约简与分数化二次根式可以通过约简和分数化来简化表达式。
如果二次根式中含有完全平方数,可以进行相应的化简,例如:√4x²=2x√(9y²x)=3yx另外,二次根式也可以进行分数化,例如:√a/b=√a /√b√(a+b)/c=√a/c +√b/c三、二次根式的加减运算二次根式的加减法可以通过化简或者利用公式来计算,例如:√a ± √b=√a±b(仅当a≥0,b≥0时成立)√(a+b) ± √(c+d)=√a/c +√b/d±2√(ab/cd)四、二次根式的乘法运算二次根式的乘法可以通过简单规则和分式法则来计算,例如:√a × √b=√ab√a/√b=√a ÷ √b五、二次根式的除法运算二次根式的除法可以通过分式法则和有理数的乘法逆元来计算,例如:√a/√b=√a÷b√a÷√b=√a/√b六、二次根式的平方与立方运算二次根式的平方和立方运算可以通过简单的公式计算,例如:(√a)²=a(√a)³=a√a七、二次根式与三角函数的关系二次根式和三角函数之间存在一定的关系,例如:sin²x+cos²x=1(其中,sin²x和cos²x可以表示为√2/2等形式)tanx=√3是一个三角函数的典型例子,可以用于求三角形中的各种角度和边长此外,二次根式还有很多应用,例如在图形的面积、体积和物理学上都有应用。
初二二次根式所有知识点总结和常考题提高难题压轴题练习含答案解析)
初二二次根式所有知识点总结和常考题知识点:1、二次根式: 形如)0(≥a a 的式子。
①二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。
②非负性2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。
3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数含能开得尽方的因数或因式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3、二次根式有关公式(1))0()(2≥=a a a (2)a a =2(3)乘法公式)0,0(≥≥∙=b a b a ab(4)除法公式)0,0( b a ba b a ≥= 4、二次根式的加减法则:先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。
5、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。
常考题:一.选择题(共14小题)1.下列二次根式中属于最简二次根式的是( ) A .B .C .D .2.式子有意义的x 的取值范围是( )A .x ≥﹣且x ≠1B .x ≠1C .D .3.下列计算错误的是( )A .B .C .D .4.估计的运算结果应在( )A .6到7之间B .7到8之间C .8到9之间D .9到10之间5.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥6.若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.37.是整数,则正整数n的最小值是()A.4 B.5 C.6 D.78.化简的结果是()A.B.C.D.9.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n10.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定11.把根号外的因式移入根号内得()A.B.C.D.12.已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.313.若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限14.已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5二.填空题(共13小题)15.实数a在数轴上的位置如图所示,则|a﹣1|+= .16.计算:的结果是.17.化简:(﹣)﹣﹣|﹣3|= .18.如果最简二次根式与是同类二次根式,则a= .19.定义运算“@”的运算法则为:x@y=,则(2@6)@8= .20.化简×﹣4××(1﹣)0的结果是.21.计算:﹣﹣= .22.三角形的三边长分别为,,,则这个三角形的周长为cm.23.如果最简二次根式与能合并,那么a= .24.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是.(结果保留根号)25.实数p在数轴上的位置如图所示,化简= .26.计算:= .27.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= .三.解答题(共13小题)28.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.29.计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.30.先化简,再求值:,其中.31.先化简,再求值:,其中x=1+,y=1﹣.32.先化简,再求值:,其中.33.已知a=,求的值.34.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?35.一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.36.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.37.已知:,,求代数式x2﹣xy+y2值.38.计算或化简:(1);(2)(a>0,b>0).39.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.40.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若a+4=,且a、m、n均为正整数,求a的值?初二二次根式所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2005•岳阳)下列二次根式中属于最简二次根式的是()A.B.C. D.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.(2013•娄底)式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.(2007•荆州)下列计算错误的是()A.B.C.D.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.4.(2008•芜湖)估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.5.(2011•烟台)如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.6.(2009•荆门)若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.3【分析】先根据二次根式的性质,被开方数大于或等于0,可求出x、y的值,再代入代数式即可.【解答】解:∵=(x+y)2有意义,∴x﹣1≥0且1﹣x≥0,∴x=1,y=﹣1,∴x﹣y=1﹣(﹣1)=2.故选:C.【点评】本题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.(2012秋•麻城市校级期末)是整数,则正整数n的最小值是()A.4 B.5 C.6 D.7【分析】本题可将24拆成4×6,先把化简为2,所以只要乘以6得出62即可得出整数,由此可得出n的值.【解答】解:∵==2,∴当n=6时,=6,∴原式=2=12,∴n的最小值为6.故选:C.【点评】本题考查的是二次根式的性质.本题还可将选项代入根式中看是否能开得尽方,若能则为答案.8.(2013•佛山)化简的结果是()A.B.C.D.【分析】分子、分母同时乘以(+1)即可.【解答】解:原式===2+.故选:D.【点评】本题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.9.(2013•台湾)k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选:D【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.10.(2011•菏泽)实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.11.(2013秋•五莲县期末)把根号外的因式移入根号内得()A.B.C.D.【分析】根据二次根式的性质及二次根式成立的条件解答.【解答】解:∵成立,∴﹣>0,即m<0,原式=﹣=﹣.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.12.(2009•绵阳)已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.3【分析】如果实数n取最大值,那么12﹣n有最小值;又知是正整数,而最小的正整数是1,则等于1,从而得出结果.【解答】解:当等于最小的正整数1时,n取最大值,则n=11.故选B.【点评】此题的关键是分析当等于最小的正整数1时,n取最大值.13.(2005•辽宁)若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据二次根式的被开方数为非负数和分母不为0,对a、b的取值范围进行判断.【解答】解:要使这个式子有意义,必须有﹣a≥0,ab>0,∴a<0,b<0,∴点(a,b)在第三象限.故选C.【点评】本题考查二次根式有意义的条件,以及各象限内点的坐标的符号.14.(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5【分析】原式变形为,由已知易得m+n=2,mn=(1+)(1﹣)=﹣1,然后整体代入计算即可.【解答】解:m+n=2,mn=(1+)(1﹣)=﹣1,原式====3.故选:C.【点评】本题考查了二次根式的化简求值:先把被开方数变形,用两个数的和与积表示,然后利用整体代入的思想代入计算.二.填空题(共13小题)15.(2004•山西)实数a在数轴上的位置如图所示,则|a﹣1|+= 1 .【分析】根据数轴上表示的两个数,右边的数总比左边的大,分别得出a﹣1与0,a﹣2与0的关系,然后根据绝对值的意义和二次根式的意义化简.【解答】解:根据数轴上显示的数据可知:1<a<2,∴a﹣1>0,a﹣2<0,∴|a﹣1|+=a﹣1+2﹣a=1.故答案为:1.【点评】本题主要考查了数轴,绝对值的意义和根据二次根式的意义化简.二次根式的化简规律总结:当a≥0时,=a;当a≤0时,=﹣a.16.(2013•南京)计算:的结果是.【分析】先进行二次根式的化简,然后合并同类二次根式即可.【解答】解:原式=﹣=.故答案为:.【点评】本题考查了二次根式的加减运算,属于基础题,关键是掌握二次根式的化简及同类二次根式的合并.17.(2013•泰安)化简:(﹣)﹣﹣|﹣3|= ﹣6 .【分析】根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可.【解答】解:(﹣)﹣﹣|﹣3|=﹣3﹣2﹣(3﹣),=﹣6.故答案为:﹣6.【点评】此题主要考查了二次根式的化简与混合运算,正确化简二次根式是解题关键.18.(2006•广安)如果最简二次根式与是同类二次根式,则a= 5 .【分析】根据最简二次根式和同类二次根式的定义,列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣8=17﹣2a,解得:a=5.【点评】此题主要考查最简二次根式和同类二次根式的定义.19.(2007•芜湖)定义运算“@”的运算法则为:x@y=,则(2@6)@8= 6 .【分析】认真观察新运算法则的特点,找出其中的规律,再计算.【解答】解:∵x@y=,∴(2@6)@8=@8=4@8==6,故答案为:6.【点评】解答此类题目的关键是认真观察新运算法则的特点,找出其中的规律,再计算.20.(2014•荆州)化简×﹣4××(1﹣)0的结果是.【分析】先把各二次根式化为最简二次根式,再根据二次根式的乘法法则和零指数幂的意义计算得到原式=2﹣,然后合并即可.【解答】解:原式=2×﹣4××1=2﹣=.故答案为:.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.21.(2014•广元)计算:﹣﹣= ﹣2 .【分析】分别进行分母有理化、二次根式的化简,然后合并求解.【解答】解:==﹣2.故答案为:﹣2.【点评】本题考查了二次根式的加减法,本题涉及了分母有理化、二次根式的化简等运算,属于基础题.22.(2013•宜城市模拟)三角形的三边长分别为,,,则这个三角形的周长为5cm.【分析】三角形的三边长的和为三角形的周长,所以这个三角形的周长为++,化简合并同类二次根式.【解答】解:这个三角形的周长为++=2+2+3=5+2(cm).故答案为:5+2(cm).【点评】本题考查了运用二次根式的加减解决实际问题.23.(2012秋•浏阳市校级期中)如果最简二次根式与能合并,那么a= 1 .【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【解答】解:根据题意得,1+a=4a﹣2,移项合并,得3a=3,系数化为1,得a=1.故答案为:1.【点评】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.24.(2006•宿迁)如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是2﹣2 .(结果保留根号)【分析】根据题意可知,两相邻正方形的边长分别是和,由图知,矩形的长和宽分别为+、,所以矩形的面积是为(+)•=2+6,即可求得矩形内阴影部分的面积.【解答】解:矩形内阴影部分的面积是(+)•﹣2﹣6=2+6﹣2﹣6=2﹣2.【点评】本题要运用数形结合的思想,注意观察各图形间的联系,是解决问题的关键.25.(2003•河南)实数p在数轴上的位置如图所示,化简=1 .【分析】根据数轴确定p的取值范围,再利用二次根式的性质化简.【解答】解:由数轴可得,1<p<2,∴p﹣1>0,p﹣2<0,∴=p﹣1+2﹣p=1.【点评】此题从数轴读取p的取值范围是关键.26.(2009•泸州)计算:= 2 .【分析】运用二次根式的性质:=|a|,由于2>,故=2﹣.【解答】解:原式=2﹣+=2.【点评】合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.27.(2011•凉山州)已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5 .【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.三.解答题(共13小题)28.(2009•邵阳)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.29.(2014•张家界)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.【分析】根据零指数幂、负整数指数幂和平方差公式得到原式=5﹣1﹣9+﹣1﹣1+2,然后合并即可.【解答】解:原式=5﹣1﹣9+﹣1﹣1+2=﹣7+3.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.30.(2009•广州)先化简,再求值:,其中.【分析】本题的关键是对整式化简,然后把给定的值代入求值.【解答】解:原式=a2﹣3﹣a2+6a=6a﹣3,当a=时,原式=6+3﹣3=6.【点评】本题主要考查整式的运算、平方差公式等基本知识,考查基本的代数计算能力.注意先化简,再代入求值.31.(2005•沈阳)先化简,再求值:,其中x=1+,y=1﹣.【分析】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式===;当x=1+,y=1﹣时,原式=.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.32.(2010•莱芜)先化简,再求值:,其中.【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.本题注意x﹣2看作一个整体.【解答】解:原式====﹣(x+4),当时,原式===.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.33.(2008•余姚市校级自主招生)已知a=,求的值.【分析】先化简,再代入求值即可.【解答】解:∵a=,∴a=2﹣<1,∴原式=﹣=a﹣1﹣=a﹣1+=2﹣﹣1+2+=4﹣1=3.【点评】本题考查了二次根式的化简与求值,将二次根式的化简是解此题的关键.34.(2002•辽宁)对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?【分析】因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,故错误的是乙.【解答】解:甲的解答:a=时,﹣a=5﹣=4>0,所以=﹣a,正确;乙的解答:因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,错误;因此,我们可以判断乙的解答是错误的.【点评】应熟练掌握二次根式的性质:=﹣a(a≤0).35.(2011•上城区二模)一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.【分析】把三角形的三边长相加,即为三角形的周长.再运用运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:(1)周长=++==,(2)当x=20时,周长=,(或当x=时,周长=等)【点评】对于第(2)答案不唯一,但要注意必须符合题意.36.(2005•台州)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.【分析】(1)代入计算即可;(2)需要在括号内都乘以4,括号外再乘,保持等式不变,构成完全平方公式,再进行计算.【解答】解:(1)s=,=;p=(5+7+8)=10,又s=;(2)=(﹣)=,=(c+a﹣b)(c﹣a+b)(a+b+c)(a+b﹣c),=(2p﹣2a)(2p﹣2b)•2p•(2p﹣2c),=p(p﹣a)(p﹣b)(p﹣c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)【点评】考查了三角形面积的海伦公式的用法,也培养了学生的推理和计算能力.37.(2009秋•金口河区期末)已知:,,求代数式x2﹣xy+y2值.【分析】观察,显然,要求的代数式可以变成x,y的差与积的形式,从而简便计算.【解答】解:∵,,∴xy=×2=,x﹣y=∴原式=(x﹣y)2+xy=5+=.【点评】此类题注意变成字母的和、差或积的形式,然后整体代值计算.38.(2010秋•灌云县校级期末)计算或化简:(1);(2)(a>0,b>0).【分析】(1)先化简,再运用分配律计算;(2)先化简,再根据乘除法的法则计算.【解答】解:(1)原式==6﹣12﹣6=6﹣18;(2)原式=﹣×=﹣3a2b2×=﹣a2b.【点评】熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.39.(2013秋•故城县期末)先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.【点评】解题关键是把根号内的式子整理为完全平方的形式.40.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= m2+3n2,b= 2mn ;(2)利用所探索的结论,找一组正整数a、b、m、n填空: 4 + 2 =( 1+ 1 )2;(3)若a+4=,且a、m、n均为正整数,求a的值?【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.【点评】本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.。
八年级二次根式章节知识点
八年级二次根式章节知识点二次根式是初中数学必须要学习的内容之一,八年级二次根式章节是初中二年级学习的数学知识点。
一、什么是二次根式?二次根式就是形如√a(a≥0)的数,其中√是开方符号,a称为二次根式的被开方数。
例如√4、√9、√16就是三个已知的二次根式。
二、二次根式的化简1. 同类项的加减在同类项的前面加上正数或减去负数即可。
例如:2√3+3√3-√3=4√3。
2. 恒等式(1)a√b×c√d=ac√bd。
例如:2√3×3√5=6√15。
(2)√a×√a=a。
例如:√3×√3=3。
(3)a√b÷c√d=a÷c√bd。
例如:(2√3)÷(4√5)=(√15)÷10。
3. 其他方法方法一:分解被开方数,拆分为因子的乘积,排列组合,约分。
例如:√75=√(3×5×5)=5√3。
方法二:有理化,将分母为根式的分式转换为分子、分母均为整数的分式。
例如:1÷√6=√6÷(√6×√6)=√6÷6。
三、二次根式的运算1. 二次根式的加减运算(1)化简后合并同类项。
(2)是将不同的二次根式转换为同类项来进行合并,例如√3+√6+2√3=3√3+√6。
2. 二次根式的乘法运算使用方法一:同类项乘法公式(规律)a√b×c√d=ac√bd。
方法二:分解被开方数,拆分为因子的乘积,排列组合,约分。
例如:(2√5)×(3√6)=6√30,(2√5)×(3√6)=2×3×√30=6√30。
3. 二次根式的除法运算使用方法二:有理化,将分母为根式的分式转换为分子、分母均为整数的分式。
例如:(√3+√2)÷(√3-√2)=(3+2√6)÷(3-2√6)。
四、二次根式的应用二次根式作为一种常见的数学形式,在初中时就可以运用到各个领域。