2019届湖南省邵阳县下塘云中学九年级中考数学四模试题(含详解)
精选湖南省邵阳县下XX中学2019届年中考数学四模试卷(有答案)
湖南省邵阳县下XX中学2019届年中考数学四模试卷姓名:__________ 班级:__________考号:__________考试时间100分钟满分120分1.下面简单几何体的主视图是()A. B. C. D.2.有长度分别为3、5、7、9的四条线段,从中任取三条线段能组成三角形的概率是()A. B. C. D.3.如果单项式-3x4a-b y2与x3y a+b的和是单项式,那么这两个单项式的积是()A. 3x6y4B. -3x3y2C. -3x3y2D. -3x6y44.某测量队在山脚A处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为()(精确到1米, =1.732).A.585米B.1014米C.805米D.820米5.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为()A. (3,4)或(2,4)B. (2,4)或(8,4)C. (3,4)或(8,4)D. (3,4)或(2,4)或(8,4)6.如图,在△ABC中,把△ABC沿直线AD翻折180°,使点C 落在点B的位置,则线段AD是()A. 边BC上的中线B. 边BC上的高C. ∠BAC的平分线D. 以上都是7.如图,OB⊥OD,OC⊥OA,∠BOC=32°,那么∠AOD等于()A. 148°B. 132°C. 128°D. 90°8.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A. 40°B. 30°C. 20°D. 10°9.如图所示,在△ABC中,AB=AC,AB的垂直平分线DE交BC的延长线于E,交AC于F,连接BF,∠A=50°,AB+BC=16cm,则△BCF的周长和∠EFC分别等于()A. 16cm,40°B. 8cm,50°C. 16cm,50°D. 8cm,40°10.如图,在□ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为_______.A. 36°B. 52°C. 48°D. 30°二、填空题(共10小题;共30分)11.某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有________个.12.若a=﹣10,那么﹣a=________13.如图,∠AOB,∠BOC,∠AOC的大小关系用“>”连接起来:________ .14.如图,在△ABC中,∠BAC=35°,将△ABC绕点A顺时针方向旋转50°,得到△AB′C′,则∠B′AC的度数是________.15.已知= ,则=________.16.下图是在正方形的方格中按规律填成的阴影,根据此规律,则第个图中阴影部分小正方形的个数是________ .17.如图,△ABC中,AD是中线,∠BAD=∠B+∠C,tan∠ABC= ,则tan∠BAD=________.18.如图,某公园入口处原有三阶台阶,每级台阶高为20cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡的坡度i= ,则AC的长度是________ cm.19.(2017•广东)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A 的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C 落在EF上的点H处,折痕为FG,则A、H两点间的距离为________.20.如图,在直角坐标系中,直线y=6﹣x与双曲线(x>0)的图象相交于A,B,设点A的坐标为(m,n),那么以m为长,n为宽的矩形的面积和周长分别为________,________.三、解答题(共8小题;共60分)21.计算:(π﹣4)0+|3﹣tan60°|﹣()﹣2+ .22. (1)因式分解:a(n﹣1)2﹣2a(n﹣1)+a.(2)解方程:.23.求图中阴影部分的周长和面积.(单位:cm)24.网络时代的到来,很多家庭都拉入了网络,一家电信公司给顾客提供上网费的两种计费方式:方式A以每分钟0.05 元的价格按上网时间计费;方式B除收月基费54元外加每分0.02元的价格按上网时间计费.如何选择更经济?25.如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”.如:8=32﹣12,16=52﹣32,24=72﹣52,…因此8,16,24这三个数都是奇特数.(1)56这个数是奇特数吗?为什么?(2)设两个连续奇数的2n﹣1和2n+1(其中n取正整数),由这两个连续奇数构造的奇特数是8的倍数吗?为什么?26.如图,在平面直角坐标系xOy中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2= (m≠0,x>0)的图象交于第一象限内的A、B两点,过点A作AC⊥x轴于点C,AC=3,点B的坐标为(2,6)(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象,请直接写出y1<y2时x的取值范围.27.在数学兴趣小组活动中,小明进行数学探究活动,将边长为的正方形ABCD与边长为2的正方形AEFG 按图1位置放置,AD与AE在同一直线l上,AB与AG在同一直线上.(1)图1中,小明发现DG=BE,请你帮他说明理由.(2)小明将正方形ABCD按如图2那样绕点A旋转一周,旋转到当点C恰好落在直线l上时,请你直接写出此时BE的长.28.如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE//OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2-12+36+|n-2m|=0.(1)求A、B两点的坐标?(2)若点D为AB中点,求OE的长?(3)如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.参考答案与试题解析一、选择题1.【答案】C【解析】【分析】主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形。
湖南省邵阳市2019-2020学年中考数学四模试卷含解析
湖南省邵阳市2019-2020学年中考数学四模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.2.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是()A.50,50 B.50,30 C.80,50 D.30,503.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.45°B.85°C.90°D.95°4.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.宜晶游C.爱我宜昌D.美我宜昌5.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A.5 B.32C.74D.1546.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是()A.B.C.D.7.下列说法不正确的是()A.选举中,人们通常最关心的数据是众数B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D.数据3,5,4,1,﹣2的中位数是48.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE 的长为()A.5 B.6 C.8 D.129.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是()A .B .C .D .10.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于( ) A .2 B .3 C .4 D .611.已知A 、B 两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A 市到B 市乘动车比乘火车少用40分钟,设动车速度为每小时x 千米,则可列方程为( )A .4504504050x x -=- B .4504504050x x -=- C .4504502503x x -=+ D .4504502503x x -=- 12.小宇妈妈上午在某水果超市买了 16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了 25% ,小宇妈妈又买了 16.5 元钱的葡萄,结果恰好比早上多了 0.5 千克.若设早上葡萄的价格是 x 元/千克,则可列方程( ) A .()16.516.50.5x 125%x +=+B .()16.516.50.5x 1-25%x +=C .()16.516.5-0.5x 125%x =+ D .()16.516.5-0.5x 1-25%x =二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系xOy 中,点P 到x 轴的距离为1,到y 轴的距离为2.写出一个..符合条件的点P 的坐标________________.14.如图,从一块直径是8m 的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是_________m .15.将23x =代入函数1y x =-中,所得函数值记为1y ,又将11x y =+代入函数1y x=-中,所得的函数值记为2y ,再将21x y =+代入函数中,所得函数值记为3y …,继续下去.1y =________;2y =________;3y =________;2006y =________.16.如图,矩形ABCD 中,AB =2,点E 在AD 边上,以E 为圆心,EA 长为半径的⊙E 与BC 相切,交CD 于点F ,连接EF .若扇形EAF 的面积为,则BC 的长是_____.17.若﹣4x a y+x 2y b =﹣3x 2y ,则a+b =_____.18.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分) 如图,已知正方形ABCD ,E 是AB 延长线上一点,F 是DC 延长线上一点,且满足BF =EF ,将线段EF 绕点F 顺时针旋转90°得FG ,过点B 作FG 的平行线,交DA 的延长线于点N ,连接NG .求证:BE =2CF ;试猜想四边形BFGN 是什么特殊的四边形,并对你的猜想加以证明.20.(6分)将二次函数2241y x x =+-的解析式化为2()y a x m k =++的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.21.(6分)如图,点A (m ,m +1),B (m +1,2m -3)都在反比例函数的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.22.(8分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)23.(8分)如图,在△ABC中,∠C = 90°,E是BC上一点,ED⊥AB,垂足为D.求证:△ABC∽△EBD.24.(10分)先化简(31a+-a+1)÷2441a aa-++,并从0,-1,2中选一个合适的数作为a的值代入求值.25.(10分)如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.26.(12分)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数myx=(x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.求m的值;若∠DBC=∠ABC,求一次函数y=kx+b的表达式.27.(12分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.当10≤x<60时,求y关于x的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得.故选D.考点:由实际问题抽象出二元一次方程组2.A【解析】分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元).故选A.点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.3.B【解析】【分析】【详解】解:∵AC是⊙O的直径,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分线BD交⊙O于点D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故选B.【点睛】本题考查圆周角定理;圆心角、弧、弦的关系.4.C【解析】试题分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因为x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C.考点:因式分解.5.C【解析】【分析】先利用勾股定理求出AC的长,然后证明△AEO∽△ACD,根据相似三角形对应边成比例列式求解即可.【详解】∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=12AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,∵∠EAO=∠CAD,∴△AEO∽△ACD,∴AE AO AC AD=,即5 108 AE=,解得,AE=254,∴DE=8﹣254=74,故选:C.【点睛】本题考查了矩形的性质,勾股定理,相似三角形对应边成比例的性质,根据相似三角形对应边成比例列出比例式是解题的关键.6.A【解析】【分析】对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.7.D【解析】试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;D 、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D 选项的说法错误. 故选D .考点:随机事件发生的可能性(概率)的计算方法 8.B 【解析】试题分析:由基本作图得到AB=AF ,AG 平分∠BAD ,故可得出四边形ABEF 是菱形,由菱形的性质可知AE ⊥BF ,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=1. 故选B .考点:1、作图﹣基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质 9.A 【解析】 【分析】根据题意,将运动过程分成两段.分段讨论求出解析式即可. 【详解】∵BD=2,∠B=60°, ∴点D 到AB 3 当0≤x≤2时, y=21332x x x ; 当2≤x≤4时,y=13 32x x =. 根据函数解析式,A 符合条件. 故选A . 【点睛】本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式. 10.C 【解析】设母线长为R ,底面半径是3cm ,则底面周长=6π,侧面积=3πR=12π, ∴R=4cm . 故选C . 11.D 【解析】解:设动车速度为每小时x 千米,则可列方程为:45050x -﹣450x=23.故选D . 12.B 【解析】分析:根据数量=钱数单价,可知第一次买了16.5x 千克,第二次买了()16.501250x -,根据第二次恰好比第一次多买了 0.5 千克列方程即可.详解:设早上葡萄的价格是 x 元/千克,由题意得,()16.516.50.501250x x +=-.故选B.点睛:本题考查了分式方程的实际应用,解题的关键是读懂题意,找出列方程所用到的等量关系. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.()()()()21212121----,,,,,,,(写出一个即可) 【解析】【分析】根据点到x 轴的距离即点的纵坐标的绝对值,点到y 轴的距离即点的横坐标的绝对值,进行求解即可.【详解】设P (x ,y ), 根据题意,得 |x|=2,|y|=1, 即x=±2,y=±1, 则点P 的坐标有(2,1),(2,-1),(-2,1),(2,-1),故答案为:(2,1),(2,-1),(-2,1),(2,-1)(写出一个即可).【点睛】本题考查了点的坐标和点到坐标轴的距离之间的关系.熟知点到x 轴的距离即点的纵坐标的绝对值,点到y 轴的距离即点的横坐标的绝对值是解题的关键.14【解析】分析:首先连接AO ,求出AB 的长度是多少;然后求出扇形的弧长弧BC为多少,进而求出扇形围成的圆锥的底面半径是多少;最后应用勾股定理,求出圆锥的高是多少即可.详解:如图1,连接AO ,∵AB=AC ,点O 是BC 的中点,∴AO ⊥BC ,又∵90BAC ∠=︒,∴45ABO ACO ∠=∠=︒, ∴22()AB OB m ==,∴弧BC 的长为:90π4222π180=⨯⨯=(m), ∴将剪下的扇形围成的圆锥的半径是:22π2π2÷=, 22(42)(2)30().m -= 30点睛:考查圆锥的计算,正确理解圆锥的侧面展开图与原来扇形之间的关系式解决本题的关键. 15.32- 2 13- 2 【解析】【分析】根据数量关系分别求出y1,y2,y3,y4,…,不难发现,每3次计算为一个循环组依次循环,用2006除以3,根据商和余数的情况确定y2006的值即可.【详解】y 1=32-, y 2=−1312-+=2, y 3=−112+=13-, y 4=−1113-+=32-, …,∵2006÷3=668余2,∴y2006为第669循环组的第2次计算,与y2的值相同,∴y2006=2,故答案为32-;2;13-;2.【点睛】本题考查反比例函数的定义,解题的关键是多运算找规律.16.1【解析】分析:设∠AEF=n°,由题意,解得n=120,推出∠AEF=120°,在Rt△EFD中,求出DE即可解决问题.详解:设∠AEF=n°,由题意,解得n=120,∴∠AEF=120°,∴∠FED=60°,∵四边形ABCD是矩形,∴BC=AD,∠D=90°,∴∠EFD=10°,∴DE=EF=1,∴BC=AD=2+1=1,故答案为1.点睛:本题考查切线的性质、矩形的性质、扇形的面积公式、直角三角形10度角性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.1【解析】【分析】解:由同类项的定义可知,a=2,b=1,∴a+b=1.故答案为:1.【点睛】本题考查的知识点为:同类项中相同字母的指数是相同的.18.35°【解析】分析:先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°-∠3代入数据进行计算即可得解.详解:∵直尺的两边互相平行,∠1=25°,∴∠3=∠1=25°,∴∠2=60°-∠3=60°-25°=35°.故答案为35°.点睛:本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)四边形BFGN是菱形,理由见解析.【解析】【分析】(1)过F作FH⊥BE于点H,可证明四边形BCFH为矩形,可得到BH=CF,且H为BE中点,可得BE=2CF;(2)由条件可证明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可证得四边形BFGN 为菱形.【详解】(1)证明:过F作FH⊥BE于H点,在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,所以四边形BHFC为矩形,∴CF=BH,∵BF=EF,FH⊥BE,∴H为BE中点,∴BE=2BH,∴BE=2CF;(2)四边形BFGN是菱形.证明:∵将线段EF绕点F顺时针旋转90°得FG,∴EF=GF,∠GFE=90°,∴∠EFH+∠BFH+∠GFB=90°∵BN∥FG,∴∠NBF+∠GFB=180°,∴∠NBA+∠ABC+∠CBF+∠GFB=180°,∵∠ABC=90°,∴∠NBA+∠CBF+∠GFB=180°−90°=90°,由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,由BHFC是矩形可得HF=BC,∵BC=AB,∴HF=AB,在△ABN和△HFE中,NAB EHF90AB HFNBA EFH∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△ABN≌△HFE,∵EF =GF ,∴NB =GF ,又∵NB ∥GF ,∴NBFG 是平行四边形,∵EF =BF ,∴NB =BF ,∴平行四边NBFG 是菱形.点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN ≌△HFE 是解题的关键.20.开口方向:向上;点坐标:(-1,-3);称轴:直线1x =-.【解析】【分析】将二次函数一般式化为顶点式,再根据a 的值即可确定该函数图像的开口方向、顶点坐标和对称轴.【详解】解:()2221y x x =+-, ()222121y x x =++--,()2213y x =+-,∴开口方向:向上,顶点坐标:(-1,-3),对称轴:直线1x =-.【点睛】熟练掌握将一般式化为顶点式是解题关键.21.(1)m =3,k =12;(2)或 【解析】【分析】(1)把A(m ,m +1),B(m +3,m -1)代入反比例函数y =k x,得k =m(m +1)=(m +3)(m -1),再求解;(2)用待定系数法求一次函数解析式;(3)过点A 作AM ⊥x 轴于点M ,过点B 作BN ⊥y 轴于点N ,两线交于点P.根据平行四边形判定和勾股定理可求出M,N 的坐标.【详解】解:(1)∵点A(m ,m +1),B(m +3,m -1)都在反比例函数y =k x的图像上, ∴k =xy ,∴k =m(m +1)=(m +3)(m -1),∴m 2+m =m 2+2m -3,解得m =3,∴k =3×(3+1)=12.∴A(3,4),B(6,2).设直线AB的函数表达式为y=k′x+b(k′≠0),则4326k bk b=+⎧⎨=+''⎩解得2 36kb⎧=-⎪⎨⎪=⎩'∴直线AB的函数表达式为y=-23x+6.(3)M(3,0),N(0,2)或M(-3,0),N(0,-2).解答过程如下:过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.∵由(1)知:A(3,4),B(6,2),∴AP=PM=2,BP=PN=3,∴四边形ANMB是平行四边形,此时M(3,0),N(0,2).当M′(-3,0),N′(0,-2)时,根据勾股定理能求出AM′=BN′,AB=M′N′,即四边形AM′N′B是平行四边形.故M(3,0),N(0,2)或M(-3,0),N(0,-2).【点睛】本题考核知识点:反比例函数综合. 解题关键点:熟记反比例函数的性质.22.(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.【解析】【分析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【详解】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=1BD,∴FG∥BD,FG=12 BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵点E,F,G分别为边AB,BC,CD的中点,∴EF=12AC,FG=12BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.考点:平行四边形的判定与性质;中点四边形.23.证明见解析【解析】试题分析:先根据垂直的定义得出∠EDB =90°,故可得出∠EDB =∠C .再由∠B =∠B ,根据有两个角相等的两三角形相似即可得出结论.试题解析:解:∵ED ⊥AB ,∴∠EDB =90°.∵∠C =90°,∴∠EDB =∠C .∵∠B =∠B ,∴ABC V ∽EBD V .点睛:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键. 24.1.【解析】试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.试题解析:原式=223111(2)a a a a -++⨯+-=2(2)(2)11(2)a a a a a -+-+⨯+-=22a a +--; 当a=0时,原式=1.考点:分式的化简求值.25.(【解析】【分析】【详解】解:设建筑物AB 的高度为x 米在Rt △ABD 中,∠ADB=45°∴AB=DB=x∴BC=DB+CD= x+60在Rt △ABC 中,∠ACB=30°, ∴tan ∠ACB=AB CBx∴3360xx=+∴x=30+30∴建筑物AB的高度为(30+30)米26.(1)-6;(2)122y x=-+.【解析】【分析】(1)由点B(﹣2,n)、D(3﹣3n,1)在反比例函数myx=(x<0)的图象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐标,作DE⊥BC.延长DE交AB于点F,证△DBE≌△FBE得DE=FE=4,即可知点F(2,1),再利用待定系数法求解可得.【详解】解:(1)∵点B(﹣2,n)、D(3﹣3n,1)在反比例函数myx=(x<0)的图象上,∴233n mn m-=⎧⎨-=⎩,解得:36nm=⎧⎨=-⎩;(2)由(1)知反比例函数解析式为6yx=-,∵n=3,∴点B(﹣2,3)、D(﹣6,1),如图,过点D作DE⊥BC于点E,延长DE交AB于点F,在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴点F(2,1),将点B(﹣2,3)、F(2,1)代入y=kx+b,∴2321k bk b-+=⎧⎨+=⎩,解得:122kb⎧=-⎪⎨⎪=⎩,∴122y x=-+.【点睛】长.27.(1)y=150﹣x;(2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.【解析】【分析】(1)若购买x双(10<x<1),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;(2)①设第一批购买x双,则第二批购买(100﹣x)双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则1≤100﹣x<75;当40<x<1时,则40<100﹣x<1.②把两次的花费与第一次购买的双数用函数表示出来.【详解】解:(1)购买x双(10<x<1)时,y=140﹣(x﹣10)=150﹣x.故y关于x的函数关系式是y=150﹣x;(2)①设第一批购买x双,则第二批购买(100﹣x)双.当25<x≤40时,则1≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,解得x1=30,x2=40;当40<x<1时,则40<100﹣x<1,则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,解得x=30或x=70,但40<x<1,所以无解;答:第一批购买数量为30双或40双.②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,∴x=26时,w有最小值,最小值为9144元;当40<x<1时,w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,∴x=41或59时,w有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元.【点睛】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.。
湖南省邵阳市2019-2020学年中考第四次模拟数学试题含解析
湖南省邵阳市2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.2017年,小榄镇GDP总量约31600000000元,数据31600000000科学记数法表示为()A.0.316×1010B.0.316×1011C.3.16×1010D.3.16×10112.安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是()A.3804.2×103B.380.42×104C.3.8042×106D.3.8042×1053.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30°B.35°C.40°D.45°4.点M(a,2a)在反比例函数y=8x的图象上,那么a的值是( )A.4 B.﹣4 C.2 D.±25.矩形ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(5,1),则点D的坐标为( )A.(5,5) B.(5,4) C.(6,4) D.(6,5)6.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48,则这10名女生仰卧起坐个数不少于50个的频率为()A.0.3 B.0.4 C.0.5 D.0.67.剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是()A.B.C.D.8.将抛物线绕着点(0,3)旋转180°以后,所得图象的解析式是().A.B.C.D.9.下列四个函数图象中,当x<0时,函数值y 随自变量x 的增大而减小的是( )A .B .C .D .10.如图,AB ∥CD ,∠ABK 的角平分线BE 的反向延长线和∠DCK 的角平分线CF 的反向延长线交于点H ,∠K ﹣∠H=27°,则∠K=( )A .76°B .78°C .80°D .82°11.已知二次函数y=x 2 + bx +c 的图象与x 轴相交于A 、B 两点,其顶点为P ,若S △APB =1,则b 与c 满足的关系是( ) A .b 2 -4c +1=0B .b 2 -4c -1=0C .b 2 -4c +4 =0D .b 2 -4c -4=012.下列各式中,计算正确的是 ( ) A .235+= B .236a a a ⋅= C .32a a a ÷=D .()2222a ba b =二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.已知扇形的弧长为π,圆心角为45°,则扇形半径为_____.14.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是_____(请写出盈利或亏损)_____元.15.如图,为了测量铁塔AB 高度,在离铁塔底部(点B )60米的C 处,测得塔顶A 的仰角为30°,那么铁塔的高度AB=________米.16.如果关于x 的方程的两个实数根分别为x 1,x 2,那么的值为________________.17.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的18.关于x的一元二次方程2210-+=有实数根,则a的取值范围是__________.ax x三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.20.(6分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).21.(6分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.22.(8分)如图,在ABC ∆中,D 是BC 的中点,过点D 的直线GF 交AC 于点F ,交AC 的平行线BG 于点G ,ED DF ⊥交AB 于点E ,连接EG 、EF .求证:BG CF =;请你判断BE CF +与EF 的大小关系,并说明理由.23.(8分)在Rt △ABC 中,∠BAC=,D 是BC 的中点,E 是AD 的中点.过点A 作AF ∥BC 交BE的延长线于点F .(1)求证:△AEF ≌△DEB ; (2)证明四边形ADCF 是菱形;(3)若AC=4,AB=5,求菱形ADCFD 的面积.24.(10分)已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.试证明:无论p 取何值此方程总有两个实数根;若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.25.(10分)阅读材料:对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上.即如图①,若PA =PB ,则点P 在线段AB 的垂直平分线上请根据阅读材料,解决下列问题:如图②,直线CD 是等边△ABC 的对称轴,点D 在AB 上,点E 是线段CD 上的一动点(点E 不与点C 、D 重合),连结AE 、BE ,△ABE 经顺时针旋转后与△BCF 重合. (I )旋转中心是点 ,旋转了 (度);(II )当点E 从点D 向点C 移动时,连结AF ,设AF 与CD 交于点P ,在图②中将图形补全,并探究∠APC26.(12分)如图,在平面直角坐标系xOy中,直线y=kx+m与双曲线y=﹣2x相交于点A(m,2).(1)求直线y=kx+m的表达式;(2)直线y=kx+m与双曲线y=﹣2x的另一个交点为B,点P为x轴上一点,若AB=BP,直接写出P点坐标.27.(12分)如图,在四边形ABCD中,∠A=∠BCD=90°,210BC CD==,CE⊥AD于点E.(1)求证:AE=CE;(2)若tanD=3,求AB的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】31600000000=3.16×1.故选:C.【点睛】2.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】∵3804.2千=3804200,∴3804200=3.8042×106;故选:C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B【解析】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.4.D【解析】【分析】根据点M(a,2a)在反比例函数y=8x的图象上,可得:228a ,然后解方程即可求解.【详解】因为点M(a,2a)在反比例函数y=8的图象上,可得:228a=,24a=,解得:2a=±,故选D.【点睛】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征. 5.B【解析】【分析】由矩形的性质可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求点D坐标.【详解】解:∵四边形ABCD是矩形∴AB∥CD,AB=CD,AD=BC,AD∥BC,∵A(1,4)、B(1,1)、C(5,1),∴AB∥CD∥y轴,AD∥BC∥x轴∴点D坐标为(5,4)故选B.【点睛】本题考查了矩形的性质,坐标与图形性质,关键是熟练掌握这些性质.6.C【解析】【分析】用仰卧起坐个数不少于10个的频数除以女生总人数10计算即可得解.【详解】仰卧起坐个数不少于10个的有12、10、10、61、72共1个,所以,频率=510=0.1.故选C.【点睛】本题考查了频数与频率,频率=频数数据总和.7.D【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.8.D【解析】【分析】将抛物线绕着点(0,3)旋转180°以后,a的值变为原来的相反数,根据中心对称的性质求出旋转后的顶点坐标即可得到旋转180°以后所得图象的解析式.【详解】由题意得,a=-.设旋转180°以后的顶点为(x′,y′),则x′=2×0-(-2)=2,y′=2×3-5=1,∴旋转180°以后的顶点为(2,1),∴旋转180°以后所得图象的解析式为:.故选D.【点睛】本题考查了二次函数图象的旋转变换,在绕抛物线某点旋转180°以后,二次函数的开口大小没有变化,方向相反;设旋转前的的顶点为(x,y),旋转中心为(a,b),由中心对称的性质可知新顶点坐标为(2a-x,2b-y),从而可求出旋转后的函数解析式.9.D【解析】A 、根据函数的图象可知y 随x 的增大而增大,故本选项错误;B 、根据函数的图象可知在第二象限内y 随x 的增大而减增大,故本选项错误;C 、根据函数的图象可知,当x <0时,在对称轴的右侧y 随x 的增大而减小,在对称轴的左侧y 随x 的增大而增大,故本选项错误;D 、根据函数的图象可知,当x <0时,y 随x 的增大而减小;故本选项正确. 故选 D . 【点睛】本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键. 10.B 【解析】如图,分别过K 、H 作AB 的平行线MN 和RS ,∵AB ∥CD ,∴AB ∥CD ∥RS ∥MN ,∴∠RHB=∠ABE=12∠ABK ,∠SHC=∠DCF=12∠DCK ,∠NKB+∠ABK=∠MKC+∠DCK=180°, ∴∠BHC=180°﹣∠RHB ﹣∠SHC=180°﹣12(∠ABK+∠DCK ),∠BKC=180°﹣∠NKB ﹣∠MKC=180°﹣(180°﹣∠ABK )﹣(180°﹣∠DCK )=∠ABK+∠DCK ﹣180°, ∴∠BKC=360°﹣2∠BHC ﹣180°=180°﹣2∠BHC , 又∠BKC ﹣∠BHC=27°, ∴∠BHC=∠BKC ﹣27°,∴∠BKC=180°﹣2(∠BKC ﹣27°), ∴∠BKC=78°, 故选B . 11.D 【解析】 【分析】抛物线的顶点坐标为P (−2b ,244c b -),设A 、B 两点的坐标为A (1x ,0)、B (2x ,0)则AB =12x x -,关于b 、c 的等式. 【详解】解:∵1212,x x b x x c +=-=,∴AB =12x x -=∵若S △APB =1∴S △APB =12×AB×244c b - =1,214124c b -∴-=∴−12×2414b c -=,∴(248b ac-=,s , 则38s =, 故s =2,2, ∴2440b c --=. 故选D . 【点睛】本题主要考查了抛物线与x 轴的交点情况与判别式的关系、抛物线顶点坐标公式、三角形的面积公式等知识,综合性比较强. 12.C 【解析】 【分析】接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案. 【详解】A B 、a 2•a 3=a 5,故此选项错误; C 、a 3÷a 2=a ,正确;2242此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】根据弧长公式l=nπr180代入求解即可.【详解】解:∵nπrl180 =,∴180lr4nπ==.故答案为1.【点睛】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=nπr 180.14.亏损 1【解析】【分析】设盈利20%的电子琴的成本为x元,设亏本20%的电子琴的成本为y元,再根据(1+利润率)×成本=售价列出方程,解方程计算出x、y的值,进而可得答案.【详解】设盈利20%的电子琴的成本为x元,x(1+20%)=960,解得x=10;设亏本20%的电子琴的成本为y元,y(1-20%)=960,解得y=1200;∴960×2-(10+1200)=-1,∴亏损1元,故答案是:亏损;1.【点睛】考查了一元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.15.【解析】在Rt△ABC中,直接利用tan∠ACB=tan30°=ABBC=3即可.【详解】在Rt△ABC中,tan∠ACB=tan30°=ABBC=3,BC=60,解得AB=203.故答案为203.【点睛】本题考查的知识点是解三角形的实际应用,解题的关键是熟练的掌握解三角形的实际应用.16.【解析】【分析】由方程有两个实数根,得到根的判别式的值大于等于0,列出关于k的不等式,利用非负数的性质得到k 的值,确定出方程,求出方程的解,代入所求式子中计算即可求出值.【详解】∵方程x2+kx+=0有两个实数根,∴b2-4ac=k2-4(k2-3k+)=-2k2+12k-18=-2(k-3)2≥0,∴k=3,代入方程得:x2+3x+=(x+)2=0,解得:x1=x2=-,则=-.故答案为-.【点睛】此题考查了根的判别式,非负数的性质,以及配方法的应用,求出k的值是本题的突破点.17.3 5【解析】在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中,中心对称图案的卡片是圆、矩形、菱形,直接利用概率公式求解即可求得答案. 【详解】∵在:等腰三角形、圆、矩形、菱形和直角梯形中属于中心对称图形的有:圆、矩形和菱形3种, ∴从这5张纸片中随机抽取一张,抽到中心对称图形的概率为:35. 故答案为35. 18.a≤1且a≠0 【解析】∵关于x 的一元二次方程2210ax x -+=有实数根,∴()20240a a ≠⎧⎪⎨=--≥⎪⎩n ,解得:a 1≤, ∴a 的取值范围为:a 1≤且0a ≠ .点睛:解本题时,需注意两点:(1)这是一道关于“x”的一元二次方程,因此0a ≠ ;(2)这道一元二次方程有实数根,因此()2240a =--≥n ;这个条件缺一不可,尤其是第一个条件解题时很容易忽略.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1),;(2)点的坐标为;(3)点的坐标为和【解析】 【分析】(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F 的对称点,代入直线BE ,即可;(3)构造新的二次函数,利用其性质求极值. 【详解】 解:(1)轴,,抛物线对称轴为直线点的坐标为解得或(舍去), (2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.直线经过点利用待定系数法可得直线的表达式为.因为点在上,即点的坐标为(3)存在点满足题意.设点坐标为,则作垂足为①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为综上所述:满足题意得点的坐标为和考点:二次函数的综合运用.20.(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE 即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=12 m°.详(1)证明:如图1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===, ∴△DAB ≌△EAC , ∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE .∵DB=DE ,∠BDC=60°, ∴△BDE 是等边三角形,∴∠BD=BE ,∠DBE=∠ABC=60°, ∴∠ABD=∠CBE , ∵AB=BC , ∴△ABD ≌△CBE , ∴AD=EC ,∴BD=DE=DC+CE=DC+AD . ∴AD+CD=BD .(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .由(1)可知△EAB ≌△GAC , ∴∠1=∠2,BE=CG ,∵BD=DC ,∠BDE=∠CDM ,DE=DM , ∴△EDB ≌△MDC ,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=12 m°.点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.21.4小时.【解析】【分析】本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【详解】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:60048045, 2x x+=解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点睛】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.22.(1)证明见解析;(2)证明见解析.【分析】(1)利用平行线的性质和中点的定义得到,BGD CFD BD CD ∠=∠= ,进而得到三角形全等,从而求证结论;(2)利用中垂线的性质和三角形的三边关系进行判断即可. 【详解】证明:(1)∵BG ∥AC ∴BGD CFD ∠=∠ ∵D 是BC 的中点 ∴BD CD =又∵BDG CDF ∠=∠ ∴△BDG ≌△CDF ∴BG CF =(2)由(1)中△BDG ≌△CDF ∴GD=FD,BG=CF 又∵ED DF ⊥ ∴ED 垂直平分DF ∴EG=EF∵在△BEG 中,BE+BG>GE, ∴BE CF +>EF 【点睛】本题考查平行线性质的应用、全等三角形的判定和性质的应用及三角形三边关系,熟练掌握相关知识点是解题关键.23.(1)证明详见解析;(2)证明详见解析;(3)1. 【解析】 【分析】(1)利用平行线的性质及中点的定义,可利用AAS 证得结论;(2)由(1)可得AF=BD ,结合条件可求得AF=DC ,则可证明四边形ADCF 为平行四边形,再利用直角三角形的性质可证得AD=CD ,可证得四边形ADCF 为菱形;(3)连接DF ,可证得四边形ABDF 为平行四边形,则可求得DF 的长,利用菱形的面积公式可求得答案. 【详解】(1)证明:∵AF ∥BC , ∴∠AFE=∠DBE , ∵E 是AD 的中点,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS );(2)证明:由(1)知,△AFE ≌△DBE ,则AF=DB . ∵AD 为BC 边上的中线 ∴DB=DC , ∴AF=CD . ∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC=90°,D 是BC 的中点,E 是AD 的中点, ∴AD=DC=12BC , ∴四边形ADCF 是菱形; (3)连接DF ,∵AF ∥BD ,AF=BD ,∴四边形ABDF 是平行四边形, ∴DF=AB=5,∵四边形ADCF 是菱形, ∴S 菱形ADCF =12AC▪DF=12×4×5=1. 【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD 是解题的关键,注意菱形面积公式的应用.24.(1)证明见解析;(2)-2. 【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥1,由此即可证出:无论p 取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x 1+x 2=5、x 1x 2=6-p 2-p ,结合x 12+x 22-x 1x 2=3p 2+1,即可求出p 值. 详解:(1)证明:原方程可变形为x 2-5x+6-p 2-p=1.∵△=(-5)2-4(6-p 2-p )=25-24+4p 2+4p=4p 2+4p+1=(2p+1)2≥1, ∴无论p 取何值此方程总有两个实数根; (2)∵原方程的两根为x 1、x 2, ∴x 1+x 2=5,x 1x 2=6-p 2-p . 又∵x 12+x 22-x 1x 2=3p 2+1, ∴(x 1+x 2)2-3x 1x 2=3p 2+1, ∴52-3(6-p 2-p )=3p 2+1, ∴25-18+3p 2+3p=3p 2+1, ∴3p=-6, ∴p=-2.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥1时,方程有两个实数根”;(2)根据根与系数的关系结合x 12+x 22-x 1x 2=3p 2+1,求出p 值. 25.B 60 【解析】分析:(1)根据旋转的性质可得出结论;(2)根据旋转的性质可得BF=CF ,则点F 在线段BC 的垂直平分线上,又由AC=AB ,可得点A 在线段BC 的垂直平分线上,由AF 垂直平分BC,即∠CQP=90,进而得出∠APC 的度数. 详解:(1)B,60;(2)补全图形如图所示;APC ∠的大小保持不变,理由如下:设AF 与BC 交于点Q ∵直线CD 是等边ABC ∆的对称轴 ∴AE BE =,1302DCB ACD ACB ∠=∠=∠=︒ ∵ABE ∆经顺时针旋转后与BCF ∆重合 ∴ BE BF =,AE CF = ∴BF CF =∴点F 在线段BC 的垂直平分线上 ∵AC AB =∴点A 在线段BC 的垂直平分线上∴AF 垂直平分BC ,即90CQP ∠=︒ ∴120CPA PCB CQP ∠=∠+∠=︒点睛:本题考查了旋转的性质,解题的关键是熟记旋转的性质及垂直平分线的性质,注意只证明一点是不能说明这条直线是垂直平分线的.26.(1)m =﹣1;y =﹣3x ﹣1;(2)P 1(5,0),P 2(113-,0). 【解析】 【分析】(1)将A 代入反比例函数中求出m 的值,即可求出直线解析式,(2)联立方程组求出B 的坐标,理由过两点之间距离公式求出AB 的长,求出P 点坐标,表示出BP 长即可解题. 【详解】解:(1)∵点A (m ,2)在双曲线2y x=-上, ∴m =﹣1,∴A (﹣1,2),直线y =kx ﹣1, ∵点A (﹣1,2)在直线y =kx ﹣1上, ∴y =﹣3x ﹣1.(2)312y x y x =--⎧⎪⎨=-⎪⎩ ,解得12x y =-⎧⎨=⎩或233x y ⎧=⎪⎨⎪=-⎩, ∴B (23,﹣3), ∴ABP (n ,0), 则有(n ﹣23)2+32=2509, 解得n =5或113-,∴P 1(5,0),P 2(113-,0).【点睛】本题考查了一次函数和反比例函数的交点问题,中等难度,联立方程组,会用两点之间距离公式是解题关键. 27.(1)见解析;(2)AB =4 【解析】 【分析】(1)过点B 作BF ⊥CE 于F ,根据同角的余角相等求出∠BCF=∠D ,再利用“角角边”证明△BCF 和△CDE全等,根据全等三角形对应边相等可得BF=CE ,再证明四边形AEFB 是矩形,根据矩形的对边相等可得AE=BF ,从而得证;(2)由(1)可知:CF=DE ,四边形AEFB 是矩形,从而求得AB=EF ,利用锐角三角函数的定义得出DE 和CE 的长,即可求得AB 的长.【详解】(1)证明:过点B 作BH ⊥CE 于H ,如图1.∵CE ⊥AD ,∴∠BHC =∠CED =90°,∠1+∠D =90°.∵∠BCD =90°,∴∠1+∠2=90°,∴∠2=∠D .又BC =CD∴△BHC ≌△CED (AAS ).∴BH =CE .∵BH ⊥CE ,CE ⊥AD ,∠A =90°,∴四边形ABHE 是矩形,∴AE =BH .∴AE =CE .(2)∵四边形ABHE 是矩形,∴AB =HE .∵在Rt △CED 中,tan 3CE D DE ==, 设DE =x ,CE =3x ,∴10210CD x ==.∴x =2.∴DE =2,CE =3.∵CH =DE =2.∴AB =HE =3-2=4.【点睛】本题考查了全等三角形的判定与性质,矩形的判定与性质,锐角三角函数的定义,难度中等,作辅助线构造出全等三角形与矩形是解题的关键.。
邵阳2019中考数学模拟试题①详解
∴ 2EC= AE ,CE= , OE= ﹣ =
,即点 E(
,0).
设直线 AE 对应的函数表达式是 y=kx+b ,
把点 E、 A 的坐标代入解得, k= , b=﹣ 2,
即 y= x﹣ 2. 【答案】 B
【点评】 主要考查了待定系数法求函数解析式和点的坐标的意义以及与图形相结合的具
体运用.要把点的坐标有机的和图形结合起来求解.
解:延长 ED 交 BC 于 F,如图所示:
∵ AB ∥ DE,∠ ABC =75°,
∴∠ MFC =∠ B = 75°,
∵∠ CDE= 145°,
∴∠ FDC= 180°﹣ 145°= 35°,
∴∠ C=∠ MFC ﹣∠ MDC = 75°﹣ 35°= 40°,
【答案】 C
【点评】 本题考查了三角形外角性质, 平行线的性质的应用, 解此题的关键是求出∠ MFC
邵阳 2019 中考数学模拟试题①详解
一、选择题 (本大题有 10 个小题,每小题 3 分,共 30 分.在每小题给出的四个选项中只
有一项是 符合题目要求的 )
1.下列说法正确的是(
)
A .立方根是它本身的数只能是
0和 1
B .如果一个数有立方根,那么这个数也一定有平方根 C. 16 的平方根是 4
D .﹣ 2 是 4 的一个平方根 【分析】 根据立方根和平方根的定义分别判断后即可确定正确的选项.
解: A 、立方根是它本身的数有﹣ 1、 0 和 1,故错误,不符合题意;
B 、负数有立方根但没有平方根,故错误,不符合题意;
C、 16 的平方根是± 4,故错误,不符合题意;
D 、﹣ 2 是 4 的一个平方根,正确,符合题意, 【答案】 D
【附5套中考模拟试卷】湖南省邵阳市2019-2020学年中考数学四模考试卷含解析
湖南省邵阳市2019-2020学年中考数学四模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知⊙O 1与⊙O 2的半径分别是3cm 和5cm ,两圆的圆心距为4cm ,则两圆的位置关系是( ) A .相交 B .内切 C .外离 D .内含 2.2cos 30°的值等于( ) A .1B .2C .3D .23.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2ky x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =; ②当0<x <3时,12y y <; ③如图,当x=3时,EF=83;④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小. 其中正确结论的个数是( )A .1B .2C .3D .44.一个正比例函数的图象过点(2,﹣3),它的表达式为( ) A .3y -2x = B .2y 3x =C .3y 2x =D .2y -3x = 5.A 、B 两地相距180km ,新修的高速公路开通后,在A 、B 两地间行驶的长途客车平均车速提高了50%,而从A 地到B 地的时间缩短了1h .若设原来的平均车速为xkm/h ,则根据题意可列方程为 A .1801801(150%)x x-=+ B .1801801(150%)x x-=+C .1801801(150%)x x -=- D .1801801(150%)x x-=- 6.如图,矩形ABCD 中,AB=3,AD=4,连接BD ,∠DBC 的角平分线BE 交DC 于点E ,现把△BCE 绕点B 逆时针旋转,记旋转后的△BCE 为△BC′E′.当线段BE′和线段BC′都与线段AD 相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为()A.2513B.2413C.95D.857.如图①是半径为2的半圆,点C是弧AB的中点,现将半圆如图②方式翻折,使得点C与圆心O重合,则图中阴影部分的面积是( )A.43πB.43π﹣3C.23+3πD.23﹣23π8.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q9.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和2910.如图,有5个相同的小立方体搭成的几何体如图所示,则它的左视图是()A.B.C.D.11.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米) 2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50人数 2 3 2 4 5 2 1 1则下列叙述正确的是()A.这些运动员成绩的众数是5B.这些运动员成绩的中位数是2.30C.这些运动员的平均成绩是2.25D.这些运动员成绩的方差是0.072512.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为()A.13B.23C.12D.25二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:3x3﹣12x=_____.14.在直角坐标系中,坐标轴上到点P(﹣3,﹣4)的距离等于5的点的坐标是.15.若式子x1x有意义,则x的取值范围是.16.若二次函数y=-x2-4x+k的最大值是9,则k=______.17.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数图象上的概率是.18.分解因式:3a2﹣12=___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,点A的坐标为(﹣4,0),点B的坐标为(0,﹣2),把点A绕点B顺时针旋转90°得到的点C恰好在抛物线y=ax2上,点P是抛物线y=ax2上的一个动点(不与点O重合),把点P向下平移2个单位得到动点Q,则:(1)直接写出AB所在直线的解析式、点C的坐标、a的值;(2)连接OP、AQ,当OP+AQ获得最小值时,求这个最小值及此时点P的坐标;(3)是否存在这样的点P,使得∠QPO=∠OBC,若不存在,请说明理由;若存在,请你直接写出此时P 点的坐标.20.(6分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(m,n)(m<0,n>0),E点在边BC上,F点在边OA上.将矩形OABC沿EF折叠,点B正好与点O重合,双曲线过点E.(1) 若m =-8,n =4,直接写出E 、F 的坐标; (2) 若直线EF 的解析式为,求k 的值;(3) 若双曲线过EF 的中点,直接写出tan ∠EFO 的值.21.(6分)如图,经过点C (0,﹣4)的抛物线2y ax bx c =++(0a ≠)与x 轴相交于A (﹣2,0),B 两点.(1)a 0, 0(填“>”或“<”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC ,E 是抛物线上一动点,过点E 作AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E 的坐标;若不存在,请说明理由.22.(8分)“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图; 分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.23.(8分)定义:任意两个数a ,b ,按规则c =b 2+ab ﹣a+7扩充得到一个新数c ,称所得的新数c 为“如意数”.若a=2,b=﹣1,直接写出a,b的“如意数”c;如果a=3+m,b=m﹣2,试说明“如意数”c 为非负数.24.(10分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.甲的速度是______米/分钟;当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?25.(10分)如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若DE=3,sin∠BDE=13,求AC的长.26.(12分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为人,参加球类活动的人数的百分比为(2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为.(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.27.(12分)解分式方程:28124x x x -=-- 参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】试题分析:∵⊙O 1和⊙O 2的半径分别为5cm 和3cm ,圆心距O 1O 2=4cm ,5﹣3<4<5+3, ∴根据圆心距与半径之间的数量关系可知⊙O 1与⊙O 2相交. 故选A .考点:圆与圆的位置关系. 2.C 【解析】分析:根据30°角的三角函数值代入计算即可. 详解:2cos30°=2×323 故选C .点睛:此题主要考查了特殊角的三角函数值的应用,熟记30°、45°、60°角的三角函数值是解题关键. 3.C 【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x=,由函数图象得:当0<x <2时,12y y <,选项②错误;当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题. 4.A 【解析】 【分析】利用待定系数法即可求解. 【详解】设函数的解析式是y=kx , 根据题意得:2k=﹣3,解得:k=32-. ∴ 函数的解析式是:32y x =-. 故选A . 5.A 【解析】 【分析】直接利用在A ,B 两地间行驶的长途客车平均车速提高了50%,而从A 地到B 地的时间缩短了1h ,利用时间差值得出等式即可. 【详解】解:设原来的平均车速为xkm/h ,则根据题意可列方程为:180x ﹣180150%x +()=1. 故选A . 【点睛】本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键. 6.A 【解析】 【分析】先在Rt △ABD 中利用勾股定理求出BD=5,在Rt △ABF 中利用勾股定理求出BF=258,则AF=4-258=78.再过G 作GH ∥BF ,交BD 于H ,证明GH=GD ,BH=GH ,设DG=GH=BH=x ,则FG=FD-GD=258-x ,HD=5-x,由GH∥FB,得出FDGD=BDHD,即可求解.【详解】解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,∴BD=5,在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,∴BF2=32+(4-BF)2,解得BF=25 8,∴AF=4-258=78.过G作GH∥BF,交BD于H,∴∠FBD=∠GHD,∠BGH=∠FBG,∵FB=FD,∴∠FBD=∠FDB,∴∠FDB=∠GHD,∴GH=GD,∵∠FBG=∠EBC=12∠DBC=12∠ADB=12∠FBD,又∵∠FBG=∠BGH,∠FBG=∠GBH,∴BH=GH,设DG=GH=BH=x,则FG=FD-GD=258-x,HD=5-x,∵GH∥FB,∴FDGD=BDHD,即258x=55-x,解得x=25 13.故选A.【点睛】本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键.7.D【解析】【分析】连接OC交MN于点P,连接OM、ON,根据折叠的性质得到OP=12OM,得到∠POM=60°,根据勾股定理求出MN,结合图形计算即可.【详解】解:连接OC交MN于点P,连接OM、ON,由题意知,OC⊥MN,且OP=PC=1,在Rt△MOP中,∵OM=2,OP=1,∴cos∠POM=OPOM=12,AC=22OM OP-=3,∴∠POM=60°,MN=2MP=23,∴∠AOB=2∠AOC=120°,则图中阴影部分的面积=S半圆-2S弓形MCN=12×π×22-2×(21202360π⨯-12×23×1)=23- 23π,故选D.【点睛】本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.8.C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P 点,故选C.考点:有理数大小比较.9.D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.10.C【解析】试题解析:左视图如图所示:故选C.11.B【解析】【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.12.B【解析】【分析】本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.【详解】 ①若第一次摸到的是白球,则有第一次摸到白球的概率为23,第二次,摸到白球的概率为12,则有211323⨯=;②若第一次摸到的球是红色的,则有第一次摸到红球的概率为13,第二次摸到白球的概率为1,则有11133⨯=,则两次摸到的球的颜色不同的概率为112333+=. 【点睛】掌握分类讨论的方法是本题解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3x (x+2)(x ﹣2)【解析】【分析】先提公因式3x ,然后利用平方差公式进行分解即可.【详解】3x 3﹣12x=3x (x 2﹣4)=3x (x+2)(x ﹣2),故答案为3x (x+2)(x ﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.(0,0)或(0,﹣8)或(﹣6,0)【解析】【分析】由P (﹣3,﹣4)可知,P 到原点距离为5,而以P 点为圆心,5为半径画圆,圆经过原点分别与x 轴、y 轴交于另外一点,共有三个.【详解】解:∵P (﹣3,﹣4)到原点距离为5,而以P 点为圆心,5为半径画圆,圆经过原点且分别交x 轴、y 轴于另外两点(如图所示),∴故坐标轴上到P 点距离等于5的点有三个:(0,0)或(0,﹣8)或(﹣6,0).故答案是:(0,0)或(0,﹣8)或(﹣6,0).15.x 1≥-且x 0≠【解析】【详解】 ∵式子1x +在实数范围内有意义,∴x+1≥0,且x≠0,解得:x≥-1且x≠0.故答案为x≥-1且x≠0.16.5【解析】y=−(x−2)2+4+k ,∵二次函数y=−x2−4x+k 的最大值是9,∴4+k=9,解得:k=5,故答案为:5.17..【解析】试题分析:画树状图得:∵共有12种等可能的结果,点(m ,n )恰好在反比例函数图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m ,n )在函数图象上的概率是:=.故答案为.考点:反比例函数图象上点的坐标特征;列表法与树状图法.18.3(a+2)(a ﹣2)【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)a=12;(2)OP+AQ的最小值为25,此时点P的坐标为(﹣1,12);(3)P(﹣4,8)或(4,8),【解析】【分析】(1)利用待定系数法求出直线AB解析式,根据旋转性质确定出C的坐标,代入二次函数解析式求出a 的值即可;(2)连接BQ,可得PQ与OB平行,而PQ=OB,得到四边形PQBO为平行四边形,当Q在线段AB上时,求出OP+AQ的最小值,并求出此时P的坐标即可;(3)存在这样的点P,使得∠QPO=∠OBC,如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为(m,12m2),根据正切函数定义确定出m的值,即可确定出P的坐标.【详解】解:(1)设直线AB解析式为y=kx+b,把A(﹣4,0),B(0,﹣2)代入得:402k bb-+=⎧⎨=-⎩,解得:122kb⎧=-⎪⎨⎪=-⎩,∴直线AB的解析式为y=﹣12x﹣2,根据题意得:点C的坐标为(2,2),把C(2,2)代入二次函数解析式得:a=12;(2)连接BQ,则易得PQ∥OB,且PQ=OB,∴四边形PQBO 是平行四边形,∴OP=BQ ,∴OP+AQ=BQ+AQ≥AB=25,(等号成立的条件是点Q 在线段AB 上),∵直线AB 的解析式为y=﹣12x ﹣2, ∴可设此时点Q 的坐标为(t ,﹣12t ﹣2), 于是,此时点P 的坐标为(t ,﹣12t ), ∵点P 在抛物线y=12x 2上, ∴﹣12t=12t 2, 解得:t=0或t=﹣1,∴当t=0,点P 与点O 重合,不合题意,应舍去,∴OP+AQ 的最小值为25,此时点P 的坐标为(﹣1,12); (3)P (﹣4,8)或(4,8),如备用图所示,延长PQ 交x 轴于点H ,设此时点P 的坐标为(m ,12m 2), 则tan ∠HPO=2212m OH PH m m ==, 又,易得tan ∠OBC=12, 当tan ∠HPO=tan ∠OBC 时,可使得∠QPO=∠OBC ,于是,得212m =, 解得:m=±4, 所以P (﹣4,8)或(4,8).【点睛】此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,待定系数法求一次函数解析式,旋转的性质,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键.20.(1)E(-3,4)、F(-5,0);(2);(3).【解析】【分析】(1) 连接OE,BF,根据题意可知:设则根据勾股定理可得:即解得:即可求出点E的坐标,同理求出点F的坐标.(2) 连接BF、OE,连接BO交EF于G由翻折可知:GO=GB,BE=OE,证明△BGE≌△OGF,证明四边形OEBF为菱形,令y=0,则,解得,根据菱形的性质得OF=OE=BE=BF=令y=n,则,解得则CE=,在Rt△COE中,根据勾股定理列出方程,即可求出点E的坐标,即可求出k的值;(3) 设EB=EO=x,则CE=-m-x,在Rt△COE中,根据勾股定理得到(-m-x)2+n2=x2,解得,求出点E()、F(),根据中点公式得到EF的中点为(),将E()、()代入中,得,得m2=2n2即可求出tan∠EFO=.【详解】解:(1)如图:连接OE,BF,E(-3,4)、F(-5,0)(2) 连接BF、OE,连接BO交EF于G由翻折可知:GO=GB,BE=OE可证:△BGE≌△OGF(ASA)∴BE=OF∴四边形OEBF为菱形令y=0,则,解得,∴OF=OE=BE=BF=令y=n,则,解得∴CE=在Rt△COE中,,解得∴E()∴(3) 设EB=EO=x,则CE=-m-x,在Rt△COE中,(-m-x)2+n2=x2,解得∴E()、F()∴EF的中点为()将E()、()代入中,得,得m2=2n2∴tan∠EFO=【点睛】考查矩形的折叠与性质,勾股定理,一次函数的图象与性质,待定系数法求反比例函数解析式,锐角三角函数等,综合性比较强,难度较大.21.(1)>,>;(2)214433y x x =--;(3)E (4,﹣4)或(227+,4)或(227-,4). 【解析】【分析】(1)由抛物线开口向上,且与x 轴有两个交点,即可做出判断;(2)根据抛物线的对称轴及A 的坐标,确定出B 的坐标,将A ,B ,C 三点坐标代入求出a ,b ,c 的值,即可确定出抛物线解析式;(3)存在,分两种情况讨论:(i )假设存在点E 使得以A ,C ,E ,F 为顶点所组成的四边形是平行四边形,过点C 作CE ∥x 轴,交抛物线于点E ,过点E 作EF ∥AC ,交x 轴于点F ,如图1所示;(ii )假设在抛物线上还存在点E′,使得以A ,C ,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC 交x 轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,可得AC=E′F′,AC ∥E′F′,如图2,过点E′作E′G ⊥x 轴于点G ,分别求出E 坐标即可.【详解】(1)a >0,>0; (2)∵直线x=2是对称轴,A (﹣2,0),∴B (6,0),∵点C (0,﹣4),将A ,B ,C 的坐标分别代入2y ax bx c =++,解得:13a =,43b =-,4c =-, ∴抛物线的函数表达式为214433y x x =--; (3)存在,理由为:(i )假设存在点E 使得以A ,C ,E ,F 为顶点所组成的四边形是平行四边形,过点C 作CE ∥x 轴,交抛物线于点E ,过点E 作EF ∥AC ,交x 轴于点F ,如图1所示,则四边形ACEF 即为满足条件的平行四边形,∵抛物线214433y x x =--关于直线x=2对称, ∴由抛物线的对称性可知,E 点的横坐标为4,又∵OC=4,∴E 的纵坐标为﹣4,∴存在点E (4,﹣4);(ii )假设在抛物线上还存在点E′,使得以A ,C ,F′,E′为顶点所组成的四边形是平行四边形, 过点E′作E′F′∥AC 交x 轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,∴AC=E′F′,AC ∥E′F′,如图2,过点E′作E′G ⊥x 轴于点G ,∵AC ∥E′F′,∴∠CAO=∠E′F′G ,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO ≌△E′F′G ,∴E′G=CO=4,∴点E′的纵坐标是4, ∴2144433x x =--,解得:1227x =+,2227x =-, ∴点E′的坐标为(227+,4),同理可得点E″的坐标为(227-,4).22.(1)200人;(2)补图见解析;(3)分组后学生学习兴趣为“中”的所占的百分比为30%;对应扇形的圆心角为108°. 【解析】试题分析:(1)用“极高”的人数÷所占的百分比,即可解答;(2)求出“高”的人数,即可补全统计图;(3)用“中”的人数÷调查的学生人数,即可得到所占的百分比,所占的百分比360,⨯o即可求出对应的扇形圆心角的度数.试题解析:()15025%200÷=(人). ()2学生学习兴趣为“高”的人数为:20050602070---=(人).补全统计图如下:()3分组后学生学习兴趣为“中”的所占的百分比为:60100%30%.200⨯= 学生学习兴趣为“中”对应扇形的圆心角为:30%360108.⨯=o o 23.(1)4;(2)详见解析.【解析】【分析】(1)本题是一道自定义运算题型,根据题中给的如意数的概念,代入即可得出结果(2)根据如意数的定义,求出代数式,分析取值范围即可.【详解】解:(1)∵a =2,b =﹣1∴c =b 2+ab ﹣a+7=1+(﹣2)﹣2+7=4(2)∵a =3+m ,b =m ﹣2∴c =b 2+ab ﹣a+7=(m ﹣2)2+(3+m )(m ﹣2)﹣(3+m )+7=2m 2﹣4m+2=2(m ﹣1)2∵(m ﹣1)2≥0∴“如意数”c 为非负数【点睛】本题考查了因式分解,完全平方式(m ﹣1)2的非负性,难度不大.24.(1)60;(2)s =10t -6000;(3)乙出发5分钟和1分钟时与甲在途中相遇;(4)乙从景点B 步行到景点C 的速度是2米/分钟.【解析】【分析】(1)观察图像得出路程和时间,即可解决问题.(2)利用待定系数法求一次函数解析式即可;(3)分两种情况讨论即可;(4)设乙从B步行到C的速度是x米/分钟,根据当甲到达景点C时,乙与景点C的路程为360米,所用的时间为(90-60)分钟,列方程求解即可.【详解】(1)甲的速度为540090=60米/分钟.(2)当20≤t ≤1时,设s=mt+n,由题意得:200 303000 m nm n+=⎧⎨+=⎩,解得:3006000mn=⎧⎨=-⎩,所以s=10t-6000;(3)①当20≤t ≤1时,60t=10t-6000,解得:t=25,25-20=5;②当1≤t ≤60时,60t=100,解得:t=50,50-20=1.综上所述:乙出发5分钟和1分钟时与甲在途中相遇.(4)设乙从B步行到C的速度是x米/分钟,由题意得:5400-100-(90-60)x=360解得:x=2.答:乙从景点B步行到景点C的速度是2米/分钟.【点睛】本题考查了待定系数法求一次函数解析式、行程问题等知识,解题的关键是理解题意,读懂图像信息,学会构建一次函数解决实际问题,属于中考常考题型.25.(1)证明见解析;(2)1.【解析】【分析】(1)根据切线的性质和平行线的性质解答即可;(2)根据直角三角形的性质和三角函数解答即可.【详解】(1)连接OD,∵OD=OE,∴∠ODE=∠OED.∵直线BC为⊙O的切线,∴OD⊥BC.∴∠ODB=90°.∵∠ACB=90°,∴OD∥AC.∴∠ODE=∠F.∴∠OED=∠F.∴AE=AF;(2)连接AD,∵AE是⊙O的直径,∴∠ADE=90°,∵AE=AF,∴DF=DE=3,∵∠ACB=90°,∴∠DAF+∠F=90°,∠CDF+∠F=90°,∴∠DAF=∠CDF=∠BDE,在Rt△ADF中,DFAF=sin∠DAF=sin∠BDE=13,∴AF=3DF=9,在Rt△CDF中,CFDF=sin∠CDF=sin∠BDE=13,∴CF=13DF=1,∴AC=AF﹣CF=1.【点睛】本题考查了切线的性质,解直角三角形的应用,等腰三角形的判定等,综合性较强,正确添加辅助线、熟练掌握和灵活运用相关知识是解题的关键.26.(1)7、30%;(2)补图见解析;(3)105人;(3)1 2【解析】试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;(2)根据(1)中所求数据即可补全条形图;(3)总人数乘以棋类活动的百分比可得;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:解:(1)本次调查的总人数为10÷25%=40(人),∴参加音乐类活动的学生人数为40×17.5%=7人,参加球类活动的人数的百分比为1240×100%=30%,故答案为7,30%;(2)补全条形图如下:(3)该校学生共600人,则参加棋类活动的人数约为600×740=105,故答案为105;(4)画树状图如下:共有12种情况,选中一男一女的有6种,则P(选中一男一女)=612=12.点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27.无解【解析】【分析】首先进行去分母,将分式方程转化为整式方程,然后按照整式方程的求解方法进行求解,最后对所求的解进行检验,看是否能使分母为零.【详解】解:两边同乘以(x+2)(x-2)得:x(x+2)-(x+2)(x-2)=8去括号,得:2x+2x-2x+4=8移项、合并同类项得:2x=4解得:x=2经检验,x=2是方程的增根∴方程无解【点睛】本题考查解分式方程,注意分式方程结果要检验.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。
2019年中考数学模拟试题(四)参考答案
2019年初中学生学业模拟考试试题(四)数学 参考答案一、选择题(本大题共14小题,每小题3分,满分42分)15. < 16.6 17. 40° 18. 4319. 15 三、解答题 20.(满分7分)解:原式221(1)2[]11(1)x x x x x --=-÷--- -----------------------3分 221(1)(1)12x x x x ---=-- ----------------------------5分 (1)x x =--2x x =-+ ---------------------------------7分-------------------------------------------------------------------------------------------------------------- 21. (满分7分)解:(1)60 ------------2分(2)60﹣12﹣9﹣6﹣24=9, -----------------3分 补图所示:----------------4分(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.-----------------------7分22. (满分7分)解:由题意可得,α=30°,β=60°,AD=100米,∠ADC=∠ADB=90°,∴在Rt△ADB中,α=30°,AD=100米,∴tanα===,∴BD=米,-----------------------2分在Rt△ADC中,β=60°,AD=100米,∴tanβ=,--------------------------4分∴CD=100米,∴BC=BD+CD=米,即这栋楼的高度BC是米.------------------------7分--------------------------------------------------------------------------------------------------------------- 23. (满分9分)(1)证明:连接OC,因为OA=OC,所以∠BAC=∠ACO.------------------------1分因为∠BAC=∠CAD,故∠ACO=∠CAD.------------------------2分所以OC∥AD,又已知AD丄MN,所以OC丄MN,所以,直线MN是⊙O的切线;------------------------4分(2)解:已知AB是⊙O的直径,则∠ACB=90°,又AD丄MN,则∠ADC=90°.因为CD=3,∠CAD=30°,所以AD =3,AC =6 -------------------------5分在Rt △ABC 和Rt △ACD 中,∠BAC =∠CAD ,所以Rt △ABC ∽Rt △ACD , ---------------------------7分 则, 则AB =4,所以⊙O 的半径为2. ----------------------------9分--------------------------------------------------------------------------------------------------------------- 24. (满分9分) 解:(1)设一只A 型节能灯的售价是x 元,一只B 型节能灯的售价是y 元,根据题意,得:⎩⎨⎧=+=+2923263y x y x 解得:⎩⎨⎧==75y x答:一只A 型节能灯的售价是5元,一只B 型节能灯的售价是7元。
湖南省邵阳市2019-2020学年中考数学四月模拟试卷含解析
湖南省邵阳市2019-2020学年中考数学四月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程mx2+mx﹣12=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.22.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个3.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是()A.∠1=50°,∠1=40°B.∠1=40°,∠1=50°C.∠1=30°,∠1=60°D.∠1=∠1=45°5.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>12B.k≥12C.k>12且k≠1D.k≥12且k≠16.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为( )A.6 B.8C.10 D.127.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A .1200012000100 1.2x x =+B .12000120001001.2x x =+C .1200012000100 1.2x x =-D .12000120001001.2x x=- 8.下列各组单项式中,不是同类项的一组是( )A .2x y 和22xyB .3xy 和2xy -C .25x y 和22yx -D .23-和39.下列运算正确的是( )A .a 2•a 3=a 6B .a 3+a 2=a 5C .(a 2)4=a 8D .a 3﹣a 2=a10.现有两根木棒,它们的长分别是20cm 和30cm ,若不改变木棒的长短,要钉成一个三角形木架,则应在下列四根木棒中选取( )A .10cm 的木棒B .40cm 的木棒C .50cm 的木棒D .60cm 的木棒11.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°12.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A .60050x -=450xB .60050x +=450x C .600x =45050x + D .600x =45050x - 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,则2s=2+22+23+24+…+22018,因此2s ﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,计算出1+3+32+33+…+32018的值为_____.14.在△ABC 中,∠BAC =45°,∠ACB =75°,分别以A 、C 为圆心,以大于12AC 的长为半径画弧,两弧交于F 、G 作直线FG ,分别交AB ,AC 于点D 、E ,若AC 的长为4,则BC 的长为_____.15.因式分解:a 3-a=______.16.如图,⊙O的直径CD垂直于AB,∠AOC=48°,则∠BDC=度.17.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是.18.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(2016山东省烟台市)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)20.(6分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定△ABC不动,将△DEF 沿线段AB向右平移.(1)若∠A=60°,斜边AB=4,设AD=x(0≤x≤4),两个直角三角形纸片重叠部分的面积为y,试求出y 与x的函数关系式;(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?21.(6分)如图,已知四边形ABCD是平行四边形,延长BA至点E,使AE=AB,连接DE,AC (1)求证:四边形ACDE为平行四边形;(2)连接CE交AD于点O,若AC=AB=3,cosB=13,求线段CE的长.22.(8分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是_____度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在_____等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?23.(8分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.24.(10分)已知如图①Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,A,C,D在同一条直线上,点M,N,F 分别为AB,ED,AD的中点,∠B=∠EDC=45°,(1)求证MF=NF(2)当∠B=∠EDC=30°,A,C,D在同一条直线上或不在同一条直线上,如图②,图③这两种情况时,请猜想线段MF,NF之间的数量关系.(不必证明)25.(10分)徐州至北京的高铁里程约为700km ,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A 与“复兴号”高铁B 前往北京.已知A 车的平均速度比B 车的平均速度慢80km/h ,A 车的行驶时间比B 车的行驶时间多40%,两车的行驶时间分别为多少?26.(12分)解不等式组()()303129x x x -≥⎧⎨->+⎩. 27.(12分)已知:如图,在△OAB 中,OA=OB ,⊙O 经过AB 的中点C ,与OB 交于点D ,且与BO 的延长线交于点E ,连接EC ,CD .(1)试判断AB 与⊙O 的位置关系,并加以证明;(2)若tanE=12,⊙O 的半径为3,求OA 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】由方程有两个相等的实数根,得到根的判别式等于0,求出m 的值,经检验即可得到满足题意m 的值.【详解】∵一元二次方程mx 1+mx ﹣12=0有两个相等实数根,∴△=m1﹣4m×(﹣12)=m1+1m=0,解得:m=0或m=﹣1,经检验m=0不合题意,则m=﹣1.故选C.【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.2.B【解析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B.3.D【解析】试题分析:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.4.D【解析】【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【详解】“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题为∠1=∠1=45°.故选:D.【点睛】考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.5.C【解析】【详解】根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>12且k≠1.故选C【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.D【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【详解】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴AG DGGE CG==1,∴AG=GE∴AE=2AG=1.故选:D.【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.7.B【解析】【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:12000120001001.2x x=+故选B.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.8.A【解析】【分析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【详解】根据题意可知:x2y和2xy2不是同类项.故答案选:A.【点睛】本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点.9.C【解析】【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘进行计算即可.【详解】A、a2•a3=a5,故原题计算错误;B、a3和a2不是同类项,不能合并,故原题计算错误;C、(a2)4=a8,故原题计算正确;D、a3和a2不是同类项,不能合并,故原题计算错误;故选:C.【点睛】此题主要考查了幂的乘方、同底数幂的乘法,以及合并同类项,关键是掌握计算法则.10.B【解析】【分析】设应选取的木棒长为x,再根据三角形的三边关系求出x的取值范围.进而可得出结论.【详解】设应选取的木棒长为x,则30cm-20cm<x<30cm+20cm,即10cm<x<50cm.故选B.【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.11.A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.12.B【解析】【分析】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.【详解】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得:60045050x x=+.故选B.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2019 312-【解析】【分析】仿照已知方法求出所求即可.【详解】令S=1+3+32+33+…+32018,则3S=3+32+33+…+32019,因此3S﹣S=32019﹣1,即S=2019312-.故答案为:2019312-.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.14.46 3【解析】【分析】连接CD在根据垂直平分线的性质可得到△ADC为等腰直角三角形,结合已知的即可得到∠BCD的大小,然后就可以解答出此题【详解】解:连接CD,∵DE垂直平分AC,∴AD=CD,∴∠DCA=∠BAC=45°,∴△ADC是等腰直角三角形,∴2222CD AC==,∠ADC=90°,∴∠BDC=90°,∵∠ACB=75°,∴∠BCD=30°,∴BC=46,故答案为46.【点睛】。
2019届湖南省邵阳县霞塘云中学九年级中考适应性考试数学试卷(含详解)
2019届湖南省邵阳县霞塘云中学九年级中考适应性考试试卷数学(考试时间:120分钟,满分100分)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(共10小题,共30分,每小题只有一个选项是正确的,不选、多选、选错都不给分)1. 为了打击信息诈骗和反信息骚扰,邵阳移动公司从2017年9月到10月间,共拦截疑似诈骗电话呼叫1298万次,1298万用科学记数法可表示为()A. 1298×104B. 12.98×106C. 1.298×107D. 1.298×103【答案】C学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...详解:将1298万用科学记数法表示为:1.298×107.故选:C.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2. 气象台预报:“本市明天降水概率是80%”,但据经验,气象台预报的准确率仅为80%,则在此经验下,本市明天降水的概率为()A. 84%B. 80%C. 68%D. 64%【答案】D【解析】分析:按照数学推理来看,应分为2步实验,气象台预报的准确率和下雨的可能性相乘即为明天下雨的概率.详解:由题意可得,在此经验下.本市明天降水的概率为:80%×80%=0.64=64%,故选D.点睛:本题考查概率的定义,解题的关键是明确题意,会求相应的概率.3. 已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是()A. k<B. k>C. k<且k≠0D. k>且k≠0【答案】A【解析】试题分析:∵方程x2﹣2x+3k=0有两个不相等的实数根,∴△=4﹣12k>0,解得:k<.故选A.考点:根的判别式.视频4. 二次函数y=ax2+bx+c的图象如图所示,则函数值y<0时x的取值范围是()A. x<-1B. x>3C. -1<x<3D. x<-1或x>3【答案】C【解析】试题分析:由题意可知,函数值y>0时,图象在x轴的上方,所以x的取值范围是x<﹣1或x >3,故选:D.考点:二次函数的图象与不等式.视频5. 菱形ABCD的对角线长分别为6和8,则菱形的面积为()A. 12B. 24C. 36D. 48【答案】B【解析】试题分析:因为菱形的面积等于两条对角线乘积的一半,所以菱形ABCD的面积=,故选:B.考点:菱形的面积计算.6. 如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于()A. 55°B. 45°C. 40°D. 35°【答案】D【解析】试题分析:根据旋转的性质可知,D和B为对应点,∠DOB为旋转角,即∠DOB=80°,所以∠AOD=∠DOB﹣∠AOB=80°﹣45°=35°.故选D.考点:旋转的性质.7. 如图,已知五边形ABCDE 是⊙O 的内接正五边形,且⊙O 的半径为1.则图中阴影部分的面积是()A. B. C. D.【答案】B【解析】分析:五边形ABCDE 是⊙O 的内接正五边形,推出,由此可知S阴=S扇形OAC.详解:∵五边形ABCDE 是⊙O 的内接正五边形,∴,易知△EOA≌△AOB≌△BOC≌△COD,∴△AOE、△AOB、△BOC、△COD的面积相等,∴S阴=S扇形OAC=,故选:B.点睛:本题考查正多边形与圆、扇形的面积的计算,全等三角形的判定和性质等知识,解题的关键是学会把求不规则图形的面积转化为求规则图形的面积.8. 观察图形中点的个数,若按其规律再画下去,可以得到第105个图形中所有点的个数为()A. 1016个B. 11025个C. 11236个D. 22249个【答案】C【解析】分析:观察不难发现,点的个数依次为连续奇数的和,写出第n个图形中点的个数的表达式,再根据求和公式列式计算即可得解.详解:第1个图形中点的个数为:1+3=4,第2个图形中点的个数为:1+3+5=9,第3个图形中点的个数为:1+3+5+7=16,…,第n个图形中点的个数为:1+3+5+…+(2n+1)==(n+1)2.当n=105时,(105+1)2=11236,故选:C.点睛:本题是对图形变化规律的考查,比较简单,观察出点的个数是连续奇数的和是解题的关键,还要注意求和公式的利用.9. 在▱ABCD中,如果添加一个条件,就可推出▱ABCD是矩形,那么添加的条件可以是()A. AB=BCB. AC=BDC. AC⊥BDD. AB⊥BD【答案】B【解析】分析:根据对角线相等的平行四边形是矩形可得答案.详解:在▱ABCD中,如果添加一个条件,就可推出▱ABCD是矩形,那么添加的条件可以AC=BD,故选:B.点睛:此题主要考查了矩形的判定,关键是掌握矩形的判定定理.10. 已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0;则正确的结论是()A. ①②③④B. ②④⑤C. ②③④D. ①④⑤【答案】D【解析】试题解析:∵抛物线与x轴有两个交点,∴△=b2-4ac>0,即b2>4ac,故①正确;∵抛物线对称轴为x=-<0,与y轴交于负半轴,∴ab>0,c<0,abc<0,故②错误;∵抛物线对称轴为x=-=-1,∴2a-b=0,故③错误;∵当x=1时,y>0,即a+b+c>0,故④正确;∵当x=-1时,y<0,即a-b+c<0,故⑤正确;正确的是①④⑤.故选D.考点:抛物线与二次函数系数之间的关系.二、填空题(共6小题;共18分)11. 已知x=3.2,y=6.8,则x2+2xy+y2=________.【答案】100【解析】分析:原式利用完全平方公式变形,把x与y的值代入计算即可求出值.详解:当x=3.2,y=6.8时,原式=(x+y)2=(3.2+6.8)2=100,故答案为:100点睛:此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.12. 不等式组的解集为﹣1<x<2,则a=________,b=________.【答案】(1). 3(2). -2【解析】分析:先把a、b当作已知条件表示出不等式组的解集,再与已知解集相比较即可得出结论.详解:,由①得,x<,由②得,x>3+2b,故不等式组的解集为:3+2b<x<,∵不等式组的解集为-1<x<2,∴3+2b=-1,=2,∴a=3,b=-2.故答案为:3,-2.点睛:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13. 若关于t的不等式组,恰有三个整数解,则关于x的一次函数的图象与反比例函数的图象的公共点的个数为________.【答案】1或0【解析】试题分析:根据不等式组恰有三个整数解,得出a的取值范围,联立一次函数和反比例函数解析式,利用二次函数的性质判断其判别式的值的情况,从而确定交点的个数.试题解析:解不等式组得a≤t≤.∵原不等式组恰有三个整数解,即-1,0,1,∴-2<a≤-1.一次函数y=x-a的图象与反比例函数y=的图象的交点坐标即是方程组的解.消去方程组中的y得,x-a=.即x2-4ax-4(3a+2)=0.其判别式△=(-4a)2+16(3a+2)=16(a2+3a+2)=16(a+1)(a+2).当-2<a≤-1时,(a+1)(a +2)≤0,即△≤0.∴两个图象的公共点的个数为0或1.考点:1.不等式组的解及解不等式组;2.函数的图象;3.一元二次方程根的判别式.14. 如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=10,AD=8,则AE的长为________.【答案】【解析】分析:连接BD、CD,由勾股定理先求出BD的长,再利用△ABD∽△BED,得出,可解得DE的长,由AE=AD-DE求解即可得出答案.详解:连接BD、CD,如图所示,∵AB为⊙O的直径,∴∠ADB=90°,∴BD===6,∵弦AD平分∠BAC,∴CD=BD=6,∴∠CBD=∠DAB,∴△ABD∽△BED,∴,即,解得DE=,∴AE=AD-DE=8-=.故答案为:.点睛:此题主要考查了三角形相似的判定和性质及圆周角定理,解答此题的关键是得出△ABD∽△BED.15. 在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=________.【答案】406【解析】试题解析:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.故答案为:16. 如图,已知第一象限内的图象是反比例函数y=图象的一个分支,第二象限内的图象是反比例函数y=﹣图象的一个分支,在x轴的上方有一条平行于x轴的直线l与它们分别交于点A、B,过点A、B作x轴的垂线,垂足分别为C、D.若四边形ABCD的周长为8且AB<AC,则点A的坐标为________.【答案】(,3)【解析】试题分析:设A点坐标为(a,),利用AB平行于x轴,点B的纵坐标为,而点B在反比例函数y=-图象上,易得B点坐标为(-2a,),则AB=a-(-2a)=3a,AC=,然后根据矩形的性质得到AB+AC=4,即3a+=4,则3a2-4a+1=0,用因式分解法解得a1=,a2=1,而AB<AC,则a=,即可写出A 点坐标.试题解析:点A在反比例函数y=图象上,设A点坐标为(a,),∵AB平行于x轴,∴点B的纵坐标为,而点B在反比例函数y=-图象上,∴B点的横坐标=-2×a=-2a,即B点坐标为(-2a,),∴AB=a-(-2a)=3a,AC=,∵四边形ABCD的周长为8,而四边形ABCD为矩形,∴AB+AC=4,即3a+=4,整理得,3a2-4a+1=0,(3a-1)(a-1)=0,∴a1=,a2=1,而AB<AC,∴a=,∴A点坐标为(,3).考点:反比例函数综合题.三、解答题(共7小题;共72分)17. 化简求值:,其中x=.【答案】【解析】分析:原式括号中两项变形后,利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.详解:,=,=,=x+1;当x=﹣1时,原式=﹣1+1=.点睛:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.18. 已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.【答案】﹣<a<2.【解析】试题分析:先利用加减消元法求出x、y,然后列出不等式组,再求出两个不等式的解集,然后求公共部分即可.试题解析:,①×3得,15x+6y=33a+54③,②×2得,4x﹣6y=24a﹣16④,③+④得,19x=57a+38,解得x=3a+2,把x=3a+2代入①得,5(3a+2)+2y=11a+18,解得y=﹣2a+4,所以,方程组的解是,∵x>0,y>0,∴,由①得,a>﹣,由②得,a<2,所以,a的取值范围是﹣<a<2.考点:1.解二元一次方程组2.解一元一次不等式组.19. 四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.【答案】(1);(2)公平.【解析】试题分析:(1)根据概率公式即可求解;(2)利用列表法,求得小贝胜与小晶胜的概率,比较即可游戏是否公平.试题解析:(1)P(抽到数字2)=;(2)公平.列表:由上表可以看出,可能出现的结果共有16种,它们出现的可能性相同,所有的结果中,满足两位数不超过30的结果有8种.所以P(小贝胜)=,P(小晶胜)=.所以游戏公平.考点:游戏公平性.20. 在△ABC中,AC=AB=5,一边上高为3,求底边BC的长(注意:请画出图形).【答案】底边BC的长是8或或3.【解析】分三种情况:①当底边BC边上的高为3时,如图1所示,∵在△ACD中,AB=AC=5,高AD=3,∴BD=CD= =4,∴BC=2BD=8;②当腰上的高BD=3时,如图2所示:则AD==4,∴CD=5﹣4=1,∴BC===;③当高在△ABC的外部时,如图3所示:∵在△BCD中,AB=AC=5,高BD=3,∴AD= =4,∴CD=4+5=9,∴BC== =3;综上所述:底边BC的长是8或或3.21. 如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,求EF的长.【答案】【解析】分析:利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的长.详解:∵四边形ABCD为正方形,且边长为3,∴AC=3,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,∴EF=CF+CE=3+3=6.点睛:本题主要考查了正方形的性质,角平分线的性质等,利用等角对等边是解答此题的关键.22. 如图,已知△ABC,AB=AC,将△ABC沿边BC翻折,得到的△DBC与原△ABC拼成四边形ABDC.求证:四边形ABDC是菱形.【答案】见解析【解析】【分析】由翻转变换的性质得到BA=BD,CA=CD,根据题意得到AB=BD=DC=CA,根据菱形的判定定理即可证明.【详解】由翻转变换的性质可知,BA=BD,CA=CD,∵AB=AC,∴AB=BD=DC=CA,∴四边形ABDC是菱形.【点睛】本题考查的是翻转变换的性质、菱形的判定,掌握四条边相等的四边形是菱形是解题的关键.23. 如图,已知抛物线y=ax2+bx+1经过点(2,6),且与直线相交于A,B两点,点A在y轴上,过点B作BC⊥x轴,垂足为点C(4,0).(1)求抛物线的解析式;(2)若P是直线AB上方该抛物线上的一个动点,过点P作PD⊥x轴于点D,交AB于点E,求线段PE的最大值;(3)在(2)的条件,设PC与AB相交于点Q,当线段PC与BE相互平分时,请求出点Q的坐标.【答案】(1)y=-x2+x +1;(2)当x=2时,PE有最大值4;(3)点Q的坐标为(,)或(,).【解析】试题分析:(1)根据题意得出B点坐标,再利用待定系数法求出抛物线解析式;(2)首先表示出P,E点坐标,再利用PE=PD-ED,结合二次函数最值求法进而求出PE的最大值;试题解析:(1)∵BC⊥x轴,垂足为点C(4,0),且点B在直线y=x+1上,∴点B的坐标为:(4,3),∵抛物线y=ax2+bx+1经过点(2,6)和点B(4,3),∴,解得:,故抛物线的解析式为:y=-x2+x+1;(2)如图所示:设动点P的坐标为;(x,-x2+x+1),则点E的坐标为:(x,x+1),∵PD⊥x轴于点D,且点P在x轴上,∴PE=PD-ED=(-x2+x+1)-(x+1)=-x2+4x=-(x-2)2+4,则当x=2时,PE的最大值为:4;(3)∵PC与BE互相平分,∴PE=BC,∴-x2+4x=3,即x2-4x+3=0,解得:x1=1,x2=3,∵点Q分别时PC,BE的中点,且点Q在直线y=x+1,∴①当x=1时,点Q的横坐标为:,∴点Q的坐标为:(,),②当x=3时,点Q的横坐标为:,∴点Q的坐标为:(,),综上所述,点Q的坐标为:(,),(,).考点:二次函数综合题.。
湖南省邵阳市邵阳县2019届中考一模数学试题
2019年初中毕业学业模拟考试试题卷数学(一)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.用计算器依次按键,得到的结果最接近的整数是( )A .2B .3C . 4D .52.如图所示,12//l l ,156∠=,则2∠的度数为( )A . 34B . 56C .124D .1463.把32882a a a -+进行因式分解,结果正确的是( )A .()22441a a a -+B .22(21)a a -C . 28(1)a a -D .22(21)a a + 4.下列图形中,是轴对称图形的是( )A .B .C .D .5.近期浙江大学的科学家们研制出迄今为止世界上最轻的材料,这种被称为“全碳气凝胶”的固态材料密度仅每立方厘米0.00016克,将0.00016用科学记数法表示为( )A .41.610⨯B .30.1610-⨯C .41.610-⨯D .41610-⨯6.如图所示,BC 是O 的直径,A 是O 上的一点,32OAC ∠=,则ABC ∠的度数是( )A .58B .60C .64D .687.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x (单位:分)及方差2s 如表所示:如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( )A .甲B .乙C .丙D .丁8.如图所示,在直角坐标系中,有两点(6,3)A ,(6,0)B ,以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( )A . (2,1)B .(2,0)C .(3,3)D .(3,1) 9.如图所示,是我县2018年9月某周内最高气温的折线统计图,关于这7天的日最高气温的数据中,众数和中位数分别是( )A .28,24B .28,26C . 28,28D .30,2610.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,它的代数成就主要包括开放术、正负术和方程术,其中,方程术是《九章算术》最高的数学成就,《九章算术》中记载:“今有牛五、羊二、直金十二两;牛二、羊五、直金九两。
2019年邵阳市2019年中考数学模拟试卷及答案(word解析版)
湖南省邵阳市2019年中考数学模拟试卷一、选择题:(每小题3分,共30分)=5≠±、2227.(3分)(2019•邵阳市模拟)如图,在平面直角坐标系xOy中,点P(﹣3,5)关于y轴的对称点的坐标为()8.(3分)(2019•邵阳市模拟)如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C 放在直线m上,若∠1=25°,则∠2的度数为()B10.(3分)(2019•邵阳市模拟)同样大小的黑色棋子按如图所示的规律摆放,第()个图形有2019个黑色棋子.二、填空题:(每小题3分,共24分)11.(3分)(2019•邵阳市模拟)分解因式:4x2﹣9=(2x﹣3)(2x+3).12.(3分)(2019•邵阳市模拟)函数y=中,自变量x的取值范围是x≠5.13.(3分)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为5.14.(3分)(2019•邵阳市模拟)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC 的度数是80°或100°.ABC=∠AOC=15.(3分)(2019•邵阳市模拟)一个不透明的口袋中,装有红球6个,白球9个,黑球3个,这些球除颜色不同外没有任何区别,现从中任意摸出一个球,恰好是黑球的概率为.=.故答案为:..16.(3分)(2019•邵阳市模拟)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则ABC与△DEF的面积之比为9:1.17.(3分)将抛物线y=3x2向上平移3个单位再向左平移2个单位所得抛物线是y=3x2+12x+15.18.(3分)(2019•邵阳市模拟)如图,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是100(+1)米.×=100+100=100(三、解答题:(19小题6分,20-21小题8分,共22分)19.(6分)(2019•邵阳市模拟)计算:2﹣1+cos60°﹣|﹣3|+(2019﹣π)0.+20.(8分)(2019•邵阳市模拟)已知实数x满足x+=3,则x2+的值为7.=3x++2+=721.(8分)(2019•邵阳市模拟)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.求证:四边形ABCD 是正方形.四.应用题:(每小题8分,共24分)22.(8分)(2019•邵阳市模拟)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:①a=100,b=0.15;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是144°;③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.23.(8分)(2019•邵阳市模拟)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的,中、美两国人均淡水资源占有量之和为13800m3,问中、美两国人均淡水资源占有量各为多少(单位:m3)?,.24.(8分)(2019•邵阳市模拟)大润发超市进了一批成本为8元/个的文具盒.调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?由题意得:五.综合题:(每小题10分,共20分)25.(10分)(2019•邵阳市模拟)如图,在平面直角坐标系xOy中,边长为2的正方形OABC 的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=﹣x2+bx+c的图象经过B、C两点.(1)求该二次函数的解析式;(2)结合函数的图象探索:当y>0时x的取值范围.﹣+,则﹣+。
湖南省邵阳市2019-2020学年中考数学考前模拟卷(4)含解析
湖南省邵阳市2019-2020学年中考数学考前模拟卷(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2011•黑河)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0 ②a >0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的个数是()A、2个B、3个C、4个D、5个2.如图,l1∥l2,AF:FB=3:5,BC:CD=3:2,则AE:EC=()A.5:2 B.4:3 C.2:1 D.3:23.若点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,则y1与y2的大小关系为()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y24.人的头发直径约为0.00007m,这个数据用科学记数法表示()A.0.7×10﹣4B.7×10﹣5C.0.7×104D.7×1055.如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.若AB=5,AD=7,BF=6,则四边形ABEF的面积为()A.48 B.35 C.30 D.246.数轴上分别有A、B、C三个点,对应的实数分别为a、b、c且满足,|a|>|c|,b•c<0,则原点的位置()A.点A的左侧B.点A点B之间C.点B点C之间D.点C的右侧7.下列各数:1.414,2,﹣13,0,其中是无理数的为()A.1.414 B. 2C.﹣13D.08.如图1是一座立交桥的示意图(道路宽度忽略不计),A为人口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且»BC,»CD,»DE所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示.结合题目信息,下列说法错误的是()A.甲车在立交桥上共行驶8s B.从F口出比从G口出多行驶40m C.甲车从F口出,乙车从G口出D.立交桥总长为150m9.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是A.B.C.D.10.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以2cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线AC CB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是()A.B.C.D.11.一个几何体的三视图如图所示,这个几何体是()A.三菱柱B.三棱锥C.长方体D.圆柱体12.如图,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是()A.3 B.4 C.5 D.6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.14.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为_________元.15.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F为DE中点,若点D在直线BC上运动,连接CF,则在点D运动过程中,线段CF的最小值是_____.16.分解因式:mx2﹣4m=_____.17.如图,在边长为6的菱形ABCD中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是___.(结果保留π)18.如图,在两个同心圆中,三条直径把大、小圆都分成相等的六个部分,若随意向圆中投球,球落在黑色区域的概率是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.20.(6分)如图,在矩形ABCD中,点F在边BC上,且AF=AD ,过点D作DE⊥AF,垂足为点E.求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.21.(6分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若23DFFO=,求证:CD=DH.22.(8分)已知Rt△ABC,∠A=90°,BC=10,以BC为边向下作矩形BCDE,连AE交BC于F.(1)如图1,当AB=AC,且sin∠BEF=35时,求BFCF的值;(2)如图2,当tan∠ABC=12时,过D作DH⊥AE于H,求EH EA⋅的值;(3)如图3,连AD交BC于G,当2FG BF CG=⋅时,求矩形BCDE的面积23.(8分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.24.(10分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图.态度非常喜欢喜欢一般不知道频数90 b 30 10频率 a 0.35 0.20请你根据统计图、表,提供的信息解答下列问题:(1)该校这次随即抽取了名学生参加问卷调查:(2)确定统计表中a、b的值:a= ,b= ;(3)该校共有2000名学生,估计全校态度为“非常喜欢”的学生人数.25.(10分)某商人制成了一个如图所示的转盘,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A”,则收费2元,若指针指向字母“B”,则奖励3元;若指针指向字母“C”,则奖励1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?26.(12分)阅读材料:对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上.即如图①,若PA=PB,则点P在线段AB的垂直平分线上请根据阅读材料,解决下列问题:如图②,直线CD是等边△ABC的对称轴,点D在AB上,点E是线段CD上的一动点(点E不与点C、D重合),连结AE、BE,△ABE经顺时针旋转后与△BCF重合.(I)旋转中心是点,旋转了(度);(II)当点E从点D向点C移动时,连结AF,设AF与CD交于点P,在图②中将图形补全,并探究∠APC 的大小是否保持不变?若不变,请求出∠APC的度数;若改变,请说出变化情况.27.(12分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:①根据图示知,二次函数与x轴有两个交点,所以△=b2-4ac>0;故①正确;②根据图示知,该函数图象的开口向上,∴a>0;故②正确;=1,③又对称轴x=-b2a∴b<0,2a∴b<0;故本选项错误;④该函数图象交于y轴的负半轴,∴c<0;故本选项错误;⑤根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确.所以①②⑤三项正确.故选B.2.D【解析】【分析】依据平行线分线段成比例定理,即可得到AG=3x,BD=5x,CD=25BD=2x,再根据平行线分线段成比例定理,即可得出AE与EC的比值.【详解】∵l1∥l2,∴35 AF AGBF BD==,设AG=3x,BD=5x,∵BC:CD=3:2,∴CD=25BD=2x,∵AG∥CD,∴3322 AE AG xEC CD x===.故选D.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.3.A【解析】【分析】分别将点P(﹣3,y1)和点Q(﹣1,y2)代入正比例函数y=﹣k2x,求出y1与y2的值比较大小即可. 【详解】∵点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,∴y1=﹣k2×(-3)=3k2,y2=﹣k2×(-1)=k2,∵k≠0,∴y1>y2.故答案选A.【点睛】本题考查了正比例函数,解题的关键是熟练的掌握正比例函数的知识点.4.B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00007m,这个数据用科学记数法表示7×10﹣1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.D【解析】分析:首先证明四边形ABEF为菱形,根据勾股定理求出对角线AE的长度,从而得出四边形的面积.详解:∵AB∥EF,AF∥BE,∴四边形ABEF为平行四边形,∵BF平分∠ABC,∴四边形ABEF为菱形,连接AE交BF于点O,∵BF=6,BE=5,∴BO=3,EO=4,∴AE=8,则四边形ABEF的面积=6×8÷2=24,故选D.点睛:本题主要考查的是菱形的性质以及判定定理,属于中等难度的题型.解决本题的关键就是根据题意得出四边形为菱形.6.C【解析】分析:根据题中所给条件结合A、B、C三点的相对位置进行分析判断即可.详解:<,这与已知不符,故不能选A;A选项中,若原点在点A的左侧,则a cB选项中,若原点在A、B之间,则b>0,c>0,这与b·c<0不符,故不能选B;>且b·c<0,与已知条件一致,故可以选C;C选项中,若原点在B、C之间,则a cD选项中,若原点在点C右侧,则b<0,c<0,这与b·c<0不符,故不能选D.故选C.点睛:理解“数轴上原点右边的点表示的数是正数,原点表示的是0,原点左边的点表示的数是负数,距离原点越远的点所表示的数的绝对值越大”是正确解答本题的关键.7.B【解析】试题分析:根据无理数的定义可得是无理数.故答案选B.考点:无理数的定义.8.C【解析】分析:结合2个图象分析即可.详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:538s +=,故正确. B.3段弧的长度都是:()105320,m ⨯-=从F 口出比从G 口出多行驶40m ,正确. C.分析图2可知甲车从G 口出,乙车从F 口出,故错误. D.立交桥总长为:1033203150.m ⨯⨯+⨯=故正确. 故选C.点睛:考查图象问题,观察图象,读懂图象是解题的关键. 9.A 。
湖南省邵阳市邵阳县中考数学模拟试题附答案
2019年湖南省邵阳市邵阳县中考数学模拟试题考试时间:100分钟满分:120分姓名:__________ 班级:__________考号:__________一、选择题(每小题四个选项中,只有一项最符合题意。
本大题共10个小题,每小题3分,共30分)1.下列运算正确的是()A. (a﹣2)2=a2﹣4B. =±3C. =﹣3D. a2•a4=a82.下列因式分解正确的是()A. x2﹣2x﹣1=(x﹣1)2B. 2x2﹣2=2(x+1)(x﹣1)C. x2y﹣xy=y(x2﹣x)D. x2﹣2x+2=(x﹣1)2+13.如图,AB∥CD,直线EF分别与直线AB和直线CD相交于点P和点Q,PG⊥CD于G,若∠APE=48°,则∠QPG的度数为()A. 42°B. 46°C. 32°D. 36°4.从一副扑克牌中随机抽取一张,它恰好是Q的概率为()A. B. C. D.5.某种生物细胞的直径约为0.00056m,将0.00056用科学记数法表示为()A. 0.56×10-3B. 5.6×10-4C. 5.6×10-5D. 56×10-56.已知直线y=kx-4(k<0)与两坐标轴所围成的三角形面积等于4,则直线的解析式为().A. y=-x-4B. y=-2x-4C. y=-3x+4D. y=-3x-47.学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为()A. 0.2mB. 0.3mC. 0.4mD. 0.5m8.(古代数学问题)今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?设有x人,则根据题意列出方程正确的是()A. 8x+3=7x﹣4B. 8x﹣3=7x+4C. 8x﹣3=7x﹣4D. 8x+3=7x+49.在一次数学测验中,甲、乙、丙、丁四位同学的分数分别是90、x、90、70,若这四个同学得分的众数与平均数恰好相等,则他们得分的中位数是()A. 100B. 90C. 80D. 7010.如图,四边形ABCD内接于圆O,E为CD延长线上一点,若∠B=110°,则∠ADE的度数为()A. 115°B. 110°C. 90°D. 80°二、填空题(本大题共8小题;共24分)11.﹣5的绝对值是________.12.一元二次方程x2﹣5x+c=0有两个不相等的实数根且两根之积为正数,若c是整数,则c=________ .(只需填一个).13.一个多边形的每一个外角都是15°,它是________边形.14.如图,在平面直角坐标系中,点A在函数y=﹣(x<0)的图象上,点B在函数y= (x>0)的图象上,点C在x轴上,若四边形OABC为平行四边形,则四边形OABC的面积为________.15.某校对九年级学生进行“综合素质”评价,评价的结果为A(优)、B(良好)、C(合格)、D(不合格)四个等级.现从中抽测了若干名学生的“综合素质”等级作为样本进行数据处理,并作出图所示的统计图,已知图中从左到右的四个长方形的高的比为:14:9:6:1,评价结果为D等级的有2人,请你回答以下问题:①共抽测了________人;②样本中B等级的频率是________;③如果要绘制扇形统计图,D等级在扇形统计图中所占的圆心角是________度;④该校九年级的毕业生共300人,假如“综合素质”等级为A或B的学生才能报考示范性高中,请你计算该校大约有________名学生可以报考示范性高中.16.一次函数y=2x+2的图象如图所示,则由图象可知,方程2x+2=0的解为________.17.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为.18.如图,正方形ABCD的顶点A,B在函数y= (x>0)的图象上,点C,D分别在x轴,y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.①当k=2时,正方形A′B′C′D′的边长等于________.②当变化的正方形ABCD与(1)中的正方形A′B′C′D′有重叠部分时,k的取值范围是________.三、解答题(本大题共8小题;共66分)19.计算题(1)计算:;(2)已知,求的值.20.先化简,再求值:(a﹣b)2+(2a﹣b)(a﹣2b)-a(3a-b),其中│a-1│+(2+b)2 =021.某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)样本容量是________,并补全直方图________;(2)该年级共有学生800人,请估计该年级在这天里发言次数不少于12次的人数;(3)已知A组发言的学生中恰好有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好都是男生的概率.22.如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB为半径作☉D.求证:AC与☉D相切.23.某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.24.如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.25.动手操作,探究:探究一:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图(1),在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究二:若将△ADC改为任意四边形ABCD呢?已知:如图(2),在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.(写出说理过程)探究三:若将上题中的四边形ABCD改为六边形ABCDEF(图(3))呢?请直接写出∠P与∠A+∠B+∠E+∠F 的数量关系.26.如图1,⊙O的直径AB为4,C为⊙O上一个定点,∠ABC=30°,动点P从A点出发沿半圆弧向B点运动(点P与点C在直径AB的异侧),当P点到达B点时运动停止,在运动过程中,过点C作CP的垂线CD交PB的延长线于D点.(1)求证:△ABC∽△PDC(2)如图2,当点P到达B点时,求CD的长;(3)设CD的长为.在点P的运动过程中,的取值范围为________(请直接写出答案).参考答案一、选择题1.C2.B3.A4. B5. B6. B7. C8. B9.B 10.B二、填空题11.5 12.4 13.24 14.615.60;0.3;12;230 16.x=﹣1 17.5 18.;≤x≤18三、解答题19.(1)解:原式==(2)解:原式===∵,∴原式=20. 解:原式=a2-2ab+b2+2a2-4ab-ab+2b2-3a2+ab=3b2-6ab;∵│a-1│+(2+b)2 =0,∴a-1=0,2+b=0,∴a=1,b=-2;将a=1,b=-2代入化简后的式子可得:原式=3×(-2)2-6×1×(-2)=24 21.(1)50;(2)解:F组发言的人数所占的百分比为:10%,所以,估计全年级在这天里发言次数不少于12次的人数为:800×(8%+10%)=144(人)(3)解:∵A组发言的学生为:50×6%=3人,有1位女生,∴A组发言的有2位男生,∵E组发言的学生:4人,∴有2位女生,2位男生.∴由题意可画树状图为:∴共有12种情况,所抽的两位学生恰都是男生的情况有4种,∴所抽的两位学生恰好是一男一女的概率为=22.证明:如图,过点D作DE⊥AC,垂足为E.∵AD平分∠BAC,BD⊥AB,DE⊥AC,∴DE=DB,即点D到AC的距离等于☉D的半径.∴AC与☉D相切23.(1)解:设每个篮球和每个排球的销售利润分别为x元,y元,根据题意得:,解得:,答:每个篮球和每个排球的销售利润分别为25元,20元(2)解:设购进篮球m个,排球(100﹣m)个,根据题意得:,解得:≤m≤35,∴m=34或m=35,∴购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.24.(1)证明:如图,∵∠ACB=90°,E是BA的中点,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰△BEC底边上的中线,∴ED也是等腰△BEC的顶角平分线,∴∠1=∠2,∵AF=AE,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形;(2)解:∵四边形ACEF是菱形,∴AC=CE,由(1)知,AE=CE,∴AC=CE=AE,∴△AEC是等边三角形,∴∠CAE=60°,在Rt△ABC中,∠B=90°﹣∠CAE=90°﹣60°=30°.25.解:探究一:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠ACD,=180°﹣(∠ADC+∠ACD),=180°﹣(180°﹣∠A),=90°+∠A;探究二:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠BCD,=180°﹣(∠ADC+∠BCD),=180°﹣(360°﹣∠A﹣∠B),=(∠A+∠B);探究三:六边形ABCDEF的内角和为:(6﹣2)•180°=720°,∵DP、CP分别平分∠EDC和∠BCD,∴∠PDC=∠EDC,∠PCD=∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD,=180°﹣∠EDC﹣∠BCD,=180°﹣(∠EDC+∠ACD),=180°﹣(720°﹣∠A﹣∠B﹣∠E﹣∠F),=(∠A+∠B+∠E+∠F)﹣180°,即∠P=(∠A+∠B+∠E+∠F)﹣180°.26.(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=∠PCD,又∵∠A=∠P,∴△ABC∽△PDC(2)解:∵∠ABC=30°,AB=4,∴BC= ,∵△ABC∽△PDC,∴∠D=∠ABC=30°,∴CD=6(3)2 ≤CD≤4。
精编2019级湖南省邵阳市中考数学模拟试题有标准答案(Word版)
邵阳市初中毕业学业考试试题卷数学温馨提示:(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分;(2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上;(3)请你在答题卡上作答,答在本试题卷上无效.一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.用计算器依次按键,得到的结果最接近的是A.1.5 B.1.6 C.1.7 D.1.82.如图(一)所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为A.20° B.60°C.70° D.160°3.将多项式x-x3因式分解正确的是A.x(x2-1) B.x(1-x2) C.x(x+1)(x-1) D.x(1+x)(1-x) 4.下列图形中,是轴对称图形的是5.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm =10-9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为A.28×10-9 m B.2.8×10-8 mC.28×109 m D.2.8×108 m6.如图(二)所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是一百馒头一百僧,大僧三个更无争, 小僧三人分一个,大小和尚得几丁.A .80°B .120°C .100°D .90°7.小明参加100m 短跑训练,2018年1~4月的训练成绩如下表所示:月份 1 2 3 4 成绩(s )15.615.415.215体育老师夸奖小明是“田径天才”.请你预测小明5年(60个月)后100m 短跑的成绩为 (温馨提示:目前100m 短跑世界记录为9秒58) A .14.8s B .3.8sC .3sD .预测结果不可靠8.如图(三)所示,在平面直角坐标系中,已知点A (2,4),过 点A 作AB ⊥x 轴于点B .将△AOB 以坐标原点O 为位似中心 缩小为原图形的12,得到△COD ,则CD 的长度是A .2B .1C .4D .2 59.根据李飞与刘亮射击训练的成绩绘制了如图(四)所示的折线统计图.根据图(四)所提供的信息,若要推荐一位成绩较稳定...的选手去参赛,应推荐 A .李飞或刘亮 B .李飞 C .刘亮 D .无法确定10.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人.下列求解结果正确的是A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.点A 在数轴上的位置如图(五)所示,则点A 表示的数的相反数是 .12.如图(六)所示,点E 是平行四边形ABCD 的边BC 延长线上一点,连接AE ,交CD 于点F ,连接BF .写出图中任意一对相似三角形: .13.已知关于x 的方程x 2+3x -m =0的一个解为-3,则它的另一个解是 .14.如图(七)所示,在四边形ABCD 中,AD ⊥AB ,∠C =110°,它的一个外角∠ADE =60°, 则∠B 的大小是 .15.某市对九年级学生进行“综合素质”评价,评价结果分为A ,B ,C ,D ,E 五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图(八)所示的统计图.已知图中从左到右的五个长方形的高之比为2∶3∶3∶1∶1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A ”的学生约为 人. 16.如图(九)所示,一次函数y =ax +b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4).结合图象可知,关于x 的方程ax +b =0的解是 .17.如图(十)所示,在等腰△ABC 中,AB =AC ,∠A =36°.将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处.若AE =3,则BC 的长是_________.18.如图(十一)所示,点A 是反比例函数y =kx图象上一点,作AB ⊥x 轴,垂足为点B .若△AOB 的面积为2,则k 的值是 .三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程) 19.计算:(-1)2+( π -3.14)0-|2-2|.20.先化简,再求值:( a -2b )( a +2b )-(a -2b )2+8b 2,其中a =-2,b =12.21.如图(十二)所示,AB 是⊙O 的直径,点C 为⊙O 上一点,过点B 作BD ⊥CD ,垂足为点D ,连结BC .BC 平分∠ABD . 求证:CD 为⊙O 的切线.22.某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图(十三)所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:项目选手 服装普通话主题演讲技巧 李明85708085张华90 75 75 80结合以上信息,回答下列问题:(1)求服装项目的权数及普通话项目对应扇形的圆心角大小;(2)求李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.23.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000 kg 材料所用的时间与B 型机器人搬运800 kg 材料所用的时间相同.(1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?24.某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图(十四)所示,已知原阶梯式自动扶梯AB 长为10m ,坡角∠ABD 为30°;改造后的斜坡式自动扶梯的坡角∠ACB 为15°,请你计算改造后的斜坡式自动扶梯AC 的长度.(结果精确到0.1m .温馨提示:sin15°≈0.26, cos15°≈0.97,tan15°≈0.27 )25.如图(十五)所示,在四边形ABCD 中,点O ,E ,F ,G 分别是AB ,BC ,CD ,AD 的中点,连接OE ,EF ,FG ,GO ,GE .(1)证明:四边形OEFG 是平行四边形;(2)将△OGE 绕点O 顺时针旋转得到△OMN ,如图(十六)所示,连接GM ,EN .①若OE =3,OG =1,求ENGM的值;②试在四边形ABCD 中添加一个条件,使GM ,EN 的长在旋转过程中始终相等.(不要求证明)26.如图(十七)所示,将二次函数y =x 2+2x +1的图象沿x 轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y =ax 2+bx +c 的图象.函数y =x 2+2x +1的图象的顶点为点A .函数y =ax 2+bx +c 的图象的顶点为点B ,和x 轴的交点为点C ,D (点D 位于点C 的左侧).(1)求函数y =ax 2+bx +c 的解析式;(2)从点A ,C ,D 三个点中任取两个点和点B 构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M 是线段BC 上的动点,点N 是△ABC 三边上的动点,是否存在以AM 为斜边的Rt △AMN ,使△AMN 的面积为△ABC 面积的13,若存在,求tan ∠MAN 的值;若不存在,请说明理由.邵阳市初中毕业学业考试参考答案及评分标准数学一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)题号 1 2 3 4 5 6 7 8 9 10答案 C D D B B B D A C A二、填空题(本大题有8个小题,每小题3分,共24分)11.-212.答案不唯一.例如△EFC∽△AFD,△EAB∽△AFD,△EFC∽△EAB.13.x=014.40°15.1600016.x=217. 318.4三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程)19.(8分)解:(-1 )2+(π-3.14 )0-|2-2|=1+1-(2-2)………………………………………………………………………5分=2-2+2……………………………………………………………………7分=2. …………………………………………………………………………8分 20.(8分)解:( a -2b )( a +2b )-(a -2b )2+8b 2=a 2-(2b )2-(a 2-4ab +4b 2)+8b 2 =a 2-4b 2-a 2+4ab -4b 2+8b 2=4ab . ……………………………………………………………………………6分 将a =-2,b =12 代入得:原式=4×(-2)×12=-4. ……………………………………………………………………………8分 21.(8分)证明:∵BC 平分∠ABD ,∴∠OBC =∠DBC .……………………………………………2分∵OB =OC ,∴∠OBC =∠OCB .……………………………………………………4分 ∴∠DBC =∠OCB .∴OC ∥BD .……………………………………………………6分 ∵BD ⊥CD ,∴OC ⊥CD . 又∵点C 为⊙O 上一点,∴CD 为⊙O 的切线.…………………………………………………………………8分 22.(8分)解:(1)服装项目的权数为10%,普通话项目对应扇形的圆心角为72°;……………2分 (2)众数为85,中位数为82.5;………………………………………………………4分 (3)李明的得分为80.5,张华的得分为78.5,应推荐李明参加比赛.……………8分 23.(8分)解:(1)设A 型机器人每小时搬运x kg 材料,则B 型机器人每小时搬运(x -30)kg 材料,依题意得:1000x=800x -30.………………………………………………………2分 解得x =150,经检验,x =150是原方程的解.所以A 型机器人每小时搬运150kg 材料,B 型机器人每小时搬运120kg 材料.答:略.…………………………………………………………………………………4分 (2)设公司购进A 型机器人y 台,则购进B 型机器人(20-y )台,依题意得:150y +120(20-y )≥2800.………………………………………6分 解得y ≥1313.因为y 为整数,所以公司至少购进A 型机器人14台.答:略.…………………………………………………………………………………8分 24.(8分)解:在Rt △ABD 中,∠ABD =30°,所以AD =12AB =5.………………………………………………………………………2分在Rt △ACD 中,sin ∠ACD =AD AC, 所以AC =ADsin ∠ACD =5sin15°≈19.2(m).答:略.……………………………………………………………………………………8分25.(8分)解:(1)连接AC ,∵点O ,E ,F ,G 分别是AB ,BC ,CD ,AD 的中点,∴OE ∥AC ,OE =12AC ,GF ∥AC ,GF =12AC . ∴OE ∥GF ,OE =GF .∴四边形OEFG 是平行四边形.……………………………………………………3分(2)①∵△OGE 绕点O 顺时针旋转得到△OMN ,∴OG =OM ,OE =ON ,∠GOM =∠EON .∴OGOE =OM ON.∴△OGM ∽△OEN . ∴EN GM =OE OG =31=3.………………………………………………………6分 ②答案不唯一,满足AC =BD 即可.……………………………………………8分26.(10分)解:(1)将抛物线y =x 2+2x +1沿x 轴翻折得到:y =-x 2-2x -1,将抛物线y =-x 2-2x -1,向右平移1个单位得到:y =-x 2,将抛物线y =-x 2向上平移4个单位得到:y =-x 2+4.所求函数y =ax 2+bx +c 的解析式为y =-x 2+4.………………………………2分(2)从A ,C ,D 三个点中任选两个点和点B 构造的三角形有:△BAC ,△BAD ,△BCD . A ,B ,C ,D 的坐标分别为(-1,0),(0,4),(2,0),(-2,0),可求得AB =17,AC =3,BC =25,AD =1,BD =25,CD =4,只有△BCD 为等腰三角形,所以构造的三角形是等腰三角形的概率P =13.…4分 (3)S △ABC =12 AC ·BO =12×3×4=6. ①当点N 在边AC 上时,点M 在边BC 上,在Rt △AMN 中,MN ⊥AC .设点N 的坐标为(m ,0),则AN =m +1,点M 的横坐标为m .由B (0,4),C (2,0)易得线段BC 的解析式为y=-2x +4,其中0≤x ≤2,所以点M 的纵坐标为-2m +4,则MN =-2m +4.S △AMN =12AN ·MN =12(m +1)(-2m +4) =13S △ABC =2. 解得m 1=1,m 2=0.当m =1时,N 点的坐标为(1,0),M 点的坐标为(1,2),AN =2,MN =2. tan ∠MAN =MN AN =22=1.……………5分 当m =0时,N 点的坐标为(0,0),M 点与点B 重合,坐标为(0,4),AN =1,MN =4.tan ∠MAN =MN AN =41=4.………………………………………………………6分 ②当点N 在BC 上时,点M 在BC 上,Rt △AMN 中,MN ⊥AN ,因为S △AMN =13S △ABC ,所以12AN ·MN =13×12BC ·AN , 所以MN =13BC =253. 因为S △ABC =12BC ·AN =12×25·AN =6, 所以AN =65. 所以tan ∠MAN =MN AN =25365=59.…………8分 ③当点N 在AB 上时,点M 在BC 上,Rt △AMN 中,MN ⊥AN .设AN =t ,则BN =17–t ,过点A 作AG ⊥BC 于点G ,由②得AG =65. 在Rt △ABG 中,BG =AB 2-AG 2=75. 易证△BNM ∽△BGA ,所以BN BG =MN AG ,即17-t 75=MN 65,求得MN =617-6t 7, 所以S △AMN =12AN ·MN =12t ·617-6t 7=2, 化简得3t 2-317t +14=0,△=(317)2-4×3×14=-15<0,此方程无解, 所以此情况不存在.综上所述,当点N 在AC 上,点M 与点B 重合时,tan ∠MAN =4;当点N 在AC 上,点M 不与点B 重合时,tan ∠MAN =1;当点N 在BC 上时,tan ∠MAN =59.…………………………10分 注:解答题用其它方法解答参照给分.。
湖南省邵阳县2019届九年级数学下学期期中质量检测试题及参考答案
湖南省邵阳县2019届九年级数学下学期期中质量检测试题(时量120分钟,满分120分)1.-2的相反数是 ( ) A .2 B .-2 C .12 D .−122.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是 ( )A .B .C .D .3.关于x 的方程x mx 21=-的解为正实数,则m 的取值范围是 ( ) A .m≥2 B .m≤2 C.m >2 D .m <24.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是 ( ) A.球体 B . 长方体 C . 圆锥体 D . 圆柱体5.某班七个兴趣小组人数分别为4,4,5,x ,6,6,7.已知这组数据的平均数是5, 则这组数据的中位数是 ( ) A .7 B .6 C .5 D .46.下列运算正确的是 ( )A .2725m m m =+B .63222m m m =-C .()3632b a b a -=- D .()()22422a b b a a b -=-+7.如图,△ABC 内接于⊙O,∠ABC=71°,∠CAB=53°,点D 在优弧ACB 上,则∠ADB 的大小是 ( )A .46° B.53° C.56° D.71°8.如图,一艘海轮位于灯塔P的南偏东70°方向的M 处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的距离为 ( ) A .40海里 B .60海里 C .70海里 D .80海里9.反比例函数xmy =的图像如图所示,下列四个结论:①常数m <-1;②在每个象限内, y 随x 的增大而增大;③若点A (-1,h ),B(2,k)在这个图象上,则h <k ;④若点 P(x,y )在这个图象上,则(,)P x y '--也在这个图象上.其中正确的是 ( ) A. ①② B. ②③C. ③④D. ①④10.如图,在直角坐标系中,直线AB 经点P (3,4),与坐标轴正半轴相交于A ,B 两点, 当△AO B 的面积最小时,△AOB 的内切圆的半径是 ( ) A .2 B .3 C . D .4二、填空题(本大题共6小题,每小题3分,共24分) 11.已知 ()0201212=-++y x ,求yx =12. 已知26m m -=,则3-222m m += .13.一种花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法记为 .第8题图 第9题图 第7题图14.一个不透明的袋子里装着质地、大小都相同的3个红球和1个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.则两次都摸到红球的概率是.15.如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k= .16.在Rt△A BC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为.17、抛物线y=x2+x-4与y轴的交点坐标是。
湖南省邵阳市2019-2020学年中考第四次大联考数学试卷含解析
湖南省邵阳市2019-2020学年中考第四次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列方程中,没有实数根的是( )A .x 2﹣2x=0B .x 2﹣2x ﹣1=0C .x 2﹣2x+1 =0D .x 2﹣2x+2=02.对于不为零的两个实数a ,b ,如果规定:a ★b =()()a b a b a a b b+<⎧⎪⎨-≥⎪⎩,那么函数y =2★x 的图象大致是( ) A . B . C . D . 3.下列各数中是无理数的是( )A .cos60°B .·1.3C .半径为1cm 的圆周长D .384.如图,在△ABC 中,∠C=90°,∠B=30°,AD 是△ABC 的角平分线,DE ⊥AB,垂足为点E,DE=1,则BC= ( )A .3B .2C .3D .3+25.等腰三角形的两边长分别为5和11,则它的周长为( )A .21B .21或27C .27D .256.如图,⊙O 是△ABC 的外接圆,∠B=60°,⊙O 的半径为4,则AC 的长等于( )A .43B .63C .23D .8 7.不等式的最小整数解是( ) A .-3 B .-2C .-1D .2 8.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,则下列结论:①ac>0;②a-b+c<0; ③当x 0<时,y 0<;2a b 0+=④,其中错误的结论有( )A .②③B .②④C .①③D .①④9.下列函数中,二次函数是( )A .y =﹣4x+5B .y =x(2x ﹣3)C .y =(x+4)2﹣x 2D .y =21x 10.cos45°的值是( )A .12B .32C .2D .1 11.股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为( )A .9.5×106B .9.5×107C .9.5×108D .9.5×10912.如图,3个形状大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60°,A 、B 、C 都在格点上,点D 在过A 、B 、C 三点的圆弧上,若E 也在格点上,且∠AED=∠ACD ,则∠AEC 度数为 ( )A .75°B .60°C .45°D .30° 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,路灯距离地面6m ,身高1.5m 的小明站在距离灯的底部(点O )15m 的A 处,则小明的影子AM 的长为________m .14.如图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACB=__________°.15.如图,点M 是反比例函数2y x(x >0)图像上任意一点,MN ⊥y 轴于N ,点P 是x 轴上的动点,则△MNP 的面积为A .1B .2C .4D .不能确定16.若a 是方程2320x x --=的根,则2526a a +-=_____.17.分解因式:244m m ++=___________.18.如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°方向航行,半小时后甲船到达点C ,乙船正好到达甲船正西方向的点B ,则乙船的航程为______海里(结果保留根号).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再计算: 22444332x x x x x x x ++--÷++-其中322x =-+. 20.(6分)今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A 港口正西方的B 处时,发现在B 的北偏东60°方向,相距150海里处的C 点有一可疑船只正沿CA 方向行驶,C 点在A 港口的北偏东30°方向上,海监船向A 港口发出指令,执法船立即从A 港口沿AC 方向驶出,在D 处成功拦截可疑船只,此时D 点与B 点的距离为752海里. (1)求B 点到直线CA 的距离;(2)执法船从A 到D 航行了多少海里?(结果保留根号)21.(6分)某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.文学书和科普书的单价分别是多少元?该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?22.(8分)解不等式组3(2)4 1213x xxx--≤⎧⎪+⎨-⎪⎩f,并写出其所有的整数解.23.(8分)已知:在△ABC中,AC=BC,D,E,F分别是AB,AC,CB的中点.求证:四边形DECF是菱形.24.(10分)如图,点A、B在⊙O上,点O是⊙O的圆心,请你只用无刻度的直尺,分别画出图①和图②中∠A的余角.(1)图①中,点C在⊙O上;(2)图②中,点C在⊙O内;25.(10分)已知:如图,在平行四边形ABCD中,BAD∠的平分线交BC于点E,过点D作AE的垂线交AE于点G,交AB延长线于点F,连接EF,ED.求证:EF ED=;若60ABC∠=︒,6AD=,2CE=,求EF的长.26.(12分)作图题:在∠ABC内找一点P,使它到∠ABC的两边的距离相等,并且到点A、C的距离也相等.(写出作法,保留作图痕迹)27.(12分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.试判断DE与⊙O的位置关系,并说明理由;过点D作DF⊥AB于点F,若3DF=3,求图中阴影部分的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.【详解】A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确.故选D.2.C【解析】【分析】先根据规定得出函数y=2★x的解析式,再利用一次函数与反比例函数的图象性质即可求解.【详解】由题意,可得当2<x,即x>2时,y=2+x,y是x的一次函数,图象是一条射线除去端点,故A、D错误;当2≥x,即x≤2时,y=﹣2x,y是x的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0<x≤2,故B错误.故选:C.【点睛】本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y=2★x的解析式是解题的关键.3.C【解析】分析:根据“无理数”的定义进行判断即可. 详解:A选项中,因为1cos602=o,所以A选项中的数是有理数,不能选A;B选项中,因为·1.3是无限循环小数,属于有理数,所以不能选B;C选项中,因为半径为1cm的圆的周长是2πcm,2π是个无理数,所以可以选C;D,2是有理数,所以不能选D.故选.C.点睛:正确理解无理数的定义:“无限不循环小数叫做无理数”是解答本题的关键.4.C【解析】试题分析:根据角平分线的性质可得CD=DE=1,根据Rt△ADE可得AD=2DE=2,根据题意可得△ADB 为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1.考点:角平分线的性质和中垂线的性质.5.C【解析】试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;当腰取11,则底边为5,则三角形的周长=11+11+5=1.故选C.考点:等腰三角形的性质;三角形三边关系.6.A【解析】【分析】【详解】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=12∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=3OC=23,∴AC=2CD=43.故选A.【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.7.B【解析】【分析】先求出不等式的解集,然后从解集中找出最小整数即可.【详解】∵,∴,∴,∴不等式的最小整数解是x=-2.故选B.【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.最后一步系数化为1时,如果未知数的系数是负数,则不等号的方向要改变,如果系数是正数,则不等号的方不变. 8.C【解析】【分析】①根据图象的开口方向,可得a的范围,根据图象与y轴的交点,可得c的范围,根据有理数的乘法,可得答案;②根据自变量为-1时函数值,可得答案;③根据观察函数图象的纵坐标,可得答案;④根据对称轴,整理可得答案.【详解】图象开口向下,得a <0,图象与y 轴的交点在x 轴的上方,得c >0,ac <,故①错误;②由图象,得x=-1时,y <0,即a-b+c <0,故②正确;③由图象,得图象与y 轴的交点在x 轴的上方,即当x <0时,y 有大于零的部分,故③错误;④由对称轴,得x=-2b a =1,解得b=-2a , 2a+b=0故④正确;故选D .【点睛】考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点. 9.B【解析】A. y=-4x+5是一次函数,故此选项错误;B. y= x(2x-3)=2x 2-3x ,是二次函数,故此选项正确;C. y=(x+4)2−x 2=8x+16,为一次函数,故此选项错误;D. y=21x 是组合函数,故此选项错误. 故选B.10.C【解析】【分析】本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.【详解】cos45°= .故选:C.【点睛】本题考查特殊角的三角函数值.11.B【解析】试题分析:15000000=1.5×2.故选B.考点:科学记数法—表示较大的数12.B【解析】【分析】将圆补充完整,利用圆周角定理找出点E的位置,再根据菱形的性质即可得出△CME为等边三角形,进而即可得出∠AEC的值.【详解】将圆补充完整,找出点E的位置,如图所示.∵弧AD所对的圆周角为∠ACD、∠AEC,∴图中所标点E符合题意.∵四边形∠CMEN为菱形,且∠CME=60°,∴△CME为等边三角形,∴∠AEC=60°.故选B.【点睛】本题考查了菱形的性质、等边三角形的判定依据圆周角定理,根据圆周角定理结合图形找出点E的位置是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】【分析】易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.【详解】解:根据题意,易得△MBA ∽△MCO ,根据相似三角形的性质可知 AB AM OC OA AM=+ , 即1.5615AM AM=+, 解得AM=1m .则小明的影长为1米.故答案是:1.【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长.14.1.【解析】【分析】连接BD ,如图,根据圆周角定理得到∠ABD =90°,则利用互余计算出∠D =1°,然后再利用圆周角定理得到∠ACB 的度数.【详解】连接BD ,如图,∵AD 为△ABC 的外接圆⊙O 的直径,∴∠ABD =90°,∴∠D =90°﹣∠BAD =90°﹣50°=1°,∴∠ACB =∠D =1°.故答案为1.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.15.A【解析】【分析】可以设出M 的坐标,MNP V 的面积即可利用M 的坐标表示,据此即可求解.【详解】设M 的坐标是(m,n),则mn=2.则MN=m ,MNP V 的MN 边上的高等于n.则MNP V 的面积1 1.2mn == 故选A.【点睛】考查反比例函数系数k 的几何意义,是常考点,需要学生熟练掌握.16.1【解析】【分析】利用一元二次方程解的定义得到3a 2-a=2,再把2526a a +-变形为()2523a a --,然后利用整体代入的方法计算.【详解】∵a 是方程2320x x --=的根,∴3a 2-a-2=0,∴3a 2-a=2,∴2526a a +-=()2523a a --=5-2×2=1.故答案为:1.【点睛】此题考查一元二次方程的解,解题关键在于掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.()22m +【解析】【分析】直接利用完全平方公式分解因式得出答案.【详解】解:244m m ++=()22m +,故答案为()22m +.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.18.【解析】【分析】本题可以求出甲船行进的距离AC ,根据三角函数就可以求出AB ,即可求出乙船的路程.【详解】由已知可得:AC=60×0.5=30海里, 又∵甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°,∴∠BAC=90°,又∵乙船正好到达甲船正西方向的B 点,∴∠C=30°,∴AB=AC•tan30°=30×3答:乙船的路程为海里.故答案为【点睛】本题主要考查的是解直角三角形的应用-方向角问题及三角函数的定义,理解方向角的定义是解决本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.23x -+;2- 【解析】【分析】根据分式的化简求值,先把分子分母因式分解,再算乘除,通分后计算减法,约分化简,最后代入求值即可.【详解】 解:22444332x x x x x x x ++--÷++- =2(2)(2)(2)332x x x x x x x ++--÷++- =2(2)233(2)(2)x x x x x x x +--⋅+++-=233 x xx x+-++=23 x-+当322x=-+时,原式=2 3223-=--++.【点睛】此题主要考查了分式的化简求值,把分式的除法化为乘法,然后约分是解题关键.20.(1)B点到直线CA的距离是75海里;(2)执法船从A到D航行了(75﹣253)海里.【解析】【分析】(1)过点B作BH⊥CA交CA的延长线于点H,根据三角函数可求BH的长;(2)根据勾股定理可求DH,在Rt△ABH中,根据三角函数可求AH,进一步得到AD的长.【详解】解:(1)过点B作BH⊥CA交CA的延长线于点H,∵∠MBC=60°,∴∠CBA=30°,∵∠NAD=30°,∴∠BAC=120°,∴∠BCA=180°﹣∠BAC﹣∠CBA=30°,∴BH=BC×sin∠BCA=150×12=75(海里).答:B点到直线CA的距离是75海里;(2)∵BD=2海里,BH=75海里,∴DH22BD BH-75(海里),∵∠BAH=180°﹣∠BAC=60°,在Rt△ABH中,tan∠BAH=BHAH3,∴AH=253,∴AD=DH﹣AH=(75﹣253)(海里).答:执法船从A到D航行了(75﹣253)海里.【点睛】本题主要考查了勾股定理的应用,解直角三角形的应用-方向角问题.能合理构造直角三角形,并利用方向角求得三角形内角的大小是解决此题的关键.21.(1)文学书的单价为40元/本,科普书的单价为1元/本;(2)购进1本文学书后最多还能购进2本科普书.【解析】【分析】(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,根据数量=总价÷单价结合用800元购进的文学书本数与用1200元购进的科普书本数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进m本科普书,根据总价=文学书的单价×购进本数+科普书的单价×购进本数结合总价不超过5000元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.【详解】解:(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,依题意,得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x+20=1.答:文学书的单价为40元/本,科普书的单价为1元/本.(2)设购进m本科普书,依题意,得:40×1+1m≤5000,解得:m≤.∵m为整数,∴m的最大值为2.答:购进1本文学书后最多还能购进2本科普书.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.22.不等式组的解集为1≤x <2,该不等式组的整数解为1,2,1.【解析】【分析】先求出不等式组的解集,即可求得该不等式组的整数解.【详解】()3241213x x x x ⎧--≤⎪⎨+>-⎪⎩①②, 由①得,x≥1,由②得,x <2.所以不等式组的解集为1≤x <2,该不等式组的整数解为1,2,1.【点睛】本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.见解析【解析】【详解】证明:∵D 、E 是AB 、AC 的中点∴DE=BC ,EC=AC∵D 、F 是AB 、BC 的中点∴DF=AC ,FC=BC∴DE=FC=BC ,EC=DF=AC∵AC=BC∴DE=EC=FC=DF∴四边形DECF 是菱形24.图形见解析【解析】试题分析:(1)根据同弧所对的圆周角相等和直径所对的圆周角为直角画图即可;(2)延长AC 交⊙O 于点E ,利用(1)的方法画图即可.试题解析:如图①∠DBC 就是所求的角;如图②∠FBE 就是所求的角25.(1)详见解析;(2)27EF =【解析】【分析】(1)根据题意AB 平分BAD ∠可得90AGF AGD ∠=∠=︒,从而证明()FAG DAG ASA ∆≅∆即可解答 (2)由(1)可知6AF AD ==,再根据四边形ABCD 是平行四边形可得642BF AF AB =-=-=,过点F 作FH EB ⊥延长线于点H ,再根据勾股定理即可解答【详解】(1)证明:Q AB 平分BAD ∠FAG DAG ∴∠=∠DG AE ⊥Q90AGF AGD ∴∠=∠=︒又AG AG =Q()FAG DAG ASA ∴∆≅∆GF GD ∴=又DF AE ⊥QEF ED ∴=(2)FAG DAG ∆≅∆Q6AF AD ∴==Q 四边形ABCD 是平行四边形//AD BC ∴,6BC AD ==180********BAD ABC ∴∠=︒-∠=︒-︒=︒1602FAE BAD ∴∠=∠=︒ 60FAE B ∴∠=∠=︒ ABE ∴∆为等边三角形624AB AE BE BC CE ∴===-=-=642BF AF AB =-=-=过点F 作FH EB ⊥延长线于点H .在Rt BFH ∆中,60HBF ABC ∠=∠=︒30HFB ∴∠=︒112BH BF ∴== 2222213HF BF BH =-=-=415EH BE BH =+=+=()22223527EF FH EH =+=+= 【点睛】此题考查三角形全等的判定与性质,勾股定理,平行四边形的性质,解题关键在于作好辅助线 26.见解析【解析】【分析】先作出∠ABC 的角平分线,再连接AC ,作出AC 的垂直平分线,两条平分线的交点即为所求点.【详解】①以B 为圆心,以任意长为半径画弧,分别交BC 、AB 于D 、E 两点;②分别以D 、E 为圆心,以大于12DE 为半径画圆,两圆相交于F 点; ③连接AF ,则直线AF 即为∠ABC 的角平分线; ⑤连接AC ,分别以A 、C 为圆心,以大于12AC 为半径画圆,两圆相交于F 、H 两点; ⑥连接FH 交BF 于点M ,则M 点即为所求.【点睛】本题考查的是角平分线及线段垂直平分线的作法,熟练掌握是解题的关键.27.(1)DE 与⊙O 相切,理由见解析;(2)阴影部分的面积为2π33 【解析】【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切;(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵3∴223+33()=6,∵sin∠DBF=31 =62,∴∠DBA=30°,∴∠DOF=60°,∴sin60°=33 DFDO DO==,∴3,则3故图中阴影部分的面积为:26013236022ππ⨯-=-. 【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO 的长是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届湖南省邵阳县下塘云中学九年级中考四模试卷数学(考试时间:120分钟,满分100分)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(每小题只有一个正确答案,共10小题,满分30分)1. 下面简单几何体的主视图是()A. B. C. D.【答案】C【解析】试题分析:根据三视图的法则可得:A为主视图,C为左视图.2. 有长度分别为3、5、7、9的四条线段,从中任取三条线段能组成三角形的概率是()A. B. C. D.【答案】A【解析】分析:由四条线段中任意取3条,是一个列举法求概率问题,是无放回的问题,共有4种可能结果,每种结果出现的机会相同,满足两边之和大于第三边构成三角形的有3个结果.因而就可以求出概率.详解:由四条线段中任意取3条,共有4种可能结果,每种结果出现的机会相同,满足两边之和大于第三边构成三角形的有3个结果,所以P(取出三条能构成三角形)=.故选:A点睛:本题考查了用列举法求随机事件的概率,用到的知识点为:概率等于所求情况数与总情况数之比;组成三角形的两条小边之和大于最大的边.3. 如果单项式-3x4a-b y2与x3y a+b的和是单项式,那么这两个单项式的积是()A. 3x6y4B. -3x3y2C. -3x3y2D. -3x6y4【答案】D【解析】分析:首先同类项的定义,即同类项中相同字母的指数也相同,得到关于a,b的方程组,然后求得a、b的值,即可写出两个单项式,从而求出这两个单项式的积.详解:由同类项的定义,得,解得.所以原单项式为:-3x3y2和x3y2,其积是-3x6y4.故选:D.点睛:本题考查同类项定义、解二元一次方程组的方法和同类项相乘的法则;要准确把握法则:同类项相乘系数相乘,指数相加.4. 某测量队在山脚A处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为()(精确到1米,=1.732).A. 585米B. 1014米C. 805米D. 820米【答案】C【解析】过点D作DF⊥AC于F,在直角△ADF中,AF=AD•cos30°=300米,DF=AD=300米,设FC=x,则AC=300+x,在直角△BDE中,BE=DE=x,则BC=300+x,在直角△ACB中,∠BAC=45°,∴这个三角形是等腰直角三角形,∴AC=BC,∴300+x=300+x,解得:x=300,∴BC=AC=300+300,∴山高是300+300-15=285+300≈805(米),故选C.5. 已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为()A. (3,4)或(2,4)B. (2,4)或(8,4)C. (3,4)或(8,4)D. (3,4)或(2,4)或(8,4)【答案】D【解析】分析:此题分二种情况(1)OD是等腰三角形的底边时,(2)OD是等腰三角形的一条腰时,①若点O是顶角顶点时,②若D是顶角顶点时,分别进行讨论得出P点的坐标,再选择即可.详解:(1)OD是等腰三角形的底边时,P就是OD的垂直平分线与CB的交点,此时OP=PD≠5;(2)OD是等腰三角形的一条腰时:①若点O是顶角顶点时,P点就是以点O为圆心,以5为半径的弧与CB的交点,在直角△OPC中,CP=,则P的坐标是(3,4).②若D是顶角顶点时,P点就是以点D为圆心,以5为半径的弧与CB的交点,过D作DM⊥BC于点M,在直角△PDM中,PM==3,当P在M的左边时,CP=5-3=2,则P的坐标是(2,4);当P在M的右侧时,CP=5+3=8,则P的坐标是(8,4).故P的坐标为:(3,4)或(2,4)或(8,4).故选:D.点睛:此题主要考查了矩形的性质以及坐标与图形的性质和等腰三角形的性质,根据△ODP是腰长为5的等腰三角形进行分类讨论是解决问题的关键6. 如图,在△ABC中,把△ABC沿直线AD翻折180°,使点C 落在点B的位置,则线段AD是()A. 边BC上的中线B. 边BC上的高C. ∠BAC的平分线D. 以上都是【答案】D【解析】分析:根据折叠的性质即可得到结论.详解:∵把△ABC沿直线AD翻折180°,使点C 落在点B的位置,∴AB=AC,BD=CD,∠BAD=∠CAD,∠ADB=∠ADC=×180°=90°,∴AD⊥BC,∴线段AD是边BC上的中线,也是边BC上的高,还是∠BAC的平分线,故选:D.点睛:本题考查了翻折变换(折叠问题),熟练掌握折叠的性质是解题的关键.7. 如图,OB⊥OD,OC⊥OA,∠BOC=32°,那么∠AOD等于()A. 148°B. 132°C. 128°D. 90°【答案】A【解析】试题分析:由OB⊥OD,OC⊥OA可得∠AOC=∠BOD=90°,再结合∠BOC=32°可得∠AOB的度数,从而求得结果.∵OB⊥OD,OC⊥OA∴∠AOC=∠BOD=90°∵∠BOC=32°∴∠AOB=58°∴∠AOD=148°故选A.考点:垂直的定义,比较角的大小点评:本题属于基础应用题,只需学生熟练掌握角的大小关系,即可完成.8. 如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A. 40°B. 30°C. 20°D. 10°【答案】D【解析】试题分析:由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA′D﹣∠B,又折叠前后图形的形状和大小不变,∠CA′D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB=50°﹣40°=10°.故选:D.考点:三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).9. 如图所示,在△ABC中,AB=AC,AB的垂直平分线DE交BC的延长线于E,交AC于F,连接BF,∠A=50°,AB+BC=16cm,则△BCF的周长和∠EFC分别等于()A. 16cm,40°B. 8cm,50°C. 16cm,50°D. 8cm,40°【答案】A【解析】试题分析:∵AB=AC,AB的垂直平分线为DE,∴AC=AB=2BD,BF=AF,∴△BCF的周长="BC+BF+FC" =AF+CF+BC=AC+BC= AB+BC=16cm,∵∠A=50°,∠ADF=90°∴∠AFD=40°,∴∠EFC=∠AFD=40°.考点:1.等腰三角形的性质2.线段垂直平分线的性质3.直角三角形的性质.10. 如图,在□ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为_______.A. 36°B. 52°C. 48°D. 30°【答案】A【解析】分析:由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.详解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°-∠EAD′-∠D′=108°,∴∠FED′=108°-72°=36°;故选:A.点睛:本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.二、填空题(共10小题;共30分)11. 某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有________个.【答案】18【解析】试题分析::由已知可得出:红球的频率为0.35,黄球的频率为0.25,蓝球的频率为0.4,故口袋中黄色玻璃球有0.25×72=18(个).故答案为:18.考点:频率.12. 若a=﹣10,那么﹣a=________【答案】10【解析】因为-a表示a的相反数,且a=-10,所以-a=-(-10)=10,故答案为:10.13. 如图,∠AOB,∠BOC,∠AOC的大小关系用“>”连接起来:________.【答案】∠AOC>∠AOB>∠BOC【解析】分析:根据所给出的图形可直接得出答案.详解:根据题意得:∠AOC>∠AOB>∠BOC.故答案为:∠AOC>∠AOB>∠BOC.学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...14. 如图,在△ABC中,∠BAC=35°,将△ABC绕点A顺时针方向旋转50°,得到△AB′C′,则∠B′AC的度数是________.【答案】15°【解析】∵∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,∴∠B′AC′=33°,∠BAB′=50°,∴∠B′AC的度数=50°−33°=17°.故答案为:17°.15. 已知,则=________.【答案】【解析】分析:根据比例的性质进行解答.详解:设a=3k,b=4k,则=.故答案为:.点睛:本题是基础题,考查了比例的基本性质,比较简单.16. 下图是在正方形的方格中按规律填成的阴影,根据此规律,则第个图中阴影部分小正方形的个数是________.【答案】n2+n+2【解析】试题解析:仔细观察图形知道:每一个阴影部分由左边的正方形和右边的矩形构成,分别为:第一个图有:1+1+2个,第二个图有:4+2+2个,第三个图有:9+3+2个,…第n个为n2+n+2.考点:规律型:图形的变化类.17. 如图,△ABC中,AD是中线,∠BAD=∠B+∠C,tan∠ABC=,则tan∠BAD=________.【答案】【解析】延长AD到E,使AD=DE,CF,在与,,,所以,是等腰三角形,s设EM= x,DE=11,MC=10,,,x=,tan∠BAD=.故答案为.点睛:倍长中线法构造全等三角形,如图,AD是中线,令AD=DE,则ADC全等EBD.18. 如图,某公园入口处原有三阶台阶,每级台阶高为20cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡的坡度i=,则AC的长度是________ cm.【答案】240【解析】分析:过B作AC的垂线,根据坡面BC的坡度和铅直高度,可求出坡面BC的水平宽,进而可求出AC的长.详解:过B作BD⊥AC于D,则AD=30+30=60.Rt△BCD中,tan∠BCD=i=,BD=60.∴CD=BD÷i=300,∴AC=CD-AD=240(cm).点睛:在坡度坡角问题中,需注意的是坡度是坡角的正切值,是坡面铅直高度和水平宽度的比.19. 如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为________.【答案】【解析】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===.故答案为:.20. 如图,在直角坐标系中,直线y=6﹣x与双曲线(x>0)的图象相交于A,B,设点A的坐标为(m,n),那么以m为长,n为宽的矩形的面积和周长分别为________,________.【答案】(1). 4(2). 12【解析】∵点A(m,n)在直线y=6﹣x与双曲线的图象上,∴n=6﹣m,n=,即m+n=6,mn=4,∴以m为长、n为宽的矩形面积为mn=4,周长为2(m+n)=12.点睛:本题考查了一次函数和反比例函数的交点问题,解决本题应观察所求的条件和已知条件之间的联系,根据整体思想来解决.三、解答题(共8小题;共60分)21. 计算:(π﹣4)0+|3﹣tan60°|﹣()﹣2+.【答案】2【解析】试题分析:根据零指数幂的性质、绝对值的性质、负整数指数幂的性质、二次根式的化简方法依次计算各项后,合并即可.试题解析:原式=1+3﹣4+3=.22. (1)因式分解:a(n﹣1)2﹣2a(n﹣1)+a.(2)解方程:.【答案】(1)a(n﹣2)2(2)x=-【解析】分析:(1)首先提取公因式a,再利用完全平方公式分解因式得出答案;(2)首先找出分式的最简公分母,直接去分母,再解方程得出答案.详解:(1)原式=a[(n-1)2-2(n-1)+1]=a[(n-1)-1]2,=a(n-2)2;(2)去分母得:3x-3(x+1)=2x,解得:x=−,检验x=−是原方程的解.点睛:此题主要考查了提取公因式法以及公式法分解因式和解分式方程,正确掌握解分式方程的方法是解题关键.23. 求图中阴影部分的周长和面积.(单位:cm)【答案】8πcm2【解析】试题分析:阴影部分的周长就是直径为6和2的两圆的周长之和,面积是两圆的面积之差.试题解析:C阴影=2πr外+2πr内=2π()=2×π×4=8π(cm),S阴影=π(2-2)=π×(32-12)=8πcm2.24. 网络时代的到来,很多家庭都拉入了网络,一家电信公司给顾客提供上网费的两种计费方式:方式A以每分钟0.05 元的价格按上网时间计费;方式B除收月基费54元外加每分0.02元的价格按上网时间计费.如何选择更经济?【答案】见解析【解析】分析:方式A,根据费用=单价×时间列式即可;方式B,根据费用=月基本费+上网费用列式整理即可;分y A=y B、y A>y B、y A<y B三种情况讨论求解.详解:y A=0.05x,y B=0.02x+54;①y A=y B时,0.05x=0.02x+54,解得x=1800,②y A>y B时,0.05x>0.02x+54,解得x>1800,③y A<y B时,0.05x<0.02x+54,解得x<1800,综上所述,x=1800时,两种方式一样,x>1800时,选方式B,x<1800时,选方式A.点睛:本题考查了一次函数的应用,理解两种收费方式的组成是解题的关键,要注意分情况讨论.25. 如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”.如:8=32﹣12,16=52﹣32,24=72﹣52,…因此8,16,24这三个数都是奇特数.(1)56这个数是奇特数吗?为什么?(2)设两个连续奇数的2n﹣1和2n+1(其中n取正整数),由这两个连续奇数构造的奇特数是8的倍数吗?为什么?【答案】(1)是(2)两个连续奇数构造的奇特数是8的倍数【解析】分析:(1)根据56=152-132进行判断.(2)利用平方差公式计算(2n+1)2-(2n-1)2=(2n+1+2n-1)(2n+1-2n+1)=4n•2=8n,得到两个连续奇数构造的奇特数是8的倍数.详解:(1)56这个数是奇特数.因为56=152-132.(2)两个连续奇数构造的奇特数是8的倍数.理由如下:(2n+1)2-(2n-1)2=(2n+1+2n-1)(2n+1-2n+1)=4n•2=8n.点睛:本题考查了平方差公式:a2-b2=(a-b)(a-b).也考查了代数式的变形能力.26. 如图,在平面直角坐标系xOy中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0,x>0)的图象交于第一象限内的A、B两点,过点A作AC⊥x轴于点C,AC=3,点B的坐标为(2,6)(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象,请直接写出y1<y2时x的取值范围.【答案】(1)反比例函数的解析式为:y=,一次函数的解析式为:y=﹣x+9(2)9(3)当0<x<2或x >4时,y1<y2【解析】分析:(1)根据题意求出点A的坐标,利用待定系数法求出反比例函数和一次函数的解析式;(2)作BE⊥OC于E,根据△AOB的面积=四边形BDOE的面积+梯形ABEC的面积-△ODB的面积-△AOC 的面积计算;(3)结合图象解答.详解:(1)∵点B的坐标为(2,6),∴m=2×6=12,∵AC=3,∴点A的纵坐标为3,则点A的横坐标为=4,则点A的坐标为:(4,3),由题意得,,解得,,∴反比例函数的解析式为:y=,一次函数的解析式为:y=-x+9;(2)作BE⊥OC于E,如图,△AOB的面积=四边形BDOE的面积+梯形ABEC的面积-△ODB的面积-△AOC的面积=2×6+×(3+6)×2-×2×6-×4×3=9;(3)由图象可知,当0<x<2或x>4时,y1<y2.点睛:本题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式、反比例函数与一次函数的交点的求法是解题的关键27. 在数学兴趣小组活动中,小明进行数学探究活动,将边长为的正方形ABCD与边长为2的正方形AEFG 按图1位置放置,AD与AE在同一直线l上,AB与AG在同一直线上.(1)图1中,小明发现DG=BE,请你帮他说明理由.(2)小明将正方形ABCD按如图2那样绕点A旋转一周,旋转到当点C恰好落在直线l上时,请你直接写出此时BE的长.【答案】(1)证明见解析(2)或【解析】分析:(1)根据正方形的性质得出AD=AB,AG=AE,再利用SAS证明△DAG≌△BAE,根据全等三角形对应边相等即可得出DG=BE;(2)分两种情况:①C在EA的延长线上时,连结BD交AC于O,求出OB、OE,然后在Rt△BOE中,利用勾股定理可求出BE的长;②C在AE上时,证明C与E重合,那么详解:(1)如图1,∵四边形ABCD与四边形AEFG都是正方形,∴AD=AB,AG=AE,在△DAG与△BAE中,∴△DAG≌△BAE,∴DG=BE;(2)将正方形ABCD按如图2那样绕点A旋转一周,旋转到当点C恰好落在直线l上时,分两种情况:①如果C在EA的延长线上时,如备用图1,连结BD交AC于O,∵正方形ABCD边长为,∴∴OB=OA=12BD=1.∵正方形AEFG边长为2,∴OE=OA+AE=1+2=3.在Rt△BOE中,∵∴②如果C在AE上时,如备用图2,连结BD交AC于O,∵正方形ABCD边长为,∴∵正方形AEFG边长为2,∴AE=2,∴C与E重合,∴故所求BE的长为或.点睛:属于四边形的综合题,考查了正方形的性质、矩形的性质、全等三角形的判定与性质以及勾股定理等知识此题综合性较强,难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.28. 如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE//OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2-12+36+|n-2m|=0.(1)求A、B两点的坐标?(2)若点D为AB中点,求OE的长?(3)如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.【答案】(1)点A为(3,0),点B为(0,6)(2OE=1.5(3)点P为(6,-6)【解析】分析:(1)根据非负数的性质,得出方程(n-6)2=0,|n-2m|=0,求得m=3,n=6,即可得到A、B 两点的坐标;(2)延长DE交x轴于点F,延长FD到点G,使得DG=DF,连接BG,构造全等三角形,再根据BG=BE列出关于x的方程,即可求得OE的长;(3)分别过点F、P作FM⊥y轴于点M,PN⊥y轴于点N,设点E为(0,m),构造全等三角形,再根据F点的横坐标与纵坐标相等,得出方程m+2x-6=m+x,解得:x=6,即可得到点P为(6,-6).本题解析:(1)∵∴∵,∴,∴ m=3,n=6∴点A为(3,0),点B为(0,6)(2)延长DE交x轴于点F,延长FD到点G,使得DG=DF,连接BG设OE=x∵OC平分∠AOB∴∠BOC=∠AOC=45°∵DE∥OC∴∠EFO=∠FEO=∠BEG=∠BOC=∠AOC=45°∴OE=OF=x在△ADF和△BDG中∵∴△ADF≌△BDG(SAS)∴BG=AF=3+x,∠G=∠AFE=45°∴∠G=∠BEG=45°∴BG=BE=6-x∴6-x=3+x解得:x=1.5∴OE=1.5(3)分别过点F、P作FM⊥y轴于点M,PN⊥y轴于点N 设点E为(0,m)∵点P的坐标为(x,-2x+6)则PN=x,EN=m+2x-6∵∠PEF=90°∴∠PEN+∠FEM=90°∵FM⊥y轴∴∠MFE+∠FEM=90°∴∠PEN=∠MFE在△EFM和△PEN中∵∴△EFM≌△PEN(AAS)∴ME=NP=x,FM=EN=m+2x-6∴点F为(m+2x-6,m+x)∵F点的横坐标与纵坐标相等∴m+2x-6=m+x解得:x=6∴点P为(6,-6)点睛:本题属于三角形综合题,主要考查了非负数的性质,等腰直角三角形的性质及全等三角形的判定与性质的综合应用,解决问题的关键是作辅助线构造全等三角形,据全等三角形的对应边相等进行计算即可.21。