2020-2021学年山东省泰安市高一上学期期末考试数学试题 (解析版)
2020-2021学年必修二高一数学下学期期末第八章 立体几何初步(章节专练解析版)
第八章 立体几何初步(章节复习专项训练)一、选择题1.如图,在棱长为1正方体ABCD 中,点E ,F 分别为边BC ,AD 的中点,将ABF ∆沿BF 所在的直线进行翻折,将CDE ∆沿DE 所在直线进行翻折,在翻折的过程中,下列说法错误..的是A .无论旋转到什么位置,A 、C 两点都不可能重合B .存在某个位置,使得直线AF 与直线CE 所成的角为60︒C .存在某个位置,使得直线AF 与直线CE 所成的角为90︒D .存在某个位置,使得直线AB 与直线CD 所成的角为90︒【答案】D【详解】解:过A 点作AM⊥BF 于M ,过C 作CN⊥DE 于N 点在翻折过程中,AF 是以F 为顶点,AM 为底面半径的圆锥的母线,同理,AB ,EC ,DC 也可以看成圆锥的母线;在A 中,A 点轨迹为圆周,C 点轨迹为圆周,显然没有公共点,故A 正确;在B 中,能否使得直线AF 与直线CE 所成的角为60°,又AF ,EC 分别可看成是圆锥的母线,只需看以F 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于60°即可,故B 正确;在C 中,能否使得直线AF 与直线CE 所成的角为90°,只需看以F 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故C 正确;在D 中,能否使得直线AB 与直线CD 所成的角为90︒,只需看以B 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故D 不成立;故选D .2.如图所示,多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,EF 到平面ABCD 的距离为2,则该多面体的体积V 为( )A .92B .5C .6D .152【答案】D【详解】解法一:如图,连接EB ,EC ,AC ,则213263E ABCD V -=⨯⨯=.2AB EF =,//EF AB2EAB BEF S S ∆∆∴=.12F EBC C EFB C ABE V V V ---=∴= 11132222E ABC E ABCD V V --==⨯=. E ABCDF EBC V V V --∴=+315622=+=. 解法二:如图,设G ,H 分别为AB ,DC 的中点,连接EG ,EH ,GH ,则//EG FB ,//EH FC ,//GH BC ,得三棱柱EGH FBC -,由题意得123E AGHD AGHD V S -=⨯ 1332332=⨯⨯⨯=, 133933332222GH FBC B EGH E BGH E GBCH E AGHD V V V V V -----===⨯==⨯=⨯, 915322E AGHD EGH FBC V V V --=+=+=∴. 解法三:如图,延长EF 至点M ,使3EM AB ==,连接BM ,CM ,AF ,DF ,则多面体BCM ADE -为斜三棱柱,其直截面面积3S =,则9BCM ADE V S AB -=⋅=.又平面BCM 与平面ADE 平行,F 为EM 的中点,F ADE F BCM V V --∴=,2F BCM F ABCD BCM ADE V V V ---∴+=, 即12933233F BCM V -=-⨯⨯⨯=, 32F BCM V -∴=,152BCM ADE F BCM V V V --=-=∴. 故选:D 3.下列命题中正确的是A .若a ,b 是两条直线,且a ⊥b ,那么a 平行于经过b 的任何平面B .若直线a 和平面α满足a ⊥α,那么a 与α内的任何直线平行C .平行于同一条直线的两个平面平行D .若直线a ,b 和平面α满足a ⊥b ,a ⊥α,b 不在平面α内,则b ⊥α【答案】D【详解】解:如果a ,b 是两条直线,且//a b ,那么a 平行于经过b 但不经过a 的任何平面,故A 错误; 如果直线a 和平面α满足//a α,那么a 与α内的任何直线平行或异面,故B 错误;如果两条直线都平行于同一个平面,那么这两条直线可能平行,也可能相交,也可能异面,故C 错误; D 选项:过直线a 作平面β,设⋂=c αβ,又//a α//a c ∴又//a b//b c ∴又b α⊂/且c α⊂//b α∴.因此D 正确.故选:D .4.如图,正方体ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,M 为棱BB 1的中点,则下列结论中错误的是( )A .D 1O⊥平面A 1BC 1B .MO⊥平面A 1BC 1C .二面角M -AC -B 等于90°D .异面直线BC 1与AC 所成的角等于60°【答案】C【详解】对于A ,连接11B D ,交11AC 于E ,则四边形1DOBE 为平行四边形 故1D O BE1D O ⊄平面11,A BC BE ⊂平面111,A BC DO ∴平面11A BC ,故正确对于B ,连接1B D ,因为O 为底面ABCD 的中心,M 为棱1BB 的中点,1MO B D ∴,易证1B D ⊥平面11A BC ,则MO ⊥平面11A BC ,故正确;对于C ,因为,BO AC MO AC ⊥⊥,则MOB ∠为二面角M AC B --的平面角,显然不等于90︒,故错误对于D ,1111,AC AC AC B ∴∠为异面直线1BC 与AC 所成的角,11AC B ∆为等边三角形,1160AC B ∴∠=︒,故正确故选C5.如图,在长方体1111ABCD A BC D -中,E 、F 分别是棱1AA 和1BB 的中点,过EF 的平面EFGH 分别交BC 和AD 于点G 、H ,则GH 与AB 的位置关系是A .平行B .相交C .异面D .平行或异面【答案】A【详解】 在长方体1111ABCD A BC D -中,11//AA BB ,E 、F 分别为1AA 、1BB 的中点,//AE BF ∴,∴四边形ABFE 为平行四边形,//EF AB ∴, EF ⊄平面ABCD ,AB 平面ABCD ,//EF ∴平面ABCD ,EF ⊂平面EFGH ,平面EFGH平面ABCD GH =,//EF GH ∴, 又//EF AB ,//GH AB ∴,故选A.6.如图所示,点S 在平面ABC 外,SB⊥AC ,SB=AC=2,E 、F 分别是SC 和AB 的中点,则EF 的长是A .1 BC .2D .12【答案】B【详解】取BC 的中点D ,连接ED 与FD⊥E 、F 分别是SC 和AB 的中点,点D 为BC 的中点⊥ED⊥SB ,FD⊥AC,而SB⊥AC ,SB=AC=2则三角形EDF 为等腰直角三角形,则ED=FD=1即故选B.7.如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆O 上一点(不同于A ,B 两点),且PA AC =,则二面角P BC A --的大小为A .60°B .30°C .45°D .15°【答案】C【详解】 解:由条件得,PA BC AC BC ⊥⊥.又PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,所以BC ⊥平面PAC .又因为PC ⊂平面PAC , 所以BC PC ⊥.所以PCA ∠为二面角P BC A --的平面角.在Rt PAC ∆中,由PA AC =得45PCA ︒∠=. 故选:C .8.在空间四边形ABCD 中,若AD BC BD AD ⊥⊥,,则有A .平面ABC ⊥平面ADCB .平面ABC ⊥平面ADBC .平面ABC ⊥平面DBCD .平面ADC ⊥平面DBC【答案】D【详解】 由题意,知AD BC BD AD ⊥⊥,,又由BC BD B =,可得AD ⊥平面DBC ,又由AD ⊂平面ADC ,根据面面垂直的判定定理,可得平面ADC ⊥平面DBC9.直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于 A .30°B .45°C .60°D .90°【答案】C【详解】本试题主要考查异面直线所成的角问题,考查空间想象与计算能力.延长B 1A 1到E ,使A 1E =A 1B 1,连结AE ,EC 1,则AE ⊥A 1B ,⊥EAC 1或其补角即为所求,由已知条件可得⊥AEC 1为正三角形,⊥⊥EC 1B 为60,故选C .10.已知两个平面相互垂直,下列命题⊥一个平面内已知直线必垂直于另一个平面内的任意一条直线⊥一个平面内已知直线必垂直于另一个平面内的无数条直线⊥一个平面内任意一条直线必垂直于另一个平面⊥过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面其中正确命题个数是( )A .1B .2C .3D .4 【答案】A【详解】由题意,对于⊥,当两个平面垂直时,一个平面内的不垂直于交线的直线不垂直于另一个平面内的任意一条直线,故⊥错误;对于⊥,设平面α∩平面β=m ,n⊥α,l⊥β,⊥平面α⊥平面β, ⊥当l⊥m 时,必有l⊥α,而n⊥α, ⊥l⊥n ,而在平面β内与l 平行的直线有无数条,这些直线均与n 垂直,故一个平面内的已知直线必垂直于另一个平面内的无数条直线,即⊥正确;对于⊥,当两个平面垂直时,一个平面内的任一条直线不不一定垂直于另一个平面,故⊥错误;对于⊥,当两个平面垂直时,过一个平面内任意一点作交线的垂线,若该直线不在第一个平面内,则此直线不一定垂直于另一个平面,故⊥错误;故选A .11.在空间中,给出下列说法:⊥平行于同一个平面的两条直线是平行直线;⊥垂直于同一条直线的两个平面是平行平面;⊥若平面α内有不共线的三点到平面β的距离相等,则//αβ;⊥过平面α的一条斜线,有且只有一个平面与平面α垂直.其中正确的是( )A .⊥⊥B .⊥⊥C .⊥⊥D .⊥⊥ 【答案】B【详解】⊥平行于同一个平面的两条直线可能平行、相交或异面,不正确;易知⊥正确;⊥若平面α内有不共线的三点到平面β的距离相等,则α与β可能平行,也可能相交,不正确;易知⊥正确.故选B.12.下列结论正确的选项为( )A .梯形可以确定一个平面;B .若两条直线和第三条直线所成的角相等,则这两条直线平行;C .若l 上有无数个点不在平面α内,则l⊥αD .如果两个平面有三个公共点,则这两个平面重合.【答案】A【详解】因梯形的上下底边平行,根据公理3的推论可知A 正确.两条直线和第三条直线所成的角相等,这两条直线相交、平行或异面,故B 错.当直线和平面相交时,该直线上有无数个点不在平面内,故C 错.如果两个平面有三个公共点且它们共线,这两个平面可以相交,故D 错.综上,选A .13.已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为A .27πB .36πC .54πD .81π 【答案】B【详解】设圆柱的底面半径为r .因为圆柱的轴截面为正方形,所以该圆柱的高为2r .因为该圆柱的体积为54π,23π2π54πr h r ==,解得3r =,所以该圆柱的侧面积为2π236r r ⨯=π.14.用与球心距离为1的平面去截球,所得截面圆的面积为π,则球的表面积为A .8π3B .32π3C .8πD 【答案】C【详解】设球的半径为R ,则截面圆的半径为,⊥截面圆的面积为S =π2=(R 2-1)π=π,⊥R 2=2,⊥球的表面积S =4πR 2=8π.故选C. 15.已知圆柱的侧面展开图是一个边长为2的正方形,那么这个圆柱的体积是A .2πB .1πC .22πD .21π【答案】A【详解】由题意可知,圆柱的高为2,底面周长为2,故半径为1π,所以底面积为1π,所以体积为2π,故选A . 16.用斜二测画法画水平放置的平面图形的直观图,对其中的线段说法不正确的是( )A .原来相交的仍相交B .原来垂直的仍垂直C .原来平行的仍平行D .原来共点的仍共点【答案】B【详解】解:根据斜二测画法作水平放置的平面图形的直观图的规则,与x 轴平行的线段长度不变,与y 轴平行的线段长度变为原来的一半,且倾斜45︒,故原来垂直线段不一定垂直了;故选:B .17.如图所示为一个水平放置的平面图形的直观图,它是底角为45︒,腰和上底长均为1的等腰梯形,则原平面图形为 ( )A .下底长为1B .下底长为1+C .下底长为1D .下底长为1+【答案】C【详解】45A B C '''∠=,1A B ''= 2cos451B C A B A D ''''''∴=+=∴原平面图形下底长为1由直观图还原平面图形如下图所示:可知原平面图形为下底长为1故选:C18.半径为R 的半圆卷成一个圆锥,则它的体积是( )A 3RB 3RC 3RD 3R 【答案】C【详解】设底面半径为r ,则2r R ππ=,所以2R r =.所以圆锥的高2h R ==.所以体积22311332R V r h R ππ⎛⎫=⨯== ⎪⎝⎭.故选:C .19.下列说法中正确的是A .圆锥的轴截面是等边三角形B .用一个平面去截棱锥,一定会得到一个棱锥和一个棱台C .将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所围成的几何体是由一个圆台和两个圆锥组合而成D .有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱【答案】D【详解】圆锥的轴截面是两腰等于母线长的等腰三角形,A 错误;只有用一个平行于底面的平面去截棱锥,才能得到一个棱锥和一个棱台,B 错误;等腰梯形绕着它的较长的底边所在的直线旋转一周的几何体,是由一个圆柱和两个圆锥组合而成,故C 错误;由棱柱的定义得,有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱,故D 正确.20.如图,将矩形纸片ABCD 折起一角落()EAF △得到EA F '△,记二面角A EF D '--的大小为π04θθ⎛⎫<< ⎪⎝⎭,直线A E ',A F '与平面BCD 所成角分别为α,β,则( ).A .αβθ+>B .αβθ+<C .π2αβ+>D .2αβθ+> 【答案】A【详解】如图,过A '作A H '⊥平面BCD ,垂足为H ,过A '作A G EF '⊥,垂足为G ,设,,A G d A H h A EG γ'''==∠=,因为A H '⊥平面BCD ,EF ⊂平面BCD ,故A H EF '⊥,而A G A H A '''⋂=,故EF ⊥平面A GH ',而GH ⊂平面A GH ',所以EF GH ⊥,故A GH θ'∠=,又A EH α'∠=,A FH β'∠=.在直角三角形A GE '中,sin d A E γ'=,同理cos d A F γ'=, 故sin sin sin sin sin h h d dαγθγγ===,同理sin sin cos βθγ=, 故222sin sin sin αβθ+=,故2cos 2cos 21sin 22αβθ--=, 整理得到2cos 2cos 2cos 22αβθ+=, 故()()2cos cos cos 22αβαβαβαβθ+--⎡⎤++-⎣⎦+=, 整理得到()()2cos cos cos αβαβθ+-=即()()cos cos cos cos αβθθαβ+=-, 若αβθ+≤,由04πθ<< 可得()cos cos αβθ+≥即()cos 1cos αβθ+≥, 但αβαβθ-<+≤,故cos cos αβθ->,即()cos 1cos θαβ<-,矛盾, 故αβθ+>.故A 正确,B 错误. 由222sin sin sin αβθ+=可得sin sin ,sin sin αθβθ<<,而,,αβθ均为锐角,故,αθβθ<<,22παβθ+<<,故CD 错误.故选:D.二、填空题 21.如图,已知六棱锥P ﹣ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =AB ,则下列结论正确的是_____.(填序号)⊥PB ⊥AD ;⊥平面P AB ⊥平面PBC ;⊥直线BC ⊥平面P AE ;⊥sin⊥PDA =.【答案】⊥【详解】⊥P A ⊥平面ABC ,如果PB ⊥AD ,可得AD ⊥AB ,但是AD 与AB 成60°,⊥⊥不成立,过A 作AG ⊥PB 于G ,如果平面P AB ⊥平面PBC ,可得AG ⊥BC ,⊥P A ⊥BC ,⊥BC ⊥平面P AB ,⊥BC ⊥AB ,矛盾,所以⊥不正确;BC 与AE 是相交直线,所以BC 一定不与平面P AE 平行,所以⊥不正确;在R t⊥P AD 中,由于AD =2AB =2P A ,⊥sin⊥PDA =,所以⊥正确;故答案为: ⊥22.如图,已知边长为4的菱形ABCD 中,,60AC BD O ABC ⋂=∠=︒.将菱形ABCD 沿对角线AC 折起得到三棱锥D ABC -,二面角D AC B --的大小为60°,则直线BC 与平面DAB 所成角的正弦值为______.【详解】⊥四边形ABCD 是菱形,60ABC ∠=︒,,,AC OD AC OB OB OD ∴⊥⊥==,DOB ∴∠为二面角D AC B --的平面角,60DOB ∠=︒∴,OBD ∴△是等边三角形.取OB 的中点H ,连接DH ,则,3DH OB DH ⊥=.,,AC OD AC OB OD OB O ⊥⊥⋂=,AC ∴⊥平面,OBD AC DH ∴⊥,又,AC OB O AC ⋂=⊂平面ABC ,OB ⊂平面ABC ,DH ∴⊥平面ABC ,2114333D ABC ABC V S DH -∴=⋅=⨯=△4,AD AB BD OB ====ABD ∴∆的边BD 上的高h =1122ABD S BD h ∴=⋅=⨯=△设点C 到平面ABD 的距离为d ,则13C ABD ABD V S d -=⋅=△.D ABC C ABD V V --=,d ∴=∴=⊥直线BC 与平面DAB 所成角的正弦值为d BC = 23.球的一个内接圆锥满足:球心到该圆锥底面的距离是球半径的一半,则该圆锥的体积和此球体积的比值为_______. 【答案】932或332【解析】设圆锥的底面半径为r,高为h,球的半径为R .由立体几何知识可得,连接圆锥的顶点和底面的圆心,必垂直于底面,且球心在连线所成的直线上.分两种情况分析:(1)球心在连线成构成的线段内因为球心到该圆锥底面的距离是球半径的一半,所以,故圆锥的体积为.该圆锥的体积和此球体积的比值为(2)球心在连线成构成的线段以外因为球心到该圆锥底面的距离是球半径的一半,所以,故圆锥的体积为.该圆锥的体积和此球体积的比值为24.如图,四棱台''''ABCD A B C D -的底面为菱形,P 、Q 分别为''''B C C D ,的中点.若'AA ⊥平面BPQD ,则此棱台上下底面边长的比值为___________.【答案】2 3【详解】连接AC,A′C′,则AC⊥A′C′,即A,C,A′,C′四点共面,设平面ACA′C′与PQ和QB分别均于M,N点,连接MN,如图所示:若AA′⊥平面BPQD,则AA′⊥MN,则AA'NM为平行四边形,即A'M=AN,即31''42A C=AC,''23A BAB∴=,即棱台上下底面边长的比值为23.故答案为23.三、解答题25.如图,在直四棱柱ABCD–A1B1C1D1中,已知底面ABCD是菱形,点P是侧棱C1C的中点.(1)求证:AC 1⊥平面PBD ;(2)求证:BD ⊥A 1P .【答案】(1)见解析;(2)见解析【详解】(1)连接AC 交BD 于O 点,连接OP ,因为四边形ABCD 是正方形,对角线AC 交BD 于点O ,所以O 点是AC 的中点,所以AO =OC .又因为点P 是侧棱C 1C 的中点,所以CP =PC 1,在⊥ACC 1中,11C P AO OC PC==,所以AC 1⊥OP , 又因为OP ⊥面PBD ,AC 1⊥面PBD ,所以AC 1⊥平面PBD .(2)连接A 1C 1.因为ABCD –A 1B 1C 1D 1为直四棱柱,所以侧棱C 1C 垂直于底面ABCD ,又BD ⊥平面ABCD ,所以CC 1⊥BD ,因为底面ABCD 是菱形,所以AC ⊥BD ,又AC ∩CC 1=C ,AC ⊥面AC 1,CC 1⊥面AC 1,所以BD ⊥面AC 1,又因为P ⊥CC 1,CC 1⊥面ACC 1A 1,所以P ⊥面ACC 1A 1,因为A 1⊥面ACC 1A 1,所以A 1P ⊥面AC 1,所以BD ⊥A 1P .26.如图,在直三棱柱111ABC A B C -中,1BC BB =,12BAC BCA ABC ∠=∠=∠,点E 是1A B 与1AB 的交点,D 为AC 的中点.(1)求证:1BC 平面1A BD ;(2)求证:1AB ⊥平面1A BC .【答案】(1)见解析(2)见解析【解析】分析:(1)连结ED ,E 为1A B 与1AB 的交点,E 为1AB 中点,D 为AC 中点,根据三角形中位线定理可得1//ED B C ,由线面平行的判定定理可得结果;(2)由等腰三角形的性质可得AB BC ⊥,由菱形的性质可得11AB A B ⊥,1BB ⊥平面ABC ,可得1BC BB ⊥,可证明1BC AB ⊥,由线面垂直的判定定理可得结果.详解:(1)连结ED ,⊥直棱柱111ABC A B C -中,E 为1A B 与1AB 的交点,⊥E 为1AB 中点,D 为AC 中点,⊥1//ED B C又⊥ED ⊂平面1A BD ,1B C ⊄平面1A BD⊥1//B C 平面1A BD .(2)由12BAC BCA ABC ∠=∠=∠知,AB BC AB BC =⊥ ⊥1BB BC =,⊥四边形11ABB A 是菱形,⊥11AB A B ⊥. ⊥1BB ⊥平面ABC ,BC ⊂平面ABC⊥1BC BB ⊥⊥1AB BB B ⋂=,1,AB BB ⊂平面11ABB A ,⊥BC ⊥平面11ABB A⊥1AB ⊂平面11ABB A ,⊥1BC AB ⊥⊥1BC A B B ⋂=,1,BC A B ⊂平面1A BC ,⊥1AB ⊥平面1A BC27.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是平行四边形,平面PBC ⊥平面ABCD ,⊥BCD 4π=,BC ⊥PD ,PE ⊥BC .(1)求证:PC =PD ;(2)若底面ABCD 是边长为2的菱形,四棱锥P ﹣ABCD 的体积为43,求点B 到平面PCD 的距离.【答案】(1)证明见解析 (2)3. 【详解】 (1)证明:由题意,BC ⊥PD ,BC ⊥PE ,⊥BC ⊥平面PDE ,⊥DE ⊥平面PDE ,⊥BC ⊥DE .⊥⊥BCD 4π=,⊥DEC 2π=,⊥ED =EC ,⊥Rt⊥PED ⊥Rt⊥PEC ,⊥PC =PD .(2)解:由题意,底面ABCD 是边长为2的菱形,则ED =EC =⊥平面PBC ⊥平面ABCD ,PE ⊥BC ,平面PBC ∩平面ABCD =BC ,⊥PE ⊥平面ABCD ,即PE 是四棱锥P ﹣ABCD 的高.⊥V P ﹣ABCD 13=⨯2PE 43=,解得PE = ⊥PC =PD =2.设点B 到平面PCD 的距离为h ,⊥V B ﹣PCD =V P ﹣BCD 12=V P ﹣ABCD 23=, ⊥1132⨯⨯2×2×sin60°×h 23=,⊥h 3=.⊥点B 到平面PCD 的距离是3. 28.如图,在以A 、B 、C 、D 、E 、F 为顶点的五面体中,面ABCD 是等腰梯形,//AB CD ,面ABFE 是矩形,平面ABFE ⊥平面ABCD ,BC CD AE a ===,60DAB ∠=.(1)求证:平面⊥BDF 平面ADE ;(2)若三棱锥B DCF -a 的值. 【答案】(1)证明见解析;(2)1.【详解】(1)因为四边形ABFE 是矩形,故EA AB ⊥,又平面ABFE ⊥平面ABCD ,平面ABFE 平面ABCD AB =,AE ⊂平面ABFE , 所以AE ⊥平面ABCD ,又BD ⊂面ABCD ,所以AE BD ⊥,在等腰梯形ABCD 中,60DAB ∠=,120ADC BCD ︒∴∠=∠=,因BC CD =,故30BDC ∠=,1203090ADB ∠=-=,即AD BD ⊥, 又AE AD A =,故BD ⊥平面ADE ,BD ⊂平面BDF ,所以平面⊥BDF 平面ADE ;(2)BCD 的面积为2213sin12024BCD S a ==, //AE FB ,AE ⊥平面ABCD ,所以,BF ⊥平面ABCD ,2313D BCF F BCD V V a --∴==⋅==,故1a =.。
专题03 充分、必要、充要问题的研究(解析版)
专题03 充分、必要、充要问题的研究一、题型选讲题型一 、充分、不要条件的判断充分、必要条件的三种判断方法:(1)定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p⇒q ”为真,则p 是q 的充分条件.(2)等价法:利用p⇒q 与非q⇒非p ,q⇒p 与非p⇒非q ,p⇔q 与非q⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若A⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 例1、【2020年高考天津】设a ∈R ,则“1a >”是“2a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可. 求解二次不等式2a a >可得:1a >或0a <, 据此可知:1a >是2a a >的充分不必要条件. 故选A .1-1、【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】B【解析】由250x x -<可得05x <<,由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件, 即“250x x -<”是“|1|1x -<”的必要而不充分条件. 故选B.1-2、(2020届浙江省台州市温岭中学3月模拟)已知,x y 是非零实数,则“x y >”是“11x y<”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】D 【解析】 因为11x y <,所以00x y x y xy xy >⎧->⇒⎨>⎩或0x y xy <⎧⎨<⎩ ,所以x y >是“11x y <”的既不充分也不必要条件,选D 1-3、(2020·浙江省温州市新力量联盟高三上期末)已知0a >且1a ≠,则“()log 1a a b ->”是“()10a b -⋅<”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】由()log 1a a b ->当1a >时,a b a ->得0b <,推出()10a b -<, 当01a <<时,0a b a <-<得0b >,推出()10a b -<, 则()log 1a a b ->是()10a b -<的充分条件,但当()10a b -<时不一定能推出()log 1a a b ->(比如:01a <<,1b >,这时0a b -<无意义) 则()log 1a a b ->是()10a b -<的不必要条件, 故选:A.1-4、(2020届浙江省温丽联盟高三第一次联考)已知m 为非零实数,则“11m<-”是“1m >-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】A 【解析】由11m <-,得10m m +<,解得10m -<<,故“11m<-”是“1m >-”的充分不必要条件.故选A.例2、【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】将两个条件相互推导,根据能否推导的结果判断充分必要条件. 依题意,,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件. 故选B.2-1、(2020·浙江学军中学高三3月月考)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】当“直线a 和直线b 相交”时,平面α和平面β必有公共点,即平面α和平面β相交,充分性成立; 当“平面α和平面β相交”,则 “直线a 和直线b 可以没有公共点”,即必要性不成立. 故选A.例3、【2020年高考北京】已知,αβ∈R ,则“存在k ∈Z 使得π(1)k k αβ=+-”是“sin sin αβ=”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】(1)当存在k ∈Z 使得π(1)kk αβ=+-时,若k 为偶数,则()sin sin πsin k αββ=+=;若k 为奇数,则()()()sin sin πsin 1ππsin πsin k k αββββ=-=-+-=-=⎡⎤⎣⎦;(2)当sin sin αβ=时,2πm αβ=+或π2πm αβ+=+,m ∈Z ,即()()π12kk k m αβ=+-=或()()π121kk k m αβ=+-=+,亦即存在k ∈Z 使得π(1)kk αβ=+-.所以,“存在k ∈Z 使得π(1)kk αβ=+-”是“sin sin αβ=”的充要条件.故选C .3-1、(2020届浙江省宁波市余姚中学高考模拟)在ABC ∆中,“tan tan 1B C >”是“ABC ∆为钝角三角形”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】由题意可得,在ABC ∆中,因为tan tan 1A B >, 所以sin sin 1cos cos A BA B>,因为0,0A B ππ<<<<,所以sin sin 0A B >,cos cos 0A B >,结合三角形内角的条件,故A,B 同为锐角,因为sin sin cos cos A B A B >, 所以cos cos sin sin 0A B A B -<,即cos()0A B +<,所以2A B ππ<+<,因此02C <<π,所以ABC ∆是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若ABC ∆是钝角三角形,也推不出“tan tan 1B C >,故必要性不成立, 所以为既不充分也不必要条件,故选D.3-2、(2020·浙江温州中学3月高考模拟)“”αβ≠是”cos cos αβ≠的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】cos cos αβαβ=⇒=所以cos cos αβαβ≠⇒≠ (逆否命题)必要性成立当cos cos αβαβ=-⇒=,不充分 故是必要不充分条件,答案选B3-3、(江苏省南通市通州区2019-2020学年高三第一次调研抽测)将函数()sin 4f x x π⎛⎫=+⎪⎝⎭的图象向右平移ϕ个单位,得到函数y g x =()的图象.则“34πϕ=”是“函数()g x 为偶函数”的________条件,(从“充分不必要”、“必要不充分”、“充要”和“既不充分也不必要”中选填一个) 【答案】充分不必要【解析】由题意,将函数()sin 4f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移ϕ个单位,可得sin 4()=πϕ⎛⎫+- ⎪⎝⎭gx x 的图像, 当34πϕ=时,可得3sin sin cos 442()=πππ⎛⎫⎛⎫+-=-=- ⎪ ⎪⎝⎭⎝⎭gx x x x ,显然()g x 为偶函数, 所以“34πϕ=”是“函数()g x 为偶函数”的充分条件; 若函数()g x 为偶函数,则,42ππϕπ-=+∈k k Z ,即,4πϕπ=--∈k k Z ,不能推出34πϕ=, 所以“34πϕ=”不是“函数()g x 为偶函数”的必要条件, 因此“34πϕ=”是“函数()g x 为偶函数”的充分不必要条件. 故答案为:充分不必要例4、【2019年高考北京理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AC -AB |⇔|AB +AC |2>|AC -AB |2AB ⇔·AC >0AB ⇔与AC 的夹角为锐角,故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件. 故选C.4-1、(2020届山东省日照市高三上期末联考)设,a b 是非零向量,则2a b =是a abb =成立的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件【答案】B 【解析】由2a b =可知:a b , 方向相同,a ba b , 表示 a b , 方向上的单位向量所以a b a b=成立;反之不成立. 故选B例5、(2020届浙江省嘉兴市高三5月模拟)已知,R a b ∈,则“1a =”是“直线10ax y +-=和直线2(2)10x a y +--=垂直”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】直线10ax y +-=和直线2(2)10x a y +--=垂直, 则()220a a +-=,解得2a =-或1a =,所以,由“1a =”可以推出“直线10ax y +-=和直线2(2)10x a y +--=垂直”,由 “直线10ax y +-=和直线2(2)10x a y +--=垂直”不能推出“1a =”,故“1a =”是“直线10ax y +-=和直线2(2)10x a y +--=垂直”的充分不必要条件, 故选:A.5-1、(2020·浙江温州中学高三3月月考)“直线()1330m x y +-+=与直线220x my -+=平行”的充要条件是m =( ) A .-3 B .2 C .-3或2 D .3或2【答案】A【解析】当0m =或1m =-时,显然直线不平行, 由132m m+=,解得:3m =-或2m =, 3m =-时,直线分别为:2330x y --+=和2320x y ++=,平行, 2m =时,直线分别为:3330x y -+=和2220x y -+=,重合,故3m =-, 故选:A .例6、(2020届浙江省宁波市鄞州中学高三下期初)已知等比数列{}n a 的前n 项和为n S ,则“10a >”是“990S >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】设等比数列{}n a 公比为q ,当1q =时,19910990a S a >⇔=>,当1q ≠时,999999111,011q q S a q q --=⋅>--, 19900a S >⇔>∴,所以“10a >”是“990S >”的充要条件. 故选:C.6-1、(2020·浙江高三)等差数列{a n }的公差为d ,a 1≠0,S n 为数列{a n }的前n 项和,则“d =0”是“2nnS S ∈Z ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】等差数列{a n }的公差为d ,a 1≠0,S n 为数列{a n }的前n 项和,若d =0,则{a n }为常数列,故a n =1a , 即2112,n n S na S na ==⇒“2nnS S ∈Z ”,当2nnS S ∈Z 时,d 不一定为0, 例如,数列1,3,5,7,9,11中,631357911135S S +++++==++4,d =2, 故d =0是2nnS S ∈Z 的充分不必要条件. 故选:A .题型二、根据充分、必要条件判断含参的问题解决此类问题要注意以下两点:(1)把充分、不要条件转化为集合之间的关系;(2)根据集合之间的关系列出关于参数的不等式。
2020年中学数学22 点线面的判断与证明(解析版)
对于②,由于PA⊥平面ABC,所以平面ABC与平面PBC不可能垂直,故②不正确.
对于③,由于在正六边形中 ,所以BC与EA必有公共点,从而BC与平面PAE有公共点,所以直线BC与平面PAE不平行,故③不正确.
【解析】对于命题 ,可设 与 相交,这两条直线确定的平面为 ;
若 与 相交,则交点 在平面 内,
同理, 与 的交点 也在平面 内,
所以, ,即 ,命题 为真命题;
对于命题 ,若三点共线,则过这三个点的平面有无数个,
命题 为假命题;
对于命题 ,空间中两条直线相交、平行或异面,
命题 为假命题;
对于命题 ,若直线 平面 ,
故选:
9、(2020届山东省潍坊市高三上学期统考)如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:
①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.
其中正确的有________(把所有正确的序号都填上)
【答案】①④
【解析】
【解析】(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.
因为AB 平面A1B1C,A1B1 平面A1B1C,
所以AB∥平面A1B1C.
(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.
又因为AA1=AB,所以四边形ABB1A1为菱形,
因此AB1⊥A1B.
A.若 则
B.若 则
C.若 , ,则
D.若 ,则
【答案】ACD
【解析】
若 ,则 且 使得 , ,又 ,则 , ,由线面垂直的判定定理得 ,故A对;
潍坊市2020-2021学年高一上学期期中数学试题(解析版)
关于 的不等式 解集包含 ,令 ,
,解得 ,
故选: .
【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.
二、多项选择题:本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错的得0分.
9.下列命题中是假命题的是().
A. , B. ,
C. , D. ,
【答案】ACD
【解析】
【分析】
举反例即可判断选项A、C,解方程 即可判断选项B、D.
(1)求 ;
(2)若 ,求实数 的取值范围.
【答案】(1) ;(2) .
【解析】
【分析】
(1)先求得集合A,再由集合的补集运算和交集运算可求得答案;
(2)分集合C为空集和不是空集两种情况分别建立不等式(组),可求得所求的范围.
【详解】解:( 时,满足 ,即 ,解得 .
【详解】对于A选项,函数 为奇函数,且该函数在定义域上不单调,A选项中的函数不合乎要求;
对于B选项,函数 为奇函数,且该函数在定义域上为减函数,B选项中的函数合乎要求;
对于C选项,当 时, ,则 ,
当 时, ,则 ,
又 ,所以,函数 为奇函数,
当 时,函数 单调递减;当 时,函数 单调递减.
由于函数 在 上连续,所以,函数 在 上为减函数,C选项中的函数合乎要求;
画出函数的图象,如图所示:
对于 :根据函数的图象, 的定义域为 ,值域为 ,故 错误;
山东省济南市高新区2020-2021学年七年级下学期期末考试数学试题(Word版,含答案)
绝密★启用前2020至2021学年第二学期期末学业水平测试高新初中数学七年级试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为48分;第Ⅱ卷共5页,满分为102分.本试题共6页,满分为150分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共48分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.计算1)20211(所得结果是 ( ) A .2021 B .20211 C .﹣20211D .﹣2021 2.下面四个图形分别是绿色食品、低碳、节能和节水标志,是轴对称图形的是( )A .B .C .D .3.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是( )A .B .C .D .4.如图,沿笔直小路DE 的一侧栽植两棵小树B ,C ,小明在A 处测得AB =5米,AC =7米,则点A 到DE 的距离可能为( ) A .4米 B .5米C .6米D .7米5.在行进路程s 、速度v 和时间t 的相关计算中,若保持行驶的路程不变,则下列说法正确的是( )A .变量只有速度vB .变量只有时间tC .速度v 和时间t 都是变量D .速度v 、时间t 、路程s 都是常量6.现有两根长度分别3cm和7cm的木棒,若要钉成一个三角形木架,则应选取的第三根木棒长为()A.4cm B.7cm C.10cm D.13cm7.如图,一只电子蚂蚁从正方体的顶点A处沿着表面爬到顶点C处,电子蚂蚁的部分爬行路线在平面展开图中的表示如图的虚线,其中能说明爬行路线最短的是()A.B.C.D.8.等腰三角形的一个内角为50°,它的顶角的度数是()A.65°B.80°C.65°或80°D.50°或80°9.若m,n为常数,等式(x+2)(x﹣1)=x2+mx+n恒成立,则m n的值为()A.1 B.﹣1 C.2 D.﹣210.如图,将一个长方形纸条折成如图的形状,若已知∠1=140°,则∠2为()A.50°B.60°C.70°D.80°11.设一个直角三角形的两直角边分别是a,b,斜边是c.若用一把最大刻度是20cm的直尺,可一次直接测得c的长度,则a,b的长可能是()A.a=12,b=16 B.a=11,b=17 C.a=10,b=18 D.a=9,b=1912.如图有两张正方形纸片A和B,图1将B放置在A内部,测得阴影部分面积为2,图2将正方形AB并列放置后构造新正方形,测得阴影部分面积为20,若将3个正方形A和2个正方形B并列放置后构造新正方形如图3,(图2,图3中正方形AB纸片均无重叠部分)则图3阴影部分面积()A.22 B.24 C.42 D.44第Ⅱ卷(非选择题共102分)注意事项:1.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算(y+2)(y﹣2)的结果等于.14.某人连续抛掷一枚质地均匀的硬币3次,结果都是正面朝上,则他第四次抛掷这枚硬币,正面朝上的概率为.15.如图,在△ABC中,AD平分∠BAC,∠BAC=80°,∠B=35°,则∠ADC的度数为°.16.某工程队承建30km的管道铺设,工期60天,施工x天后剩余管道ykm,则y与x的关系式为.17.如图,在△ABC中,AB的垂直平分线分别交AB,AC于D,E两点,且AC=10,BC=4,则△BCE的周长为.第17题图第18题图18.在直线上依次摆着七个正方形(如图),已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积是S1,S2,S3,S4,则S1+S2﹣S3﹣S4=.三、解答题:(本大题共12个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本题满分4分)计算:a3•a2•a+(a2)3.20.(本题满分4分)计算:(x﹣3)(x+6).21.(本题满分4分)如图,在边长为1的小正方形网格中,点A,B,C均落在格点上.(1)画出△ABC关于直线l的轴对称图形△A1B1C1.(2)△A1B1C1的形状是.22.(本题满分5分)填写下列空格:已知:如图,CE平分∠ACD,∠AEC=∠ACE.求证:AB∥CD.证明:∵CE平分∠ACD(已知),∴∠ACE=∠().∵∠AEC=∠ACE(已知),∴∠AEC=∠().∴AB∥CD().23.(本题满分5分)已知:如图,在△ABC中,BC⊥AC,若AC=8,BC=6,求AB的长.24.(本题满分6分)如图是一位病人的体温记录图,看图回答下列问题:(1)自变量是,因变量是;(2)护士每隔小时给病人量一次体温;(3)这位病人的最高体温是摄氏度,最低体温是摄氏度;(4)他在4月8日12时的体温是摄氏度.25.(本题满分6分)先化简,再求值:(2x +3y )2﹣(2x +y )(2x ﹣y ),其中x =1,y =﹣1. 26.(本题满分6分)如图,AD 是等边△ABC 的中线,AE =AD ,求∠AED 的度数.27.(本题满分8分)完成下列推理过程:如图所示,点E 在△ABC 外部,点D 在BC 边上,DE 交AC 于F ,若∠1=∠2=∠3,AD =AB .猜想AC 与AE 之间的数量关系,并说明理由. 答:AC AE .解:∵∠2= ,∠AFE =∠DFC ,∴180°﹣∠2﹣∠AFE =180°﹣∠3﹣∠DFC ∴∠E = . 又∵∠1=∠2,∴ +∠DAC = +∠DAC . ∴∠BAC =∠DAE ( ). 在△ABC 和△ADE 中,⎪⎩⎪⎨⎧=∠=∠)(______________)(已知(已证)已证AD AB DAE BAC ∴△ABC ≌△ADE ( ). ∴AC =AE .28.(本题满分8分)一圆盘被平均分成10等份,分别标有1,2,3,4,5,6,7,8,9,10这10个数字,转盘上有指针,转动转盘,当转盘停止,指针指向的数字即为转出的数字,现有两人参与游戏,一人转动转盘另一人猜数,若猜的数与转盘转出的数相符,则猜数的获胜,否则转动转盘的人获胜,猜数的方法从下面三种中选一种: (1)猜“是奇数”或“是偶数”;(2)猜“是3的倍数”或“不是3的倍数”;(3)猜“是大于4的数”或“是不大于4的数”.若你是猜数的游戏者,为了尽可能获胜,应选第几种猜数方法?并请你用数学知识说明理由.29.(本题满分10分)如图,△ABC 与△ADE 是以点A 为公共顶点的两个三角形,且AD =AE ,AB =AC ,∠DAE =∠CAB =90°,且线段BD 、CE 交于F . (1)求证:△AEC ≌△ADB .(2)猜想CE 与DB 之间的关系,并说明理由.30.(本题满分12分)“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了A ,D 两座可旋转探照灯.假定主道路是平行的,即PQ ∥CN ,A ,B 为PQ 上两点,AD 平分∠CAB 交CN 于点D ,E 为AD 上一点,连接BE ,AF 平分∠BAD 交BE 于点F . (1)若∠C =20°,则∠EAP = ;(2)作AG 交CD 于点G ,且满足∠1=31∠ADC ,当∠2+56∠GAF =180°时,试说明:AC ∥BE ;(3)在(1)问的条件下,探照灯A 、D 照出的光线在铁路所在平面旋转,探照灯射出的光线AC 以每秒5度的速度逆时针转动,探照灯D 射出的光线DN 以每秒15度的速度逆时针转动,DN 转至射线DC 后立即以相同速度回转,若它们同时开始转动,设转动时间为t 秒,当DN 回到出发时的位置时同时停止转动,则在转动过程中,当AC 与DN 互相平行或垂直时,请直接写出此时t 的值.备用图2020至2021学年第二学期期末学业水平测试 高新初中数学七年级参考答案及评分标准13.y 2﹣4. 14.12. 15.75. 16.y =30﹣0.5x 17.14. 18.﹣2. 三、解答题:(本大题共12个小题,共78分.解答应写出文字说明、证明过程或演算步骤.) 19.(本题4分)解:原式=a 6+a 6·····················································································2分=2a 6·······················································································4分 20.(本题4分)解:原式=x 2+6x ﹣3x ﹣18·············································································2分=x 2+3x ﹣18·················································································4分 21.(本题4分)解: (1)如图,△A 1B 1C 1为所求;·······································································································3分 (2)△A 1B 1C 1是等腰直角三角形····················································································4分 22.(本题5分)DCE ;角平分线的定义;DCE ;等量代换;内错角相等,两直线平行 23.(本题5分) 解:∵BC ⊥AC∴∠C =90°··············································································································1分 ∵Rt △ABC 中,∠C =90°,AC =8,BC =6·····································································3分 ∴BC 2+ AC 2= AB 2·······································································································4分AB=10··········································································································5分 24.(本题6分) 解:(1)时间,体温··········································································································2分(2)6························································································································3分(3)39.5,36.8············································································································5分(4)37.5·····················································································································6分25.(本题6分)解:原式=4x2+12xy+9y2﹣(4x2﹣y2)···················································································2分=4x2+12xy+9y2﹣4x2+y2=12xy+10y2··················································································4分当x=1,y=﹣1时,原式=﹣12+10=﹣2·····································································································6分26.(本题6分)解:∵AD是等边△ABC的中线,∴∠BAC =60°,AD平分∠BAC·····················································································2分∴∠CAD=1 2∠BAC=30°································································································3分∵AD=AE,∴∠ADE=∠AED·······································································································5分∴∠AED=75°·············································································································6分27.(本题8分)每空1分答:=解:∠3,∠C,∠1,∠2,等式性质,∠E=∠C,AAS28.(本题8分)解:选第2种猜数方法··································································································1分理由:P(是奇数)=0.5,P(是偶数)=0.5;P(是3的倍数)=0.3,P(不是3的倍数)=0.7;P(是大于4的数)=0.6,P(不是大于4的数)=0.4·········································································7分∵P(不是3的倍数)最大,∴选第2种猜数方法,并猜转盘转得的结果不是3的倍数······················································8分29.(本题10分)(1)证明:∵∠BAC =∠DAE ,∴∠BAC +∠CAD =∠DAE +∠CAD , ∴∠BAD =∠CAE ·····························································································1分在△BAD 与△CAE 中,{AB =AC∠BAD =∠CAE AD =AE···························································································3分 ∴△BAD ≌△CAE(SAS )···················································································4分 (2)答:=,⊥············································································································6分解:由(1)知,△BAD ≌△CAE ,∴∠ABD =∠ACE ,BD =CE ··············································································7分∵∠BAC =90°, ∴∠CBF +∠BCF =∠ABC +∠ACB =90°································································9分∴∠BFC =90°·······························································································10分 30.(本题12分) 解:(1)100°···················································································································2分 (2)∵∠1=13∠ADC ,∴令∠1=a ,则∠ADC =3a ························································································3分∵PQ ∥CN ,∴∠ADC =∠BAD =3a ∵AD 平分∠BAC , ∴∠CAD =∠ADC =∠BAD =3a ················································································4分∵AF 平分∠BAD , ∴∠BAD =2∠EAF . ∴∠EAF =1.5a∴∠GAF =∠1+∠EAF =2.5a∴65∠GAF =3a ······································································································5分∵∠2+65∠GAF =180°,∴∠2+3a=180°.∴∠2+∠CAD=180°.∵∠2+∠AEB=180°,∴∠CAD=∠AEB·································································································6分∴AC∥BE············································································································7分(3)t的值为2s或11s或12.5s或17s或21.5s···································································12分。
期末测试卷(二)-2020-2021学年高一数学必修第一册单元提优卷(人教A版(2019))(含答案)
2020-2021学年高一数学第一册单元提优卷(人教A 版(2019))期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .42.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x∃>≥-,D .10ln 1x x x∃><-,.3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2B .[)(]0,11,4C .[)0,1D .(]1,45.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .27.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<012.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,)(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.15.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫⎪⎝⎭的值是____________.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(284f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是____________.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.18.(本题满分12分)已知集合,2|2162xA x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈-⎪⎝⎭,求sin 2α的值.20.(本题满分12分)已知函数()0.52log 2axf x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.21(本题满分12分)【江苏省盐城市第一中学2020届高三下学期6月调研考试数学试题某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(Ⅰ)求()f x 的函数关系式;(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?22.(本题满分12分)已知函数2()2sin cos 0)f x x x x ωωωω=+->的最小正周期为π.(1)求函数()f x 的单调增区间;(2)将函数()f x 的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.2020-2021学年高一数学第一册单元提优卷期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .4【答案】B求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎩⎭.由于{}|21A B x x ⋂=-≤≤,故12a-=,解得2a =-.故选B .2.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x ∃>≥-,D .10ln 1x x x∃><-,【答案】D【解析】因为全称命题的否定是特称命题,所以命题“0x ∀>,1ln 1x x ≥-”的否定为“0x ∃>,1ln 1x x<-”.故选D .3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦【答案】D【解析】若0a =,则()3f x x =-,()f x 在区间[)1,-+∞上是增函数,符合.若0a ≠,因为()f x 在区间[)1,-+∞上是增函数,故0112a a a>⎧⎪-⎨≤-⎪⎩,解得103a <≤.综上,103a ≤≤.故选:D .4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2 B .[)(]0,11,4 C .[)0,1D .(]1,4【答案】C【解析】函数()f x 的定义域是[0,2],要使函数()()21f xg x x =-有意义,需使()2f x 有意义且10x -≠.所以10022x x -≠⎧⎨≤≤⎩,解得01x ≤<.故答案为C .5.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位【答案】B【解析】cos 2sin(2)sin 2()24y x x x ππ==+=+,因此把函数cos 2y x =的图象向右平移4π个单位,再向上平移1个单位可得sin 21y x =+的图象,故选B6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .2【答案】B【解析】因为(1)2()f x f x +=,且(5)3(3)4f f =+,故()()324442f f =+,解得()48f =.故选:B7.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-【答案】D 【解析】∵3sin(3)cos()0πθπθ-++-=,∴3sin cos 0θθ--=,即cos 3sin θθ=-,∴sin cos cos 2θθθ2222sin cos sin (3sin )3cos sin (3sin )sin 8θθθθθθθθ⋅-===----.故选:D .8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .【答案】C【解析】由函数sin (0)y ax b a =+>的图象可得201,23b a πππ<<<<,213a ∴<<,故函数log ()a y xb =-是定义域内的减函数,且过定点(1,0)b +.结合所给的图像可知只有C 选项符合题意.故选:C .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天【答案】B【解析】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =,所以1ln 20.691.80.380.38t =≈≈天.故选:B .10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞【解析】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞.故选:D .11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<0【答案】A【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23ttf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.12.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 【答案】D【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩,当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意;当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x =相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =k >.综上,k 的取值范围为(,0))-∞+∞ .故选:D .二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.【答案】(0,)+∞【解析】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.【答案】13【解析】22221sin ()(cos sin )(1sin 2)4222παααα+=+=+Q 121(1sin 2)sin 2233αα∴+=∴=故答案为:1315.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫ ⎪⎝⎭的值是____________.【答案】2【解析】由2x ≥时,()28f x x =-+是减函数可知,当2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭.故答案为:2.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(2)84f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是_____.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数【答案】④【解析】函数()1cos 2sin 21244f x x x x ππ⎛⎫⎛⎫=++++=+ ⎪ ⎪⎝⎭⎝⎭,当(0,3π)∈x 时,当6x π=时,23x π=不能使函数取得最值,所以不是函数的对称轴,①错;当5,24x π⎡⎤∈π⎢⎥⎣⎦时,52,2x ⎡⎤∈ππ⎢⎥⎣⎦,函数先增后减,②不正确;若()1f x =-,那么cos 2x =不成立,所以③错;当3 2a =π时,()12f x a x +=函数是偶函数,④正确,三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.【答案】(1)证明见解析;(2)1.【解析】证明:(1)∵()()222223220a b b a b a ab b a b +-+=-+=-≥,∴()2232a b b a b +≥+.(2)∵0a >,0b >,∴2ab a b =+≥2ab ≥1≥,∴1≥ab .当且仅当1a b ==时取等号,此时ab 取最小值1.18.(本题满分12分)已知集合,|2162x A x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.【答案】(1)1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭;(2)3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.【解析】(1)1|42A x x ⎧⎫=-<<⎨⎬⎩⎭,0a =时,{|21}B x x =-<<,∴1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭(2)∵A B φ⋂=,∴当B φ=时,3221a a -≥+,即3a ≥,符合题意;当B φ≠时,31213242a a a <⎧⎪⎨+≤--≥⎪⎩或,解得34a ≤-或23a ≤<,综上,a 的取值范围为3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈- ⎪⎝⎭,求sin 2α的值.【答案】(1)()f x 的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)4sin 26α=.【解析】(1)因为()()211cos 2111sin sin cos sin 2sin 2cos 222222x f x x x x x x x -=+-=+-=-22sin 2cos cos 2sin sin 224424x x x πππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,当()2242x k k Z πππ-=+∈,即()38x k k Z ππ=+∈时,函数()y f x =取最大值2,所以函数()y f x =的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)因为()26f α=,则sin 2246πα⎛⎫-= ⎪⎝⎭,即1sin 243πα⎛⎫-= ⎪⎝⎭,因为3,88ππα⎛⎫∈- ⎪⎝⎭,所以2,422πππα⎛⎫-∈- ⎪⎝⎭,则cos 243πα⎛⎫-= ⎪⎝⎭,所以sin 2sin 2sin 2cos cos 2sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1432326+=+⋅=.20.(本题满分12分)已知函数()0.52log 2ax f x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.【答案】(1)1a =-;(2)(),1-∞【解析】(1)因为函数()0.52log 2ax f x x -=-为奇函数,所以()()220.50.50.52224log log log 0224ax ax a x f x f x x x x-+-+-=+==----,所以222414a x x-=-,即21a =,1a =或1-,当1a =时,函数()0.50.52log log 12x f x x -==--,无意义,舍去,当1a =-时,函数()0.52log 2x f x x +=-定义域(-∞,-2)∪(2,+∞),满足题意,综上所述,1a =-。
山东省泰安市第一中学2018-2019学年高一上学期期中考试数学试题(解析版)
泰安一中2018~2019学年高一上学期期中考试数学试题一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.若U=R,集合A={},集合B为函数的定义域,则图中阴影部分对应的集合为()A. B. C. D.【答案】B【解析】【分析】解一元一次不等式,求对数函数的定义域求出集合,,阴影部分表示的集合为,根据集合关系即可得到结论.【详解】阴影部分表示的集合为,∵,,∴,∴,故选B.【点睛】本题主要考查集合的基本运算,对数函数的定义域,根据图象确定集合关系是解决本题的关键,比较基础.2.下列函数中,既是奇函数又在区间是增函数的是()A. B. C. D. y=|x﹣1|【答案】B【解析】【分析】根据函数的奇偶性和单调性的定义,即可判断既是奇函数又在区间上单调递增的函数.【详解】对于A,定义域为不关于原点对称,故不为奇函数,故A错.对于B,,则为奇函数,在区间上单调递增,故B对;对于C,为非奇非偶函数,故C错误;对于D,的图象关于对称,为非奇非偶函数,故D错误,故选B.【点睛】本题考查函数的性质和运用,考查函数的奇偶性的判断和单调性的判断,考查运算能力,属于基础题.3.函数的零点所在的大致区间是()A. B. C. D.【答案】B【解析】【分析】根据函数零点的判断条件,即可得到结论.【详解】∵,则函数在上单调递增,∵,,∴,在区间内函数存在零点,故选B.【点睛】本题主要考查方程根的存在性,利用函数零点的条件判断零点所在的区间是解决本题的关键,属于基础题.4.已知a=,b=,c=,则a、b、c的大小关系是()A. c<a<bB. a<b<cC. b<a<cD. c<b<a【答案】D【解析】【分析】根据指数函数的单调性可以判断,的大小,根据幂函数的单调性可以判断,的大小,综合可得结果.【详解】∵,可得是单调减函数,∵,∴,∵,可得为减函数,∵,∴,综上可得,故选D.【点睛】本题考查大小比较,解题的关键是利用指数函数、幂函数的单调性,常见的做法还有可能与1比较,属于基础题.5.已知函数(m∈Z)为偶函数且在区间(0,+∞)上单调递减,则m=()A. 2或3B. 3C. 2D. 1【答案】A【解析】【分析】由幂函数为偶函数,又它在递减,故它的幂指数为负,由幂指数为负与幂指数为偶数这个条件,即可求出参数的值.【详解】幂函数为偶函数,且在递减,∴,且是偶数,由得,又由题设是整数,故的值可能为2或3,验证知或者3时,都能保证是偶数,故或者3即所求.故选:A【点睛】本题考查幂函数的性质,已知性质,将性质转化为与其等价的不等式求参数的值属于性质的变形运用,请认真体会解题过程中转化的方向.6.已知函数f(x)=log a(x2﹣2ax)在[4,5]上为增函数,则a的取值范围是()A. (1,4)B. (1,4]C. (1,2)D. (1,2]【答案】C【解析】【分析】由题意可得的对称轴为,①当时,由复合函数的单调性可知,在单调递增,且在恒成立,②时,由复合函数的单调性可知,在单调递增,且在恒成立从而可求. 【详解】由题意可得的对称轴为,①当时,由复合函数的单调性可知,在单调递增,且在恒成立,则,∴②时,由复合函数的单调性可知,在单调递增,且在恒成立,则,此时不存在,综上可得,故选C.【点睛】本题主要考查了由对数函数及二次函数复合二次的复合函数的单调性的应用,解题中一定要注意对数的真数大于0这一条件的考虑,属于中档题.7.设在内存在使,则的取值范围是A. B. C. 或 D.【答案】C【解析】略8.若,则()A. 2B. 3C.D. 1【答案】D【解析】【分析】首先将指数式化为对数式解出和,将换底公式与对数的加法运算性质相结合即可得到最后结果.【详解】∵,∴,,∴,故选D.【点睛】本题主要考查了指数式与对数式的互化,换底公式(当两对数底数和真数位置互换时,两数互为倒数)与对数加法运算法则的应用,属于基础题.9.定义在R上的偶函数f(x)在[0,+∞)上递增,,则满足的x的取值范围是()A. (0,+∞)B.C. D.【答案】C【解析】【分析】由题意可得偶函数在上递增,在上递减,结合题意可得①,或②,分别求得①②的解集,再取并集,即得所求.【详解】由题意可得偶函数在上递增,在上递减,且,故由可得①,或②.由①可得,,解得.由②可得,,解得.综上可得,不等式的解集为,故选C.【点睛】本题主要考查函数的奇偶性、单调性在解不等式中的应用,解对数不等式,对数的熟练运算是解题的关键,属于中档题.10.若方程x2+ax+a=0的一根小于﹣2,另一根大于﹣2,则实数a的取值范围是()A. (4,+∞)B. (0,4)C. (﹣∞,0)D. (﹣∞,0)∪(4,+∞)【答案】A【解析】【分析】令,利用函数与方程的关系,结合二次函数的性质,列出不等式求解即可.【详解】令,∵方程的一根小于,另一根大于,∴,即,解得,即实数的取值范围是,故选A.【点睛】本题考查一元二次函数的零点与方程根的关系,数形结合思想在一元二次函数中的应用,是基本知识的考查.11.已知函数,若函数g(x)=f(x)﹣m有3个零点,则实数m的取值范围是()A. (﹣∞,4)B. (﹣∞,4]C. [3,4)D. [3,4]【答案】C【解析】【分析】将函数的零点问题转化为与的图象的交点问题,借助于函数图象可得到结果.【详解】由于函数有3个零点,则方程有三个根,故函数与的图象有三个交点.函数,其图象如图所示,故函数的极大值为,极小值为,则实数的取值范围,故选:C.【点睛】本题考查了根的存在性及根的个数判断,以及函数与方程的思想,常见的转化思想即方程根的个数等价于函数和图象交点的个数,该题中画出函数的图象是解题的关键,属于中档题.12.设函数f(x)=ln(x+)+x3(﹣1<x<1),则使得f(x)>f(3x﹣1)成立的x的取值范围是()A. (0,)B. (﹣∞,)C. (,)D. (﹣1,)【答案】A【解析】【分析】根据函数的奇偶性以及函数的单调性易得为奇函数且为增函数,进而得到关于的不等式组,解出即可.【详解】∵,定义域关于原点对称,∴是奇函数,而时,递增,故时,递增,故在递增,若,则,解得,故选A.【点睛】本题考查了函数的单调性和奇偶性问题,考查转化思想,观察得到为奇函数是难点,常见与对数相结合的奇函数还有,在该题中容易遗漏的知识点为函数的定义域即,是一道中档题.二.填空题(共4小题,每小题5分,共20分)13.已知函数是定义在区间上的偶函数,则函数的值域为__________. 【答案】【解析】试题解析:∵函数在区间上的偶函数∴∴即考点:本题考查函数性质点评:解决本题的关键是利用函数奇偶性,定义域关于原点对称14.设函数, 则满足=的的值__________.【答案】【解析】【分析】根据分段函数的解析式,分为和两种情形,列出方程,然后求解即可.【详解】函数,可得当时,,解得舍去.当时,,解得.故答案为.【点睛】本题考查函数值的求法,分段函数的应用,考查计算能力,属于基础题.15.如果,则m的取值范围是__.【答案】【解析】【分析】由,可得,解出即可得出【详解】∵,∴,解得,故的取值范围为.故答案为.【点睛】本题考查了幂函数的单调性,注意函数的定义域,考查了推理能力与计算能力,属于中档题16.已知函数f(x)=log2(4x+1)+mx,当m>0时,关于x的不等式f(log3x)<1的解集为_____.【答案】(0,1)【解析】【分析】首先得到函数为增函数,原不等式等价于,结合单调性解出即可.【详解】函数,当时,可知单调递增函数,当时,可得,那么不等式的解集,即,解得,故答案为.【点睛】本题主要考查的知识点是对数函数的图象和性质,复合函数的单调性判断,将不等式转化为是解题的关键,在解关于对数函数的不等式时务必要保证真数部分大于0,属于基础题.三.解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(1)已知,,求a,b;并用a,b表示.(2)求值【答案】(1),;(2)【解析】【分析】(1)将指数式化为对数式根据对数的运算性质化简即可;(2)利用幂指数的运算性质,对数的定义即可得到答案.【详解】(1)因为,,所以,,所以.(2)原式.【点睛】本题考查有理数指数幂的运算性质,对数的运算性质,考查计算能力,是基础题.18.已知集合,(1)若;(2)若,求实数a的取值范围.【答案】(1)见解析(2)或【解析】【分析】(1)把代入集合,求解一元二次不等式化简,再由交、并、补集的运算得答案;(2)分为和两类分析,当时,列关于的不等式组求解.【详解】解:(1)当(2)若,求实数a的取值范围.①当A=时,有;②当A时,有又∵,则有或,解得:或∴或综上可知:或.【点睛】本题考查交集及其运算以及子集的概念,考查数学转化思想方法及分类讨论的数学思想方法,是中档题.19.已知.(1)若是奇函数,求的值,并判断的单调性(不用证明);(2)若函数在区间上有两个不同的零点,求的取值范围.【答案】(1) (2)【解析】试题分析:(1)奇函数满足恒成立,据此得到关于实数的等式,据此可得;结合指数函数的性质可知在上是单调递增函数.(2)原问题等价于方程在区间上有两个不同的根,换元即方程在区间上有两个不同的根,结合二次函数的性质可得的取值范围是.试题解析:(1)因为是奇函数,所以,所以;在上是单调递增函数.(2)在区间上有两个不同的零点,方程在区间上有两个不同的根,方程在区间上有两个不同的根,方程在区间上有两个不同的根,.20.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20000元,每生产一件新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数h(x),其中,x是新样式单车的月产量(单位:件),利润=总收益﹣总成本.(1)试将自行车厂的利润y元表示为月产量x的函数;(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?【答案】(1)见解析(2)当月产量x=300件时,自行车厂的利润最大,最大利润为25000元【解析】【分析】(1)求出总成本,由利润=总收益-总成本可得自行车厂的利润元与月产量的函数式;(2)当时,利用配方法求二次函数的最大值25000,当时,由函数的单调性可得,由此得答案.【详解】解:(1)依题设,总成本为20000+100x,则;(2)当0≤x≤400时,,则当x=300时,y max=25000;当x>400时,y=60000﹣100x是减函数,则y<60000﹣100×400=20000,∴当月产量x=300件时,自行车厂的利润最大,最大利润为25000元.【点睛】本题考查函数模型的选择及应用,考查简单的数学建模思想方法,训练了分段函数最值的求法,是中档题.21.已知函数f(x)=ax2﹣2ax+1+b(a>0)在区间[2,3]上有最大值4和最小值1.(Ⅰ)求实数a,b的值;(Ⅱ)设函数g(x)=,若不等式g(2x)﹣k•2x≤0在x∈[﹣1,1]上恒成立,求实数k的取值范围.【答案】(1)a=1,b=0;(2)【解析】【分析】(Ⅰ)时,在区间上单调递增,可得,解出即可;(Ⅱ)由(Ⅰ)可得,原题可化为,分离参数,令,求出的最大值即可.【详解】解:(Ⅰ)f(x)=ax2﹣2ax+1+b=a(x﹣1)2+1+b﹣a.∵a>0,∴f(x)在区间[2,3]上单调递增,∴,解得a=1,b=0;(Ⅱ)由(Ⅰ)知,f(x)=x2﹣2x+1,∴g(x)==,不等式g(2x)﹣k•2x≤0可化为,即k.令t=,∵x∈[﹣1,1],∴t∈[,2],令h(t)=t2﹣2t+1=(t﹣1)2,t∈[,2],∴当t=2时,函数取得最大值h(2)=1.∴k≥1.∴实数k的取值范围为[1,+∞).【点睛】本题考查二次函数在闭区间上最值的求法,考查恒成立问题的求解方法,训练了利用换元法及配方法求最值,是中档题;考查恒成立问题,正确分离参数是关键,也是常用的一种手段.通过分离参数可转化为或恒成立,即或即可,求出或即得解.22.已知函数(a>0,a≠1,m≠﹣1),是定义在(﹣1,1)上的奇函数.(I)求f(0)的值和实数m的值;(II)当m=1时,判断函数f(x)在(﹣1,1)上的单调性,并给出证明;(III)若且f(b﹣2)+f(2b﹣2)>0,求实数b的取值范围.【答案】(1)1(2)见解析(3)【解析】试题分析:(I)由奇函数的定义可得f(﹣x)+f(x)= log a=0,进一步整理得1﹣m2x2=1﹣x2恒成立,比较系数可得m=1或m=﹣1(舍去);(II)根据函数单调性的定义证明即可;(III)由,得0<a<1,根据条件构造不等式f(b﹣2)>f(2﹣2b),然后利用函数的单调性得到关于b的不等式求解即可。
山东省烟台市2020-2021学年高一上学期期末考试化学试题(解析版)
7.如图是喷泉实验装置,在烧瓶中充满干燥气体,胶头滴管及烧杯中分别盛有相同液体。下列组合不能形成喷泉的是
A.HCl与滴有石蕊溶液的水
B.Cl2与饱和食盐水溶液
C.SO2与NaOH溶液
D.NH3与滴有酚酞溶液的水
【答案】B
【解析】
【分析】
若气体与液体能相互反应或气体易溶于液体,从而使圆底烧瓶内的气压骤降,这种情况下可形成喷泉,据此分析作答。
【答案】D
【解析】
【分析】
【详解】A.浓硝酸使石蕊试液变红,然后利用浓硝酸的强氧化性将有色物质氧化,使溶液褪色,而稀硝酸只能使石蕊试液变红不能褪色,能够说明浓硝酸的氧化性强于稀硝酸,故A不符合题意;
B.浓硝酸能将NO氧化成NO2,体现浓硝酸的强氧化性,而稀硝酸不能将NO氧化成NO2,从而说明浓硝酸的氧化性强于稀硝酸,故B不符合题意;
D.MnO2与足量浓盐酸反应,化学方程式为: ,10.44g MnO2的物质的量为0.12mol,生成氯气的物质的量为0.12mol,分子数为0.12 NA,D项正确;
答案选AD。
12.为防止废弃的硒单质(Se)造成环境污染,通常用浓硫酸将其转化成SeO2,再用KI溶液处理后回收Se。发生反应:①Se+2H2SO4(浓)=2SO2↑+SeO2+2H2O;②SeO2+4KI+4HNO3=4KNO3+Se+2I2+2H2O,下列说法正确的是
C. 碱性溶液中:K+、CO 、NO 、SO
D 无色溶液中:Mg2+、NH 、OH-、Cl-
【答案】C【解析】【 Nhomakorabea析】【详解】A.酸性溶液中,Fe2+被NO 氧化为Fe3+,故不选A;
B.酸性溶液中,Cl-、ClO-发生归中反应生成氯气,故不选B;
2020-2021学年泰安市泰山区九年级上学期期末数学试卷(含答案解析)
2020-2021学年泰安市泰山区九年级上学期期末数学试卷一、选择题(本大题共12小题,共48.0分)1.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A. 1.5mB. 1.6mC. 1.86mD. 2.16m2.下列反比例函数是()A. B. C. D.3.把抛物线y=x2+1向左平移3个单位,再向下平移2个单位,得到的抛物线表达式为()A. y=(x+3)2−1B. y=(x−3)2−2C. y=(x−3)2+2D. y=(x−3)2−14.一个盒子中装有标号为1,2,3,4的四个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和不小于5的概率为()A. 23B. 13C. 58D. 385.下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x…−2013…y…6−4−6−4…下列各选项中,正确的是()A. 这个函数的图象开口向下B. 这个函数的图象与x轴无交点C. 这个函数的最小值小于−6D. 当x>1时,y的值随x值的增大而增大6. 在△ABC中,AB=AC,BC=8,当S△ABC=20时,tanB的值为()A. 54B. 45C. 34D. 437. 如图,点A、B、C、D在⊙O上,OB//CD.若∠A=28°,则∠BOD的大小为()A. 152°B. 134°C. 124°D. 114°8. 已知点P(−3,2),点Q(2.m)都在反比例函数y=kx(k≠0)的图象上,则m的值为()A. 2B. 3C. −2D. −39. 如图.在平面直角坐标系中,已知第一象限内的点A在反比例函数的图象上,第二象限内的点B在反比例函数的图象上。
连接OA,OB,若0A⊥OB,,则k的值为().A. B. C. −3 D. −210. 如图1,已知直角梯形ABCD,∠B=Rt∠.AD=CD=4cm,BC=6cm,如图在这块铁皮上剪下一个扇形和一个半径为1cm的圆形铁片,使之恰好围成一个图2所示的一个圆锥,则圆锥的高为()A. √17cmB. 2√2cmC. √3cmD. √15cm11. 如图,在面积为12的▱ABCD中,对角线BD绕着它的中点O按顺时针方向旋转一定角度后,其所在直线分别交AB、CD于点E、F,若AE=2EB,则图中阴影部分的面积等于()A. 2B. 3C. 43D. 2312. 已知函数f(x)=x2−2ax+5,当x≤2时,函数值随x增大而减小,且对任意的1≤x1≤a+1和1≤x2≤a+1,x1,x2相应的函数值y1,y2总满足|y1−y2|≤4,则实数a的取值范围是()A. −1≤a≤3B. −1≤a≤2C. 2≤a≤3D. 2≤a≤4二、填空题(本大题共6小题,共24.0分)13. 已知双曲线y=1−mx,当x>0时,y随x的增大而减小,则m的取值范围为______ .14. 若cos2α+sin242o=1,则锐角α=_________。
2020-2021学年新教材高一数学上学期期末复习练习(四)
2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.集合{|14}A x N x =∈≤<的真子集的个数是( )A .16B .8C .7D .42.已知:p :A ={x |x 2﹣2x ﹣3≤0},q :B ={x |x 2﹣2mx +m 2﹣4≤0},若p 是¬q 成立的充分不必要条件,求m 的取值范围是( )A .(﹣∞,﹣3)∪(5,+∞)B .(﹣3,5)C .[﹣3,5]D .(﹣∞,﹣3]∪[5,+∞)3.已知a b >,0ab ≠,则下列不等式正确的是( )A .22a b >B .22a b >C .|a |>|b|D .11a b < 4.已知lg 20.3010=,由此可以推断20142是( )位整数.A .605B .606C .607D .6085.设f (x )=12(1),1x x x <<-≥⎪⎩,若f (a )=12,则a =( ) A .14 B .54 C .14或54 D .26.正实数x ,y 满足lg lg 100y x x y =,则xy 的取值范围是( )A .1[,100]100B .1(0,][100,)100⋃+∞ 117.已知扇形的圆心角为23π,面积为24 c m 3π,则扇形的半径为( ) A .12cm B .1cmC .2cmD .4cm 8.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息( )元(参考数据:1.02254=1.093,1,02255=1.170,1.04015=1.217)A .176B .104.5C .77D .88二、多选题9.已知集合{}2A x ax =≤,{B =,若B A ⊆,则实数a 的值可能是( ) A .1- B .1 C .2- D .2 10.设正实数a ,b 满足a +b =1,则( )A .11a b +有最小值4B 12C D .a 2+b 2有最小值12 11.已知定义在R 上的函数()y f x =满足条件()()2f x f x +=-,且函数()1y f x =-为奇函数,则( )A .()4()f x f x +=B .函数()y f x =的图象关于点()1,0-对称C .函数()y f x =为R 上的奇函数D .函数()y f x =为R 上的偶函数12.将函数()sin2f x x =向右平移4π个单位后得到函数()g x ,则()g x 具有性质( ) A .在0,4π⎛⎫ ⎪⎝⎭上单调递增,为偶函数 B .最大值为1,图象关于直线32x π=对称 C .在3,88ππ⎛⎫- ⎪⎝⎭上单调递增,为奇函数 D .周期为π,图象关于点3,04π⎛⎫⎪⎝⎭对称第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.已知p :2106x x >--,则“非p ”对应的x 值的集合是___. 14.若对数ln (x 2﹣5x +6)存在,则x 的取值范围为___.15.若()log 3a y ax =+(0a >且1a ≠)在区间(-1,+∞)上是增函数,则a 的取值范围是________.四、双空题16.已知函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩. 若函数()()g x f x m =-有3个零点,则实数m 的取值范围是________;若()f x m =有2个零点,则m =________.17.已知集合{}12A x x =-≤≤,{}2B x a x a =≤≤+.(1)若1a =,求A B ;(2)在①R R A B ⊆,②A B A ⋃=,③A B B =中任选一个作为已知,求实数a 的取值范围.18.已知函数()222y ax a x =-++,a R ∈ (1)32y x <-恒成立,求实数a 的取值范围;(2)当0a >时,求不等式0y ≥的解集;(3)若存在0m >使关于x 的方程()21221ax a x m m-++=++有四个不同的实根,求实数a 的取值.19.计算下列各式的值:(1)lg2+lg50;(2)39log 4log 8; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭.20.已知函数f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0.(1)求a ,b 的值;(2)()()f x g x x =,求函数1(|21|),,22x y g x ⎡⎤=-∈⎢⎥⎣⎦的最小值与最大值及取得最小值与最大值时对应的x 值.21.设函数()cos(),0,02f x x πωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的最小正周期为π,且16f π⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间;(3)将函数()y f x =的图象向左平移3π个单位长度,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在2,63ππ⎡⎤-⎢⎥⎣⎦上的值域.22.销售甲种商品所得利润为P 万元,它与投入资金t 万元的函数关系为1at P t =+;销售乙种商品所得利润为Q 万元,它与投入资金t 万元的函数关系为Q bt =,其中a ,b 为常数.现将5万元资金全部投入甲、乙两种商品的销售:若全部投入甲种商品,所得利润为52万元;若全部投入乙种商品,所得利润为53万元.若将5万元资金中的x 万元投入甲种商品的销售,余下的投入乙种商品的销售,则所得利润总和为()f x 万元. (1)求函数()f x 的解析式;(2)求()f x 的最大值.2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册参考答案1.C【分析】先用列举法写出集合A ,再写出其真子集即可.【详解】解:∵141,2,3{|}{}A x N x =∈≤<=,{|1}4A x N x ∴=∈≤<的真子集为:{}{}{},,,,{}1231,21,{},,3{}2,3∅共7个. 故选:C .2.A【分析】求出集合A ,B ,由题可得[1,3]- ()(),22,m m -∞-⋃+∞,即可求出.【详解】解:由2230x x --≤,解得:13x -≤≤.{}2:230[1,3]p A x x x ∴=--≤=-∣.由22240x mx m -+-≤,解得:22m x m -≤≤+.∴q :B ={x |x 2﹣2mx +m 2﹣4≤0}=[m ﹣2,m +2], {}22:240[2,2]q B x x mx m m m ∴=-+-≤=-+∣.∵p 是¬q 成立的充分不必要条件,[1,3]∴- ()(),22,m m -∞-⋃+∞,32m ∴<-或21m +<-,解得5m >或3m <-.∴m 的取值范围是(,3)(5,)-∞-+∞. 故选:A.【点睛】结论点睛:本题考查根据充分不必要条件求参数,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,则q 对应的集合与p 对应集合互不包含. 3.B【分析】利用不等式性质和指数函数的单调性,以及举反例,逐项判定,即可求解.【详解】对于A 中,令1,2a b ==-,此时满足a b >,0ab ≠,但22a b <,所以不正确; 对于B 中,由函数2x y =为R 上的单调递增函数,因为a b >,所以22a b >,所以正确; 对于C 中,令1,2a b ==-,此时满足a b >,0ab ≠,但|a ||b |<,所以不正确; 对于D 中,令1,2a b ==-,此时满足a b >,0ab ≠,但11a b>,所以不正确. 故选:B.4.C【分析】令20142t =,两边取对数后求得lg t ,由此可得20142的整数位.【详解】解:∵lg 20.3010=,令20142t =,∴2014lg 2lg t ⨯=,则lg 20140.3010606.214t =⨯=,∴20142是607位整数.故选:C.5.C【分析】根据解析式分段讨论可求出.【详解】解:∵()12(1),1x f x x x <<=-≥⎪⎩,1()2f a =,∴由题意知,0112a <<⎧=或()11212a a ≥⎧⎪⎨-=⎪⎩, 解得14a =或54a =. 故选:C .6.B【分析】两边取对数可得lg lg 1x y =,利用基本不等式即可求出xy 的取值范围.【详解】正实数x ,y 满足lg lg 100y x x y =,两边取对数可得2lg lg 2x y =,所以lg lg 1x y =, 所以22lg lg lg()1lg lg 22x y xy x y +⎛⎫⎡⎤=≤= ⎪⎢⎥⎝⎭⎣⎦,即2lg ()4xy ≥, 所以lg()2xy ≥或lg()2xy ≤-,解得100xy ≥或10100xy <≤, 所以xy 的取值范围是1(0,][100,)100⋃+∞. 故选:B【点睛】 关键点点睛:本题的求解关键是两边取对数得到lg lg x y 积为定值. 7.C【分析】利用扇形的面积公式即可求解.【详解】设扇形的半径为R ,则扇形的面积2211242233S R R ππα==⨯⨯=, 解得:2R =,故选:C8.B【分析】由题意,某同学有压岁钱1000元,分别计算存入银行和放入微信零钱通或者支付宝的余额宝所得利息,即可得到答案.【详解】将1000元钱存入微信零钱通或者支付宝的余额宝,选择复利的计算方法,则存满5年后的本息和为51000 1.04011217⨯=,故而共得利息1217–1000=217元.将1000元存入银行,不选择复利的计算方法,则存满5年后的利息为1000×0.0225×5=112.5,故可以多获利息217–112.5=104.5.故选:B .【点睛】本题主要考查了等比数列的实际应用问题,其中解答中认真审题,准确理解题意,合理利用等比数列的通项公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.ABC【分析】由B A ⊆可得出关于实数a 的不等式组,解出实数a 的取值范围,进而可得出实数a 的可能取值.【详解】{}2A x ax =≤,{B =且B A ⊆,所以,222a ≤≤⎪⎩,解得1a ≤. 因此,ABC 选项合乎题意.故选:ABC.10.ABCD由正实数a ,b 满足1a b +=,可得2a b ab +,则104ab <,根据1114a b ab +=判断A ;104ab <开平方判断B =判断C ;利用222222()a b a a b b +++判断D .【详解】正实数a ,b 满足1a b +=,即有2a b ab +,可得104ab <, 即有1114a b a b ab ab ++==,即有12a b ==时,11a b+取得最小值4,无最大值,A 正确;由104ab <可得102<,可得12a b ==有最大值12,B 正确;1122=+⨯,可得12a b ==,C 正确; 由222a b ab +可得2222222()()1a a b a b a b b ++=++=,则2212a b +,当12a b ==时,22a b +取得最小值12,D 正确. 故选:ABCD .【点睛】 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).【分析】由()()2f x f x +=-,可得推得()()4f x f x +=,得到A 是正确的;由奇函数的性质和图象的变换,可得判定B 是正确的;由(1)(1)f x f x --=--+,可得推得函数()f x 是偶函数,得到D 正确,C 不正确.【详解】对于A 中,函数()y f x =满足()()2f x f x +=-,可得()()()42f x f x f x +=-+=,所以A 是正确的;对于B 中,()1y f x =-是奇函数,则(1)f x -的图象关于原点对称,又由函数()f x 的图象是由()1y f x =-向左平移1个单位长度得到,故函数()f x 的图象关于点(1,0)-对称,所以B 是正确的;对于C 、D ,由B 可得:对于任意的x ∈R ,都有(1)(1)f x f x --=--+,即(1)(1)0f x f x --+-+=,可变形得(2)()0f x f x --+=,则由(2)()(2)f x f x f x --=-=+对于任意的x ∈R 都成立,令2t x =+,则()()f t f t -=,即函数()f x 是偶函数,所以D 正确,C 不正确.故选:ABD【点睛】函数的周期性有关问题的求解策略:1、求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期;2、解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.12.ABD【分析】化简得到()cos 2g x x =-,分别计算函数的奇偶性,最值,周期,轴对称和中心对称,单调区间得到答案.【详解】()sin 2sin 2cos 242g x x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭ 因为0,4x π⎛⎫∈ ⎪⎝⎭,则20,2x π⎛⎫∈ ⎪⎝⎭,所以()cos 2g x x =-单调递增,且为偶函数,A 正确,C 错误; 最大值为1,当32x π=时,23x π=,所以32x π=为对称轴,B 正确; 22T ππ==,取2,,242k x k x k Z ππππ=+∴=+∈,当1k =时满足,图像关于点3,04π⎛⎫ ⎪⎝⎭对称,D 正确;故选:ABD【点睛】本题考查了三角函数的平移,最值,周期,单调性 ,奇偶性,对称性,意在考查学生对于三角函数知识的综合应用.13.{}23x x -≤≤【分析】先求出命题p ,再按照非命题的定义求解即可.【详解】p :2106x x >--, 则260x x -->,解得2x <-或3x >,所以“非p ”对应的x 值的集合是{}23x x -≤≤. 故答案为:{}23x x -≤≤.14.()(),23,-∞+∞ 【分析】若对数存在,则真数大于0,解不等式即可.【详解】解:∵对数ln (x 2﹣5x +6)存在,∴x 2﹣5x +6>0,∴解得: x <2或 x >3,即x 的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).15.(]1,3【分析】先利用0a >判断30u ax =+>是增函数,进而得到log a y u =是增函数,列关系计算即得结果.【详解】因为()log 3a y ax =+,(0a >且1a ≠)在区间(-1,+∞)上是增函数,知3u ax =+在区间(-1,+∞)上是增函数,且0>u ,故log a y u =是增函数,所以30101a a a a ⎧⎪-+≥⎪⎪>⎨⎪>⎪≠⎪⎩,解得13a .故a 的取值范围是(]1,3.故答案为:(]1,3.16.(0,1) 0或1【分析】把函数()()g x f x m =-有3个零点,转化为()y f x =和y m =的交点有3个,作出函数()f x 的图象,结合图象,即可求解.【详解】由题意,函数()()g x f x m =-有3个零点,转化为()0f x m -=的根有3个,转化为()y f x =和y m =的交点有3个,画出函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩的图象,如图所示,则直线y m =与其有3个公共点, 又抛物线的顶点为(1,1)-,由图可知实数m 的取值范围是(0,1).若()f x m =有2个零点,则0m =或(1)1m f =-=.故答案为:(0,1);0或1.【点睛】本题主要考查了函数与方程的综合应用,其中解答中把函数的零点问题转化为两个函数的图象的交点个数,结合图象求解是解答的关键,着重考查数形结合思想,以及推理与运算能力. 17.(1){}13A B x x ⋃=-≤≤;(2)选①/②/③,10a -≤≤.【分析】(1)应用集合并运算求A B 即可;(2)根据所选条件有B A ⊆,即可求a 的取值范围.【详解】(1)当1a =时,{}13B x x =≤≤,则{}13A B x x ⋃=-≤≤.(2)选条件①②③,都有B A ⊆, ∴1,22,a a ≥-⎧⎨+≤⎩解得10a -≤≤, ∴实数a 的取值范围为10a -≤≤.【点睛】本题考查了集合的基本运算,利用并运算求并集,由条件得到集合的包含关系求参数范围,属于简单题.18.(1)(4,0]-;(2)当02a <<时,不等式的解集为 {|1x x ≤或2}x a ≥;当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥;(3)(,4-∞-- 【分析】(1)先整理,再讨论0a =和0a ≠,列出恒成立的条件,求出a 的范围;(2)先因式分解,对两根大小作讨论,求出解集; (3)先令11t m m =++,由0m >,则可得3t ≥,再将()21221ax a x m m-++=++有四个不同的实根,转化为2(2)20ax a x t -++-=有两个不同正根,根据根与系数的关系,求出a 的取值范围.【详解】(1)由题有()22232ax a x x -++<-恒成立,即210ax ax -+-<恒成立, 当0a =时,10-<恒成立,符合题意;当0a ≠时,则2040a a a <⎧⎨∆=+<⎩,得040a a <⎧⎨-<<⎩,得40a , 综合可得40a .(2)由题2(2)20,ax a x -++≥ 即 (2)(1)0ax x --≥,由0,a >则2()(1)0x x a --=,且221a a a--= ①当02a <<时,21>a,不等式的解集为 {1x x ≤∣或2}x a ≥; ②当2a =时,不等式的解集为R③当2a >时,21a <,不等式的解集为 {2x x a≤∣或1}x ≥;综上可得:当02a <<时,不等式的解集为 {|1x x ≤或2}x a≥; 当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥; (3)当 0m > 时,令1113t m m =++≥=, 当且仅当1m =时取等号,则关于x 的方程(||)f x t = 可化为2||(2)||20a x a x t -++-=,关于x 的方程 2||(2)||20a x a x t -++-= 有四个不等实根, 即2(2)20ax a x t -++-=有两个不同正根, 则 2(2)4(2)0(1)20(2)20(3)a a t a a t a ⎧⎪∆=+-->⎪+⎪>⎨⎪-⎪>⎪⎩由(3)得0a <,再结合(2)得2a <-,由 (1) 知,存在 [3,)t ∈+∞ 使不等式24(2)80at a a ++->成立,故243(2)80a a a ⨯++->,即 2840,a a ++>解得4a <--或4a >-+综合可得4a <--故实数a的取值范围是(,4-∞--.【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解;19.(1)2;(2)43;(3)2. 【分析】(1)根据对数的加法运算法则,即可求得答案;(2)利用换底公式,结合对数的运算性质,即可求得答案;(3)根据对数的运算性质及减法法则,即可求得答案.【详解】(1)2lg 2lg50lg100lg102+===; (2)39lg 4log 42lg 22lg 324lg 32lg8log 8lg 33lg 233lg 9==⨯=⨯=; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭=013lg1011)1111244++-+=+-+= 20.(1)a =1,b =0;(2)当x =2时,g (|2x ﹣1|)max =43,x =1时,g (|2x ﹣1|)min =0. 【分析】(1)利用二次函数的性质求出a ,b 的值;(2)求出函数(|21|)x y g =-的解析式,利用换元法对勾函数的性质,得出最值以及取得最值时的x 值.【详解】(1)f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0, 即1a =1,f (1)=a +b ﹣1=0,解得a =1,b =0; (2)由(1)知f (x )=(x ﹣1)2,()()12f x g x x x x==+-,g (|2x ﹣1|)=121221x x -+--,令t =|2x ﹣1|,∵1,22x ⎡∈⎤⎢⎥⎣⎦,则1,3t ⎤∈⎦, 由对勾函数的性质可得()min ()10g t g ==,此时t =1即|2x ﹣1|=1,解得x =1;又)1122g =-=,())14332133g g =+-=>, 当t =3时,解得x =2时,所以当x =2时,g (|2x ﹣1|)max =43,当x =1时,g (|2x ﹣1|)min =021.(1)()cos(2)3f x x π=-;(2)[,],36k k k Z ππππ-+∈;(3)[-. 【分析】(1)由函数()f x 的最小正周期为π,求得2w =,再由16f π⎛⎫=⎪⎝⎭,求得ϕ的值,即可求得函数()f x 的解析式;(2)由(1)知()cos(2)3f x x π=-,根据余弦型函数的性质,即可求得函数的递增区间;(3)根据三角函数的图象变换,求得()cos()3g x x π=+,结合三角函数的性质,即可求解. 【详解】 (1)由题意,函数()cos()f x x =+ωϕ的最小正周期为π, 所以2wππ=,可得2w =,所以()cos(2)f x x ϕ=+, 又由16f π⎛⎫= ⎪⎝⎭,可得()cos(2)cos()1663f πππϕϕ=⨯+=+=, 可得2,3k k Z πϕπ+=∈,即2,3k k Z πϕπ=-∈, 因为02πϕ-<<,所以3πϕ=-, 所以函数()f x 的解析式为()cos(2)3f x x π=-.(2)由(1)知()cos(2)3f x x π=-, 令222,3k x k k Z ππππ-≤-≤∈,解得,36k x k k Z ππππ-≤≤+∈, 所以函数()cos(2)3f x x π=-的单调递增区间为[,],36k k k Z ππππ-+∈. (3)将函数()y f x =的图象向左平移3π个单位长度, 得到函数cos[2()]cos(2)333y x x πππ=+-=+, 再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()cos()3y g x x π==+,因为2[,]63x ππ∈-,可得[,]36x πππ+∈,所以()1g x -≤≤,所以函数()g x 的值域为[-. 【点睛】 解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.22.(1)()3513x x f x x -=++,[]0,5x ∈;(2)3万元. 【分析】(1)对甲种商品投资x 万元,则对乙种商品投资为5x -万元,当5t =时,求得3a =,13b =,代入()(5)1ax f x b x x =+-+即可. (2)转化成一个基本不等式的形式,最后结合基本不等式的最值求法得最大值,从而解决问题.【详解】(1)因为1at P t =+,Q bt = 所以当5t =时,55512a P ==+,553Q b ==,解得3a =,13b =. 所以31t P t =+,13=Q t ,从而()3513x x f x x -=++,[]0,5x ∈ (2)由(1)可得()()()313613531+553131313x x x x x f x x x x +--+-+⎛⎫=+==-+≤-= ⎪+++⎝⎭当且仅当3113x x +=+,即2x =时等号成立.故()f x 的最大值为3. 答:当分别投入2万元、3万元销售甲、乙两种商品时总利润最大,为3万元.【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.。
2020-2021学年高一地理上学期期末测试卷01(鲁教版2019)必修一(解析版)
2020-2021学年高一上学期期末测试卷01(鲁教版2019)地理试卷(考试范围:必修一第1—4章)一、选择题(本大题共25小题,每小题2分共50分;请从每小题给出的四个选项中选出正确的一项)2017年12月14日美国宇航局召开新闻发布会宣布了一项新的发现,开普勒太空望远镜在遥远的恒星系统开普勒90中发现了第八颗行星。
这是第一次在太阳系之外,发现与太阳系拥有相同数量的恒星。
这一消息实在激动人心,但遗憾的是其八颗行星同主恒星的距离均不超过日地距离,且恒星开普勒90的温度要比太阳稍高一点。
据此完成下面小题。
1.开普勒90天体系统与属于同一级别()A.可观测宇宙B.太阳系C.河外星系D.地月系2.结合材料推测,本来激动人心的发现因为又另人遗憾()A.此次观测并没有发现地外生命B.该天体系统距离地球遥远,现有航天器难以抵达C.各行星与恒星距离过近,没有适宜生命演化的温度D.受观测水平限制,人类无法详细观测到各行星表面【答案】1.B 2.C【解析】1.分析材料“开普勒太空望远镜在遥远的恒星系统开普勒90中发现了第八颗行星。
这是第一次在太阳系之外,发现与太阳系拥有相同数量的恒星”,可知开普勒90为恒星,吸引八大行星绕其不同公转,因此开普勒90天体系统与太阳系属于同一级别。
地月系比太阳系低一个级别,河外星系是与银河系并列的天体系统,比太阳系高一个级别;可观测宇宙即总星系,包括银河系与河外星系,比太阳系高两个级别。
故B正确,A、C、D错误。
2.地球目前人类发现的唯一存在生命的天体,日地距离适中使得地球上有适宜的温度,这是地球上孕育生命的重要因素。
“但遗憾的是其八颗行星同主恒星的距离均不超过日地距离,且恒星开普勒90的温度要比太阳稍高一点”,说明令人遗憾的原因是各行星与恒星距离过近,没有适宜生命演化的温度,故C正确,A、B、D错误。
云南澄江帽天山是我国著名的地质公园,帽天山的古生物化石群被称为20世纪最惊人的发现之一。
2020-2021学年山东省济南市高一(上)期末数学试卷
2020-2021学年山东省济南市高一(上)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)下列集合与集合{1A =,3}相等的是( ) A .(1,3) B .{(1,3)}C .2{|430}x x x -+=D .{(,)|1x y x =,3}y =2.(5分)命题:“0x R ∃∈,210x ->”的否定为( ) A .x R ∃∈,210x - B .x R ∀∈,210x - C .x R ∃∈,210x -< D .x R ∀∈,210x -<3.(5分)“α是锐角”是“α是第一象限角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件4.(5分)sin 20cos10sin70sin10(︒︒+︒︒= )A .14B C .12D 5.(5分)已知()||f x lnx =,若1()5a f =,1()4b f =,c f =(3),则( )A .a b c <<B .b c a <<C .c a b <<D .c b a <<6.(5分)要得到函数cos(3)5y x π=+的图象,需将函数cos3y x =的图象( ) A .向左平移15π个单位长度 B .向左平移5π个单位长度 C .向右平移15π个单位长度D .向右平移5π个单位长度7.(5分)我国著名数学家华罗庚先生曾说:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休.”在数学的学习和研究中,常用函数图象来研究函数性质,也常用函数解析式来分析函数图象的特征.如函数||2sin 2x y x =的图象大致是( )A .B .C .D .8.(5分)质数也叫素数,17世纪法国数学家马林⋅梅森曾对“21P -” (p 是素数)型素数作过较为系统而深入的研究,因此数学界将“21P -” (p 是素数)形式的素数称为梅森素数.已知第12个梅森素数为12721M =-,第14个梅森素数为60721N =-,则下列各数中与NM最接近的数为( ) (参考数据:120.3010)g ≈ A .14010B .14210C .14110D .14610二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(5分)若函数2()2()f x x ax a Z =-+∈在区间[0,1]上单调递增,在区间[3,4]上单调递减,则a 的取值为( ) A .4B .3C .2D .110.(5分)若0a b >>,则下列不等式成立的是( ) A .11a b< B .11b b a a +<+ C .11a b b a+>+ D .11a b a b+>+ 11.(5分)下列说法中正确的是( ) A .函数sin()2y x π=+是偶函数B .存在实数α,使sin α cos 1α=C .直线8x π=是函数5sin(2)4y x π=+图象的一条对称轴 D .若α,β都是第一象限角,且αβ>,则sin sin αβ>12.(5分)已知定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<⎪=⎨>⎪-⎩,下列说法中正确的是( )A .当121122x x -<<<时,恒有12()()f x f x >B .若当(0x ∈,]m 时,()f x 的最小值为34,则m 的取值范围为17[,]26C .不存在实数,使函数()()F x f x x =-有5个不相等的零点D .若关于x 的方程3[()][()]04f x f x a --=所有实数根之和为0,则34a =-三、填空题:本题共4小题,每小题5分,共20分. 13.(5分)23182252lg lg ++的值为 .14.(5分)函数()sin()(0f x A x A ωϕ=+>,0ω>,0)πϕ-<<的部分图象如图所示,则()4f π的值为 .15.(5分)已知函数()f x 为定义在R 上的奇函数,对任意x R ∈都有(3)()f x f x +=-,当3[2x ∈-,0]时,()2f x x =-,则(100)f 的值为 .16.(5分)设函数()f x 的定义域为D ,如果存在正实数,使对任意的x D ∈,都有x D +∈,且()()f x f x +>恒成立,则称函数()f x 为D 上的“型增函数”.已知()f x 是定义在R 上的奇函数,且当0x >时,()||2f x x a a =--,若()f x 为R 上的“2021型增函数”,则实数a 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合{|52}A x x =-<<,2{|340}B x x x =-->.(1)求A B ,()R AB ;(2)若{|11}C x m x m =-<<+,BC ≠∅,求实数m 的取值范围.18.(12分)在①2sin 3sin 2αα=,②cos 2α=,③tan α=补充在下面问题中,并解决问题.已知(0,)2πα∈,(0,)2πβ∈,1cos()4αβ+=-,____,求cos β.19.(12分)设函数2()cos cos()6f x x x x π=⋅-(1)求()f x 的最小正周期和单调递增区间;(2)当[,]122x ππ∈时,求函数()f x 的最大值和最小值.20.(12分)2020年11月5日至10日,第三届中国国际进口博览会在上海举行,经过三年发展,进博会让展品变商品、让展商变投资商,交流创意和理念联通中国和世界,成为国际采购、投资促进、人文交流、开放合作的四大平台,成为全球共享的国际公共产品. 在消费品展区,某企业带来了一款新型节能环保产品参展,并决定大量投放市场已知该产品年固定研发成本150万元,每生产一台需另投入380元.设该企业一年内生产该产品x 万台且全部售完,每万台的销售收入为()R x 万元,且25002,020()21406250370,20x x R x x x x -<⎧⎪=⎨+->⎪⎩. (1)写出年利润S (万元)关于年产量x (万台)的函数解析式;(利润=销售收入-成本) (2)当年产量为多少万台时,该企业获得的利润最大?并求出最大利润.21.(12分)已知函数3()1(26)31xx a f x b x b ⋅=--<<+是奇函数.(1)求a ,b 的值;(2)证明:()f x 是区间(26,)b b -上的减函数; (3)若(2)(21)0f m f m -++>,求实数m 的取值范围. 22.(12分)已知函数()f x =. (1)若()f x 的定义域为R ,求实数m 的取值范围;(2)设函数()()g x f x =-,若()0g lnx 对任意的[x e ∈,2]e 恒成立,求实数m 的取值范围.2020-2021学年山东省济南市高一(上)期末数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)下列集合与集合{1A =,3}相等的是( ) A .(1,3) B .{(1,3)}C .2{|430}x x x -+=D .{(,)|1x y x =,3}y =【解答】解:2{|430}{1x x x -+==,3},∴与集合{1A =,3}相等的是2{|430}x x x -+=.故选:C .2.(5分)命题:“0x R ∃∈,210x ->”的否定为( ) A .x R ∃∈,210x - B .x R ∀∈,210x - C .x R ∃∈,210x -< D .x R ∀∈,210x -<【解答】解:命题:“0x R ∃∈,2010x ->”的否定为“x R ∀∈,210x -”,故选:B .3.(5分)“α是锐角”是“α是第一象限角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件【解答】解:因为α是锐角,故090α︒<<︒,则α一定是第一象限角, 若α是第一象限角,不妨取330-︒,则α不是锐角,所以“α是锐角”是“α是第一象限角”的充分不必要条件. 故选:A .4.(5分)sin 20cos10sin70sin10(︒︒+︒︒= )A .14B C .12D 【解答】解:sin20cos10sin10sin70cos70cos10sin70sin10︒︒+︒︒=︒︒+︒︒ cos(7010)=︒-︒1cos602=︒=. 故选:C .5.(5分)已知()||f x lnx =,若1()5a f =,1()4b f =,c f =(3),则( )A .a b c <<B .b c a <<C .c a b <<D .c b a <<【解答】解:11()||555a f ln ln ===,11()||444b f ln ln ===,c f =(3)|3|3ln ln ==,函数y lnx =在(0,)+∞上单调递增,且345<<, 345ln ln ln ∴<<,即c b a <<, 故选:D .6.(5分)要得到函数cos(3)5y x π=+的图象,需将函数cos3y x =的图象( )A .向左平移15π个单位长度B .向左平移5π个单位长度C .向右平移15π个单位长度D .向右平移5π个单位长度【解答】解:将函数cos3y x =的图象,向左平移15π个单位长度,可得函数cos(3)5y x π=+的图象,故选:A .7.(5分)我国著名数学家华罗庚先生曾说:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休.”在数学的学习和研究中,常用函数图象来研究函数性质,也常用函数解析式来分析函数图象的特征.如函数||2sin 2x y x =的图象大致是( )A .B .C .D .【解答】解:||||()2sin(2)2sin 2()x x f x x x f x --=-=-=-,函数为奇函数,图象关于原点对称,排除A ,B , 当2x ππ<<时,()0f x <,排除C ,故选:D .8.(5分)质数也叫素数,17世纪法国数学家马林⋅梅森曾对“21P -” (p 是素数)型素数作过较为系统而深入的研究,因此数学界将“21P -” (p 是素数)形式的素数称为梅森素数.已知第12个梅森素数为12721M =-,第14个梅森素数为60721N =-,则下列各数中与NM最接近的数为( ) (参考数据:120.3010)g ≈ A .14010B .14210C .14110D .14610【解答】解:60748012721221N M -=≈-,令4802=,两边同时取常用对数得:4802lg lg =, 4802144.48lg lg ∴=≈, 144.4810∴=,∴与NM最接近的数为14610, 故选:D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(5分)若函数2()2()f x x ax a Z =-+∈在区间[0,1]上单调递增,在区间[3,4]上单调递减,则a 的取值为( ) A .4B .3C .2D .1【解答】解:函数2()2f x x ax =-+是开口向下,对称轴为x a =的二次函数,因为函数2()2()f x x ax a Z =-+∈在区间[0,1]上单调递增,在区间[3,4]上单调递减, 所以13a ,又a 是整数, 所以a 的可能取值为1,2,3, 故选:BCD .10.(5分)若0a b >>,则下列不等式成立的是( ) A .11a b< B .11b b a a +<+ C .11a b b a+>+ D .11a b a b+>+ 【解答】解:若0a b >>,则11a b<,故A 正确; 11(1)b b b a a a a a +--=++,由0a b >>,可得0b a -<,所以0(1)b a a a -<+,即11b b a a +<+,故B 正确; 由A 可知11a b b a+>+,故C 正确; 取12a =,13b =,则152a a +=,1103b b +=,此时11a b a b+<+,故D 错误. 故选:ABC .11.(5分)下列说法中正确的是( ) A .函数sin()2y x π=+是偶函数B .存在实数α,使sin α cos 1α=C .直线8x π=是函数5sin(2)4y x π=+图象的一条对称轴 D .若α,β都是第一象限角,且αβ>,则sin sin αβ>【解答】解:对于A :函数sin()cos 2y x x π=+=,故该函数是偶函数,故A 正确;对于B :由于sin cos 1αα=,故sin α和cos α互为倒数,与22sin cos 1αα+=矛盾,故不存在实数α,使sin cos 1αα=,故B 错误; 对于C :当8x π=时,5()sin()1844f πππ=+=-,故C 正确; 对于D :设136πα=,3πβ=,由于α,β都是第一象限角,但是sin sin βα>,故D 错误; 故选:AC .12.(5分)已知定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<⎪=⎨>⎪-⎩,下列说法中正确的是( )A .当121122x x -<<<时,恒有12()()f x f x >B .若当(0x ∈,]m 时,()f x 的最小值为34,则m 的取值范围为17[,]26C .不存在实数,使函数()()F x f x x =-有5个不相等的零点D .若关于x 的方程3[()][()]04f x f x a --=所有实数根之和为0,则34a =-【解答】解:根据定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<⎪=⎨>⎪-⎩, 如图所示:对于A :当121122x x -<<<时,根据函数的图象12()()f x f x >不一定成立,故A 错误;对于B :要使()f x 的最小值为34,令13214x =-,解得76x =,故m 的取值范围为17[,]26,故B 正确;对于C :令()f x x =,故21x x x -+=,整理得2(1)10x x -++=,由于△2(1)40=+->,解得1>或3<-,故存在,故C 错误; 对于3:()4D f x =,解得12x =或76,根据函数的图象的对称性可得34a =-,故D 正确; 故选:BD .三、填空题:本题共4小题,每小题5分,共20分. 13.(5分)23182252lg lg ++的值为 5 .【解答】解:原式2323225215lg lg ⨯=++=+=.故答案为:5.14.(5分)函数()sin()(0f x A x A ωϕ=+>,0ω>,0)πϕ-<<的部分图象如图所示,则()4f π的值为3 .【解答】解:由图象得:2A =,()2362T πππ=--=, 故T π=,故22πωπ==,由()2sin(2)233f ππϕ=⨯+=,故232ππϕ+=,解得:6πϕ=-, 故()2sin(2)6f x x π=-,3()2sin(2)2sin 234463f ππππ=⨯-===,315.(5分)已知函数()f x 为定义在R 上的奇函数,对任意x R ∈都有(3)()f x f x +=-,当3[2x ∈-,0]时,()2f x x =-,则(100)f 的值为 2 .【解答】解:根据题意,对任意x R ∈都有(3)()f x f x +=-, 则(6)(3)()f x f x f x +=-+=, 则函数()f x 是周期为6的周期函数,则(100)(4616)f f f =+⨯=(4)f =-(1)(1)f =-, 当3[2x ∈-,0]时,()2f x x =-,则(1)2f -=-,故(100)f f =(4)f =-(1)(1)2f =-=, 故答案为:2.16.(5分)设函数()f x 的定义域为D ,如果存在正实数,使对任意的x D ∈,都有x D +∈,且()()f x f x +>恒成立,则称函数()f x 为D 上的“型增函数”.已知()f x 是定义在R 上的奇函数,且当0x >时,()||2f x x a a =--,若()f x 为R 上的“2021型增函数”,则实数a 的取值范围是 2021(,)6-∞ .【解答】解:()f x 是定义在R 上的奇函数,(0)0f ∴=.设0x <,则0x ->.()||2||2f x x a a x a a ∴-=---=+-,()()||2f x f x x a a ∴=--=-++.||2,0()0,0||2,0x a a x f x x x a a x -->⎧⎪∴==⎨⎪--+<⎩, ①当0x >时,由(2021)()f x f x +>,可得|2021|2||2x a a x a a +-->--,化为|(2021)|||x a x a -->-,由绝对值的几何意义可得20210a a +-<,解得20212a <; ②当0x <时,由(2021)()f x f x +>,分为以下两类研究:当20210x +<时,可得|2021|2||2x a a x a a -+-+>--+,化为|2021|||x a x a +-<-,由绝对值的几何意义可得20210a a --->,解得20212a <-. 当20210x +>,|2021|2||2x a a x a a +-->-++,化为|2021||||20212|4x a x a a a +-++->,0a 时成立;当0a >时,20216a <,因此可得20216a <. ③当0x =时,由(2021)(0)f f >可得|2021|20a a -->,当0a 时成立,当0a >时,20213a <. 综上可知:a 的取值范围是2021(,)6-∞. 故答案为:2021(,)6-∞. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知集合{|52}A x x =-<<,2{|340}B x x x =-->.(1)求A B ,()R A B ;(2)若{|11}C x m x m =-<<+,BC ≠∅,求实数m 的取值范围. 【解答】解:(1){|52}A x x =-<<,{|1B x x =<-或4}x >, {|2A B x x ∴=<或4}x >,{|14}R B x x =-,(){|12}R A B x x =-<;(2)B C ≠∅,11m ∴-<-或14m +>,解得0m <或3m >,m ∴的取值范围为:(-∞,0)(3⋃,)+∞.18.(12分)在①2sin 3sin 2αα=,②cos2α=,③tan α=补充在下面问题中,并解决问题. 已知(0,)2πα∈,(0,)2πβ∈,1cos()4αβ+=-,____,求cos β. 【解答】解:选择条件①,2sin 3sin 2αα=.得sin 3sin cos ααα=, 因为(0,)2πα∈,所以sin 0α>,可得1cos 3α=;所以sin α== 由于(0,)2πα∈,(0,)2πβ∈,所以(0,)αβπ+∈,所以sin()αβ+== 所以11cos cos[()]cos()cos sin()sin 43βαβααβααβα=+-=+++=-⨯+. 选择条件②:cos2α=221cos 2cos 12123αα=-=⨯-=,以下解法同条件①. 选择条件③:因为0(0,)2πα∈,所以sin 0α>,cos 0α>;由tan α=22sin cos sin cos 1αααα⎧=⎪⎨⎪+=⎩,解得sin α,1cos 3α=; 以下解法同条件①.19.(12分)设函数2()cos cos()6f x x x x π=⋅- (1)求()f x 的最小正周期和单调递增区间;(2)当[,]122x ππ∈时,求函数()f x 的最大值和最小值. 【解答】解:(1)2()cos cos()6f x x x x π=⋅-21cos sin)cos)2x x x x=+-21sin cos2x x x=1sin24x x=1sin(2)23xπ=-,所以()f x的最小正周期是22Tππ==,由222232xπππππ-+-+,Z∈,解得51212xππππ-++,Z∈,所以函数的单调递增区间为[12ππ-+,5]12ππ+,Z∈.(2)当[,]122xππ∈时,2[36xππ-∈-,2]3π,此时1sin(2)[32xπ-∈-,1],可得1()[4f x∈-,1]2,综上,()f x最大值为12,最小值为14-.20.(12分)2020年11月5日至10日,第三届中国国际进口博览会在上海举行,经过三年发展,进博会让展品变商品、让展商变投资商,交流创意和理念联通中国和世界,成为国际采购、投资促进、人文交流、开放合作的四大平台,成为全球共享的国际公共产品.在消费品展区,某企业带来了一款新型节能环保产品参展,并决定大量投放市场已知该产品年固定研发成本150万元,每生产一台需另投入380元.设该企业一年内生产该产品x万台且全部售完,每万台的销售收入为()R x万元,且25002,020()21406250370,20x xR xxx x-<⎧⎪=⎨+->⎪⎩.(1)写出年利润S(万元)关于年产量x(万台)的函数解析式;(利润=销售收入-成本)(2)当年产量为多少万台时,该企业获得的利润最大?并求出最大利润.【解答】解:(1)当020x<时,S xR=()(380150)x x-+2250023801502120150x x x x x=---=-+-,当20x>时,S xR=()(380150)x x-+625062503702140380150101990x x xx x=+---=--+,∴函数S的解析式为22120150,&0206250101990,&20x x xSx xx⎧-+-<⎪=⎨--+>⎪⎩.(2)当020x <时,2221201502(30)1650S x x x =-+-=--+, ∴函数S 在(0,20]上单调递增,∴当20x =时,S 取得最大值,为1450,当20x >时,62506250101990(10)1990S x x x x =--+=-++ 210199050019901490x -=-+=, 当且仅当625010x x=,即25x =时,等号成立,此时S 取得最大值,为1490, 14901450>,∴当年产量为25万台时,该企业获得的利润最大,最大利润为1490万元.21.(12分)已知函数3()1(26)31xx a f x b x b ⋅=--<<+是奇函数. (1)求a ,b 的值;(2)证明:()f x 是区间(26,)b b -上的减函数;(3)若(2)(21)0f m f m -++>,求实数m 的取值范围.【解答】(1)解:函数3()1(26)31xx a f x b x b ⋅=--<<+是奇函数, 所以()()f x f x -=-恒成立,即331113131x xx x a a --⋅⋅---+-++, 整理得(2)(31)0x a -+=,所以2a =,因为60b b -+=,解得2b =, 所以2a =,2b =.(2)证明:由(1)得23()131xx f x ⋅=-=+,(2,2)x ∈-, 设任意1x ,2(2,2)x ∈-,且12x x <,则122112*********(33)()()(1)(1)3131(31)(31)x x x x x x x x f x f x ⋅⋅--=---=++++, 因为12x x <,所以1233x x <,所以21330x x ->,而1310x +>,2310x +>,所以21122(33)0(31)(31)x x x x ->++,所以12()()0f x f x ->,即12()()f x f x >, 所以()f x 是区间(26,)b b -上的减函数.(3)解:(2)(21)0f m f m -++>,所以(2)(21)f m f m ->-+, 因为函数()f x 是奇函数,所以(2)(21)f m f m ->--, 因为函数()f x 是区间(2,2)-上的减函数,所以2212222212m m m m -<--⎧⎪-<-<⎨⎪-<+<⎩,解得103m <<, 所以实数m 的取值范围是1(0,)3. 22.(12分)已知函数()f x =.(1)若()f x 的定义域为R ,求实数m 的取值范围;(2)设函数()()g x f x =-,若()0g lnx 对任意的[x e ∈,2]e 恒成立,求实数m 的取值范围.【解答】解:(1)函数()f x 的定义域为R ,即220mx mx -+在R 上恒成立, 当0m =时,20恒成立,符合题意,当0m ≠时,00m >⎧⎨⎩即2080m m m >⎧⎨-⎩得08m <, 综上,实数m 的取值范围是[0,8].(2)因为()()g x f x ==, 所以()0g lnx 对任意的[x e ∈,2]e 恒成立等价于220()22()m lnx mlnx lnx -+在[x e ∈,2]e 恒成立,即222()20(*)()22()m lnx mlnx m lnx mlnx lnx ⎧-+⎨-+⎩在[x e ∈,2]e 恒成立, 设t lnx =,因为[x e ∈,2]e ,所以[1t ∈,2],不等式组(*)化为222()20()22m t t m t t t⎧-+⎨-+⎩,[1t ∈,2]时,20t t -(当且仅当1t =时取等号), ()i 当1t =时,不等式组成立,()ii 当(1t ∈,2]时,222()20()22m t t m t t t ⎧-+⎨-+⎩,所以222222m t t t m t t ⎧-⎪⎪-⎨-⎪⎪-⎩恒成立, 因为2222111()24t t t -=----+,所以1m -,因为22222(1)22t t t t t t -+==+-在(1t ∈,2]上单调递减,所以2232m +=, 综上,实数m 的取值范围时[1-,3].。
2020-2021学年山东省滨州市高一(上)期末数学试卷 (含解析)
2020-2021学年山东省滨州市高一(上)期末数学试卷一、单项选择题(共8小题).1.已知命题p:∀x∈R,2x2+1>0,则()A.¬p:∀x∈R,2x2+1≤0B.¬p:∃x∈R,2x2+1≤0C.¬p:∃x∈R,2x2+1<0D.¬p:∀x∈R,2x2+1<02.函数的定义域为()A.[﹣2,0]B.(﹣2,0)C.(﹣2,0]D.(﹣2,+∞)3.已知a=e0.2,b=log3,c=sin4,则()A.c<b<a B.b<c<a C.b<a<c D.c<a<b4.已知幂函数y1=x a,y2=x b,y3=x c,y4=x d在第一象限的图象如图所示,则()A.a>b>c>d B.b>c>d>a C.d>b>c>a D.c>b>d>a 5.在东方设计中,存在着一个名为“白银比例”的理念,这个比例为,它在东方文化中的重要程度不亚于西方文化中的“黄金分割比例”,传达出一种独特的东方审美观.折扇纸面可看作是从一个扇形纸面中剪下小扇形纸面制作而成(如图).设制作折扇时剪下小扇形纸面面积为S1,折扇纸面面积为S2,当时,扇面较为美观.那么按“白银比例”制作折扇时,原扇形半径与剪下小扇形半径之比为()A.B.C.D.6.函数y=的部分图象大致为()A.B.C.D.7.已知函数f(x)=3x+x,g(x)=log3x+x,h(x)=x3+x的零点分别为a,b,c,则a,b,c的大小顺序为()A.a>b>c B.b>c>a C.c>a>b D.b>a>c8.已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=2x﹣x2,则下列说法正确的是()A.f(x)在(﹣1,0)上为增函数B.f(x)的最大值为2C.方程f(x)﹣ln|x|=0有四个不相等的实数根D.当x<0时,f(x)=﹣x2﹣2x二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.在平面直角坐标系中,若角α的终边与单位圆交于点,将角α的终边按逆时针方向旋转后得到角β的终边,记角β的终边与单位圆的交点为Q,则下列结论正确的为()A.B.C.D.10.已知a>b>c,且ac<0,则下列不等式恒成立的有()A.B.C.D.11.下列说法正确的是()A.与角终边相同的角α的集合可以表示为B.若α为第一象限角,则为第一或第三象限角C.函数f(x)=sin(x+φ+)是偶函数,则φ的一个可能值为D.“”是函数的一条对称轴12.已知函数f(x)=,若方程f(x)=a有三个实数根x1,x2,x3,且x1<x2<x3,则下列结论正确的为()A.x1x2=1B.a的取值范围为C.的取值范围为[5,+∞)D.不等式f(x)>2的解集为三、填空题:本题共4小题,每小题5分,共20分.13.函数f(x)=log a(2x﹣3)+1(a>0,且a≠1)的图象恒过定点P,则点P的坐标是.14.已知集合A={1,3,a2},B={1,a+2},若A∪B=A,则实数a=.15.函数f(x)=3cos2x﹣sin x cos x在区间上的最大值为.16.已知定义在R上的周期函数y=f(x)(在长度不小于它的一个最小正周期的闭区间上)的图象如图所示,则函数f(x)的最小正周期为,函数的解析式.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知集合A={x|x2﹣7x+10<0},B={x|(x﹣a)(x﹣a﹣2)<0}.(1)若B⊆A,求实数a的取值范围;(2)若m=log25﹣log240,n=lg40+2lg5,求m,n的值,并从下列所给的三个条件中任选一个,说明它是B⊆A的什么条件.(请用“充要条件”“充分不必要条件”“必要不充分条件”“既不充分也不必要条件”回答)①;②;③.18.已知函数f(x)=2x,x∈R.(1)若函数f(x)在区间[a,2a]上的最大值与最小值之和为6,求实数a的值;(2)若,求3x+3﹣x的值.19.已知.(1)求sin x的值;(2)求的值.20.已知函数为奇函数.(1)求实数a的值;(2)判断函数f(x)在区间(﹣1,1)上的单调性,并用函数单调性的定义证明.21.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求函数f(x)的解析式;(2)若将函数f(x)的图象上所有点的横坐标变为原来的2倍,纵坐标不变;再把所得函数图象向左平移个单位长度,得到函数g(x)的图象.求函数g(x)在[0,2π]上的单调递增区间.22.近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(按30天计),每件的销售价格P(x)(单位:元)与时间x(单位:天)(1≤x≤30,x∈N*))的函数关系满足P(x)=10+为常数,且k>0),日销售量Q(x)(单位:件)与时间x的部分数据如表所示:x15202530 Q(x)55605550设该工艺品的日销售收入为f(x)(单位:元),且第20天的日销售收入为603元.(1)求k的值;(2)给出以下四种函数模型:①Q(x)=ax+b;②Q(x)=a|x﹣m|+b;③Q(x)=ab x;④Q(x)=a log b x.请你根据表中的数据,从中选择你认为最合适的一种函数模型来描述日销售量Q(x)与时间x的变化关系,并求出该函数的解析式;(3)利用问题(2)中的函数Q(x),求f(x)的最小值.参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题p:∀x∈R,2x2+1>0,则()A.¬p:∀x∈R,2x2+1≤0B.¬p:∃x∈R,2x2+1≤0C.¬p:∃x∈R,2x2+1<0D.¬p:∀x∈R,2x2+1<0解:命题为全称命题,则命题的否定为:∃x∈R,2x2+1≤0,故选:B.2.函数的定义域为()A.[﹣2,0]B.(﹣2,0)C.(﹣2,0]D.(﹣2,+∞)解:要使函数有意义,则1﹣log2(x+2)≥0得log2(x+2)≤1,即0<x+2≤2,得﹣2<x≤0,即函数的定义域为(﹣2,0],故选:C.3.已知a=e0.2,b=log3,c=sin4,则()A.c<b<a B.b<c<a C.b<a<c D.c<a<b解:∵e0.2>e0=1,,sin4<0,∴c<b<a.故选:A.4.已知幂函数y1=x a,y2=x b,y3=x c,y4=x d在第一象限的图象如图所示,则()A.a>b>c>d B.b>c>d>a C.d>b>c>a D.c>b>d>a 解:根据幂函数y1=x a,y2=x b,y3=x c,y4=x d在第一象限的图象知,b>c>1>d>0>a,即b>c>d>a.故选:B.5.在东方设计中,存在着一个名为“白银比例”的理念,这个比例为,它在东方文化中的重要程度不亚于西方文化中的“黄金分割比例”,传达出一种独特的东方审美观.折扇纸面可看作是从一个扇形纸面中剪下小扇形纸面制作而成(如图).设制作折扇时剪下小扇形纸面面积为S1,折扇纸面面积为S2,当时,扇面较为美观.那么按“白银比例”制作折扇时,原扇形半径与剪下小扇形半径之比为()A.B.C.D.解:由题意,如图所示,设原扇形半径为x,剪下小扇形半径为y,∠AOB=α,则小扇形纸面面积S1=y2α,折扇纸面面积S2=x2α﹣y2α,由于,可得y2α=x2α﹣y2α,可得=,解得=,即原扇形半径与剪下小扇形半径之比为.故选:A.6.函数y=的部分图象大致为()A.B.C.D.解:f(﹣x)==﹣=﹣f(x),则f(x)是奇函数,排除A,由cos3x=0得3x=kπ+,即x=+,即右侧第一个零点为,当0<x<时,f(x)>0,排除B,当x趋向无穷大时,f(x)趋向0,排除D,故选:C.7.已知函数f(x)=3x+x,g(x)=log3x+x,h(x)=x3+x的零点分别为a,b,c,则a,b,c的大小顺序为()A.a>b>c B.b>c>a C.c>a>b D.b>a>c解:f(x)=3x+x=0,则x=﹣3x,g(x)=log3x+x,则x=﹣log3x,h(x)=x3+x,则x=﹣x3,∵函数f(x),g(x),h(x)的零点分别为a,b,c,作出函数y=﹣3x,y=﹣log3x,y=﹣x3,y=x的图象如图,由图可知:b>c>a,故选:B.8.已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=2x﹣x2,则下列说法正确的是()A.f(x)在(﹣1,0)上为增函数B.f(x)的最大值为2C.方程f(x)﹣ln|x|=0有四个不相等的实数根D.当x<0时,f(x)=﹣x2﹣2x解:根据题意,设x<0,则﹣x>0,则f(﹣x)=﹣2x﹣x2,又由f(x)是偶函数,则f(x)=f(﹣x)=﹣x2﹣2x,则f(x)=,依次分析选项:对于A,f(x)在区间(﹣1,0)上为减函数,A错误,对于B,当x=±1时,f(x)取得最大值,即f(x)max=f(1)=f(﹣1)=1,B错误,对于C,如图:y=ln|x|的图象与y=f(x)的图象有2个交点,则方程f(x)﹣ln|x|=0只有2个不相等的实数根,C错误,对于D,当x<0时,f(x)=﹣x2﹣2x,D正确,故选:D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.在平面直角坐标系中,若角α的终边与单位圆交于点,将角α的终边按逆时针方向旋转后得到角β的终边,记角β的终边与单位圆的交点为Q,则下列结论正确的为()A.B.C.D.解:由角α的终边与单位圆交于点,α是第一象限角,可得cosα=,∴sinα==,可得tanα==,故A正确;将角α的终边按逆时针方向旋转后得到角β的终边,可得β=α+,则可得sinβ=sin(α+)=cosα=,cosβ=cos(α+)=﹣sinα=﹣,故B正确,C错误;据三角函数定义可得,角β的终边与单位圆的交点为Q,则点Q的坐标为(﹣,),故D错误.故选:AB.10.已知a>b>c,且ac<0,则下列不等式恒成立的有()A.B.C.D.解:由已知可得a>0,c<0,而b的符号不确定,所以C正确,D错误,则b﹣a<0,所以,故A错误;因为b>c,a>0所以,故B正确;故选:BC.11.下列说法正确的是()A.与角终边相同的角α的集合可以表示为B.若α为第一象限角,则为第一或第三象限角C.函数f(x)=sin(x+φ+)是偶函数,则φ的一个可能值为D.“”是函数的一条对称轴解:对于A:与角终边相同的角α的集合可以表示为:,故A错误;对于B:若α为第一象限角,则,则:,当k=0或1时,解得.所以为第一或第三象限角,故B正确;对于C:函数f(x)=sin(x+φ+)是偶函数,则φ的一个可能值为,当φ=时,f(x)=sin(x+π)=﹣sin x,函数为奇函数,故C错误;对于D:“”是函数的一条对称轴,即f()=﹣2,故D正确.故选:BD.12.已知函数f(x)=,若方程f(x)=a有三个实数根x1,x2,x3,且x1<x2<x3,则下列结论正确的为()A.x1x2=1B.a的取值范围为C.的取值范围为[5,+∞)D.不等式f(x)>2的解集为解:画出函数f(x)的图象,如图示:,f(x)=a有3个不等的实根⇔f(x)和y=a有3个不同的交点,∴a∈(0,2],∵x1<x2<x3,x1=﹣x2,x1+x2=(x1•x2)=0,∴x1•x2=1,=2,x3=5,故x3∈[5,+∞),故∈[5,+∞),结合图象不等式f(x)>2的解集为,故选:ACD.三、填空题:本题共4小题,每小题5分,共20分.13.函数f(x)=log a(2x﹣3)+1(a>0,且a≠1)的图象恒过定点P,则点P的坐标是(2,1).解:根据题意:令2x﹣3=1,∴x=2,此时y=1,∴定点坐标是(2,1).故答案为:(2,1)14.已知集合A={1,3,a2},B={1,a+2},若A∪B=A,则实数a=2.解:∵集合A={1,3,a2},B={1,a+2},A∪B=A,∴B⊆A,∴a+2=1,或a+2=3,或a+2=a2,解得a=﹣1或a=1,或a=2,当a=﹣1时,A={1,3,1},不成立;当a=1时,A={1,3,1},不成立;当a=2时,A={1,3,4},B={1,4},成立.故实数a=2.故答案为:2.15.函数f(x)=3cos2x﹣sin x cos x在区间上的最大值为3.解:因为f(x)=3cos2x﹣sin x cos x=3×﹣sin2x=cos(2x+)+,∵x∈,可得2x+∈[,],∴当2x+=,即x=0时,函数f(x)取得最大值为×+=3.故答案为:3.16.已知定义在R上的周期函数y=f(x)(在长度不小于它的一个最小正周期的闭区间上)的图象如图所示,则函数f(x)的最小正周期为2,函数的解析式f(x)=,(k∈Z).解:根据题意,由函数的图象,f(x)的最小正周期为2,在区间[0,1]上,f(x)=x,当2k≤x≤2k+1时,0≤x﹣2k≤1,则有f(x)=f(x﹣2k)=x﹣2k,(k∈Z)故在区间[2k,2k+1]上,f(x)=x﹣2k,(k∈Z)在区间[﹣1,0)上,f(x)=﹣x,当2k﹣1≤x≤2k时,﹣1≤x﹣2k<0,f(x)=f(x﹣2k)=﹣(x﹣2k)=﹣x+2k,则在区间[2k﹣1,2k],f(x)=﹣x+2k,(k∈Z)故f(x)=,(k∈Z),故答案为:2,f(x)=,(k∈Z),四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知集合A={x|x2﹣7x+10<0},B={x|(x﹣a)(x﹣a﹣2)<0}.(1)若B⊆A,求实数a的取值范围;(2)若m=log25﹣log240,n=lg40+2lg5,求m,n的值,并从下列所给的三个条件中任选一个,说明它是B⊆A的什么条件.(请用“充要条件”“充分不必要条件”“必要不充分条件”“既不充分也不必要条件”回答)①;②;③.解:(1)因为x2﹣7x+10<0,所以(x﹣2)(x﹣5)<0,解得2<x<5,所以A={x|2<x<5},因为(x﹣a)(x﹣a﹣2)<0,解得a<x<a+2,所以B={x|a<x<a+2},因为B⊆A,所以,解得2≤a≤3,所以实数a的取值范围为[2,3];(2)m=log25﹣log240=,n=lg40+2lg5=lg40+lg25=lg1000=lg103=3,若选①,所以“”是“a∈[2,3]”的既不充分又不必要条件;若选②a∈[﹣3,5],因为[2,3]⫋[﹣3,5],所以“a∈[﹣3,5]”是“a∈[2,3]”的必要不充分条件;若选③,因为,所以“”是“a∈[2,3]”的充分不必要条件.18.已知函数f(x)=2x,x∈R.(1)若函数f(x)在区间[a,2a]上的最大值与最小值之和为6,求实数a的值;(2)若,求3x+3﹣x的值.解:(1)f(x)=2x为R上的增函数,则f(x)在区间[a,2a]上为增函数,∴,,由22a+2a=6,得22a+2a﹣6=0,即2a=﹣3(舍去),或2a=2,即a=1;(2)若,则,即,则x=log32,∴3x+3﹣x==.19.已知.(1)求sin x的值;(2)求的值.解:(1)∵x∈(,),∴x﹣∈(,),∵sin(x﹣)=,∴cos(x﹣)==,∴sin x=sin[(x﹣)+]=sin x(x﹣)cos+cos(x﹣)sin x=×+×=.(2)∵x∈(,),∴cos x===,∴sin2x=2sin x cos x=﹣,cos2x=2cos2x﹣1=﹣,∴=cos2x cos﹣sin2x sin=﹣×﹣(﹣)×=.20.已知函数为奇函数.(1)求实数a的值;(2)判断函数f(x)在区间(﹣1,1)上的单调性,并用函数单调性的定义证明.解:(1)因为函数的定义域为R,且为奇函数,所以f(0)=0,即a=0,经检验,当a=0时,f(x)为奇函数,符合题意.(2)由(1)可知f(x)=,函数f(x)在区间(﹣1,1)上单调递增,证明:在(﹣1,1)上任取x1,x2,且x1<x2,则f(x1)﹣f(x2)=﹣=,由﹣1<x1<x2<1,得x1﹣x2<0,1﹣x1x2>0,所以f(x1)﹣f(x2)<0,即f(x1)<f(x2).所以函数f(x)=在区间(﹣1,1)上是增函数.21.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求函数f(x)的解析式;(2)若将函数f(x)的图象上所有点的横坐标变为原来的2倍,纵坐标不变;再把所得函数图象向左平移个单位长度,得到函数g(x)的图象.求函数g(x)在[0,2π]上的单调递增区间.解:(1)根据函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象,可得A=2,×=﹣,∴ω=2.再根据五点法作图,2×+φ=,∴φ=﹣,∴f(x)=2sin(2x﹣).(2)将函数f(x)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,可得y=2sin (x﹣)的图象;再把所得函数图象向左平移个单位长度,得到函数g(x)=2sin(x+)的图象.令2kπ﹣≤x+≤2kπ+,求得2kπ﹣≤x≤2kπ+,可得g(x)的增区间为[2kπ﹣,2kπ+],k∈Z.故函数g(x)在[0,2π]上的单调递增区间为[0,]、[,2π].22.近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(按30天计),每件的销售价格P(x)(单位:元)与时间x(单位:天)(1≤x≤30,x∈N*))的函数关系满足P(x)=10+为常数,且k>0),日销售量Q(x)(单位:件)与时间x的部分数据如表所示:x15202530 Q(x)55605550设该工艺品的日销售收入为f(x)(单位:元),且第20天的日销售收入为603元.(1)求k的值;(2)给出以下四种函数模型:①Q(x)=ax+b;②Q(x)=a|x﹣m|+b;③Q(x)=ab x;④Q(x)=a log b x.请你根据表中的数据,从中选择你认为最合适的一种函数模型来描述日销售量Q(x)与时间x的变化关系,并求出该函数的解析式;(3)利用问题(2)中的函数Q(x),求f(x)的最小值.解:(1)因为第20天的日销售收入为603元,所以f(20)=P(20)Q(20)=(10+)×60=603,解得:k=1;(2)由表中数据知,当时间x变化时,Q(x)先增后减,函数模型①Q(x)=ax+b;③Q(x)=ab x;④Q(x)=a log b x,都是单调函数,所以选择函数模型②Q(x)=a|x﹣m|+b,由Q(15)=Q(25),得|15﹣m|=|25﹣m|,所以m=20,由,解得a=﹣1,b=60,所以日销售量Q(x)与时间x的变化关系为Q(x)=﹣|x﹣20|+60(1≤x≤30,x∈N*);(3)由(2)知Q(x)=﹣|x﹣20|+60=,所以f(x)=P(x)Q(x)=,即f(x)=,当1≤x≤20,x∈N*时,由基本不等式得,f(x)=10x+,即x=2时,等号成立,所以f(x)min=441;当20<x≤30,x∈N*时,f(x)=﹣10x++799为减函数,所以f(x)min=f(30)=499+>441,综上所述:当x=2时,f(x)的最小值为441.。
高中数学专题练习13 结构不良题(三角函数与解三角形)(新高考地区专用)解析版
结构不良题(三角函数与解三角形)结构不良题型是新课改地区新增加的题型,所谓结构不良题型就是给出一些条件,另外的条件题目中给出三个,学生可以从中选择1个或者2个作为条件,进行解题。
一、题型选讲题型一、研究三角形是否存在的问题例1、【2020年新高考全国Ⅰ卷】在①ac =sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角,,A B C 的对边分别为,,a b c ,且sin A B =,6C π=,________? 注:如果选择多个条件分别解答,按第一个解答计分.例2、在①cos cos 2c B b C +=,②πcos()cos 2b Cc B -=,③sin cos B B +=充在下面问题中,若问题中的三角形存在,求ABC △的面积;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角A ,B ,C 的对边分别为a ,b ,c ,且π6A =,______________,4b =?注:如果选择多个条件分别解答,按第一个解答计分.题型二、运用正余弦定理研究边、角及面积例3、【2020年高考北京】在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.例4、在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC .如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .例5、在①,②,③这三个条件中任选一个,补充在下面的横线上,并加以解答.已知的内角,,所对的边分别是,,,若______.(1)求角;(2)若,求周长的最小值,并求出此时的面积.b a =2sin tan b A a B =()()sin sin sin ac A c A B b B -++=ABC A B C a b c B 4a c +=ABC ABC例6、现给出两个条件:①2c -3b =2a cos B ,②(2b -3c )cos A =3a cos C ,从中选出一个条件补充在下面的问题中,并以此为依据求解问题.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,________. (1)求A ;(2)若a =3-1,求△ABC 周长的最大值.例7、在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且满()(sin sin )sin )b a B A c B C -+=-. (1)求A 的大小;(2)再在①2a =,②4B π=,③=c 这三个条件中,选出两个使ABC 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC 的面积.题型三、考查三角函数的图像与性质 例8、在①函数()()1sin 20,22f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象向右平移12π个单位长度得到()g x 的图象,()g x 图象关于原点对称;②向量()3sin ,cos 2m x x ωω=,()11cos ,,0,24n x f x m n ωω⎛⎫=>=⋅ ⎪⎝⎭;③函数()1cos sin 64f x x x πωω⎛⎫=+- ⎪⎝⎭()0ω>这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数()f x 的图象相邻两条对称轴之间的距离为2π.(1)若02πθ<<,且sin 2θ=,求()f θ的值; (2)求函数()f x 在[]0,2π上的单调递减区间.二、达标训练1、已知有条件①(2)cos cos b c A a C -=,条件②45cos 2cos 2=+⎪⎭⎫⎝⎛+A A π;请在上述两个条件中任选一个,补充在下面题目中,然后解答补充完整的题目.在锐角△ABC 中,内角A , B , C 所对的边分别为a , b,c , a =7, b +c =5, 且满足.(1) 求角A 的大小; (2) 求△ABC 的面积.(注:如果选择多个条件分别解答,按第一个解答计分.)2、在①a=√2,②S=C 2cosB , ③C=π3这三个条件中任选-一个,补充在下面问题中,并对其进行求解.问题:在∆A BC 中,内角A, B,C 的对边分别为a,b,c,面积为S , √3bcosA=acosC+ccosA ,b=1,____________,求 c 的值. 注:如果选择多个条件分别解答,按第一个解答计分。
山东省泰安市2020-2021学年高一上学期期末考试数学试题 含解析
数学考试
一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 , ,则 ()
A. B. C. D.
————B
分析:
直接利用集合的交集运算求解.
解答:因为集合 , ,
所以 ,
故选:B
2. ()
A. B. C. D.
————C
分析:
————1
分析:
根据对数函数的单调性,分类讨论,再结合已知进行求解即可.
解答:当 时,函数 是正实数集上的增函数,而函数 在 上的最大值为 ,
因此有 ,所以 ,此时 在 上是增函数,
符合题意,因此 ;
当 时,函数 是正实数集上的减函数,而函数 在 上的最大值为 ,
因此有 ,所以 ,此时 在 上是减函数,不符合题意.
分析:
(1)根据 ,求得 ,得到 ,由 ,求得 的定义域,令 ,用函数单调性的定义证明其单调性,再利用复合函数的单调性得到结论.
(3)易得函数是奇函数,将原不等式转化为 ,再利用 在定义域上的单调性求解.
解答:(1) ,
,
,
又 ,
,
.
由 ,解得 ,
的定义域为 .
令 .
任取 ,且 ,则
.
, , ,
,即 ,
21.北京时间2020年11月24日,我国探月工程嫦娥五号探测器在海南文昌航天发射场发射升空,并进入地月转移轨道.探测器实施 次轨道修正, 次近月制动后,顺利进入环月圆轨道,于12月1日在月球正面预选区域着陆,并开展采样工作.12月17日1时59分,嫦娥五号返回器在内蒙古四子王旗预定区域成功着陆,标志着我国首次地外天体采样返回任务圆满完成.
高中数学专题练习30 极值点偏移问题的研究-(新高考地区专用)解析版
当 x>0,g′(x)>0,则 f′(x)在(0,+∞)上单调递增,故 f′(x)>f′(0)=0,所以 f(x)在(0,+∞)上单调递增,
(5 分)
进而 f(x)>f(0)=1>0,即对于任意 x>0,都有 f(x)>0.(6 分)
(2) f′(x)=ex-ax-a,因为 x1,x2 为 f(x)的两个极值点,
f′(x1)=0, ex1-ax1-a=0, 所以 f′(x2)=0. 即 ex2-ax2-a=0.
ex4-ax1-a=0, 两式相减,得 a= ex2-ax2-a=0.
两式相减,得 a=ex1-ex2,(8 分) x1-x2
则所证不等式等价x1+x2<lnex1-ex2,即 ex1-x2<ex1-x2-1,(12 分)
h x1 h x2 2 .
例 2、(2020 届山东省滨州市高三上期末)已知函数 f (x) ex (1 m ln x) ,其中 m 0 , f x 为 f x 的
导函数,设 h(x)
f
( x) ex
,且
h
x
5 2
恒成立.
(1)求 m 的取值范围;
(2)设函数 f x 的零点为 x0 ,函数 f x 的极小值点为 x1 ,求证: x0 x1 .
当 x x2 时, H x 0 , g x 0 ,函数 g x 单调递增.
所以
x2
是函数
g x
的极小值点.因此
x2
x1
,即
x1
1 2
,1
.
由(1)可知,当
m
3 2
时,
h(x)
5 2
,即 1
3
2 x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泰安市2020-2021学年高一上学期期末考试数学考试一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}13,5A =,,{}3,4B =,则A B =( )A. {}5B. {}3C. {}1,3,4,5D. {}2,4,52. sin 330= ( ) A. 3-B.32C. 12-D.123. 已知命题:0p x ∀>,2log 2x x >,则命题p 的否定为 ( ) A. 0x ∀>,2log 2x x ≤ B. 00x ∃>,002log 2x x ≤ C. 00x ∃>,002log 2x x <D. 00x ∃≤,002log 2x x ≤4. 二十四节气是中华民族上古农耕文明的产物,是中国农历中表示季节变迁的24个特定节令.现行的二十四节气是根据地球在黄道(即地球绕太阳公转的轨道)上的位置变化而制定的.每个节气对应地球在黄道上运动15︒所到达的一个位置.根据描述,从冬至到雨水对应地球在黄道上运动的弧度数为 ( )A. 3π-B. 512π-C.512π D.3π 5. 已知角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点()2,a -,若120α︒=,则a 的值为( )A. -B. ±C.D.6. 若54log a =,b =,0.76c =( ) A. a b c <<B. c a b <<C. a c b <<D. b a c <<7. 科学研究已经证实,人的智力,情绪和体力分别以33天、28天和23天为周期,按()sin y x ωϕ=+进行变化,记智力曲线为I ,情绪曲线为E ,体力曲线为P ,且现在三条曲线都处于x 轴的同一点处,那么第322天时 ( ) A. 智力曲线I 处于最低点B. 情绪曲线E 与体力曲线P 都处于上升期C. 智力曲线I 与情绪曲线E 相交D. 情绪曲线E 与体力曲线P 都关于()322,0对称8. 已知定义域为[]7,7-的函数()f x 的图象是一条连续不断的曲线,且满足()()0f x f x -+=.若(]12,0,7x x ∀∈,当12x x <时,总有()()2112f x f x x x >,则满足()()()()212144m f m m f m --≤++的实数m 的取值范围为 ( ) A. []1,3-B. []1,5-C. []3,5-D. []3,3-二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.)9. 下列结论正确的是( ) A. 若,a b 为正实数,ab ,则3223+a b a b b a +>B. 若,,a b m 为正实数,a b <,则a m a b m b +<+C. 若,a b ∈R ,则“0a b >>”是“11a b<”的充分不必要条件D. 当0,2x π⎛⎫∈ ⎪⎝⎭时,2sin sin x x +的最小值是 10. 若α为第二象限角,则下列结论正确的是( ) A. sin cos αα>B. sin tan αα>C. sin cos 0αα+>D. cos tan 0αα+>11. 函数()()22xxa f x a R =+∈的图象可能为( )A.B.C. D.12. 已知函数()f x 的定义域为R ,且02f ⎛⎫=⎪⎝⎭π,()00f ≠.若,x y R ∀∈,()()222x y y y f f x f x f +-⎛⎫⎛⎫= ⎪⎝⎭⎝+⎪⎭,则下列说法正确的是( ) A. ()01f =B. ()()f x f x -=-C. ()()2f x f x π+=D. ()()2212f x x f=-二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知弧长为3πcm 的弧所对圆心角为6π,则这条弧所在圆的半径为___________cm .14. 已知函数()()22,1log 1,1xa x f x x x ⎧+≤⎪=⎨->⎪⎩,若()02f f ⎡⎤=⎣⎦,则实数a 的值为_________. 15. 若函数()(0log a f x x a =>且1)a ≠在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,最小值为m ,函数()()32g x m x =+在[)0,+∞上是增函数,则a m +的值是______. 16. 若函数()()()sin cos 0f x x x ϕϕ<π=++<的最大值为2,则常数ϕ的值为_______.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 设函数()()lg 2f x x m =-的定义域为集合A ,函数()24g x x x=-的定义域为集合B . (1)若B A ⊆,求实数m 的取值范围; (2)若AB =∅,求实数m 的取值范围.18. 在下列三个条件中任选一个,补充在下面问题中,并作答. ①()f x 的最小正周期为,且()f x 是偶函数②()f x 图象上相邻两个最高点之间的距离为π,且04f π⎛⎫= ⎪⎝⎭③0x =与2x π=是()f x 图象上相邻的两条对称轴,且()02f =问题:已知函数()()()2sin 0,0f x x ωϕωϕπ=+><<,若 . (1)求ω,ϕ的值;(2)将函数()y f x =的图象向右平移6π个单位长度后,再将得到的函数图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数()y g x =的图象,求()g x 在[]0,π上的单调递减区间. 注:如果选择多个条件分别解答,按第一个解答计分 19. 己知4cos 5α=-,且2παπ<<.(1)求()()5sin 4tan 3παπα+--的值; (2)若02πβ<<,()5cos 5βα-=求sin 22πβ⎛⎫+ ⎪⎝⎭值.20. 已知函数()2ln2mxf x x-=+,0m >,且()()011f f +-=. (1)证明:()f x 定义域上是减函数;(2)若()()ln9f x f x +<-,求x 的取值集合.21. 北京时间2020年11月24日,我国探月工程嫦娥五号探测器在海南文昌航天发射场发射升空,并进入地月转移轨道.探测器实施2次轨道修正,2次近月制动后,顺利进入环月圆轨道,于12月1日在月球正面预选区域着陆,并开展采样工作.12月17日1时59分,嫦娥五号返回器在内蒙古四子王旗预定区域成功着陆,标志着我国首次地外天体采样返回任务圆满完成.某同学为祖国的航天事业取得的成就感到无比自豪,同时对航天知识产生了浓厚的兴趣.通过查阅资料,他发现在不考虑气动阻力和地球引力等造成的影响时,单级火箭的最大速度V (单位:千米/秒)满足lnm MV W M+=,其中,W (单位:千米/秒)表示它的发动机的喷射速度,m (单位:吨)表示它装载的燃料质量,M (单位:吨)表示它自身的质量(不包括燃料质量).(1)某单级火箭自身的质量为50吨,发动机的喷射速度为3千米/秒.当它装载100吨燃料时,求该单级火箭的最大速度(精确到0.1);(2)根据现在的科学水平,通常单级火箭装载的燃料质量与它自身质量的比值不超过9.如果某单级火箭的发动机的喷射速度为2千米/秒,判断该单级火箭的最大速度能否超过7.9千米/秒,请说明理由. (参考数据:无理数= 2.71828e =⋯,ln3 1.10≈) 22. 已知函数()22x x f x -=-,()2sinlog 4xg x x π=+(1)若[]0,1x ∀∈,()()sin 4k f x g k π>-恒成立,求实数k 的取值范围; (2)证明:()g x 有且只有一个零点0x ,且05sin 46x f π⎛⎫< ⎪⎝⎭泰安市2020-2021学年高一上学期期末考试数学考试(解析版)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}13,5A =,,{}3,4B =,则A B =( )A. {}5B. {}3C. {}1,3,4,5D. {}2,4,5【答案】B 【解析】 【分析】直接利用集合的交集运算求解.【详解】因为集合{}13,5A =,,{}3,4B =, 所以A B ={}3,故选:B2. sin 330= ( )A. B.C. 12-D.12【答案】C 【解析】 【分析】直接利用诱导公式求解.【详解】()()1sin 330sin 36030sin 30sin 302=-=-=-=-, 故选:C3. 已知命题:0p x ∀>,2log 2x x >,则命题p 的否定为 ( ) A. 0x ∀>,2log 2x x ≤ B. 00x ∃>,002log 2x x ≤ C. 00x ∃>,002log 2x x < D. 00x ∃≤,002log 2x x ≤【答案】B 【解析】 【分析】根据全称命题的否定是特称命题,可得选项.【详解】因为全称命题的否定是特称命题,所以命题:0p x ∀>,2log 2xx >,则命题p 的否定为“00x ∃>,002log 2x x ≤”,故选:B .4. 二十四节气是中华民族上古农耕文明的产物,是中国农历中表示季节变迁的24个特定节令.现行的二十四节气是根据地球在黄道(即地球绕太阳公转的轨道)上的位置变化而制定的.每个节气对应地球在黄道上运动15︒所到达的一个位置.根据描述,从冬至到雨水对应地球在黄道上运动的弧度数为 ( )A. 3π-B. 512π-C.512π D.3π 【答案】D 【解析】 【分析】根据条件,得到从夏至到立秋对应地球在黄道上运动的角度415⨯,即可求解. 【详解】根据题意,立秋时夏至后的第三个节气, 故从从夏至到立秋对应地球在黄道上运行了41560⨯=. 故选:D5. 已知角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点()2,a -,若120α︒=,则a 的值为( )A. 23-B. 23±C. 3D.3【答案】C 【解析】【分析】根据终边经过点()2,a -,且120α︒=,利用三角函数的定义求解. 【详解】因为终边经过点()2,a -,且120α︒=,所以tan 1202a︒==-解得a = 故选:C6. 若54log a =,b =,0.76c =( ) A. a b c << B. c a b << C. a c b << D. b a c <<【答案】D 【解析】 【分析】根据对数的性质判断01,0a b <<<,根据指数的性质判断1c >,由此得出三者的大小关系. 【详解】因为550log 4log 51a <=<=,0.50b =<,0.761c =>,所以b a c <<.故选:D.7. 科学研究已经证实,人的智力,情绪和体力分别以33天、28天和23天为周期,按()sin y x ωϕ=+进行变化,记智力曲线为I ,情绪曲线为E ,体力曲线为P ,且现在三条曲线都处于x 轴的同一点处,那么第322天时 ( ) A. 智力曲线I 处于最低点B. 情绪曲线E 与体力曲线P 都处于上升期C. 智力曲线I 与情绪曲线E 相交D. 情绪曲线E 与体力曲线P 都关于()322,0对称 【答案】D 【解析】 【分析】由已知得第322天时,322除33余25, 322除28余14,322除23余0,即智力曲线I 位于2532周期处,情绪曲线E 位于12周期处,体力曲线P 刚好位于起始点处,逐一判断可得选项.【详解】第322天时,322除33余25, 322除28余14,322除23余0,即智力曲线I 位于2532周期处,情绪曲线E 位于12周期处,体力曲线P 刚好位于起始点处, A 项,253>324则智力曲线I 不处于最低点,故A 错误; B 项,情绪曲线E 处于最高点,即将开始下降,故B 错误;C 项,经过n 个周期后,因为周期不同,所以智力曲线I 与情绪曲线E 不一定相交,故C 错误;D 项,(322, 0)位于体力曲线P 和情绪曲线E 的交点x 轴上,故D 正确, 故选:D .8. 已知定义域为[]7,7-的函数()f x 的图象是一条连续不断的曲线,且满足()()0f x f x -+=.若(]12,0,7x x ∀∈,当12x x <时,总有()()2112f x f x x x >,则满足()()()()212144m f m m f m --≤++的实数m 的取值范围为 ( ) A. []1,3- B. []1,5- C. []3,5- D. []3,3-【答案】A 【解析】 【分析】根据(]12,0,7x x ∀∈,当12x x <,时,总有()()2112f x f x x x >,转化为(]12,0,7x x ∀∈,当12x x <,时,总有()()2211x f x x f x >,令()()g x xf x =,则()g x 在(]0,7上递增,再根据()()0f x f x -+=,得到()g x 在[]7,7-上是偶函数,将()()()()212144m f m m f m --≤++,转化为()()214g m g m -≤+求解. 【详解】令()()g x xf x =,因为(]12,0,7x x ∀∈,当12x x <时,总有()()2112f x f x x x >, 即(]12,0,7x x ∀∈,当12x x <时,总有()()2211x f x x f x >, 即(]12,0,7x x ∀∈,当12x x <时,总有()()21g x g x >, 所以()g x 在(]0,7上递增, 又因为()()0f x f x -+=,所以()g x 在[]7,7-上是偶函数,又因为()()()()212144m f m m f m --≤++,所以()()214g m g m -≤+,即()()214g m g m -≤+,所以21747214m m m m ⎧-≤⎪+≤⎨⎪-≤+⎩即3411315m m m -≤≤⎧⎪-≤≤⎨⎪-≤≤⎩,解得13m -≤≤,所以实数m 的取值范围为 []1,3- 故选:A【点睛】关键点点睛:本题令()()g x xf x =是关键,利用()g x 在(]0,7上递增,结合()g x 在[]7,7-上是偶函数,将问题转化为()()214g m g m -≤+求解.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.)9. 下列结论正确的是( ) A. 若,a b 为正实数,ab ,则3223+a b a b b a +>B. 若,,a b m 为正实数,a b <,则a m ab m b +<+ C. 若,a b ∈R ,则“0a b >>”是“11a b<”的充分不必要条件D. 当0,2x π⎛⎫∈ ⎪⎝⎭时,2sin sin x x +的最小值是【答案】AC 【解析】 【分析】利用作差法可考查选项A 是否正确;利用作差法结合不等式的性质可考查选项B 是否正确;利用不等式的性质可考查选项C 是否正确;利用均值不等式的结论可考查选项D 是否正确. 【详解】对于A ,若a ,b 为正实数,ab ,()()()233220a b a b ab a b a b +-+=-+>,3322a b a b ab ∴+>+,故A 正确;对于B ,若a ,b ,m 为正实数,a b <,()()0m b a a m a b m b b b m -+-=>++,则a m ab m b+>+,故B 错误;对于C ,若11a b <,则110b a a b ab--=<,不能推出0a b >>, 而当0a b >>时,有0>0b a ab -<,,所以0b aab -<成立,即11a b<, 所以“0a b >>”是“11a b<”的充分不必要条件,故C 正确;对于D ,当0,2x π⎛⎫∈ ⎪⎝⎭时,0sin 1x <<,2sin sin x x +≥=当且仅当()sin 0,1x =时取等号,故D 不正确. 故选:AC.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.10. 若α为第二象限角,则下列结论正确的是( ) A. sin cos αα> B. sin tan αα>C. sin cos 0αα+>D. cos tan 0αα+>【答案】AB 【解析】 【分析】根据角所在象限,判断三角函数符号,即可判断选项. 【详解】因为α为第二象限角,sin 0α>,cos 0α<,tan 0α<所以A,B 正确,D 不正确;当324ππα⎛⎫∈ ⎪⎝⎭,时,sin cos 0αα+>,当3,4παπ⎛⎫∈⎪⎝⎭时,sin cos 0αα+<,所以C 不一定正确. 故选:AB11. 函数()()22xxa f x a R =+∈的图象可能为( )A.B.C. D.【答案】ABD 【解析】 【分析】根据函数解析式的形式,以及图象的特征,合理给a 赋值,判断选项. 【详解】当0a =时,()2xf x =,图象A 满足;当1a =时,()122xx f x =+,()02f =,且()()f x f x -=,此时函数是偶函数,关于y 轴对称,图象B 满足;当1a =-时,()122xx f x =-,()00f =,且()()f x f x -=-,此时函数是奇函数,关于原点对称,图象D 满足;图象C 过点()0,1,此时0a =,故C 不成立. 故选:ABD【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 12. 已知函数()f x 的定义域为R ,且02f ⎛⎫=⎪⎝⎭π,()00f ≠.若,x y R ∀∈,()()222x y y y f f x f x f +-⎛⎫⎛⎫= ⎪⎝⎭⎝+⎪⎭,则下列说法正确的是( ) A. ()01f =B. ()()f x f x -=-C. ()()2f x f x π+=D. ()()2212f x x f=-【答案】ACD 【解析】 【分析】根据()()222x y y y f f x f x f +-⎛⎫⎛⎫=⎪ ⎝⎭⎝+⎪⎭,利用赋值法求解判断.【详解】A. 令0x =得()()()200f f =,即()()()0010f f -=,因为()00f ≠,所以()01f =,故正确;B. 令y x =-,得()()()()02f f f x f x x =+-,即()()f x f x -=,故错误;C. 令y x π=+,得()()22022x f x f f f x πππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭+++,即()()f x f x π+=-,所以()()()2f x f x f x ππ+=-+=,故正确;D. 令2,0y x x ==得()()()2202f x f fx +=,所以()()2212f x x f =-,故正确;二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知弧长为3πcm 的弧所对圆心角为6π,则这条弧所在圆的半径为___________cm .【答案】2 【解析】 【分析】 由弧度制公式lrα=求解. 【详解】已知弧长为3πcm 的弧所对圆心角为6π,因为lrα=, 所以326lr ππα===,故答案为:214. 已知函数()()22,1log 1,1x a x f x x x ⎧+≤⎪=⎨->⎪⎩,若()02f f ⎡⎤=⎣⎦,则实数a 的值为_________.【解析】 【分析】 先求()03f =,再代入求()3f ,求实数a 的值.【详解】()00223f =+=,()()03log 22a f f f ⎡⎤===⎣⎦,即22a =,又0a >,且1a ≠,所以a =15. 若函数()(0log a f x x a =>且1)a ≠在1,42⎡⎤⎢⎥⎣⎦上最大值为2,最小值为m ,函数()(32g x m =+在[)0,+∞上是增函数,则a m +的值是______.【解析】 【分析】根据对数函数的单调性,分类讨论,再结合已知进行求解即可.【详解】当1a >时,函数()log a f x x =是正实数集上的增函数,而函数()log a f x x =在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,因此有(4)log 422a f a ==⇒=,所以21log 12m ,此时()g x x =在[)0,+∞上是增函数,符合题意,因此211a m +=-=;当01a <<时,函数()log a f x x =是正实数集上的减函数,而函数()log a f x x =在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,因此有112()log 222a f a ==⇒=,所以22log44m,此时()g x x =-在[)0,+∞上是减函数,不符合题意. 故答案为:116. 若函数()()()sin cos 0f x x x ϕϕ<π=++<的最大值为2,则常数ϕ的值为_______.【答案】2π【解析】【分析】根据两角和的正弦公式以及辅助角公式即可求得()()()22cos sin 1f x x ϕϕθ=+++,可得()22cos sin 12ϕϕ++=,即可解出.【详解】因为()()()()22cos sin sin 1cos cos sin 1f x x x x ϕϕϕϕθ=++=+++,()22cos sin 12ϕϕ++=,解得sin 1ϕ=,因为0ϕπ<<,所以2ϕπ=. 故答案为:2π. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 设函数()()lg 2f x x m =-的定义域为集合A ,函数()24g x x x=-的定义域为集合B . (1)若B A ⊆,求实数m 的取值范围;(2)若AB =∅,求实数m 的取值范围.【答案】(1)(],0-∞;(2)[)1,+∞. 【解析】 【分析】首先分别求解两个函数的定义域,(1)根据集合包含关系,列不等式求解m 的取值范围;(2)根据A B =∅,得22m ≥,求m 的取值范围. 【详解】由题知{}2A x x m =>,240x x ⎧-≥⎨>⎩ ,解得:02x <≤, {}02B x x =<≤(1)若B A ⊆,则20m ≤,即0m ≤,∴实数m 的取值范围是(],0-∞.(2)若AB =∅,则22m ≥,即m 1≥,∴实数m 的取值范围是[)1,+∞.18. 在下列三个条件中任选一个,补充在下面问题中,并作答. ①()f x 的最小正周期为,且()f x 是偶函数②()f x 图象上相邻两个最高点之间的距离为π,且04f π⎛⎫= ⎪⎝⎭③0x =与2x π=是()f x 图象上相邻的两条对称轴,且()02f =问题:已知函数()()()2sin 0,0f x x ωϕωϕπ=+><<,若 . (1)求ω,ϕ的值; (2)将函数()y f x =图象向右平移6π个单位长度后,再将得到的函数图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数()y g x =的图象,求()g x 在[]0,π上的单调递减区间. 注:如果选择多个条件分别解答,按第一个解答计分.【答案】条件性选择见解析,(1)2ω=,2ϕπ=;(3)2π,π3. 【解析】【分析】(1)方案一:选条件①,由()f x 的最小正周期求出ω,利用函数的奇偶性得出ϕ;(2)由(1)得出函数()y f x =的解析式,通过平移和伸缩变换得到()y g x =,根据余弦函数的单调递减区间结合给出的定义域得出答案. 【详解】(1)方案一:选条件①()f x 的最小正周期为π, 2T ππω∴==,2ω∴=.又()f x 是偶函数,()()sin 2sin 2x x ϕϕ∴+=-+恒成立, ()sin 2cos 0x ϕ∴=恒成立,cos 0ϕ∴=, 2k πϕπ∴=+,k Z ∈.又0ϕπ<<,2πϕ∴=. (2)由(1)知,()2sin 22cos 22f x x x π⎛⎫=+= ⎪⎝⎭, 将()y f x =的图像向右平移6π个单位长度后,得到2cos 23y x π⎛⎫=- ⎪⎝⎭的图像. 再将横坐标伸长到原来的4倍,纵坐标不变,得到()2cos 23x g x π⎛⎫=-⎪⎝⎭的图像. 由2223x k k ππππ≤-≤+,k Z ∈. 当0k =时,2833x ππ≤≤ 0x π≤≤23x ππ∴≤≤ ()g x ∴在[]0,π上的单调递减区间是2π,π3. 方案二:选条件② (1)函数()f x 图像上相邻两个最高点之间的距离为π,2T ππω∴==,2ω∴=又04f π⎛⎫= ⎪⎝⎭, sin 204πϕ⎛⎫∴⨯+= ⎪⎝⎭,即cos 0ϕ=2k πϕπ∴=+,k Z ∈.又0ϕπ<<,2πϕ∴=(2)同方案一(2) 方案三:选条件③ (1)0x =与2x π=是()f x 图像上相邻的两条对称轴,22T π∴=,即2T ππω==. 2ω∴=又()02sin 2f ϕ==sin 1ϕ∴=, 22k πϕπ∴=+,k Z ∈.又0ϕπ<<,2πϕ∴=. (2)同方案一(2). 19. 己知4cos 5α=-,且2παπ<<.(1)求()()5sin 4tan 3παπα+--的值; (2)若02πβ<<,()cos 5βα-=求sin 22πβ⎛⎫+ ⎪⎝⎭的值. 【答案】(1)6-;(2)117125- 【解析】 【分析】(1)先根据同角三角函数的关系求出sin α,tan α,再根据诱导公式化简求值即可;(2)根据,βα的范围,求出βα-的范围,再根据同角三角函数的关系求出()sin βα-,再根据两角和的余弦公式求出cos β,最后根据诱导公式即可求出sin 22πβ⎛⎫+ ⎪⎝⎭的值. 【详解】解:4cos 5α=-,2παπ<<,3sin 5α∴===,3sin 35tan 4cos 45ααα∴==--;(1)()()335sin 4tan 35sin 4tan 54654παπααα⎛⎫+--=-+=-⨯+⨯-=- ⎪⎝⎭; (2)02πβ<<,2παπ<<,0πβα∴-<-<,又()cos βα-=()sin 5βα∴-===-,()()()43cos cos cos cos sin sin 55ββααβααβαα⎛⎛⎫⎡⎤∴=-+=---=--⨯= ⎪⎣⎦ ⎝⎭⎝⎭22117sin 2cos 22cos 1212125πβββ⎛⎫∴+==-=⨯-=- ⎪⎝⎭⎝⎭. 20. 已知函数()2ln2mxf x x-=+,0m >,且()()011f f +-=. (1)证明:()f x 定义域上是减函数;(2)若()()ln9f x f x +<-,求x 的取值集合. 【答案】(1)证明见解析;(2){}12x x <<. 【解析】 【分析】(1)根据()()011f f +-=,求得1m =,得到()2ln 2x f x x -=+,由202xx->+,求得()f x 的定义域,令()24122x g x x x-==-+++,用函数单调性的定义证明其单调性,再利用复合函数的单调性得到结论. (3)易得函数是奇函数,将原不等式转化为()()1ln13f x f <=,再利用()f x 在定义域上的单调性求解. 【详解】(1)()()110f f +-=,()224ln ln 2ln 033m m m --∴++==,21m ∴=,又0m >,1m ∴=, ()2ln2xf x x-∴=+. 由202xx->+,解得22x -<<, ()f x ∴的定义域为()2,2-.令()24122x g x x x-==-+++.任取()122,2,x x ∈-,且12x x <,则()()()()()211212124442222x x g g x x x x x x --=-=++++. 210x x ->,120x +>,220x +>,()()120g g x x ∴->,即()()12g g x x >,又ln y x =在()0,∞+上是增函数,由复合函数的单调性知:()f x 在()2,2-上是减函数.(3)()()22ln ln 22x x f x f x x x+--==-=--+, ∴原不等式可化为()2ln9f x <-,即()()1ln13f x f <=. 由(1)知,()f x 是减函数,1x ∴>.又()f x 的定义域为()2,2-, x 的取值集合为{}12x x <<.【点睛】方法点睛:复合函数的单调性对于复合函数y =f [g (x )],若t =g (x )在区间(a ,b )上是单调函数,且y =f (t )在区间(g (a ),g (b ))或者(g (b ),g (a ))上是单调函数,若t =g (x )与y =f (t )的单调性相同(同时为增或减),则y =f [g (x )]为增函数;若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数.简称:同增异减.21. 北京时间2020年11月24日,我国探月工程嫦娥五号探测器在海南文昌航天发射场发射升空,并进入地月转移轨道.探测器实施2次轨道修正,2次近月制动后,顺利进入环月圆轨道,于12月1日在月球正面预选区域着陆,并开展采样工作.12月17日1时59分,嫦娥五号返回器在内蒙古四子王旗预定区域成功着陆,标志着我国首次地外天体采样返回任务圆满完成.某同学为祖国的航天事业取得的成就感到无比自豪,同时对航天知识产生了浓厚的兴趣.通过查阅资料,他发现在不考虑气动阻力和地球引力等造成的影响时,单级火箭的最大速度V (单位:千米/秒)满足ln m M V W M+=,其中,W (单位:千米/秒)表示它的发动机的喷射速度,m (单位:吨)表示它装载的燃料质量,M (单位:吨)表示它自身的质量(不包括燃料质量).(1)某单级火箭自身的质量为50吨,发动机的喷射速度为3千米/秒.当它装载100吨燃料时,求该单级火箭的最大速度(精确到0.1);(2)根据现在的科学水平,通常单级火箭装载的燃料质量与它自身质量的比值不超过9.如果某单级火箭的发动机的喷射速度为2千米/秒,判断该单级火箭的最大速度能否超过7.9千米/秒,请说明理由. (参考数据:无理数= 2.71828e =⋯,ln3 1.10≈)【答案】(1)该单级火箭的最大速度为3.3千米/秒;(2)该单级火箭的最大速度不能超过7.9千米/秒,理由见解析.【解析】【分析】(1)根据单级火箭的最大速度V (单位:千米/秒)满足lnm M V W M +=,由3W =,50M =,100m =求解.(2)根据单级火箭装载的燃料质量与它自身质量的比值不超过9,即9m M≤,又2W =代入ln m M V W M+=求解. 【详解】(1)3W =,50M =,100m =,10050ln 3ln 3ln 3 3.350m M V W M ++∴==⨯=≈, ∴该单级火箭的最大速度为3.3千米/秒.(2)9m M≤,2W =, 110m M m M M+∴=+≤. ln2ln10m M V W M +∴=≤. 7.97.9712810022e >>=>,7.97.9ln ln1002ln10e ∴=>=,7.9V ∴<.∴该单级火箭最大速度不能超过7.9千米/秒.22. 已知函数()22x x f x -=-,()2sin log 4x g x x π=+(1)若[]0,1x ∀∈,()()sin 4k f x g k π>-恒成立,求实数k 的取值范围; (2)证明:()g x 有且只有一个零点0x ,且05sin46x f π⎛⎫< ⎪⎝⎭ 【答案】(1)01k <<;(2)证明见解析.【解析】【分析】 (1)先判断()f x 的单调性,求其最小值,再列出关于k 的不等式,求解即可;(2)用零点存在定理,分类讨论()g x 在()2.+∞和(]0,2的零点情况;利用得出的零点结论,找到关系式002sin log 4x x π=-,然后将02log x -带入()f x 中进行计算即可证明不等式成立.【详解】解(1)2x y =是增函数,2x y -=是减函数, ()22x x f x -∴=-在[]0,1上单调递增.()f x ∴的最小值为()00f =.又()2sin log 4k g k k π-=, 20log k ∴<,解得01k <<,∴实数k 的取值范围为01k <<.(2)当()2.x ∈+∞时,2221log log x >=,sin 14xπ≥-,()()2sin 1104x g x x log π∴=+>+-=.()g x ∴在()2,+∞上无零点.当(]0,2x ∈时,2log y x =与sin 4xy π=单调递增,()g x ∴在(]0,2上单调递增.又2222221sin 0log log log 336323g π⎛⎫=+=+=< ⎪⎝⎭,()1sin 04g π=>,02,13x ⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x =, ()g x ∴在(]0,2上有且只有一个零点0x ,综上所述,()g x 有且只有一个零点0x .又()0002sin 0log 4x g x x π=+=,即002sin log 4x x π=-,()0022000201log log sin log 224x x x f f x x x π⎛⎫-∴=-=-=- ⎪⎝⎭, 1y x x =-在2,13⎛⎫ ⎪⎝⎭上单调递减, 001325236x x ∴-<-=, 05sin 46x f π⎛⎫< ⎪⎝⎭. 【点睛】关键点睛:对x 进行分类讨论时:①当()2.x ∈+∞时,()0g x >,可判断()g x 在()2,+∞上无零点;②当(]0,2x ∈时,2log y x =与sin4x y π=单调递增,再结合零点存在定理,即可判断()g x 在(]0,2上有且只有一个零点0x。