NRB-XS820M250V16X20F中文资料
MSC8205G摩矽规格书
General Features● V DS = 20V,I D = 6AR DS(ON) < 37m Ω @ V GS =2.5V R DS(ON) < 27m Ω @ V GS =4.5V● High Power and current handing capability ● Lead free product is acquired ● Surface Mount PackageApplication●Battery protection ●Load switch ●Power managementGSchematic diagramTSSOP-8 top viewPackage Marking And Ordering InformationDevice MarkingDevice Device PackageReel SizeTape widthQuantityMSC8205GTSSOP-8 Ø330mm 12mm3000 unitsAbsolute Maximum Ratings (TA=25℃unless otherwise noted)Parameter Symbol Limit UnitDrain-Source Voltage V DS 20 V Gate-Source Voltage V GS ±10 V Drain Current-Continuous ID6 A Drain Current-Pulsed (Note 1) I DM 20 A Maximum Power Dissipation P D 1.5 W Operating Junction and Storage Temperature Range T J ,T STG -55 To 150 ℃Thermal CharacteristicThermal Resistance,Junction-to-Ambient(Note 2)R θJA 83 /W ℃MSC8205G20V(D-S) Dual N-Channel Enhancement Mode Power MOS FETMarking and pin assignmentLead FreePIN ConfigurationGate-Body Leakage Current I GSS V GS =±10V,V DS =0V- - ±100 nA On Characteristics (Note 3)Gate Threshold VoltageV GS(th) V DS =V GS ,I D =250μA 0.5 0.7 1.5 V V GS =4.5V, I D =4.5A - 21 27 m Ω Drain-Source On-State Resistance R DS(ON) V GS =2.5V, I D =3.5A -27 37 m Ω Forward Transconductance g FSV DS =5V,I D =4.5A - 10 - SDynamic Characteristics (Note4)Input Capacitance C lss - 522 - PFOutput CapacitanceC oss - 98.4 - PFReverse Transfer Capacitance C rss V DS =8V,V GS =0V,F=1.0MHz- 74 - PFSwitching Characteristics (Note 4)Turn-on Delay Time t d(on) - 10 20 nSTurn-on Rise Time t r - 11 25 nS Turn-Off Delay Time t d(off) - 35 70 nSTurn-Off Fall Time t fV DD =10V,I D =1A V GS =4.5V,R GEN =6Ω - 30 60 nSTotal Gate Charge Q g - 10 15 nCGate-Source Charge Q gs - 2.3 - nCGate-Drain ChargeQ gdV DS =10V,I D =6A,V GS =4.5V- 1.5 - nC Drain-Source Diode CharacteristicsDiode Forward Voltage(Note 3)V SDV GS =0V,I S =1.7A - 0.75 1.2 VDiode Forward Current (Note 2)I S - - 1.7 ANotes:1. Repetitive Rating: Pulse width limited by maximum junction temperature.2. Surface Mounted on FR4 Board, t ≤ 10 sec.3. Pulse Test: Pulse Width ≤ 300μs, Duty Cycle ≤ 2%.4. Guaranteed by design, not subject to productionElectrical Characteristics (T A =25℃unless otherwise noted)ParameterSymbolConditionMin TypMaxUnitOff CharacteristicsDrain-Source Breakdown Voltage BV DSS V GS =0V I D =250μA 20 21 - V Zero Gate Voltage Drain Current I DSS V DS =19.5V,V GS =0V - - 1 μA MSC8205GTypical Electrical and Thermal CharacteristicsVoutFigure 1:Switching Test CircuitT J -Junction Temperature(℃)Figure 3 Power DissipationVds Drain-Source Voltage (V)Figure 5 Output CharacteristicsV INV tFigure 2:Switching WaveformsT J -Junction Temperature(℃)Figure 4 Drain CurrentI D - Drain Current (A)Figure 6 Drain-Source On-ResistanceP D P o w e r (W )I D - D r a i n C u r r e n t (A )R d s o n O n -R e s i s t a n c e (m Ω)I D - D r a i n C u r r e n t (A )MSC8205GVgs Gate-Source Voltage (V)Figure 7 Transfer CharacteristicsV Figure 9 Rdson vs Vgsgs Gate-Source Voltage (V)Qg Gate Charge (nC)Figure 11 Gate ChargeT J -Junction Temperature(℃)Figure 8 Drain-Source On-ResistanceFigure 10 Capacitance vs VdsVds Drain-Source Voltage (V)Vsd Source-Drain Voltage (V)Figure 12 Source- Drain Diode ForwardI D - D r a i n C u r r e n t (A )R d s o n O n -R e s i s t a n c e (m Ω)V g s G a t e -S o u r c e V o l t a g e (V )N o r m a l i z e d O n -R e s i s t a n c eC C a p a c i t a n c e (p F )I s - R e v e r s e D r a i n C u r r e n t (A )Vds Drain-Source Voltage (V)Figure 13 Safe Operation AreaSquare Wave Pluse Duration(sec)Figure 14 Normalized Maximum Transient Thermal Impedancer (t ),N o r m a l i z e d E f f e c t i v eT r a n s i e n t T h e r m a l I m p e d a n c eI D - D r a i n C u r r e n t (A )TSSOP-8 Package InformationDimensions In MillimetersSymbolMin MaxD 2.900 3.100E 4.300 4.500b 0.190 0.300c 0.090 0.200E1 6.250 6.550A 1.100A2 0.800 1.000A1 0.020 0.150e 0.65(BSC)L 0.500 0.700H 0.25(TYP)Θ 1° 7°。
WFB-820A技术及使用说明书20090310
WFB-820A系列微机发电机保护测控装置技术及使用说明书(Version 1.00)许继电气股份有限公司XJ ELECTRIC CO.,LTD.WFB-820A 系列微机发电机保护测控装置WFB-820A 系列微机发电机保护测控装置是许继最新推出的HELLO 系列产品之一,它是许继秉承数十年来在电力系统二次设备制造领域的成功经验,为用户提供的具有高品质、高性价比的保护测控一体化装置。
WFB-820A 系列微机发电机保护测控装置主要应用于100MW 以下的小型发电机,完成发电机的保护和测控功能。
WFB-821A 装置实现发电机差动、横差等主保护功能,WFB-822A 装置实现发电机的异常、后备、非电量保护及测量、控制功能,可满足主保护、后备保护和异常保护合理分开且相互独立的配置要求,可配合电厂自动化系统完成相应的自动化功能。
H、E、L、L、O 品质是许继HELLO 系列产品的共同特点,具体如下:⏹ H:即High,高品质包括:◆高科技:采用现场组态技术(FCT)、可视化的软件开发技术(VLD)。
◆高质量:以专业的、成熟的软硬件平台为依托,丰富的运行经验和充分验证的原理算法为基础,自动测试为前提,先进的研发管理理念和研发开发管理工具为手段,保证研发、生产、制造过程中各个环节的质量,为用户提供高品质的产品。
⏹ E:即Easy,工作轻松包括:◆易使用:人机界面友好、仿WINDOWS 操作菜单,具有调试向导系统和一键完成定检功能,使现场调试、维护、定检工作变得轻松。
⏹ L:即Low,低消耗包括:◆低投入成本:不同的装置共享插件,降低了购买装置和备件储备成本。
◆低故障率:先进的检测技术和完善的生产质量保障体系,使得产品的故障大大降低,大幅度减少了被保护对象的停运时间。
⏹ L:即reaLize,实现技术包括:◆平台化:软件、硬件的设计都采用平台化的思想,使不同电压等级的保护装置可以共享硬件平台,不同的硬件平台可以共享软件,降低了日后硬件、软件的升级和维护工作。
速易联电子目录-通信面板
D-SUB25 & D-SUB9RJ45USBPower电源插座(美标孔)33孔电源插座5.1.168714-368714-4连接附件 Connection accessories68714-5其它信息Other information材质Housing frame and cover Plastic PC + ABS 防尘防水等级Degree of protection IP54环境温度Ambient temperature -5...+55℃储存温度Storing temperature -20 (60)备注20A 电源插座-螺钉压接。
5.1.2D-SUB25 & D-SUB9RJ45USBPower电源插座(国标孔)568714-368714-4连接附件 Connection accessories68714-5其它信息Other information材质Housing frame and cover Plastic PC + ABS 防尘防水等级Degree of protection IP54环境温度Ambient temperature -5...+55℃储存温度Storing temperature -20 (60)5孔电源插座10A/250V 0.8mm-ΦΦ 5.1.3备注20A 电源插座-螺钉压接。
688155.1.4第一步将MSDD 装入切口中No.1: Put MSDD into a cut-out 说明1、螺丝的部分螺纹涂有锁固液体当拧松螺丝第二步两至三圈时螺丝和螺母可以一起转动从而调节螺母位置第三步。
Part of the screw threads are coated with locking liquid, when loosen the screw ( No. 2 ) two to three circles, screw and nut canturn together, thereby abjusting nut position ( No. 2 ) .2、螺丝扭矩控制在0.5Nm 以下。
HT1628中文资料
LED驱动控制专用电路---HT1628一、概述HT1628是一种带键盘扫描接口的LED(发光二极管显示器)驱动控制专用电路,内部集成有MCU数字接口、数据锁存器、LED高压驱动、键盘扫描等电路。
本产品性能优良,质量可靠。
二、特性说明�采用功率CMOS工艺�多种显示模式(10段×7位~13段×4位)�键扫描(10×2bit)�辉度调节电路(占空比8级可调)�串行接口(CLK,STB,DI/O)�振荡方式:RC振荡�内置上电复位电路�封装形式:SOP28三、内部功能框图:四、管脚定义:管脚功能定义:五、显示寄存器地址和显示模式:该寄存器存储通过串行接口从外部器件传送到HT1628的数据,地址分配如下:六、键扫描和键扫数据寄存器:为10×3bit,如下所示:键扫数据储存地址如下所示,用读指令读取,读从低位开始:七、指令说明:指令用来设置显示模式和LED驱动器的状态。
在STB下降沿后由DIN输入的第一个字节作为一条指令。
如果在指令或数据传输时STB被置为高电平,串行通讯被初始化,并且正在传送的指令或数据无效(之前传送的指令或数据保持有效)。
(1)显示模式设置:该指令用来设置选择段和位的个数(4~7位,10~13段)。
当指令执行时,显示被强制终止,同时键扫描也停止。
要重新显示,显示开/关指令“ON”必需被执行,但当相同模式被设置时,则上述情况并不发生。
上电时,设置模式为4位,14段。
(2)数据设置:该指令用来设置数据写和读(3)地址设定:该指令用来设置显示寄存器的地址。
如果地址设为0EH或更高,数据被忽略,直到有效地址被设定。
上电时,地址设为00H。
(4)显示控制:上电时,设置为脉冲宽度为1/16,显示关。
上电时,键扫停止。
八、串行数据传输格式:数据接收(写数据)数据读取:因为DOUT管脚为N管开漏输出,所以该脚要连接一个外部上拉电阻(1KΩ到10KΩ)**:读取数据时,从串行时钟CLK的第8个上升沿开始设置指令到CLK下降沿读数据之间需要一个等待时间tWAIT(最小1μS)。
常用场效应管(25N120等)参数及代换
常用场效应管(25N120等)参数及代换FGA25N120AND (IGBT) 1200V/25A//TO3P (电磁炉用)FQA27N25 (MOSFET) 250V/27A/TO3P IRFP254FQA40N25 (MOSFET) 250V/40A/280W/0.051Ω/TO3P IRFP264FQA55N25 (MOSFET) 250V/55A/310W/0.03Ω/TO3PFQA18N50V2 (MOSFET) 500V/20A/277W/0.225Ω IRFP460AFQA24N50 (MOSFET) 500V/24A/290W/0.2Ω/TO3PFQA28N50 (MOSFET) 500V/28.4A/310W/0.126Ω/TO3P MTY30N50EFQL40N50 (MOSFET) 500V/40A/560W/0.085Ω/TO264 IRFPS37N50FQA24N60 (MOSFET) 600V/24A/TO3PFQA10N80 (MOSFET) 800V/9.8A/240W/0.81Ω/TO3PFQA13N80 (MOSFET) 800V/13A/300W/0. Ω/TO3PFQA5N90 (MOSFET) 900V/5.8A/185W/2.3Ω/TO3PFQA9N90C (MOSFET) 900V/8.6A/240W/1.3Ω/TO3PFQA11N90C (MOSFET) 900V/11.4A/300W/0.75Ω/TO3PFFA30U20DN (快恢复二极管) 200V/2×30A/40ns/TO3P DSEK60-02A FFPF30U60S (快恢复二极管) 600V/30A/90ns/TO220F MUR1560FFA30U60DN (快恢复二极管) 600V/2×30A/90ns/TO3P DSEK60-06A MBRP3010NTU (肖特基) 100V/30A/TO-220MBRA3045NTU (肖特基) 45V/30A/TO-3PISL9R3060G2 (快恢复二极管) 600V/30A/35ns/200W/TO247 APT30D60B RHRG3060 (快恢复二极管) 600V/30A/35nS/TO247FQP44N10 (MOSFET) 100V/44A/146W/0.0396Ω/TO220 IRF3710/IRF540N FQP70N10 (MOSFET) 100V/57A/160W/0.025Ω/TO220IRFP450B (MOSFET) 500V/14A/0.4Ω/205W/TO3PIRFP460C (MOSFET) 500V/20A/0.2~0.24Ω/235W IRFP460KA3162/FAN8800 (Drive IC)单IGBT/MOSFETFET驱动ICRHRP860 (快恢复二极管) 600V/8A/30NS/TO-220 MUR860RHRP1560 (快恢复二极管) 600V/15A/TO0220 MUR1560RHRP8120 (快恢复二极管) 1200V/8A/75W/TO220RHRP15120 (快恢复二极管) 1200V/15A/TO220RHRP30120 (快恢复二极管) 1200V/30A/125W/TO220单 DSEI20-10ARHRG30120 (快恢复二极管) 1200V/30A/T03PSSH45N20B (MOSFET) 200V/45A/TO3P IRFP260FGL40N150D (IGBT) 1500V/40A/TO264快速IGBTFGL60N100BNTD (IGBT) 1000V/60A/TO264快速IGBT 1MBH60-100HGTG10N120BND (IGBT) 1200V/35A/298W/100ns/TO247HGTG11N120CND (IGBT) 1200V/43A/298W/TO247HGTG18N120BND (IGBT) 1200V/54A/390W/90ns/TO247FQP5N50C (MOSFET) 500V/5A/73W/1.4Ω/TO-220 替代:IRF830,用于35W FQPF5N50C (MOSFET) 500V/5A/38W/1.4Ω/TO-220F 替代:IRF830,用于35W FQP9N50C (MOSFET) 500V/9A/135W/0.6Ω/TO220 替代:IRF840,用于75W FQPF9N50C (MOSFET) 500V/9A/44W/0.6Ω/TO-220F 替代:IRF840,用于75W FQP13N50 (MOSFET) 500V/13.4A/190W/0.43Ω/TO220 用于75W/125W产品FQPF13N50 (MOSFET) 500V/13.4A/48W/0.43Ω/TO220F 用于75W/125W产品FQD5N50C (MOSFET) 500V/5A/1.4Ω/TO252 用于35WFQA16N50 (MOSFET) 500V/16A/200W/0.32C/TO3P 用于150W到250W的产品FDP15N50 (MOSFET) 500V/15A/0.43Ω/56W/TO220 用于150W左右的产品FQP18N50V2 (MOSFET) 500V/18A/0.43Ω/208W/TO220 用于250WG到400W的产品FQPF18N50V2 (MOSFET) 500V/18A/0.43Ω/56W/TO220 用于250WG到400W的产品FQA18N50V2 (MOSFET) 500V/20A/277W/0.225Ω/TO3P 用于250WG到400W的产品FQA24N50 (MOSFET) 500V/24A/290W/0.2Ω/TO3P 用于400W的产品FQA24N60 (MOSFET) 600V/23.5A/310W/0.24Ω/TO3P 用于400W的产品FQA28N50 (MOSFET) 500V/28.4A/310W/0.126Ω/TO3P 用于400W的产品FQL40N50 (MOSFET) 500V/40A/560W/0.085Ω/TO264 用于560W的产品IRF740B (MOSFET) 400V/10A/0.55Ω/134W/TO220IRF730B (MOSFET) 400V/5.5A/1.0Ω/73W/TO220IRF830B (MOSFET) 500V/4.5A/1.5Ω/73W/TO220 IRF840B (MOSFET) 500V/8A/0.85Ω/134W/TO220 IRFP450B (MOSFET) 500V/14A/0.4Ω/205W/TO3P IRFP460C (MOSFET) 500V/20A/0.2~0.24Ω/235W FQPF5N60C (MOSFET) 600V/5A/TO220FFQPF8N60C (MOSFET) 600V/8A/TO220FFQPF10N60C (MOSFET) 600V/10A/TO220FQPF12N60 (MOSFET) 600V/12A/51W/0.65Ω/TO220F FCP11N60 (MOSFET) 650V/11A/125W0.32Ω/TO220 RHRD660S (快恢复二极管) 600V/6A/TO-252RHRP860 (快恢复二极管) 600V/8A/75W/TO-220 RHRP1560 (快恢复二极管) 600V/15A/TO-220单2N7002 (三极管) 60V/0.12A/SOT-23HUF76629D3S (MOSFET) 100V/20A/110W/TO-252 HUF75639S3S (MOSFET) 100V/56A/200W/TO-263ISL9V3040D3S (IGBT) 430V/21A/150W/300MJ/TO252 ISL9V3040S3S (IGBT) 430V/21A/150W/300MJ/TO263 ISL9V5036S3S (IGBT) 360V/46A/250W/TO262FQP33N10L (MOSFET) 100V/33A/52MΩ127W/TO220。
亿维自动化 X系列BD扩展板使用说明书
3.4. X-2AO-BD 产品说明书 ............................................................................................................ 19
3.4.1. 产品概述 ............................................................................................................................ 19
2.1.4. 模拟量 BD 扩展板地址对照表........................................................................................... 7
3. BD 扩展板详细参数..................................................................................................................................... 9
服务热线:4000 300 890
3.1.4. 安装及接线图 .................................................................................................................... 10
3.1.5. 应用说明 .............................................................................................................................11
东元牌热磁式断路器使用说明书
0.82In0.76In +60℃+55℃0.87In0.84In 0.91In0.89In 0.96In0.95In 1.0In+50℃+45℃1.0In TBX-125L/M/H +40℃断路器型号环境系数降容系数4、热动脱扣器额定工作电流随环境温度变化的降容系数热磁式断路器使用说明书感谢您选用东元牌热磁式断路器,在此请详细阅读说明书。
1、适用范围及正常工作环境1.1 热磁式断路器(以下简称断路器),额定绝缘电压为1000V ,适用于交流50Hz ,额定工作电压690V 及以下,额定工作电流至800A 的电路中 作不频繁转换及电动机不频繁起动之用。
断路器具有过载、短路保护功能,能保护线路和电源设备不受损坏。
1.2 正常工作环境1.2.1 安装地点的海拔不超过2000m;1.2.2 周围空气温度为-5℃~+40℃,且24h 平均值不超过+35℃;1.2.3 安装地点的相对空气湿度在最高温度为+40℃时,空气的相对湿度不超过50%,在较低温度下可以有较高的相对湿度,最湿月的月平均 温度不超过+25℃,该月的月平均最大相对湿度不超过90%,并考虑因温度变化发生在产品表面的凝雾; 1.2.4 污染等级为3级;1.2.5 断路器主电路的安装类别为III ,其余辅助电路、控制电路安装类别为II 。
2、安装方式本系列断路器一般为垂直安装,也可以水平安装。
垂直安装电源侧负载侧负载侧电源侧水平安装3、连接导线的截面积和相适应的额定电流2.5导线截面积(mm )16/20额定电流(A)225432640/50106316802510035125/1405016070180/200/225952501206、断路器安全距离7、断路器内部附件安装位置8、正确使用与维护8.1 有关配线断路器配线必须符合上进下出,即1、3、5端子接电源线,2、4、6端子接负载线,不允许倒进线。
8.2 有关操作8.2.1 断路器手柄可以处于三个位置,分别表示合闸、断开、脱扣三种状态,当手柄处于脱扣位置时,应向后扳动手柄,使断路器再扣,然后合闸。
富士驱动器使用说明
富士驱动器使用说明作者:Admin 时间:2009-8-31 11:20:40 访问次数:1104用于隔离栅双极性晶体管(IGBT)的富士混合IC驱动器使用说明一、介绍隔离栅双极性晶体管(IGBT)正日益广泛地应用于小体积,低噪音,高特性的电源,逆变器,不间断电源(UPS)以及电机速度控制装置之中。
用于IGBT的富士混合IC驱动器吸取了IGBT的全部优点而开发。
二、特点∙不同的系列标准系列:最大10kHz运行高速系列:最大40kHz运行这些系列包括了全部IGBT产品范围∙内装用于高隔离电压的光耦合器:2500VAC一分钟∙单供电操作∙内装过流保护电路∙过流保护输出∙高密度安装的SIL封三、应用∙通用逆变器和电机控制∙伺服控制∙ 不间断电源(UPS )∙电焊机四、综合图表标准型 EXB850 EXB851 EXB850 EXB851注: 1.标准型:驱动电路信号延迟;大到 4μs (最大)2.高速型:驱动电路信号延迟;大到 1.5μs (最大)五. 尺寸,mmEXB850/EXB840EXB851/EXB841六 . 功能方框图①连接用于反向偏置电源的滤波电容③ 驱动输出⑤ 过流保护输出⑦ ⑧ 不接⑩ ⑾不接七. 额定参数和特性绝对最大额定值 (Ta=25o C)光耦合器输入电流I i 10 MA反向偏置输出电流I g2 PW=2μs duty at 0.05 or less 1.5 4.0 A工作表面温度T c -10 to +85oC∙推荐的运行条件供电电压V cc20 ± 1 V∙电特性(Ta=25o C)Turn-on time 1 导通时间t o n V cc=20V, IF=5mA 1.5 2.0 μsec过流保护电压t ocp V cc=20V, IF=5mA 7.5 7.5 V延迟t ALM V cc=20V, IF=5mA 1 1 μsec注:EXB850和EXB851(中速)需应用电路所示的IF过驱动。
北京邦讯隐蔽天线产品手册a
北京邦讯隐蔽天线产品手册一体化隐蔽天线类隐蔽外罩类杆塔类北京邦讯技术2021年7月目录前言 (3)第一局部一体化隐蔽天线类 (4)一、集束型隐蔽天线〔一体化〕及辅材 (4)二、路灯型隐蔽天线〔一体化〕 (6)三、草坪灯型隐蔽天线〔一体化〕 (7)四、射灯型隐蔽天线〔一体化〕 (8)五、壁挂广告牌型隐蔽天线〔一体化〕 (9)六、壁画型隐蔽天线 (9)七、壁挂型隐蔽天线 (10)八、吸顶灯型隐蔽天线 (11)第二局部隐蔽外罩类 (12)一、变色龙型隐蔽外罩 (12)二、方柱型隐蔽外罩及辅材 (13)1、方柱型隐蔽外罩 (13)2、方柱钢架隐蔽辅材: (14)三、圆柱型隐蔽外罩及辅材 (15)1、圆柱型隐蔽外罩 (15)2.圆柱钢架隐蔽辅材 (16)四、空调型隐蔽外罩及辅材 (16)1、空调型隐蔽外罩 (16)2.空调钢架隐蔽辅材: (17)五、水箱型隐蔽外罩及辅材 (19)1、水箱型隐蔽外罩 (19)2.水箱钢架隐蔽辅材 (19)六、水塔型隐蔽外罩及辅材 (20)1.水塔型隐蔽外罩 (20)2.水塔钢架隐蔽辅材 (21)七、集束型隐蔽外罩及辅材 (22)八、指示牌型隐蔽外罩 (23)九、广告牌型隐蔽外罩 (24)十、标示牌型隐蔽外罩 (25)十一、空调型隐蔽外罩 (26)第三局部杆塔类 (28)高杆灯型 (29)前言随着人们对生活小区环境要求的日益提高,城市建设和小区建设对隐蔽天线产品市场的需求也有了更高的要求,我公司为满足快速开展的市场需求,不断推陈出新。
为方便广阔用户选型,特别编制了?北京邦讯隐蔽天线常用产品选型手册?。
本册将隐蔽天线产品主要分为基站美化类和小区美化类,隐蔽辅材作为隐蔽外罩的附属材料,跟随在相应的美化天线产品后面。
对于影响隐蔽天线产品整体平安性的产品结构、基站及防雷系统两方面,我公司均通过了权威部门的审核和通过。
隐蔽天线审核等级说明:隐蔽天线整体平安性主要包括产品结构、根底及防雷系统两方面,为保证选用的隐蔽天线量产产品工程可行性,确保整个隐蔽工程的平安可靠性,特将设计方案审核的权限规定如下:审核等级审核权限C 隐蔽天线结构工程师/天馈隐蔽天线结构工程师审核B 天馈隐蔽天线结构工程师审核A 具备甲级或乙级资质的建筑设计院审核第一局部一体化隐蔽天线类一、集束型隐蔽天线〔一体化〕及辅材1、集束型隐蔽天线〔一体化〕型号详细指标频段范围增益方位角倾角尺寸(单位:mm)审核等级〔直接落地安装〕JZJS-065R15DB〔1-V〕824~960870~960:15 固定间隔120°机械下倾角固定电调:0~14º¢600×1700-2100CJZJS-065R15DD〔1-V〕824~9601710~1880 1710~1880:17固定间隔120°机械下倾角固定824~960电调:0~14º1710~1880电调:0~8º¢600×1700-2100CJZJS-ODV065R15B17K〔6〕824~9601710~2170固定间隔120°机械下倾角固定824~960电调:0~14º1710~2170电调:0~7º¢600×1700-2100CJZJS-065R1DK〔3-V〕1710~21701710~1850:171850~1990:17.51990~2170:18固定间隔120°机械下倾角固定电调:0°~8°¢600×2500 C说明:1〕安装方式:a)该产品已经内置三扇区辐射单元,一般安装于建筑楼顶;b)产品可直接安装,或选购各种高度的钢杆隐蔽辅材配用,也可与高杆灯配合使用。
SC820资料
POWER MANAGEMENT Adapter/USB Dual Input Single-cell Li-ion ChargerFeaturesDual input charger automatically selects adapter input over USBConstant voltage — 4.2V, 1% regulationFast-charge current regulation — 15% at 70mA, 9% at 700mAThree mode charging (current regulation, voltage regulation, thermal limiting)Input voltage protection — 30VCurrent-limited adapter charging support — reduces power dissipation in chargerUSB input limits charge current to prevent Vbus overloadInstantaneous CC-to-CV transition for faster charging Programmable battery-dependent currents (adapter-sourced fast-charge & pre-charge, termination)Programmable source-limited currents (USB-sourced fast-charge & pre-charge)Three termination options — fl oat-charge, automatic re-charge, or forced re-charge to keep the battery topped-off after termination without fl oat-charging Soft-start reduces adapter or USB load transients High operating voltage range permits use of unregulated adaptersComplies with CCSA YD/T 1591-2006Space saving 2x2x0.6 (mm) MLPD package WEEE and RoHS compliantApplicationsMobile phones MP3 playersGPS handheld receiversDescriptionThe SC820 is a dual input (adapter/USB) linear single-cell Li-ion battery charger in an 8 lead 2x2 MLPD ultra-thin package. Both inputs will survive sustained input voltage up to 30V to protect against hot plug overshoot and faulty charging adapters.Charging begins automatically when a valid input source is applied to either input. The adapter input is selected when both input sources are present.Thermal limiting protects the SC820 from excessive power dissipation when charging from either source. The SC820 can be programmed to turn off when charging is complete or to continue operating as an LDO regulator while fl oat-charging the battery.The adapter input charges with an adapter operating in voltage regulation or in current limit to obtain the lowest possible power dissipation by pulling the VAD input voltage down to the battery voltage. The VUSB input automatically limits load current to prevent over-loading the USB Vbus supply.Charge current programming requires two resistors. One determines battery-capacity dependent currents: adapter input fast-charge current, pre-charge current, and charge termination current. The other independently determines input-limited USB charging currents: USB input fast-charge and pre-charge current.USB VbusV ADAPTER Typical Application CircuitPin Confi gurationMarking InformationOrdering InformationDevicePackageSC820ULTRT (1)(2)MLPD-UT-8 2×2SC820EVBEvaluation BoardNotes:(1) Available in tape and reel only. A reel contains 3,000 devices.(2) Lead-free package only. Device is WEEE and RoHS compliant.820ywyw = Date CodeExceeding the above specifi cations may result in permanent damage to the device or device malfunction. Operation outside of the parameters specifi ed in the Electrical Characteristics section is not recommended.NOTES:(1) Tested according to JEDEC standard JESD22-A114-B.(2) Calculated from package in still air, mounted to 3 x 4.5 (in), 4 layer FR4 PCB with thermal vias under the exposed pad per JESD51 standards.Absolute Maximum RatingsVAD and VUSB (V) . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +30.0BAT, IPRGM, IPUSB (V) . . . . . . . . . . . . . . . . . . . . . . -0.3 to +6.5STATB, EN (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to V BAT +0.3VAD Input Current (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5VUSB Input Current (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5BAT, IPRGM, IPUSB Short-to-GND Duration . . . . . Continuous Total Power Dissipation (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2ESD Protection Level (1) (kV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Recommended Operating ConditionsOperating Ambient Temperature (°C) . . . . . . . . . -40 to +85Thermal InformationThermal Resistance, Junction to Ambient (2) (°C/W) . . . . .68Junction Temperature Range (°C) . . . . . . . . . . . . . . . . . . +150Storage Temperature Range (°C) . . . . . . . . . . . . -65 to +150Peak IR Reflow Temperature (10s to 30s) (°C) . . . . . . . +260Test Conditions: V VAD = V VUSB = 4.75V to 5.25V; V BAT = 3.7V; Typ values at 25°C; Min and Max at -40°C < T A < 85°C, unless specifi ed.ParameterSymbolConditions MinTypMaxUnitsVAD Operating Voltage (1)V AD-OP 4.60 5.008.20V VAD Select Rising Threshold VT ADsel-R 4.304.45 4.60V VAD Deselect Falling Threshold (2)VT ADsel-F V VAD > V BAT2.70 2.853.00V USB Input Operating Voltage (1)V USB-OP4.355.008.20V VUSB Select Rising Threshold VT USBsel-R V VUSB > V BAT 4.204.35V VUSB Deselect Falling Threshold VT USBsel-F V VUSB > V BAT 3.65 4.00V VUSB Select Hysteresis VT USBsel-H VT USBsel-R - VT USBsel-F 100mVOVP Rising Threshold VT OVP-R VAD or VUSB input 9.6V OVP Falling Threshold VT OVP-F VAD or VUSB input 8.2V OVP HysteresisVT OVP-H (VT OVP-R - VT OVP-F )50mVVAD Charging Disabled Quiescent CurrentIq VAD_DIS V VUSB = 0V, V ENB = V BAT 23mA VAD Charging Enabled Quiescent CurrentIq VAD_EN V VUSB = 0V, V ENB = 0V, excluding I BAT , I IPRGM , and I IPUSB23mA VUSB Charging Disabled Quiescent CurrentIq VUSB_DIS V VAD = 0V; V ENB = V BAT 23mA VUSB Charging Enabled Quiescent CurrentIq VUSB_ENV VAD = 0V, V ENB = 0V, excluding I BAT , I IPRGM , and I IPUSB23mAElectrical CharacteristicsParameterSymbolConditionsMin TypMaxUnitsVUSB Deselected Quiescent Current (3)Iq VUSB_DESV VAD ≥ V VUSB2550μA CV Regulation VoltageV CVI BAT = 50mA, -40°C ≤ T J ≤ 125°C 4.16 4.204.24VCV Voltage Load Regulation(4)V CV_LOAD Relative to V CV @ 50mA,V VAD = 5V, or V VUSB = 5V and V VAD = 0V, 1mA ≤ I BAT ≤ 700mA, -40°C ≤ T J ≤ 125°C-2010mVRe-charge Threshold VT ReQ V CV — V BAT60100140mV Pre-charge Threshold (rising)VT PreQ 2.852.90 2.95V Battery Leakage Currentl BAT_V0V BAT = V CV , V VAD = V VUSB = 0V 0.11μA l BAT_DIS V BAT = V CV , V VAD = V VUSB = 5V, V ENB = 2V0.11μA l BAT_MONV BAT = V CV , V VAD = V VUSB = 5V, ENB not connected0.11μA IPRGM Programming Resistor R IPRGM 2.0529.4kΩFast-Charge Current, VAD input I FQ_AD R IPRGM = 2.94kΩ, VT PreQ < V BAT < V CV 643694745mA Pre-Charge Current, VAD input I PreQ_AD R IPRGM = 2.94kΩ, 1.8V < V BAT < VT PreQ105139173mA Termination Current, either input I TERM R IPRGM = 2.94kΩ, V BAT = V CV 596980mA VAD to BAT Dropout Voltage V DO_AD I BAT = 700mA, 0°C ≤ T J ≤ 125°C0.751.0V IPUSB Programming Resistor R IPUSB2.0529.4kΩFast-Charge Current, VUSB input I FQ_USB R IPUSB = 4.42kΩ, VT PreQ < V BAT < V CV 427462497mA Pre-Charge Current, VUSB input I PreQ_USB R IPUSB = 4.42kΩ, 1.8V < V BAT < VT PreQ6992116mA VUSB to BAT Dropout Voltage V DO_USB I BAT = 500mA, 0°C ≤ T J ≤ 125°C0.551V IPRGM Fast-charge Regulated Voltage V IPRGM_FQ V VAD = 5.0V, V VUSB = 0V,VT PreQ < V BAT < V CV2.04V IPRGM Pre-charge Regulated Voltage V IPRGM_PQ V BAT < VT PreQ0.408V IPRGM Termination Threshold Voltage VT IPRGM_TERM V BAT = V CV (either input selected)0.204V IPUSB Fast-charge Regulated Voltage V IPUSB_FQ V VAD = 0V, VT PreQ < V BAT < V CV2.04V IPUSB Pre-charge Regulated Voltage V IPUSB_PQ V VAD = 0V, V BAT < VT PreQ0.408VVUSB Under-Voltage Load Regulation Limiting VoltageV VUSB_UV_LIM5mA ≤ VUSB supply current limit ≤500mA, V VAD = 0V,R IPUSB = 3.65kΩ (559mA)4.45 4.584.70VElectrical Characteristics (continued)Electrical Characteristics (continued)ParameterSymbolConditions Min TypMax UnitsThermal Limiting Threshold Temperature T TL 130°C Thermal Limiting Rate i T 50mA/ °C ENB Input High Voltage V IH 1.6VENB Input Mid Voltage V IM 0.71.3V ENB Input Low VoltageV IL 0.3V ENB Input High-range Threshold Input CurrentI IH_TH ENB current required to pull ENB from floating midrange into high range 2350μAENB Input High-range Sustain Input CurrentI IH_SUS Current required to hold ENB in high range, Min V IH ≤ V ENB ≤ V BAT ,Min V IH ≤ V BAT ≤ 4.2V 0.31μAENB Input Mid-range Load Limit I IM Input will float to mid range when thisload limit is observed.-55μA ENB Input Low-range Input Current I IL 0V ≤ V ENB ≤ Max V IL-25-12μA ENB Input Leakage I ILEAK V VIN = 0V, V ENB = V BAT = 4.2V1μA STATB Output Low Voltage V STAT_LO I STAT_SINK = 2mA 0.5V STATB Output High CurrentI STAT_HIV STAT = 5V1μANotes:(1) Maximum operating voltage is the maximum Vsupply as defined in EIA/JEDEC Standard No. 78, paragraph 2.11. This is the input voltage atwhich the charger is guaranteed to begin operation.(2) Sustained operation to VT ADsel-F ≤ V VAD is guaranteed only if a current limited charging source applied to VAD is pulled below VT ADsel-R by thecharging load; forced VAD voltage below VT ADsel-R may in some cases result in regulation errors or other unexpected behavior.(3) If VAD is the selected input but V VAD < V VUSB , such as when VAD is operating with an adapter in current limit while a VUSB charging source isapplied, Iq VUSB_DES will increase to approximately Iq VUSB_EN .(4) At load currents exceeding 700mA, or at 700mA while at elevated ambient temperature, the charger may enter dropout with a 5V input beforethe battery voltage has risen to V CV . See the specifi cation of V DO_AD . Although this is a safe and acceptable mode of operation, specifi cation of V CV when in dropout is not applicable; higher input voltage will restore the charger to CV regulation in these cases. Note that V BAT is always less than V CV while in dropout. As the battery state-of-charge increases, the charging current will decrease allowing the battery voltage to rise to V CV , and CV regulation will begin. This appears as a softening or rounding of the CC-to-CV regulation mode transition, similar to that seen in chargers with a linear CC-to-CV regulation crossover.Typical CharacteristicsCV Line RegulationCV Load RegulationCV Temperature RegulationCC FQ Line Regulation (AD or USB)CC FQ V BAT Regulation (AD or USB)CC FQ Temperature Regulation (AD or USB)Typical Characteristics (continued)CC PQ Line Regulation (AD or USB)CC PQ Temperature Regulation (AD or USB)Ivs. R , or I vs. R Ivs. R , or I vs. R CC — Input Reselection, AD to USBCC — Input Reselection, USB to AD400μs/divV VAD (1.0V/div)V VAD =0V—I BAT (200mA/div)I BAT =0mA—V BAT =3.7V, V VUSB =5.0V400μs/divV VAD (1.0V/div)V VAD =0V—I BAT (200mA/div)I BAT =0mA—V BAT =3.7V, V VUSB =5.0VTypical Characteristics (continued)Charging Cycle Battery Voltage and CurrentPre-Charging Battery Voltage and CurrentCC-to-CV Battery Voltage and CurrentRe-Charge Cycle Battery Voltage and CurrentPin DescriptionsPin #Pin Name Pin Function1VAD Supply pin — connect to charging adapter. This pin is protected against damage due to high voltage up to 30V.2VUSB Supply pin — connect to USB Vbus power. Typically 5V, limited load-current input. This pin is protected against damage due to high voltage up to 30V.3STATB Status output pin — This open-drain pin is asserted (pulled low) when a valid charging supply is connected to either VAD or VUSB, and a charging cycle begins. It is released when the termination current is reached, indicating that charging is complete. STATB is not asserted for re-charge cycles.4GND Ground5IPUSB Fast-charge and pre-charge current programming pin for the VUSB power source — VUSB fast-charge current is programmed by connecting a resistor from this pin to ground. VUSB pre-charge current is 20% of fast-charge current.6 IPRGM Fast-charge and pre-charge current programming pin for the adapter power source — VAD fast-charge current is programmed by connecting a resistor from this pin to ground. VAD pre-charge current is 20% of fast-charge current. The charging termination current threshold (for either VAD or VUSB input selection) is 10% of the IPRGM programmed fast-charge current.7BAT Charger output — connect to battery positive terminal.8ENB Combined device enable/disable — Logic high disables the device. Tie to GND to enable charging with indefi nite fl oat-charging. Float this pin to enable charging without fl oat-charge upon termination. Note that this pin must be grounded if the SC820 is to be operated without a battery connected to BAT.T Thermal Pad Pad is for heatsinking purposes — not connected internally. Connect exposed pad to ground plane using multiple vias.Block DiagramCharger OperationThe SC820 is a dual-input stand-alone Li-ion battery charger. The VAD input pin is optimized for a charging adapter. The VUSB pin is optimized for charging from the USB Vbus supply. The device is independently pro-grammed for battery-capacity-dependent currents (adapter fast-charge current and termination current) using the IPRGM pin. Charging currents from the USB Vbus supply, which has a maximum load specifi cation, are programmed using the IPUSB pin.When an input supply is fi rst detected, a charge cycle is initiated and the STATB open-drain output goes low. If the battery voltage is less than the pre-charge threshold voltage, the pre-charge current is supplied. Pre-charge current is 20% of the programmed fast-charge current for the selected input.When the battery voltage exceeds the pre-charge thresh-old, typically within seconds for a standard battery with a starting cell voltage greater than 2V, the fast-charge Constant Current (CC) mode begins. The charge current soft-starts in three steps (20%, 60%, and 100% of pro-grammed fast-charge current) to reduce adapter load transients. CC current is programmed by the IPRGM resis-tance to ground when the VAD input is selected and by the IPUSB resistance to ground when the VUSB input is selected.The charger begins Constant Voltage (CV) regulation when the battery voltage rises to the fully-charged single-cell Li-ion regulation voltage (V CV ), nominally 4.2V. In CV regulation, the output voltage is regulated, and as the battery charges, the charge current gradually decreases. The STATB output goes high when I BAT drops below the termination current threshold, which is 10% of the IPRGM pin programmed fast-charge current regardless of the input selected. This is known as charge termination.Optional Float-charging or MonitoringDepending on the state of the ENB input, upon termina-tion the SC820 either operates indefi nitely as a voltageregulator (fl oat-charging) or it turns off its output. If the output is turned off upon termination, the device enters the monitor state. In this state, the output remains off until the BAT pin voltage decreases by the re-charge threshold (VT ). A re-charge cycle then begins auto-matically and the process repeats. A forced re-charge cycle can also be periodically commanded by the pro-cessor to keep the battery topped-off without fl oat-charging. See the Monitor State section for details. Re-charge cycles are not indicated by the STATB pin.Charging Input SelectionThe SC820 has two charging supply input pins. VAD is optimized for adapter charging. VUSB is optimized for charging from the USB Vbus power supply. The inputs diff er in selection rising and deselection falling thresh-olds, their behavior when overloading their respective charging sources, and in which current programming pin determines the fast-charge and pre-charge current. Both use the same Over-Voltage Protection (OVP) threshold.Glitch fi ltering is performed on the VAD and VUSB inputs, so an applied input voltage that is ringing across its selec-tion threshold will not be selected until the ringing has ceased. When both inputs exceed their respective UVLO thresholds, VAD is selected even when VAD voltage is applied while already charging from the VUSB input. VAD is also selected in the case that the VAD voltage exceeds its OVP threshold, so that an excessive VAD voltage will disable charging despite the presence of a valid VUSB input voltage.When a valid input (defi ned as greater than its selection threshold and less than the OVP threshold) is first selected, a charge cycle is initiated and the STATB output is asserted. When a new input selection is made (when VAD is applied or removed while VUSB is present), the charge cycle is immediately halted and re-initiated with the newly selected input. There is a momentary (approxi-mately 1ms) interruption in output current and a release and re-assertion of the STATB pin during input reselection.If the VAD input charging current loads the adapter beyond its current limit, the VAD input voltage will be pulled down to just above the battery voltage. The adapter input deselection falling threshold is set close to the battery voltage pre-charge threshold to permit low-dissipation charging from a current limited adapter.The VUSB input provides a higher deselection falling threshold appropriate to the USB specifi cation. The USBApplications InformationApplications Information (continued)input also provides Under-Voltage Load Regulation (UVLR), in which the charging current is reduced if needed to prevent overloading of the USB Vbus supply. UVLR can serve as a low-cost alternative to directly programming the USB low power charge current. It is also useful where there is no signal available to indicate whether USB low or high power mode should be selected.Constant Current Mode Fast-charge Current ProgrammingThe Constant Current (CC) mode is active when the battery voltage is above the pre-charge threshold voltage (VT PreQ ) and less than V CV . When VAD is the selected input, the programmed CC regulation fast-charge (FQ) current is inversely proportional to the IPRGM pin resistance to GND according to the equation59,,35*07\SB ,35*0$'B )4When VUSB is the selected input, the programmed CC mode fast-charge current is inversely proportional to the IPUSB pin resistance to GND according to the equation59,,386%7\S B ,386%86%B )4The fast-charge current can be programmed for ainput, nominally. The VAD input is designed for lower dropout voltage at high current, which ensures charging without thermal limiting with a charging adapter operat-ing in current limit of at least 700mA.Current regulation accuracy is dominated by gain error at high current settings and off set error at low current set-tings. The range of expected fast-charge output current versus programming resistance R IPRGM or R IPUSB (for VAD or VUSB input selected, respectively) is shown in Figures 1a and 1b. The figures show the nominal current versus nominal R IPRGM or R IPUSB resistance as the center plot and two theoretical limit plots indicating maximum and minimum current versus nominal programming resis-tance. These plots are derived from models of the expected worst-case contribution of error sources depending on programmed current. The current range includes the uncertainty due to 1% tolerance resistors. The dots on each plot indicate the currents obtained with standard value 1% tolerance resistors. Figures 1a and 1b show low and high resistance ranges, respectively.Pre-charge ModeThis mode is automatically enabled when the battery voltage is below the pre-charge threshold voltage (VT PreQ ). Pre-charge current conditions the battery for fast charg-ing. The pre-charge current value is fixed at 20% nominally of the fast-charge current for the selectedFigure 1a — Fast-charge Current Tolerance versus Programming Resistance, Low Resistance Range Figure 1b — Fast-charge Current Tolerance versus Programming Resistance, High Resistance Rangeresistance between IPRGM and GND for the VAD input, and by the resistance between IPUSB and GND for the VUSB input.Pre-charge current regulation accuracy is dominated by offset error. The range of expected pre-charge output current versus programming resistance is shown in Figures 2a and 2b. The figures show the nominal pre-charge current versus nominal resistance as the center plot and two theoretical limit plots indicating maximum and minimum current versus nominal programming resis-tance. These plots are derived from models of the expected worst-case contribution of error sources depending on programmed current. The current range includes the uncertainty due to 1% tolerance resistors. The dots on each plot indicate the currents obtained with standard value 1% tolerance resistors. Figures 2a and 2b show low and high resistance ranges, respectively.TerminationWhen the battery voltage reaches V CV , the SC820 transi-tions from constant current regulation to constant voltage regulation. While V BAT is regulated to V CV , the current into the battery decreases as the battery becomes fully charged. When the output current drops below the termi-nation current threshold, charging terminates. Upon termination, the STATB pin open drain output turns off and the charger either enters monitor state or float-charges the battery, depending on the logical state of the ENB input pin.Applications Information (continued)The termination current threshold is fi xed at 10% of the VAD input fast-charge current, as programmed by the resistance between IPRGM and GND. The IPRGM pin resistance determines the termination current threshold regardless of whether the selected charging input is VAD or VUSB.Charger output current is the sum of the battery charge current and the system load current. Battery charge current changes gradually, and establishes a slowly diminishing lower bound on the output current while charging in CV mode. The load current into a typical digital system is highly transient in nature. Charge cycle termination is detected when the sum of the battery charging current and the greatest load current occurring within the immediate 300μs to 550μs past interval is less than the programmed termination current. This timing behavior permits charge cycle termination to occur during a brief low-load-current interval, and does not require that the longer interval average load current be small.Termination current threshold accuracy is dominated by off set error. The range of expected termination current versus programming resistance R IPRGM (for either VAD or VUSB input selected) is shown in Figures 3a and 3b. The figures show the nominal termination current versus nominal R IPRGM resistance as the center plot and two theo-retical limit plots indicating maximum and minimum current versus nominal programming resistance. TheseFigure 2a — Pre-charge Current Tolerance versus Programming Resistance, Low Resistance RangeFigure 2b — Pre-charge Current Tolerance versus Programming Resistance, High Resistance Rangeplots are derived from models of the expected worst-case contribution of error sources depending on programmed current. The current range includes the uncertainty due to a 1% tolerance resistor. The dots on each plot indicate the currents obtained with standard value 1% tolerance resistors. Figures 3a and 3b show low and high resistance ranges, respectively.Enable InputThe ENB pin is a tri-level logical input that allows selection of the following behaviors:Charging enabled with fl oat-charging after ter-mination (ENB = low range)Charging enabled with fl oat-charging disabled and battery monitoring at termination (ENB = mid range)Charging disabled (ENB = high range).This input is designed to interface to a processor GPIO port powered from a peripheral supply voltage as low as 1.8V or as high as a fully charged battery. While a con-nected GPIO port is confi gured as an output, the processor writes a 0 to select ENB low-range, and 1 to select high-range. The GPIO port is confi gured as an input to select mid-range.ENB can also be permanently grounded to select low-range or left unconnected to select mid-range if it will not be necessary to change the level selection.•••The equivalent circuit looking into the ENB pin is a vari-able resistance, minimum 15kΩ, to an approximately 1V source. The input will fl oat to mid range whenever the external driver sinks or sources less than 5μA, a common worst-case characteristic of a high impedance or a weak pull-up or pull-down GPIO confi gured as an input. The driving GPIO must be able to sink or source at least 75μA to ensure a low or high state, respectively, although the drive current is typically far less. (See the Electrical Characteristics table.)If the ENB input voltage is permitted to fl oat to mid-range, the charger is enabled but it will turn off its output follow-ing charge termination and will enter the monitor state. This state is explained in the next section. Mid-range can be selected either by floating the input (sourcing or sinking less than 5μA) or by being externally forced such that V ENB falls within the midrange limits specifi ed in the Electrical Characteristics table.When driven low (V ENB < Max V IL ), the charger is enabled and will continue to float-charge the battery following termination. If the charger is already in monitor state fol-lowing a previous termination, it will exit the monitor state and begin fl oat-charging.When ENB is driven high (V ENB > Min V IH ), the charger is disabled and the ENB input pin enters a high impedance state, suspending tri-level functionality. The specified high level input current I IH is required only until a highProgramming Resistance, Low Resistance RangeProgramming Resistance, High Resistance RangeApplications Information (continued)level is recognized by the SC820 internal logic. The tri-level float circuitry is then disabled and the ENB input becomes high impedance. Once forced high, the ENB pin will not fl oat to mid range. To restore tri-level operation, the ENB pin must fi rst be pulled down to mid or low range (at least to V ENB < Max V IM ), then, if desired, released (by reconfi guring the GPIO as an input) to select mid-range. If the ENB GPIO has a weak pull-down when confi gured as an input, then it is unnecessary to drive ENB low to restore tri-level operation; simply confi gure the GPIO as an input. When the ENB selection changes from high-range to mid- or low-range, a new charge cycle begins and STATB goes low.Note that if a GPIO with a weak pull-up input confi gura-tion is used, its pull-up current will fl ow from the GPIO into the ENB pin while it is fl oating to mid-range. Since the GPIO is driving a 1V equivalent voltage source through a resistance (looking into ENB), this current is small − possi-bly less than 1μA. Nevertheless, this current is drawn from the GPIO peripheral power supply and, therefore, from the battery after termination. (See the next section, Monitor State.) For this reason, it is preferable that the GPIO chosen to operate the ENB pin should provide a true high imped-ance (CMOS) configuration or a weak pull-down when configured as an input. When pulled below the float voltage, the ENB pin output current is sourced from VAD or VUSB, not from the battery.Monitor StateIf the ENB pin is fl oating, the charger output and STATB pin will turn off and the device will enter the monitor state when a charge cycle is complete. If the battery voltage falls below the re-charge threshold (V CV - V ReQ ) while in the monitor state, the charger will automatically initiate a re-charge cycle. The battery leakage current during monitor state is no more than 1μA over temperature and typically less than 0.1μA at room temperature.While in the monitor state, the ENB tri-level input pin remains fully active, and although in midrange, is sensitive to both high and low levels. The SC820 can be forced from the monitor state (no float-charging) directly to float-charging operation by driving ENB low. This operation will turn on the charger output, but will not assert the STATB output. If the ENB pin is again allowed to float to mid-range, the charger will remain on only until the outputcurrent becomes less than the termination current, and charging terminates. The SC820 turns off its charging output and returns to the monitor state within a millisec-ond. This forced re-charge behavior is useful for periodically testing the battery state-of-charge and topping-off the battery, without float-charging and without requiring the battery to discharge to the auto-matic re-charge voltage. ENB should be held low for at least 1ms to ensure a successful forced re-charge.Forced re-charge can be requested at any time during the charge cycle, or even with no charging source present, with no detrimental effect on charger operation. This allows the host processor to schedule a forced re-charge at any desired interval, without regard to whether a charge cycle is already in progress, or even whether a charging source is present. Forced re-charge will neither assert nor release the STATB output.Status OutputThe STATB pin is an open-drain output. It is asserted (driven low) as charging begins after a valid charging source is connected and the voltage on either input is between its selection and OVP limits. STATB is also asserted as charging begins after the ENB input returns to either of the enable voltage ranges (mid or low voltage) from the disable range. STATB is subsequently released when the termination current is reached to indicate end-of-charge, when the ENB input is driven high to disable charging, or when neither charging input is selected and valid to charge. If the battery is already fully charged when a charge cycle is initiated, STATB is asserted for approximately 750μs before being released. The STATB pin is not asserted for automatic re-charge cycles.The STATB pin may be connected to an interrupt input to notify a host controller of the charging status or it can be used as an LED driver.Logical CC-to-CV TransitionThe SC820 diff ers from monolithic linear single cell Li-ion chargers that implement a linear transition from CC to CV regulation. The linear transition method uses two simul-taneous feedback signals — output voltage and output current — to the closed-loop controller. When the output voltage is suffi ciently below the CV regulation voltage, the influence of the voltage feedback is negligible and the。
电源磁芯尺寸功率参数
常用电源磁芯参数MnZn 功率铁氧体EPC功率磁芯特点:具有热阻小、衰耗小、功率大、工作频率宽、重量轻、结构合理、易表面贴装、屏蔽效果好等优点,但散热性能稍差。
用途:广泛应用于体积小而功率大且有屏蔽和电磁兼容要求的变压器,如精密仪器、程控交换机模块电源、导航设备等。
EPC型功率磁芯尺寸规格磁芯型号Type尺寸Dimensions(mm)A B C D Emin F G HminEPC10/8 10.20±0.20 4.05±0.30 3.40±0.20 5.00±0.20 7.60 2.65±0.20 1.90±0.20 5.30 EPC13/13 13.30±0.30 6.60±0.30 4.60±0.20 5.60±0.20 10.50 4.50±0.30 2.05±0.20 8.30 EPC17/17 17.60±0.50 8.55±0.30 6.00±0.30 7.70±0.30 14.30 6.05±0.30 2.80±0.20 11.50 EPC19/20 19.60±0.50 9.75±0.30 6.00±0.30 8.50±0.30 15.80 7.25±0.30 2.50±0.20 13.10 EPC25/25 25.10±0.50 12.50±0.30 8.00±0.30 11.50±0.30 20.65 9.00±0.30 4.00±0.20 17.00 EPC27/32 27.10±0.50 16.00±0.30 8.00±0.30 13.00±0.30 21.60 12.00±0.30 4.00±0.20 18.50 EPC30/35 30.10±0.50 17.50±0.30 8.00±0.30 15.00±0.30 23.60 13.00±0.30 4.00±0.20 19.50 EPC39/39 39.00±0.50 19.60±0.30 15.60±0.30 18.00±0.30 30.70 14.00±0.30 10.00±0.30 24.50 EPC42/44 42.40±1.00 22.00±0.30 15.00±0.40 17.00±0.30 33.50 16.00±0.30 7.40±0.30 26.50EPC功率磁芯电气特性及有效参数注:AL值测试条件为1KHz,0.25v,100Ts,25±3℃Pc值测试条件为100KHz,200mT,100℃EE、EEL、EF型功率磁芯特点:引线空间大,绕制接线方便。
三极管型号大全
8B 彩行1500V6A120WD1403 NPN 28B 彩行1500V6A120WD1415 NPN 28B 功放电源开关100V7A40Wβ=6000 达林顿D1416 NPN 28B 功放电源开关80V7A40Wβ=6000(达林顿)D1426 NPN 28B 彩行1500V3.5A80Wβ=12D1427 NPN 28B 彩行1500V5A80Wβ=12 D1428 NPN 28B 彩行1500V6A80Wβ=12 RRRRD1431 NPN 28B 彩行1500V5A80Wβ=20D1433 NPN 28B 彩行1500V7A80Wβ=20D1439 NPN BCE 彩行1500V3A80Wβ=8D1541 NPN 28B 彩行1500V3A80Wβ=20D1545 NPN 28B 彩行1500V5A50Wβ=20D1547 NPN BCE 彩行1500V7A80Wβ=20D1554 NPN BCE 彩行1500V3.5A80Wβ=12D1555 NPN BCE 彩行1500V5A80Wβ=12D1556 NPN BCE 彩行1500V6A80Wβ=12 D1559 NPN BCE 达林顿功放100V20A100Wβ=5000/B1079D1590 NPN 28 达林顿功放150V8A25W β=15000D1632 NPN 28B 彩行1500V4A70WD1640 NPN 29 达林顿功放120V2A1.2W β=4000-40000D1651 NPN SP 彩行1500V5A60W3MHZD1710 NPN BCE 彩行1500V5A50WD1718 NPN 28C 音频功放180V15A3.5W20MHZD1762 NPN BCE 音频功放开关60V3A25W90MHZ /B1185D1843 NPN BCE 低噪放大50V1A1WD1849 NPN 50A 彩行1500V7A120WD1850 NPN 50A 彩行1500V7A120WD1859 NPN 50A 音频80V0.7A1W120MHZD1863 NPN 50A 音频120V1A1W100MHZD1877 NPN 30 彩行1500V4A50W(带阻尼)D1879 NPN 30 彩行1500V6A60W(带阻尼)D1887 NPN 30 彩行1500V10A70WD1930 NPN 21 达林顿达林顿100V2A1.2Wβ=1000D1975 NPN 53A 音频功放180V15A150W B1317 D1978 NPN 21 达林顿120V1.5A0.9Wβ=30000D1980 NPN 61B 达林顿100V2A10Wβ=1000-10000 |D1981 NPN ECB 达林顿100V2A1WD1993 NPN 45B 音频低噪55V0.1A0.4WD1994A NPN ECB 音频驱动60V1A1WD1997 NPN 45B 激励管40V3A1.5W100MHZD2008 NPN ECB 音频功放80V1A1.2WD2012 NPN BCE 音频功放60V3A2W3MHZD2136 NPN ECB 功放80V1A1.2WD2155 NPN 53A 音频功放180V15A150WD2256 NPN 46 达林顿功放120V25A125Wβ=2000-20000D2334 NPN 28B 彩行1500V5A80WD2335 NPN BCE 彩行1500V7A100W 1ED2349 NPN BCE 大屏彩显行管D2374 NPN BCED2375 NPN BCED2388 NPN EBC 达林顿90V3A1.2WD2445 NPN BCE 彩行1500V12.5A120WD2498 NPN BCE 彩行1500V6A50WD2588 NPN BCE 点火器用DK55 NPN BEC 开关400V4A60WBC307 PNP 21a 通用50V0.2A0.3WBC327 PNP CBE 低噪音频50V0.8A0.625W COM BC337BC337 NPN 21a 音频激励低噪50V0.8A0.625W COM BC327 BC338 NPN 21a 通用激励50V0.8A0.6BC546 NPN 21a 通用80V0.2A0.5WBC547 NPN CBE 通用50V0.2A0.5W300MHZBD135 NPN 29 音频功放45V1.5A12.5WBD136 PNP 29 音频功放45V1.5A12.5WBD137 NPN 29 音频功放60V1.5A12.5WBD138 PNP 29 音频功放60V1.5A12.5wBD139 PNP 29 音频功放80V1.5A12.5WBD237 NPN 29 音频功放100V2A25WBD238 PNP 29 音频功放100V2A25WBD243 NPN 28 音频功放45V6A65WBD244 PNP 28 音频功放45V6A65WBD681 NPN 29 达林顿功放100V4A40WBD682 NPN 29 达林顿功放100V4A40WBF458 NPN 29 视放250V0.1A10WBU208A NPN 12 彩行1500V5A12.5WBU208D NPN 12 彩行1500V5A12.5W (带阻尼) *BBU323 NPN 28 达林顿功放450V10A125WBU406 NPN 28 行管400V7A60WBU508A NPN 28 行管1500V7.5A75WBU508A NPN 28 行管1500V7.5A75WBU508D NPN 28 行管1500V7.5A75W (带阻尼)BU806 NPN 28 功放400V8A60W DAR-LBU932R NPN 12 功放500V15A150WBU1508DX NPN 28 开关功放BU2506DX NPN 30 开关功放1500V7A50W /600NSBU2508AF NPN 30 开关功放700V8A125W /6BU2508AX NPN 30 开关功放700V8A125W /600NSBU2508DF NPN 30 开关功放700V8A125W/600NS(带阻尼)lBU2508DX NPN 30 开关功放1500V8A50W/600NS(带阻尼)BU2520AF NPN 30 开关功放800V10A150W 1/50BU2520AX NPN 30 开关功放1500V10A150W 1/500NSBU2520DF NPN 30 开关功放800V10A150W1/500NS(带阻)BU2520DX NPN 30 开关功放1500V10A50W/600NS (带阻)BU2522AF NPN 30 开关功放1500V11A150W /350NS BU2522AX NPN 30 开关功放1500V11A150W /3BU2525AF NPN 30 开关功放1500V12A150W /35BU2525AX NPN 30 开关功放1500V12A150W /350NSBU2527AF NPN 30 开关功放1500V15A150WBU2532AW NPN 30 开关功放1500V15A150W(大屏)BUH515 NPN BCE 行管1500V10A80WBUH515D NPN BCE 行管1500V10A80W(带阻尼)BUS13A NPN 12 开关功放1000V15A175 BUS14A NPN 12 开关功放1000V30A250W BUT11A NPN 28 开关功放1000V5A100W %j+} G-lU+FBUT12A NPN 28 开关功放450V10A125WBUV26 NPN 28 音频功放开关90V14A65W /250nsBUV28A NPN 28 音频功放开关225V10A65W /250nsBUV48A NPN 30 音频功放开关450V15A150WBUW13A NPN 30 功放开关1000V15A150WBUX48 NPN 12 功放开关850V15A125W 8BUX84 NPN 30 功放开关800V2A4BUX98A NPN 12 功放开关400V30A210W5MHZDTA114 PNP 10K-10K 160V0.6A0.625W(带阻)DTC143 NPN 录像机用4.7K-4.7KHPA100 NPN BCE 大屏彩显行管21#HPA150 NPN BCE 大屏彩显行管21#HSE830 PNP BCE 音频功放80V115W1MHZHSE838 NPN BCE 音频功放80V115W1MHZ COP/MJ4502MN650 NPN BCE 行管1500V6A80WMJ802 NPN 12 音频功放开关90V30A200WMJ2955 PNP 12 音频功放开关60V15A115WMJ3055 NPN 12 音频功放开关60V15A115W MJ4502 PNP 12 音频功放开关90V30A200W COP/MJMJ10012 NPN 12 达林顿400V10A175WMJ10015 NPN 12 电源开关400V50A200WMJ10016 NPN 12 电源开关500V50A200W MJ10025 12 电源开关850V20A250W MJ11032 NPN 12 电源开关120V50A300WMJ11033 PNP 12 电源开关120V50A300WMJ13333 NPN 12 电源开关400V20A175WMJ15024 NPN 12 音频功放开关400V16A250W4MHZ(原25.00)MJ15025 PNP 12 音频功放开关400V16A250W4MHZ(原25.00)MJE340 NPN 29 视放300V0.5A20WMJE350 PNP 29 视放300V0.5A20WMJE2955T PNP BCE 音频功放开关60V1075W2MHZMJE3055T NPN BCE 音频功放开关70V1075W2MHZMJE5822 PNP BCE 音频功放开关500V8AMJE9730 NPN BCE 8gU or4U }MJE13003 NPN 29 功放开关400V1.5A14WMJE13005 NPN 28 功放开关400V4A60W "u:OzMJE13007 NPN 28 功放开关1500V2.5A60WSE800TIP31C NPN BCE 功放开关100V3A40W3MHZ TIP32C PNP BCE 功放开关100V3A40W3MHZTIP35C NPN 30 音频功放开关100V25A125W3MHZTIP36C PNP 30 音频功放开关100V25A125W3MHZTIP41C NPN 30 音频功放开关100V6A65W3MHZTIP42C PNP 30 音频功放开关100V6A65W3MHZTIP102 NPN 28 音频功放开关100V8A2W wwTIP105 28 音频功放开关TIP122 NPN 28 音频功放开关100V8A65W TIP127 PNP 28 音频功放开关100V8A65W DARLTIP137 PNP 28 音频功放开关100V8A70W DARLTIP142 NPN 30 音频功放开关100V10A125W DAR-LTIP142大NPN 30 音频功放开关100V10A125W DAR-LTIP147 PNP 30 音频功放开关100V10A125W DAR-L 0TIP147大PNP 30 音频功放开关100V10A125W DAR-L 0TIP152 电梯用TL431 21 电压基准源UGN3120 SGO 霍尔开关UGN3144 SGO 霍尔开关60MIAL1 电磁/微波炉1000V60A300WT30G40 NPN BCE 大功率开关管400V30A300W5609 COML:56105610 COML:56099626 NPN21 通用三极管系列品名极性管脚功能参MPS2222A NPN 21 高频放大75V0.6A0.625W300MHZ9011 NPN EBC 高频放大50V30mA0.4W150MHz9012 PNP 贴片低频放大50V0.5A0.625W9013 NPN EBC 低频放大50V0.5A0.625W9013 NPN 贴片低频放大50V0.5A0.625W9014 NPN EBC 低噪放大50V0.1A0.4W150MHZ9015 PNP EBC 低噪放大50V0.1A0.4W150MHZ9018 NPN EBC 高频放大30V50MA0.4W1GHZ8050 NPN EBC 高频放大40V1.5A1W100MHZ8550 PNP EBC 高频放大40V1.5A1W100MHZ2N2222 NPN 4A 高频放大60V0.8A0.5W25/200NSβ=452N2222A NPN 小铁高频放大75V0.6A0.625W300MHZ2N2369 NPN 4A 开关40V0.5A0.3W800MHZ2N2907 NPN 4A 通用60V0.6A0.4W26/70NSβ=2002N3055 NPN 12 功率放大100V15A115W 2N3440 NPN 6 视放开关450V1A1W15MHZ )l#J:i S D2N3773 NPN 12 音频功放开关160V16A150W COP 2N66092N3904 NPN 21E 通用60V0.2Aβ=100-4002N3906 PNP 21E 通用40V0.2Aβ=100-4002N5401 PNP 21E 视频放大160V0.6A0.625W100M2N5551 NPN 21E 视频放大160V0.6A0.625W100MH2N5685 NPN 12 音频功放开关60V50A300W2N6277 NPN 12 功放开关180V50A250W2N6609 PNP 12 音频功放开关160V15A150W COP 2N3773D2553 1700V 8A 50WD1556 1500V 6A 50W。
T820-XXXW中文资料
180
O
P(W)
10
= 180 = 120 = 90 = 60
o o o o
Tcase (oC)
10
-90 -95
8 6 4 2
o
8 -100 6 4 2
Rth = 0 o C/W o 2.5 C/W o 5 C/W 7.5 o C/W
-105 -110 -115
= 30
I T(RMS) (A)
ITSM(A)
100
Ih[Tj] Ih[Tj=25 o C]
Tj initial = 25 C
80
o
60
Ih
40
20
Tj(oC)
0 20 40 60 80 100 120 140
0 1
Number of cycles
10 100
1000
3/5
元器件交易网
T820-xxxW / T830-xxxW
Fig. 7: Non repetitive surge peak on-state current for a sinusoidal pulse with width : tp ® 10ms, and corresponding value of I2t.
I TSM (A). I2 t (A2 s)
Fig. 8: On-state characteristics (maximum values).
I TM (A)
Tj initial = 25 C
o
1000
I TSM
1000
Tj initial o 25 C
100
100
I2 t
10
Tj max
10
NRB-XS470M250V16X20F中文资料
NRB-XS Series
Max. Tan δ at 120Hz/20°C Low Temperature Stability Impedance Ratio @ 120Hz Load Life at W.V. & 105°C 8x11.5mm, 10x12.5mm: 5,000 Hours 10x16mm, 10x20mm: 8,000 Hours φD > 12.5mm: 10,000 Hours
元器件交易网
Miniature Aluminum Electrolytic Capacitors
HIGH TEMPERATURE, EXTENDED LOAD LIFE, RADIAL LEADS, POLARIZED FEATURES • HIGH RIPPLE CURRENT AT HIGH TEMPERATURE (105°C) • IDEAL FOR HIGH VOLTAGE LIGHTING BALLAST • REDUCED SIZE (FROM NRBX) CHARACTERISTICS
Please review the notes on correct use, safety and precautions found on pages T10 & T11 of NIC’s Electrolytic Capacitor catalog. Also found at /precautions If in doubt or uncertainty, please review your specific application - process details with NIC’s technical support personnel: tpmg@
EMS22P30-M25-LS6中文资料(bourns)中文数据手册「EasyDatasheet - 矽搜」
电气特性
解析度................................................................................................................................................................................................................ 1024国 绝缘电阻(500 VDC) ......................................................................................................................................................................1,000兆欧 电气行程........................................................................................................................................................................................................续 电源电压........................................................................................................................................................................5.0 VDC±10%,3.3 VDC±10% 电源电流.................................................................................................................................................................................................20 mA(最大值)
BR8220 芯片数据手册 v1.01
NGB8206N资料
TJ = −40°C to 175°C 325 350 TJ = −40°C to 175°C 340 365
TJ = 25°C
0.1
TJ = 25°C
0.5 1.5
TJ = 175°C
1.0 25
TJ = −40°C
0.4 0.8
TJ = 25°C
30
35
TJ = 175°C
35
39
TJ = −40°C
Reverse Avalanche Energy VCC = 100 V, VGE = 20 V, Pk IL = 25.8 A, L = 6.0 mH, Starting TJ = 25°C
EAS EAS(R)
250 200 180
2000
THERMAL CHARACTERISTICS
Thermal Resistance, Junction−to−Case
275
1. When surface mounted to an FR4 board using the minimum recommended pad size. 2. For further details, see Soldering and Mounting Techniques Reference Manual: SOLDERRM/D.
Features
• Ideal for Coil−on−Plug and Driver−on−Coil Applications • Gate−Emitter ESD Protection • Temperature Compensated Gate−Collector Voltage Clamp Limits
30
33
TJ = 25°C
许继电容器保护WDR820说明书
WDR-820系列微机电容器保护测控装置
交流电流 5A 或 1A(订货注明) 零序电流 1 A 额定频率 50Hz ☆ 热稳定性:交流电压回路:长期运行 1.2Un 交流电流回路:长期运行 2In
4
WDR-820 系列微机电容器保护测控装置
4 保护原理
4.1 二段过流保护
☆ 人机对话插件 人机对话插件安装于装置面板上,液晶采用中文菜单方式显示(操作),主要功能为:键盘 操作、液晶显示、信号灯指示及串行口调试。
装置设二段过流保护,各段电流及时间定值可独立整定,通过分别设置保护压板控制 这两段保护的投退。过流保护原理框图如图 4-1。
18
8
调试及异常处理
18
8.1
调试说明
18
8.2
程序检查
18
8.3
开关量输入检查
18
8.4
继电器开出回路检查
18
8.5
模拟量输入检查
19
8.6
相序检查
19
8.7
整组试验
19
8.8
异常处理
19
9
投运说明及注意事项
19
10
贮存及保修
19
11
供应成套性
20
12
订货须知
20
13
附录 A :装置插件功能示意图
☆ 大气压力:80kPa ̄110kPa(相对海拔高度 2km 以下)。
☆ 脉冲群干扰 :能承受 GB/ T14598.13-1998 规定的频率为 1MHz 及 100kHz 衰减振荡波(第一 半波电压幅值共模为 2.5kV,差模为 1kV)脉冲群干扰试验。
☆ 快速瞬变干扰:能承受 GB/ T14598.10-1997 第四章规定的严酷等级为Ⅳ级的快速瞬变干 扰试验。
WBT-820说明书(v2.5)
WBT-820系列微机备自投装置技术及使用说明书(ver-2.5)许继集团股份有限公司XJ GROUP CORPORATION CO.,LTD.WBT-820系列微机备自投装置应用范围适用于220kV及以下各种电压等级的备用电源自投。
装置硬件后插拔方式,强弱电分离;加强型单元机箱按抗强振动、强干扰设计,可分散安装于开关柜上运行。
采用32位浮点DSP处理器,大容量的RAM和Flash Memory;数据处理、逻辑运算和信息存储能力强,运行速度快,可靠性高。
16位高精度AD,测量精度高。
可保存不少于100个最近发生的事件报告及运行报告。
采用图形液晶,中文显示,菜单式操作。
主要特点PLC可视化逻辑组态,方便实现各种运行环境对备自投的具体逻辑要求。
实时多任务操作系统,模块化编程;实时性好,可靠性高。
8套保护定值,定值区切换安全方便。
标准通信规约,方便与微机监控或保护管理机联网通讯。
我公司保留对本说明书进行修改的权利;产品与说明书不符时,请参照实际产品说明。
2004.3 第四版印刷1概述 1 1.1 功能配置 1 1.2 主要特点 12技术指标 2 2.1 额定数据 2 2.2 装置功耗 2 2.3 环境条件 2 2.4 抗干扰性能 2 2.5 绝缘性能 3 2.6 机械性能 3 2.7 各元件工作范围 3 2.8 测量精度 33装置硬件 4 3.1 机箱结构 4 3.2 主要插件 4 4WBT-821保护原理 5 4.1 运行方式说明 5 4.2 保护与备自投逻辑图 6 4.3 复压闭锁电流保护 6 4.4 零序电流保护 6 4.5 三相一次重合闸 6 4.6 电流加速保护 6 4.7 零流加速保护 8 4.8 备自投 8 4.9 过负荷保护 8 4.10 TV断线检测 8 4.11 位置检测 8 4.12 遥测、遥信、遥控及遥脉功能 95 WBT-822保护原理 9 5.1 备用电源自投说明 9 5.2 具体运行方式 10 5.3 TV检测 14 5.4 位置检测146 WBT-821保护信息说明14 6.1 定值整定信息14 6.2 压板整定信息15 6.3 动作信息及说明157 WBT-822保护信息说明16 7.1 定值整定信息 16 7.2 压板整定信息 177.3 动作信息及说明 178 WBT-821装置对外接线说明 18 8.1 装置接线端子18 8.2 装置辅助电源18 8.3 通信端子18 8.4 交流电流输入19 8.5 交流电压输入19 8.6 开入及开入电源19 8.7 中央信号输出19 8.8 位置触点19 8.9 出口继电器 19 8.10 跳合闸回路199 WBT-822装置对外接线说明20 9.1 装置接线端子20 9.2 装置辅助电源20 9.3 通信端子20 9.4 交流电流输入209.5 交流电压输入20 9.6 开入及开入电源20 9.7 中央信号输出20 9.8 位置触点20 9.9 出口继电器2010 人机界面说明21 10.1 初始界面21 10.2 浏览21 10.3 定值21 10.4 报告22 10.5 传动23 10.6 开入23 10.7 通讯23 10.8 设置23 10.9 打印24 10.10 版本24 10.11 自动信息显示2411 调试及异常处理24 11.1 调试说明24 11.2 程序检查24 11.3 开关量输入检查25 11.4 继电器回路检查25 11.5 模拟量输入检查25 11.6 整组试验25 11.7 装置故障告警25 11.8 录波26 11.9 GPS对时26 11.10 打印功能26 11.11 网络通信26 11.12 异常处理2612 投运说明及注意事项2613 贮存及保修2714 供应成套性2715 订货须知27附录A WBT-821装置端子接线图28附录B WBT-822装置端子接线图29附录C WBT-821装置接线示意图30附录D WBT-822装置接线示意图31附录E WBT-821操作回路原理图321. 概述WBT-820系列微机备自投装置采用先进的可视化逻辑配置(PLC)方法,在PC机上进行可视化的逻辑组态,通过调用功能元件库中对应的功能元件,实现各种运行方式(环境)所要求的备用电源自投逻辑;其功能元件库中的各种元件均经过反复测试,安全可靠。
弱电设备参数
弱电设备参数表之五兆芳芳创作监控系统红外摄像机:(数量15台)半球摄像机:(数量38台)硬盘录像机:(数量6台)停车场办理系统停车场办理系统作为中国停车场办理行业的开创者和领导品牌,捷顺停车场办理系统经过研发团队多年来不竭优化,并结合国际外停车场办理需求而设计的一套高效智能的停车场办理系统.凭借优良的品质和卓越的性能,捷顺停车场办理系统受到了数以十万计用户的青睐,被普遍应用于小区物业、商业大厦、购物中心、物流园区、大型厂矿、机场、政府机关、校园、大型场馆等领域,为大量用户解决了停车场的车辆平安、资金平安、车辆进出有序办理、车位资源公道计划和利用等停车场经营办理难题,成立了良好的行业口碑.一、系统简介捷顺停车场办理系统是通过非接触式卡或车牌识别来对出入停车场的车辆实施判断识别、准入/拒绝、引导、记实、收费、放行等智能办理,其目的是有效的控制车辆与人员的出入,记实所有详细资料并自动计较收费额度,实现对场内车辆与收费的平安办理.该系统集感应式智能卡技巧、计较机软件与网络、视频监控、图像识别与处理、自动控制技巧于一体,包含了车辆身份判断、出入控制、车辆自动识别、车位检索、车位引导、会车提醒、图像显示、车辆校对、信息宣布、时间计较、用度收取及核对、语音对讲、报警联动等系列化功效,实现对停车场车辆的智能化办理.按照具体的使用情况和配置需要,捷顺停车场办理系统细分为:捷斯易、捷易通、顺易达及灵通四个停车场办理系列,满足各类型停车场办理需要.系统控制流程车辆入场时,司机将所持有的本车场IC/ID 卡放在入口控制机的读卡区域前读卡,如果读卡有效,道闸的闸杆自动抬起,允许车辆进入,车辆通过入口处的道闸后,闸杆自动下落,封闭入口车道.当车辆出场时,司机在出口控制机的读卡区域读卡,出口控制机判断卡的有效性后,出口处的道闸闸杆自动抬起放行车辆,车辆通过道闸后,闸杆自动落下,封闭出口车道,如果IC/ID 卡无效时,出口道闸仍处于禁行状态.对于临时停车的车主,在车辆检测器检测到车辆后,按入口控制机上的取卡按钮取出一张IC/ID 卡或纸票,系统自动完成读卡/打印纸票、摄像和放行,出场时,在出口控制机上读卡或在岗位扫描纸票条码并交纳停车用度,同时进行车辆的图像对比,无异常情况时由办理人员确认开闸放行.二、系统组成停车场系统主要由以下部分组成:数据库办事器:对车场的图像、出入场记实进行处理,保管,查询和报表打印;办理中心:对卡片进行授权刊行,挂失,解挂,延期等卡处理功效;任务站:实时监控停车场的出入口,控制车辆进出并收费;系统控制终端:对卡片的正当性进行判断、校验,及车辆进出自动控制功效.系统主要组成设备:一卡通办理软件:智能停车场软件办理平台,包含停车场设备办理、出入办理、卡务办理、财务办理、数据阐发、增值运营等模块;出入口控制机:实现车辆权限识别、入/出场控制及办理功效;刊行器:卡片刊行,挂失,解挂等卡处理硬件;临时卡计费器:刷卡计费硬件,可选语音提示功效,IC卡时可在脱机状态下实现收费办理;出入口道闸:允许或禁止车辆通行的闸式设备;摄像机:对停车场进出口进行监控和录像,并由事件(如刷卡)触发进行车辆抓拍、车牌抓拍、人像抓拍、证件抓拍,并把图像数据上传至办理软件;智能感应卡:承载信息的载体,车辆进出停车场并计费的凭证;车牌识别:按照摄像机拍摄到得车辆车牌图像识别出车牌号码,并上传至办理软件.三、办理模式、四、系统功效特点◆多样化的认证通行方法支持纸票认证、卡片认证、车牌识别认证、卡片和车牌同时匹配认证、卡片或车牌自动选择匹配认证通行、刷卡远程确认通行、并支持中远距离识别认证实现不断车通行和非系统卡刷卡报警.◆多样化的收费尺度与支付模式支持按时、顺次、按周期、分时段、免费、一次收费等多种计费尺度,能配置出口收费、中央收费、自助缴费机等多种收费模式,支持现金支付、银行卡支付、代金券支付、会员积分支付等多种支付方法.◆人性化的卡务办理系统可设置卡刊行计划,支持卡批量刊行和快速刊行,支持一车一卡和一车多卡,确保车辆平安的同时也给车主带来人性化的办事.◆分权分级办理支持停车场车位、数据、设备、人员依照行政级别和区域散布进行分权分级办理安排,实现集中配置,分离办理的经营模式,满足大型化、网络化及资源集中配置的团体物业办理需求.◆车位预定车位锁定支持车位预定和车位锁定,当车位被锁定后,停在车位上的车辆开出车位时系统会收到报警,从而确保车辆平安.◆流量办理通道管束支持大容量发卡计划和通道口的计划,可管束指定用户类型的车辆在指定的时间段内禁止从该通道通行,有效引导和分流车辆通行,避免拥堵,提高车辆通行效率.◆停车计划行车引导办理员可设定停车场内不合区域的划分及相互逻辑关系,并设置车位分派和统计原则,从而实现对区域限流及车位信息宣布,指导车辆有序停放,另可结合车位引导帮忙车主快速找到空余车位,还可对特殊车辆实行灯光路径指引.◆健全的财务监管机制杜绝财务漏洞系统实施财权别离办理机制,支持进出凭证库存办理、钱箱的视频联动、尺度税务发票打印、换班对帐办理、非系统开闸及卡遗失办理、进出事件与资金买卖数据联系关系,构建健全的财务监管机制,从上到下杜绝财务漏洞,避免车场经营资金流失.◆经营决策数据支持停车场运营数据支持按时间、按车辆、按操纵员等条件进行自定义查询、排序和筛选,具备经营数据模型化图表阐发和远程查询功效,给车场经营决策提供精准的数据支持.◆商铺协作联营支持与周边商铺进行停车场资源的同享,从而实现车主、商铺与停车场经营者的双赢的商业模式,支持折扣办理的业务流程、支持多种支付方法可定义、支持多车场及多种收费尺度应用模式、支持按商户的统计阐发功效.◆图像抓拍图像对比车辆进出停车场时,对车辆和车辆驾驶人员进行图像抓拍与图像对比、还可以将抓拍图像与库中样照对比,确保车辆平安和便利调查取证.◆实时监控实时处理通过视频与软件可实时监控通道现场情况、停车场剩余车位、分区车位、设备状态、车位状态及各类进出刷卡记实、系统报警事件、通道报警事件、地感事件、控闸事件等全方位的停车场综合信息,并可对设备进行远程控制和视频联动,实施联动报警、一键封闭、一键全开,实时处理各类事件.◆防跟车防砸车通过道闸与地感联动、跟车报警等方法避免前一正当车刷卡通行后,下一辆车不刷卡尾随进出停车场.并且当闸杆砸到车辆时会立刻自动升起,避免车辆被砸坏的同时避免闸杆被撞坏.◆系统联动具备丰厚的自定义接口,可便利的实现火灾、防盗警等信号接入及响应,确保车场平安.◆车场事件处理具备凹凸峰切换办理、月卡取临时卡处理预案、车辆紧急疏导、车场应急封闭、超时报警、断电收费预案(手持POS机收费)等功效,轻松应对各类突发事件.◆特殊车辆的办理系统支持公车派车办理、访客车辆的办理、协作单位车辆办理及特殊车辆的办理,满足不合应用场合对车辆办理的特殊需求.◆单通道通行办理通过红绿信号灯控制和道闸互锁,实现进出同一通道的车辆通行控制,避免通道堵塞.◆动态费率办理支持针对不合卡类和时间段设置停车费率,实现动态费率办理.◆车位资源办理与再利用系统能多维度输出停车场车位利用率图形化报表,让办理方轻松掌握车位使用纪律,便利办理方对车位进行统筹办理和空闲车位再利用,增加车场营收.◆人性化的短信信使车位空余信使:系统能按照设置好的法则定时给固定车主发送车场空位短信,让车主定时了解车位空余状况从而决定其停车方法.车辆异动信使:系统支持在设定的时间内如果固定车辆刷卡驶出停车场,车主会收到短信提醒.月卡快过时提醒信使:系统能按照设定的月卡快过时天数,提前给月卡车主发送短信通知,提醒车主尽快办量月卡延期.◆车场满位办理系统可以设置车场满位办理法则,当车场空余车位少于某一设定数,允许哪些车可以进入停车场哪些车不成以进入.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Please review the notes on correct use, safety and precautions found on pages T10 & T11 of NIC’s Electrolytic Capacitor catalog. Also found at /precautions If in doubt or uncertainty, please review your specific application - process details with NIC’s technical support personnel: tpmg@
Rated Voltage Range Capacitance Range Operating Temperature Range Capacitance Tolerance Maximum Leakage Current @ +20°C W.V. (Vdc) S.V. (Vdc) Tan பைடு நூலகம் Z-25°C/Z+20°C ∆ Capacitance ∆ Tan δ ∆ LC 160 ~ 450VDC 1.0 ~ 220µF -25°C ~ +105°C ±20% (M) CV < 1,000µF 0.1CV +40µA (1 minute) 0.03CV +15µA (5 minutes) 160 200 250 200 250 300 0.15 0.15 0.15 3 3 3
RIPPLE CURRENT FREQUENCY CORRECTION FACTOR
Cap. (µF) 1 ~ 4.7 6.8 ~ 15 22 ~ 82 100 ~ 220 ® 120Hz 0.2 0.3 0.4 0.45 1KHz 0.4 0.6 0.7 0.75 10KHz 0.8 0.9 0.9 0.9 100KHz ~ up 1.0 1.0 1.0 1.0
元器件交易网
Miniature Aluminum Electrolytic Capacitors
HIGH TEMPERATURE, EXTENDED LOAD LIFE, RADIAL LEADS, POLARIZED FEATURES • HIGH RIPPLE CURRENT AT HIGH TEMPERATURE (105°C) • IDEAL FOR HIGH VOLTAGE LIGHTING BALLAST • REDUCED SIZE (FROM NRBX) CHARACTERISTICS
STANDARD PRODUCT AND CASE SIZE TABLE D φ x L (mm)
Cap. (µF) Code 1.0 1.5 1.8 2.2 3.3 4.7 5.6 6.8 10 15 22 33 47 68 82 100 150 220 1R0 1R5 1R8 2R2 3R3 4R7 5R6 6R8 100 150 220 330 470 680 820 101 151 221 160 10X16 10X20 10X20 10X20 12.5x20 12.5x25 16x20 16x25 18x25 Working Voltage (Vdc) 250 350 400 8X11.5 10X12.5 8X11.5 10X12.5 8X11.5 10X12.5 8X11.5 10X12.5 10X12.5 10X16 8X11.5 10X12.5 10X16 10X12.5 10X16 10X12.5 10X16 10X16 10X16 10X16 10X20 10X20 12.5X20 12.5X25 10X20 10X20 12.5X20 16X20 10X20 12.5X20 16X20 16X20 16X25 12.5X20 12.5X20 16X20 18X20 12.5x25 16x20 18x25 18x25 16x20 16x20 16x20 18x25 200 16x20 16x25 16x25 18x25 450 10X20 10X20 10X20 12.5X20 12.5X25 16X20 16X25 18X25 -
PART NUMBER SYSTEM NRB-XS 1R0 M 400V 8X11.5 F .
RoHS Compliant Case Size (Dφ x L) Working Voltage (Vdc) Tolerance Code (M=20%) Capacitance Code: First 2 characters significant, third character is multiplier Series
CV > 1,000µF 0.04CV +100µA (1 minute) 0.02CV +25µA (5 minutes) 350 400 450 400 450 500 0.20 0.20 0.20 6 6 6
Within ±20% of initial measured value Less than 200% of specified value Less than specified value
PRECAUTIONS
NIC COMPONENTS CORP.
69
元器件交易网
Miniature Aluminum Electrolytic Capacitors
Polarity Marking
Insulation Sleeve
dφ ± 0.05
F ± 0.5
L + β max.
15mm Min.
4mm Min.
Dφ ± α
®
70
NIC COMPONENTS CORP.
NRB-XS Series
Max. Tan δ at 120Hz/20°C Low Temperature Stability Impedance Ratio @ 120Hz Load Life at W.V. & 105°C 8x11.5mm, 10x12.5mm: 5,000 Hours 10x16mm, 10x20mm: 8,000 Hours φD > 12.5mm: 10,000 Hours
MAXIMUM PERMISSIBLE RIPPLE CURRENT (mA AT 100KHz AND 105°C)
Cap. (µF) 1.0 1.5 1.8 2.2 3.3 4.7 5.6 6.8 10 15 22 33 47 68 82 100 150 220 160 320 500 650 750 1180 1420 1890 2370 Working Voltage (Vdc) 200 250 350 400 450 60 70 90 100 95 120 95 140 150 180 160 150 220 220 180 250 250 250 280 280 280 320 320 350 350 450 550 600 500 500 650 760 730 650 800 900 900 980 980 980 1080 1180 1200 1300 1300 1470 1470 1380 1380 1530 1420 1530 1890 1940 -
MAXIMUM ESR (Ω AT 120Hz AND 20°C)
Cap. (µF) 1.0 1.5 1.8 2.2 3.3 4.7 5.6 6.8 10 15 22 33 47 68 82 100 150 220 160 24.9 11.3 7.54 5.29 3.66 2.49 1.66 1.13 Working Voltage (Vdc) 200 250 350 400 332 221 184 151 101 52.9 70.6 70.6 59.2 59.2 36.6 48.8 48.8 24.9 24.9 33.2 33.2 22.1 11.3 11.3 15.1 15.1 7.54 7.54 10.1 10.1 5.29 5.29 7.06 7.06 3.66 3.66 4.88 4.88 3.03 3.03 4.05 2.49 2.49 1.66 1.66 450 70.6 59.2 48.8 33.2 22.1 15.1 10.1 7.06 -
NRB-XS Series
LEAD SPACING AND DIAMETER (mm)
Case Dia. (Dφ) Lead Dia. (Dφ) Lead Spacing (F) Dim. α Dim. β 8 0.6 3.5 0.5 2.0 10 0.6 5.0 0.5 2.0 12.5 0.6 5.0 0.5 2.0 16 0.8 7.5 0.5 2.0 18 0.8 7.5 0.5 2.0