MAX4737EBE中文资料
MAX471MAX472的中文资料大全
M A X471M A X472的中文资料大全(总4页)-本页仅作为预览文档封面,使用时请删除本页-MAX471/MAX472的特点、功能美国美信公司生产的精密高端电流检测放大器是一个系列化产品,有MAX471/MA X472、 MAX4172/MAX4173等。
它们均有一个电流输出端,可以用一个电阻来简单地实现以地为参考点的电流/电压的转换,并可工作在较宽电压内。
MAX471/MAX472具有如下特点:●具有完美的高端电流检测功能;●内含精密的内部检测电阻(MAX471);●在工作温度范围内,其精度为2%;●具有双向检测指示,可监控充电和放电状态;●内部检测电阻和检测能力为3A,并联使用时还可扩大检测电流范围;●使用外部检测电阻可任意扩展检测电流范围(MAX472);●最大电源电流为100μA;●关闭方式时的电流仅为5μA;●电压范围为3~36V;●采用8脚DIP/SO/STO三种封装形式。
MAX471/MAX472的引脚排列如图1所示,图2所示为其内部功能框图。
表1为MAX471/MAX472的引脚功能说明。
MAX471的电流增益比已预设为500μA/A,由于2kΩ的输出电阻(ROUT)可产生1V/A的转换,因此±3A时的满度值为3V.用不同的ROUT电阻可设置不同的满度电压。
但对于MAX471,其输出电压不应大于VRS+。
对于MAX472,则不能大于。
MAX471引脚图如图1所示,MAX472引脚图如图2所示。
MAX471/MAX472的引脚功能说明引脚名称功能MAX471MAX47211SHDN关闭端。
正常运用时连接到地。
当此端接高电平时,电源电流小于5μA2,3-RS+内部电流检测电阻电池(或电源端)。
“+”仅指示与SIGN输出有关的流动方向。
封装时已将2和3连在了一起-2空脚-3RG1增益电阻端。
通过增益设置电阻连接到电流检测电阻的电池端44GND地或电池负端55SIGN集电极开路逻辑输出端。
ZM4733中文资料
♦These diodes are also available in DO-41 case with the type designation 1N4728 … 1N4764.MECHANICAL DATACase:MELF Glass Case Weight:approx. 0.25 gMAXIMUM RATINGSRatings at 25°C ambient temperature unless otherwise specified.Dimensions are in inches and (millimeters)Characteristics at Tamb = 25 °CSYMBOLMIN.TYP .MAX.UNITThermal Resistance R thJA ––170(1)°C/W Junction to Ambient Air Forward Voltage V F––1.2Voltsat I F = 200 mANOTES:(1) Valid provided that electrodes are kept at ambient temperatureSYMBOL VALUE UNITZener Current (see Table “Characteristics”)Power Dissipation at T amb = 25°C P tot 1.0(1)Watts Junction Temperature T j 150°C Storage Temperature RangeT S– 65 to +150°C12/16/98ELECTRICAL CHARACTERISTICS Ratings at 25°C ambient temperature unless otherwise specified.Type NominalZenervoltage(3)atI ZTV Z(V)TestcurrentI ZT(mA)Maximum Zener impedance(1)Maximumreverse leakage currentZ ZTat I ZT(Ω)Z ZK(Ω)atI ZK(mA)I R(µA)at V R(V)SurgecurrentatT A= 25°CI R(mA)Maximumregulatorcurrent(2)I ZM(mA)ZM4728 3.37610400 1.0100 1.01380276 ZM4729 3.66910400 1.0100 1.01260252 ZM4730 3.9649400 1.050 1.01190234 ZM4731 4.3589400 1.010 1.01070217 ZM4732 4.7538500 1.010 1.0970193 ZM4733 5.1497550 1.010 1.0890178 ZM4734 5.6455600 1.010 2.0810162 ZM4735 6.2412700 1.010 3.0730146 ZM4736 6.837 3.5700 1.010 4.0660133 ZM47377.534 4.07000.510 5.0605121 ZM47388.231 4.57000.510 6.0550110 ZM47399.128 5.07000.5107.0500100 ZM4740102577000.25107.645491 ZM4741112387000.2558.441483 ZM4742122197000.2559.138076 ZM47431319107000.2559.934469 ZM47441517147000.25511.430461 ZM47451615.5167000.25512.228557 ZM47461814207500.25513.725050 ZM47472012.5227500.25515.222545 ZM47482211.5237500.25516.720541 ZM47492410.5257500.25518.219038 ZM4750279.5357500.25520.617034 ZM4751308.54010000.25522.815030 ZM4752337.54510000.25525.113527 ZM4753367.05010000.25527.412525 ZM475439 6.56010000.25529.711523 ZM475543 6.07015000.25532.711022 ZM475647 5.58015000.25535.89519 ZM475751 5.09515000.25538.89018 ZM475856 4.511020000.25542.68016 ZM475962 4.012520000.25547.17014 ZM476068 3.715020000.25551.76513 ZM476175 3.317520000.25556.06012 ZM476282 3.020030000.25562.25511 ZM476391 2.825030000.25569.25010 ZM4764100 2.535030000.25576.0459NOTES:(1) The Zener impedance is derived from the 1KH Z AC voltage which results when an AC current having an RMS value equal to 10% of the Zener current (I ZT or I ZK)is superimposed on I ZT or I ZK. Zener impedance is measured at two points to insure a sharp knee on the breakdown curve and to eliminate unstable units(2) Valid provided that electrodes at a distance of 10mm from case are kept at ambient temperature(3) Measured under thermal equilibrium and DC test conditionsZM4728...ZM4764。
常用模拟开关芯片型号与功能和应用介绍
常用模拟开关芯片型号与功能和应用介绍
1.CD4066:
CD4066是一种四路双开关模拟集成电路。
它可以用作高速CMOS开关、模拟信号开关和数字信号开关。
CD4066具有低电平阈值和高通串脉冲响
应等特性,可以通过外部电压来控制其开关状态。
其应用包括模拟开关、
数据路由、模拟选择器和模拟交换等。
2.MAX4617:
MAX4617是一种低电阻四路双开关。
它具有低电阻和低电平失真的特点,可用于模拟交换、模拟多路复用和模拟电流控制等应用。
MAX4617还
具有高速开关时间和广泛的供电电压范围,适用于多种电路设计。
3.ADG601:
ADG601是一种单路、高精度CMOS模拟开关芯片。
它具有低电位失真、低电流和低电压操作的特点,适用于音频信号开关、电量计选择、过程控
制和自动测试设备等应用。
ADG601还具有低串扰和低抖动等特性,可以
提供高品质的信号传输。
这些模拟开关芯片的功能和应用广泛,可以满足不同领域的需求。
它
们在信号传输、数据交换、功率控制和信号处理等方面发挥着重要作用。
无论是工业自动化、通信设备、消费电子产品还是医疗设备,这些模拟开
关芯片都能够提供可靠和精确的信号控制。
因此,选取适合的模拟开关芯
片对于电路设计和系统性能至关重要。
MAX4617CUE中文资料
________________General DescriptionThe MAX4617/MAX4618/MAX4619 are high-speed, low-voltage, CMOS analog ICs configured as an 8-channel multiplexer (MAX4617), two 4-channel multiplexers (MAX4618), and three single-pole/double-throw (SPDT)switches (MAX4619).These CMOS devices can operate continuously with a +2V to +5.5V single supply. Each switch can handle Rail-to-Rail ®analog signals. The off-leakage current is only 1nA at T A = +25°C and 10nA at T A = +85°C.All digital inputs have 0.8V to 2.4V logic thresholds,ensuring TTL/CMOS-logic compatibility when using a single +5V supply.________________________ApplicationsBattery-Operated Equipment Audio/Video Signal RoutingLow-Voltage Data-Acquisition Systems Communications Circuits____________________________Featureso Fast Switching Times15ns t ON 10ns t OFFo Pin Compatible with Industry-Standard 74HC4051/74HC4052/74HC4053 and MAX4581/MAX4582/MAX4583o Guaranteed On-Resistance10Ωmax (+5V Supply)20Ωmax (+3V Supply)o Guaranteed 1Ω On-Resistance Match Between Channels (single +5V supply)o Guaranteed Low Off-Leakage Current:1nA at +25°Co Guaranteed Low On-Leakage Current:1nA at +25°Co +2V to +5.5V Single-Supply Operation o TTL/CMOS-Logic Compatible o Low Crosstalk: <-96dB o High Off-Isolation: <-93dBo Low Distortion: <0.017% (600Ω)MAX4617/MAX4618/MAX4619High-Speed, Low-Voltage, CMOS AnalogMultiplexers/Switches________________________________________________________________Maxim Integrated Products1____________________________________Pin Configurations/Functional Diagrams19-1502; Rev 0; 7/99_______________Ordering InformationOrdering Information continued at end of data sheet.Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.For free samples & the latest literature: , or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.16 Plastic DIP16 Narrow SO 16 TSSOP PIN-PACKAGE TEMP. RANGE 0°C to +70°C 0°C to +70°C 0°C to +70°CMAX4617CPEMAX4617CSE MAX4617CUE PARTM A X 4617/M A X 4618/M A X 4619High-Speed, Low-Voltage, CMOS Analog Multiplexers/Switches 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS—Single +5V Supply(V CC = +4.5V to +5.5V, V _H = 2.4V, V _L = 0.8V, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.) (Note 2)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Voltages Referenced to GNDV CC, A, B, C, or Enable...........................................-0.3V to +6V Voltage into Any Analog Terminal(Note 1).........................................................-0.3V to (V CC + 0.3V)Continuous Current into Any Terminal..............................±75mA Peak Current, X_, Y_, Z_(pulsed at 1ms, 10% duty cycle).................................±200mA Continuous Power Dissipation (T A = +70°C)TSSOP (derate 6.7mW/°C above +70°C)......................533mWNarrow SO (derate 8.70mW/°C above +70°C)..............696mW Plastic DIP (derate 10.53mW/°C above +70°C)..............842mW Operating Temperature RangesMAX461_C_ _ ......................................................0°C to +70°C MAX461_E_ _....................................................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10sec).............................+300°CNote 1:Voltages exceeding V CC or GND on any analog signal terminal are clamped by internal diodes. Limit forward-diode currentto maximum current rating.MAX4617/MAX4618/MAX4619High-Speed, Low-Voltage, CMOS AnalogMultiplexers/Switches_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)(V CC = +4.5V to +5.5V, V _H = 2.4V, V _L = 0.8V, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.) (Note 2)M A X 4617/M A X 4618/M A X 4619High-Speed, Low-Voltage, CMOS Analog Multiplexers/Switches 4_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS—Single +3.3V Supply(V CC = +3V to +3.6V, V _H = 2.0V, V _L = 0.5V, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.) (Note 2)MAX4617/MAX4618/MAX4619High-Speed, Low-Voltage, CMOS AnalogMultiplexers/Switches_______________________________________________________________________________________5Note 2:The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.Note 3:∆R ON = R ON(MAX)- R ON(MIN).Note 4:Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specifiedanalog signal ranges; i.e., V X_, V Y_, V Z_= 3V to 0 and 0 to -3V.Note 5:Leakage parameters are 100% tested at maximum-rated hot operating temperature, and guaranteed by correlation at T A = +25°C.Note 6:Guaranteed by design, not production tested.ELECTRICAL CHARACTERISTICS—Single +2.5V Supply(V CC = +2.5V, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.) (Note 2)M A X 4617/M A X 4618/M A X 4619High-Speed, Low-Voltage, CMOS Analog Multiplexers/Switches 6_______________________________________________________________________________________252015105002.53.0 3.54.0 4.50.5 1.0 1.5 2.05.0ON-RESISTANCE vs. V X , V Y , V ZV X , V Y , V Z (V)O N -R E S I S T A N C E (Ω)02.53.01.52.00.51.03.54.04.55.002.01.50.5 1.0 2.53.0 3.54.0 4.55.0ON-RESISTANCE vs.V X , V Y , V ZAND TEMPERATUREV X , V Y , V Z (V)R O N (Ω)10000.01-4010020406080-20OFF-LEAKAGE vs. TEMPERATURE1010.1100TEMPERATURE (°C)O F F -L E A K A G E (p A )0.1110100-40-2020406080100ON-LEAKAGE vs. TEMPERATUREM A X 4617 t o c 04TEMPERATURE (°C)O N -L E A K A G E (p A )042681416181210201.0 1.52.0 2.50.53.0 3.54.0 4.55.0CHARGE INJECTION vs. V X , V Y , V ZM A X 4617 t o c 05V X , V Y , V Z (V)C H A R G E I N J E C T I O N (p C )SUPPLY CURRENT vs. TEMPERATURE10,0001-40206040-201008010TEMPERATURE (°C)I C C (p A )10010000SUPPLY CURRENT vs.LOGIC VOLTAGE2.5V A , V B , V C , V ENABLE (V)I C C (m A )2.01.50.51.05.02.01.00.5 1.53.53.02.54.54.0Typical Operating Characteristics(V CC = +5V, GND = 0, T A = +25°C, unless otherwise noted.)MAX4617/MAX4618/MAX4619High-Speed, Low-Voltage, CMOS AnalogMultiplexers/Switches_______________________________________________________________________________________700.0050.010.0150.020.0258104621214161820TOTAL HARMONIC DISTORTIONvs. FREQUENCYFREQUENCY (kHz)()42861210142.0 3.0 3.52.5 4.0 4.5 5.0 5.5SWITCHING TIME vs. VOLTAGEM A X 4617 t o c 11V+ (V)S W I T C H I N G T I M E S (n s )1.01.41.21.61.82.02.53.04.03.54.55.0INPUT HIGH LOGIC THRESHOLDvs. SUPPLY VOLTAGEM A X 4617 t o c 08V CC (V)V A , V B , V C , V E N A B L E (V )10k100k1M10M100M500MFREQUENCY RESPONSEFREQUENCY (Hz)G A I N (d B )P H A S E (°)-100-70-80-90-60-50-40-30-20-100-180-72-108-144-3603672108144180Typical Operating Characteristics (continued)(V CC = +5V, GND = 0, T A = +25°C, unless otherwise noted.)M A X 4617/M A X 4618/M A X 4619High-Speed, Low-Voltage, CMOS Analog Multiplexers/Switches 8_________________________________________________________________________________________________Applications InformationPower-Supply ConsiderationsOverviewThe MAX4617/MAX4618/MAX4619 construction is typi-cal of most CMOS analog switches. They have two sup-ply pins: V CC and GND. V CC and GND are used to drive the internal CMOS switches and set the limits of the ana-log voltage on any switch. Reverse ESD-protection diodes are internally connected between each analog-signal pin and both V CC and GND. If any analog signal exceeds V CC or GND, one of these diodes conducts.During normal operation, these and other reverse-biased ESD diodes leak, forming the only current drawn from V CC or GND.Virtually all the analog leakage current comes from the ESD diodes. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced, they are reverse biased differently. Each is biased by either V CC or GND and the analog signal. This means their leakages will vary as the signal varies. The difference in the two diode leakages to the V CC and GND pins con-stitutes the analog-signal-path leakage current. All ana-log leakage current flows between each pin and one of the supply terminals, not to the other switch terminal.This is why both sides of a given switch can show leak-age currents of either the same or opposite polarity.V CC and GND power the internal logic and set the input logic limits. Logic inputs have ESD-protection diodes to ground.in both directions.Pin DescriptionMAX4617/MAX4618/MAX4619High-Speed, Low-Voltage, CMOS AnalogMultiplexers/Switches_______________________________________________________________________________________9The logic-level thresholds are TTL/CMOS compatible when V CC is +5V. As V CC rises, the threshold increas-es; as V CC falls, the threshold decreases. For example,when V CC = +3V the guaranteed minimum logic-high threshold decreases to 2.0VPower SupplyThese devices operate from a single supply between +2.5V and +5.5V. All of the bipolar precautions must be observed. At room temperature, they actually “work”with a single supply near or below +2V, although as supply voltage decreases, switch on-resistance becomes very high.Overvoltage ProtectionProper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maxi-mum ratings because stresses beyond the listed rat-ings can cause permanent damage to the devices.Always sequence V CC on first, followed by the logic inputs and analog signals. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with the supply pins for overvoltage protection (Figure 1).Adding diodes reduces the analog-signal range to one diode drop below V CC and one diode drop above GND, but does not affect the devices’ low switch resis-tance and low leakage characteristics. Device opera-tion is unchanged, and the difference between V CC and GND should not exceed 6V. These protection diodes are not recommended if signal levels must extend to ground.High-Frequency PerformanceIn 50Ωsystems, signal response is reasonably flat up to 50MHz (see Typical Operating Characteristics ).Above 20MHz, the on-response has several minor peaks that are highly layout dependent. The problem is not turning the switch on, but turning it off. The off-state switch acts like a capacitor and passes higher frequen-cies with less attenuation. At 10MHz, off-isolation is about -50dB in 50Ωsystems, becoming worse (approx-imately 20dB per decade) as frequency increases.Higher circuit impedances also degrade off-isolation.Adjacent channel attenuation is about 3dB above that of a bare IC socket and is entirely due to capacitive coupling.Pin NomenclatureThe MAX4617/MAX4618/MAX4619 are pin compatible with the industry-standard 74HC4051/74HC4052/74HC4053 and the MAX4581/MAX4582/MAX4583. In single-supply applications, they function identically and have identical logic diagrams, although these parts dif-fer electrically.The pin designations and logic diagrams in this data sheet conform to the original 1972 specifications pub-lished by RCA for the CD4051/CD4052/CD4053. These designations differ from the standard Maxim switch and mux designations found on other Maxim data sheets (including the MAX4051/MAX4052/MAX4053) and may cause confusion. Designers who feel more comfortable with Maxim’s standard designations are advised that the pin designations and logic diagrams on the MAX4051/MAX4052/MAX4053 data sheet may be freely applied to the MAX4617/MAX4618/MAX4619.Figure 1. Overvoltage Protection Using External Blocking DiodesM A X 4617/M A X 4618/M A X 4619High-Speed, Low-Voltage, CMOS Analog Multiplexers/Switches 10______________________________________________________________________________________X = Don’t care*C not present on MAX4618.Note:Input and output pins are identical and interchangeable. Either may be considered an input or output; signals pass equallywell in either direction.MAX4617/MAX4618/MAX4619High-Speed, Low-Voltage, CMOS AnalogMultiplexers/Switches______________________________________________________________________________________11Figure 2. Address Transition Times______________________________________________Test Circuits/Timing DiagramsM A X 4617/M A X 4618/M A X 4619High-Speed, Low-Voltage, CMOS Analog Multiplexers/Switches 12______________________________________________________________________________________Figure 3. Enable Switching Times_________________________________Test Circuits/Timing Diagrams (continued)MAX4617/MAX4618/MAX4619High-Speed, Low-Voltage, CMOS AnalogMultiplexers/Switches______________________________________________________________________________________13Figure 4. Break-Before-Make IntervalFigure 5. Charge Injection_________________________________Test Circuits/Timing Diagrams (continued)M A X 4617/M A X 4618/M A X 4619High-Speed, Low-Voltage, CMOS Analog Multiplexers/Switches14______________________________________________________________________________________Figure 6. Off-Isolation, On-Loss, and CrosstalkFigure 7. Capacitance _________________________________Test Circuits/Timing Diagrams (continued)MAX4617/MAX4618/MAX4619High-Speed, Low-Voltage, CMOS AnalogMultiplexers/Switches______________________________________________________________________________________15___________________Chip Information_Ordering Information (continued)TRANSISTOR COUNT: 244M A X 4617/M A X 4618/M A X 4619High-Speed, Low-Voltage, CMOS Analog Multiplexers/Switches Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.16____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©1999 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.________________________________________________________Package Information。
MAX3070E-MAX3078E 及 MAX3075E 型号的 RS-485 RS-422 收发器
具有热插拔、失效保护、±16kV ESD保护的3.3V RS485收发器特性真正的失效保护接收器低功耗关断模式(MAX3071E/MAX3074E/MAX3077E除外)DE与RE采用热插拔输入结构+3.3V工作电压总线上允许挂接多达256个收发器具有摆率限制功能有助于实现无差错数据传输(MAX3076E/MAX3077E/MAX3078E除外)I/O口采用增强型ESD保护(±16kV IEC 61000-4-2模型)应用RS-422/RS-485 通讯数字电表水表工业控制,工业嵌入电脑和外设安防监控系统路由器和交换机仪器仪表电平转换对EMI敏感收发器应用概述MAX3070E –MAX3078E是+3.3V供电、具有±16kV ESD保护的RS-485/RS-422收发器。
具有失效保护电路,当接收器输入开路或短路、或者挂接在终端匹配总线上的所有发送器都禁用时,接收器将输出逻辑高电平。
全系列都具有热插拔功能,在上电或热插入时可以消除总线上的故障瞬变信号。
MAX3070E – MAX3075E具有低摆率驱动器,能够减小EMI和由于不恰当的终端匹配电缆所引起的反射,实现高达500kbps的无差错数据传输;MAX3076E/MAX3077E/MAX3078E驱动器的摆率不受限制,可实现高达16Mbps的传输速率。
MAX3072E/MAX3075E/MAX3078E用于半双工通信;MAX3070E/MAX3071E/MAX3073E/MAX3074E/MAX3076E/MAX3077E 用于全双工通信。
所有器件的接收器具有1/8单位负载输入阻抗,总线上可以挂接多达256个收发器。
MAX3071E/MAX3072E/MAX3074E/MAX3075E/MAX3077E/MAX3078E 采用8脚PDIP和8脚SO封装,MAX3070E/MAX3073E/MAX3076E采用14脚PDIP和14脚SO封装。
1SMA4737A中文资料
Maximum DC Zener Current IZM (mA) 276 252 234 217 193 178 162 146 133 121 110 100 91 83 76 69 61 57 50 45 41 38 34 30 27 25 23 22 19 18 16 14 13 12 11 10 9.0
Symbol
PD VF TJ Ts
Value
1.0 1.2 - 55 to + 150 - 55 to + 150
Unit
W V °C °C
Note : (1) P.C.B. Mounted on 0.31x0.31x0.08" (8x8x2mm) copper areas pads.
Fig. 1 PD, MAXIMUM DISSIPATION (WATTS) 1.25 1.00 0.75 0.50 0.25 0 0
MAXIMUM CONTINUOUS POWER DERATING
P.C.B. Mounted on 0.31x0.31x0.08" (8x8x2mm) copper areas pads
25
50
75
100
125
150
175
TL, LEAD TEMPERATURE (°C)
Page 1 of 2
Rev. 02 : April 1, 2005
Rating at 25 °C ambient temperature unless otherwise specified Nominal Zener
Maximum Zener Impedance IZK (mA) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
MAX4472中文资料
Features
o Ultra-Low 750nA Supply Current Per Amplifier o Ultra-Low +1.8V Supply Voltage Operatommon-Mode Range o Outputs Swing Rail-to-Rail o Outputs Source and Sink 11mA of Load Current o No Phase Reversal for Overdriven Inputs o High 120dB Open-Loop Voltage Gain o Low 500µV Input Offset Voltage o 9kHz Gain-Bandwidth Product
Skyworks Solutions SKY77807 四频带LTE电源放大器模块产品概述说明书
PRODUCT SUMMARYSKY77807 Quad-Band Power Amplifier Module for FDD/TDD LTE (Tx Bands 7, 38, 40, 41)Applications•Multi-band 4G handsets •Long Term Evolution (LTE)-Up to 20 MHz bandwidth/ 100resource blocks Features•Envelope Tracking(ET)FDD band•Average Power Tracking (APT) for TDD/FDD bands•50 ohm input/output impedance with internal DC-blocking •Fully programmable Mobile Industry Processor Interface digital control •Continuous bias control for3G/4G PA High Power Mode via MIPI/RFFE interface•Low Supply voltage•Low voltage support (0.6 V) for APT/SMPS applications •Low Leakage current in power-down mode •Temperature Sensor •Integrated TDD TX-Rx switch for single SAW architecture •Low voltage support forAPT/SMPS applications •Small, low profile package-4.0x 3.0x 1.0 (Max.) mm-24-pad configurationDescriptionThe SKY77807Quad-Band Power Amplifier Module (PAM) is a fully matched, 24-pad surface mount module developed for 4G LTE applications. The PAM consists of PA blocks, input and output matching, and a MIPI standard logic control block for multiple power control levels, output input switch control in a single 4.0mm x 3.0mm x 1.0 (Max.)mm package.The SKY77807uses an enhanced architecture to cover multiple bands and meet the spectral linearity requirements of LTE QPSK and 16QAM modulations with up to 20 MHz bandwidth and up to 100 resource block allocations. Output power is controlled by varying the input power and VCC is adjusted using an ET modulator or DCDC converter to maximize efficiency for each power level. Extremely low leakage current maximizes handset standby time.Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100•*********************•203049C• Skyworks Proprietary Information. • Products and product information are subject to change without notice. • January 13, 20141Ordering InformationProduct Name Order Number Evaluation Board Part NumberSKY77807SKY77807© 2013,Skyworks Solutions, Inc. All Rights Reserved.Information in this document is provided in connection with Skyworks Solutions, Inc. (“Skyworks”) products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects,errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters. Skyworks, the Skyworks symbol, and “Breakthrough Simplicity” are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at , are incorporated by reference.。
MAX7219CWG+;MAX7219CNG+;MAX7221CWG+;MAX7221CNG+;MAX7219EWG+;中文规格书,Datasheet资料
General DescriptionThe MAX7219/MAX7221 are compact, serial input/out-put common-cathode display drivers that interface microprocessors (µPs) to 7-segment numeric LED dis-plays of up to 8 digits, bar-graph displays, or 64 indi-vidual LEDs. Included on-chip are a BCD code-B decoder, multiplex scan circuitry, segment and digit drivers, and an 8x8 static RAM that stores each digit.Only one external resistor is required to set the seg-ment current for all LEDs. The MAX7221 is compatible with SPI™, QSPI™, and MICROWIRE™, and has slew-rate-limited segment drivers to reduce EMI.A convenient 4-wire serial interface connects to all common µPs. Individual digits may be addressed and updated without rewriting the entire display. The MAX7219/MAX7221 also allow the user to select code-B decoding or no-decode for each digit.The devices include a 150µA low-power shutdown mode, analog and digital brightness control, a scan-limit register that allows the user to display from 1 to 8digits, and a test mode that forces all LEDs on.For applications requiring 3V operation or segment blinking, refer to the MAX6951 data sheet.ApplicationsFeatures♦10MHz Serial Interface♦Individual LED Segment Control ♦Decode/No-Decode Digit Selection♦150µA Low-Power Shutdown (Data Retained)♦Digital and Analog Brightness Control ♦Display Blanked on Power-Up ♦Drive Common-Cathode LED Display ♦Slew-Rate Limited Segment Drivers for Lower EMI (MAX7221)♦SPI, QSPI, MICROWIRE Serial Interface (MAX7221)♦24-Pin DIP and SO PackagesMAX7219/MAX7221Serially Interfaced, 8-Digit LED Display Drivers________________________________________________________________Maxim Integrated Products1Typical Application CircuitPin Configuration19-4452; Rev 4; 7/03SPI and QSPI are trademarks of Motorola Inc. MICROWIRE is a trademark of National Semiconductor Corp.Bar-Graph Displays Industrial ControllersPanel MetersLED Matrix DisplaysFor pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .M A X 7219/M A X 7221Serially Interfaced, 8-Digit LED Display Drivers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V+ = 5V ±10%, R SET = 9.53k Ω±1%, T A = T MIN to T MAX , unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Voltage (with respect to GND)V+............................................................................-0.3V to 6V DIN, CLK, LOAD, CS ...............................................-0.3V to 6V All Other Pins.............................................-0.3V to (V+ + 0.3V)CurrentDIG 0–DIG 7 Sink Current..............................................500mA SEG A–G, DP Source Current........................................100mA Continuous Power Dissipation (T A = +85°C)Narrow Plastic DIP (derate 13.3mW/°Cabove +70°C)..............................................................1066mW Wide SO (derate 11.8mW/°C above +70°C).................941mW Narrow CERDIP (derate 12.5mW/°C above +70°C)...1000mWOperating Temperature Ranges (T MIN to T MAX )MAX7219C_G/MAX7221C_G ..............................0°C to +70°C MAX7219E_G/MAX7221E_G............................-40°C to +85°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10s).................................+300°CMAX7219/MAX7221Serially Interfaced, 8-Digit LED Display Drivers_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V+ = 5V ±10%, R SET = 9.53k Ω±1%, T A = T MIN to T MAX , unless otherwise noted.)M A X 7219/M A X 7221Serially Interfaced, 8-Digit LED Display Drivers 4_________________________________________________________________________________________________________________________________Typical Operating Characteristics(V+ = +5V, T A = +25°C, unless otherwise noted.)730750740770760790780800820810830 4.04.44.85.25.66.0SCAN FREQUENCY vs. POSITIVE SUPPLY VOLTAGEM A X 7219/21 01POSITIVE SUPPLY VOLTAGE (V)S C A N F R E Q U E N C Y (H z )20104030605070012345SEGMENT DRIVER OUTPUT CURRENTvs. OUTPUT VOLTAGEOUTPUT VOLTAGE (V)O U T P U T C U R R E N T (m A )MAX7219SEGMENT OUTPUT CURRENTM A X 7219/21 035μs/div10mA/div0MAXIMUM INTENSITY = 31/32MAX7221SEGMENT OUTPUT CURRENTM A X 7219/21 045μs/div10mA/divMAXIMUM INTENSITY = 15/16MAX7219/MAX7221Serially Interfaced, 8-Digit LED Display DriversPin DescriptionFunctional DiagramM A X 7219/M A X 7221Serially Interfaced, 8-Digit LED Display Drivers 6_______________________________________________________________________________________Detailed DescriptionMAX7219/MAX7221 DifferencesThe MAX7219 and MAX7221 are identical except fortwo parameters: the MAX7221 segment drivers are slew-rate limited to reduce electromagnetic interfer-ence (EMI), and its serial interface is fully SPI compati-ble.Serial-Addressing ModesFor the MAX7219, serial data at DIN, sent in 16-bit packets, is shifted into the internal 16-bit shift register with each rising edge of CLK regardless of the state of LOAD. For the MAX7221, CS must be low to clock data in or out. The data is then latched into either the digit or control registers on the rising edge of LOAD/CS .LOAD/CS must go high concurrently with or after the 16th rising clock edge, but before the next rising clock edge or data will be lost. Data at DIN is propagated through the shift register and appears at DOUT 16.5clock cycles later. Data is clocked out on the falling edge of CLK. Data bits are labeled D0–D15 (Table 1).D8–D11 contain the register address. D0–D7 contain the data, and D12–D15 are “don’t care” bits. The first received is D15, the most significant bit (MSB).Digit and Control RegistersTable 2 lists the 14 addressable digit and control regis-ters. The digit registers are realized with an on-chip,8x8 dual-port SRAM. They are addressed directly so that individual digits can be updated and retain data as long as V+ typically exceeds 2V. The control registers consist of decode mode, display intensity, scan limit (number of scanned digits), shutdown, and display test (all LEDs on).Shutdown ModeWhen the MAX7219 is in shutdown mode, the scan oscil-lator is halted, all segment current sources are pulled to ground, and all digit drivers are pulled to V+, thereby blanking the display. The MAX7221 is identical, except the drivers are high-impedance. Data in the digit and control registers remains unaltered. Shutdown can be used to save power or as an alarm to flash the display by successively entering and leaving shutdown mode. For minimum supply current in shutdown mode, logic inputs should be at ground or V+ (CMOS-logic levels).Typically, it takes less than 250µs for the MAX7219/MAX7221 to leave shutdown mode. The display driver can be programmed while in shutdown mode, and shutdown mode can be overridden by the display-test function.Figure 1. Timing DiagramTable 1. Serial-Data Format (16 Bits)Initial Power-UpOn initial power-up, all control registers are reset, the display is blanked, and the MAX7219/MAX7221 enter shutdown mode. Program the display driver prior to display use. Otherwise, it will initially be set to scan one digit, it will not decode data in the data registers, and the intensity register will be set to its minimum value.Decode-Mode RegisterThe decode-mode register sets BCD code B (0-9, E, H,L, P, and -) or no-decode operation for each digit. Each bit in the register corresponds to one digit. A logic high selects code B decoding while logic low bypasses the decoder. Examples of the decode mode control-regis-ter format are shown in Table 4.When the code B decode mode is used, the decoder looks only at the lower nibble of the data in the digit registers (D3–D0), disregarding bits D4–D6. D7, which sets the decimal point (SEG DP), is independent of the decoder and is positive logic (D7 = 1 turns the decimal point on). Table 5 lists the code B font.When no-decode is selected, data bits D7–D0 corre-spond to the segment lines of the MAX7219/MAX7221.Table 6 shows the one-to-one pairing of each data bit to the appropriate segment line.MAX7219/MAX7221Serially Interfaced, 8-Digit LED Display DriversTable 3. Shutdown Register Format (Address (Hex) = 0xXC)Table 4. Decode-Mode Register Examples (Address (Hex) = 0xX9)M A X 7219/M A X 7221Intensity Controland Interdigit BlankingThe MAX7219/MAX7221 allow display brightness to be controlled with an external resistor (R SET ) connected between V+ and ISET. The peak current sourced from the segment drivers is nominally 100 times the current entering ISET. This resistor can either be fixed or vari-able to allow brightness adjustment from the front panel. Its minimum value should be 9.53k Ω, which typi-cally sets the segment current at 40mA. Display bright-ness can also be controlled digitally by using the intensity register.Digital control of display brightness is provided by an internal pulse-width modulator, which is controlled by the lower nibble of the intensity register. The modulator scales the average segment current in 16 steps from a maximum of 31/32 down to 1/32 of the peak current set by R SET (15/16 to 1/16 on MAX7221). Table 7 lists the intensity register format. The minimum interdigit blank-ing time is set to 1/32 of a cycle.Serially Interfaced, 8-Digit LED Display Drivers 8_______________________________________________________________________________________Table 5. Code B FontTable 6. No-Decode Mode Data Bits and Corresponding Segment Lines*The decimal point is set by bit D7 = 1Scan-Limit RegisterThe scan-limit register sets how many digits are dis-played, from 1 to 8. They are displayed in a multiplexed manner with a typical display scan rate of 800Hz with 8digits displayed. If fewer digits are displayed, the scan rate is 8f OSC /N, where N is the number of digitsscanned. Since the number of scanned digits affects the display brightness, the scan-limit register should not be used to blank portions of the display (such as leading zero suppression). Table 8 lists the scan-limit register format.MAX7219/MAX7221Serially Interfaced, 8-Digit LED Display Drivers_______________________________________________________________________________________9Table 8. Scan-Limit Register Format (Address (Hex) = 0xXB)*See Scan-Limit Register section for application.M A X 7219/M A X 7221If the scan-limit register is set for three digits or less,individual digit drivers will dissipate excessive amounts of power. Consequently, the value of the R SET resistor must be adjusted according to the number of digits dis-played, to limit individual digit driver power dissipation.Table 9 lists the number of digits displayed and the corresponding maximum recommended segment cur-rent when the digit drivers are used.Display-Test RegisterThe display-test register operates in two modes: normal and display test. Display-test mode turns all LEDs on by overriding, but not altering, all controls and digit reg-isters (including the shutdown register). In display-test mode, 8 digits are scanned and the duty cycle is 31/32(15/16 for MAX7221). Table 10 lists the display-test reg-ister format.No-Op RegisterThe no-op register is used when cascading MAX7219s or MAX7221s. Connect all devices’ LOAD/CS inputs together and connect DOUT to DIN on adjacent devices. DOUT is a CMOS logic-level output that easily drives DIN of successively cascaded parts. (Refer to the Serial Addressing Modes section for detailed infor-mation on serial input/output timing.) For example, if four MAX7219s are cascaded, then to write to thefourth chip, sent the desired 16-bit word, followed by three no-op codes (hex 0xXX0X, see Table 2). When LOAD/CS goes high, data is latched in all devices. The first three chips receive no-op commands, and the fourth receives the intended data.Applications InformationSupply Bypassing and WiringTo minimize power-supply ripple due to the peak digit driver currents, connect a 10µF electrolytic and a 0.1µF ceramic capacitor between V+ and G ND as close to the device as possible. The MAX7219/MAX7221 should be placed in close proximity to the LED display, and connections should be kept as short as possible to minimize the effects of wiring inductance and electro-magnetic interference. Also, both G ND pins must be connected to ground.Selecting R SET Resistor andUsing External DriversThe current per segment is approximately 100 times the current in ISET. To select R SET , see Table 11. The MAX7219/MAX7221’s maximum recommended seg-ment current is 40mA. For segment current levels above these levels, external digit drivers will be need-ed. In this application, the MAX7219/MAX7221 serve only as controllers for other high-current drivers or tran-sistors. Therefore, to conserve power, use R SET = 47k Ωwhen using external current sources as segment dri-vers.The example in Figure 2 uses the MAX7219/MAX7221’s segment drivers, a MAX394 single-pole double-throw analog switch, and external transistors to drive 2.3”AND2307SLC common-cathode displays. The 5.6V zener diode has been added in series with the decimal point LED because the decimal point LED forward volt-age is typically 4.2V. For all other segments the LED forward voltage is typically 8V. Since external transis-tors are used to sink current (DIG 0 and DIG 1 are used as logic switches), peak segment currents of 45mA are allowed even though only two digits are displayed. In applications where the MAX7219/MAX7221’s digit dri-vers are used to sink current and fewer than four digits are displayed, Table 9 specifies the maximum allow-able segment current. R SET must be selected accord-ingly (Table 11).Refer to the Continuous Power Dissipation section of the Absolute Maximum Ratings to calculate acceptable limits for ambient temperature, segment current, and the LED forward-voltage drop.Serially Interfaced, 8-Digit LED Display Drivers 10______________________________________________________________________________________Table 9. Maximum Segment Current for 1-, 2-, or 3-Digit DisplaysTable 10. Display-Test Register Format (Address (Hex) = 0xXF)Note: The MAX7219/MAX7221 remain in display-test mode (all LEDs on) until the display-test register is reconfigured for normal operation.分销商库存信息:MAXIMMAX7219CWG+MAX7219CNG+MAX7221CWG+ MAX7221CNG+MAX7219EWG+MAX7219ENG+ MAX7219CWG+T MAX7221CWG+T MAX7219EWG+T MAX7221ENG+MAX7221EWG+T MAX7221EWG+ MAX7219CNG MAX7219CWG MAX7219CWG-T MAX7219ENG。
MEMORY存储芯片MAX490EESA+T中文规格书
Cs 100pF
STORAGE CAPACITOR
Figure 4. Human Body ESD Test Model
RC 50M to 100M RD 330Ω
CHARGE CURRENT LIMIT RESISTOR
DISCHARGE RESISTANCE
HIGHVOLTAGE
4
3
5
DI
put Z high. Similarly, a high on DI forces output Y high
and output Z low.
5
4
6, 7
GND
Ground
—
5
9
Y
Noninverting Driver Output
—
6
10
Z
Inverting Driver Output
______________________________________________________________Pin Description
PIN
MAX481E/MAX483E MAX485E/MAX487E
MAX1487E
MAX488E MAX490E
MAX489E MAX491E
NAME
TIME
tDL CURRENT WAVEFORM
Figure 5. Human Body Model Current Waveform
I 100% 90%
IPEAK
DEVICE UNDER TEST
10%
tr = 0.7ns to 1ns
t
30ns
60ns
Figure 7. IEC1000-4-2 ESD Generator Current Waveform
MAX1978中文数据手册
用于Peltier模块的集成温度控制器概论MAX1978 / MAX1979是用于Peltier热电冷却器(TEC)模块的最小, 最安全, 最精确完整的单芯片温度控制器。
片上功率FET和热控制环路电路可最大限度地减少外部元件, 同时保持高效率。
可选择的500kHz / 1MHz开关频率和独特的纹波消除方案可优化元件尺寸和效率, 同时降低噪声。
内部MOSFET的开关速度经过优化, 可降低噪声和EMI。
超低漂移斩波放大器可保持±0.001°C的温度稳定性。
直接控制输出电流而不是电压, 以消除电流浪涌。
独立的加热和冷却电流和电压限制提供最高水平的TEC保护。
MAX1978采用单电源供电, 通过在两个同步降压调节器的输出之间偏置TEC, 提供双极性±3A输出。
真正的双极性操作控制温度, 在低负载电流下没有“死区”或其他非线性。
当设定点非常接近自然操作点时, 控制系统不会捕获, 其中仅需要少量的加热或冷却。
模拟控制信号精确设置TEC 电流。
MAX1979提供高达6A的单极性输出。
提供斩波稳定的仪表放大器和高精度积分放大器, 以创建比例积分(PI)或比例积分微分(PID)控制器。
仪表放大器可以连接外部NTC或PTC热敏电阻, 热电偶或半导体温度传感器。
提供模拟输出以监控TEC温度和电流。
此外, 单独的过热和欠温输出表明当TEC温度超出范围时。
片上电压基准为热敏电阻桥提供偏置。
MAX1978 / MAX1979采用薄型48引脚薄型QFN-EP 封装, 工作在-40°C至+ 85°C温度范围。
采用外露金属焊盘的耐热增强型QFN-EP封装可最大限度地降低工作结温。
评估套件可用于加速设计。
应用光纤激光模块典型工作电路出现在数据手册的最后。
WDM, DWDM激光二极管温度控制光纤网络设备EDFA光放大器电信光纤接口ATE特征♦尺寸最小, 最安全, 最精确完整的单芯片控制器♦片上功率MOSFET-无外部FET♦电路占用面积<0.93in2♦回路高度<3mm♦温度稳定性为0.001°C♦集成精密积分器和斩波稳定运算放大器♦精确, 独立的加热和冷却电流限制♦通过直接控制TEC电流消除浪涌♦可调节差分TEC电压限制♦低纹波和低噪声设计♦TEC电流监视器♦温度监控器♦过温和欠温警报♦双极性±3A输出电流(MAX1978)♦单极性+ 6A输出电流(MAX1979)订购信息* EP =裸焊盘。
MAX4732中文资料
General DescriptionThe MAX4731/MAX4732/MAX4733 low-voltage, dual,single-pole/single-throw (SPST) analog switches oper-ate from a single +2V to +11V supply and handle Rail-to-Rail ®analog signals. These switches exhibit low leakage current (0.1nA) and consume less than 0.5nW (typ) of quiescent power, making them ideal for battery-powered applications.When powered from a +3V supply, these switches fea-ture 50Ω(max) on-resistance (R ON ) with 3.5Ω(max)matching between channels, and 9Ω(max) flatness over the specified signal range.The MAX4731 has two normally open (NO) switches,the MAX4732 has two normally closed (NC) switches,and the MAX4733 has one NO and one NC switch. The MAX4731/MAX4732/MAX4733 are available in a 9-bump chip-scale package (UCSP™) and an 8-pin µMAX package. The tiny UCSP occupies a 1.52mm ✕1.52mm area and significantly reduces the required PC board area.ApplicationsBattery-Powered Systems Audio/Video-Signal RoutingLow-Voltage Data-Acquisition Systems Cell PhonesCommunications Circuits PDAsFeatureso 1.52mm ✕1.52mm UCSP Package o Guaranteed On-Resistance (R ON )25Ω(max) at +5V 50Ω(max) at +3Vo On-Resistance Matching3Ω(max) at +5V 3.5Ω(max) at +3Vo Guaranteed <0.1nA Leakage Current at T A = +25°Co Single-Supply Operation from +2.0V to +11V o TTL/CMOS-Logic Compatible o -108dB Crosstalk (1MHz)o -72dB Off-Isolation (1MHz)o Low Power Consumption: 0.5nW (typ)o Rail-to-Rail Signal HandlingMAX4731/MAX4732/MAX473350ΩDual SPST Analog Switches in UCSP________________________________________________________________Maxim Integrated Products 1Ordering Information19-2645; Rev 0; 10/02For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Pin Configurations/Functional Diagrams/Truth TablesNote:Requires special solder temperature profile described in the Absolute Maximum Ratings section.**UCSP reliability is integrally linked to the user’s assemblymethods, circuit board material, and environment. See the UCSP Reliability section of this data sheet for more information.UCSP is a trademark of Maxim Integrated Products, Inc.Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.*Future product—contact factory for availability.M A X 4731/M A X 4732/M A X 473350ΩDual SPST Analog Switches in UCSP 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS —Single +3V Supply(V+ = +3V ±10%, V IH = +2.0V, V IL = +0.8V, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V+ = +3V, T A = +25°C.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.(All Voltages Referenced to GND)V+...........................................................................-0.3V to +12V IN_, COM_, NO_, NC_ (Note 1)....................-0.3V to (V+ + 0.3V)Continuous Current (any pin)...........................................±10mA Peak Current (any pin, pulsed at 1ms, 10% duty cycle)...±20mA Continuous Power Dissipation (T A = +70°C)8-Pin µMAX (derate 4.5mW/°C above +70°C).............362mW 9-Bump UCSP (derate 4.7mW/°C above +70°C).........379mWOperating Temperature Range ...........................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Maximum Junction Temperature.....................................+150°C Lead Temperature (soldering, 10s).................................+300°C Bump Temperature (soldering, Note 2)Infrared (15s)...............................................................+220°C Vapor Phase (60s).......................................................+215°CNote 1:Signals on IN_, NO_, NC_, or COM_ exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current tomaximum current rating.Note 2:This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the devicecan be exposed to during board level solder attach and rework. This limit permits only the use of the solder profiles recom-mended in the industry-standard specification, JEDEC 020A, paragraph 7.6, Table 3 for IR/VPR and Convection reflow. Pre-heating is required. Hand or wave soldering is not allowed.MAX4731/MAX4732/MAX473350ΩDual SPST Analog Switches in UCSP_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS —Single +3V Supply (continued)(V+ = +3V ±10%, V IH = +2.0V, V IL = +0.8V, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V+ = +3V, T A = +25°C.)(Notes 3, 4)M A X 4731/M A X 4732/M A X 473350ΩDual SPST Analog Switches in UCSPELECTRICAL CHARACTERISTICS —Single +5V Supply(V+ = +5V ±10%, V IH = +2.0V, V IL = +0.8V, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V+ = +5V, T A = +25°C.)MAX4731/MAX4732/MAX473350ΩDual SPST Analog Switches in UCSP_______________________________________________________________________________________5Note 3:The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.Note 4:UCSP parts are 100% tested at +25°C only, and guaranteed by design over temperature. µMAX parts are 100% tested at+85°C and +25°C and guaranteed by design over temperature.Note 5:∆R ON = R ON(MAX)- R ON(MIN).Note 6:UCSP on-resistance matching between channels and on-resistance flatness guaranteed by design.Note 7:Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over thespecified analog signal range.Note 8:Guaranteed by design.Note 9:Off-Isolation = 20 log 10(V NO_/V COM_), V NO_= output, V COM_= input to off switch.Note 10:Between any two switches.ELECTRICAL CHARACTERISTICS —Single +5V Supply(V+ = +5V ±10%, V IH = +2.0V, V IL = +0.8V, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V+ = +5V, T A = +25°C.)(Notes 3, 4)M A X 4731/M A X 4732/M A X 473350ΩDual SPST Analog Switches in UCSP 6_______________________________________________________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)ON-RESISTANCE vs. V COMV COM (V)R O N (Ω)864210203040500010ON-RESISTANCE vs. V COM (V+ = +2.5V)V COM (V)R O N (Ω)2.01.51.00.51015202530502.5ON-RESISTANCE vs. V COM (V+ = +3.0V)V COM (V)R O N (Ω)2.01.51.00.51015202530050 3.02.5ON-RESISTANCE vs. V COM(V+ = +5.0V)V COM (V)R O N (Ω)432148121620005ON/OFF-LEAKAGE CURRENTvs. TEMPERATURETEMPERATURE (°C)O N /O F F -L E A K A G E C U R R E N T (p A )604020-2011010010000-4080CHARGE INJECTION vs. V COMV COM (V)C H A R G E I N J E C T I O N (p C )432151015202530354045005SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (n A )8060-20020400.51.01.52.02.53.03.54.00-40LOGIC THRESHOLD VOLTAGE vs. SUPPLY VOLTAGEV+ (V)L O G I C T H R E S H O L D V O L T A G E (V )108640.51.01.52.02.53.002TURN-ON/OFF TIME vs. SUPPLY VOLTAGEV+ (V)t O N /O F F (n s )864204060801001200210Applications InformationOperating Considerations forHigh-Voltage SupplyThe MAX4731/MAX4732/MAX4733 operate to +11V with some precautions. The absolute maximum rating for V+ is +12V (referenced to G ND). When operating near this region, bypass V+ with a minimum 0.1µF capacitor to ground as close to the IC as possible.Logic LevelsThe MAX4731/MAX4732/MAX4733 are TTL compatible when powered from a single +5V supply. When pow-ered from other supply voltages, the logic inputs shouldIN1 and IN2 should be driven low to 0V and high to 11V. With a +3.3V supply, IN1 and IN2 should be dri-ven low to 0V and high to 3.3V. Driving IN1 and IN2 rail-to-rail minimizes power consumption.Analog Signal LevelsAnalog signals that range over the entire supply volt-age (G ND to V+) pass with very little change in R ON (see Typical Operating Characteristics ). The bidirec-tional switches allow NO_, NC_, and COM_ connec-tions to be used as either inputs or outputs.MAX4731/MAX4732/MAX473350ΩDual SPST Analog Switches in UCSP_______________________________________________________________________________________7Pin DescriptionTypical Operating Characteristics (continued)(T A = +25°C, unless otherwise noted.)TURN-ON/OFF TIME vs. TEMPERATURETEMPERATURE (°C)t O N /O F F (n s )6040-202010203040506070800-4080FREQUENCY RESPONSEFREQUENCY (Hz)L O S S (d B )100M10M1M100k-100-80-60-40-200-12010k1GTOTAL HARMONIC DISTORTIONvs. FREQUENCYFREQUENCY (Hz)T H D (%)10k1k 1000.0010.010.110.000110100kM A X 4731/M A X 4732/M A X 4733Power-Supply Sequencing andOvervoltage ProtectionCAUTION: Do not exceed the absolute maximum ratings. Stresses beyond the listed ratings can cause permanent damage to the devices.Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals, especially if the analog signal is not current limited. If this sequencing is not possible, and if the analog inputs are not current limited to <20mA, add a small-signal diode, D1, as shown in Figure 1. If the analog signal can dip below G ND, add D2. Adding protection diodes reduces the analog signal range to a diode drop (about 0.7V) below V+ (for D1), and to a diode drop above ground (for D2). Leakage is unaffect-ed by adding the diodes. On-resistance increases slightly at low supply voltages. Maximum supply volt-age (V+) must not exceed +11V.Adding protection diodes causes the logic thresholds to be shifted relative to the power-supply rails. The most significant shift occurs when using low supply voltages (+5V or less). With a +5V supply, TTL compatibility is not guaranteed when protection diodes are added.Driving IN1 and IN2 all the way to the supply rails (i.e.,to a diode drop higher than the V+ pin, or to a diode drop lower than the GND pin) is always acceptable.Protection diodes D1 and D2 also protect against some overvoltage situations. Using the circuit in Figure 1, no damage results if the supply voltage is below the absolute maximum rating (+12V) and if a fault voltage up to the absolute maximum rating (V+ + 0.3V) is applied to an analog signal terminal.UCSP Package ConsiderationFor general UCSP package information and PC layout considerations, please refer to the Maxim Application Note, “Wafer-Level Chip-Scale Packages.”UCSP ReliabilityThe chip-scale package (UCSP) represents a unique package that greatly reduces board space compared to other packages. UCSP reliability is integrally linked to the user ’s assembly methods, circuit board material,and usage environment. The user should closely review these areas when considering a UCSP. Performance through Operation Life Test and Moisture Resistance is equal to conventional package technology as the wafer-fabrication process primarily determines it.However, this form factor may not perform equally to a packaged product through traditional mechanical relia-bility tests.Mechanical stress performance is a greater considera-tion for a UCSP. UCSP solder joint contact integrity must be considered since the package is attached through direct solder contact to the user ’s PC board.Testing done to characterize the UCSP reliability perfor-mance shows that it is capable of performing reliably through environmental stresses. Results of environmen-tal stress test and additional usage data and recom-mendations are detailed in the UCSP application note,which can be found on Maxim ’s website at .50ΩDual SPST Analog Switches in UCSP 8_______________________________________________________________________________________Figure 1. Overvoltage Protection Using External Blocking DiodesTest Circuits/Timing DiagramsMAX4731/MAX4732/MAX473350ΩDual SPST Analog Switches in UCSP_______________________________________________________________________________________9Test Circuits/Timing Diagrams (continued)M A X 4731/M A X 4732/M A X 473350ΩDual SPST Analog Switches in UCSP 10______________________________________________________________________________________Figure 5. Off-Isolation/On-Channel BandwidthPin Configurations/Functional Diagrams/Truth Tables (continued)Chip InformationTRANSITOR COUNT: 68PROCESS: CMOSTest Circuits/Timing Diagrams (continued)MAX4731/MAX4732/MAX473350ΩDual SPST Analog Switches in UCSP______________________________________________________________________________________11Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)M A X 4731/M A X 4732/M A X 473350ΩDual SPST Analog Switches in UCSP Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.12____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2002 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。
MMSZ4707中文资料
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
SYMBOL
VALUE
UNIT
Zener Current (see Table “Characteristics”) Power Dissipation at TL = 75°C Maximum Junction Temperature Storage Temperature Range Ptot Tj TS 500(1) 150 -55 to +150 mW °C °C
2.00 1.00 0.80 7.50 7.50 5.00 4.00 10.0 10.0 10.0 10.0 10.0 10.0 1.00 1.00 1.00 1.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
2.52 2.84 3.15 3.47 3.78 4.10 4.52 4.94 5.36 5.88 6.51 7.14 7.88 8.61 9.14 9.56 10.5 11.6 12.6 13.7 14.7 15.8 16.8 17.9 18.9 20.0 21.0 23.1 25.2 26.3 28.4 29.4 31.5 34.7 37.8 41.0 45.2
NOTES: (1) Measured with device junction in thermal equilibrium
Test Voltage VR (Volts)
MAX1737EEI中文资料
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Ordering Information
PART MAX1737EEI TEMP. RANGE -40°C to +85°C PIN-PACKAGE 28 QSOP
Applications
Notebook Computers Hand-Held Instruments Li+ Battery Packs Desktop Cradle Chargers
INPUT SUPPLY
Typical Operating Circuit
DCIN VL
CSSP CSSN DHI
Pin Configuration
TOP VIEW
VL 1 ISETIN 2 ISETOUT 3 THM 4 REF 5 GND 6 BATT 7 VADJ 8 CCV 9 CCS 10 CCI 11 CELL 12 TIMER1 13 TIMER2 14 28 DCIN 27 CSSP 26 CSSN 25 DHI 24 LX
MAX3077EESA中文资料
The MAX3072E/MAX3075E/MAX3078E are intended for half-duplex communications, and the MAX3070E/ MAX3071E/MAX3073E/MAX3074E/MAX3076E/MAX307 7E are intended for full-duplex communications. The MAX3079E is selectable for half-duplex or full-duplex operation. It also features independently programmable receiver and transmitter output phase through separate pins.
MEMORY存储芯片MAX3237ECAI+T中文规格书
V CC to GND ............................................................-0.3V to +6VV+ to GND (Note 1).................................................-0.3V to +7VV- to GND (Note 1)..................................................+0.3V to -7VV+ + |V-| (Note 1) ................................................................+13VInput VoltagesT_IN, EN , SHDN , MBAUD to GND .....................-0.3V to +6VR_IN to GND ...................................................................±25VOutput VoltagesT_OUT to GND .............................................................±13.2VR_OUT, R_OUTB(MAX3237E/MAX3241E) ......................-0.3V to (V CC + 0.3V)Short-Circuit Duration, T_OUT to GND .....................ContinuousContinuous Power Dissipation (T A = +70°C)16-Pin SSOP (derate 7.14mW/°C above +70°C) ........571mW16-Pin TSSOP (derate 9.4mW/°C above +70°C) .....754.7mW16-Pin TQFN (derate 20.8mW/°C above +70°C) ...1666.7mW16-Pin Wide SO (derate 9.52mW/°C above +70°C) ...762mW18-Pin Wide SO (derate 9.52mW/°C above +70°C) ...762mW 18-Pin PDIP (derate 11.11mW/°C above +70°C) ........889mW 20-Pin TQFN (derate 21.3mW/°C above +70°C) ......1702mW 20-Pin TSSOP (derate 10.9mW/°C above +70°C) ......879mW 20-Pin SSOP (derate 8.00mW/°C above +70°C) ........640mW 28-Pin SSOP (derate 9.52mW/°C above +70°C) ........762mW 28-Pin Wide SO (derate 12.50mW/°C above +70°C) ........1W 28-Pin TSSOP (derate 12.8mW/°C above +70°C) ....1026mW 32-Pin TQFN (derate 33.3mW/°C above +70°C) ......2666mW 6 x 6 UCSP (derate 12.6mW/°C above +70°C) ........1010mW Operating Temperature Ranges MAX32_ _EC_ _ .................................................0°C to +70°C MAX32_ _EE_ _ .............................................-40°C to +85°C Storage Temperature Range ............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Soldering Temperature (reflow) .......................................+260°C Bump Reflow Temperature (Note 2) Infrared, 15s ................................................................+200°C Vapor Phase, 20s ........................................................+215°C (V CC = +3V to +5.5V, C1–C4 = 0.1μF, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.) (Notes 3, 4)Note 1: V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.Note 2: This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the device can be exposed to during board-level solder attach and rework. This limit permits only the use of the solder profiles recom-mended in the industry-standard specification, JEDEC 020A, paragraph 7.6, Table 3 for IR/VPR and convection reflow. Preheating is required. Hand or wave soldering is not allowed.PARAMETER CONDITIONSMIN TYP MAX UNITS DC CHARACTERISTICS (V CC = +3.3V or +5V, T A = +25°C)Supply Current SHDN = V CC , no load MAX3222E, MAX3232E, MAX3241E, MAX3246E0.31mAMAX3237E0.5 2.0Shutdown Supply CurrentSHDN = GND 110µA SHDN = R_IN = GND, T_IN = GND or V CC (MAX3237E)10300nA LOGIC INPUTSInput Logic LowT_IN, EN , SHDN , MBAUD 0.8V Input Logic HighT_IN, EN , SHDN , MBAUD V CC = +3.3V 2.0V V CC = +5.0V 2.4Transmitter Input Hysteresis0.5V Input Leakage Current T_IN, EN , SHDNMAX3222E, MAX3232E, MAX3241E, MAX3246E ±0.01±1µA T_IN, SHDN , MBAUD MAX3237E (Note 5)918 Integrated │ 2MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E±15kV ESD-Protected, Down to 10nA, 3.0V to 5.5V, Up to 1Mbps, True RS-232 Transceivers Absolute Maximum RatingsStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Electrical Characteristicsa high-impedance state when the device is in shutdown mode (SHDN = GND). The MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E permit the outputs to be driven up to ±12V in shutdown.The MAX3222E/MAX3232E/MAX3241E/MAX3246E transmitter inputs do not have pullup resistors. Connect unused inputs to GND or V CC . The MAX3237E’s transmit-ter inputs have a 400kΩ active positive-feedback resistor, allowing unused inputs to be left unconnected.MAX3237E MegaBaud Operation For higher-speed serial communications, the MAX3237E features MegaBaud operation. In MegaBaud operatingmode (MBAUD = V CC ), the MAX3237E transmitters guar-antee a 1Mbps data rate with worst-case loads of 3kΩ inparallel with 250pF for +3.0V < V CC < +4.5V. For +5V±10% operation, the MAX3237E transmitters guarantee a1Mbps data rate into worst-case loads of 3kΩ in parallelwith 1000pF.RS-232 Receivers The receivers convert RS-232 signals to CMOS-logic output levels. The MAX3222E/MAX3237E/MAX3241E/MAX3246E receivers have inverting three-state outputs. Drive EN high to place the receiver(s) into a high-imped-ance state. Receivers can be either active or inactive inshutdown (Table 1).Figure 1. Slew-Rate Test CircuitsDetailed DescriptionDual Charge-Pump Voltage Converter The MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E’s internal power supply consists of a regu-lated dual charge pump that provides output voltagesof +5.5V (doubling charge pump) and -5.5V (invertingcharge pump) over the +3.0V to +5.5V V CC range. Thecharge pump operates in discontinuous mode; if theoutput voltages are less than 5.5V, the charge pumpis enabled, and if the output voltages exceed 5.5V, thecharge pump is disabled. Each charge pump requires aflying capacitor (C1, C2) and a reservoir capacitor (C3,C4) to generate the V+ and V- supplies (Figure 1).RS-232 Transmitters The transmitters are inverting level translators that convert TTL/CMOS-logic levels to ±5V EIA/TIA-232-compliant levels.The MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E transmitters guarantee a 250kbps data ratewith worst-case loads of 3kΩ in parallel with 1000pF,providing compatibility with PC-to-PC communicationsoftware (such as LapLink™). Transmitters can be paral -leled to drive multiple receivers or mice.The MAX3222E/MAX3237E/MAX3241E/MAX3246E transmitters are disabled and the outputs are forced intoLapLink is a trademark of Traveling Software.Integrated │ 9MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E±15kV ESD-Protected, Down to 10nA, 3.0V to 5.5V, Up to 1Mbps, True RS-232 Transceivers。
MAX490EESA+资料
Supply Control
Voltage (VCC) Input Voltage
.(.–R—..E.–..,..D..E..)........................................-.0....5..V...t.o...(.V..C...C...+...0...152VV)
♦ For Low-Voltage Applications: MAX3483E/MAX3485E/MAX3486E/MAX3488E/ MAX3490E/MAX3491E: +3.3V Powered, ±15kV ESD-Protected, 12Mbps, Slew-Rate-Limited, True RS-485/RS-422 Transceivers
General Description
The MAX481E, MAX483E, MAX485E, MAX487E– MAX491E, and MAX1487E are low-power transceivers for RS-485 and RS-422 communications in harsh environments. Each driver output and receiver input is protected against ±15kV electro-static discharge (ESD) shocks, without latchup. These parts contain one driver and one receiver. The MAX483E, MAX487E, MAX488E, and MAX489E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, thus allowing error-free data transmission up to 250kbps. The driver slew rates of the MAX481E, MAX485E, MAX490E, MAX491E, and MAX1487E are not limited, allowing them to transmit up to 2.5Mbps.
功放芯片哪个好
功放芯片哪个好功放芯片是一种用于放大音频信号的集成电路,广泛应用于音频设备中,如音响、功放、电视机等。
随着科技的进步和市场的需求,功放芯片的种类也层出不穷,各有特点和适用场景。
下面我将介绍几个较为常见的功放芯片,并对它们进行比较分析。
首先,我们来看TDA7294功放芯片。
这款芯片是NXP公司推出的,具有较高的功率输出和低失真特点。
它的输出功率可达到100W,音质效果非常好。
此外,TDA7294还有较低的噪音和共模抑制能力,在高保真音频设备中应用广泛。
不过,由于其多脚引脚设计,焊接相对较为复杂,需要一定的电子技术知识。
接下来是LM3875功放芯片。
这款芯片是美国国家半导体公司推出的,具有高增益、低电压噪声和良好的温度稳定性。
它的输出功率比较适中,约为56W,适合用于中低功率音频设备。
此外,LM3875还具有高抑制功率供应鸣叫、过热保护和短路保护等特性,保证了设备的安全性。
再来看一种功放芯片LM4766。
这款芯片也是美国国家半导体公司推出的,它是一款双声道功放芯片,每个声道的输出功率约为40W。
LM4766具有低失真、高稳定性和高PSRR(电源漏置比)等特点,适用于一些功率较小的音频设备。
此外,LM4766还特别考虑了温度抗干扰问题,在高温环境下仍能保持稳定的工作状态。
最后,介绍一款功放芯片TDA2030A。
这款芯片是STMicroelectronics公司推出的,相对来说更加简易和普及。
TDA2030A的输出功率为14W,适合于小型音响设备或DIY 爱好者制作的低功率功放机。
它具有低失真、低静音电流和短路保护等功能,适合初学者使用。
综上所述,不同的功放芯片适用于不同的场景和需求。
如果你需要高音质、高输出功率的功放芯片,可以选择TDA7294;如果你需要稳定性强、抗干扰能力好的功放芯片,可以选择LM3875;如果你需要双声道输出且功率适中的功放芯片,可以选择LM4766;如果你是初学者或需要低功率的功放芯片,可以选择TDA2030A。
dh473规格书
dh473规格书DH473规格书是一份详细描述产品规格的文档,该规格书主要针对DH473型号的产品进行介绍和说明。
本文将从产品概述、技术规格、性能特点、应用领域等方面对DH473进行全面解读。
一、产品概述DH473是一款高性能的电子产品,采用先进的技术和材料制造而成。
该产品具有多种功能和特点,可以广泛应用于各个领域,为用户提供高质量的服务和体验。
二、技术规格1. 外观尺寸:DH473的外观尺寸为XXXX,采用XXXX材质,具有良好的耐用性和美观性。
2. 处理器:DH473搭载了XXXX处理器,拥有强大的计算能力和高效的运行速度。
3. 存储空间:DH473提供XXXX的存储空间,用户可以自由存储和管理各种数据。
4. 屏幕显示:DH473配备了XXXX的高清屏幕,具有清晰、逼真的显示效果。
5. 电池续航:DH473的电池容量为XXXX,可以支持长时间的使用,满足用户的日常需求。
6. 网络连接:DH473支持XXXX网络连接,用户可以随时随地享受高速稳定的网络服务。
7. 操作系统:DH473采用XXXX操作系统,具有简单易用的界面和丰富的功能。
8. 其他功能:DH473还具备XXXX功能,如XXXX等,满足用户多样化的需求。
三、性能特点1. 高效性能:DH473的处理器和内存配置使其具有卓越的性能,可以快速响应用户的操作指令。
2. 高清屏幕:DH473的高清屏幕可以呈现细腻的图像和鲜艳的色彩,为用户提供更好的视觉体验。
3. 长续航时间:DH473的电池续航能力强,用户可以长时间使用而不用担心电量问题。
4. 稳定连接:DH473的网络连接稳定可靠,用户可以畅快地进行各种在线操作。
5. 多功能应用:DH473提供了丰富多样的应用程序,用户可以根据自己的需求进行个性化设置和使用。
6. 质量保证:DH473经过严格的质量控制和测试,确保产品的稳定性和可靠性。
四、应用领域DH473适用于多个领域,包括但不限于以下几个方面:1. 商务办公:DH473提供了强大的办公功能和高效的工作效率,可以帮助用户更好地完成各种商务任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
General DescriptionThe MAX4737/MAX4738/MAX4739 low-voltage, low on-resistance (R ON ), quad single-pole/single throw (SPST)analog switches operate from a single +1.8V to +5.5V supply. These devices are designed for USB 1.1 and audio switching applications.The MAX4737/MAX4738/MAX4739 feature 4.5ΩR ON (max) with 1.2Ωflatness and 0.4Ωmatching between channels. These new switches feature guaranteed operation from +1.8V to +5.5V and are fully specified at 3V and 5V. These switches offer break-before-make switching (1ns) with t ON <80ns and t OFF <40ns at +2.7V. The digital logic inputs are +1.8V logic compati-ble with a +2.7V to +3.6V supply.These switches are packaged in a chip-scale package (UCSP™), significantly reducing the required PC board area. The chip occupies only a 2mm ✕2mm area and has a 4 ✕4 bump array with a bump pitch of 0.5mm.These switches are also available in a 14-pin TSSOP and a 16-pin thin QFN (4mm x 4mm) package.ApplicationsBattery-Operated Equipment Audio/Video-Signal RoutingLow-Voltage Data-Acquisition Systems Sample-and-Hold Circuits Data-Acquisition Systems Communications CircuitsFeatures♦USB 1.1 Signal Switching ♦2ns (max) Differential Skew ♦-3dB Bandwidth: >300MHz♦Low 20pF On-Channel Capacitance♦Low R ON4.5Ω(max) (+3V Supply)3Ω(max) (+5V Supply)♦0.4Ω(max) R ON Match (+3V Supply)♦1.2Ω(max) R ON Flatness (+3V Supply)♦<0.5nA Leakage Current at +25°C ♦High Off-Isolation: -55dB (10MHz)♦Low Crosstalk: -80dB (10MHz)♦Low Distortion: 0.03%♦+1.8V CMOS-Logic Compatible♦Single-Supply Operation from +1.8V to +5.5V ♦Rail-to-Rail Signal HandlingMAX4737/MAX4738/MAX47394.5ΩQuad SPST Analog Switches in UCSP________________________________________________________________Maxim Integrated Products119-2633; Rev 1; 4/04For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Pin Configurations/Functional Diagrams/Truth TablesUCSP is a trademark of Maxim Integrated Products, Inc.Ordering InformationM A X 4737/M A X 4738/M A X 47394.5ΩQuad SPST Analog Switches in UCSP 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS—Single +3V Supply(V+ = +2.7V to +3.6V, V IH = +1.4V, V IL = +0.5V, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V+ = +3.0V,Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.(All Voltages Referenced to GND)V+, IN_...................................................................-0.3V to +6.0V COM_, NO_, NC_ (Note 1)...........................-0.3V to (V+ + 0.3V)Continuous Current COM_, NO_, NC_...........................±100mA Peak Current COM_, NO_, NC_(pulsed at 1ms, 10% duty cycle)................................±200mA Continuous Power Dissipation (T A = +70°C)14-Pin TSSOP (derate 6.3mW/°C above +70°C).........500mW 16-Bump UCSP (derate 8.3mW/°C above +70°C)......659mW 16-Pin Thin QFN (derate 25mW/°C above +70°C)....2000mWESD Method 3015.7.............................................................>2kV Operating Temperature Range ...........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°C Bump Temperature (soldering)Infrared (15s)...............................................................+220°C Vapor Phase (60s).......................................................+215°CNote 1:Signals on COM_, NO_, or NC_ exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maxi-mum current rating.MAX4737/MAX4738/MAX47394.5ΩQuad SPST Analog Switches in UCSP_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)(V+ = +2.7V to +3.6V, V IH = +1.4V, V IL = +0.5V, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V+ = +3.0V, T A = +25°C, unless otherwise noted.) (Notes 3, 4)M A X 4737/M A X 4738/M A X 47394.5ΩQuad SPST Analog Switches in UCSP(V+ = +4.2V to +5.5V, V IH = +2.0V, V IL = +0.8V, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V+ = +5.0V, ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)(V+ = +2.7V to +3.6V, V IH = +1.4V, V IL = +0.5V, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V+ = +3.0V, T A = +25°C, unless otherwise noted.) (Notes 3, 4)MAX4737/MAX4738/MAX47394.5ΩQuad SPST Analog Switches in UCSP_______________________________________________________________________________________5ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)(V+ = +4.2V to +5.5V, V IH = +2.0V, V IL = +0.8V, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V+ = +5.0V,MAX Note 4:The algebraic convention used in this data sheet is where the most negative value is a minimum and the most positivevalue is a maximum.Note 5:Guaranteed by design for UCSP and thin QFN parts.Note 6:∆R ON = R ON(MAX)- R ON(MIN).Note 7:Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over thespecified analog signal ranges.Note 8:Guaranteed by design.Note 9:Off-Isolation = 20log 10(V COM / V NO ), V COM = output, V NO = input to off switch.Note 10:Between any two switches.M A X 4737/M A X 4738/M A X 47394.5ΩQuad SPST Analog Switches in UCSP 6_______________________________________________________________________________________LEAKAGE CURRENT vs. TEMPERATURETEMPERATURE (°C)L E A K A G E C U R R E N T (p A )603510-151002003004005000-4085LEAKAGE CURRENT vs. TEMPERATURETEMPERATURE (°C)L E A K A G E C U R R E N T (p A )603510-1520040060080010000-4085CHARGE INJECTION vs. V COMV COM (V)C H A R G E I N J E C T I O N (p C )43211020304050005SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (n A )603510-151234560-4085SUPPLY CURRENT vs. LOGIC LEVELLOGIC LEVEL (V)S U P P L Y C U R R E N T (µA )43212040608010005TURN-ON/OFF TIME vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)t O N /t O F F (n s )4.53.52.52040608010001.55.5ON-RESISTANCE vs. V COMV COM (V)R O N (Ω)432124681005ON-RESISTANCE vs. V COMV COM (V)R O N (Ω)2.52.01.51.00.523456103.0ON-RESISTANCE vs. V COMV COM (V)R O N (Ω)432112345005Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)TURN-ON/OFF TIME vs. TEMPERATURETEMPERATURE (°C)t O N /t O F F (n s )603510-151020304050600-4085RISE/FALL-TIME DELAY vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)O U T P U T R I S E /F A L L -T I M E D E L AY (p s )4.53.52.50.51.01.52.02.53.001.55.5RISE/FALL-TIME DELAY vs. TEMPERATURETEMPERATURE (°C)O U T P UT R I S E /F A L L -T I M E D E L A Y (n s )603510-150.51.01.52.0-4085MAX4737/MAX4738/MAX47394.5ΩQuad SPST Analog Switches in UCSP_______________________________________________________________________________________7RISE TIME TO FALL TIME MISMATCHvs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)M I S M AT C H (p s )4.53.52.510020030040001.55.5RISE TIME TO FALL TIME MISMATCHvs. TEMPERATURETEMPERATURE (°C)M I S M A T C H (p s )603510-15501001502000-4085SKEW vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S K E W (p s )4.53.52.510020030040001.55.5SKEW vs. TEMPERATURETEMPERATURE (°C)S K E W (p s )603510-15501001502000-4085FREQUENCY RESPONSEFREQUENCY (MHz)O N -L O S S (d B )10.01-120-100-80-60-40-20020-1400.0001100Typical Operating Characteristics (continued)(T A = +25°C, unless otherwise noted.)M A X 4737/M A X 4738/M A X 47394.5ΩQuad SPST Analog Switches in UCSP 8_______________________________________________________________________________________Pin DescriptionTypical Operating Characteristics (continued)(T A = +25°C, unless otherwise noted.)TOTAL HARMONIC DISTORTIONvs. FREQUENCYFREQUENCY (Hz)T H D (%)10k1k 1000.110100k10.01LOGIC THRESHOLD vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)L O G I C T H R E S H O L D (V )5.04.54.03.53.02.52.00.40.81.21.62.001.55.5MAX4737/MAX4738/MAX47394.5ΩQuad SPST Analog Switches in UCSP_______________________________________________________________________________________9Detailed DescriptionThe MAX4737/MAX4738/MAX4739 quad SPST analog switches operate from a single +1.8V to +5.5V supply.The MAX4737/MAX4738/MAX4739 offer excellent AC characteristics, <0.5nA leakage current, less than 1ns differential skew, and 15pF on-channel capacitance. All of these devices are CMOS-logic compatible with V+ to GND signal handling capability.The MAX4737/MAX4738/MAX4739 are USB-complaint switches that provide 4.5Ω(max) on-resistance and 15pF on-channel capacitance to maintain signal integri-ty. At 12Mbps (USB full-speed data rate specification),the MAX4737/MAX4738/MAX4739 introduce less than 2ns propagation delay between input and output sig-nals and less than 0.5ns change in skew for the output signals (see Figure 4).The MAX4737 has four normally open (NO) switches, the MAX4738 has four normally closed (NC) switches, and the MAX4739 has two NO switches and two NC switches.Applications InformationDigital Control InputsThe MAX4737/MAX4738/MAX4739 logic inputs accept up to +5.5V regardless of supply voltage. For example,with a +3.3V supply, IN_ can be driven low to GND and high to +5.5V allowing for mixing of logic levels in a system. Driving the control logic inputs rail-to-rail mini-mizes power consumption. For a +1.8V supply voltage,the logic thresholds are 0.5V (low) and 1.4V (high); for a +5V supply voltage, the logic thresholds are 0.8V (low) and 2.0V (high).Analog Signal LevelsAnalog signals that range over the entire supply voltage (V+ to GND) are passed with very little change in on-resis-tance (see Typical Operating Characteristics ). The switch-es are bidirectional, so the NO_, NC_, and COM_ pins can be either inputs or outputs.Power-Supply BypassingPower-supply bypassing improves noise margin and prevents switching noise from propagating from the V+supply to other components. A 0.1µF capacitor connect-ed from V+ to GND is adequate for most applications.UCSP Applications InformationFor the latest application details on UCSP construction,dimensions, tape carrier information, PC board tech-niques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to the Application Note:UCSP—A Wafer-Level Chip-Scale Package on Maxim’s web site at /ucsp.Pin Description (continued)M A X 4737/M A X 4738/M A X 47394.5ΩQuad SPST Analog Switches in UCSP 10______________________________________________________________________________________Test Circuits/Timing DiagramsFigure 1. Switching TimeFigure 2. Break-Before-Make IntervalFigure 3. Input/Output Skew Timing Diagram Test Circuits/Timing Diagrams (continued)MAX4737/MAX4738/MAX4739______________________________________________________________________________________11M A X 4737/M A X 4738/M A X 473912______________________________________________________________________________________Figure 4. Charge InjectionFigure 5a. On-Loss and Off-IsolationFigure 5b. Crosstalk Test CircuitFigure 6. Channel Off-/On-Capacitance Test Circuits/Timing Diagrams (continued)Chip InformationTRANSISTOR COUNT: 361PROCESS: CMOSPin Configurations/Functional Diagrams/Truth Tables (continued)MAX4737/MAX4738/MAX4739M A X 4737/M A X 4738/M A X 473914______________________________________________________________________________________Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)Package Information (continued)MAX4737/MAX4738/MAX4739 (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages.)Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)M A X 4737/M A X 4738/M A X 4739Ma xim ca nnot a ssume responsibility for use of a ny circuitry other tha n circuitry entirely embodied in a Ma xim product. No circuit pa tent licenses a re implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.16____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2004 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.。