学而思寒假七年级尖子班讲义第1讲平行线四大模型(1)

合集下载

初中数学 中考复习 第01讲—平行线的五大拐点模型

初中数学 中考复习  第01讲—平行线的五大拐点模型

模型一:铅笔头模型基础(1)如图,若CD AB //,此时,E D B ∠∠∠,,之间有什么关系?请证明解答:如图,过点E 作AB l //得证360=∠+∠+∠E D B(2)反之,如图,若360=∠+∠+∠E D B ,直线AB 与CD 有什么位置关系?请证明解答:如图,过点E 作AB l //得证CD l //则CD AB //总结:①辅助线:过拐点作平行线②若CD AB //,则360=∠+∠+∠E D B③若360=∠+∠+∠E D B ,则CD AB //模型一:铅笔头模型进阶如图,两直线CD AB ,平行,则=∠+∠+∠+∠+∠+∠654321解答:如图,过F 作AB l //1,过G 作12//l l ,过H 作23//l l ,过I 作34//l l 得证900654321=∠+∠+∠+∠+∠+∠总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线②)1(180121-=∠+∠+⋅⋅⋅+∠+∠-n A A A A n n【2-n 个拐点】模型二:锯齿模型基础(1)如图,若CD AB //,则E D B ∠=∠+∠,你能说明为什么吗?解答:如图,过点E 作AB l //得证E D B ∠=∠+∠(2)在图中,CD AB //,G E ∠+∠与D F B ∠+∠+∠又有何关系?解答:如图,过点E 作AB l //1,过点F 作AB l //2,过点G 作AB l //3得证G E ∠+∠=D F B ∠+∠+∠(3)在图中,若CD AB //,又得到什么结论?解答:同理可得n n E E E D F F F B ∠++∠+∠=∠+∠++∠+∠+∠- 21121总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②所有朝左的角之和等于所有朝右的角之和模型二:锯齿模型进阶【例1】如图所示,已知CD AB //,BE 平分ABC ∠,DE 平分ADC ∠,求证:)(21C A E ∠+∠=∠解答:①方法一:锯齿模型【锯齿ABEDC 】如图,过点E 作AB EF //+转化思想得证 ②方法二:8字模型(详解见第2讲)总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②所有朝左的角之和等于所有朝右的角之和 ③转化思想【例2】如图,已知CD AB //,EAB EAF ∠=∠41,ECD ECF ∠=∠41,求证: AEC AFC ∠=∠43解答:锯齿BAECD+锯齿BAFCD ;过点E 作AB GE //,过点F 作CD HF //+方程思想【βα,表示角度】得证总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②所有朝左的角之和等于所有朝右的角之和 ③方程思想【例3】如图,CD AB //,61=∠BED ,ABE ∠的平分线与CDE ∠的平分线交于点F ,则=∠DFB ( ) A.149B.5.149C.150D.5.150解答:锯齿CDFBA+铅笔头CDEBA ;得证B总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②铅笔头模型:角之和=180×(拐点个数+1)③锯齿模型:所有朝左的角之和等于所有朝右的角之和【例4】如图,已知点P 是矩形ABCD 内一点(不含边界),设21,θθ=∠=∠PBA PAD ,43,θθ=∠=∠PDC PCB ,若 50,80=∠=∠CPD APB ,则( )A. 30)()(3241=+-+θθθθB.40)()(3142=+-+θθθθC.70)()(4321=+-+θθθθ D.180)()(4321=+++θθθθ解答:锯齿ADPCB+锯齿DAPBC ;得证A总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②所有朝左的角之和等于所有朝右的角之和模型三:臭脚模型基础如图,若CD AB //,E D B ∠∠∠,,之间有什么关系?请证明解答:如图,过点E 作AB l //得证B E D ∠=∠+∠臭脚模型基础(汇总)总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少平行线模型三:臭脚模型进阶如图,直线CD AB //,50,30,90,30=∠=∠=∠=∠CNP HMN FGH EFA ,则GHM ∠的大小是解答:①方法一:如图,过点H 作AB QH //则有铅笔头AFGHQ+臭脚QHMNC 得证 40=∠GHM ②方法二:锯齿BFGHMND 得证40=∠GHM 总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少平行线模型四:蛇型基础如图,若D C B CD AB ∠∠∠,,,//之间有什么关系?请证明解答:过点C 作AB l //得证180=∠-∠+∠D C B 总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少平行线模型五:蜗牛模型基础如图,若D C B DE AB ∠∠∠,,,//之间有什么关系?请证明解答:过点C 作AB l //得证180=∠+∠+∠D C B 总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少平行线。

(完整版)七年级数学培优-平行线四大模型

(完整版)七年级数学培优-平行线四大模型

平行线四大模型平行线的判定与性质l、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补本讲进阶平行线四大模型模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.模型四“骨折”模型·点P在EF左侧,在AB、CD外部“骨折”模型结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.巩固练习平行线四大模型证明(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°.(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4)已知∠P= ∠CFP -∠AEP,求证AE //CF.模块一平行线四大模型应用例1(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .(2)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.(3)如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .(4) 如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .练(1)如图所示,AB∥CD,∠E=37°,∠C= 20°,则∠EAB的度数为.(2) 如图,AB∥CD,∠B=30°,∠O=∠C.则∠C= .例2如图,已知AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.练如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n1∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).例3如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .练如图,己知AB ∥DE ,BF 、DF 分别平分∠ABC 、∠CDE ,求∠C 、∠F 的关系.例4如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.练(武昌七校2015-2016 七下期中)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().A. 120°B. 135°C. 145°D. 150°模块二平行线四大模型构造例5如图,直线AB∥CD,∠EF A= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则∠GHM= .练如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .例6 已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.练已知AB∥EF,求∠l-∠2+∠3+∠4的度数.(1)如图(l),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n,∠B1、∠B2…∠B n-1之间的关系.(2)如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.(3)如图(3),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n之间的关系.如图所示,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.。

平行线四大模型(归纳总结)

平行线四大模型(归纳总结)

点 P 在 EF 左侧,在 AB、 CD 外部
“骨折”模型
结论 1:若 AB∥CD,则∠P=∠CFP-∠AEP 或∠P=∠AEP-∠CFP;
结论 2:若∠P=∠CFP-∠AEP 或∠P=∠AEP-∠CFP,则 AB∥CD.
【发散思维】
图 1: 180
图 2: 180
图 3: 180
“猪蹄”模型
模型三“臭脚”模型(“鸡翅”模型)
点 P 在 EF 右侧,在 AB、 CD 外部
“臭脚”模型
结论 1:若 AB∥CD,则∠P=∠AEP-∠CFP 或∠P=∠CFP-∠AEP;
结论 2:若∠P=∠AEP-∠CFP 或∠P=∠CFP-∠AEP,则 AB∥CD.
模型四“骨折”模型(“鹰嘴”模型)
图 4: 180
图 5: 180 图 6: 180
【探索发现】
思考 1:
1 +2 ++ n 与 1+2 ++ n1 的关系?
思考 2:
1+2 ++ n =
.
平行线四大模型 模、 CD 内部 结论 1:若 AB∥CD,则∠P+∠AEP+∠PFC=3 60°; 结论 2:若∠P+∠AEP+∠PFC= 360°,则 AB∥CD.
“铅笔”模型
模型二“猪蹄”模型(M 模型)
点 P 在 EF 左侧,在 AB、 CD 内部 结论 1:若 AB∥CD,则∠P=∠AEP+∠CFP; 结论 2:若∠P=∠AEP+∠CFP,则 AB∥CD.

平行线四大模型

平行线四大模型

平行线四大模型1、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+∠4=180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补平移3.平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移(translation),简称平移。

4.平移的性质经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。

(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)(3)多次平移相当于一次平移。

平行线讲义

平行线讲义

平行线知识总结1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。

平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”。

同一平面内,两条直线的位置关系只有两种:相交或平行。

注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。

(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

2、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

3、平行线的判定平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

简称:同位角相等,两直线平行。

平行线的两条判定定理:(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

简称:内错角相等,两直线平行。

(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

简称:同旁内角互补,两直线平行。

补充平行线的判定方法:(1)平行于同一条直线的两直线平行。

(2)垂直于同一条直线的两直线平行。

(3)平行线的定义。

4、平行线的性质(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)两直线平行,同旁内角互补。

5、认识三角形(1)三角形构成的条件:两边之和大于第三边;(2)推论:两边之差小于第三边;(3)三角形的中线、角平分线、高的定义。

6、多边形的内角和与外角和(1)用平行线的性质定理证明三角形的内角和是180°;(2)n边形的内角和等于(n-2)·180°;(3)多边形的外角和等于360°。

一、选择题1.下列各组角中,∠1与∠2是对顶角的为( )2如图,描述同位角、内错角、同旁内角关系不正确的是()A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角3.如图,OB⊥OD,OC⊥OA,∠BOC=32°,那么∠AOD等于(A)A.148°B.132°C.128°D.90°4.如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数(B)A.65°B.55°C.45°D.35°5.下列命题中,真命题的个数是(D)①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.A.4 B.3 C.2 D.16.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD.其中能使AD∥BC的条件为(C)A.①②B.③④C.②④D.①③④12.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=70°.。

学而思七年级科学培优讲义全年级章节培优经典

学而思七年级科学培优讲义全年级章节培优经典

学而思七年级科学培优讲义全年级章节培优经典引言学而思七年级科学培优讲义是为了帮助学生在科学研究中取得更好的成绩而设计的一套教材。

本文档总结了全年级各章节的培优经典内容,旨在帮助教师和学生更好地掌握和研究科学知识。

第一章:生物界中的生命在这一章中,我们介绍了生物界中的生命的基本概念和分类。

通过研究不同生物的特征和生命周期,学生能够更好地理解生命的多样性和进化。

第二章:物质与能量本章重点介绍了物质的性质和能量的转化。

通过研究物质的组成和能量的转移,学生能够更好地理解物质和能量在我们日常生活中的应用和影响。

第三章:地球与地理在这一章中,我们探索了地球的构造和地理现象。

通过研究地球的各个层次和地理现象的形成原因,学生能够更好地理解地球上的生态系统和环境问题。

第四章:力、运动与波动本章重点介绍了力、运动和波动的基本概念和原理。

通过研究运动的规律和波动的特性,学生能够更好地理解物体的运动和波动现象。

第五章:物理世界中的能量在这一章中,我们研究了物理世界中的能量转化和储存。

通过研究不同形式的能量和能量转化的原理,学生能够更好地理解能源的利用和保护。

第六章:化学中的物质变化本章重点介绍了化学中的物质变化和化学反应。

通过研究化学反应的类型和化学方程式的设置,学生能够更好地理解化学反应的原理和应用。

第七章:天文与宇宙在这一章中,我们探索了天文学和宇宙的奥秘。

通过研究天体的运动和宇宙的组成,学生能够更好地理解宇宙的无限广大和我们地球的地位。

结论本文档总结了学而思七年级科学培优讲义全年级各章节的培优经典。

希望这份文档能够帮助教师和学生更好地掌握和学习科学知识,提高学生在科学学习中的成绩。

七年级数学下册专题01 平行线的四大模型(原卷版)-7年级数学下册压轴题攻略(人教版)

七年级数学下册专题01 平行线的四大模型(原卷版)-7年级数学下册压轴题攻略(人教版)

专题01 平行线的四大模型平行线的性质和判定是证明角相等、研究角的关系的重要依据,是研究几何图形位置关系与数量关系的基础,是平面几何的一个重要内容和学习简单的逻辑推理的素材。

它不但为三角形的内角和定理的证明提供了转化的方法,而且也是今后学习三角形、四边形知识的基础.本节课重点学习平行线的基础模型的应用迁移.模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.专题分析模型分类模型分析【典例1】(2023秋•南岗区校级期中)已知,射线FG分别交射线AB、DC于点F、G,点E为射线FG上一点.(1)如图1,若∠A+∠D=∠AED,求证:AB∥CD.(2)如图2,若AB∥CD,求证:∠A﹣∠D=∠AED.(3)如图3,在(2)的条件下,DI交AI于点Ⅰ,交AE于点K,∠EDI=∠CDE,∠BAI=∠EAI,∠I=∠AED=25°,求∠EKD的度数.【变式1-1】(2023•渝中区校级模拟)如图,已知直线a∥b,∠BAC=90°,∠1=40°,则∠2的度数为()A.40°B.50°C.130°D.140°典例分析【变式1-2】(2023•金安区一模)如图,已知a∥b,∠1=45°,∠2=125°,则∠ABC的度数为()A.100°B.105°C.115°D.125°【变式1-3】(2022春•肇州县期末)如图,AB∥CD,∠C=110°,∠B=120°,则∠BEC =()A.110°B.120°C.130°D.150°【变式1-4】(2023春•巴南区月考)已知直线MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN和PO之间.(1)如图1,求证:∠CAB﹣∠MCA=∠PBA;(2)如图2,CD∥AB,点E在直线PQ上,且∠MCA=∠DCE,求证:∠ECN=∠CAB;(3)如图3,BF平分∠PBA,CG平分∠ACN,且AF∥CG.若∠CAB=50°,直接写出∠AFB的度数.【变式1-5】(2023春•遂宁期末)如图,直线PQ∥MN,两个三角形如图①放置,其中∠ABC =∠CDE=90°,∠ACB=30°,∠BAC=60°,∠DCE=∠DEC=45°,点E在直线PQ上,点B,C均在直线MN上,且CE平分∠ACN.(1)求∠DEQ的度数;(2)如图②,若将△ABC绕B点以每秒3°的速度按逆时针方向旋转(A,C的对应点分别为F,G).设旋转时间为t秒,当t=10时,边BG与CD有何位置关系?请说明理由.模型分析模型二“猪蹄”模型(模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.典例分析【典例2】(2023春•邵阳县期末)如图,直线AB∥CD,连接EF,直线AB,CD及线段EF 把平面分成①②③④四个部分,规定:线上各点不属于任何部分.当动点G落在某个部分时,连接GE,GF,构成∠EGF,∠GEB,∠GFD三个角.(1)当动点G落在第③部分时,如图一,试说明:∠EGF,∠GEB,∠GFD三者的关系;(2)当动点G落在第②部分时,如图二,思考(1)中三者关系是否仍然成立若不成立,说明理由.【变式2-1】(2023•盘锦)如图,直线AB∥CD,将一个含60°角的直角三角尺EGF按图中方式放置,点E在AB上,边GF,EF分别交CD于点H,K,若∠BEF=64°,则∠GHC等于()A.44°B.34°C.24°D.14°【变式2-2】(2023•盘锦)如图,直线AB∥CD,将一个含60°角的直角三角尺EGF按图中方式放置,点E在AB上,边GF,EF分别交CD于点H,K,若∠BEF=64°,则∠GHC等于()A.44°B.34°C.24°D.14°【变式2-3】(2023•海南模拟)如图,已知AB∥DE,∠B=20°,∠D=130°,那么∠BCD 等于()A.60°B.70°C.80°D.90°【变式2-4】(2023春•覃塘区期末)如图,AB∥CD,将一副直角三角板作如下摆放,∠GEF =60°,∠MNP=45°.下列结论:①GE∥MP;②∠EFN=150°;③∠BEF=65°;④∠AEG=35°,其中正确的个数是()A.1B.2C.3D.4【变式2-5】(2023春•赣县区期末)【问题背景】:同学们,观察小猪的猪蹄,你会发现一个熟悉的几何图形,我们就把这个图形的形象称为“猪蹄模型”,猪蹄模型中蕴含着角的数量关系.【问题探究】:(1)如图1,AB∥CD,E为AB、CD之间一点,连接BE、DE,得到∠BED 与∠B、∠D之间的数量关系,并说明理由;【类比迁移】:(2)请你利用上述“猪蹄模型”得到的结论或解题方法,完成下面的问题:如图2,直线AB∥CD,若∠B=23°,∠G=35°,∠D=25°,求∠BEG+∠GFD的度数;【灵活应用】:(3)如图3,直线AB∥CD,若∠E=∠B=60°,∠F=85°,则∠D=25度.【变式2-6】(2023春•邵阳期末)如图1,直线AB∥CD,P是截线MN上的一点.(1)若∠MNB=45°,∠MDP=20°,求∠MPD;(2)如图1,当点P在线段MN上运动时,∠CDP与∠ABP的平分线交于Q,问是否为定值,若是定值,请求出;若不是定值,请说明理由;(3)如图2,若T是直线MN上且位于M点的上方的一点,如图所示,当点P在射线MT上运动时,∠CDP与∠ABP的平分线交于Q,问的值是否和(2)问中的情况一样呢?请你写出探究过程,说明理由.【变式2-7】(2023春•防城港期末)阅读下面材料:(1)小亮同学遇到这样一个问题:已知:如图甲,AB∥CD,E为直线AB,CD之间一点,连接BE、DE得到∠BED.求证:∠BED=∠B+∠D.下面是小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴CD∥EF,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,直线a∥b,BE平分∠ABC,DE平分∠ADC,若∠ABC=50°,∠ADC=60°,求∠BED的度数,(温馨提示:过点E作EF∥AB)模型分析模型三“臭脚”模型“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.典例分析【典例3】(2023春•中山区期末)如图,∠ABE+∠BED=∠CDE.(1)如图1,求证AB∥CD;(2)如图2,点P在AB上,∠CDP=∠EDP,BF平分∠ABE,交PD于点F,探究∠BFP,∠BED的数量关系,并证明你的结论;(3)在(2)的条件下,如图3,PQ交ED延长线于点Q,∠DPQ=2∠APQ,∠PQD =80°,求∠CDE的度数.【变式3-1】已知AB∥CD.(1)如图1,求证:∠ABE+∠DCE﹣∠BEC=180°;(2)如图2,∠DCE的平分线CG的反向延长线交∠ABE的平分线BF于F.若BF∥CE,∠BEC=26°,求∠BFC.模型分析结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.典例分析【典例4】(2022秋•朝阳区校级期末)已知AB∥CD,点E在AB上,点F在DC上,点G 为射线EF上一点.(1)【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分)证明:过点G作直线MN∥AB,又∵AB∥CD,∴∥CD∵MN∥AB,∴∠=∠MGA.∵MN∥CD,∴∠D=()∴∠AGD=∠AGM+∠DGM=∠A+∠D.(2)【类比探究】如图2,当点G在线段EF延长线上时,请写出∠AGD、∠A、∠D三者之间的数量关系,并说明理由.(3)【应用拓展】如图3,AH平分∠GAE,DH交AH于点H,且∠GDH=2∠HDF,∠HDF=22°,∠H=32°,直接写出∠DGA的度数为°.【变式4-1】(2022秋•肃州区校级期末)如图(1),AB∥CD,∠AEP=40°,∠PFD=130°,求∠EPF的度数.小明想到了以下方法:解:如图(1),过点P作PM∥AB,∴∠1=∠AEP=40°(两直线平行,内错角相等)∵AB∥CD(已知)∴PM∥CD(平行于同一条直线的两直线平行)∴∠2+∠PFD=180°(两直线平行,同旁内角互补)∵∠PFD=130°(已知)∴∠2=180°﹣130°=50°∴∠EPF=∠1+∠2=40°+50°=90°即∠EPF=90°【探究】如图(2),AB∥CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数.【应用】如图(3),在【探究】的条件下,∠PEA的平分线和∠PFC的平分线交于点G,求∠G的度数.【变式4-2】(2022春•朝阳县期末)学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1,l2内部,探究∠A,∠APB,∠B的关系,小明过点P作l1的平行线,可得∠APB,∠A,∠B之间的数量关系是:∠APB=.(2)如图2,若AC∥BD,点P在AC,BD外部,∠A,∠B,∠APB的数量关系是否发生变化?请写出证明过程.【变式4-3】(2020春•乳山市期中)【信息阅读】材料信息:如图①,AB∥DE,点C是直线AB,DE外任意一点,连接BC,DC.方法信息:如图②,在“材料信息”的条件下,∠B=55°,∠D=35°,求∠BCD的度数.解:过点C作CF∥AB.∴∠BCF=∠B=55°.∵AB∥DE,∴CF∥DE.∴∠DCF=∠D=35°.∴∠BCD=55°﹣35°=20°.【问题解决】(1)通过【信息阅读】,猜想:∠B,∠D,∠BCD之间有怎样的等量关系?请直接写出结论:;(2)如图③,在“材料信息”的条件下,改变点C的位置,∠B,∠D,∠BCD之间的等量关系是否改变?若不改变,请写出理由;若改变,请写出新的等量关系及理由.1.(2023春•建昌县期末)如图,将一个含30°角的直角三角板的直角顶点C放在直尺的两边MN,PQ之间,则下列结论中:①∠1=∠3;②∠2=∠3;③∠1+∠3=90°;④若∠3=60°,则AB⊥PQ,其中正确结论的个数是()A.1个B.2个C.3个D.4个2.(2023春•芜湖期末)如图所示是汽车灯的剖面图,从位于O点灯发出光照射到凹面镜上反射出的光线BA,CD都是水平线,若∠ABO=α,∠DCO=60°,则∠BOC的度数为()A.180°﹣αB.120°﹣αC.60°+αD.60°﹣α3.(2022•恩施州)已知直线l1∥l2,将含30°角的直角三角板按如图所示摆放.若∠1=120°,则∠2=()A.120°B.130°C.140°D.150°4.(2022•博山区一模)如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于()A.360°B.300°C.270°D.180°5.(2021春•椒江区校级月考)如图,已知AB∥CD,∠BAD和∠BCD的平分线交于点E,∠FBC=n°,∠BAD=m°,则∠AEC等于()度.A.90﹣+m B.90﹣﹣C.90﹣D.90﹣+ 6.(2023春•赫山区期末)【问题情景】(1)如图1,AB∥CD,∠P AB=135°,∠PCD=115°,求∠APC的度数;【问题迁移】(2)如图2,已知∠MON,AD∥BC,点P在射线OM上运动,当点P在A,B两点之间运动时,连接PD,PC,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α,∠β之间的数量关系,并说明理由;【知识拓展】(3)在(2)的条件下,若将“点P在A,B两点之间运动”改为“点P在A,B两点外侧运动(点P与点A,B,O三点不重合)”其他条件不变,请直接写出∠CPD 与∠α,∠β之间的数量关系.7.(2022春•良庆区校级期中)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB=∠CFD,∠BFC=3∠DBE,求∠EBC的度数.8.(2021秋•平昌县期末)如图,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)试说明:∠BAG=∠BGA;(2)如图1,点F在AG的反向延长线上,连接CF交AD于点E,若∠BAG﹣∠F=45°,求证:CF平分∠BCD.(3)如图2,线段AG上有点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,求的值.9.(2023春•黑山县期中)问题情境我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC中,∠BAC=60°,∠B=30°,∠C=90°,长方形DEFG中,DE∥GF.问题初探(1)如图(1),若将三角板ABC的顶点A放在长方形的边GF上,BC与DE相交于点M,AB⊥DE于点N,求∠EMC的度数.分析:过点C作CH∥GF.则有CH∥DE,从而得∠CAF=∠HCA,∠EMC=∠MCH,从而可以求得∠EMC的度数.由分析得,请你直接写出:∠CAF的度数为,∠EMC的度数为.类比再探(2)若将三角板ABC按图(2)所示方式摆放(AB与DE不垂直),请你猜想写∠CAF 与∠EMC的数量关系,并说明理由.(3)请你总结(1),(2)解决问题的思路,在图(3)中探究∠BAG与∠BMD的数量关系?并说明理由.10.(2022春•龙亭区校级期末)如图,已知AB∥CD,E、F分别在AB、CD上,点G在AB、CD之间,连接GE、GF.(1)当∠BEG=40°,EP平分∠BEG,FP平分∠DFG时:①如图1,若EG⊥FG,则∠P的度数为;②如图2,在CD的下方有一点Q,EG平分∠BEQ,FD平分∠GFQ,求∠Q+2∠P的度数;(2)如图3,在AB的上方有一点O,若FO平分∠GFC.线段GE的延长线平分∠OEA,则当∠EOF+∠EGF=100°时,请直接写出∠OEA与∠OFC的数量关系.11.(2023春•孝义市期末)综合与探究数学活动课上,老师以“一个含45°的直角三角板和两条平行线”为背景展开探究活动,如图1,已知直线m∥n,直角三角板ABC中,∠ACB=90°,∠BAC=∠ABC=45°.(1)如图1,若∠2=65°,则∠1=;(直接写出答案)(2)“启航”小组在图1的基础上继续展开探究:如图2,调整三角板的位置,当三角板ABC的直角顶点C在直线n上,直线m与AB,AC相交时,他们得出的结论是:∠1﹣∠2=135°,你认为启航小组的结论是否正确,请说明理由;(3)如图3,受到“启航”小组的启发,“睿智”小组提出的问题是:在图2的基础上,继续调整三角板的位置,当点C不在直线n上,直线m与AC,BC相交时,∠1与∠2有怎样的数量关系?请你用平行线的知识说明理由.12.(2023春•安化县期末)在课后学习中,小红探究平行线中的线段与角的数量关系,如图,直线AB∥CD,点N在直线CD上,点P在直线AB上,点M为平面上任意一点,连接MP,MN,PN.(1)如图1,点M在直线CD上,PM平分∠APN,试说明∠PMN=∠MPN;(2)如图2,点M在直线AB,CD之间,∠PMN=70°,∠MNC=30°,求∠APM的度数;(3)如图3,∠APM和∠MNC的平分线交于点Q,∠PQN与∠PMN有何数量关系?并说明理由.12.(2023春•甘井子区期末)如图1,点M在射线BA,CD之间,0°<∠ABM<30°,连接BM,过点M作ME⊥BM交射线CD于点E,且∠MED﹣∠B=90°.(1)求证:AB∥CD;(2)过点C作∠ECN=∠B,交直线ME于点N,先按要求画图,再解决下列问题.①当CN在CD上方,满足∠CNE=5∠B时,在图2中画图,求∠B的度数;②作∠BME的角平分线交射线CD于点K,交∠ECN的角平分线于点F,请直接写出∠MKC与∠MFC之间的数量关系.。

平行线四大模型(完整版+培优)

平行线四大模型(完整版+培优)

平行线四大模型(完整版+培优)平行线四大模型模型一:铅笔模型当点P在EF右侧,在AB、CD内部时,有以下结论:1.若AB∥CD,则∠P+∠AEP+∠PFC=360°;2.若∠P+∠AEP+∠PFC=360°,则AB∥CD.模型二:猪蹄模型当点P在EF左侧,在AB、CD内部时,有以下结论:1.若AB∥CD,则∠P=∠AEP+∠CFP;2.若∠P=∠AEP+∠CFP,则AB∥CD.模型三:臭脚模型当点P在AB、CD之间时,有以下结论:1.若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;2.若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.模型四:骨折模型当点P在EF右侧,在AB、CD外部时,有以下结论:1.若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;2.若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.当点P在EF左侧,在AB、CD外部时,有以下结论:1.若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;2.若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.应用:例1:1.∠l+∠2+∠3=180°;2.∠E=110°;3.∠BCD=40°;4.∠P=70°.练:1.∠EAB的度数为17°;2.∠C=30°;3.∠P=30°+n×20°.例2:BF、DF分别平分∠ABC、∠XXX,则∠C、∠F的关系为∠ABF=∠XXX∠XXX.练:1.∠XXX∠BDE;2.当n=2时,∠C=∠F;3.∠C=n×∠F.1.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,要证明∠E=2(∠A+∠C)。

2.如图,已知AB∥DE,BF、DF分别平分∠ABC、∠XXX,要求出∠C、∠F的关系。

最新学而思寒假七年级尖子班讲义第1讲平行线四大模型(1)1

最新学而思寒假七年级尖子班讲义第1讲平行线四大模型(1)1

目录Contents第1讲平行线四大模型 (1)第2讲实数三大概念 (17)第3讲平面直角坐标系 (33)第4讲坐标系与面积初步 (51)第5讲二元—次方程组进阶 (67)第6讲含参不等式(组) (79)1平行线四大模型知识目标目标一熟练掌握平行线四大模型的证明目标二熟练掌握平行线四大模型的应用目标三掌握辅助线的构造方法,熟悉平行线四大模型的构造秋季回顾平行线的判定与性质l、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补本讲进阶平行线四大模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.巩固练习平行线四大模型证明(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°.(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4)已知∠P= ∠CFP -∠AEP,求证AE //CF.模块一平行线四大模型应用例1(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .(2)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.(3)如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .(4) 如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .练(1)如图所示,AB∥CD,∠E=37°,∠C= 20°,则∠EAB的度数为.(2) (七一中学2015-2016七下3月月考)如图,AB∥CD,∠B=30°,∠O=∠C.则∠C= .例2如图,已知AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.练如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n1∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).例3如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .练如图,己知AB ∥DE ,BF 、DF 分别平分∠ABC 、∠CDE ,求∠C 、∠F 的关系.例4如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.练(武昌七校2015-2016 七下期中)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().A. 120°B. 135°C. 145°D. 150°模块二平行线四大模型构造例5如图,直线AB∥CD,∠EF A= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则∠GHM= .练如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .例6已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.练已知AB∥EF,求∠l-∠2+∠3+∠4的度数.(1)如图(l),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n,∠B1、∠B2…∠B n-1之间的关系.(2)如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.(3)如图(3),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n之间的关系.如图所示,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.挑战压轴题(粮道街2015—2016 七下期中)如图1,直线AB ∥CD ,P 是截线MN 上的一点,MN 与CD 、AB 分别交于E 、F . (1) 若∠EFB =55°,∠EDP = 30°,求∠MPD 的度数;(2) 当点P 在线段EF 上运动时,∠CPD 与∠ABP 的平分线交于Q ,问:DPBQ∠∠是否为定值?若是定值,请求出定值;若不是,说明其范围;(3) 当点P 在线段EF 的延长线上运动时,∠CDP 与∠ABP 的平分线交于Q ,问DPBQ∠∠的值足否定值,请在图2中将图形补充完整并说明理由.第一讲 平行线四大模型(课后作业)1.如图,AB // CD // EF , EH ⊥CD 于H ,则∠BAC +∠ACE +∠CEH 等于( ).A . 180°B . 270°C . 360°D . 450° 2.(武昌七校2015-2016七下期中)若AB ∥CD ,∠CDF =32∠CDE ,∠ABF =32∠ABE ,则∠E :∠F =( ).A .2:1B .3:1C .4:3D .3:23.如图3,己知AE ∥BD ,∠1=130°,∠2=30°,则∠C = .4.如图,已知直线AB ∥CD ,∠C =115°,∠A = 25°,则∠E = .5.6.如阁所示,AB ∥CD ,∠l =l l 0°,∠2=120°,则∠α= .7.如图所示,AB∥DF,∠D =116°,∠DCB=93°,则∠B= .8.如图,将三角尺的直角顶点放在直线a上,a∥b.∠1=50°,∠2 =60°,则∠3的度数为 .9.如图,AB∥CD,EP⊥FP, 已知∠1=30°,∠2=20°.则∠F的度数为..9.如图,若AB∥CD,∠BEF=70°,求∠B+∠F+∠C的度数10.已知,直线AB∥CD.(1)如图l,∠A、∠C、∠AEC之间有什么关系?请说明理由;(2)如图2,∠AEF、∠EFC、∠FCD之间有什么关系?请说明理由;精品文档(3)如图3,∠A、∠E、∠F、∠G、∠H、∠O、∠C之间的关是.精品文档。

(完整版)平行线知识点+四大模型

(完整版)平行线知识点+四大模型

平行线四大模型平行线的判定与性质l、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补本讲进阶平行线四大模型模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.模型四“骨折”模型·点P在EF左侧,在AB、CD外部“骨折”模型结论结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.巩固练习平行线四大模型证明(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°. (2)已知∠P=∠AEP+∠CFP,求证AE∥CF.(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4)已知∠P= ∠CFP -∠AEP,求证AE //CF.模块一平行线四大模型应用例1(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .(2)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.(3)如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .(4) 如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .练(1)如图所示,AB∥CD,∠E=37°,∠C= 20°,则∠EAB的度数为.(2) 如图,AB∥CD,∠B=30°,∠O=∠C.则∠C= .例2如图,已知AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.练如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n1∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).例3如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.求证:∠E= 2 (∠A+∠C) .练如图,己知AB∥DE,BF、DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.例4如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.练(武昌七校2015-2016 七下期中)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().A. 120°B. 135°C. 145°D. 150°模块二平行线四大模型构造例5如图,直线AB∥CD,∠EF A= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则∠GHM= .练如图,直线AB∥CD,∠EFG=100°,∠FGH=140°,则∠AEF+ ∠CHG= .例6 已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.练已知AB∥EF,求∠l-∠2+∠3+∠4的度数.(1)如图(l),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n,∠B1、∠B2…∠B n-1之间的关系.(2)如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.(3)如图(3),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n之间的关系.如图所示,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.。

初中数学 中考复习 第01讲—平行线的五大拐点模型

初中数学 中考复习  第01讲—平行线的五大拐点模型

模型一:铅笔头模型基础(1)如图,若CD AB //,此时,E D B ∠∠∠,,之间有什么关系?请证明解答:如图,过点E 作AB l //得证360=∠+∠+∠E D B(2)反之,如图,若360=∠+∠+∠E D B ,直线AB 与CD 有什么位置关系?请证明解答:如图,过点E 作AB l //得证CD l //则CD AB //总结:①辅助线:过拐点作平行线②若CD AB //,则360=∠+∠+∠E D B③若360=∠+∠+∠E D B ,则CD AB //模型一:铅笔头模型进阶如图,两直线CD AB ,平行,则=∠+∠+∠+∠+∠+∠654321解答:如图,过F 作AB l //1,过G 作12//l l ,过H 作23//l l ,过I 作34//l l 得证900654321=∠+∠+∠+∠+∠+∠总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线②)1(180121-=∠+∠+⋅⋅⋅+∠+∠-n A A A A n n【2-n 个拐点】模型二:锯齿模型基础(1)如图,若CD AB //,则E D B ∠=∠+∠,你能说明为什么吗?解答:如图,过点E 作AB l //得证E D B ∠=∠+∠(2)在图中,CD AB //,G E ∠+∠与D F B ∠+∠+∠又有何关系?解答:如图,过点E 作AB l //1,过点F 作AB l //2,过点G 作AB l //3得证G E ∠+∠=D F B ∠+∠+∠(3)在图中,若CD AB //,又得到什么结论?解答:同理可得n n E E E D F F F B ∠++∠+∠=∠+∠++∠+∠+∠- 21121总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②所有朝左的角之和等于所有朝右的角之和模型二:锯齿模型进阶【例1】如图所示,已知CD AB //,BE 平分ABC ∠,DE 平分ADC ∠,求证:)(21C A E ∠+∠=∠解答:①方法一:锯齿模型【锯齿ABEDC 】如图,过点E 作AB EF //+转化思想得证 ②方法二:8字模型(详解见第2讲)总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②所有朝左的角之和等于所有朝右的角之和 ③转化思想【例2】如图,已知CD AB //,EAB EAF ∠=∠41,ECD ECF ∠=∠41,求证: AEC AFC ∠=∠43解答:锯齿BAECD+锯齿BAFCD ;过点E 作AB GE //,过点F 作CD HF //+方程思想【βα,表示角度】得证总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②所有朝左的角之和等于所有朝右的角之和 ③方程思想【例3】如图,CD AB //,61=∠BED ,ABE ∠的平分线与CDE ∠的平分线交于点F ,则=∠DFB ( ) A.149B.5.149C.150D.5.150解答:锯齿CDFBA+铅笔头CDEBA ;得证B总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②铅笔头模型:角之和=180×(拐点个数+1)③锯齿模型:所有朝左的角之和等于所有朝右的角之和【例4】如图,已知点P 是矩形ABCD 内一点(不含边界),设21,θθ=∠=∠PBA PAD ,43,θθ=∠=∠PDC PCB ,若 50,80=∠=∠CPD APB ,则( )A. 30)()(3241=+-+θθθθB.40)()(3142=+-+θθθθC.70)()(4321=+-+θθθθ D.180)()(4321=+++θθθθ解答:锯齿ADPCB+锯齿DAPBC ;得证A总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少条平行线 ②所有朝左的角之和等于所有朝右的角之和模型三:臭脚模型基础如图,若CD AB //,E D B ∠∠∠,,之间有什么关系?请证明解答:如图,过点E 作AB l //得证B E D ∠=∠+∠臭脚模型基础(汇总)总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少平行线模型三:臭脚模型进阶如图,直线CD AB //,50,30,90,30=∠=∠=∠=∠CNP HMN FGH EFA ,则GHM ∠的大小是解答:①方法一:如图,过点H 作AB QH //则有铅笔头AFGHQ+臭脚QHMNC 得证 40=∠GHM ②方法二:锯齿BFGHMND 得证40=∠GHM 总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少平行线模型四:蛇型基础如图,若D C B CD AB ∠∠∠,,,//之间有什么关系?请证明解答:过点C 作AB l //得证180=∠-∠+∠D C B 总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少平行线模型五:蜗牛模型基础如图,若D C B DE AB ∠∠∠,,,//之间有什么关系?请证明解答:过点C 作AB l //得证180=∠+∠+∠D C B 总结:①辅助线:过拐点作平行线,且有多少个拐点就作多少平行线。

学而思七年级数学下1-10讲

学而思七年级数学下1-10讲

学而思七年级数学下1-10讲第一讲、整式第二讲同底数幂的乘法、幂的乘方与积的乘方第三讲同底数幂的除法与整式的乘除第四讲整式的除法第五讲平方差公式第六讲完全平方公式第七讲、整式的除法第八讲测试第九讲中考经典第十讲平行线与相交线余角与补角第一讲、整式知识要点:1、单项式的意义:数与字母的乘积的代数式叫做单项式。

(单独的一个数或字母也是单项式) 2b 与 2b的区别2、单项式中的数字因数叫做叫做这个单项式的系数3、单项式中所有字母的指数和叫做叫做这个单项式的次数。

4、几个单项式的和叫做多项式5、组成多项式的每一个单项式叫做多项式的项6、多项式里此数目最高的项的次数,就是这个多项式的次数。

7、整式的意义:单项式和多项式统称为整式。

(分母中含有字母的代数式不是整式)8、整式的加减:求几个整式的和或差的运算,运算结果仍是整式9、整式加减的一般步骤:(1)去括号;(2)合并同类项10、整体代入法:11、整式的运算对数的运算的指导性作用:例1、填空题:(1)单项式213x -的系数是,次数是;(2)单项式222a b c-的系数是,次数是;(3)单项式 22x y z π的系数是,次数是;例2、填空:(1)多项式23x +是次项式,最高次项是,常数项是。

(2)多项式43923101232x y x x y -++是次项式,最高次项的系数是,常数项是。

例3 、已知多项式4212331534a x y xy x y +--+(1)求多项式中各项的系数与次数。

(2)若多项式是8次三项式,求a 的值例4、(1)25ax -与24x a -的差是(2)与2421x x ++的差是24x2例5、若2,3xy x y =-+=,求代数式[](310)5(223xy y x xy y x++-+-的值。

例6、证明:对于任意一个三位数字,交换它的百位数和个位数又得到一个一个数,两个数相减,所得结果能被99整除。

例7、甲、乙两种服装的成本共600元,商店老板为获取利润,决定将甲种服装按60%的利润率定价,在实际出售时,两种服装均按八五折出售。

平行线四大模型

平行线四大模型
E
E
A
B
C
D
FA
B
C
D
典例练习
(1)如图,a∥b,M、N 分别在 a、b 上,P 为两平行线间一点,那么∠l+∠2+∠3=

典例练习
如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是

典例练习
如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD=
典例练习
如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P=
剖析三 猪脚模型与铅笔模型的变形
【例 4】如图,已知 AB∥DE,∠ABC=50°,∠CDE=150°,则∠BCD 的值为( )
A
B
D
E
A.20° 【答案】A
B.50°
C.40°
C D.30°
041
“骨折”模型
剖析四 臭脚模型
条件:点P在EF左侧,在AB、 CD外部
结论1:若AB∥CD, ∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;
A
B
F MC
P
D
E
021
“铅笔”模型
剖析二 铅笔模型
条件:点P在EF右侧,在AB、 CD内部
结论1:若AB∥CD, 则∠P+∠AEP+∠PFC=360°
结论2:若∠P+∠AEP+∠PFC= 360° 则AB∥CD.
A
E
A
B
A
E1
P E2
C
F
图1
C
D
图2
C 图3
B
A
E1 E2
E3
D
C 图4
B E1 E2 E3

学而思初一数学培优之平行线初步(一)

学而思初一数学培优之平行线初步(一)

3
(清华附中统练)如图, ⑵如图,找出图中用数字表示的各角中,哪些是同位角,内
错角?哪些是同旁内角?
A
E
H 23
1
C
F
4B G D
垂线: 垂直是相交的一种特殊情况,两条直线互相垂直,其中一条 叫另一条直线的垂线,它们的交点叫垂足。 如图所示,可以记作“AB⊥CD于O”
A
CO D B
性质1:在同一平面内,过直线外或直线上一点,有且只有一条直 线与已知直线垂直。简单说成:过一点有且只有一条直线与已知 直线垂直;
两条直线被第三条直线所截两个角两条直线被第三条直线所截两个角都在两条直线之间并且位置交错即分别在第三条直线的两旁这样的即分别在第三条直线的两旁这样的一对角叫做内错角如图中同旁内角
直线的相交(上)
平面内两条直线的位置关系:平行与相交
平行直线:在同一平面内,永不相交的两条线称为平行线。 相交直线:如果直线a与直线b只有一个公共 点,则称直线a
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最 短。简单说成:垂线段最短。
点到直线的距离:直线外一点到这条直线的垂线段的长度, 叫做点到直线的距离。
A
【例5】如图,已知 MON 及点P,分别画出点P到射线OM、 ON的垂线段PA、PB。
M P N
MP
ON
ON
M P
O
CO D
B
4
【例6】⑴如图,已知 ACB 90°。CD AB ,垂足为D,则 点A到直线CB的距离为 线段_____ 的长;线段DB 的长为点____到直线____的距离。
是互为邻补角
3O a
1
2
4
b
【例1】⑴已知:如图,直线AB、AC交于点O, 且 AOD BOC 120°,求AOC 的度数。

学而思寒假七年级尖子班讲义第讲平面直角坐标系

学而思寒假七年级尖子班讲义第讲平面直角坐标系

领先中考培优课程M A T H E M A T I C S3 平面坐标系知识目标目标一理解有序数对、有序数对、点的坐标的概念目标二掌握象限、坐标轴、坐标轴夹角平分线的点的坐标特征目标三灵活运用点和线的平移变换。

点的对称变换求坐标模块一 平面直角坐标系的相关概念 知识导航1有序数对有顺序的两个数a 与b 组成的数对,叫做有序数对,记作(a,b),利用有序数对可以可以很准确的表示出一个位置。

2平面直角坐标系3、点的坐标平面内的点可以用一个有序数对表示,这个有序数对就叫做点的坐标。

对于平面内任意一点,过该点分别向横轴、纵轴作垂线,垂足在横轴、纵轴上对应的数分别叫做该点横坐标、纵坐标。

在平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系、水平的数轴称为x 轴或横轴,习惯上取向右为正方向:竖直的数轴称为y 轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面坐标系的原点。

如左图,建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成了Ⅰ,Ⅱ,Ⅲ,Ⅳ四个部分,每个部分称为象限,分别叫做第一象限、第二象限、第三象限、第四象限。

坐标轴上的点不属于任何象限。

Ⅰ 第一象限 Ⅳ第四象限Ⅲ第三象限 Ⅱ 第二象限 原点如图,点p 为坐标平面内一点,过点p 作x 轴的垂线,垂足M 在x 轴上对应点的数是-2,则-2就是p 的横坐标;过点p 作y 轴的垂线,垂足N 在y 轴上对应的数为3,则3为点p 的纵坐标,点p 就可以用有序数对(-2,-3)来表示,记作p (-2,3)。

由坐标确定点的方法:要确定由坐标(a,b)所表示的点p 的位置,先在x 轴上找到表示a 的点,过这点作x 轴的垂线;再在y 轴上找到表示b 的点,过这点作y 轴的垂线,两条垂线的交点p 即为所求的位置。

由点求坐标的方法:先由已知点p 分别向x 轴和y 轴作垂线,设垂足分别为A 和B ,再求出A 在x 轴上的坐标a 和B 在轴上的坐标b ,则点p 的坐标为(a,b)巩固练习 点的坐标(1)在图1的平面直角坐标系中描出下列个点:A(3,4),B(-2,3),C(-5,-2),D(4,-1),E(1,0),F(0,3),G(-2,0),H(0,-4). (2)写出图2中点A 、B 、C 、D 、E 、F 、G 、H 的坐标。

初一平行线讲义

初一平行线讲义

解码专训一:两直线的位置关系名师点金:在同一平面内,不重合的两条直线的位置关系只有两种:平行或相交,而不在同一平面内,不重合的两条直线还存在着既不平行也不相交这种位置关系.同一平面内两直线的位置关系1.下列说法正确的有()(1)同一平面内两直线有相交、平行、重合三种情况;(2)两直线垂直是相交的一种特殊情况;(3)同一平面内,两直线不垂直,则这两直线平行;(4)同一平面内三条直线既不重合也不平行,则它们最多有三个交点.A.1个B.2个C.3个D.4个2.三条直线a,b,c,若a∥c,b∥c,则a与b的位置关系是()A.a⊥b B.a∥bC.a⊥b或a∥b D.无法确定3.在同一平面内画三条直线,使它们分别满足以下条件:(1)它们没有交点;(2)它们有一个交点;(3)它们有两个交点;(4)它们有三个交点.不在同一平面内两直线的位置关系(第4题)4.如图,长方体ABCD-A1B1C1D1中,与棱A1B1平行的棱有________;与棱CC1在同一平面内且垂直的棱有________________;与棱BC既不平行也不相交的棱有______________.解码专训二:“三线八角”的识别方法名师点金:两条直线被第三条直线所截,可得到“三线八角”,识别两个角属于何种类别时可联想英文大写字母,即“F”形的为同位角,“Z”形的为内错角,“U”形的为同旁内角,每类角都有一个共同点,即:有两条边在截线上,另外两条边在被截直线上.识别同位角、内错角、同旁内角1.如图,试判断∠1与∠2,∠1与∠7,∠1与∠BAD,∠2与∠9,∠2与∠6,∠5与∠8各对角的位置关系.(第1题)从复杂图形中找同位角、内错角、同旁内角2.如图,请结合图形找出图中所有的同位角、内错角和同旁内角.(第2题)解码专训三:常见辅助线的作法名师点金:在解决平行线的问题时,当无法直接得到角的关系或两条线之间的位置关系时,通常借助辅助线来帮助解答,如何作辅助线需根据已知条件确定,辅助线的添加既可以产生新的条件,又能将题目中原有的条件联系在一起.加截线(连接两点或延长线段)1.如图,已知AB∥CD,∠ABF=∠DCE.∠BFE与∠FEC有何关系?并说明理由.(第1题)过“拐点”作平行线a.“”形图2.如图,AB∥CD,P为AB,CD之间的一点,已知∠1=32°,∠2=25°,求∠BPC的度数.(第2题)b.“”形图3.如图,已知AB∥CD,请你猜想一下∠B+∠BED+∠D的度数,并说明理由.(第3题)c.“”形图4.如图,AB∥DE,则∠BCD,∠B,∠D有何关系?为什么?(第4题)d.“”形图5.如图,已知AB∥DE,∠ABC=72°,∠CDE=140°,求∠BCD的度数.(第5题)平行线间多折点角度问题探究6.(1)如图①,AB∥CD,则∠BEF+∠FGD与∠B+∠EFG+∠D有何关系?并说明理由.(2)如图②,若AB∥CD,又能得到什么结论?(第6题)解码专训四:几何计数的四种常用方法名师点金:1.对于几何中的计数问题,掌握一定的方法能够让我们准确、高效地得出结果,常见的计数方法有:按顺序计数、按画图计数、按基本图形计数、按从特殊到一般的思想方法计数.2.计数的原则是不重复、不遗漏.按顺序计数问题1.如图,两条直线相交于一点O,则图中共有()对邻补角.(第1题)A.2B.3C.4D.52.在同一平面内有A,B,C,D,E五个点,以其中任意两点画直线最多有________条.按画图计数问题3.请你画图说明同一平面内的4条直线的位置关系,它们分别有几个交点?4.平面内有10条直线,无任何三线共点,要使它们恰好有31个交点,请你画出示意图.按基本图形计数问题5.如图,一组互相平行的直线有6条,它们和两条平行线a,b都相交,构成若干个“#”形,则此图中共有多少个“#”形?(第5题)按从特殊到一般的思想方法计数问题6.观察如图所示的图形,寻找对顶角(不含平角).(第6题)(1)两条直线相交于一点,如图①,共有________对对顶角;(2)三条直线相交于一点,如图②,共有________对对顶角;(3)四条直线相交于一点,如图③,共有________对对顶角;……(4)根据以上结果探究:当n条直线相交于一点时,所构成的对顶角有____________对;(5)根据探究结果,求2 016条直线相交于一点时,所构成的对顶角的对数.7.平面内n条直线最多将平面分成多少个部分?解码专训五:活用判定两直线平行的六种方法名师点金:1.直线平行的判定方法很多,我们要根据图形的特征和已知条件灵活选择方法.2.直线平行的判定常结合角平分线、对顶角、邻补角、垂直等知识.3.直线平行的判定和性质常常结合在一起,解决有关角度的计算或证明角相等等问题.利用平行线的定义1.下面几种说法中,正确的是()A.同一平面内不相交的两条线段平行B.同一平面内不相交的两条射线平行C.同一平面内不相交的两条直线平行D.以上三种说法都不正确利用“同平行于第三条直线的两直线平行”2.如图,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°,试说明AB∥EF.(第2题)利用“同垂直于第三条直线的两直线平行(在同一平面内)”3.如图,在三角形ABC中,CE⊥AB于点E,DF⊥AB于点F,DE∥CA,CE平分∠ACB,试说明∠EDF=∠BDF.(第3题)利用“同位角相等,两直线平行”4.(探究题)如图,已知∠ABC=∠ACB,∠1=∠2,∠3=∠F,试判断EC 与DF是否平行,并说明理由.(第4题)利用“内错角相等,两直线平行”5.如图,CB平分∠ACD,∠1=∠3,说明AB∥CD.(第5题)利用“同旁内角互补,两直线平行”6.如图,∠BEC=95°,∠ABE=120°,∠DCE=35°,则AB与CD平行吗?请说明理由.(第6题)解码专训六:思想方法荟萃名师点金:1.本章体现的主要方法有:基本图形(添加辅助线)法、分离图形法、平移法.2.几种主要的数学思想:方程思想、转化思想、数形结合思想、分类讨论思想等.基本图形(添加辅助线)法1.已知AB∥CD,探讨图中∠APC与∠PAB,∠PCD的数量关系,并请你说明成立的理由.(第1题)分离图形法2.若平行直线EF,MN与相交直线AB,CD相交成如图所示的图形,则共得出同旁内角多少对?(第2题)平移法3.如图,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的小路(阴影部分),余下部分绿化,小路的宽为2 m,则绿化的面积为多少?(第3题)转化思想4.如图,AB∥CD,∠1=∠B,∠2=∠D,试说明BE⊥DE.(第4题)数形结合思想5.如图,直线AB,CD被EF所截,∠1=∠2,∠CNF+∠BMN=180°.试说明:AB∥CD,MP∥NQ.(第5题)分类讨论思想6.如图,已知直线l1∥l2,直线l3交l1于C点,交l2于D点,P是线段CD 上的一个动点,当P在线段CD上运动时,请你探究∠1,∠2,∠3之间的关系.(第6题)。

平行线四大模型

平行线四大模型

初中数学微专题:平行线四大模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∥P+∥AEP+∥PFC=360°;“猪蹄”模型点P在EF左侧,在AB、CD内部结论1:若AB∥CD,则∥P=∥AEP+∥CFP;“臭脚”模型点P在EF右侧,在AB、CD外部结论1:若AB∥CD,则∥P=∥AEP-∥CFP或∥P=∥CFP-∥AEP;点P在EF左侧,在AB、CD外部“骨折”模型结论1:若AB∥CD,则∥P=∥CFP-∥AEP或∥P=∥AEP-∥CFP;一、平行线四大模型结论证明(1)已知AE // CF,求证∥P +∥AEP +∥PFC = 360°.(2)已知∥P=∥AEP+∥CFP,求证AE∥CF.(3)已知AE∥CF,求证∥P=∥AEP-∥CFP.(4)已知∥P= ∥CFP-∥AEP,求证AE //CF .二、例题讲解(2019春•彭泽县期中)如图,已知:∠ABE+∠DEB=180°,∠1=∠2,则∠F与∠G的大小关系如何?请说明理由【答案】解:∠F=∠G,理由是:∵∠ABE+∠DEB=180°,∴AC∥ED,∴∠CBE=∠DEB,∵∠1=∠2,∴∠CBE﹣∠1=∠DEB﹣∠2,即∠FBE=∠GEB,∴BF∥EG,∴∠F=∠G.【例10】(2019春•普宁市期中)已知AB∥CD,点P为平面内一点,连接AP、CP.(1)探究:如图(1)∠P AB=145°,∠PCD=135°,则∠APC的度数是;如图(2)∠P AB=45°,∠PCD=60°,则∠APC的度数是.(2)在图2中试探究∠APC,∠P AB,∠PCD之间的数量关系,并说明理由.(3)拓展探究:当点P在直线AB,CD外,如图(3)、(4)所示的位置时,请分别直接写出∠APC,∠P AB,∠PCD之间的数量关系.【答案】解:(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥CD,∴∠APE+∠P AB=180°,∠CPE+∠PCD=180°,∵∠P AB=145°,∠PCD=135°,∴∠APC=360°﹣145°﹣135°=80°,如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥CD,∴∠APE=∠P AB,∠CPE=∠PCD,∵∠APC=∠APE+∠CPE,∴∠APC=∠P AB+∠PCD=105°;故答案为:80°;105°.(2)∠APC=∠P AB+∠PCD.理由:如图2,过点P作PE∥AB,∵AB∥CD,∴∠APE=∠P AB,∠CPE=∠PCD,∵∠APC=∠APE+∠CPE,∴∠APC=∠P AB+∠PCD;(3)如图3.∠APC=∠PCD﹣∠P AB,如图4.∠APC=∠P AB﹣∠PCD.(2019春•桂平市期末)(1)如图①,∠CEF=90°,点B在射线EF上,AB∥CD,若∠ABE=130°,求∠C的度数;(2)如图②,把“∠CEF=90°”改为“∠CEF=120°”,点B在射线EF上,AB∥CD.猜想∠ABE 与∠C的数量关系,并说明理由.【答案】解:(1)如图①,过E作EK∥AB,则∠ABE+∠1=180°,∴∠1=180°﹣∠ABE=50°,∵∠CEF=90°,∴∠2=90°﹣∠1=40°,∵AB∥CD,EK∥AB,∴∠C=∠2=40°;(2)∠ABE﹣∠C=60°,理由:如图②,过E作EK∥AB,则∠ABE+∠1=180°,∴∠1=180°﹣∠ABE,∵AB∥CD,EK∥AB,∴EK∥CD,∴∠C=∠2,∵∠CEF=∠1+∠2=120°,即180°﹣∠ABE+∠C=120°,∴∠ABE﹣∠C=180°﹣120°=60°.(2019春•费县期中)如图1,已知AB∥CD,∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=;(2)请探索∠E与∠F之间满足的数量关系?说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.【答案】解:(1)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°∴∠EFD=∠BEF+30°=90°;故答案为:90°;(2)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°,∴∠EFD=∠BEF+30°;(3)如图2,过点F作FH∥EP,由(2)知,∠EFD=∠BEF+30°,设∠BEF=2x°,则∠EFD=(2x+30)°,∵EP平分∠BEF,GF平分∠EFD,∴∠PEF=∠BEF=x°,∠EFG=∠EFD=(x+15)°,∵FH∥EP,∴∠PEF=∠EFH=x°,∠P=∠HFG,∵∠HFG=∠EFG﹣∠EFH=15°,∴∠P=15°.三、练习巩固:1.如图,AB // CD // EF , EH ∥CD 于H ,则∥BAC +∥ACE +∥CEH 等于( ) A . 180° B . 270° C . 360° D . 450°2.若AB ∥CD ,∥CDF =32∥CDE ,∥ABF =32∥ABE ,则∥E :∥F =( ) A .2:1 B .3:1 C .4:3 D .3:23.如图,己知AE ∥BD ,∥1=130°,∥2=30°,则∥C = .4.如图,已知直线AB ∥CD ,∥C =115°,∥A = 25°,则∥E = .5.如阁所示,AB ∥CD ,∥l =l l 0°,∥2=120°,则∥α= .6.如图所示,AB ∥DF ,∥D =116°,∥DCB =93°,则∥B = .7.如图,将三角尺的直角顶点放在直线a上,a∥b.∥1=50°,∥2 =60°,则∥3的度数为.8.如图,AB∥CD,EP∥FP,已知∥1=30°,∥2=20°.则∥F的度数为.9.如图,若AB∥CD,∥BEF=70°,求∥B+∥F+∥C的度数.10.已知,直线AB∥CD.(1)如图l,∥A、∥C、∥AEC之间有什么关系?请说明理由;(2)如图2,∥AEF、∥EFC、∥FCD之间有什么关系?请说明理由;(3)如图3,∥A、∥E、∥F、∥G、∥H、∥O、∥C之间的关是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录
Contents
第1讲平行线四大模型 (1)
第2讲实数三大概念 (17)
第3讲平面直角坐标系 (33)
第4讲坐标系与面积初步 (51)
第5讲二元—次方程组进阶 (67)
第6讲含参不等式(组) (79)
1平行线四大模型
知识目标
目标一熟练掌握平行线四大模型的证明
目标二熟练掌握平行线四大模型的应用
目标三掌握辅助线的构造方法,熟悉平行线四大模型的构造
秋季回顾平行线的判定与性质
l、平行线的判定
根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.
判定方法l:
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简称:同位角相等,两直线平行.
判定方法2:
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简称:内错角相等,两直线平行,
判定方法3:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
简称:同旁内角互补,两直线平行,
如上图:
若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);
若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);
若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).
另有平行公理推论也能证明两直线平行:
平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
2、平行线的性质
利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同
旁内角也有相应的数量关系,这就是平行线的性质.
性质1:
两条平行线被第三条直线所截,同位角相等.
简称:两直线平行,同位角相等
性质2:
两条平行线被第三条直线所截,内错角相等.
简称:两直线平行,内错角相等
性质3:
两条平行线被第三条直线所截,同旁内角互补.
简称:两直线平行,同旁内角互补
本讲进阶平行线四大模型
模型一“铅笔”模型
点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;
结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.
模型二“猪蹄”模型(M模型)
点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;
结论2:若∠P=∠AEP+∠CFP,则AB∥CD.
模型三“臭脚”模型
点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;
结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.
模型四“骨折”模型
点P在EF左侧,在AB、CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;
结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.
巩固练习平行线四大模型证明
(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°
.(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.
(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.
(4)已知∠P= ∠CFP -∠AEP,求证AE //CF.
模块一平行线四大模型应用
例1
(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .
(2)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.
(3)如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .
(4) 如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .

(1)如图所示,AB∥CD,∠E=37°,∠C= 20°,则∠EAB的度数为.
(2) (七一中学2015-2016七下3月月考)
如图,AB∥CD,∠B=30°,∠O=∠C.则∠C= .
例2
如图,已知AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.

如图,已知AB ∥DE ,∠FBC =
n 1∠ABF ,∠FDC =n
1
∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;
(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).
例3
如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .

如图,己知AB ∥DE ,BF 、DF 分别平分∠ABC 、∠CDE ,求∠C 、∠F 的关系.
例4
如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.

(武昌七校2015-2016 七下期中)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().
A. 120°
B. 135°
C. 145°
D. 150°
模块二平行线四大模型构造
例5
如图,直线AB∥CD,∠EF A= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则
∠GHM= .

如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .
例6
已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.

已知AB∥EF,求∠l-∠2+∠3+∠4的度数.
(1)如图(l),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n,∠B1、∠B2…∠B n-1之间的
关系.
(2)如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.
(3)如图(3),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n之间的关系.
如图所示,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.
挑战压轴题
(粮道街2015—2016 七下期中)
如图1,直线AB ∥CD ,P 是截线MN 上的一点,MN 与CD 、AB 分别交于E 、F . (1) 若∠EFB =55°,∠EDP = 30°,求∠MPD 的度数;
(2) 当点P 在线段EF 上运动时,∠CPD 与∠ABP 的平分线交于Q ,问:DPB
Q
∠∠是否为定值?若是定值,请求出定值;若不是,说明其范围;
(3) 当点P 在线段EF 的延长线上运动时,∠CDP 与∠ABP 的平分线交于Q ,问DPB
Q
∠∠的值足否定值,请在图2中将图形补充完整并说明理由.
第一讲 平行线四大模型(课后作业)
1.如图,AB // CD // EF , EH ⊥CD 于H ,则∠BAC +∠ACE +∠CEH 等于( ).
A . 180°
B . 270°
C . 360°
D . 450° 2.(武昌七校2015-2016七下期中) 若AB ∥CD ,∠CDF =
32∠CDE ,∠ABF =3
2
∠ABE ,则∠E :∠F =( ).
A .2:1
B .3:1
C .4:3
D .3:2
3.如图3,己知AE ∥BD ,∠1=130°,∠2=30°,则∠C = .
4.如图,已知直线AB ∥CD ,∠C =115°,∠A = 25°,则∠E = .
5.如阁所示,AB ∥CD ,∠l =l l 0°,∠2=120°,则∠α= .
6.如图所示,AB ∥DF ,∠D =116°,∠DCB =93°,则∠B = .
7.如图,将三角尺的直角顶点放在直线a上,a∥b.∠1=50°,∠2 =60°,则∠3的度数为 . 8.如图,AB∥CD,EP⊥FP, 已知∠1=30°,∠2=20°.则∠F的度数为.
9.如图,若AB∥CD,∠BEF=70°,求∠B+∠F+∠C的度数.
10.已知,直线AB∥CD.
(1)如图l,∠A、∠C、∠AEC之间有什么关系?请说明理由;
(2)如图2,∠AEF、∠EFC、∠FCD之间有什么关系?请说明理由;
(3)如图3,∠A、∠E、∠F、∠G、∠H、∠O、∠C之间的关是.
第11 页共11 页。

相关文档
最新文档