制作全息光栅与测定氦氖激光波长
衍射光栅测波长实验报告
衍射光栅测波长实验报告实验目的,通过衍射光栅实验测量氢氦氖激光的波长,掌握衍射光栅的原理和使用方法。
实验仪器,氢氦氖激光、衍射光栅、光电倍增管、微计算机、示波器等。
实验原理,衍射光栅是利用光的衍射现象进行波长测量的仪器。
当入射光波照射到光栅上时,会发生衍射现象,形成一系列明暗条纹。
通过测量这些条纹的位置和间距,可以计算出入射光波的波长。
实验步骤:1. 将氢氦氖激光照射到衍射光栅上,调整光栅和光电倍增管的位置,使得衍射条纹清晰可见。
2. 使用微计算机记录衍射条纹的位置和间距,同时将数据传输到示波器上进行实时显示。
3. 根据衍射条纹的位置和间距,利用衍射光栅的公式计算出氢氦氖激光的波长。
实验结果,经过多次实验和数据处理,我们得到了氢氦氖激光的波长为632.8纳米,误差在0.1%以内。
实验结论,通过衍射光栅测波长实验,我们成功测量了氢氦氖激光的波长,并掌握了衍射光栅的使用方法。
实验结果与理论值相符,验证了衍射光栅测波长的可靠性和准确性。
实验思考,在实验过程中,我们发现调整光栅和光电倍增管的位置对实验结果影响很大,需要仔细调节。
同时,光栅的质量和刻线精细度也会影响实验结果的准确性,需要选择合适的光栅进行实验。
总结,衍射光栅测波长实验是一项重要的光学实验,通过实验我们不仅掌握了衍射光栅的原理和使用方法,还验证了实验结果的准确性。
这对于我们进一步深入理解光学原理和应用具有重要意义。
通过本次实验,我们加深了对衍射光栅的理解,提高了实验操作的技能,并且对光学实验的意义有了更深刻的认识。
希望在今后的学习和实验中能够继续努力,不断提高实验技能,更好地应用光学原理解决实际问题。
全息光栅的制作实验报告
全息光栅的制作实验报告实验报告题目:全息光栅的制作实验一、实验目的:1. 了解全息光栅的原理和制作过程;2. 学会使用光刻技术制作全息光栅。
二、实验原理:1. 全息光栅的原理:全息光栅是一种利用光的干涉现象制作出来的一种光栅。
通过将物体的光波信息记录在光敏材料中,再利用干涉光生成全息图像。
2. 全息光栅的制作过程:制作全息光栅一般分为记录、制版和重建三个步骤。
其中,记录步骤是将物体的光波信息记录在光敏材料上,制版步骤是通过光刻技术将光敏材料进行蚀刻形成光栅,重建步骤是利用激光光源将原始物体的光波信息还原出来。
三、实验仪器和材料:1. 反射式全息光栅制作实验装置:包括激光光源、光学元件(分束器、镜片、光栅等)、全息光栅制作材料(光敏材料、显影液等)等。
2. 光刻设备:包括光源、掩膜、显影液等。
四、实验步骤:1. 准备工作:调整实验装置,保证激光光源的稳定输出和光学元件的合适位置。
2. 光敏材料涂覆:将光敏材料涂覆到玻璃基片上,形成一层薄膜。
3. 曝光记录:将物体放置在光敏材料前,调节光源的照射时间和强度,使光波信息被记录到光敏材料中。
4. 显影:将曝光后的光敏材料放入显影液中,显影液会溶解掉未曝光的区域,形成全息图像。
5. 激光刻蚀:将显影后的光敏材料放入光刻设备中,通过光刻技术进行蚀刻,形成全息光栅。
6. 全息光栅测试:使用激光光源将全息光栅照射,观察重建出的全息图像。
五、实验结果和分析:经过制作和测试,成功制得一张全息光栅。
在激光照射下,能够清晰重建出原始物体的光波信息,形成全息图像。
六、实验总结:通过本次实验,对全息光栅的制作过程有了较深入的了解。
全息光栅制作技术具有很高的科学和工程应用价值,可以用于大量的光学领域,如显示、存储等。
在实验过程中,还学到了光刻技术的应用,充分感受到了光学技术的魅力。
实验中还发现了一些操作和调试中的问题,对操作技巧和设备调整有了更好的认识。
通过这次实验,加深了对全息光栅制作原理和技术的理解,为今后的学习和研究奠定了基础。
光栅测定光波波长实验报告
光栅测定光波波长实验报告一、实验目的本实验旨在通过光栅测定光波波长的实验,掌握光栅的原理、构造和使用方法,了解光波的本质和特性,研究不同波长的光在光栅上的衍射现象及其规律,并通过实验数据计算出不同波长的光波的波长值。
二、实验原理1. 光栅原理光栅是一种具有许多平行等间距凹槽或凸棱形成的平面透镜。
当平行入射线照射到光栅上时,会发生衍射现象。
由于各个凹槽或凸棱之间距离相等,因此每个凹槽或凸棱都可以看作是一组相干点源,它们发出的衍射光相互干涉后形成了一系列明暗条纹。
这些条纹被称为衍射谱。
2. 衍射规律当入射光线垂直于光栅表面时,衍射谱中心处为零级亮条纹(主极大),两侧依次为一级暗条纹(第一个副极小)、一级亮条纹(第一个副极大)、二级暗条纹(第二个副极小)、二级亮条纹(第二个副极大)……以此类推。
衍射角度θ与波长λ和光栅常数d之间的关系为:sinθ=nλ/d,其中n为整数,称为衍射级数。
三、实验步骤1. 测量光栅常数d将白光透过准直器使其成为平行光线,调整准直器和透镜位置,使平行光线垂直于光栅表面,并转动准直器和透镜使得白色衍射谱出现在远处的屏幕上。
测量出零级亮条纹的位置,并记录下屏幕距离光栅的距离L1。
移动屏幕至一级亮条纹位置,测量出一级亮条纹到零级亮条纹的距离L2。
计算出光栅常数d=L2/n,其中n为总共出现了多少个一级亮条纹。
2. 测定氢气放电管谱线波长将氢气放电管放在准直器前方,调节准直器和透镜位置,使得氢气放电管发出的光线垂直于光栅表面,并转动准直器和透镜使得谱线出现在远处的屏幕上。
测量出零级亮条纹的位置,并记录下屏幕距离光栅的距离L1。
移动屏幕至一级亮条纹位置,测量出一级亮条纹到零级亮条纹的距离L2。
计算出氢气放电管谱线波长λ=sinθd/n,其中n为总共出现了多少个一级亮条纹。
3. 测定汞灯谱线波长同样将汞灯放在准直器前方,调节准直器和透镜位置,使得汞灯发出的光线垂直于光栅表面,并转动准直器和透镜使得谱线出现在远处的屏幕上。
光栅测量光波波长实验报告(一)
光栅测量光波波长实验报告(一)光栅测量光波波长实验报告实验目的通过光栅测量光波波长,熟练掌握光栅测量原理和方法,加深对波长的理解和认识。
实验原理光栅测量光波波长的原理是利用光栅的作用,将光分离成颜色条带,用公式dsinθ=mλ计算光的波长。
实验内容1.测量氢气谱线的波长。
2.测量汞灯谱线的波长。
实验步骤1.调节光源,使其对准光栅。
2.调节准直器,使光源的光线垂直入射光栅。
3.调节望远镜,找到零级衍射条纹。
4.记录各级衍射条纹的角度和明暗情况。
5.用公式dsinθ=mλ计算光的波长。
实验结果1.氢气谱线的波长:•蓝线:434nm•绿线:486nm•红线:656nm2.汞灯谱线的波长:•紫线:404nm•绿线:546nm•黄线:578nm实验结论通过实验发现,光栅测量光波波长的方法较为简便、准确,可以测定不同波长的光线,对于光学研究和应用有重要的意义。
实验分析实验中发现,测量光波波长的主要依据是光栅原理和计算公式。
光栅的作用是将光线分离成颜色带,而计算公式是根据衍射原理和光栅性质得出的,可以精确计算出光的波长。
此外,实验中要注意光源和准直器的调整,特别是将光源光线垂直入射光栅时要仔细调节,否则会影响测量的准确性。
另外,在记录各级衍射条纹时,应该在暗房中进行,以免环境光的影响。
实验改进为了减小实验误差,可以采取以下改进措施:1.使用更高精度的仪器减少误差。
2.加强对光源和准直器的校准,确保光线垂直入射光栅。
3.统计多组数据,计算平均值,并考虑误差范围。
总结光栅测量光波波长实验是一项基础实验,对于深入理解光学原理和方法有重要作用。
合理的实验步骤和改进措施能够保证实验数据的准确性,加深对光栅测量原理和方法的理解。
光栅测定光波波长实验要求
光栅测定光波波长实验要求
光栅测定光波波长实验要求如下:
1. 实验原理:使用光栅原理来测定光波的波长。
光栅是一种有大量平行光栅线的透明介质,当光通过光栅时,会发生衍射现象,形成多个亮度不同的衍射光束。
根据衍射现象和光栅的特性,可以通过测量衍射光束的角度和光栅线数来计算光波的波长。
2. 实验仪器:光源、准直镜、透镜、光栅、平行光管、光电管、测量仪器等。
3. 实验步骤:
- 构建实验装置:将光源放置在准直镜前方,通过透镜将光线准直,使光线平行射向光栅。
将光栅安装在平行光管内,并调整角度使得光线垂直射向光栅。
- 对光栅进行调节:调整光栅的位置和角度,使得衍射的一级亮点清晰可见。
- 测量衍射角度:使用测量仪器测量衍射光束的角度。
可以通过测量衍射光束与水平方向的夹角来确定衍射角度。
- 计算波长:根据光栅的特性和测得的衍射角度,使用光栅公式进行计算,得到光波的波长。
4. 实验注意事项:
- 实验环境应保持暗室或低光强环境,以减少背景杂散光的干扰。
- 光栅和光源应调整到适当的位置和角度,使得衍射亮点清晰可见。
- 测量时应尽量避免手触摸光栅,以免对实验结果产生影响。
- 在测量角度时,应尽量减小误差,可以采取多次测量、平均值等方法来提高精度。
5. 实验结果分析:对测得的光波波长进行统计和分析,比较实验结果与理论值的差异,评价实验方法的准确性和可靠性。
全息光栅实验报告
实验名称:全息光栅的制作与测量实验日期:2023年11月X日实验地点:实验室实验目的:1. 理解全息光栅的制作原理。
2. 掌握全息光栅的制作方法。
3. 学习使用光学仪器测量光栅常数。
4. 分析实验数据,验证光栅常数。
实验原理:全息光栅是一种利用光的干涉和衍射原理制成的光学元件。
它通过记录和再现光波的振幅和相位信息,从而实现光波的精确复现。
在全息光栅的制作过程中,需要使用两束相干光束,一束作为参考光束,另一束作为物光束。
两束光束在记录介质上相遇并发生干涉,形成干涉条纹。
经过适当的曝光、显影、定影等过程,最终制成全息光栅。
实验仪器:1. 全息干板2. 半导体激光器3. 分束镜4. 扩束镜5. 反射镜6. 准直透镜7. 针孔滤波器8. 光栅常数测量显微镜9. 计算器实验步骤:1. 将全息干板固定在实验平台上,确保其表面平整。
2. 使用分束镜将激光器发出的光束分成两束,一束作为参考光束,另一束作为物光束。
3. 将扩束镜安装在参考光束的路径上,使参考光束均匀照射在全息干板上。
4. 将准直透镜安装在物光束的路径上,使物光束经过准直后照射在全息干板上。
5. 调整分束镜和准直透镜的位置,使参考光束和物光束在全息干板上相遇并发生干涉。
6. 通过针孔滤波器将全息干板上的干涉条纹聚焦到白屏上。
7. 使用光栅常数测量显微镜测量干涉条纹的间距,计算出光栅常数。
8. 对实验数据进行整理和分析。
实验结果:1. 全息光栅成功制成,干涉条纹清晰可见。
2. 通过测量干涉条纹的间距,计算出光栅常数为d=0.5mm。
数据分析与讨论:1. 光栅常数的测量结果与理论值相符,说明实验结果准确可靠。
2. 实验过程中,需要注意调整参考光束和物光束的夹角,以保证干涉条纹的清晰度。
3. 光栅常数的测量结果受测量仪器和操作者的影响,需要多次测量并取平均值。
实验结论:1. 通过本实验,掌握了全息光栅的制作原理和制作方法。
2. 学习了使用光学仪器测量光栅常数的方法。
光栅光谱实验报告
实验目的:演示氦、氖、氢、汞、氮气体的光谱,并通过正交光栅观察这些光谱管的衍射图像。 实验原理:光栅作为重要的分光器件,它的选择与性能直接影响整个系统性能。为 更好协助各位使用者选择,在此做一简要介绍。 光栅分为刻划光栅、复制光栅、全息光栅等。刻划光栅是用钻石刻刀在涂薄金属表 面机械刻划而成;复制光栅是用母光栅复制而成。典型刻划光栅和复制光栅的刻槽 是三角形。全息光栅是由激光干涉条纹光刻而成。全息光栅通常包括正弦刻槽。刻 划光栅具有衍射效率高的特点,全息光栅光谱范围广,杂散光低,且可作到高光谱 分辨率。 氦、氖、氢、汞、氮气体的放电管能显示出这些气体的特定波长的各种特征谱线。 气体放电管由储气室和毛细管构成,其一端为阳极,另一端为阴极。不同的气体放 电管充以不同的气体,例如氦气、氖气等。当放电管两级加上直流高压以后,放电 管中的气体开始放电,在气体放电过程中,带电粒子之间,以及带电粒子与中性粒 子(原子或分子)之间进行着频繁的碰撞。碰撞使中性粒子(原子或分子)由基态 跃迁到激发态。当原子或分子由激发态跃迁回到基态时发射光子。气体放电发射的 光谱与气体元素有关,因为不同原子(分子)的结构各不相同,能级也不相同,因 此发射的光谱也彼此各异。光谱分析方法作为一种重要的分析手段,在科研、生产、
全息平面光栅的制作及其参数测定
全息平面光栅的制作及其参数测定一、 实验目的1. 掌握空间频率较低的全息平面光栅的制作方法。
2.学会在全息台上光学元件的共轴调节技术、扩束与准直的基本方法,熟练地获得和检验平行光。
3. 用几何光学和物理光学方法测定全息光栅的光栅常数。
二、 仪器及用具光学平台(全息台),He---Ne 激光器,定时器,快门,50%分束镜,平面镜,全息干板,像屏,底片夹,透镜,显定影用具,读数显微镜等。
三、 实验原理全息光栅是用全息照相的方法制作的一种分光元件。
与用普通方法制作的刻划光栅和复制光栅相比,全息光栅没有周期性误差,杂散光少,分辨率和衍射效率高,制作的环境条件要求较低,因而其应用越来越广泛。
两列同频率的相干平面光波以一定夹角相交时,在两光束重叠区域将产生干涉现象。
如图1(a )所示,在z=0的xy 平面(该平面垂直于纸面)上将接收到一组平行于y 轴的明暗相间的直条纹,其光强分布和条纹间距分别为 )]sin (sin 2cos 1[2210θθλπ-+=x I I (1))(21cos )(21sin 21sin sin 212121θθθθθθλ-+=-=d (2)式中:1θ、2θ分别为两束相干光与(x y )平面的法线夹角,θθθ=+21为两束光的会聚角。
当两束光对称入射即221θθθ==时,有(a) (b)图12sin 2λ=d (3)令ν为干涉条纹的空间频率,则λθν)2sin(21==d (4) 如果在0=z 处平行于xy 平面放置一块全息干板H (图1 b ),则经曝光、显影、定影等处理后,即可获得一张全息光栅。
当空间频率ν比较小时,称之为低频全息光栅。
四、 实验光路本实验采用马赫—曾特尔干涉仪光路,如图2所示。
它主要是有两块50%的分束器1BS 、2BS 和两块全反射镜1M 、2M 组成。
四个反射面互相平行,中心图2 光路构成一个平行四边形。
扩束镜C 和准直透镜L 共焦以后产生平行光,平行光射到1BS 上分成两束,这两束光经1M 、2M 反射后在2BS 上相遇发生干涉,在2BS 后面的观察屏P 上可观察到干涉条纹。
制作全息光栅实验报告
一、实验目的1. 了解全息光栅的制作原理和过程;2. 掌握全息光栅的拍摄和冲洗技术;3. 测量全息光栅的光栅常数,分析误差;4. 培养实验操作能力和数据分析能力。
二、实验原理全息光栅是一种利用光的衍射和干涉原理制作的光学元件。
当单色平行光通过全息光栅时,会发生衍射和干涉,形成一系列明暗相间的条纹,这些条纹称为光栅条纹。
光栅条纹的位置与光的波长有关,不同波长的光在光栅上形成的光栅条纹位置不同,从而实现光的色散。
三、实验仪器与材料1. 实验仪器:全息干板、激光器、白屏、分光计、显微镜、照相机、显影液、定影液等;2. 实验材料:全息干板、激光光源、白屏、显影液、定影液等。
四、实验步骤1. 拍摄全息光栅(1)将全息干板放置在白屏上,调整激光器,使激光束垂直照射到全息干板上;(2)将白屏放置在激光束的对面,调整白屏与全息干板之间的距离,使激光束在白屏上形成清晰的光点;(3)打开激光器,曝光全息干板,曝光时间约为10秒;(4)关闭激光器,将全息干板放入显影液中显影,显影时间约为1分钟;(5)取出全息干板,放入定影液中定影,定影时间约为5分钟。
2. 冲洗全息干板(1)将显影后的全息干板放入清水中漂洗,去除显影液;(2)将漂洗后的全息干板放入定影液中定影,定影时间约为5分钟;(3)取出全息干板,放入清水中漂洗,去除定影液;(4)将漂洗后的全息干板晾干。
3. 测量光栅常数(1)将制作好的全息光栅放置在显微镜下,调整显微镜的焦距,使光栅条纹清晰可见;(2)使用分光计测量光栅条纹的间距,根据光栅方程d·sin k = m·λ,计算出光栅常数d。
五、实验结果与分析1. 光栅常数测量结果:d = 5.6μm;2. 误差分析:实验过程中,由于仪器精度和操作误差,光栅常数测量值存在一定的误差。
通过多次测量,取平均值,可以减小误差。
六、实验总结1. 全息光栅的制作原理和过程较为简单,但需要注意曝光时间、显影时间和定影时间的控制;2. 光栅常数的测量需要使用分光计和显微镜,操作过程中要确保仪器精度和操作规范;3. 通过本次实验,掌握了全息光栅的制作和测量方法,提高了实验操作能力和数据分析能力。
氦氖激光波长测定实验报告
氦氖激光波长测定实验报告通过测定氦氖激光的波长,掌握激光器的基本工作原理和使用方法。
实验器材:氦氖激光器、光栅衍射仪、白炽灯、光电二极管、角度测量仪、加热器等。
实验原理:氦氖激光器产生的激光波长可通过光栅衍射仪进行测定。
光栅衍射仪利用光的衍射现象,通过测量衍射角度和光栅常数,可以计算出入射光的波长。
实验步骤:1. 装置激光器并接通电源,调整激光器的工作状态,使其稳定工作。
2. 将光栅衍射仪放置在激光器前方,调整仪器位置和角度,使其与激光器光路平行。
3. 在光栅衍射仪的光路上放置一个白炽灯,作为参照光源。
将光电二极管放置在光栅的衍射最大亮度处,连接到角度测量仪上。
4. 调节衍射仪的角度,使白炽灯的光和激光器发出的光都能通过光栅并进行衍射。
记录下此时的角度。
5. 将激光器的波长调到所需测定的范围内,再次调节衍射仪的角度,使激光的光通过光栅并进行衍射。
记录下此时的角度。
6. 根据衍射仪的角度差和光栅的常数,计算出激光的波长。
实验结果与分析:通过上述实验步骤,我们得到了氦氖激光的波长测定结果。
根据衍射仪的角度差和光栅的常数,可以计算出波长的数值。
在实验中,我们还可以观察到激光光束的聚束性和单色性。
激光的单一波长使得光束具有较好的直线传播性质和相干性,这在很多科学研究和工程应用中有重要意义。
实验中可能的误差和改进措施:1. 由于实验中的设备和仪器都有一定的误差,所以测量结果可能会有一定的误差。
可以通过多次重复测量和求平均值的方法,减小误差的影响。
2. 实验中的光电二极管的灵敏度和角度测量仪的精度也会对实验结果产生一定的影响。
可以使用更加精确的仪器来提高测量的精度。
3. 在实验过程中,还要注意避免光路受到外界因素的干扰,比如震动和杂散光的干扰等。
结论:通过本实验,我们成功测量了氦氖激光的波长,并了解了激光的工作原理和特性。
激光技术在科学研究、医学、通信等领域有着广泛的应用前景,对于我们深入了解激光的基本性质和使用方法有着重要的意义。
光栅测定光波波长实验报告
光栅测定光波波长实验报告1. 背景光栅测定光波波长实验是光学基础实验中一项重要的实验内容,通过实验可以测定出光波的波长大小。
光栅是一种光学元件,其具有周期性的透明或不透明槽槽结构,可用于分析光的光谱特性。
本实验基于这一原理,通过测量光栅所产生的衍射光条纹的间距,从而得出光波的波长。
2. 实验目的本实验的目的是使用光栅测量单色光的波长,并通过实验结果验证光栅公式的有效性。
3. 实验原理光栅是一种特殊形式的光学元件,它由一系列等间距的透明或不透明梯形刻纹构成,可以将入射的单色光分解成几个特定波长的光线。
当光束通过光栅时,会发生衍射现象,形成一系列亮暗相间的光条纹,即衍射光谱。
光栅的衍射光谱可以由以下公式描述:n⋅λ=d⋅sin(θ)其中,n为衍射级次,λ为波长,d为光栅常数,θ为衍射角。
本实验中,我们通过改变入射光的波长和测量衍射光条纹的间距d,可以根据公式求解出波长λ。
4. 实验步骤4.1 实验装置本实验所使用的实验装置包括:•白光源:用于产生连续谱的白光;•准直装置:用于使光束成为平行光;•光栅:光栅常数已知;•牛顿环:用于测量光栅的衍射光谱;•CCD相机:用于观测和拍摄光栅的衍射光谱;•数据处理软件:用于分析拍摄到的图像数据。
4.2 实验步骤1.将白光源接通电源,并通过准直装置使光线成为平行光;2.将光栅放置在光路中,使其与入射光成一定夹角;3.调整入射光线角度,使光栅的衍射图样清晰可见;4.使用CCD相机拍摄光栅的衍射图像;5.使用数据处理软件对图像进行处理,测量衍射级次和条纹间距;6.重复几次实验,以提高数据的准确性;7.统计实验数据,利用光栅公式计算波长。
5. 实验结果与分析通过实验测量得到的数据,我们可以根据光栅的公式计算出波长的值,并与理论值进行比较。
实验结果表明,测量得到的波长值与理论值相符,误差较小。
这证实了光栅公式的有效性,并验证了实验的准确性。
6. 结论根据实验结果和分析,我们得出以下结论:•光栅测定光波波长实验可以准确测量光波的波长;•光栅公式可以用于计算光波的波长,并得出准确的结果。
光栅衍射法测定氖光及其汞灯波长关于
实验名称:光栅衍射法测定氖光及其汞灯波长钱学森92班 宋有波 090450541 实验目的1)熟练分光计的调节。
2)理解光栅衍射现象;3)学习用光栅衍射法测定光的波长。
2 实验器材分光计、平面透射光栅、氖灯、传感器,计算机3 实验原理3.1 实验原理光栅和棱镜一样,是重要的分光光学元件,已广泛应用在光栅光谱仪、光栅单色仪等。
光栅是一组数目极多的等宽、等距和平行排列的狭缝。
它分为透射光栅和反射光栅两种。
应用透射光工作的称为透射光栅,应用反射光工作的称为反射光栅。
现代制造光栅主要有刻划光栅、复制光栅和全息光栅等形式。
本实验用的是平面透射光栅。
描述光栅特征的物理量是光栅常数d ,其大小等于狭缝宽度a 与狭缝间不透光部分的宽度b 之和,习惯上用单位毫米里的狭缝数目N 来描述光栅特性。
(1)根据夫琅禾费衍射理论,波长为λ的平行光束垂直入射到光栅平面上时,透射光将形成衍射现象,即在一些方向上由于光的相互加强后光强度特别大,而其他的方向上由于光的相消后光强度很弱就几乎看不到光。
图40-1给出了形成光栅衍射的光路图。
如果入射光源为线光源,经过光栅后衍射图样为一些相距较大的锐利的色彩斑斓的明亮条纹组成。
而这些亮条纹1、光源2、狭缝3、凸透镜4、平面透射光栅5、光栅衍射光谱图40—1 实验原理示意图图40—2 汞灯的部分光栅衍射光谱示意图所在的方位由光栅方程所确定,方程为(2)其中,d为光栅常数,k为衍射级别,λ之间的夹角。
由(2)式可见,同一级的衍射条纹,如果波长不同其衍射角不同,所以光栅具有分光功能。
图40-2为汞灯的部分光栅衍射光谱示意图。
光栅衍射现象是很容易观察到的,如果手头有一块光栅,可直接透过光栅观察某一光源就可看到衍射现象。
实验室中经常在分光计上利用光栅衍射现象来进行光波长或光栅常数的3)可以确定光波长,即:(3)3.2 实验方法如果有一台调节好的分光计,便可用来观察光栅衍射现象以及进行相关物理量的测定。
实验一全息光栅的制作[实验目的]1、了解用全息方法制作光栅的基本...
实验一 全息光栅的制作[实验目的]1、了解用全息方法制作光栅的基本原理;2、掌握全息实验光路的设计和基本调节方法;3、掌握一维、二维全息光栅的制作技巧;3、了解全息光栅的基本特性和测试方法;4、初步了解全息记录介质—卤化银乳胶的特性,掌握干板的处理方法。
[实验仪器]全息防震平台(2m ×1.2m ),氦氖激光器(功率大于30mW ),反射镜(若干),分束镜,扩束镜,干板架,量角器,全息干板(天津I 型卤化银乳胶板),激光功率计/照度计,电子快门,暗房设备。
[实验原理]光栅是重要的分光元件之一,由于它的分辨率优于棱镜,因而许多光学仪器中都采用光栅代替棱镜作为分光的主要元件,如单色仪、光谱仪、摄谱仪等。
此外,光栅在现代光学中的应用日趋广泛,如光通信中用作光耦合器、光互连中用作互连元件、激光器用作选频元件、光信息处理用作编码器、调制器、滤波器等等。
全息光栅制作技术是20世纪60年代随着全息技术的发展而日趋成熟的一门技术,因其具有传统刻划光栅所不具备的一些优点而受到人们的重视。
目前,全息光栅在某些方面已经取代刻划光栅,在光栅家族中占有了一席之地。
一、原理由光的干涉原理可知,两束平行的相干光干涉,干涉场是一组明暗相间的等间隔的平面族,其周期由两束平行光的夹角和光波波长所确定。
若将全息记录干板置于该干涉场中,则干板上记录到的干涉条纹将呈等间隔的平行直线条纹,这就是全息光栅。
设两束平行光的夹角为θ,光波波长为λ0,且两束平行光对于全息干板呈对称入射状态(见图2-1所示),显然,干板记录的全息光栅的透射率应该呈余弦函数分布,称为余弦光栅。
由干涉原理可知,全息光栅周期d 由下式确定02sin 2λθ=d (2-1)λ2-1通常还用光栅空间频率f 0表征光栅线密度特性,因而上式还可表示为002sin2λθf = (2-2)其中,f 0 定义为 df 10= (2-3) 其单位通常用“lp/mm ” (lp 表示“线对”,指一条亮纹和一条暗纹构成的一个“线对”,对应光栅的一个周期)。
氦氖激光器波长测定
氦氖激光器波长测定
氦氖激光器是一种气体激光器,它利用氦气和氖气混合产生激光。
氦氖激光器的波长测定是指测量氦氖激光的波长。
氦氖激光器通常产生两个主要的波长:632.8纳米(红光)和543.5纳米(绿光)。
这些波长非常稳定,并且可以通过使用干涉仪、折射仪或光栅进行精确测量。
干涉仪是一种常用的测量氦氖激光器波长的设备。
它利用激光光束的干涉现象来测量波长。
干涉仪由两个光学平台组成,其中一个被称为固定平台,另一个被称为移动平台。
通过调整移动平台的位置,可以观察到干涉条纹的移动。
通过测量干涉条纹的移动距离,可以计算出激光的波长。
折射仪也可以用于测量氦氖激光器的波长。
折射仪通过将激光光束通过一个棱镜或光栅来测量光的折射角。
根据光的折射角和折射率的关系,可以计算出波长。
光栅也是一种测量氦氖激光器波长的常用设备。
光栅是有规律的一排平行线,通过将激光光束通过光栅,可以产生一系列的衍射光束。
根据衍射的角度和光栅常数的关系,可以计算出波长。
通过使用这些仪器和方法,可以准确测量氦氖激光器的波长。
这对于许多应用,如激光测距仪、激光显示和激光切割等,非常重要。
全息光栅的制作及其参数测量
全息光栅的制作(实验报告)完美版标签:光栅干片发散镜双缝白屏教育设计性试验看似可怕,但实际操作还是比较简单的~我的实验报告,仅供参考~实验报告封面全息光栅的制作一、实验任务设计并制作全息光栅,并测出其光栅常数,要求所制作的光栅不少于每毫米100条。
二、实验要求1、设计三种以上制作全息光栅的方法,并进行比较。
2、设计制作全息光栅的完整步骤(包括拍摄和冲洗中的参数及注意事项),拍摄出全息光栅。
3、给出所制作的全息光栅的光栅常数值,进行不确定度计算、误差分析并做实验小结。
三、实验的基本物理原理1、光栅产生的原理光栅也称衍射光栅,是利用多缝衍射原理使光发生色散(分解为光谱)的光学元件。
它是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片。
光栅的狭缝数量很大,一般每毫米几十至几千条。
单色平行光通过光栅每个缝的衍射和各缝间的干涉,形成暗条纹很宽、明条纹很细的图样,这些锐细而明亮的条纹称作谱线。
谱线的位置随波长而异,当复色光通过光栅后,不同波长的谱线在不同的位置出现而形成光谱。
光通过光栅形成光谱是单缝衍射和多缝干涉的共同结果(如图1)。
图12、测量光栅常数的方法:用测量显微镜测量;用分光计,根据光栅方程d·sin =k 来测量;用衍射法测量。
激光通过光栅衍射,在较远的屏上,测出零级和一级衍射光斑的间距△x及屏到光栅的距离L,则光栅常数d= L/△x。
四、实验的具体方案及比较1、洛埃镜改进法:基本物理原理:洛埃镜的特点是一部分直射光和另一部分反射镜的反射光进行干涉,如原始光束是平行光,则可增加一全反镜,同样可做到一部分直射光和一部分镜面反射光进行干涉,从而制作全息光栅。
优点:这种方法省去了制造双缝的步骤。
缺点:光源必须十分靠近平面镜。
实验原理图:图22、杨氏双缝干涉法:基本物理原理:S1,S2为完全相同的线光源,P是屏幕上任意一点,它与S1,S2连线的中垂线交点S'相距x,与S1,S2相距为rl、r2,双缝间距离为d,双缝到屏幕的距离为L。
实验八 用光栅测He-Ne激光波长
实验三 用光栅测He-Ne 激光波长一、实验目的1.加深对光的衍射和光栅分光作用基本原理的理解;2.学会用透射光栅测定光波的波长及光栅常数;3.学会利用透射光栅演示复色光谱。
二、实验仪器He-Ne 激光,光栅,光具座。
三、实验原理图1 激光衍射示意图,θ为衍射角光栅上每厘米长度上含狭缝3000条以上,a 为缝宽,b 为缝距,令d =a +b ,称 为光栅常数,利用波长为λ的单色平行光线垂直投射于光栅上,到达光栅表面的平面光波是 同位相的,它们被狭缝衍射后会聚在光屏上形成衍射图样,如图1所示。
如果衍射角满足光 栅方程:Kλ=dsinθ(K =0,±1,±2……)通过测定θ,即可算出波长值。
四、实验方法a 、在光具座上调节光栅与光屏至等高,分别用He-Ne 激光器和 半导体激光作光源。
b 、调节光栅使其与入射激光平行(以反射光与入射光重合为标准)。
c 、调整光屏至光栅的距离D ,测量10组数据。
d 、计算波长e 、求百分误差计算λ=±d/k sin(arctg L/D) (d =1/6000cm,k =1)%100/)(%⨯-=标准标准λλλX五、测量结果改变D 值10次(由3.3cm 至13cm),测量L 值(采用多次测量取平均值),计算λ,并求百分误差。
要求自绘表格,并作相应的误差处理。
六、讨论能否用半导体激光能替代He -Ne 激光进行“光栅测波长”的实验?半导体激光波长在6300A°-6500A°之间,而没有一个标准值,故不能证明半导体激光的精确度高于He-Ne 激光,因此,在精密的科研工作中不宜使用半导体激光,而实验室运用半导体激光则有显著优势,两种激光器的对比见表。
①He-Ne激光的波长平均值为(λ1+λ2+……λn)/n=6393.6(A°)标准值为6328A°故百分误差X%=|6393.6-6328|/6328×100%=1.04%②半导体激光的波长平均值为(λ1+λ2+……λn)/n=6366.4(A°)半导体激光公认值在6300A°-6500A°之间:取其下限6300A°时,X%=|6366.4-6300|/6300×100%=1.05%;取其上限6500A°时,X%=|6366.4-6500|/6500×100%=4.1 0%当λ=6366.4时,百分误差最小。
用透射光栅测定He-Ne激光波长
用透射光栅测定He-Ne激光波长光栅是一种重要的光学器件,是一些光谱仪器(如单色仪、光谱仪)的核心部分。
图不仅用于光谱学,还广泛地应用于计量、光通信机信息处理等方面。
实验目的1.测定He-Ne的激光波长2.观察光线通过光栅的衍射现象,学习应用光栅测量波长的思想方法实验仪器透射式光栅、凸透镜、刻度尺、光屏、He-Ne激光器、光学平台等。
实验原理线距离较宽的均列光谱。
当以单色光照射在光栅上面,则透过各狭缝的光线因衍射将向各方向传播,经过透镜汇聚后相互干涉,并在透镜的焦平面上形成一系列被相当宽的暗区隔开的间距不同的明条纹。
给觉光衍射原理,衍射光谱中明条纹的位置由下式决定:dsin(α)=Kλ(K=…-2,-1,0,1,2,….)上式称为光栅方程,式中d=a+b即光栅常数,λ入射光波长,K 为明条纹级数。
K=0对应中央明条纹,K=…-2,-1,0,1,2,…,分别叫做第一级明条纹,第二级明条纹….,对称分布在中央明条纹两侧,α是K 级明条纹的衍射角。
第K条亮纹dsin(αk)=Kλ,第K+1条亮纹dsin(αk+1)=(K+1)λ,即:d*x k/f=Kλ(1)d*x k+1/f=(K+1) λ(2)两式相减得到:λ=d*(x k-x k+1)/f=d*△x/f因此我们在实验中需要测量得到相邻亮纹之间的间距,代入上式可以求出激光波长。
实验步骤1.按照实验原理摆放实验用具,并且使其大致在同一条水平线上。
2.观察投射式光栅的衍射现象。
3.测量多个亮纹间距,求出平均的相邻亮纹间距代入公式λ=d*(x k-x k+1)/f=d*△x/f求出激光波长实验注意事项在实验过程中注意不要用眼睛直视激光,不要嬉戏打闹,以免对造成不可复原的损伤。
全息光栅的制作终结篇
全息光栅的制作一.【实验目的】1、了解全息光栅的原理;2、复习用马赫-曾德干涉仪搭光路并拍照;3、学习对全息光栅的后处理。
二.【主要仪器及设备】1.光学防震平台一个,支架、支杆及底座若干,旋转平台一个,带三维调节架及φ15 ~25μm针孔的针孔滤波器组合两套。
2.扩束透镜(20~40 倍显微物镜)两个,已知焦距的透镜一个,反射镜若干,分束器一个,光束衰减器两套。
3. 20mW He-Ne 激光器一台。
4.天津I 型全息干板,显影、定影设备和材料。
5.电子快门和曝光定时器一套。
三.【实验原理】全息光栅的制作原理是:两束具有特定波面形状的光束干涉,在记录平面上形成亮暗相间的干涉条纹,用全息记录介质记录干涉条纹,经处理得到全息光栅。
采用不同的波面形状可得到不同用途的全息光栅,采用不同的全息记录介质和处理过程可得到不同类型或不同用途的全息光栅(如正余弦光栅、矩形光栅、平面光栅和体光栅)。
当参考光波和物光波都是点光源且与全息干板对称放置时可以在干板上形成平行直条纹图形,这便是全息光栅。
采用线性曝光可以得到正弦振幅型全息光栅。
从光的波动性出发,以光自身的干涉进行成像,并且利用全息照相的办法成像制作全息光栅。
有多种光路可以制作全息光栅。
其共同特点是①将入射细光束分束后形成两个点光源,经准直后形成两束平面波;②采用对称光路,可方便地得到等光程。
我们常采用马赫-曾德干涉仪光路。
(一)马赫-曾德干涉仪法(1)光栅制作原理与光栅频率的控制用全息方法制作光栅, 实际上就是拍摄一张相干的两束平行光波产生的干涉条纹的照相底片, 如图1所示,当波长为λ的两束平行光以夹角θ交迭时, 在其干涉场中放置一块全息干版H , 经曝光、显影、定影、漂白等处理, 就得到一块全息光栅。
相邻干涉条纹之间的距离即为光栅的空间周期d(实验中常称为光栅常数) 。
图1相干光干涉形成光栅的示意图图2 全息光栅制作实验光路图马赫-曾德干涉仪光路测全息光栅。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12 光 栅 常 数 的 控 制 . 准 确 的 控 制 光 栅 常数 .是 光 栅 质 量 的 重 要
赵 鹏 飞‘ ,邱 大庸
( .湛 江师范 学院物理 系,广 东 湛 江 54 4 : 1 20 8 2 .重 庆 大学应 用物理 系,重庆 4 O 4 ) O O4
摘 要 :设计 了一种新的综合性实验,全息光栅 的制作及测试 ,并用所摄制全息光栅 .测定
氮 氖激 光 波 长 。
关 键词 :全息光栅 ;光栅常数 ;衍射法
栅 的空 间周期 d ( 实验 中常称为光 栅常数 ) 。从 双光束 干涉 可知
d= () 1
- 收稿 日期 :2 0 — 1 8 0 1 2一l 作者 简 彳 :赵 鹏 飞 (9 2一) r 16 ,男 ,副 教 授 ,博 士
维普资讯
24 l
中山 大学 学报 沦丛
第 2 卷 2
^是 曝 光 时 所 用 的 激 光 波 长 ,而 光 栅 的 空 间 频
率 为
,= 1 = —i( /) 2 n 02 sT
一
() 2
一
般 说 来 ,这 样 制 作 的 全 息 光 栅 是 黑 白 光 栅 。
图 l 原 理 图
但 如 果 工 艺 上 能 做 到 线 性 曝 光 ,线 性 冲 洗 ,则
维普资讯
第 卷 第 1期 ቤተ መጻሕፍቲ ባይዱ2O O 2年 2月
中 山 大 学 学 报 论 丛
S UN AT E UN v 丑坞 ⅡY F0 Y S N I1 RUM
v0. 2 N . 12 0 1 Fb e . 2 0 02
制 作 全 息 光 栅 与 测 定 氦 氖 激 光 波 长
中图分类 号 :0 3 文献标识 码 :1 文章 编号 :1 71 2( o ) 1 23 3 4 6 3 0 . 9 2 2 0- 1. 0 7 o 0 - 0
光 栅是 一 种 重 要 的分 光 元 件 ,在 实 际 中被 广 泛 应 用 。许 多 光 学 元 件 ,例 如 单 色 仪 、 摄 谱 仪 、光 谱 仪 等 都 用 光 栅 作 分 光 元 件 ; 光 纤 通 讯 、 光 计 算 机 技 术 中 用 它 做 分 光 或 耦 合 元
1 实 验 原 理 与设 计
用 全 息 方 法 制 作 光 栅 .实 际 上 就 是 拍 摄 一 张 两 平 行 光 波 干 涉 条 纹 的 照 相 底 片 ,如 图 1
所示 , 当波长 为 的两束平行 光 以夹角 0交迭 时 ,在 其 干涉 场 中放置 一 块 全息 干版 H,经
曝 光 、 显 影 、 定 影 、 漂 白等 处 理 ,就 得 到 一 块 全 息 光 栅 。 相 邻 干 涉 条 纹 之 间 的距 离 即 为 光
角 形 光 路 ,如 图 2所 示 。 氮 氖 激 光 器 输 出 的激 光 ,经 光 开 关 T后 再
经 全 反 镜 M1 向 ,投 射 到 透 、 反 比 为 1 l的 转 :
分柬 镜 而 分 为 光 强 相 等 的 两 束 :透 射 光 和 反 射 光 。 它 们 分 别 经 全 反 镜 M2 M 转 向 后 ,再 经 、 _ 3 L 、L 1 2和 I 3、 两 套 相 同 为 扩 束 、 准 直 系 统 ( 倒置 的伽利 略望远 镜 ) 为 ,成 为 平 行 光 束 并 以 夹 角 日交 迭 ,在 此 区 域 放 置 全 息 干 版 H,使 之
可做成 全息 正弦光 栅 。
1 1 实 验 光 路 .
有 多 种 光 路 可 以 制 作 全息 光 栅 。 其 共 同 特 点 是 ① 将 入 射 细 光 束 分 束 后 形 成 两 个 点 光 源
( 可实 可虚 )经 准直后 形成 两束 平面 渡 ;② 对称 光 路 。可 方便 地得 到 等 光程 。我 们采 用三
件 ;某些激 光 器用它 作选频 元件 ;在光信 息 处理 系统 中 ,光 栅 更有 着 广 泛 的用 途 。现 在 , 光栅 已应 用 于 高 科 技 民用 产 品 , 例 如 V D、 D D 都 采 用 光 栅 作 轨 道 光 、读 出 光 的 分 光 元 C V
件而 进 入千家 万户 。 与 刻划 光 栅 相 比 .全 息 光 栅 具 有 杂 散 光 少 、 分 辨 率 高 、适 用 光 谱 范 围 宽 、有 效 孔 径 大 、 生 产 效 率 高 ,成 本 低 廉 等 突 出优 点 。 在 近代 物 理 实 验 中 ,培 养 学 生 综 合 应 用 有 关 知 识 及 实 验 技 术 , 主 动 地 、创 造 性 进 行 学 习 ,是 素质 教 育 中 面 临 的 课 题 。我 们 进 行 了 一 些 探 索 。为 此 , 我们 设 计 了 一 种 新 的 综 合 性 实 验 。 在 本 实 验 中 ,组 合 了全 息 光 栅 的 制 作 及 测 试 ,衍 射 法 测 量激 光 波 长 等 内容 。 通 过 本 实 验 ,学 生 将 学 到 精 密 光 学 调 整 技 术 。 特 别 是 光 学 共 轴 及 平 行 光调 整 及 检 验 技 术 ;用 全 息 方 法 制 作 光 栅 的 技 术 ; 握 光 栅 常数 的 控 制 方 法 , 作 一 维 黑 白 光 栅 ; 习 使 用 测 角 仪 精 密 掌 制 复 测试 衍射角 的技术 ; 最后 让 学 生 使 用 自己 制 得 的 光 栅 , 衍 射 法 测 量 激 光 波 长 这 种 有 别 于 传 用 统 的 干 涉 法 测 波 长 的方 法 , 指 出用 同 一 实 验 装 置 还 可 测 量 透 镜 的 焦 距 或 光 栅 常数 , 并 以启 迪 其 思 维 , 发 其 向新 领域 探 索 的 激 情 。 制 作 全 息 光 栅 的 实 验 中 , 投 有 这 样 的 综 合 性 实 验 。 激 在 还