DIT系列高精度数字电流传感器使用说明书

合集下载

数字电流夹测量器手册说明书

数字电流夹测量器手册说明书

2. Safety
2-1. InBiblioteka ernational Safely Symbols This symbol, adjacent to a terminal, indicates that, under normal use, hazardous voltages may be present Double insulation
Range
Accuracy (% of reading + digits)
0.1% ~ 99.9% ±1.2% of rdg ±2 dgts
Resolution 0.1%
Sensitivity: <0.5V RMS Pulse width: > 100μs, < 100ms; Overload protection: 300V DC or 300V AC rms
400Ω 4kΩ 40kΩ 400kΩ 4MΩ 40MΩ
Accuracy (% of reading + digits) ±(1.0% + 4d) ±(1.5% + 4d) ±(1.5% + 4d) ±(1.5% + 4d) ±(2.5% + 4d) ±(3.5% + 4d)
Resolution
0.1Ω 1Ω 10Ω 100Ω 1kΩ 10kΩ
n, m, W, M, k
Unit of measure prefixes: nano, milli, micro, mega, and kilo
Continuity test
Diode test

Accuracy (% of reading + digits)
±(3% + 5d)

德闻流量计IGTM用户手册

德闻流量计IGTM用户手册

1.0IGTM 的详细说明51.1 概述 5 1.2 工作原理 52.0 安装62.1 装卸步骤和注意事项 6 2.2 与IGTM一起提供的零部件和相关文档8 2.3 铭牌说明9 2.4 认证、标定和压力测试10 2.4.1 认证10 2.4.2 最初的验证及标定11 2.4.3 水压测试和气密性测试11 2.5 安装12 2.5.1 润滑系统及启动前的润滑12 2.5.2 必要的直管段15 2.5.3 流向及安装方向15 2.5.4 连接压力变送器16 2.5.5 温度测量16 2.5.6 密度测量17 2.5.7 表头17 2.5.8 脉冲变送器19 2.5.9 簧片开关的详细说明22 2.5.10近开关的详细说明23 2.5.11叶轮和/或参考轮处的高频传感器23 2.5.12脉冲变送器的电气连接24 2.5.13流量计算机和流量修正器的必要设置273.0 运行283.1 精度28 3.2 瞬时流量的量程比28 3.2.1 高压下流量的量程29 3.2.2 过载30 3.3 温度量程30 3.4 最大压力31 3.5 运行条件下的压降31 3.6 制造材料32 3.7 气体成分和流量条件324.0 维护334.1 定期润滑33 4.2 备用备件34 4.3 旋转测试354.4 重新校准365.0 保证 36附图和表格表1 可提供的油泵 (13)表2 启动时所需润滑油的数量 (14)表3 可提供的脉冲变送器 (22)表4 法兰等级和允许的最大工作压力 (31)表5 IGTM制造材料的详细说明 (32)表6 定期润滑:周期 (34)表7 正常转子停止时间 (35)表8 可测量气体类型 (37)表9 推荐安全栅列表 (39)表10 口径流量组合表 (40)表11 气体流速和最大压降 (41)表12 流量计的尺寸图 (42)表13 流量计叶轮及频率参数表 (44)图1 IGTM上的铭牌 (9)图2 流量计机械读数 (18)图2 表头方向的改变 (19)图3 脉冲接头连接图 (20)图4 IS 安全手册的连接图 (24)图5 4-20mA模拟流量信号的连接图 (25)图6 双高频信号与流量计算机的连接图 (26)图7 高压下的量程比 (30)亲爱的用户:首先祝贺您购买高质量的测量仪器--- Vemm tec IGTM 型气体涡轮流量计。

美国Omron公司MOS FET电流传感器说明说明书

美国Omron公司MOS FET电流传感器说明说明书

110RoHS compliant!Note:The actual product is marked differently from the image shown here.■Application Examples•Semiconductor inspection tools •Measurement devices •Broadband systems •Data loggers■List of Models■DimensionsNote:All units are in millimeters unless otherwise indicated.■Terminal Arrangement/Internal Connections (Top View)■Actual Mounting Pad Dimensions (Recommended Value, Top View)Contact form Terminals Load voltage (peak value)Model Minimum packaging unitNumber per tape SPST-NOSurface-mounting terminals40 VACG3VM-41LR3---G3VM-41LR3(TR)1,500G3VM-41LR3Note:The actual product is marked differentlyfrom the image shown here.Weight: 0.03 gNote: A tolerance of ±0.1 mm applies toall dimensions unless otherwise specified.G3VM-41LR3G3VM-41LR3G3VM-41LR3 G3VM-41LR3■Absolute Maximum Ratings (Ta = 25°C)■Electrical Characteristics (Ta = 25°C)■Recommended Operating ConditionsUse the G3VM under the following conditions so that the Relay will operate properly.■Engineering DataLoad Current vs. Ambient Temperature G3VM-41LR3■Safety PrecautionsRefer to “Common Precautions” for all G3VM models.Item Symbol Rating Unit Measurement ConditionsInput LED forward current I F50mARepetitive peak LED forward current I FP1A100 µs plus, 100 ppsLED forward current reduction rate∆ I F/°C−0.5mA/°C Ta ≥ 25°CLED reverse voltage V R5VConnection temperature T j125°COutput Output dielectric strength V OFF40VContinuous load current I O80mAON current reduction rate∆ I ON/°C−0.8mA/°C Ta ≥ 25°CConnection temperature T j125°CDielectric strength between input andoutput (See note 1.)V I-O1,500Vrms AC for 1 minAmbient operating temperature T a−20 to +85°C With no icing or condensation Storage temperature T stg−40 to +125°C With no icing or condensation Soldering temperature---260°C10s Note: 1.The dielectric strength be-tween the input and out-put was checked byapplying voltage betweenall pins as a group on theLED side and all pins as agroup on the light-receiv-ing side.Item Symbol Mini-mum Typical Maxi-mumUnit MeasurementconditionsInput LED forward voltage V F 1.0 1.15 1.3V I F = 10 mA Reverse current I R------10µA V R = 5 VCapacity between terminals C T---15---pF V = 0, f = 1 MHz Trigger LED forward current I FT------4mA I O = 80 mA Output Maximum resistance with output ON RON ---2535ΩI F = 5 mA,I O = 80 mA, t = 10 msCurrent leakage when the relay is open I LEAK------ 1.0nA V OFF = 30 V, Ta = 50°C Capacity between terminals C OFF---0.6 1.4pF V = 0, f = 100 MHz,t < 1 sCapacity between I/O terminals C I-O---0.8---pF f = 1 MHz, Vs = 0 V Insulation resistance between I/O terminals R I-O1,000------MΩV I-O = 500 VDC,RoH ≤ 60%Turn-ON time tON------0.5ms I F = 10 mA, R L = 200 Ω,V DD = 20 V (See note 2.)Turn-OFF time tOFF------0.5ms Note: 2.Turn-ON and Turn-OFFTimesItem Symbol Minimum Typical Maximum UnitOutput dielectric strength V DD------32VOperating LED forward current I F10---30mAContinuous load current I O------80mAOperating temperature T a25---60°C111Common Precautions!WARNINGBe sure to turn OFF the power when wiring the Relay, other-wise an electric shock may be received.!WARNINGDo not touch the charged terminals of the SSR, otherwise an electric shock may be received.!CautionDo not apply overvoltage or overcurrent to the I/O circuits of the SSR, otherwise the SSR may malfunction or burn.!CautionBe sure to wire and solder the Relay under the proper soldering conditions, otherwise the Relay in operation may generate ex-cessive heat and the Relay may burn.Typical Relay Driving Circuit ExamplesUse the following formula to obtain the LED current limiting resis-tance value to assure that the relay operates accurately.Use the following formula to obtain the LED forward voltage value to assure that the relay releases accurately.Protection from Surge Voltage on the Input TerminalsIf any reversed surge voltage is imposed on the input terminals, insert a diode in parallel to the input terminals as shown in the fol-lowing circuit diagram and do not impose a reversed voltage value of 3V or more.Surge Voltage Protection Circuit ExampleProtection from Spike Voltage on the Output TerminalsIf a spike voltage exceeding the absolute maximum rated value is generated between the output terminals, insert a C-R snubber orclamping diode in parallel to the load as shown in the following circuit diagram to limit the spike voltage.Spike Voltage Protection Circuit ExampleUnused Terminals (6-pin models only)Terminal 3 is connected to the internal circuit. Do not connect anything to terminal 3 externally.Pin Strength for Automatic Mountingn order to maintain the characteristics of the relay, the force imposed on any pin of the relay for automatic mounting must not exceed the following.In direction A: 1.96 NIn direction B: 1.96 NLoadTransistor10 to 100 kΩLoadR1 =V CC− V OL− V F (ON) 5 to 20 mAV F (OFF) = V CC− V OH < 0.8 V4Load ConnectionDo not short-circuit the input and output terminals while the relay is operating or the relay may malfunction.Solder MountingPerform solder mounting under the following recommended con-ditions to prevent the temperature of the Relays from rising.<Flow Soldering>Through-hole Mounting (Once Only)Note:We recommend that the suitability of solder mounting be verified under actual conditions.<Reflow Soldering>Surface Mounting DIP or SOP Packages (Twice Max.) Surface Mounting SSOP Packages (Twice Max.)Note: 1.We recommend that the suitability of solder mounting be verified under actual conditions.2.Tape cut SSOPs are packaged without humidity resis-tance. Use manual soldering to mount them.Manual Soldering (Once Only)Manually solder at 350°C for 3 s or less or at 260°C for 10 s or less.SSOP Handling Precautions<Humidity-resistant Packaging>Component packages can crack if surface-mounted components that have absorbed moisture are subjected to thermal stress when mounting. To prevent this, observe the following precau-tions.1.Unopened components can be stored in the packaging at 5to 30°C and a humidity of 90% max., but they should be used within 12 months.2.After the packaging has been opened, components can bestored at 5 to 30°C and a humidity of 60% max., but they should be mounted within 168 hours.3.If, after opening the packaging, the humidity indicator turnspink to the 30% mark or the expiration data is exceeded, bake the components while they are still on the taping reel, and use them within 72 hours. Do not bake the same com-ponents more than once.Baking conditions: 60±5°C, 64 to 72 hExpiration date: 12 months from the seal date(given on the label)4. f the same components are baked repeatedly, the tapedetachment strength will change, causing problems when mounting. When mounting using dehumidifying measures, always take countermeasures against component damage from static electricity.5.Do not throw or drop components. If the laminated packag-ing material is damaged, airtightness will be lost.6.Tape cut SSOPs are packaged without humidity resistance.Use manual soldering to mount them.AC ConnectionDC Single Connection DC Parallel Connection LoadLoadLoadLoadSolder type Preheating SolderingLead solderSnPb150°C60 to 120 s230 to 260°C10 s max.Lead-free solderSnAgCu150°C60 to 120 s245 to 260°C10 s max.Solder type Preheating SolderingLead solderSnPb140→160°C60 to 120 s210°C30 s max.Peak240°C max.Lead-free solderSnAgCu180→190°C60 to 120 s230°C30 to 50 sPeak260°C max.Solder type Preheating SolderingLead solderSnPb140→160°C60 to 120 s210°C30 s max.Peak240°C max.Lead-free solderSnAgCu150→180°C120 s max.230°C30 s max.Peak250°C max.5。

IIOT-TH20 温湿度传感器说明书

IIOT-TH20 温湿度传感器说明书

IIOT-TH20温湿度传感器产品说明书V2.4目录1.产品资料 (3)2.产品概述 (3)2.1.功能特点 (3)2.2.技术参数 (3)2.3.产品尺寸 (4)3.模拟量参数含义 (4)3.1.模拟量4-20mA电流输出 (4)4.通讯协议 (4)4.1.通讯基本参数 (4)4.2.数据帧格式定义 (5)4.3.寄存器地址 (5)4.4.通讯协议示例以及解释 (6)5.常见问题及解决办法 (8)6.安装说明 (8)7.接线说明 (9)7.1.485型接线定义 (9)7.2.模拟量型接线定义 (9)7.3.模拟量典型三线制接线方式 (10)8.联系方式 (10)9.质保与售后 (10)10.免责声明 (11)11.修订记录 (11)1.产品资料产品说明书下载地址:https:///product/444.html设备上云操作指导详情:https:///news/1204.html2.产品概述IIOT-TH20系列温湿度传感器广泛适用于农业大棚/花卉培养等需要温湿度监测的场合。

传感器内输入电源,感应探头,信号输出三部分完全隔离。

安全可靠,外观美观,安装方便。

2.1.功能特点●探头灵敏度高,信号稳定;●测量范围宽、线形度好、精度高;●防水性能好、安装使用方便。

2.2.技术参数参数技术指标产品名称温湿度传感器产品供电DC9V-24V产品功耗≤10mA/DC12V数据刷新时间<1S运行环境工作温度:-20-80℃工作湿度:0-95%RH(无结露)量程温度:-40-80℃;湿度:0-100%RH 精度湿度:±3%RH;温度:±0.5℃长期稳定性湿度:≤1%/y;温度:≤0.1℃/y输出方式RS485接口,Modbus-RTU通讯协议4-20mA接口,电流信号模拟量负载能力电流输出,≤600欧姆尺寸规格110*85*44mm,壁挂式王字壳IP防护等级IP65默认线缆长度 1.2米,线缆长度可按要求定制2.3.产品尺寸3.模拟量参数含义3.1.模拟量4-20mA电流输出电流值温度湿度4mA-40℃0%20mA80℃100%温度计算公式为:P=(I/1000-4mA)*7.5-40℃;湿度计算公式为P=(I/1000-4mA)*6.25%RH;其中I的单位为mA。

操作指南电流计使用方法说明书

操作指南电流计使用方法说明书

操作指南电流计使用方法说明书一、引言电流计是一种广泛应用于电子工程领域的测试仪器,用于测量电路中的电流强度。

本操作指南将详细介绍电流计的使用方法,旨在帮助用户正确、高效地操作电流计。

二、电流计的基本构造电流计由外壳、显示屏、操作按钮、电池盒等部分组成。

外壳采用耐压材料制成,显示屏采用高分辨率技术,操作按钮设计合理,易于操作,电池盒为电源提供持久的供电。

三、操作步骤1. 准备在操作电流计之前,确保已安装好电池,并确认电流计处于关闭状态。

握住电流计的手柄,让探测头对准待测电路。

2. 打开电流计按下电流计上的电源按钮,显示屏将亮起并显示基本信息,进入待测状态。

3. 设置测量范围根据待测电路的预估电流大小,选择适当的测量范围。

电流计一般提供多个档位供选择,通过按钮进行档位切换。

4. 连接电流计将电流计的探测头与待测电路连接,确保连接牢固。

注意接线的正确性,避免连接错误引起测量结果的误差。

5. 进行测量根据实际需求,选择直流或交流测量模式。

在显示屏上可以清晰地看到经过滤波处理后的电流数值。

6. 结束测量在完成测量后,按下电源按钮将电流计关闭。

四、注意事项1. 使用电流计时,避免在潮湿的环境中操作,以免影响仪器的正常工作。

2. 当电流计长时间不使用时,应将电池取出,以免电池漏液损坏电流计。

3. 尽量避免激烈震动和摔落,保护好电流计的外壳和显示屏。

五、故障排除1. 如果电流计出现显示异常或无法启动的情况,请先检查电池是否安装正确或是否电量低下。

2. 如果测量结果与预期差距较大,可先确认接线是否正确,并检查测量范围是否选择合适。

六、总结本操作指南详细介绍了电流计的使用方法,包括准备、打开电流计、设置测量范围、连接电流计、进行测量、结束测量等步骤。

同时,还提供了注意事项和故障排除的指导。

希望本说明书能够帮助用户正确操作电流计,并获得准确的测量结果。

以上就是电流计使用方法的操作指南,祝您顺利使用电流计并取得满意的测量效果。

DTSD342-7B三相电压电流监测仪表说明书

DTSD342-7B三相电压电流监测仪表说明书

DTSD342-7B说明书1概述1.1 产品简介DTSD342(配置号为7B) 型三相电子式多功能监测仪表是一款集测量记录、遥信遥控、大屏幕LCD显示和网络通信功能于一体的电力仪表。

本仪表可测量三相电压和电流参数;RS-485通信接口支持MODBUS-RTU和DL/T645双通信规约;具有开关量输入和输出功能。

本仪表广泛适用于变配电自动化系统、工业控制和工业自动化系统、能源管理系统和小区电力监控等场合。

业务咨询电话:0731-1.2 产品特点本仪表采用了高精度采样计量单元和高速MCU数据处理单元,可实现高精度宽范围准确计量和快速数据分析;采用段码式多行宽视角液晶显示屏,显示内容很丰富;液晶配备白色背光,可满足黑暗环境下查阅数据的要求;采用非易失存储器存储各类数据,可长时间保存数据且掉电不丢失;支持RS485通信端口和工业标准通信规约,组网便捷灵活;选配不同通信模块,可满足多种用户的不同接口需求。

2 技术指标3 功能介绍3.1参数测量功能本仪表具有丰富的测量功能,可测量的电网参数和指标如下:(1)各相电压值及平均电压值。

(2)各线电压值及平均线电压值。

(3)各相电流值、平均电流值以及零线电流值。

3.2 越限报警功能(1)仪表具备越限事件报警功能。

用户可从电压、电流参数中最多同时选择6个数据作为检测对象,对其设定高低限值和判断条件,当测量值越过设定的限值时报警。

仪表带有2路继电器输出,当报警参数配置为某继电器输出且该继电器为自动方式(非手动方式)时,越限报警信号就可通过该路继电器输出(继电器合闸)。

(2)仪表内部最多可同时设置6组越限报警参数。

各组越限报警参数的配置流程为:选择检测数据类别→设置检测数据阀值→设置判断条件→选择报警信号输出继电器。

①各类检测数据代码如下:(DL/T645代码为十进制数;Modbus-RTU代码为十六进制数)产品型号:DTSD342-7B当检测数据代码为FF时表示该组越限报警功能关闭。

DIT双色测温仪数据手册说明书

DIT双色测温仪数据手册说明书

输出模拟输出数字输出 0-20mA, 4-20mA, 0-5V RS485工作电源±0% 500mA24VDC 2电气参数10 - 95%, 无结露可用现场有烟雾、颗粒物、蒸汽、视场部分遮 挡,以及高速移动目标物体的温度测量温度测量范围6003000-℃响应速度小于5ms30DIT DIKAI V26单色,双色测量模式供选择同时模拟和数字输出可编程继电器输出支持多达台系列测温仪的多点网络 .数据采集软件及现场校准软件DIT DIT DIT 1234双色测温仪: 采用双色测温方法,即通过目标物体辐射的两个红外波段的能量比值来确定被测物体的温度。

因测量结果取决于两个波段辐射功率之比,所以,辐射能量的部分损失对测量结果没有影响。

可克服传输介质有灰尘、烟雾、水汽,视场局部遮挡和测量距离变化造成的辐射能量衰减而引起的测量误差,特别适用于相对恶劣的测温环境。

金属热加工过程中,金属表面不可避免会快速氧化形成氧化层,氧化层会随温度变化脱落或者皴裂(例如轧钢生产线),皴裂氧化皮和金属本体形成间隙,使得氧化层的温度低于金属本体温度。

测温仪可以很好的克服因此引起的测量误差,使得生产工艺数据可靠且离散性小,便于工艺分析。

测温对于真空或保护气体加热系统也具有较强的优势,可以克服玻璃窗口材料引起的测量误差,让测量值更接近真实值。

测温仪具有目视瞄准系统,非常方便用户安装及实时查看测温仪是否对准目标。

对于密封环境的测量系统,目视瞄准还可以作为炉内工况的观察窗口。

测温仪具有丰富的功能,实时高亮温度测量值显示,用户可选测量方式,测量模式,测温速度,输出规格设置。

完全满足客户各种现场使用需求。

人机交互简单,方便。

单色温度计在使用过程中,会遇到以下几种原因引起的测量误差:、材料氧化表面状态发生改变,或者氧化物和原始材料开裂而引起较大的测量误差。

、材料本身发射率较低而引起的测量误差。

、测量环境恶劣(粉尘,烟雾,水蒸气等)而引起的测量误差。

数字钳形电流表操作手册说明书

数字钳形电流表操作手册说明书

DIGITAL CLAMP METEROPERATION MANUALⅠ. INTRODUCTIONclamp meter is3 1/2 digit LCD and standard 9V battery operation for measuring DC voltage, AC and DC current,resistance and continuity test.All overload protection is provided. It is matching with 500V insulation test attachment for insulation test function.The knob switch design makes manual operation workable& function selector, range selector and power switch are all on one knob. It is a good tool for electric measurement.Ⅱ. GENERAL SPECIFICATION1.Display : 3 1/2 digit LCD and max. 1999 counts.2.Polarity : Auto3.Over range indication: Only the MSD "1" display.4.Sampling rate: 3 times per second.5.Low voltage indication: "LOBAT" sign6.Hold: Data hold7.Power: 9V carbon-zinc battery or alkaline battery8.Battery life: approx. 200 hours (alkaline battery)approx. 150 hours (carbon-zinc battery)9. Working environment: 0~50℃, <80% RH.10.Storage environment: -20℃~60℃, <80% RH.11.Dimension: 230(L)mm x 70(W) mm x 37(D)mm12.Weight: approx. 310g (including battery).13.Max. jaw opening: 50mmⅢ. ELECTRICAL SPECIFICATION:Accuracy is±(percentage of reading + number of digit) at 23±5℃,<80%RH.Indication: Average (rms of sine wave)Max. overload protection: 1000 V DCInput impedance: 9MΩMax. overload protection: 750 V AC rms5.Continuity testRange: 200ΩWhen resistance less than 75Ωbuild-in buzzer sounds.Max. overload protection: 250VDC/AC RMS10kΩ1MΩⅣ. FRONT PANEL DESCRIPTION:1.CLAMP2.PRESSURE3.HOLD switch4.KNOB switch5.LCD6.insulation attachment TERMINAL terminal8.V/ΩINPUT terminal9.HAND BELLⅤ. OPERATION:1.AC current measurement:a.Set the knob switch to ACA 1000A position.b.Set the hold switch is loosing state.c.Press the"PRESSURE"down and clamp awire. If clamp two or over wire, measure isuseless.d.If the reading less than 200A, change the rangeto“200A”position in order to improve theResolution.e.If in dark, press hold switch, and read the datain light place.2.AC and DC voltage measurement:a.Set the knob switch to DCV1000V orACV750V position.b.Set the hold switch is loosing state.c.Connect the red lead to "V/Ω" jack and theblack lead to "COM" jack.d.Connect the probes across circuit to be tested.3.Resistance measurement:a.Set the knob to proper resistance position.b.Set the hold switch is loosing state.c.Connect the red test lead to "V.Ω" jack andthe test black lead to "COM" jack.d.Connect the probes across resistance to betested.e.When checking in-circuit resistance, be surethe circuit under test has all power removedand that all capacitor are fully discharged.4.Continuity test:a.Set the knob switch to 200Ωposition.b.Connect the test lead to "V.Ω" jack and thetest black lead to "COM" jack.c.If resistance value less than 100Ωbetween twotest leads, buzzer sounds.5.High resistance measurement:a.Set the knob switch to "EXTERNAL UNIT"20MΩor2000MΩposition, reading is unstable.b.Connect three plugs of test attachment tocorrespond jacks on front panel.c.Set the knob switch and attachment switch to2000MΩposition separately.d.Connect resistance to input terminal ofattachment.e.Set power switch of attachment to"ON"position,press"PUSH"button,indicationlamp is light and reading. If reading less than19MΩ,separately change meter andattachment range switch to 20MΩin order toresolution.Note:If low voltage indication lamp is light, should replacement battery.. MAINTENANCE:Ⅵ1.Y our Digital Multi-meter is a precisionelectronic device.To avoid damage,do not tamper with the circuitry. Note:f.Don't input over 1000VDC or 750Vrms.g.Don't input voltage signal on resistance range.h.Before replacement battery, must remove leadsfrom circuit and be turn off power.2.Replacement battery:If appears"LOBAT"on LCD,user should immediately replace battery.601E-6266-000A。

DSSD332 DTSD342-1A型电流表使用说明书

DSSD332 DTSD342-1A型电流表使用说明书

一、概述DSSD332/DTSD342(配置号为1A)三相电子式多功能电表是一款测量电网三相电流、可通过RS485进行数据通信、采用大屏幕LCD显示的多功能电力仪表。

通信接口支持MODBUS RTU和DL/T645双通信规约。

仪表具有2路开关量输入和2路开关量输出可以实现本地或远程的开关信号监测和控制输出功能(即“遥信”和“遥控”功能)。

仪表适用于各种能源管理系统、变电站自动化、配变网自动化、小区电力监控、工业自动化、智能型配电盘和开关柜,包括使用在发电厂、水电站等用电管理自动化系统中。

DSSD332/DTSD342(配置号为1A)三相电子式多功能电表符合以下标准:GB/T17215《静止式交流有功电能表(1级和2级)》和DL/T645《多功能电能表通信规约》。

二、工作原理本仪表系列采用了高精度的采样计量,高速的MCU进行数据处理,丰富的液晶显示屏,非易失存储器。

具体结构如图2.1所示。

三、技术指标拟制:刘建福2009-5-12 图号:OKRW2.702.475SS审核:工艺: 第 1 页共13 页拟 制: 刘建福 2009-5-12图 号:OKRW2.702.475SS 审 核:工 艺: 第 2 页 共 13 页 四、主要功能特点1.测量功能 测量三相电流和零线电流,以上数据每秒更新一次。

注:显示查询出的为二次侧数据乘以变比后的数值,DL/T645和Modbus RTU 协议抄读出的均为二次测数据。

2.显示与按键功能 见“五 、操作与显示” 3.通信功能:见“七、通信使用说明”。

4.数字输入接口 和 数字输出接口(可选)仪表配置有两路开关量输入接口(可选),当外部接通时,仪表通过光电耦合器采集到相应状态,并提供显示符指示。

开关量输入电气参数:导通阻抗小于500Ω,断开阻抗大于100K Ω。

仪表配置有两路光耦继电器输出接口,可用于多种情况下的报警指示或保护控制输出。

开关量输出电气参数:负载AC/DC250V ,100mA 。

Liquipoint T 导电流中多点检测级别传感器说明说明书

Liquipoint T 导电流中多点检测级别传感器说明说明书

Products Solutions Services TI00375F/00/EN/14.1671336942Technical InformationLiquipoint TFTW31, FTW32ConductivePoint level switch for multiple point detection inconductive liquidsApplicationsThe Liquipoint T is used for point level measurement in conductive liquids (from 10 S/cm).Depending on the number of measuring points (up to 5 rods or ropes), measuring tasks suchas overfill protection, dry running protection, two-point control of pumps or multiple pointdetection can be implemented.Your benefits•Detect up to five point levels with one probe•Two-point control and additional MAX and MIN detection•Option between rod or rope version for optimum adaptation to the application•Flexible instrumentation:–with built-in electronic insert, either transistor (PNP) or relay output–for connection to a separate transmitter power supply unit•No adjustment required;standard setting for the most common conductive liquids•No moving parts in the tank:–long service life–reliable operation with no wear or blockages•WHG approval•Easy adaptation to different conductivitiesLiquipoint T FTW31, FTW322Endress+HauserTable of contentsFunction and system design. . . . . . . . . . . . . . . . . . . . .3Measuring principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Measuring system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5Measured variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Measuring range (application) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5Electronic insert FEW52 (DC-PNP) . . . . . . . . . . . . . . . . . . . . . . . 5Electronic insert FEW54 (relay) . . . . . . . . . . . . . . . . . . . . . . . . . . 6Electronic insert FEW58 (NAMUR) . . . . . . . . . . . . . . . . . . . . . . . 8Cable monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Power supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9Compact instrument version with FEW52 . . . . . . . . . . . . . . . . . . 9Compact instrument version with FEW54 . . . . . . . . . . . . . . . . . 10Compact instrument version with FEW58 . . . . . . . . . . . . . . . . . 11Separate instrumentation for probes with two rodsor ropes with cable monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . 11Separate instrumentation for probes with three rodsor ropes with cable monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . 12Separate instrumentation for probes with five rodsor ropes with cable monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . 12Cable entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Cable specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Performance characteristics. . . . . . . . . . . . . . . . . . . .13Reference operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 13Measuring error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Non-repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Switch-on delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Influence of ambient temperature . . . . . . . . . . . . . . . . . . . . . . . . 13Installation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13Mounting location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Orientation of probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Example applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15Ambient temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Climate class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Degree of protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Shock resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Vibration resistance (at min. rod length) . . . . . . . . . . . . . . . . . . . 15Electromagnetic compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Limiting medium pressure range . . . . . . . . . . . . . . . . . . . . . . . . 16Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Mechanical construction . . . . . . . . . . . . . . . . . . . . . .17Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Fitted electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Human interface . . . . . . . . . . . . . . . . . . . . . . . . . . . .19Operating elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Display elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Certificates and approvals . . . . . . . . . . . . . . . . . . . . .20CE mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Overfill protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Other standards and guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . 20RoHS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20RCM-Tick marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Ex-approvals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Type of protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Ordering information. . . . . . . . . . . . . . . . . . . . . . . . .21Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21Liquipoint T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22Operating Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Liquipoint T FTW31, FTW32Function and system designMeasuring principle An alternating voltage exists between the probe rods. As soon as a conductive liquid creates a connectionbetween the ground probe rod and, for example, the MAX probe rod, a measurable current flows and theLiquipoint T switches.With point level detection, the device switches back as soon as the liquid clears the MIN probe.With two-point control, the device does not switch back until the MAX and MIN probe is cleared.Using alternating voltage prevents corrosion of the probe rods and electrolytic destruction of the product.The material used for the tank walls is not relevant for measurement because the system is designed as a closed,potential-free circuit between the probe rods and the electronics.There is absolutely no danger if the probe rods are touched during operation.Measuring system Probes without an integrated electronic insert (separate instrument version) forone- or two-point detectionThe measuring system consists of:• FTW31, FTW32 with two/three rods or ropes• One or two Nivotester FTW325• Control units, switches or signal transmitters, e.g. process control systems PLC, relays, etc.Switch points, depending on the tank materialEndress+Hauser3Liquipoint T FTW31, FTW324Endress+HauserProbes without integrated electronic insert for multiple point detection The measuring system consists of:• FTW31, FTW32 with five rods or ropes • Two or three Nivotester FTW325• Control units, switches or signal transmitters, e.g. process control systems PLC, relays, etc.Switch points, depending on the tank materialProbes with integrated electronic insert (compact instrument version)The measuring system consists of:• FTW31 with rods or FTW32 with ropes and an electronic insert• Control units, switches or signal transmitters, e.g. process control systems PLC, relays, etc.Independent of the tank material!Note!The compact instrument version with three rods or ropes is always operated in s mode.Liquipoint T FTW31, FTW32Endress+Hauser 5InputMeasured variableResistance change between two conductors caused by the presence or absence of a conductive liquid.Measuring range (application)The measuring range is dependent on the mounting location of the probes.Rod probes can have a max. length of 4 m (13 ft), and rope probes can have a max. length of 15 m (49 ft). Input signalProbes covered => a measurable current is flowing between the probes.Probes uncovered => there is no measurable current flowing between the probes.OutputElectronic insert FEW52 (DC-PNP)Output signalThree-wire direct current versionPreferred in conjunction with programmable logic controllers (PLC). Positive signal at the switch output of the electronics (PNP).The output is blocked after the point level is reached.*1 = Load current (connected); *2 Residual current (disconnected); *3 LED not lit; *4 LED lit See also "Output signal" ä5.If the probe is covered and the red LED flashes continuously, the sensitivity setting is too high. To ensure a safe switch status even if the conductivity of the medium varies slightly, reduce the sensitivity setting. Fail-safe modeSelecting the correct fail-safe mode ensures that the output always runs in quiescent current fail-safe.•MAX fail-safe mode (MAX): The output voltage is 0 V if the switch point is exceeded (probe covered), a fault occurs or the power supply fails.•MIN fail-safe mode (MIN): The output voltage is 0 V if the switch point is undershot (probe uncovered), a fault occurs or the power supply fails.Switching delayA switching delay of 2.0 s can be activated or deactivated via a DIL switch.If the switching delay is set to 0 s, the device switches after approx. 0.3 s.Liquipoint T FTW31, FTW326Endress+HauserSensitivityThe device operates in one of four sensitivity levels (100 Ω, 1 k Ω, 10 k Ω or 100 k Ω). The sensitivity level is set using two DIL switches (SENS). Setting on delivery: 100 k Ω (maximum sensitivity).Signal on alarmIn the event of a power failure or a damaged probe: < 100 μA Load•Load is switched via a transistor (PNP).•Cycled overload and short-circuit protection, continuous ≤200 mA (short-circuit proof) •Residual voltage at transistor at I max : <2.9 VElectronic insert FEW54 (relay)Output signalAC/DC connection with relay output Both relay contacts switch simultaneously.*1 = Relay energized; *2 Relay de-energized; *3 LED not lit; *4 LED lit See also "Power supply" →ä9.If the probe is covered and the red LED flashes continuously, the sensitivity setting is too high. To ensure a safe switch status even if the conductivity of the medium varies slightly, reduce the sensitivity level.Liquipoint T FTW31, FTW32Fail-safe modeSelecting the correct fail-safe mode ensures that the relay always runs in quiescent current fail-safe.•MAX safety (MAX): The relay de-energizes when the switch point is exceeded.(probe covered), a fault occurs or the power supply fails.•MIN safety (MIN): The relay de-energizes when the switch point is undershot.(probe uncovered), a fault occurs or the power supply fails.SensitivityThe device operates in one of four sensitivity levels (100 Ω, 1 kΩ, 10 kΩ or 100 kΩ).The sensitivity level is set using 2 DIL switches (SENS).Setting on delivery: 100 kΩ (maximum sensitivity)Switching delayA switching delay of 2.0 s can be activated or deactivated via a DIL switch.If the switching delay is set to 0 s, the device switches after approx. 0.3 s.Signal on alarmOutput signal in the event of a power failure or a damaged probe: relay de-energized.LoadLoads are switched via 2 potential-free change-over contacts.I~ max. 4 A, U~ max. 253 V;P~ max. 1000 VA, cos ϕ = 1, P~ max. 700 VA, cos ϕ > 0.7;I– max. 4 A to 30 V, I– max. 0.2 A to 150 V.When connecting a functional extra-low voltage circuit with double insulation in accordance withIEC 1010: the sum of the relay output and power supply voltages is max. 300 V.Galvanic isolationAll input channels, output channels and relay contacts are galvanically isolated from each other. Endress+Hauser7Liquipoint T FTW31, FTW328Endress+HauserElectronic insert FEW58 (NAMUR)Output signalFor connecting to isolating amplifiers acc. to NAMUR (IEC 60947-5-6) e.g. Nivotester FTL325N from Endress+Hauser.Output signal jump from high to low current on point level (H-L edge).Fail-safe modeSelecting the correct fail-safe mode ensures that the relay always runs in quiescent current fail-safe.•MAX safety (MAX): The output signal is <1.0 mA when the switch point is exceeded (probe covered), a fault occurs or the power supply fails.•MIN safety (MIN): The output signal is <1.0 mA when the switch point is undershot (probe uncovered), a fault occurs or the power supply fails.SensitivityThe device operates in one of four sensitivity levels (100 Ω, 1 k Ω, 10 k Ω or 100 k Ω).The sensitivity level is set using two DIL switches (SENS). Setting on delivery: 100 k Ω (maximum sensitivity)Switching delayA switching delay of 2.0 s can be activated or deactivated via a DIL switch.If the switching delay is set to 0 s, the device switches after approx. 0.3 s.LoadRefer to the "Technical Data" of the connected isolating amplifier acc. to NAMUR (IEC 60947-5-6)Cable monitoringFor probes without an electronic insert, an additional printed circuit board is installed in the housing to enable cable monitoring. It is always switched or connected between rod/rope 1 and 2.!Note!When using switching units (transmitters) that do not support cable monitoring, these must be removed.L00-FTL5xxxx-07-05-xx-xx-002= lit = flashes = unlitLiquipoint T FTW31, FTW32Endress+Hauser 9Power supplyCompact instrument version with FEW52Transistor circuit for loadThe load connected to terminal 3 is switched by a transistor, contactless and therefore without bouncing. In normal switch status, terminal 3 has a positive signal.The transistor is blocked in the event of a level alarm or a power failure.Protection against voltage peaksWhen connecting a device with high inductance, always connect a voltage limiter.Connecting the FEW52 electronic insert F: Fine-wire fuse 500 mA, semi-time lag M: Ground connection to protective earthSupply voltage (FEW52)•Supply voltage: U= 10.8 V to 45 V •Load connection: open collector; PNP •Switching voltage: max. 45 V•Connected load, continuous: max. 200 mA •Protected against reverse polarityPower consumption P < 1.1 WCurrent consumption I < 25 mA (without load)Liquipoint T FTW31, FTW3210Endress+HauserCompact instrument version with FEW54Relay contact circuit for loadThe connected load is switched via potential-free relay contacts (change-over contact).In the event of a level alarm or a power failure, the relay contacts break the connections between terminals 3 and 4 and terminals 6 and 7. The relays always switch simultaneously.Protection against voltage peaks and short-circuitsWhen connecting a device with high inductance, fit a spark barrier to protect the relay contact. A fine-wire fuse (load-dependent) can protect the relay contact in the event of a short-circuit.L00-FTW3xxxx-04-05-xx-en-002Connecting the FEW54 electronic insert F 1: Fine-wire fuse 500 mA, semi-time lagF 2: Fine-wire fuse to protect the relay contact, load-dependent M: Ground connection to protective earth (PE)Supply voltage (FEW54)•Supply voltage: U % 20 V to 55 V DC or U~ 20 V to 253 V AC, 50/60 Hz •Peak inrush current: max. 2 A, max. 400 μs •Output: two potential-free change-over contacts•Contact load capacity: U~ max. 253 V, I~ max. 4 A, U % 30 V/4 A; 150 V/ 0.2 APower consumption P < 2.0 WCurrent consumption I <60 mACompact instrument version with FEW58To be used with a separate switching unit acc. to IEC 60947-5-6 (NAMUR) e.g. Nivotester FTL325N from Endress+Hauser; Output signal jump from high to low current on point level (H-L edge).Signal transmission on a two-wire line:H-L-edge 2.2 to 6.5 mA / 0.4 to 1.0 mAWhen using a multiplex the cycle time must be set to a minimum of 2 s.Connecting the FEW58 electronic insertSupply voltage (FEW58)Refer to the "Technical Data" of the connected isolating amplifier acc. to IEC 60947-5-6 (NAMUR) e.g. Nivotester FTL325N from Endress+Hauser.Signal on alarmOutput signal with damaged sensor: < 1.0 mASeparate instrumentation forprobes with two rods or ropeswith cable monitoring*1Printed circuit board for cable monitoring (only required for probes with WHG certification.)The power supply and evaluation are provided by switching units, e.g. Nivotester FTW325Separate instrumentation forropes with cable monitoring*1Printed circuit board for cable monitoring (only required for probes with WHG certification.)The power supply and evaluation are provided by a switching unit, e.g. Nivotester FTW325Separate instrumentation for Array probes with five rods or ropeswith cable monitoring*1Printed circuit board for cable monitoring (only required for probes with WHG certification.)The power supply and evaluation are provided by a switching unit, e.g. Nivotester FTW325Cable entry M 20x1.5 and NPT 1/2 "•Quantity in F24 housing: 1 (separate instrument version)•Quantity in F16 housing: 2 (compact instrument version)•Conductor cross-section (including wire end sleeve): 2.5 mm² (14 AWG) Cable specifications Use a commercially available cable (25 Ω per wire).Performance characteristics!Note!When electronic insert is installed!Reference operating conditions •Ambient temperature: 23 °C (73 °F)•Medium temperature: 23 °C (73 °F)•Medium viscosity: medium must release the probe again (drain off). •Medium pressure p e: 0 bar (0 psi)•Probe installation: vertically from aboveMeasuring error±10 % at 100 Ω - 100 kΩ±5 % at 1 kΩ - 10 kΩNon-repeatability±5 % at 100 Ω - 100 kΩ±1 % at 1 kΩ - 10 kΩHysteresis– 10% for the MAX probe, in reference to the switch point. ∆s function disabled. Switch-on delay< 3 sInfluence of ambienttemperature< 0.05 %/KInstallationMounting location TanksThe rod and rope probes are mounted predominantly in tanks.Piping (partially filled)Two-rod probes can be used in piping as, for example, dry running protection for pumps.Orientation of probes Point level detectionExample applications Point level detection: Two-point control (∆s)Two-point control (∆s) e.g. pump controlPoint level detection: MAX and MIN detectionPoint level detection (MAX),MAX and MIN detection for compact instrument version only possible with s.EnvironmentAmbient temperature range Non-hazardous area•–40 to 70 °C (–40 to 158 °F)•–40 to 60 °C (–40 to 140 °F) for FEW58 NAMURStorage temperature–40 to 80 °C (–40 to 176 °F)Climate class Tropicalized as per DIN EEC 68, part 2-38Degree of protection IP66Shock resistance Practical testDIN 60068-2-64 / IEC 68-2-64: 20 to 2000 Hz, 1 (m/s2)2/HzVibration resistance(at min. rod length)Electromagnetic compatibility•Interference Emission to EN 61326, Electrical Equipment Class BInterference Immunity to EN 61326, Annex A (Industrial)•Use for separate-instrumented probes a screened cable between the probe and the switching unit.For installation instructions for screened cables and general instructions for EMC inspection conditions forE+H devices, see also TI00241F.ProcessConductivity 10 μS–1 to 10 bar (–1 psi)Limiting medium pressurerangeEnvironment Permissible ambient temperature T1 at the housing as a function of the measuring material temperature T2 inthe vessel:!Note!For separately instrumented devices (without FEW5x) there are no restrictions in the indicated temperaturerange.Mechanical construction!Note!All dimensions in mm (in)!WeightsMaterial Wetted •Seal between probe rod/probe rope and process connection: EPDM •Spacer: PP•Flat seal for process connection: elastomer fiber, (asbestos-free)•Process connections: –G 1 ½: PPS –NPT 1 ½: PPSProbe rods•Rod: 316L (1.4404) or carbon fiber •Insulation: PP Probe ropes•Rope: 316Ti (1.4571)•Insulation: FEP•Weight: 316L (1.4435)Separate instrument version2, 3 or 5 probesRod 1 m (3.3 ft) length 415 g, 530 g, 760 g (14.64 oz, 18.69 oz, 26.81 oz)Rope 1 m (3.3 ft) length 390 g, 470 g, 640 g (13.76 oz, 16.58 oz, 22.57 oz)Compact instrument version2 or3 probesRod 1 m (3.3 ft) length 600 g, 720 g (21.16 oz, 25.40 oz)Rope 1 m (3.3 ft) length710 g, 800 g (25.04 oz, 28.22 oz)Not wetted•Plastic housing F24 (separate instrument version)–Housing: PPS–Cover: PBT•Polyester housing F16: PBT-FR with PBT-FR cover or with PA12 transparent cover,–Cover seal:EPDM–Adapter: PBT-FR–Nameplate, glued: polyester foil (PET)–Pressure compensation filter: PBT-GF20•Ground terminal on housing (outside): 304 (1.4301)•Cable gland: polyamide (PA)Fitted electrodes Rod probesCompact instrument version: 2 or 3 rods; Separate instrument version: 2, 3 or 5 rods•Diameter without insulation: 4 mm (0.16 in)•Maximum rod length: 4000 mm (157 in)•Minimum rod length: 100 mm (3.94 in)•Thickness of insulation: 0.5 mm (0.02 in)•Length of non-insulated area (tip of rod): 20 mm (0.79 in)•Extraction forces (parallel probe rod): 1000 N (224.8 lbf)Rope probesCompact instrument version: 2 or 3 rods; Separate instrument version: 2, 3 or 5 rods•Diameter without insulation: 1 mm (0.04 in)•Maximum rope length: 15000 mm (591 in)•Minimum rope length: 250 mm (9.84 in)•Thickness of insulation: 0.75 mm (0.03 in)•Weight length: 100 mm ( 3.94 in) not insulated•Weight diameter: 10 mm (0.39 in)•Extraction forces (parallel probe rod): 500 N (112.4 lbf)Human interfaceOperating elements FEW52, FEW54, FEW58One DIL switch for MIN or MAX safetyOne DIL switch for 0 s or 2 s switching delayTwo DIL switches for setting the sensitivity level 100 Ω, 1 kΩ, 10 kΩ or 100 kΩDisplay elements Separate instrument versionThe display elements are dependent on the connected switching unit.Compact instrument versionFEW52One red light emitting diode: fault message, switch statusOne green light emitting diode: operationL00-FTW3xxxx-07-05-xx-xx-001FEW54One red light emitting diode: fault message, switch statusOne green light emitting diode: operationL00-FTW3xxxx-07-05-xx-xx-002FEW58One yellow light emitting diode: fault message, switch statusOne green light emitting diode: operationL00-FTW3xxxx-07-05-xx-xx-003Certificates and approvalsCE mark The Liquipoint T meets the legal requirements of the EC directives. Endress+Hauser confirms that the devicehas been successfully tested by applying the CE mark.Overfill protection•WHG, leak test (leakage)Other standards and guidelines •Low voltage equipment directive (73/ 23/ EEC)•DIN EN 61010 part 1, 2001Safety regulations for electrical equipment for measurement, control and laboratory use Part 1: General requirements•EN 61326Electrical equipment for measurement, control and laboratory useEMC requirementsRoHS The measuring system complies with the substance restrictions of the Restriction on HazardousSubstances Directive 2011/65/EU (RoHS 2).RCM-Tick marking The supplied product or measuring system meets the ACMA (Australian Communications and MediaAuthority) requirements for network integrity, interoperability, performance characteristics as wellas health and safety regulations. Here, especially the regulatory arrangements for electromagneticcompatibility are met. The products are labelled with the RCM- Tick marking on the name plate.A0029561 Ex-approvals For further information, please contact your local Endress+Hauser Sales Center.All data relevant to explosion protection can be found in separate Ex documentation(see: Documentation ä22) .Type of protection•[EEx ia] IIC (FEW58)•[EEx na/C(L)] IIC (FEW52, FEW54)Liquipoint T FTW31, FTW32Ordering informationOrdering information Detailed ordering information is available as follows:•In the Product Configurator on the Endress+Hauser website: ➞ Select country ➞Instruments ➞ Select device➞ Product page function: Configure this product•From your Endress+Hauser sales center: /worldwideProduct Configurator - the tool for individual product configuration•Configuration data updated on a daily basis•Depending on the device: Direct input of data specific to measuring point, such as measuring range oroperating language•Automatic verification of exclusion criteria•Automatic generation of order code with breakdown in PDF or Excel output format•Possibility to order directly from the Endress+Hauser online shopAccessoriesLiquipoint T Lock nut G 1 1/2"•Hexagon: AF 60•Material: PC-FR•Part number: 52014146Electronic insert FEW52•Output PNP 10.8 to 45 V DC•Part number: 52017271Electronic insert FEW54•Output relay 20 to 253 V AC, 20 to 55 V DC•Part number: 52017272Electronic insert FEW58•Output NAMUR (IEC 60947-5-6)•Part number: 52017273Endress+Hauser21Liquipoint T FTW31, FTW3222Endress+HauserDocumentation !Note! This documentation can be found on the product pages at "".Operating InstructionsLiquipoint T FTW31, FTW32 KA00204F/00Certificates WHG•Liquipoint T FTW31, FTW32ZE00043F/00ATEX II 3G EEx nA/C(L) IIC T6•Liquipoint T FTW31, FTW32XA00226F/00ATEX II 2G EEx ia IIC T6•Liquipoint T FTW31, FTW32XA00230F/00Liquipoint T FTW31, FTW32Endress+Hauser2371336942。

SPA Site-Programmable 电流 电压和RTD 热敏电流传感器超限报警说明书

SPA Site-Programmable 电流 电压和RTD 热敏电流传感器超限报警说明书

and RTD/Thermocouple Limit Alarm TripsPage 12016 Moore Industries-International, Inc.224-710-06Eand RTD/Thermocouple Limit Alarm TripsPage 2and RTD/Thermocouple Limit Alarm TripsPage 3and RTD/Thermocouple Limit Alarm TripsPage 4and RTD/Thermocouple Limit Alarm TripsPage 5and RTD/Thermocouple Limit Alarm TripsPage 6and RTD/Thermocouple Limit Alarm TripsPage 7Specifi cations (Vac and Amp Input Model)Repeatability:Trip point repeats within ±0.1% of input span Display Accuracy:±1 digit; When scaling the display (in Custom Mode), high input-to-display span ratios decrease display accuracyInput Accuracy:Current input, ±5.0mAac; Voltage input, ±0.25Vac (±0.1% of maximum span)Stability: ±0.1% ofcalibrated span, maximum, over 6 monthsDeadband: 250V or 7.5A, maximum in Linear Mode; equivalent of maximum input range in user-setengineering units in Custom ModeResponse Time: 600 msec (defi ned as time from step change on input to alarm state change when alarm is set to trip mid-point)Alarm Trip Delay:Programmable from 0-60 secondsIsolation: 1000Vrmsbetween case, input, output (units with -AO option) and power, continuous, and will withstand a 1500Vac di-electric strength test for one minute without breakdown Line Voltage Eff ect: ±0.005% of span for a 1% change in line voltage (AC or DC)Power Consumption: 2-4W, nominal; 6W, maximumPerformance Ambient Conditions Ambient Conditions (continued)Adjustments Indicators Weight Input Impedance: 160 kohms for voltageinputs; 0.002 ohms for current inputsInput Over-RangeProtection: Current: 7.5A rms continuous, 10A rms for <1.0sec; Voltage: 264Vac WITH ANALOG OUTPUT Output Accuracy:±0.03% of output span (includes the combinedeff ects of linearity,hysteresis, repeatability, and adjustment resolution)Response Time:250 msec maximum time for output to go from 10% to 90% for step change on inputRipple (up to 120Hz): Current output, 10mV peak-to-peak maximum when measured across a 250 ohm resistor; Voltage output, 50mV peak-to-peak maximumOutput Limiting:117% of span maximum, 115% of span typical Load Eff ect: ±0.01% of span from 0 to maximum load resistance on current output Operating Range:-25°C to +70°C(-13°F to +158°F)Storage Range:-40°C to +85°C (-40°F to +185°F)Ambient Temperature Eff ect: ±0.015% of output span per °C maximum;Relative Humidity: 0-95% non-condensing RFI/EMI Protection:10V/m, 20 to 1000 MHz, as per SAMA 33.1 - ABC with 0.5% of span or less error Digital Filter: 50 or 60Hz (user-selectable)Common Mode Rejection:100dB@50/60Hz Front panel push buttonscontrol settings for zero, span, alarm trip points, high/low alarms, etc.; Easy access internal settings select current (source or sink) or voltage output, and failsafe or non-failsafe alarm functions; Internal jumper and menu password protect parameter settings LCD: 2x4 character, backlit,alphanumeric readoutaccurate to the nearest digit Range:-9999 to 9999; Decimal point can be user-set when in Custom ModeLEDs: Dual-color TRIP light (one for each relay) shows green for non-alarm, red for alarm; READY lightindicates normal operation, extinguishes in the event of any internal failure; INPUT light is always green 510 g (18 ounces)Performance (continued)Performance with Analog Output (-AO Option)and RTD/Thermocouple Limit Alarm TripsPage 8and RTD/Thermocouple Limit Alarm TripsPage 9and RTD/Thermocouple Limit Alarm TripsPage 10Specifi cations (RTD, T/C, Ohm, and mV Input Model)Repeatability: Trip pointrepeats within ±0.05% of input spanDisplay Accuracy: ±1 digitInput Accuracy: See Table 1 on following page Reference JunctionCompensation Accuracy (T/C inputs only): ±0.25°C Stability: ±0.1% ofcalibrated span, maximum, over 6 monthsDeadband: User-set within selected input range; fully scalable and set in user-selected engineering unitsResponse Time: 700 milliseconds (Defi ned as time from step change on input to alarm state change when alarm is set to trip mid-point)Alarm Trip Delay:Programmable from 0-60 secondsLine Voltage Eff ect: ±0.005% of span for a 1% change in line voltage (AC or DC)Isolation: 1000Vrmsbetween case, input, output (units with -AO or-AOZ option) and power terminals (NOTE: High voltage eff ect of ±0.001% of output span/V possible with prolonged exposure to AC voltage above 200Vac)Power Consumption: 2-3.5W, nominal; 4.3W, maximumInput Failure (Burnout) Protection: On detected input failure, all relays switch to alarm state (unless -SF3 option is specifi ed, then only relay #3 trips); front panel push buttons select HI/LOPerformance Performance (continued)Ambient Conditions (continued)Adjustments Weight alarms and upscale ordownscale drive if equippedwith -AO or -AOZ option Input Impedance:10 Mohms for T/C and mV inputsInput Over-Range Protection: ±5Vdc; 180% of maximum input span WITH ANALOG OUTPUTOutput Accuracy: ±0.03% of output span (includes the combined eff ects oflinearity, hysteresis, repeat-ability, andadjustment resolution)Response Time:400ms maximum time foroutput to go from 10% to90% for step change oninputRipple (up to 120Hz):Current output, 10mV peak-to-peak maximum whenmeasured across a250 ohm resistor; Voltageoutput, 15mV peak-to-peakmaximumOutput Limiting: 117% ofspan maximum, 115% ofspan typicalLoad Eff ect: ±0.01% ofspan from 0 to maximumload resistance on currentoutputOperating Range:-25°C to +65°C (-13°F to +149°F)Storage Range:-40°C to +80°C (-40°F to +176°F)Relative Humidity: 0-95% non-condensing Ambient Temperature Eff ect: ±0.005% of output span per °Cmaximum; ±15ppm of input signalEffect of Ambient Tem-perature on Reference Junction Compensation(T/C inputs only): ±0.05% per 50°C change in ambient temperatureRFI/EMI Protection:30V/m - ABC 0.5% or less error in reading whentested according to SAMA standard PMC 33.1Common Mode Rejection: 100dB @ 60HzNormal Mode Rejection: 40dB @ 60HzFront panel push buttons control settings for zero, span, alarm trip points,high/low alarms, etc.; Easy access internal settings select current (source or sink) or voltage output, and failsafe or non-failsafe alarm functions; Internal jumper and menu password protect parameter settings LCD: 2x4 character, backlit, alphanumeric readout accurate to the nearest digit. Range: -9999 to 9999LEDs: Dual-color TRIP light (one for each relay) shows green for non-alarm, red for alarm; READY light indicates normal operation, extinguishes in the event ofany internal failure; Dual-color INPUT light showsgreen for input with rated range, red for over range and sensor/wire failure 456 to 513 g (16.1 to 18.1 oz) Ambient Conditions Indicators Performance with Analog Output (-AOOption)and RTD/Thermocouple Limit Alarm TripsPage 11Table 1. SPA Accuracy with RTD, Thermocouple, Ohms and Millivolt Inputs 375038503902391139163923392639286724271000100, 200, 300, 400,500, 1000100, 200, 400, 500,1000100, 50010098.129100, 200, 470, 5001001209.0350-210°C to +770°C (-346°F to +1418°F)-270°C to +1390°C (-454°F to +2534°F)-270°C to +1013°C (-454°F to +1855.4°F)-270°C to +407°C (-454°F to +764.6°F)-50°C to +1786°C (-58°F to +3246.8°F)-50°C to +1786°C (-58°F to +3246.8°F)-270°C to +1316°C (-454°F to +2400.8°F)+200°C to +1836°C (+392°F to +3336.8°F)-10 to +120mV-185°C to 540°C (-301°F to 1004°F)-200°C to 850°C (-328°F to 1742°F)-100°C to 650°C (-148°F to 1201°F)-200°C to 630°C (-328°F to 1166°F)-200°C to 510°C (-328°F to 950°F)-200°C to 600°C (-328°F to 1112°F)-200°C to 630°C (-328°F to 1166°F)-200°C to 850°C (-328°F to 1742°F)-80°C to 320°C (-112°F to 608°F)-50°C to 250°C (-58°F to 482°F) 0-4000 ohms-180°C to 760°C (-292°F to 1400°F)-150°C to 1370°C (-238°F to 2498°F)-170°C to 1000°C (-274°F to 1832°F)-200°C to 400°C (-328°F to 752°F)0°C to 1760°C (-32°F to 3200°F)0°C to 1760°C (-32°F to 3200°F)-130°C to 1300°C (-202°F to 2372°F)+400°C to 1820°C (+752°F to 3308°F)±0.1°C100 ohms: ±0.2°C; 200, 300 & 400 ohms: ±0.15°C; 500 & 1000 ohms: ±0.1°C 100 ohms: ±0.2°C; 200 & 400 ohms: ±0.15°C; 500 & 1000 ohms: ±0.1°C100 ohms: ±0.2°C; 500 ohms: ±0.1°C±0.2°C ±0.2°C200 to 470 ohms ±0.15°C;500 ohms: ±0.1°C±0.2°C±0.14°C±1.6°C ±0.4 ohms±0.25°C ±0.3°C ±0.25°C ±0.25°C ±0.5°C ±0.5°C ±0.4°C ±0.8°C ±15microvolts2Single, 100 ohm Sensor, 15°C Averaging 100 ohm Sensors, 15°C Diff erential of 100 ohm Sensors, 30°C Single, 200 ohm Sensor, 10°C Averaging 200 ohm Sensors, 10°C Diff erential of 200 ohm Sensors, 20°C Single, 500 or 1000 ohm Sensor, 7.5°CAveraging 500 or 1000 ohmSensors, 7.5°CDiff erential of 500 or 1000 ohmSensors, 15°CSingle Sensor, 10°C Averaging Sensors, 10°C Diff erential of Multiple Sensors, 20°C Single Sensor, 100°CAveraging Sensors, 100°C Diff erential of Multiple Sensors, 200°C30 ohms35°C 40°C 35°C 35°C 50°C 50°C 45°C 75°C 4mVPt RTD Ni RTD Cu RTD OhmsT/C J T/C K T/C E T/C T T/C R T/C S T/C N T/C B Voltage - mV1. Actual α is 0.003750, 0.003850, etc.2. Recommended Minimum Span. Tighter spans may result in output inaccuracies.2and RTD/Thermocouple Limit Alarm TripsPage 12and RTD/Thermocouple Limit Alarm TripsPage 13and RTD/Thermocouple Limit Alarm TripsPage 14NO2 CM2 NC2 NO1 CM1 NC1 NO1 CM1 N C1NO2CM2 NC2 relay1relay3PowerAC/DC not presentnot presentnot presentPower AC/DCnot present GND Power AC/DCPower AC/DCnot presentrelay2 relay2relay2 relay4relay2 relay2NO2 CM2 NC2 N O2 CM2 NC2not present MRnot presentTriple Alarm (3PRG)Single Alarm (1PRG)Single Alarm (1PRG) w/DPDT onlyDual Alarm (2PRG)Dual Alarm (2PRG) w/DPDT onlyAny Single Alarm (1PRG) w/DPDT Any Dual Alarm (2PRG) w/DPDTAny Triple Alarm (3PRG)Any Quad Alarm (4PRG)Table 3. Terminal Designations (see Figures 14 and 15 for additional information)+I, +V-I-VNO4 CM4 NC4NOTES:1. Terminal blocks can accommodate 14-22 AWG (2.08-0.33 mm 2) solid wiring.2. Tighten terminals to 4 In-lb (0.45 Nm), maximum.3. Polarity shown for T1 and T2 of TPRG unit applies to thermocouple inputs only.4. MR and ±AO labeling is present only when the unit is equipped with those options.TPRG InputTPRG Input with 3PRG or 4PRG, or with 1PRGor 2PRG and DPDTTPRG Input with 3PRG or 4PRG, or with 1PRG or 2PRG & DPDTHLPRG InputHLPRG Input with 3PRG or 4PRG, or with1PRG or 2PRG and DPDTHLPRG Input with 3PRG or 4PRG, or with 1PRG or 2PRG & DPDT+TXnot present+IMRMR+AO-AO +AOnot present -AO+AO -AOMRnot presentMRMR+AO-AO +AOnot presentnot present -AO+AO-AOnot presentNO2 CM2 NC2not presentNO3 CM3 NC3 NO3 CM3 NC3 NO CM NCNO1 CM1 NC1not presentNO1 CM1 NC1 NO2 CM2 NC2Quad Alarm (4PRG)NO1 CM1 NC1 NO1 C M1 NC1not present not presentPower AC/DC GND not presentPower AC/DC Power AC/DC Power AC/DC GND GND not present not presentPower AC/DC Power AC/DC GND not presentGNDrelay1relay1relay1 relay1 relay3relay1not presentKEY:AO = Analog Output CM/CM# = CommonDPDT = Double-pole/Double-throw GND = GroundI = Current Input MR = Manual ResetNC/NC# = Normally Closed NO/NO# = Normally OpenTX = Power for 2-wire transmitter V = Voltage Inputnot present 4231and RTD/Thermocouple Limit Alarm TripsPage 15and RTD/Thermocouple Limit Alarm TripsPage 16Specifi cations and information subject to change without notice.Key features of the SPA • Intrinsically-safe fi eld connections. from temperature sensors or transmitters located in hazardous areas without the need of a costly intrinsically-safe barrier. Plus power an intrinsically-safe loop using the 2-wire transmitter excitation in the current/voltage input model.• 20-bit input resolution. Delivers industry-best digital accuracy for both sensor (RTD and thermocouple) and analog (current/voltage) inputs.• Site- and PC-Programmable. off ers the choice of using front panel pushbuttons or our FREE Windows ®-based Intelligent PC Confi guration Software for fast and simple set up.• Large 5-digit process and status readout. display shows menu prompts and, when the SPA is in operation, shows the process variable, theoutput or toggles between the two in programmable engineering units.• Combined alarm trip and transmitter. analog output (-AO) option reduces costs and installation time when both alarm and transmitter functions are needed at the same location.IS has Intrinsically-Safe Field ConnectionsFor facilities that employ intrinsic safety measures, ective and complete alarm solution. It includes intrinsically-safe fi eld connections which accept current/voltage, resistance temperature detectors (RTDs), and thermocouple inputs and provides the necessary protection typically aff orded by a separate galvanically isolated intrinsically-safe IS cuts wiring and maintenance costs by enabling users to eliminate additional barriers and power supplies, which reduces space requirements and heat dissipation or cooling considerations in barrier marshalling cabinets.IS is powered by a universal AC/DC power supply and provides on/off control, warns of unwanted process conditions, alarms on rate of change, and assists with or performs emergency IS provides dual and quad independent and individually-confi gurable alarmrelay outputs when a monitored process variable falls outside of user-set high and/or low limits.。

高精度万用表使用说明(3篇)

高精度万用表使用说明(3篇)

第1篇一、前言高精度万用表是一种集电流、电压、电阻、电容、频率等多种测量功能于一体的电子测量仪器。

它具有测量精度高、功能全面、操作简便等特点,广泛应用于电子、电气、通信、科研等领域。

本说明旨在为您提供高精度万用表的使用指南,帮助您正确、高效地进行各项测量。

二、产品概述1. 产品名称:高精度万用表2. 产品型号:[具体型号]3. 测量范围:电压(DC/AC)、电流(DC/AC)、电阻、电容、频率等4. 测量精度:根据具体型号而定,一般精度为0.05%或更高5. 功能特点:- 数字显示,读数直观- 自动量程,测量方便- 大容量可充电电池,续航时间长- 具有交直流电压、电流测量功能- 具有电阻、电容、频率测量功能- 具有二极管测试、通断测试等功能三、使用前的准备1. 熟悉仪器:在开始使用前,请仔细阅读本说明书,了解仪器的性能、功能和使用方法。

2. 检查仪器:检查仪器外观是否完好,电池电量是否充足,确保仪器处于正常工作状态。

3. 准备测量对象:根据测量需求,准备好待测对象,确保其安全可靠。

四、基本操作步骤1. 开启仪器:将万用表置于合适的位置,打开电源开关。

2. 选择测量模式:- 按下“功能选择”按键,选择所需的测量模式(如电压、电流、电阻等)。

- 按下“量程选择”按键,选择合适的量程。

3. 连接测试线:- 将红色测试线插入“VΩmA”插孔,用于测量电压、电阻、电流等。

- 将黑色测试线插入“COM”插孔,用于测量公共接地。

4. 进行测量:- 将测试线正确连接到待测对象上。

- 检查仪器显示,读取测量结果。

五、详细测量说明1. 电压测量:- 将万用表置于“V~”挡,选择合适的量程。

- 将红色测试线连接到待测电路的正极,黑色测试线连接到负极。

- 读取显示的电压值。

2. 电流测量:- 将万用表置于“A~”挡,选择合适的量程。

- 将万用表串联接入待测电路。

- 读取显示的电流值。

3. 电阻测量:- 将万用表置于“Ω”挡,选择合适的量程。

D.T DT-333说明书

D.T DT-333说明书

D.TDT-333说明书
CEM钳型表DT-333产品特点:
交流电流测量分辩率10mA可进行交流/电流(40.0A~400.0A),直流/交流电流,电阻,二级管,短路及温度测试
4000位液晶显示屏带背光显示
附件:皮袋表笔2个(AAA)1.5伏电池,说明书,合格证及保修卡规格/重量:203x70x37mm/200克
在使用前应仔细阅读说明书,弄清是交流还是交直流两用。

钳形电流表分高、低压两种,用于在不拆断线路的情况下直接测量线路中的电流。

其使用方法如下:
(1)使用高压钳形表时应注意钳形电流表的电压等级,严禁用低压钳形表测量高电压回路的电流。

用高压钳形表测量时,应由两人操作,测量时应戴绝缘手套,站在绝缘垫上,不得触及其它设备,以防止短路或接地。

(2)观测表计时,要特别注意保持头部与带电部分的安全距离,人体任何部分与带电体的距离不得小于钳形表的整个长度。

(3)在高压回路上测量时,禁止用导线从钳形电流表另接表计测量。

测量高压电缆各相电流时,电缆头线间距离应在300mm以上,且绝缘良好,待认为测量方便时,方能进行。

(4)测量低压可熔保险器或水平排列低压母线电流时,应在测量前将各相可熔保险或母线用绝缘材料加以保护隔离,以免引起相间短路。

(5)当电缆有一相接地时,严禁测量。

防止出现因电缆头的绝缘水平低发生对地击穿爆炸而危及人身安全。

(6)钳形电流表
测量结束后把开关拔至大程档,以免下次使用时不慎过流;并应保存在干燥的室内。

TLI4971A120T5UE0001XUMA1 高精度无核电流传感器数据手册说明书

TLI4971A120T5UE0001XUMA1 高精度无核电流传感器数据手册说明书

TLI4971A120T5UE0001XUMA1TLI4971 high precision coreless current sensor for industrial applications in 8x8mm SMD packageFeatures & Benefits∙ Integrated current rail with typical 225µΩ insertion resistance enables ultra-low power loss∙ Smallest form factor, 8x8mm SMD, for easy integration and board area saving ∙ Single supply voltage, 3.1V to 3.5V∙ High accurate, scalable, DC & AC current sensing ∙ Full scale up to ±120 A∙ Bandwidth greater than 120kHz enables wide range of applications∙ Low phase delay (< 48° at bandwidth frequency) for easy closed loop control∙ Very low sensitivity error over temperature (2.5%) ∙ Excellent stability of offset over temperature and lifetime∙ Integrated shield provides high robustness to voltage slew rates up to 10V/ns∙ Galvanic functional isolation up to 1150V peak V IORM Partial discharge capability of at least 1200V∙ Differential sensor principle ensures superior magnetic stray field suppression∙ Two independent fast Over-Current Detection (OCD) pins with configurable thresholds enable protection mechanisms for power circuitry (typical < 0.7µs) ∙ Ratiometric and non ratiometric analog output∙ PrecalibratedsCore less current sensor in PG-TISON-8 packageDescriptionTLI4971 is a high precision miniature coreless magnetic current sensor for AC and DC measurements with analog interface and two fast over-current detection outputs.Infineon's well-established and robust monolithic Hall technology enables accurate and highly linear measurement of currents with a full scale up to ±120A. All negative effects (saturation, hysteresis) commonly known from open loop sensors using flux concentration techniques are avoided. The sensor is equipped with internal self-diagnostic feature.Typical applications are electrical drives (up to 690V), current monitoring, chargers, photovoltaic inverters, general purpose inverters, power supplies, overload and over-current detection. The digitally assisted analog concept of TLI4971 offers superior stability over temperature and lifetime thanks to the proprietary digital stress and temperature compensation. The differential measurement principle allows great stray field suppression for operation in harsh environments. The integrated primary conductor (current rail) with very low insertion resistance minimizes the power loss and enables miniaturization of sensing circuitry. A small 8mm x 8mm leadless package (QFN-like) allows for standard SMD assembly.Two separate interface pins (OCD) provide a fast output signal in case a current exceeds a pre-set threshold.The sensor is shipped as a full calibrated product without requiring any customer end-of-line calibration.The high configurability enables customization for a wide variety of applications. All user-programmable parameters such as OCD thresholds, blanking times and output configuration modes are stored in an embedded EEPROM memory. Programming of the memory can be performed in the application through a Serial Inspection and Configuration Interface (SICI).2) Semi-differential mode, non-ratiometric output sensitivityPin ConfigurationFigure 1 Pin layout PG-TISON-8-5The current I PN is measured as a positive valuewhen it flows from pin 8 (+) to pin 7 (-) through the integrated current rail.Target ApplicationsThe TLI4971 is suitable for AC as well as DC current measurement applications: ∙ Electrical drives ∙ Current monitoring ∙ Chargers∙ Photovoltaic & general purpose inverters ∙ Power supplies (SMPS)∙ Overload and over-current detection ∙ etc.Due to its implemented magnetic interference suppression, it is extremely robust when exposed to external magnetic fields. The device is suitable for fast over-current detection with a configurable threshold level. This allows the control unit to switch off and protect the affected system from damage, independently of the main measurement path.12 3 4 5678 +-I PNGeneral DescriptionThe current flowing through the current rail on the primary side induces a magnetic field that is differentially measured by two Hall probes. The differential measurement principle of the magnetic field combined with the current rail design provides superior suppression of any ambient magnetic stray fields. A high performance amplifier combines the signal resulting from the differential field and the compensation information provided by the temperature and stress compensation unit. Finally the amplifier output signal is fed into a differential output amplifier which is able to drive the analog output of the sensor.Depending on the selected programming option, the analog output signal can be provided either as: ∙Single-ended∙Fully-differential∙Semi-differentialIn single-ended mode, the pin VREF is used as a reference voltage input. The analog output signal is provided on pin AOUT. In fully-differential mode, both AOUT (positive polarity) and VREF (negative polarity) are used as signal outputs whereas VDD is used as reference voltage input. Compared to the single-ended mode, the fully-differential mode enables doubling of the output voltage swing.In semi-differential mode a chip-internal reference voltage is used and provided on VREF (output). The current sensing information is provided in a single-ended way on AOUT.For fast over-current detection, the raw analog signal provided by the Hall probes is fed into comparators with programmable switching thresholds.A user-programmable deglitch filter is implemented to enable the suppression of fast switching transients. The open-drain outputs of the OCD pins are active “low” and they can be directly combined into a wired-AND configuration on board level to have a general over-current detection signal.All user-programmable parameters such as OCD thresholds, deglitching filter settings and output configuration mode are stored in an embedded EEPROM memory.Programming of the memory can be performed in the application through a Serial Inspection and Configuration Interface (SICI). The interface is descripded in detail in the programming guide which can be found on the infineon webside. Please contact your local Infineon sales office for further documentation. Standard Product Configuration∙The pre-configured full scale range is set to ±120A with a sensitivity of 10mV/A.∙The pre-configured output mode is set to semi-differential mode.∙The quiescent voltage is set to 1.65V.∙The OCD threshold of channel 1 is set to the factor 2.25 of the full scale range.∙The OCD threshold of channel 2 is set to the factor 1.25 of the full scale range.∙The pre-defined setting of the OCD deglitching filter time is 0 ns.∙The pre-configured variants have non-ratiometric sensitivity.∙The sensitivity and the derived measurement range (full scale) can be reprogrammed by user according to the sensitivity ranges listed in Table 4.∙The pre-configured sensor can be reprogrammed into single-ended operating mode or fully-differential mode by user without any recalibration of the device.∙The OCD thresholds and filter settings can be reprogrammed by the user according to the values listed in Table 6 and Table 7∙For semi-differential uni-directional mode or ratiometric output sensitivity, please get in contact with your local Infineon sales office.Block DiagramThe current flowing through the current rail on the primary side induces a magnetic field that is measured by two Hall probes differentially. The differential measurement principle provides superior suppression of any ambient magnetic stray fields. A high performance amplifier combines the signal resulting from the differential field and the compensation information provided by the temperature and stress compensation unit. Finally the amplifier output signal is fed into a differential output amplifier which is able to drive the analog output of the sensor.Absolute Maximum RatingsTable 1 Absolute Maximum Ratingsafter 2 min.2)Tested with primary nominal rated current of 70A rms on Infineon reference PCB at high frequency. Thermal equilibrium reachedafter 2 min.3)Human Body Model (HBM), according to standard AEC-Q 100-0024)Accor ding to standard IEC 61000−4−2 e lectrostatic discharge immunity testStress above the limit values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings. Exceeding only one of these values may cause irreversible damage to the integrated circuit.Product Characteristics Table 2 Operating RangesTable 3 Operating ParametersFunctional Output DescriptionThe analog output signal depends on the selected output mode:∙Single-ended∙Fully-differential∙Semi-differentialSingle-Ended Output ModeIn single-ended mode VREF is used as an input pin to provide the analog reference voltage, V REF. The voltage on AOUT, V AOUT, is proportional to the measured current I PN at the current rail:V AOUT(I PN)=V OQ+S∙I PNThe quiescent voltage V OQ is the value of V AOUT when I PN=0. V OQ tracks the voltage on VREFV OQ(V REF)=V REFThe reference voltage can be set to different values which allow either bidirectional or uniderictional current sensing. The possible values of V REFNOM are indicated in Table 2.The sensitivity is by default non ratiometric to V REF. If ratiometricity is activated the sensitivity becomes as follows:S(V REF)=S(V REFNOM)∙V REF V REFNOMFully-Differential Output ModeIn fully-differential output mode, both VREF and AOUT are analog outputs to achieve double voltage swing: AOUT is the non-inverting output, while VREF is the inverting output:V AOUT(I PN)=V QAOUT+S∙I PNV REF(I PN)=V QREF−S∙I PNThe quiescent voltage is derived from the supply pins VDD and GND and has the same value on both AOUT and VREF:V QAOUT(VDD)=V QREF(VDD)=VDD2The sensitivity in the fully-differential mode can begenerally expressed as:S(VDD)diff=S(3.3V)diff∙VDD3.3VIn this mode, the quiescent voltages and thesensitivity are both ratiometric with respect to VDDif ratiometricity is enabled.Semi-Differential Output ModeIn semi-differential output mode, the sensor isusing a chip-internal reference voltage to generatethe quiescent voltage that is available on pin VREF(used as output).The analog measurement result is available assingle-ended output signal on AOUT. Thedependence of sensitivity and output offset onreference voltage is the same as described in single-ended output mode.The quiescent voltage is programmable at 3different values, V OQbid_1and V OQbid_2forbidirectional current and V OQuni for unidirectionalcurrent (see Table 4).Total error distributionFigure 3 shows the total output error at 0h (E TOTT)and over lifetime (E TOTL) over the full scale range forsensitivity range S1 (10mV/A).Table 4 Analog Output Characteristics2) Can be programmed by user.3) Values refer to semi-differential mode or single-ended mode, with VREF =1.65 V. In fully-differential mode the sensitivity value is doubled.4) Not tested in production. Proven by design, characterization and qualification.5) Noise Density=RMS√ π2 ∗ BW[Hz]1Sensitivity[VA]Table 4 Analog Output Characteristics (cont’d)Fast Over-Current Detection (OCD)The Over-Current Detection (OCD) function allows fast detection of over-current events. The raw analog output of the Hall probes is fed directly into comparators with programmable switching thresholds. A user programmable deglitch filter is implemented to enable the suppression of fast switching transients. The two different open-drain OCD pins are active low and can be directly combined into a wired-AND configuration on board level to have a general over-current detection signal. TLI4971 supports two independent programmable OCD outputs, suited for different application needs.The OCD pins are providing a very fast response, thanks to independence from the main signal path. They can be used as a trap functionality to quickly shut down the current source as well as for precise detection of soft overload conditions.OCD pins external connectionThe OCD pins can be connected to a logic input pin of the microcontroller and/or the pre-driver to quickly react to over-current events. They are designed as open-drain outputs to easily setup a wired-AND configuration and allow monitoring of several current sensors outputs via only one microcontroller pin. OCD thresholdsThe symmetric threshold level of the OCD outputs is adjustable and triggers an over-current event in case of a positive or negative over-current. The possible threshold levels are listed in Table 6 and Table 7. The instruction for the settings is documented in the TLI4971 programming guide. OCD outputs timing behaviorBoth output pins feature a deglitch filter to avoid false triggers by noise spikes on the current rail. Deglitch filter settings can be programmed according to application needs. Available options are listed in Table 6 and Table 7. Figure 4 shows the OCD output pin typical behavior during an over-current event.Over-current Pulse 1: duration exceeds the over-current response time t D_OCDx + response time jitter Δt D_OCDx+ deglitch filter time t deglitch. The OCD output voltage is set low until the current value drops below the OCD threshold.Over-current Pulse 2: duration does not exceed the over-current response time t D_OCDx and therefore no OCD event is generated.Over-current Pulse 3: duration exceeds the response time t D_OCDx + response time jitter Δt D_OCDx, but does not exceed the glitch filter time t deglitch and no OCD event is generated.Fast Over-Current Detection (OCD) Output Parameters Table 5 Common OCD Parameters2) Pre-configured range.3) Can be programmed by user.4) Falling edge level of OCDx-pin < 0.5 x V DD.5) Not tested in production. Proven by design, characterization and qualification.2) Pre-configured range.3) Can be programmed by user.4) Falling edge level of OCDx-pin < 0.5 x V DD.5) Not tested in production. Proven by design, characterization and qualification.Undervoltage / Overvoltage detectionTLI4971 is able to detect undervoltage or overvoltage condition of its own power supply (V DD). When an undervoltage (V DD<U VLOH) or overvoltage (V DD>O VLOH) condition is detected both OCD pins are pulled down in order to signal such a condition to the user.The undervoltage detection on OCD pins is performed only if V DD > V DD,OCD.Both OCD pins are pulled down at start up. When VDD exceeds the undervoltage threshold U VLOH_R and the power on delay time t POR has been reached, the sensor indicates the correct functionality and high accuracy by releasing the OCD pins.Isolation CharacteristicsTLI4971 conforms functional isolation.4.72) After stress test according to qualification plan.3) Not subject to production test - verified by design and characterization.4) Qualified by UL according UL 1577 standard.System integrationFor bandwidth limitation an external filter is recommended as shown in the above application circuits.PackageThe TLI4971 is packaged in a RoHS compliant, halogen-free leadless package (QFN-like). PG-TISON-8 Package OutlineThis page is left intentionally blank.Revision HistoryMajor changes since the last revisionPublished byInfineon Technologies AG 81726 München, Germany © 2020 Infineon Technologies AG. All Rights Reserved.Do you have a question about this document?Email: ********************Document reference IMPORTANT NOTICEThe information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”) .With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications.The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document withFor further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office ( ).WARNINGSDue to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ produc ts may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.Edition 10-02-2020----Trademarks of Infineon Technologies AGµHVIC™, µIPM™, µPFC™, AU -ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI -POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my -d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO -SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™ Trademarks updated November 2015 Other Trademarks All referenced product or service names and trademarks are the property of their respective owners.TLI4971A120T5UE0001XUMA1。

DIT双色测温仪说明书

DIT双色测温仪说明书

DIT系列红外测温仪使用说明书目录1. 概述12 .技术参数3 .结构3.1 DIT双色测温仪外形结构3.2 DIT双色测温仪面板说明4 .DIT双色测温仪选型表5 .使用5.1 安装5.2 引出线定义5.3 接线及注意事项5.4输出选择5.5 瞄准及距离系数1、概述DIT系列测温仪采用双色测温方法,即通过目标物体辐射的两个红外波段的能量的比值来确定被测定物体的温度。

因测量结果取决于两个波段辐射功率之比,所以,辐射能量的部分损失对测量结果没有影响。

可克服传输介质有灰尘,烟雾,水气;视场局部遮挡,或测量距离改变产生的辐射量衰减而引起的测量误差。

特别适合用于相对恶劣的测温现场。

DIT双色红外测温仪配备目视瞄准系统和测量值显示及参数设置系统。

目视瞄准方便用户安装仪器,也可以通过目视系统,直观了解加热体的实时工况;测量值显示及参数设置系统可以实时显示当前测量值,显示窗口配合按键可以自由设置用户参数。

还可以通过用户参2数,定义测温仪的工作模式,即双色测量和单色测量可切换。

该仪器操作简单,使用方便。

红外测温仪使用过程中,一般会遇到以下几种原因引起的测量误差:1、材料氧化表面状态发生改变,或者氧化物和母体材料开裂,引起较大的测量误差;2、由于材料本身发射率较低,引起的测量误差;3、由于测量环境恶劣引起的测量误差。

双色测温方法可以很好的解决这些测量问题。

DIT双色测温仪可广泛应用于铸造,粉末冶金,轧钢,化工,玻璃,陶瓷生产,热处理,真空加热,线材生产,焦化,焊接等行业。

2、技术参数1、测量范围:DIT610 600~1400℃DIT611 800~1800℃DIT610 1000~3000℃2、基本误差:0.75(±0.75%)或0.2(±0.2%)3、重复精度:±0.2%4、距离系数:300:15、测量距离:0.6m~∞6、可测最小目标:φ2mm(600mm)7、响应时间:< 5ms8、斜率补偿:0.85~1.109、发射率:0.10~1.0010、响应波长范围:双色:0.9~1.1μm&0.4-1.1μm单色:0.4-1.1μm11、温度分辨率:0.5℃12、测头尺寸:Ø58×182mm13、模拟量输出:0-5VDC ,4-20mA或0-20mA14、通讯接口:RS485315、工作电源:24VDC16、功率:<1W17、重量:0.5KG18、工作环境:0~60℃,相对湿度不大于90%3、结构3.1 DIT双色测温仪外形结构3.2 DIT双色测温仪面板说明45① 测量值显示及参数设置窗口。

DIT双色测温仪说明书

DIT双色测温仪说明书

DIT系列红外测温仪使用说明书武汉迪凯光电科技有限公司目录1. 概述2 .技术参数3 .结构3.1 DIT双色测温仪外形结构3.2 DIT双色测温仪面板说明4 .DIT双色测温仪选型表5 .使用5.1 安装5.2 引出线定义5.3 接线及注意事项5.4输出选择5.5 瞄准及距离系数5.6 参数设置6 .维护与质量保证7. 注意事项8 .免责声明1、概述DIT系列测温仪采用双色测温方法,即通过目标物体辐射的两个红外波段的能量的比值来确定被测定物体的温度。

因测量结果取决于两个波段辐射功率之比,所以,辐射能量的部分损失对测量结果没有影响。

可克服传输介质有灰尘,烟雾,水气;视场局部遮挡,或测量距离改变产生的辐射量衰减而引起的测量误差。

特别适合用于相对恶劣的测温现场。

DIT双色红外测温仪配备目视瞄准系统和测量值显示及参数设置系统。

目视瞄准方便用户安装仪器,也可以通过目视系统,直观了解加热体的实时工况;测量值显示及参数设置系统可以实时显示当前测量值,显示窗口配合按键可以自由设置用户参数。

还可以通过用户参数,定义测温仪的工作模式,即双色测量和单色测量可切换。

该仪器操作简单,使用方便。

红外测温仪使用过程中,一般会遇到以下几种原因引起的测量误差:1、材料氧化表面状态发生改变,或者氧化物和母体材料开裂,引起较大的测量误差;2、由于材料本身发射率较低,引起的测量误差;3、由于测量环境恶劣引起的测量误差。

双色测温方法可以很好的解决这些测量问题。

DIT双色测温仪可广泛应用于铸造,粉末冶金,轧钢,化工,玻璃,陶瓷生产,热处理,真空加热,线材生产,焦化,焊接等行业。

2、技术参数1、测量范围:DIT610 600~1400℃DIT611 800~1800℃DIT610 1000~3000℃2、基本误差:0.75(±0.75%)或0.2(±0.2%)3、重复精度:±0.2%4、距离系数:300:15、测量距离:0.6m~∞6、可测最小目标:φ2mm(600mm)7、响应时间:< 5ms8、斜率补偿:0.85~1.109、发射率:0.10~1.0010、响应波长范围:双色:0.9~1.1μm&0.4-1.1μm单色:0.4-1.1μm11、温度分辨率:0.5℃12、测头尺寸:Ø58×182mm13、模拟量输出:0-5VDC ,4-20mA或0-20mA14、通讯接口:RS48515、工作电源:24VDC16、功率:<1W17、重量:0.5KG18、工作环境:0~60℃,相对湿度不大于90%3、结构3.1 DIT双色测温仪外形结构3.2 DIT双色测温仪面板说明①测量值显示及参数设置窗口。

ADTD雷电探测仪用户手册资料

ADTD雷电探测仪用户手册资料

雷电监测定位系统ADTD 雷电探测仪用户手册中国科学院空间科学与应用研究中心ADTD雷电监测定位系统课题组二○○四年十月目录页号一、概论 21.1 A D T D雷电探测仪的工作原理 2 1.2 雷电监测定位系统的构成 31.3 雷电探测仪的结构 4二、A D T D雷电探测仪的技术功能指标112.1 每个雷电探测仪布站配置 11 2.2 雷电探测仪布站连接简图 112.3 雷电探测仪的主要技术指标11三、雷电探测仪的安装 133.1 安装场地要求 13 3.2 安装基座 13 3.3 探头供电 13 3.4 探头接地 13 3.5 通讯标准及波特率 17 3.6 探头与中心数据处理站间的通信17 3.7 通讯电缆 18 3.8 探头的安装及水平调节 18 3.9 探头NS磁场天线环方位的调整 18 3.10 探头的初次通电 223.11 探头的密封 22四、雷电探测仪运行设置和操作 234.1 DIP开关的设置 23 4.2 探头的运行方式 25 4.3 探头的数据输出及帧格式 25 4.4 自动自检 28 4.5 探头命令 284.6 C P U板、P D L板以及电源/接口板上的L E D灯的涵义39五、雷电探测仪维修 415.1探头的检修维护 41 2维修程序设置及测试终端连接44 5.3探头故障修理 47一、概论1.1 ADTD 雷电探测仪的工作原理———闪电物理特性,探测原理,处理技术大量的气象观测、卫星探测仪以及很多国家的电学测量等综合分析表明,全球在任一时刻都有上千个雷暴在活动,大多数发生在较低纬度地区,但两极地区也时有发生。

由于雷电在现代生活中,仍然威胁着森林、引燃火工品、造成人员的伤亡,对航天、航空、通讯、电力、建筑等国防和国民经济的许多部门都有着很大的影响。

因此各国都很重视雷电的研究与防护。

闪电可以分为:云闪(包含云与云、云与空气、云内放电)、云地闪、诱发闪电、球闪等多种,其中对地面设施危害最大的是云地闪电。

adtek数显电表说明书接线

adtek数显电表说明书接线

adtek数显电表说明书接线ADTEK数显电表是一种用于测量和监控电能的仪表。

它采用先进的数字技术和微机控制技术,具有精确、可靠、实用的特点。

以下是ADTEK数显电表的接线方法和详细说明。

ADTEK数显电表的接线分为三个部分:电源线接线、电流接线和电压接线。

1.电源线接线:电源线接线需要将电表与电源连接。

在ADTEK数显电表的背面,有一个电源接口,上面标有"AC"和"LN"的指示。

接线时,将电源的相线接到"LN"接口,零线接到"AC"接口。

请注意,接线时一定要先断开电源,并确保电压符合电表的额定电压。

2.电流接线:电流接线是将待测电路的电流通过电表进行测量。

ADTEK数显电表的电流接线口位于电表的正面,上方标有"I"字样。

如果要测量交流电流,将要测电路的一根导线接到电流接线口的一个插槽,另一根导线接到接线口的另一个插槽。

如果要测量直流电流,则需要确定电路的正负极性,并相应地接线。

3.电压接线:电压接线是将待测电路的电压通过电表进行测量。

ADTEK数显电表的电压接线口位于电表的正面,下方标有"V"字样。

如果要测量交流电压,将要测电路的两个导线分别接到电压接线口的两个插槽。

如果要测量直流电压,则需要确定电路的正负极性,并相应地接线。

在进行接线时,请确保电表和电路断电,并按照所需测量的电流或电压范围选择合适的接线插槽。

请注意以下几点事项:1.接线时应确保插头牢固连接,不得出现接触不良或短路等情况。

2.接线时请注意绝缘工作,防止触电事故的发生。

确保插头和插槽之间没有金属物质干扰。

3.在接线完毕后,请检查一遍接线是否正确,并确保电表和电路已经恢复通电。

4.在使用ADTEK数显电表时,请按照说明书中的操作方法进行使用,遵守电气安全规定,确保测量结果的准确性和安全性。

DULCOTEST

DULCOTEST

DULCOTEST ® 感应式电导率传感器ICT 8 - mA - 200mS/cm装配和操作说明书目标群体:商用。

零件编号 982048版本:BA DT 017 05/19 ZH请首先完整阅读使用说明书。

• 请勿丢弃说明书。

因安装或操作失误而造成的损失,由运营商承担。

最新版本的操作说明书可从我们的主页下载。

一般同等对待本文件使用中性意义上按照语法的男性方式来使文本更易读。

始终以相同的方式称呼女士和男士。

我们请女性读者理解文章中的这种简化。

补充说明请阅读补充说明。

信息说明书中给出了设备正确操作或易于您操作的重要信息。

警告提示警告提示详细描述了危险情况。

本文件中可能使用以下标识强调操作说明、参考、列表、结果以及其它相关内容:补充说明2目录目录1功能 (4)2储存和运输传感器 (5)2.1 储存 (5)2.2 运输 (5)2.3 包装材料 (5)3装配和安装 (6)3.1 安装 (6)3.2 电气安装 (7)4旧零部件处理 (9)5技术数据 (10)5.1 遵循的标准和一致性声明 (10)6索引 (11)31 功能本传感器用于测量含水测量介质中的电解电导率。

传感器依据感应测量原理工作。

信号处理电子器件集成在传感器外壳中。

传感器在出厂时已校准。

传感器需要 12 ...24 V DC 电源,配有 4 ...20 mA 电流环路输出端,均采用 6 芯非屏蔽电缆。

4 ...20 mA 电缆发送器安装在电缆传感器主体附近的浇铸模块中。

电缆长度为:传感器与电缆发送器之间的电缆长 2 m,电缆发送器与数据分析器之间的电缆长 10 m。

不得缩短或另行改动电缆。

传感器使用法兰装配,带有 ½” BSP 螺纹。

传感器配有内置温度测量装置,用于计算电导率输出值的温度补偿。

从而无需使用额外的温度传感器进行输出信号的温度补偿。

温度补偿在传感器的电子器件内部完成,默认设置为 1.7 %/°C。

传感器设有三个量程:n0 ...2 mSn0 ...20 mSn0 ...200 mS典型应用领域该传感器主要设计用于水处理和水监控应用例如:n污染的废水和工业用水n空调和冷却设备n冷却塔内的脱盐控制,n冲洗槽,n洗车机,n海水脱盐(进流),n泳池水控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于技术集成与创新,航智精密研发了业界第一款高精度数字电流传感器及高精度、低 成本、全量程为主要特点的模拟电流传感器。该产品在降低行业成本、提高行业效率和增强 用户体验体验上具备行业领先定位,并在创新创业赛事中屡获佳绩,赢得社会各界广泛关注 和支持。
航天品质,匠心制造。让高精度直流传感器进入普及时代,这是航智精密人孜孜以求的 梦想。作为一家有强烈责任感、使命感的企业,航智精密正在以服务型的品牌营销及定制化 的产品理念发力市场,并成功通过资本融资助力运营质量,为建设一个不断创新的分享型企 业而奋斗!
1.1 装箱内容确认 .................................................................................................................... 3 1.2 附件 .................................................................................................................................... 3 2 概述...............................................................................................................................................5 2.1 产品概要 ............................................................................................................................ 5 2.2 核心技术 ............................................................................................................................ 5 2.3 性能特点 ............................................................................................................................ 5 2.4 应用领域 ............................................................................................................................ 5 3 产品选型及技术参数...................................................................................................................6 3.1 产品选型表 ........................................................................................................................ 6 3.2 技术参数(RG-量程值) ........................................................................................................ 7 4 接口说明.......................................................................................................................................8 4.1 DB9 接线端子定义(DB9 公头).....................................................................................8 4.2 凤凰端子定义 .................................................................................................................... 8 4.3 运行指示灯 ........................................................................................................................ 8 5 尺寸说明.......................................................................................................................................9 5.1 DIT1、DIT5、DIT60、DIT200、DIT300、DIT400 型号 ....................................................9 5.2 DIT600、DIT1000 型号 ....................................................................................................10 附录 1 通信协议...............................................................................................................................11
DIT 系列 高精度数字电流传感器
使用说明书 V1.5
成立于 2017 年的航智精密,坐落于最具创新精神的深圳。凭借强大的研发团队,秉承以 技术创新为动力,以市场结果为导向的理念,航智精密立足高精度直流传感器领域,打破国 外企业该领域市场垄断的现状,力争发展成为国际领先的直流系统领域精密电子的领军企业。
1
目录 1 前言.................................................................................................................3
相关文档
最新文档