已知两点与(1)求向量的模

合集下载

8第八章空间解析几何答案

8第八章空间解析几何答案

8第八章空间解析几何答案第八章空间解析几何与向量代数§8.1向量及其线性运算1.填空题(1)点关于面对称的点为(),关于面对称的点为(),关于面对称的点为().(2)点关于轴对称的点为(),关于轴对称的点为(),关于轴对称的点为(),关于坐标原点对称的点为().2. 已知两点和,计算向量的模、方向余弦和方向角.解:因为,故,方向余弦为,,,方向角为,, .3. 在平面上,求与、、等距离的点.解:设该点为,则,即,解得,则该点为.4. 求平行于向量的单位向量的分解式.解:所求的向量有两个,一个与同向,一个与反向. 因为,所以.5. 已知点且向量在x轴、y轴和z轴上的投影分别为,求点的坐标.解:设点的坐标为,由题意可知,则,即点的坐标为.§8.2 数量积向量积1.若,求的模.解:所以.2.已知,证明:.证明:由,可得,可知,展开可得,即,故.3. 。

4.已知,,求与的夹角及在上的投影.解:,,. 因为,所以.5..§8.3 曲面及其方程1.填空题(1)将xOz坐标面上的抛物线绕轴旋转一周,所生成的旋转曲面的方程为(),绕轴旋转一周,所生成的旋转曲面的方程为().(2)以点为球心,且通过坐标原点的球面方程为().(3)将坐标面的圆绕轴旋转一周,所生成的旋转曲面的方程为(). 2.求与点与点之比为的动点的轨迹,并注明它是什么曲面.解:设动点为,由于,所以,解之,可得,即,所以所求的动点的轨迹为以点为心,半径为的球面.3§8.4 空间曲线及其方程1. 填空题(1)二元一次方程组在平面解析几何中表示的图形是(两相交直线的交点);它在空间解析几何中表示的图形是(两平面的交线,平行于轴且过点).(2)旋转抛物面在面上的投影为(),在面上的投影为(),在面上的投影为().2.求球面与平面的交线在面上的投影方程.解:将代入,得,因此投影方程为.4.分别求母线平行于轴、轴及轴且通过曲线的柱面方程.解:在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.4.将下列曲线的一般方程化为参数方程:(1).解:将代入得,即. 令,,所求的参数方程为..§8.5 平面及其方程1. 填空题(1)一平面过点且平行于向量和,平面的点法式方程为(),平面的一般方程为(),平面的截距式方程(),平面的一个单位法向量为().(2)设直线的方程为,当()时,直线过原点;当()且(或有一个成立)时,直线平行于轴但不与轴相交;当()时,直线与轴相交;当()时,直线与轴重合.2.求过三点,和的平面方程.解:由平面的三点式方程知,所求的平面方程为=0,即.3.求过点且垂直于两平面和的平面方程.解:该平面的法向量为,平面的方程为,即.4.分别按下列条件求平面方程:(1)平行于平面且经过点;(2)通过轴和点;(3)求平行于轴,且经过两点和的平面方程.解:(1)平面的法向量是,可作为所求平面的法向量,因此所求平面的方程为,即.(2)所求平面的法向量即垂直于轴又垂直于向量,所以所求平面的法向量为,因此所求平面的方程为,即.(3)由于所求平面平行于轴,故设所求平面方程为. 将点和分别代入得及,解得及. 因此所得方程为,即.§8.6 空间直线及其方程1. 填空题(1)直线和平面的关系是(平面与直线互相垂直).(2)过点且与直线平行的直线的方程是().(3)直线与直线的夹角为().2.化直线为对称式方程和参数方程.解:直线的方向向量为. 取,代入直线方程可得,. 所以直线的对称式方程为.令,所给直线的参数方程为.3.求过点且与直线垂直的平面方程.解:直线的方向向量可作为所求平面的法向量,即.所求平面的方程为,即.4. 确定的值,使直线与平面平行,并求直线与平面之间的距离.解:直线的方向向量,要使直线与平面平行,只要(其中为平面的法向量),即,解得. 令,代入直线的方程可得,,直线与平面之间的距离.第八章空间解析几何与向量代数综合练习1.填空题:(1)已知,,且与夹角为,则().(2)若向量,平行,则().(3)已知向量的模为,且与轴的夹角为,与y轴的夹角为,与z 轴的夹角为锐角,则=().(4)曲线 (a、b为常数)在xOy平面上投影曲线是().(5)xOy平面上曲线绕x轴旋转一周所得旋转曲面方程是().(6)直线与平面的夹角的正弦().(7)方程所表示的曲面名称为(双曲抛物面).(8)与两直线及都平行,且过原点的平面方程是().(9)已知动点到平面的距离与点到点的距离相等,则点的轨迹方程为().(10)与两平面和等距离的平面方程为().2. 设,,求向量,使得成立,这样的有多少个,求其中长度最短的.解:设,则,则,因此这样的,有无穷个.由于,因此,当时,即长度最短.3.已知点和点,试在轴上求一点,使得的面积最小.解:设,则,,,故的面积为,显然,当时,的面积最小,为,所求点为.4. 求曲线在各坐标平面上的投影曲线方程.解:在平面投影为;在平面投影为;在zOx平面投影为.5.求原点关于平面的对称点的坐标.解:过原点作垂直于平面的直线,该直线的方向向量等于平面的法向量,所求直线的对称式方程为,即为其参数方程. 将此参数方程代入平面,有,解得,即直线与平面的交点为. 设所求的对称点为,则,,,即所求的对称点为.6.求直线在平面上的投影直线绕轴线转一周所成曲面的方程.解:过作垂直于平面的平面,所求的直线在平面上的投影就是平面和的交线. 平面的法向量为:,则过点的平面的方程为:,即. 所以投影线为. 将投影线表示为以为参数的形式:,则绕轴的旋转面的方程为,即.7.求球心在直线上,且过点和点的球面方程.解:设球心为,则,即.又因为球心在直线上,直线的参数方程为,将直线的参数方程代入,可得,球心坐标为,所求球面方程为.8.已知两条直线的方程是,,求过且平行于的平面方程.解:因为所求平面过,所以点在平面上. 由于平面的法向量垂直于两直线的方向向量,因此平面的法向量为. 因此所求平面的方程为,即.9. 在过直线的所有平面中,求和原点距离最大的平面.解:设平面束方程为,即,平面与原点的距离为要使平面与原点的距离最大,只要,即该平面方程为.10. 设两个平面的方程为和(1)求两个平面的夹角. (2)求两个平面的角平分面方程.(3)求通过两个平面的交线,且和坐标面垂直的平面方程.解:(1)两个平面的法向量为和,设两个平面的夹角为,则,所以.(2)因为角平分面上任意一点到两个平面的距离相等,由点到平面的距离公式,可得,即,所求的角平分面方程为或.(3)设通过两个平面的交线的平面方程为,即,由于该平面垂直于坐标面,所以,可得,因此所求的平面方程为.。

高中数学《向量的模长问题----代数法》基础知识与典型例题解析

高中数学《向量的模长问题----代数法》基础知识与典型例题解析

高中数学《向量的模长问题----代数法》基础知识与典型例题解析一、基础知识:利用代数方法处理向量的模长问题,主要采取模长平方——数量积和坐标两种方式 1、模长平方:通过22cos0a a a a =⋅=可得:22a a =,将模长问题转化为数量积问题,从而能够与条件中的已知向量(已知模长,夹角的基向量)找到联系。

要注意计算完向量数量积后别忘记开方2、坐标运算:若(),a x y =,则22a x y =+则只要确定所求向量的坐标,即可求出(或表示)出模长3、有关模长的不等问题:通常考虑利用“模长平方”或“坐标化”得到模长与某个变量间的函数关系,从而将问题转化为求函数最值问题 二、典型例题例1:在ABC 中,O 为BC 中点,若1,3,60AB AC A ==∠=,则OA = _____ 思路:题目条件有1,3,60AB AC A ==∠=,进而AB AC ⋅可求,且OA 可用,AB AC 表示,所以考虑模长平方转化为数量积问题解:O 为BC 中点 ∴可得:()12AO AB AC =+()()2222211224AO AO AB AC AB AB AC AC ⎡⎤∴==+=+⋅+⎢⎥⎣⎦3cos 2AB AC AB AC A ⋅=⋅=代入可求出:213=4AO 132AO ∴=答案:132例2:若,,a b c 均为单位向量,且()()0,0a b a c b c ⋅=−⋅−≤,则a b c +−的最大值为( ) A.21 B. 1 C. 2 D. 2思路:题目中所给条件与模和数量积相关,几何特征较少,所以考虑将a b c +−平方,转化OB为数量积问题,再求最值。

解:()()200a c b c a b b c a c c −⋅−≤⇒⋅−⋅−⋅+≤ ①0,1a b c ⋅== ∴①转化为101b c a c b c a c −⋅−⋅+≤⇒⋅+⋅≥()22222222a b c a b ca b c a b a c b c ∴+−=+−=+++⋅−⋅−⋅()1112321b c a c =++−⋅+⋅≤−=1a b c ∴+−≤答案:B例3:平面上的向量,MA MB 满足24MA MB +=,且0MA MB ⋅=,若1233MC MA MB =+,则MC 的最小值为___________思路:发现所给条件均与,MA MB 相关,且MC 可以用,MA MB 表示,所以考虑MC 进行模长平方,然后转化为,MA MB 的运算。

向量的模长问题代数法

向量的模长问题代数法

向量的模长问题——代数法一、基础知识:利用代数方法处理向量的模长问题,主要采取模长平方——数量积和坐标两种方式1、模长平方:通过22cos0a a a a =⋅=可得:22a a =,将模长问题转化为数量积问题,从而能够与条件中的已知向量(已知模长,夹角的基向量)找到联系。

要注意计算完向量数量积后别忘记开方2、坐标运算:若(),a x y =,则2a x =+。

某些题目如果能把几何图形放入坐标系中,则只要确定所求向量的坐标,即可求出(或表示)出模长3、有关模长的不等问题:通常考虑利用“模长平方”或“坐标化”得到模长与某个变量间的函数关系,从而将问题转化为求函数最值问题 二、典型例题例1:在ABC 中,O 为BC 中点,若1,3,60AB AC A ==∠=,则OA = _____ 思路:题目条件有1,3,60AB AC A ==∠=,进而AB AC ⋅可求,且OA 可用,AB AC 表示,所以考虑模长平方转化为数量积问题解:O 为BC 中点 ∴可得:()12AO AB AC =+ ()()2222211224AO AO AB AC AB AB AC AC ⎡⎤∴==+=+⋅+⎢⎥⎣⎦3cos 2AB AC AB AC A ⋅=⋅= 代入可求出:213=4AO132AO ∴=B答案:2例2:若,,a b c 均为单位向量,且()()0,0a b a c b c ⋅=-⋅-≤,则a b c +-的最大值为( )A.1- B. 1 C.D.2思路:题目中所给条件与模和数量积相关,几何特征较少,所以考虑将a b c +-平方,转化为数量积问题,再求最值。

解:()()200a c b c a b b c a c c -⋅-≤⇒⋅-⋅-⋅+≤ ①0,1a b c ⋅== ∴①转化为101b c a c b c a c -⋅-⋅+≤⇒⋅+⋅≥ ()22222222a b c a b ca b c a b a c b c ∴+-=+-=+++⋅-⋅-⋅()1112321b c a c =++-⋅+⋅≤-=1a b c ∴+-≤答案:B例3:平面上的向量,MA MB 满足24M A M B+=,且0MA MB ⋅=,若1233MC MA MB =+,则MC 的最小值为___________思路:发现所给条件均与,MA MB 相关,且MC 可以用,MA MB 表示,所以考虑MC 进行模长平方,然后转化为,MA MB 的运算。

(完整版)空间解析几何与向量代数习题与答案

(完整版)空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数A一、1、平行于向量)6,7,6(-=a 的单位向量为______________.2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为_______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。

在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z += (2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程. 3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影. 五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程. 2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程. 5、求直线⎩⎨⎧=--=++003z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3. 7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知和为两非零向量,问取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过轴,且与平面052=-+z y x 的夹角为3π的平面方程. 6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线:211zy x =-=平行的平面.8、求在平面:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积 12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线:121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程. 4、求两直线:1101-=-=-z y x 与直线:0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j i b a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。

§2.4.2平面向量数量积的坐标表示、模、夹角

§2.4.2平面向量数量积的坐标表示、模、夹角

二、向量的模和两点间距离公式:
1向量的模(长度公式):
设a (x, y),则
2
a x2 y2,或a

x2 y2
2两点间的距离公式: 设Ax1, y1、Bx2, y2 ,则AB x2 x1, y2 y1
AB x2 x1 2 y2 y1 2
【拓展提升】数量积坐标运算的方法技巧 (1)进行数量积运算时,要正确使用公式 a·b=x1x2+y1y2,并能灵活运用以下几个关系: |a|2=a·a.(a+b)(a-b)=|a|2-|b|2. (a+b)2=|a|2+2a·b+|b|2. (2)利用数量积的条件求平面向量的坐标,一般来 说应当先设出向量的坐标,然后根据题目中已知 的条件找出向量坐标满足的等量关系,利用数量 积的坐标运算列出方程组来进行求解.
记忆口诀:注意坐标形式下两向量垂直的条件与两向量平 行的条件不要混淆, “a⊥b⇔x1x2+y1y2=0”可简记为“对应相乘和为0”; “a∥b⇔x1y2-x2y1=0”可简记为“交叉相乘差为0”.
四、向量夹角公式的坐标表示:
设a x1, y1 ,b x2 , y2 , a与b夹角为,0
(1)掌握向量数量积的坐标表达式, 会进行向量数量积的坐标运算;
(2)能运用数量积表示两个向量的夹角,计 算向量的长度,会用数量积判断两个平面 向量的垂直关系.
一、平面向量数量积的坐标表示:
a x1, y1 ,b x2 , y2 a,b非零向量 y A(x1,y1)
a x1i y1 j,b x2i y2 j
B(x2,y2)
a
bj
a b (x1i y1 j) (x2i y2 j)

1.4.2用空间向量研究距离、夹角问题(第1课时)课件(人教版)

1.4.2用空间向量研究距离、夹角问题(第1课时)课件(人教版)
hB
2 6
2 6
, 点B到直线AC1的距离为
.
3
3
2.求点到直线的距离
a l 2
d a (
)
|l |
①公式法(找斜线的方向向量 及直线l的方向向量 )
2
②等面积法(将点线距离视为三角形的高)
[练习]棱长为a的正方体ABCD-A1B1C1D1中,M是线段DC1的中点,求
点M到直线AD1的距离.
4
①距离公式法(找两点坐标)
若A( x1, y1, z1 ), B( x2 , y2 , z2 ), 则 AB ( x1 x2 )2 ( y1 y2 )2 ( z1 z2 )2
②向量求模法(基底法/坐标法)
2
如 : AC' ( AB AD AA')2 85, | AC' | 85
2.求点到直线的距离
①公式法(找斜线的方向向量 及直线l的方向向量 或单位方向向量 )
2
a l 2
l
2
d a (
) 或 a ( a e) (其中e )
|l |
|l |
D1
2
B1
A1
C1
B1
A1
E
②等面积法(将点线距离视为三角形的高)
F
D
3.求直线到直线的距离
D1
C1
A
D
C
B
写2遍,去首尾,交叉相乘再相减
y1 z1 x1 z1 x1
平面内a ( x1 , y1 , z1 ), b ( x2 , y2 , z2 ), 则n
P
a l 2
2
2

a

高等数学课后答案-第六章-习题详细解答

高等数学课后答案-第六章-习题详细解答

习 题 6—11、在平行四边形ABCD 中, 设−→−AB =a , −→−AD =b . 试用a 和b 表示向量−→−MA 、−→−MB 、−→−MC 、−→−MD , 其中M 是平行四边形对角线的交点.解: 由于平行四边形的对角线互相平分, 所以a +b −→−−→−==AM AC 2, 即 -(a +b )−→−=MA 2, 于是 21-=−→−MA (a +b ).因为−→−−→−-=MA MC , 所以21=−→−MC (a +b ). 又因-a +b −→−−→−==MD BD 2, 所以21=−→−MD (b -a ). 由于−→−−→−-=MD MB , 所以21=−→−MB (a -b ).2、若四边形的对角线互相平分,用向量方法证明它是平行四边形.证: =,BM =,∴=+=+BM =与 平行且相等,结论得证.3、 求起点为)1,2,1(A ,终点为)1,18,19(--B 的向量→AB 与12AB −−→-的坐标表达式.解:→AB =j i k j i 2020)11()218()119(--=-+--+--={20,20,0}--, 12AB −−→-={10,10,0}4、 求平行于a ={1,1,1}的单位向量.解:与a 平行的单位向量为{}1,1,131±=±a a .5、在空间直角坐标系中,指出下列各点在哪个卦限?(1,1,1),A - (1,1,1),B -(1,1,1),C -- (1,1,1).D -- 解: A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ.6、 求点),,(z y x M 与x 轴,xOy 平面及原点的对称点坐标.解:),,(z y x M 关于x 轴的对称点为),,(1z y x M --,关于xOy 平面的对称点为),,(2z y x M -,关于原点的对称点为),,(3z y x M ---.7、已知点A(a, b, c), 求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐标). 解:分别为),0,0(),0,,0(),0,0,(),,0,(),,,0(),0,,(c b a c a c b b a .8、过点(,,)P a b c 分别作平行于z 轴的直线和平行于xOy 面的平面,问它们上面的点的坐标各有什么特点?解:平行于z 轴的直线上面的点的坐标:x a,y b,z R ==∈;平行于xOy 面的平面上的点的坐标为 z c,x,y R =∈.9、求点P (2,-5,4)到原点、各坐标轴和各坐标面的距离.解:到原点的距离为x y 轴的距离为到z10、 求证以)1,3,4(1M 、)2,1,7(2M 、)3,2,5(3M 三点为顶点的三角形是一个等腰三角形. 解:222212(74)(13)(21)14M M =-+-+-=,222223(57)(21)(32)6M M =-+-+-= 222213(45)(32)(13)6M M =-+-+-=,即1323M M M M =,因此结论成立.11、 在yoz 坐标面上,求与三个点A(3, 1, 2), B(4, -2, -2), C(0, 5, 1)等距离的点的坐标. 解:设yoz 坐标面所求点为),,0(z y M ,依题意有||||||MC MB MA ==,从而222)2()1()30(-+-+-z y 222)2()2()40(++++-=z y222)2()1()30(-+-+-z y联立解得2,1-==z y ,故所求点的坐标为)2,1,0(-.12、 z 轴上,求与点A(-4, 1, 7), 点B(3, 5,-2)等距离的点. 解:设所求z 轴上的点为),0,0(z ,依题意:222)7()10()40(-+-++z 222)2()50()30(++-+-=z ,两边平方得914=z ,故所求点为)914,0,0(.13、 求λ使向量}5,1,{λ=a 与向量}50,10,2{=b 平行. 解:由b a //得5051012==λ得51=λ.14、 求与y 轴反向,模为10的向量a 的坐标表达式. 解:a =j j 10)(10-=-⋅={0,10,0}-.15、求与向量a ={1,5,6}平行,模为10的向量b 的坐标表达式. 解:}6,5,1{6210==a a a ,故 {}6,5,16210100±=±=a b .16、 已知向量6410=-+a i j k ,349=+-b i j k ,试求: (1)2+a b ; (2)32-a b .解:(1) 264102(349)1248i a b i j k i j k j k +=-+++-=+-; (2)323(6410)2(349)=122048a b =i j k i j k i j k --+-+--+.17、已知两点A 和(3,0,4)B ,求向量AB 的模、方向余弦和方向角.解: 因为(1,1)AB =-, 所以2AB =,11cos ,cos 22αβγ===-,从而π3α=,3π4β=,2π3γ=.18、设向量的方向角为α、β、γ.若已知其中的两个角为π3α=,2π3β=.求第三个角γ. 解: π3α=,2π3β=,由222cos cos cos 1αβγ++=得21cos 2γ=.故π4γ=或3π4.19、 已知三点(1,0,0)=A ,(3,1,1)B ,(2,0,1)C ,求:(1)BC 与CA 及其模;(2)BC 的方向余弦、方向角;(3)与BC 同向的单位向量.解:(1)由题意知{}{}23,01,111,1,0,BC =---=--{}{}12,00,011,0,1,CA =---=-- 故 2,2==BC CA .(2)因为{}1,1,0,=--BC 所以,由向量的方向余弦的坐标表示式得:cos 0αβγ===,方向角为:3,42ππαβγ===.(3)与BC 同向的单位向量为:oa =⎧⎫=⎨⎬⎩⎭BCBC .20、 设23,23,34,m i j k n i j k p i j k =++=+-=-+和23a m n p =+-求向量在x 轴上的投影和在y 轴上的分向量.解:2(23)3(23)(34)5114a i j k i j k i j k i j k =++++---+=+-.故向量a 在x 轴上的投影5=x a ,在y 轴上的投影分量为11y a j =.21、一向量的终点为点B(-2,1,-4),它在x 轴,y 轴和z 轴上的投影依次为3,-3和8,求这向量起点A 的坐标.解:设点A 为(x, y, z ),依题意有:84,31,32=---=-=--z y x , 故12,4,5-==-=z y x ,即所求的点A (-5, 4,-12).22、 已知向量a 的两个方向余弦为cos α=72 ,cos β=73, 且a 与z 轴的方向角是钝角.求cos γ. 解:因222cos cos cos 1,αβγ++=22223366cos 1cos 77497γγ=-==±故()—(),,又γ是钝角,所以76cos -=γ.23、设三力1232234F ,F ,F i j i j k j k =-=-+=+作用于同一质点,求合力的大小和方向角.解: 合力123(2)(234)()F F F F i k i j k j k =++=-+-+++323i j k =-+,因此,合力的大小为|F |=合力的方向余弦为,222cos ,cos 223cos -===βγα因此παγβ===-习 题 6—21、 {}0,0,1=a ,{}0,1,0=b ,)1,0,0(=c ,求⋅a b ,c a ⋅,c b ⋅,及a a ⨯,b a ⨯,c a ⨯,c b ⨯. 解:依题意,i a =,j b =,k c =,故0=⋅=⋅j i b a ,0=⋅=⋅k i c a ,0=⋅=⋅k j c b .0=⨯=⨯i i a a ,k j i b a =⨯=⨯,j k i c a -=⨯=⨯,i k j c b =⨯=⨯.2、 }}{{1,2,2,21,1==b a ,,求b a ⋅及b a ⨯ .a 与b的夹角余弦. 解:(1)121221⋅=⨯+⨯+⨯=a b 6, 112221⨯==i j ka b }{3,3,0-.(2)cos a b a b a b θ++==3、 已知 π5,2,,3∧⎛⎫=== ⎪⎝⎭a b a b ,求23a b -解:()()2232323-=-⋅-a b a b a b 22412976=-⋅+=a a b b ,∴ 23-=ab4、 证明下列问题:1)证明向量}{1,0,1=a 与向量}{1,1,1-=b 垂直. 2) 证明向量c 与向量()()a c b b c a ⋅-⋅垂直. 证:1)01110)1(1=⨯+⨯+-⨯=⋅b a ,^π(,)2a b ∴=,即a 与b 垂直. 2) [()()]⋅-⋅⋅a c b b c a c [()()]=⋅⋅-⋅⋅a c b c b c a c ()[]=⋅⋅-⋅c b a c a c 0=[()()]∴⋅-⋅⊥a c b b c a c .5、 求点)1,2,1(M 的向径OM 与坐标轴之间的夹角.解:设OM 与x 、y 、z 轴之间的夹角分别为γβα,,,则211)2(11cos 22=++==α,22cos ==β, 21cos ==γ. 3π=∴α, 4π=β, 3π=γ.6、 求与k j i a ++=平行且满足1=⋅x a 的向量x .解:因x a //, 故可设{}λλλλ,,==a x ,再由1=⋅x a 得1=++λλλ,即31=λ,从而⎭⎬⎫⎩⎨⎧=31,31,31x .7、求与向量324=-+a i j k ,2=+-b i j k 都垂直的单位向量.解:=⨯=xy z x y zij kc a b a a a b b b 324112=--i j k =105+j k,||10==c 0||∴=c c c=.⎫±+⎪⎭j8、 在顶点为)2,1,1(-A 、)2,6,5(-B 和)1,3,1(-C 的三角形中,求三角形ABC 的面积以及AC 边上的高BD .解:{0,4,3},{4,5,0}AC AB =-=-,三角形ABC 的面积为,22516121521||21222=++=⨯=AB C A S ||||21,5)3(4||22BD S ==-+= ||521225BD ⋅⋅= .5||=∴BD9、 已知向量≠0a ,≠0b ,证明2222||||||()⨯=-⋅a b a b a b .解 2222||||||sin ()∧⨯=⋅a b a b ab 222||||[1cos ()]∧=⋅-a b ab 22||||=⋅a b 222||||cos ()∧-⋅a b ab 22||||=⋅a b 2().-⋅a b10、 证明:如果++=0a b c ,那么⨯=⨯=⨯b c c a a b ,并说明它的几何意义.证: 由++=0a b c , 有()++⨯=⨯=00a b c c c , 但⨯=0c c ,于是⨯+⨯=0a c b c ,所以⨯=-⨯=⨯b c a c c a . 同理 由()++⨯=0a b c a , 有 ⨯=⨯c a a b ,从而 ⨯=⨯=⨯b c c a a b .其几何意义是以三角形的任二边为邻边构成的平行四边形的面积相等.11、 已知向量23,3=-+=-+a i j k b i j k 和2=-c i j ,计算下列各式:(1)()()⋅-⋅a b c a c b (2)()()+⨯+a b b c (3)()⨯⋅a b c (4)⨯⨯a b c 解: (1)()()8(2)8(3)⋅-⋅=---+=a b c a c b i j i j k 824--j k .(2) 344,233+=-++=-+a b i j k b c i j k ,故()()+⨯+a b b c 344233=-=-i jk--j k . (3)231()231(2)(85)(2)11311312-⨯⋅=-⋅-=--+⋅-=-=--i jk a b c i j i j k i j 2. (4)由(3)知85,()851120⨯=--+⨯⨯=--=-i jka b i j k a b c 221++i j k .习 题 6—31、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA =()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程.解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x y z C MA z ∈⇔= 亦即z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .3、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-;(3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x (2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为: 21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l∴所求的球面方程为0424222=+--++z y x z y x .4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程. 解:222x y z +=(旋转抛物面) .5、将zOx 坐标面上的双曲线12222=-c z a x 分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x .6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=; (5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=;(8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+.解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面.7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形? (1)1+=x y ;(2)422=+yx ;(3)122=-y x ;(4)22x y =.解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面; (2)422=+y x 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面; (3)122=-y x 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面;(4)y x22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=- 解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成(2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成(3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成 (4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.9、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成; (3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围. 解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体; (2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成; (4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.习 题 6—41、画出下列曲线在第一卦限内的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222a z x ay x解:(1)是平面1x =与2y =相交所得的一条直线; (2)上半球面z 与平面0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.2、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.3、求在yOz 平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程).解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x .4、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点.解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.5 、将下面曲线的一般方程化为参数方程(1)2229x y z y x ⎧++=⎨=⎩; (2)⎩⎨⎧==+++-04)1()1(22z z y x解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x xy ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==tz t t y t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .6、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cosy b z a x .7、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ;(3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.8、 求曲线⎩⎨⎧==-+30222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何种曲线.解:原曲线即:⎩⎨⎧=-=3922z x y ,是位于平面3=z 上的抛物线,在xOy 面上的投影曲线为⎩⎨⎧=-=0922z x y9、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周.(2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,021≤⎪⎩⎪⎨⎧==x y z (3)同理在yOz 面上的投影也为线段..23||,21≤⎪⎩⎪⎨⎧==y x z10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x x z y ,(1)消去z 得投影,004522⎩⎨⎧==-++z x xy y x(2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影22200y z y z x ⎧++-=⎨=⎩.习 题 6—51、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程. 解:平面的点法式方程为()()()032212=-+-+-z y x .2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程. 解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .4、求通过x 轴和点(4, -3, -1)的平面的方程.解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以B (B 0), 便得所求的平面方程为y -3z =0.5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程.解:},1,1,1{1-=n }12,2,3{2-=n 取法向量},5,15,10{21=⨯=n n n所求平面方程为化简得:.0632=-++z y x6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程.解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥- 0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=7、写出下列平面方程:(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,y ,z 轴上的截距相等的平面.解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数), (3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.8、 求平行于0566=+++z y x 而与三个坐标面所围成的四面体体积为1的平面方程.解: 设平面为,1=++c z b y a x ,1=V 111,32abc ∴⋅=由所求平面与已知平面平行得,611161c b a ==化简得,61161c b a ==令tc t b t a t c b a 61,1,6161161===⇒===代入体积式 11111666t t t ∴=⋅⋅⋅ 1,6t ⇒=±,1,6,1===∴c b a 或1,6,1,a b c =-=-=-所求平面方程为666x y z ++=或666x y z ++=-.9、分别在下列条件下确定n m l ,,的值:(1)使08)3()1()3(=+-+++-z n y m x l 和016)3()9()3(=--+-++z l y n x m 表示同一平面; (2)使0532=-++z my x 与0266=+--z y lx 表示二平行平面; (3)使013=+-+z y lx 与027=-+z y x 表示二互相垂直的平面.解:(1)欲使所给的二方程表示同一平面,则:168339133-=--=-+=+-l n n m m l 即: ⎪⎩⎪⎨⎧=-+=-+=-+092072032n l m n l m ,解之得 97=l ,913=m ,937=n . (2)欲使所给的二方程表示二平行平面,则:6362-=-=m l ,所以4-=l ,3=m . (3)欲使所给的二方程表示二垂直平面,则:7230l ++=所以: 57l=-.10、求平面011=-+y x 与083=+x 的夹角; 解:设011=-+y x 与083=+x 的夹角为θ,则cos θ ∴ 4πθ=.11、 求点(2,1,1)到平面2240x y z +-+=的距离. 解:利用点到平面的距离公式可得933d ===.习 题 6—61、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线; (2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线; (4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程. (5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线.解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x . (2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为: 132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程.440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为: 235635x y z -++==--.2、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程.解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kji34312111--=-=,所以直线的点向式方程为:,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=tz ty tx3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y tx 与142475x y z --+==-. 解:(1)将所给的直线方程化为标准式为:4343223z y x =-=--43227-=--=-z y x 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ==4、判别下列直线与平面的相关位置: (1)37423z y x =-+=--与3224=--z y x ;(2)723zy x =-=与8723=+-z y x ; (3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ;(4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1) 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2) 0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直. (3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-, 0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上.(4)直线的方向向量为{}9,2,1-, 097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直.5、验证直线l :21111-=-=-z y x 与平面π:032=--+z y x 相交,并求出它的交点和交角. 解: 032111)1(2≠-=⨯-⨯+-⨯∴直线与平面相交.又直线的参数方程为:⎪⎩⎪⎨⎧+=+=-=t z t y tx 211设交点处对应的参数为0t ,∴03)21()1()(2000=-+-++-⨯t t t ∴10-=t ,从而交点为(1,0,-1). 又设直线l 与平面π的交角为θ,则:21662111)1(2sin =⨯⨯-⨯+-⨯=θ,∴6πθ=.6、确定m l ,的值,使: (1)直线13241zy x =+=-与平面0153=+-+z y lx 平行; (2)直线⎪⎩⎪⎨⎧-=--=+=135422t z t y t x 与平面076=-++z my lx 垂直.解:(1)欲使所给直线与平面平行,则须:015334=⨯-⨯+l 即1l =-. (2)欲使所给直线与平面垂直,则须:3642=-=m l ,所以:8,4-==m l .7、求下列各平面的方程: (1)通过点)1,0,2(-p ,且又通过直线32121-=-=+z y x 的平面; (2)通过直线115312-+=-+=-z y x 且与直线⎩⎨⎧=--+=---052032z y x z y x 平行的平面; (3)通过直线223221-=-+=-z y x 且与平面0523=--+z y x 垂直的平面;(4). 求过点(2,1,0)M 与直线2335x t y t z t =-⎧⎪=+⎨⎪=⎩垂直的平面方程.解:(1)因为所求的平面过点)1,0,2(-p 和)2,0,1(-'p ,且它平行于向量{}3,1,2-,所以要求的平面方程为:03331212=--+-z y x , 即015=-++z y x .(2)已知直线的方向向量为{}{}{}2,1,11,2,13,1,5--⨯-=,∴平面方程为:2311510315x y z -++--=,即3250x y z +--= (3)所求平面的法向量为{}{}{}13,8,11,2,32,3,2-=-⨯-,∴平面的方程为:0)2(13)2(8)1(=--+--z y x ,即09138=+--z y x .(4).所求平面的法向量为{}2,3,1,则平面的方程为:2(2)3(1)(0)0x y z -+-+-=, 即 2370x y z ++-=.8、求点(4,1,2)M 在平面1x y z ++=上的投影.解: 过点(4,1,2)M 作已知平面的垂线,垂线的方向向量就是已知平面的法向量(1,1,1),所以垂线方程为412111x y z ---==,此垂线与已知平面的交点即为所求投影.为了求投影,将垂线方程化为参数方程412x t y t z t =+⎧⎪=+⎨⎪=+⎩,代入平面方程求得2t =-,故投影为(2,1,0)-. 9、求点)1,3,2(-p 到直线⎩⎨⎧=++-=++-0172230322z y x z y x 的距离.解:直线的标准方程为:2251211-+==-z y x 所以p 到直线的距离 1534532025)2(1212392292421243222222===-++-+--+-=d .10、设0M 是直线L 外一点,M 是直线L 上一点,且直线的方向向量为s ,试证:点0M 到直线L 的距离为d =.证:设0M M 与L 的夹角为θ,一方面由于0sin d M M θ=;另一方面,00sin M M s M M s θ⨯=,所以d =.11、求通过平面0134=-+-z y x 和025=+-+z y x 的交线且满足下列条件之一的平面: (1)通过原点; (2)与y 轴平行;(3)与平面0352=-+-z y x 垂直. 解: (1)设所求的平面为:0)25()134(=+-++-+-z y x z y x λ 欲使平面通过原点,则须:021=+-λ,即21=λ,故所求的平面方程为 0)25()134(2=+-++-+-z y x z y x 即:0539=++z y x .(2)同(1)中所设,可求出51=λ.故所求的平面方程为 0)25()134(5=+-++-+-z y x z y x 即:031421=-+z x .(3)如(1)所设,欲使所求平面与平面0352=-+-z y x 垂直,则须:0)3(5)51()4(2=-++--+λλλ从而3=λ,所以所求平面方程为05147=++y x .12、求直线⎩⎨⎧=++-=--+0101z y x z y x 在平面0=++z y x 上的投影直线的方程.解:应用平面束的方法.设过直线⎩⎨⎧=++-=--+0101z y x z y x 的平面束方程为0)1()1(=++-+--+z y x z y x λ即01)1()1()1(=-++-+-++λλλλz y x这平面与已知平面0=++z y x 垂直的条件是01)1(1)1(1)1(=⋅+-+⋅-+⋅+λλλ,解之得1-=λ代入平面束方程中得投影平面方程为10y z --=,所以投影直线为⎩⎨⎧=++=--001z y x z y .13、请用异于本章第五节例7的方法来推导点到平面的距离公式.证:设),,(0000z y x P 是平面π:0+++=Ax By Cz D 外的一点,下面我们来求点0P 到平面π的距离. 过0P 作平面π的垂线L :000x x y y z z A B C---==,设L 与平面π的交点为(,,)P x y z ,则P 与0P 之间的距离即为所求.因为点(,,)P x y z 在L 上,所以000x x Aty y Bt z z Ct-=-=-=⎧⎪⎨⎪⎩,而(,,)P x y z 在平面π上,则000()()()0A x At B y Bt C z Ct D ++++++=000222Ax By Cz A B t DC ⇒=-+++++,故000222Ax By Cz Dd t A B C+++===++=.习 题 6—7飞机的速度:假设空气以每小时32公里的速度沿平行y 轴正向的方向流动,一架飞机在xoy 平面沿与x 轴正向成π6的方向飞行,若飞机相对于空气的速度是每小时840公里,问飞机相对于地面的速度是多少?解:如下图所示,设OA 为飞机相对于空气的速度,AB 为空气的流动速度,那么OB 就是飞机相对于地面的速度.840cos 840sin 4203420,3266OA i j i j AB j ππ=⋅+⋅=+=所以, 24203452,(420856.45OB i j OB =+=≈千米/小时.复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ )解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a b b c ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ )解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ ) 解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b .解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;图6-1 空所流动与飞机飞行速度的关系(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面.解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C) ⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-.解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a 0 ; 解 =⨯b a b a sin()a,b π22=2,=⋅b a b a cos()a,b π22=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±.3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 ⎩⎨⎧==+.0,1222z y x解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c) 2b a -;解: (a) b a ⨯=211121-kj i 1,3}5,{--=. (b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a , 所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解: (1) }2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3) 21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P.3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-i j kc a b,01⎧==⎨⎩c c c ,故与a 、b都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d垂直于向量]1,3,2[-=a和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,求向量d解: d垂直于a与b ,故d平行于b a⨯,存在数λ使()b a d⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d.5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x . 解2:}1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj in 452131113121--=--=⨯=P P P P , 又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可. 因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求平面方程为0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos 32=≠=,所以0≠B ),令C B C'=,则有0='+z C y ,由题设得 22222212)5(10121503cos ++'++⨯'+⨯+⨯=πC C , 解得3='C 或13C '=-,于是所求平面方程为03=+z y 或03=-z y .6、 一平面过直线⎩⎨⎧=+-=++04,05z x z y x 且与平面01284=+--z y x 垂直,求该平面方程;解法1: 直线⎩⎨⎧=+-=++04,05z x z y x 在平面上,令x =0,得 54-=y ,z =4,则(0,-54,4)为平面上的点.设所求平面的法向量为n =},,{C B A ,相交得到直线的两平面方程的法向量分别为 1n ={1,5,1},2n ={1,0,-1},则直线的方向向量s =1n ⨯2n =101151-kj i ={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅n s ={-5,2,-5}•},,{C B A =C B A 525-+-=0,因为所求平面与平面01284=+--z y x 垂直,则}8,4,1{},,{--⋅C B A =C B A 84--=0,解方程组{5250,480,A B C A B C -+=--= ⇒ 2,5,2A CBC =-⎧⎪⎨=-⎪⎩ 所求平面方程为 0)4()54(25)0(2=-++---z C y C x C ,即012254=+-+z y x .解法2: 用平面束(略)7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p +--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为 p z n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z y x z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面. (d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形.解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与xOy 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).复习题B1、设4=a ,3=b ,()6π=a,b ,求以2+a b 和3-a b 为邻边的平行四边形的面积.解:(2)(3)326A =+⨯-=⨯-⨯+⨯-⨯a b a b a a a b b a b b325=-⨯-⨯=-⨯a b a b a b 15sin()543302=⋅=⨯⨯⨯=a b a,b .2、设(3)(75)+⊥-a b a b ,(4)(72)-⊥-a b a b ,求()a,b . 解: 由已知可得:(3)(75)0+⋅-=a b a b ,(4)(72)0-⋅-=a b a b 即 22715160-+⋅=a b a b ,2278300+-⋅=a b a b .这可看成是含三个变量a 、b 及⋅a b 的方程组,可将a 、b 都用⋅a b 表示,即==a b 1cos()22⋅⋅===⋅a b a b a,b a b a b ,()3π=a,b .3、求与}3,2,1{-=a 共线,且28=⋅b a 的向量b .解 由于b 与a 共线,所以可设}3,2,{λλλλ-==a b ,由28=⋅b a ,得28}3,2,{}3,2,1{=-⋅-λλλ, 即2894=++λλλ,所以2=λ,从而}6,4,2{-=b .4、 已知}0,1,1{},2,0,1{=-=b a ,求c ,使b c a c ⊥⊥,且6=c .解法1: 待定系数法.设},,{z y x =c ,则由题设知0,0=⋅=⋅b c a c 及6=c ,所以有①20②③6x z ⎧-=⎪=由①得2xz = ④,由②得x y -= ⑤,将④和⑤代入③得62)(222=⎪⎭⎫⎝⎛+-+x x x ,解得2,4,4±==±=z y x ,于是 }2,4,4{-=c 或}2,4,4{--=c .解法2: 利用向量的垂直平行条件,因为b c a c ⊥⊥,,所以c ∥b a ⨯.设λ是不为零的常数,则k j i k j i b a c λλλλλ+-=-=⨯=22011201)(,因为6=c ,所以6]1)2(2[2222=+-+λ,解得2±=λ,所以}2,4,4{-=c 或{4,4,2}=--c .解法3: 先求出与向量b a ⨯方向一致的单位向量,然后乘以6±.k j i kji b a +-=-=⨯22011201,31)2(2222=+-+=⨯b a ,故与b a ⨯方向一致的单位向量为}1,2,2{31-.于是}1,2,2{36-±=c ,即}2,4,4{-=c 或}2,4,4{--=c .5、求曲线222x y R x y z ⎧+=⎨++=⎩的参数式方程.解: 曲线参数式方程是把曲线上任一点(,,)P x y z 的坐标,,x y z 都用同一变量即参数表示出来,故可令cos ,sin x R t y R t ==,则(cos sin )z R t t =-+.6、求曲线22:2z L x y x⎧⎪=⎨+=⎪⎩xOy 面上及在zOx 面上的投影曲线的方程.解: 求L 在xOy 面上的投影的方程,即由L 的两个方程将z 消去,即得L 关于xOy 面的投影柱面的方程222x y x +=则L 在xOy 面上的投影曲线的方程为2220x y xz ⎧+=⎨=⎩. 同理求L 在zOx 面上的投影的方程,即由L 的两个方程消去y ,得L 关于zOx 面的投影柱面的方程z =L 在zOx面上的投影曲线方程为0z y ⎧=⎪⎨=⎪⎩.7、已知平面π过点0(1,0,1)M -和直线1211:201x y z L ---==,求平面π的方程. 解法1: 设平面π的法向量为n ,直线1L 的方向向量1(2,0,1)=s ,由题意可知1⊥n s ,(2,1,1)M 是直线1L 上的一点,则0(1,1,2)M M =在π上,所以0MM ⊥n ,故可取10MM =⨯n s (1,3,2)=--.则所求平面的点法式方程为1(1)3(0)2(1)0x y z ⋅-+⋅--⋅+=,即3230x y z +--=为所求平面方程.解法2: 设平面π的一般方程为0Ax By Cz D +++=,由题意可知,π过点0(1,0,1)M -,故有0A C D -+=, (1)在直线1L 上任取两点12(2,1,1),(4,1,2)M M ,将其代入平面方程,得20A B C D +++=, (2)420A B C D +++=, (3)由式(1)、(2)、(3)解得3,2,3B A C A D A ==-=-,故平面π的方程为3230x y z +--=.解法3: 设(),,M x y z 为π上任一点.由题意知向量0M M 、01M M 和1s 共面,其中()12,1,1M 为直线1L 上的点,1(2,0,1)=s 为直线1L 的方向向量.因此0011()0M M M M ⨯⋅=s ,故平面π的方程为1012110110201x y z --+--+=,即3230x y z +--=为所求平面方程.8、求一过原点的平面π,使它与平面0:π4830x y z -+-=成4π角,且垂直于平面1:π730x z ++=. 解: 由题意可设π的方程为0Ax By Cz ++=,其法向量为(,,)A B C =n ,平面0π的法向量为0(1,4,8)=-n ,平面1π的法向量为1(7,0,1)=n ,由题意得00||cos 4||||π⋅=⋅n n n n ,即=(1) 由10⋅=n n ,得70A C +=,将7C A =-代入(12=,解得20,B A =或10049B A =-,则所求平面π的方程为2070x y z +-= 或 491003430x y z --=.9、求过直线1L :0230x y z x y z ++=⎧⎨-+=⎩且平行于直线2L :23x y z ==的平面π的方程.解法1: 直线1L 的方向向量为1=s 111(4,1,3)213==---i j k,直线2L 的对称式方程为632x y z==,方向向量为2(6,3,2)=s ,依题意所求平面π的法向量1⊥n s 且2⊥n s ,故可取12=⨯n s s ,则413(7,26,18)632=--=-i j kn ,又因为1L 过原点,且1L 在平面π上,从而π也过原点,故所求平面π的方程为726180x y z -+=.解法2: 设所求平面π为 (23)0x y z x y z λ+++-+=,即(12)(1)(13)0x y z λλλ++-++=, 其法向量为(12,1,13)λλλ=+-+n ,由题意知2⊥n s ,故26(12)3(1)2(13)0λλλ⋅=++-++=n s ,得1115λ=-,则所求平面π的方程为726180x y z -+=.另外,容易验证230x y z -+=不是所求的平面方程.10、求过直线L :⎩⎨⎧=+-+=+-+0185017228z y x z y x 且与球面1222=++z y x 相切的平面方程解: 设所求平面为 ()018517228=+-+++-+z y x z y x λ,即 (15)(288)(2)170x y z λλλλ+++-+++=,由题意:球心)0,0,0(到它的距离为1,即1)2()828()51(17222=--+++++λλλλ解得:89250-=λ 或 2-=λ 所求平面为:42124164387=--z y x 或 543=-y x11、求直线L :11111--==-z y x 在平面π:012=-+-z y x 上投影直线0L 的方程,并求直线0L 绕y 轴旋转一周而成的曲面方程.解: 将直线L :11111--==-z y x 化为一般方程 ⎩⎨⎧=-+=--0101y z y x ,设过直线L 且与平面π垂直的平面方程为()011=-++--y z y x λ,则有02)1(1=+--λλ,即2λ=-,平面方程为0123=+--z y x ,这样直线0L 的方程⎩⎨⎧=-+-=+--0120123z y x z y x 把此方程化为:⎩⎨⎧--==)1(221y z yx ,因此直线0L 绕y 轴旋转一周而成的曲面方程为:22221(2)(1)2x z y y ⎛⎫+=+-- ⎪⎝⎭即 0124174222=-++-y z y x .12、求过点)1,0,3(-A 且平行于平面1π:3450x y z --+=,又与直线1:2x L =1111y z -+=-相交的直线L 的方程.解法1: 用点向式方程.因为直线L 平行于平面1π,故直线L 的方向向量},,{p n m =s 垂直于平面1π的法向量}1,4,3{--=n ,从而得043=--p n m ①,又直线1L 的方向向量为}1,1,2{-=s ,)1,1,0(-B 是直线1L 上一点,)1,0,3(-A 是直线L 上一点,根据题设:直线L 与直线1L 相交,所以1s,s 及AB 共面,因此1()2110312m n pAB ⨯⋅=-=-s s ,即0=-+-p n m ②,将①和②联立解得p n p m 4,5-=-=,由此得145p n m =-=-,于是所求直线方程为11453-=-=-+z y x .。

高数同济第六版下高等数学2第八章解答

高数同济第六版下高等数学2第八章解答

习题8-1向量及其线性运算1.在yOz 平面上,求与三点(3,1,2)A 、(4,2,2)B --和(0,5,1)C 等距离的点。

2.设已知两点1M 和2(3,0,2)M ,计算向量12M M的模、方向余弦和方向角。

3. 设向量r的模是4,它与u 轴的夹角是3π,求r在u 轴上的投影。

4. 设358m i j k =++,247n i j k =-- 和54p i j k =+- ,求向量43a m n p =+- 在x 轴上的投影以及在y 轴上的分向量。

5. 从点()2,1,7A -沿向量8912a i j k =+-方向取长为34的线段AB ,求点B 的坐标。

解 设点B 的坐标为(),,x y z ,则()2,1,7AB x y z =-+-,且AB a λ= ,即28,19,712x y z λλλ-=+=-=-,34AB ==从而2λ=,所以点B 的坐标为()18,17,17-习题8-2数量积 向量积1. 设32a i j k =--,2b i j k =+- ,求(1)a b 及a b ⨯ ;(2)(2)3a b - 及2a b ⨯;(3)a 、b 的夹角的余弦。

2.已知1(1,1,2)M -、2(3,3,1)M 和3(3,1,3)M ,求与12M M 、23M M同时垂直的单位向量。

3.求向量(4,3,4)a =-在向量(2,2,1)b = 上的投影。

4. 已知3OA i k =+ 、3OB j k =+ ,求OAB ∆的面积。

5. 设()()3,5,2,2,1,4a b =-= ,问λ与μ有怎样的关系能使a b λμ+与z 轴垂直?解 ()32,5,24a b λμλμλμλμ+=++-+ ,在z 轴上取单位向量()0,0,1e =, 要使它与a b λμ+互相垂直,只须()0a b e λμ+⋅=,即()()()320502410,240,2λμλμλμλμλμ+⨯++⨯+-+⨯=∴-+==,即为所求λ与μ的关系习题8-3曲面及其方程1.一动点与两定点(2,3,1)和(4,5,6)等距离,求这动点的轨迹方程。

高数下第九章的答案

高数下第九章的答案
解:直线 的方向向量 ;设过点 到直线 的垂足为 ;则有
,即 ;又 在直线 上,
联立方程 解得
从而点 到直线 的距离为 .
9.5空间曲面
P.31.习题9.5
1.指出下列方程在平面解析几何和在空间解析几何中分别表示什么图形.
(1) ;
(2) ;
(3) ;
(4) ;
(5) ;
(6) ;
解:(1) 在平面解析几何中表示平行于y轴的直线,在x轴上的截距为2; 在空间解析几何中表示平行于yoz面的平面,在x轴上的截距为2;
.
(3)已知非零向量a、b、c且满足 ,证明 .
(4)设向量 ,证明三向量a、b、c共面.
证明:(1)
(2)
相加得 .
(3)已知 ,右乘b得 ,即 ;同理 ;
所以 .
(4)因为 ;
所以设向量 ,证明三向量a、b、c共面.
南阳理工学院高等数学(下)课后答案选解
第九章向量代数与空间解析几何
9.1向量及其坐标表示
P.9习题9.1
2.已知一边长为a的正方体,现取正方体下底面的中心为原点,正方体的顶点在x轴、y轴上,求此正方体各顶点的坐标.
解:下底面的四个顶点分别是:
对应的上底面的四个顶点分别是:
3.求出点 到原点、各坐标轴及坐标面的距离.
;所求直线为 .
(5)过点 且与直线 垂直相交的直线方程为
;则 ;联立
解得
所以,过点 且与直线 垂直相交的直线方程为
.
2.用点向式方程及参数方程表示直线
解:设直线的方向向量为 ;在直线
上任取一点 ,则 解得
所以,点向式方程为 ;参数方程为
3.求直线 与平面 之间的夹角.
解:因为

第十章(空间解析几何)(数一)(基础留白版)

第十章(空间解析几何)(数一)(基础留白版)
bx by bz 2.垂直: a ⊥ b ⇔ axbx + ayby + azbz = 0 .
ax ay az 3. a,b,c 共面 ⇔ bx by bz = 0 .
cx cy cz 【例 4】已知=a {1, 2, −3},=b {2, −3, k} , c = {−2, k, 6} ,
(1)若 a ⊥ b ,求 k ;(2)若 a c ,求 k ;(3)若 a,b,c 共面,求 k .
x − x1 x2 − x1 x3 − x1
y − y1 y2 − y1 y3 − y1
z − z1 z2 − z1 = 0 . z3 − z1
【评注】(1).法向量是不唯一的.
(2). Ax + By + Cz = 0 表示通过原点的平面, Ax + By + D =0 表示平行于 z 轴的平面,
A(x − x0 ) + B( y − y0 ) + C(z − z0 ) = 0 .
2.一般式:空间 O − xyz 中平面方程为三元一次方程
Ax + By + Cz + D = 0
3. 截距式:在 x 轴、 y 轴、 z 轴上的截距分别为 a, b, c (abc ≠ 0) 的平面方程为
x + y + z =1 abc 4.三点式:过空间不共线的三点{x1, y1, z1},{x2, y2, z2},{x3, y3, z3} 的平面方程为
二.直线方程 平行于直线的非零向量称为该直线的方向向量,记为 s = {m, n, p},方向向量不唯一.
1.对称式(点向式):过点 ( x0 , y0 , z0 ) 且方向向量为 s = {m, n, p}的直线方程为

02 第二节 空间直角坐标系 向量的坐标

02 第二节  空间直角坐标系  向量的坐标

第二节空间直角坐标系向量的坐标本节将建立空间的点及向量与有序数组的对应关系,引进研究向量的代数方法,从而建立代数方法与几何直观的联系.分布图示★空间直角坐标系★坐标面与卦限★空间点与坐标的对应关系★空间两点间的距离公式★例1★例2★向量的坐标★向量的代数运算★例3★例4★向量的模与方向余弦★例5★例6★例7★例8★例9★向量在轴上的投影★例10★内容小结★课堂练习★习题8 –2 ★返回内容要点一、空间直角坐标系二、空间两点间的距离三、向量的坐标表示四、向量的代数运算五、向量的模与方向余弦六、向量在轴上的投影性质1(为向量与轴的夹角);性质2 ;性质3(为实数).例题选讲例1 求证以、、三点为顶点的三角形是一个等腰三角形.解从而原结论成立.空间两点间的距离例2 (E01)设P在x轴上, 它到的距离为到点的距离的两倍, 求点P的坐标.解因为在轴上,设点坐标为所求点为向量的代数运算例3 (E02) 设求在y轴上的分向量.解在轴上的坐标为13,在轴上的分向量为例4 (E03) 已知两点和以及实数试在有向线段上求一点,使.解如图,由于因此所以代入得故所求点为注: 本例中的点称为有向线段的定比分点,特别地,当为的中点,其坐标为例5 求平行于向量的单位向量.解所求向量有两个,一个与同向,一个反向.或向量的模与方向余弦例6 (E04) 已知两点和,求与向量平行的向量的单位向量.解所求向量有两个,一个与同向,一个与反向.因为所以故所求向量为例7 (E05) 已知两点和, 计算向量的模、方向余弦和方向角.解例8 设有向量, 已知它与x轴和y轴的夹角分别为和, 如果的坐标为(1, 0, 3), 求的坐标.解设向量的方向角为或设的坐标为的坐标为例9 设点位于第卦限, 向径与轴、轴的夹角依次为和,且求点的坐标.解由关系式因为在第卦限,知故于是点的坐标为向量在轴上的投影例10 (E06) 设立方体的一条对角线为OM, 一条棱为OA, 且求在方向上的投影解如图(见系统演示),记有于是课堂练习1. 给定两点: 在轴上有一点, 满足求点的坐标.2. 从点沿向量方向取长为34的线段, 求点的坐标.。

高等数学B2习(讲稿)例题解答

高等数学B2习(讲稿)例题解答

高等数学(B Ⅱ)复习例题解答第六章: 空间解析几何初步(1)向量平行和垂直的充要条件:例1 求{3,2,1}=a ,{6,4,}k =b ,若//a b ,则k = ;若⊥a b ,则k = 。

【解】//a b 32164k⇔==,故2k =;⊥a b 362410k ⇔⨯+⨯+⨯=,故26k =- 例2 求与{1,2,3}=a 及=+b i j 都垂直的单位向量。

【解】设{,,}x y z =c 与,a b 都垂直,则2300x y z x y ++=⎧⎨+=⎩ 或 33x zy z=⎧⎨=-⎩故与a 及b 都垂直的单位向量为03,1}===-c c c(2)求向量的模、方向余弦及方向角和两向量的夹角的方法:例1已知两点1}M =和2{3,0,2}M =,试求向量12M M 的模、方向余弦及方向角。

【解】由于12{34,01}{1,}M M =--=-,则 12(2M M =-=又因为1212111{1,}{,}222M M M M =-=-故方向余弦为 11cos ,cos cos 222αβγ=-=-= 方向角为 23,cos ,cos 343πππαβγ===例2 已知向量a 与b 的夹角为23π,又3,4==a b ,计算(32)(2)-⋅+a b a b 。

【解】22(32)(2)344-⋅+=-+⋅a b a b a b a b22222344cos(,)3344434cos613π=-+=⨯-⨯+⨯⨯⨯=-a b a b a b 例3 设0++=a b c ,又3,1,2===a b c ,则⋅++=a b bc ca ( ) A. 1 B. 7 C. 1- D.7- 【解】选D. 注意到()()2()++⋅++=⋅+⋅+⋅+⋅++a b c a b c a a b b c c a b bc ca(3)求平面方程的方法:例1 已知平面π与平面204570x y z --+=平行且相距6个单位,求π的方程。

同济大学(高等数学)-第八章-向量代数与解析几何

同济大学(高等数学)-第八章-向量代数与解析几何

第五篇 向量代数与空间解析几何第八章 向量代数与空间解析几何解析几何的基本思想是用代数的方法来研究几何的问题,为了把代数运算引入几何中来,最根本的做法就是设法把空间的几何结构有系统的代数化,数量化. 平面解析几何使一元函数微积分有了直观的几何意义,所以为了更好的学习多元函数微积分,空间解析几何的知识就有着非常重要的地位.本章首先给出空间直角坐标系,然后介绍向量的基础知识,以向量为工具讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分容.第1节 空间直角坐标系1.1 空间直角坐标系用代数的方法来研究几何的问题,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现.1.1.1 空间直角坐标系过定点O ,作三条互相垂直的数轴,这三条数轴分别叫做x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),它们都以O 为原点且具有相同的长度单位. 通常把x 轴和y 轴配置在水平面上,而z 轴则是铅垂线;它们的正方向要符合右手规则:右手握住z 轴,当右手的四指从x 轴的正向转过2角度指向y 轴正向时,大拇指的指向就是z 轴的正向,这样就建立了一个空间直角坐标系(图8-1),称为Oxyz 直角坐标系,点O 叫做坐标原点.图8-1在Oxyz 直角坐标系下,数轴Ox ,Oy ,Oz 统称为坐标轴,三条坐标轴中每两条可以确定一个平面,称为坐标面,分别为xOy ,yOz ,zOx ,三个坐标平面将空间分为八个部分,每一部分叫做一个卦限(图8-2),分别用Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ表示.yxzO图8-21.1.2 空间点的直角坐标设M 为空间中的任一点,过点M 分别作垂直于三个坐标轴的三个平面,与x 轴、y 轴和z 轴依次交于A 、B 、C 三点,若这三点在x 轴、y 轴、z 轴上的坐标分别为x ,y ,z ,于是点M 就唯一确定了一个有序数组(, , )x y z ,则称该数组(, , )x y z 为点M 在空间直角坐标系Oxyz 中的坐标,如图8-3.x ,y ,z 分别称为点M 的横坐标、纵坐标和竖坐标.图8-3反之,若任意给定一个有序数组(, , )x y z ,在x 轴、y 轴、z 轴上分别取坐标为x ,y ,z 的三个点A 、B 、C ,过这三个点分别作垂直于三个坐标轴的平面,这三个平面只有一个交点M ,该点就是以有序数组(, , )x y z 为坐标的点,因此空间中的点M 就与有序数组(, , )x y z 之间建立了一一对应的关系.注:A 、B 、C 这三点正好是过M 点作三个坐标轴的垂线的垂足.yxzOyxzAB C(,,)M x y z1.2 空间中两点之间的距离设两点111(, , )M x y z ,222(, , )N x y z ,则M 与N 之间的距离为212212212)()()(z z y y x x d -+-+-= (8-1-1)事实上,过点M 和N 作垂直于xOy 平面的直线,分别交xOy 平面于点1M 和1N ,则1MM ∥1NN ,显然,点1M 的坐标为11(, , 0)x y ,点1N 的坐标为22(, , 0)x y (如图8-4).图8-4由平面解析几何的两点间距离公式知,1M 和1N 的距离为:21221211)()(||y y x x N M -+-=.过点M 作平行于xOy 平面的平面,交直线1NN 于2N ,则11M N ∥2MN ,因此2N 的坐标为221(, , )x y z ,且212212112)()(||||y y x x N M MN -+-==,在直角三角形N MN 2中,||||122z z N N -=,所以点M 与N 间的距离为2122122122222)()()(||||z z y y x x N N MN d -+-+-=+=.例1 设(1, 2, 0)A -与(1, 0, 2)B --为空间两点,求A 与B 两点间的距离. 解 由公式(8-1-1)可得,A 与B 两点间的距离为d ==例2 在z 轴上求与点(3, 5, 2)A -和(4, 1, 5)B -等距的点M .解 由于所求的点M 在z 轴上,因而M 点的坐标可设为(0, 0, )z ,又由于MA MB =,由公式(8-1-1),得222222)5(1)4()2(53z z -++-=--++.从而解得72=z ,即所求的点为2(0, 0, )7M .习题8-11.讨论空间直角坐标系的八个卦限中的点的坐标的符号. 2.在坐标轴上的点和在坐标平面上的点的坐标各有何特点? 3.在空间直角坐标系中,画出以下各点:(2, 0, 0)A ;(0, 3, 0)B -;(3, 0, 1)C ;(3, 2, 1)D -.4.求点(1, 2, 3)-关于各坐标平面对称的点的坐标. 5.求点(1, 2, 3)关于各坐标轴对称的点的坐标. 6.求以下各对点间的距离: (1) (0, 1, 3)A -与(2, 1, 4)B ;(2) (1, 4, 2)C -与D(2, 7, 3).7.在坐标平面yOz 上求与三点(3, 1, 2)A 、(4, 2, 2)B --和(0, 5, 1)C 等距的点. 8.求点(12, 3, 4)A -与原点、各坐标平面和各坐标轴的距离.9. 证明以()()()A 4,3,1,B 7,1,2,C 5,2,3为顶点的三角形△ABC 是一等腰三角形.第2节 空间向量的代数运算2.1 空间向量的概念在日常生活中,我们经常会遇到一些量,如质量、时间、面积、温度等,它们在取定一个度量单位后,就可以用一个数来表示.这种只有大小没有方向的量,叫做数量(或标量).但有一些量,如力、位移、速度、电场强度等,仅仅用一个实数是无法将它们确切表示出来,因为它们不仅有大小,而且还有方向,这种既有大小又有方向的量,叫做向量(或矢量).在数学上,我们用有向线段AB 来表示向量,A 称为向量的起点,B 称为向量的终点,有向线段的长度就表示向量的大小,有向线段的方向就表示向量的方向.通常在印刷时用黑体小写字母a ,b ,c ,…来表示向量,手写时用带箭头的小写字母, ,,a b c来记向量.向量的长度称为向量的模,记作a 或AB ,模为1的向量叫做单位向量,模为0的向量叫做零向量,记作0,规定:零向量的方向可以是任意的.本章我们讨论的是自由向量,即只考虑向量的大小和方向,而不考虑向量的起点,因此,我们把大小相等,方向相同的向量叫做相等向量,记作a =b .规定:所有的零向量都相等.与向量a 大小相等,方向相反的向量叫做a 的负向量(或反向量),记作 a . 平行于同一直线的一组向量称为平行向量(或共线向量).平行于同一平面的一组向量,叫做共面向量,零向量与任何共面的向量组共面.2.2 向量的线性运算2.2.1 向量的加法我们在物理学中知道力与位移都是向量,求两个力的合力用的是平行四边形法则,我们可以类似地定义两个向量的加法.定义1 对向量a ,b ,从同一起点A 作有向线段AB 、AD 分别表示a 与b ,然后以AB 、AD 为邻边作平行四边形ABCD ,则我们把从起点A 到顶点C 的向量AC 称为向量a 与b 的和(图8-5),记作a +b .这种求和方法称为平行四边形法则.图8-5 图8-6若将向量b 平移,使其起点与向量a 的终点重合,则以a 的起点为起点,b 的终点为终ab Cabc =a +b点的向量c 就是a 与b 的和(图8-6),该法则称为三角形法则.多个向量,如a 、b 、c 、d 首尾相接,则从第一个向量的起点到最后一个向量的终点的向量就是它们的和a +b +c +d (图8-7).图8-7对于任意向量a ,b ,c ,满足以下运算法则: (1)a +b =b +a (交换律).(2)()()a +b +c =a +b +c (结合律). (3)0a +=a .2.2.2 向量的减法定义2 向量a 与b 的负向量-b 的和,称为向量a 与b 的差,即()--a b =a +b .特别地,当b =a 时,有()-0a +a =.由向量减法的定义,我们从同一起点O 作有向线段OA ,OB 分别表示a ,b ,则()OA OB OA OB --=+-a b =OA BO BA =+=.也就是说,若向量a 与b 的起点放在一起,则a ,b 的差向量就是以b 的终点为起点,以a 的终点为终点的向量(图8-8).图8-82.2.3数乘向量定义3 实数λ与向量a 的乘积是一个向量,记作λa ,λa 的模是λa ,方向: 当0λ>时,λa 与a 同向;当0λ<时,λa 与a 反向;当0λ=时,λ0a =.abcda +b +c +daabb -a bBAC对于任意向量a ,b 以与任意实数λ,μ,有运算法则: (1) ()()λμλμa =a . (2) ()+λμλμ+a =a a .(3) ()+λλλ+a b =a b .向量的加法、减法与数乘向量运算统称为向量的线性运算,λμa +b 称为a ,b 的一个线性组合(, )R λμ∈.特别地,与 a 同方向的单位向量叫做a 的单位向量,记做a e ,即aa e a=.上式说明:一个非零向量除以它的模的结果是一个与原向量同方向的单位向量.例1 如图8-9,在平行六面体///ABCD B C D /—A 中,设/=AA ,a AD =b AB =c ,试用,,a b c 来表示对角线向量//,.AC A C图8-9解 ''AC AB BC CC =++'AB BC AA =++a b c =++;'''AC A A AB BC AA AB AD =++=-++a b c =++.由于向量λa 与a 平行,所以我们通常用数与向量的乘积来说明两个向量的平行关系.即有,定理1 向量a 与非零向量b 平行的充分必要条件是存在一个实数λ,使得λa =b .2.3 向量的坐标表示2.3.1向量在坐标轴上的投影设A 为空间中一点,过点A 作轴u 的垂线,垂足为'A ,则'A 称为点A 在轴u 上的投影(图8-10).图8-10若M 为空间直角坐标系中的一点,则M 在x 轴、y 轴、z 轴上的投影为A 、B 、C ,如图8-11所示.图8-11设向量AB 的始点与终点B 在轴u 的投影分别为A '、B ',那么轴u 上的有向线段A B ''的值A B ''叫做向量AB 在轴u 上的投影,记作u prj AB A B ''=,轴u 称为投影轴.图8-12当A B ''与轴u 同向时,投影取正号,当A B ''与轴u 反向时,投影取负号. 注 (1) 向量在轴上投影是标量.(2) 设MN 为空间直角坐标系中的一个向量,点M 的坐标为111(, , )x y z ,点N 的坐标为222(, , )x y z ,显然,向量MN 在三个坐标轴上的投影分别为12x x -,12y y -,12z z -. 2.3.2向量的坐标表示yxzOA B CM取空间直角坐标系Oxyz ,在x 轴、y 轴、z 轴上各取一个与坐标轴同向的单位向量,依次记作, , i j k ,它们称为坐标向量.空间中任一向量a ,它都可以唯一地表示为, , i j k 数乘之和. 事实上,设MN a =,过M 、N 作坐标轴的投影,如图8-13所示.MN =MA+AP +PN =MA+MB +MC a =.由于MA 与i 平行,MB 与j 平行,MC 与k 平行,所以,存在唯一的实数, , x y z ,使得MA x =i ,MB y =j ,MC z =k ,即x y z a =i +j +k . (8-2-1)图 8-13我们把(8-2-1)式中, , i j k 系数组成的有序数组(, , )x y z 叫做向量a 的直角坐标,记为{, , }x y z a =,向量的坐标确定了,向量也就确定了.显然,(8-2-1)中的, , x y z 是向量a 分别在x 轴、y 轴、z 轴上的投影.因此,在空间直角坐标系中的向量a 的坐标就是该向量在三个坐标轴上的投影组成的有序数组.例2 在空间直角坐标系中设点(3, 1, 5)M -,(2, 3, 1)N -,求向量MN 与NM 的直角坐标.解 由于向量的坐标即为向量在坐标轴上的投影组成的有序数组,而向量的各投影即为终点坐标与起点坐标对应分量的差.所以向量MN 的坐标为{5, 4, 4}--,向量NM 的坐标为{5, 4, 4}-. 例3(定比分点公式) 设111(,,)A x y z 和222(,,)B x y z 为两已知点,有向线段AB 上的点M 将它分为两条有向线段AM 和MB ,使它们的值的比等于数(1)λλ≠-,即AMMBλ=,求分点(,,)M x y z 的坐标.图8-14 解 如图8-14,因为AM 与MB 在同一直线上,且同方向,故AM MB λ=⋅,而122{,,}AM x x y y z z =---, 222{,,}MB x x y y z z =---222{(),(),()}MB x x y y z z λλλλ=---所以 12()x x x x λ-=-,12()y y y y λ-=-,12()z z z z λ-=- 解得121212,,.111x x y y z z x y z λλλλλλ+⋅+⋅+⋅===+++当λ=1, 点M 的有向线段→AB x 2.3.3向量可以用它的模与方向来表示,设空间向量12a M M =分别为,,αβγ,规定: 0,0απ≤≤≤称,,αβγ为向量a 的方向角因为向量a 12cos cos x a M M a αα=⋅=⋅12cos cos y a M M a ββ=⋅=⋅(8-2-2)12cos cos z a M M a γγ=⋅=⋅公式(8.2.2)中出现的cos ,cos ,cos αβγ称为向量a 的方向余弦.而{,,}{cos ,cos ,cos }x y z a a a a a a a αβγ==⋅⋅⋅{cos ,cos ,cos }a a a e αβγ=⋅=⋅{cos ,cos ,cos }a e αβγ=是与向量a 同方向的单位向量.而 a =M M =12,,x y z M P a M Q a M R a ===111,故向量a 的模为 x a a a =+2(8-2-3)从而向量a 的方向余弦为cos a αβγ===(8-2-4)并且 222cos cos cos 1αβγ++=.例4 已知两点1M 和()21,3,0M ,求向量12M M 的模、方向余弦和方向角.解12(12,32,0(1,1,M M =--=-2)2(1)1(222=-++-=;11cos ,cos ,cos 22αβγ=-==; 23,,334πππαβγ===. 例5 已知两点(4,0,5)A 和(7,1,3)B ,求与AB 同方向的单位向量e . 解 因为{74,10,35}{3,1,2},AB =---=-所以23AB == 于是 {}.e =2.4 向量的数量积在物理中我们知道,一质点在恒力F 的作用下,由A 点沿直线移到B 点,若力F 与位移向量AB 的夹角为θ,则力F 所作的功为||||cos W F AB θ=⋅⋅.类似的情况在其他问题中也经常遇到.由此,我们引入两向量的数量积的概念. 定义1 设a ,b 为空间中的两个向量,则数cos ,a b a b叫做向量a 与b 的数量积(也称积或点积),记作⋅a b ,读作“a 点乘b ”.即cos ,⋅a b =a b a b (8-2-5)其中,a b 表示向量a 与b 的夹角,并且规定0, π≤≤a b .两向量的数量积是一个数量而不是向量,特别地当两向量中一个为零向量时,就有0⋅a b =.由向量数量积的定义易知:(1)2⋅a a =a ,因此=a(2) 对于两个非零向量a ,b ,a 与b 垂直的充要条件是它们的数量积为零,即⊥a b ⇔0⋅a b =.注 数量积在解决有关长度、角度、垂直等度量问题上起着重要作用. 数量积的运算满足如下运算性质: 对于任意向量a ,b 与任意实数λ,有 (1) 交换律:⋅⋅a b =b a .(2) 分配律:()⋅⋅⋅a b +c =a b +a c .(3) 与数乘结合律:()()()λλλ⋅⋅=⋅a b =a b a b . (4)0⋅≥a a 当且仅当0a =时,等号成立.例6 对坐标向量i ,j ,k ,求⋅i i ,⋅j j ,⋅k k ,⋅i j ,⋅j k ,⋅k i . 解 由坐标向量的特点与向量积的定义得1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =.例7 已知2=a ,3=b ,2, 3π=a b ,求a b ⋅,(2)()-+a b a b ⋅,+a b . 解 由两向量的数量积定义有2cos , 23cos 3π⋅=⨯⨯a b =a b a b 123()=32=⨯⨯--.(2)()=22-⋅+⋅⋅-⋅-⋅a b a b a a +a b b a b b22=2-⋅-a a b b 222(3)23=11=---⨯-.2()()+=⋅+a b a +b a b =⋅⋅+⋅+⋅a a +a b b a b b222=+⋅+a a b b 2222(3)3=7=+⨯-+,因此+=a b .在空间直角坐标系下,设向量111{,,}x y z a =,向量222{,,}x y z b =,即111x y z ++a =i j k , 222x y z ++b =i j k .则111222()()x y z x y z ⋅++⋅++a b =i j k i j k121212()()+()x x x y x z ⋅+⋅⋅=i i i j i k 121212()()+()y x y y y z ⋅+⋅⋅+j i j j j k 121212()()+()z x z y z z ⋅+⋅⋅+k i k j k k .由于1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =,所以121212x x y y z z ⋅++a b =.(8-2-6)也就是说,在直角坐标系下,两向量的数量积等于它们对应坐标分量的乘积之和.同样,利用向量的直角坐标也可以求出向量的模、两向量的夹角公式以与两向量垂直的充要条件,即设非零向量111{,,}x y z a =,向量222{,,}x y z b =,则=a (8-2-7)cos ||||⋅=a ba,b a b=. (8-2-8)⊥a b ⇔1212120x x y y z z ++=. (8-2-9)例8 在空间直角坐标系中,设三点(5, 4, 1)A -,(3, 2, 1)B ,(2, 5, 0)C -.证明:ABC ∆是直角三角形.证明 由题意可知{2, 6, 0}AB =-,={3, 1, 1}AC ---,则(2)(3)6(1)0(1)0AB AC ⋅=-⨯-+⨯-+⨯-=,所以AB AC ⊥.即ABC ∆是直角三角形.2.5向量的向量积在物理学中我们知道,要表示一外力对物体的转动所产生的影响,我们用力矩的概念来描述.设一杠杆的一端O 固定,力F 作用于杠杆上的点A 处,F 与OA 的夹角为θ,则杠杆在F 的作用下绕O 点转动,这时,可用力矩M 来描述.力F 对O 的力矩M 是个向量,M 的大小为||||||sin OA OA =M F ,F .M 的方向与OA 与F 都垂直,且OA ,F ,M 成右手系,如图8-16所示.图8-162.5.1向量积的定义在实际生活中,我们会经常遇到象这样由两个向量所决定的另一个向量,由此,我们引入两向量的向量积的概念.定义2 设a ,b 为空间中的两个向量,若由a ,b 所决定的向量c ,其模为sin , c =a b a b . (8-2-10)其方向与a ,b 均垂直且a ,b ,c 成右手系(如图8-17),则向量c 叫做向量a 与b 的向量积(也称外积或叉积).记作⨯a b ,读作“a 叉乘b ”.注 (1) 两向量a 与b 的向量积⨯a b 是一个向量,其模⨯a b 的几何意义是以a ,b 为邻边的平行四边形的面积. (2)⨯0a a =这是因为夹角θ=0,所以⨯0a a = 图8-17(3)对两个非零向量a 与b ,a 与b 平行(即平行)的充要条件是它们的向量积为零向量.a ∥b ⇔⨯0a b =.向量积的运算满足如下性质:对任意向量a ,b 与任意实数λ,有 (1) 反交换律:⨯-⨯a b =b a . (2) 分配律:()⨯⨯⨯a b +c =a b +a c ,()⨯⨯⨯a +b c =a c +b c .(3) 与数乘的结合律:()()()λλλ⨯⨯⨯a b =a b =a b .例9 对坐标向量i ,j ,k ,求⨯i i ,⨯j j ,⨯k k ,⨯i j ,⨯j k ,⨯k i . 解⨯⨯⨯0i i =j j =k k =.⨯i j =k ,⨯j k =i ,⨯k i =j .2.5.2向量积的直角坐标运算在空间直角坐标系下,设向量111{, , }x y z a =,向量222{, , }x y z b =,即111x y z ++a =i j k ,222x y z ++b =i j k ,因为⨯⨯⨯0i i =j j =k k =. ⨯i j =k ,⨯j k =i ,⨯k i =j , ⨯-j i =k ,⨯-k j =i ,⨯-i k =j .则111222()()x y z x y z ⨯++⨯++a b =i j k i j k121212()()+()x x x y x z ⨯+⨯⨯=i i i j i k 121212()()+()y x y y y z ⨯+⨯⨯+j i j j j k 121212()()+()z x z y z z ⨯+⨯⨯+k i k j k k121212121212()()+()()()()x y y x y z z y x z z x -⨯-⨯--⨯=i j j k k i 121212121212()()+()y z z y x z z x x y y x ----=i j k .为了便于记忆,借助于线性代数中的二阶行列式与三阶行列式有111111222222y z x z x y y z x z x y ⨯-a b =i j +k 111222x y z x y z =i j k . 注 设两个非零向量111{, , }x y z a =,222{, , }x y z b =,则a ∥b ⇔⨯0a b =,⇔212121z z y y x x ==. 若某个分母为零,则规定相应的分子为零.例10 设向量{1,2,1}--a =,{2,0,1}b =,求⨯a b 的坐标.解211112121012120201----⨯--=-i j ka b =i j +k 234=--i j +k .因此⨯a b 的直角坐标为{2, 3, 4}--.例11 在空间直角坐标系中,设向量{3, 0, 2}a =,{1, 1, 1}--b =,求同时垂直于向量a 与b 的单位向量.解 设向量⨯c =a b ,则c 同时与a ,b 垂直.而302111⨯--i j kc =a b =23=-+i j +k ,所以向量c 的坐标为{2, 1, 3}-.再将c 单位化,得02,1,3}={=-c ,即{与-- 为所求的向量. 例12 在空间直角坐标系中,设点(4, 1, 2)A -,(1, 2, 2)B -,(2, 0, 1)C ,求ABC ∆的面积.解 由两向量积的模的几何意义知:以AB 、AC 为邻边的平行四边形的面积为AB AC ⨯,由于{3, 3, 4}AB =--,{2, 1, 1}AC =--,因此33453211AB AC ⨯=--=++--i j ki j k ,所以21AB AC ⨯=故ABC ∆的面积为235=∆ABC S .2.6向量的混合积定义3 给定空间三个向量,,a b c ,如果先作前两个向量a 与b 的向量积,再作所得的向量与第三个向量c 的数量积,最后得到的这个数叫做三向量,,a b c 的混合积,记做()a b c ⨯⋅或abc ⎡⎤⎣⎦.说明:三个不共面向量,,a b c 的混合积的绝对值等于以,,a b c 为棱的平行六面体的体积V .定理如果111a X i Y j Z k =++,222b X i Y j Z k =++,333c X i Y j Z k =++,那么 111222333.X Y Z abc X Y Z X Y Z ⎡⎤=⎣⎦习题8-21.,,,,,().ABCD AB AD AC DB MA M ==设为一平行四边形试用表示为平行四边形对角线的交点a b.a b12.,().2M AB O OM OA OB =+设为线段的中点,为空间中的任意一点证明 2223.?(1)()();(2)();(3)()().==⨯=⨯对于任意三个向量与判断下列各式是否成立a,b c,a b c b c a a b a b a b c c a b4.:(1);(2)(3).利用向量证明三角形的余弦定理正弦定理;勾股定理5.设,,a b c 为单位向量,且满足0a b c ++=,求.a b b c c a ++6.1(3,2,2),(1,3,2),(8,6,2),322a b c a b + c.求=-==--7.已知三点(3,0,2),A B AB ==求的坐标、模、方向余弦和方向角.8.一向量的终点在点B(2,-1,7),它在x 轴、y 轴和z 轴上的投影依次为4,-4和7.求这向量的起点A 的坐标.9.设2=a ,4=b ,3πa,b =,求⋅a b ,(2)-⋅a b b ,-a b . 10.设向量a ,b ,c 两两垂直,且1=a ,2=b ,3=c ,求向量d =a +b +c 的模与d,a .11.在空间直角坐标系中,已知{1,2,3}-a = ,{2,2,1}-b = ,求: (1)⋅a b ;(2) 25⋅a b ;(3) a ;(4)cos a,b .12.已知向量2332和,,a i j k b i j k c i j =-+=-+=-,计算 (1)()();a b c a c b -(2)()();a b b c +⨯+(3)()a b c ⨯.13.设向量a ,b 的直角坐标分别为{1, 3, 2}--和{2, 4, }k -,若a b ⊥,求k 的值.14.设向量{2, 1, 1}-a =,{1, 3, 0}-b =,求以、a b 为邻边构造的平行四边形面积. 15.求同时垂直于向量{3, 2, 4}-a =和纵轴的单位向量.16.已知三角形三个顶点(4, 1, 2)A -,(3, 0, 1)B -,(5, 1, 2)C ,求ABC ∆的面积.第3节 空间中的平面与直线方程在本节我们以向量为工具,在空间直角坐标系中讨论最简单的曲面和曲线——平面和直线.3.1平面与其方程首先利用向量的概念,在空间直角坐标系中建立平面的方程,下面我们将给出几种由不同条件所确定的平面的方程.3.1.1平面的点法式方程若一个非零向量n 垂直于平面π,则称向量n 为平面π的一个法向量.显然,若n 是平面π的一个法向量,则λn (λ为任意非零实数)都是π的法向量,即平面上的任一向量均与该平面的法向量垂直.由立体几何知识知道,过一个定点0000(, , )M x y z 且垂直于一个非零向量{, , }A B C n =有且只有一个平面π.设(, , )M x y z 为平面π上的任一点,由于π⊥n ,因此0M M ⊥n .由两向量垂直的充要条件,得00M M =⋅n ,而0000{, , }M M x x y y z z =---,{, , }A B C n =,所以可得0)()()(000=-+-+-z z C y y B x x A . (8-3-1)由于平面π上任意一点(, , )M x y z 都满足方程(8-3-1),而不在平面π上的点都不满足方程(8-3-1),因此方程(8-3-1)就是平面π的方程.由于方程(8-3-1)是给定点0000(, , )M x y z 和法向量{, , }A B C n =所确定的,因而称式(8-3-1)叫做平面π的点法式方程.图8-18例1 求通过点0(1, 2, 4)M -且垂直于向量{3, 2, 1}-n =的平面方程.解 由于{3, 2, 1}-n =为所求平面的一个法向量,平面又过点0(1, 2, 4)M -,所以,由平面的点法式方程(6-14)可得所求平面的方程为3(1)2(2)1(4)=0x y z --⋅++⋅-,整理,得32110x y z -+-=.例2 求过三点()12,1,4M -,()2M 1,3,2--,()3M 0,2,3 的平面π的方程. 解 所求平面π的法向量必定同时垂直于12M M 与13M M .因此可取12M M 与13M M 的向量积1213M M M M ⨯为该平面的一个法向量n .即1213n =M M M M ⨯.由于12{3, 4, 6}M M =--,13{2, 3, 1}M M =--,因此1213-631i j kn =M M M M =342⨯---149i j k,=+-,因此所求平面π的方程为0419214=--++-)()()(z y x ,化简得.015914=--+z y x一般地,过三点(,,)(1,2,3)k k k k M x y z k =的平面方程为1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 称为平面的三点式方程。

向量的坐标表示及其运算

向量的坐标表示及其运算

向量的坐标表示及其运算【知识概要】 1. 向量及其表示1)向量:我们把既有大小又有方向的量叫向量(向量可以用一个小写英文字母上面加箭头ruuu来表示,如a 读作向量a ,向量也可以用两个大写字母上面加箭头来表示,如 AB ,表示由A 到B 的向量.A 为向量的起点, B 为向量的终点)r uuu |r (或 a )的大小叫做向量的模,记作AB (或a ).注:① 既有方向又有大小的量叫做向量, 只有大小没有方向的量叫做标量,向量与标量是两种不同的量,要加以区别;② 长度为0的向量叫零向量,记作 0 + 0的方向是任意的*注意0与0的区别+ ③ 长度为1个单位长度的向量,叫单位向量•说明:零向量、单位向量的定义都是只限制大小,不确定方向 例3把平面上一切单位向量的始点放在同一点 ,那么这些向量的终点所构成的图形是 B 一段圆弧C. 圆上一群孤立点D. 一个单位圆2)向量坐标的有关概念① 基本单位向量:在平面直角坐标系中, 方向分别与x 轴和y 轴正方向相同的两个单位 向量叫做基本单位,记为 r 和j .r uuu r② 将向量a 的起点置于坐标原点 O ,作OA a ,则OA 叫做位置向量,如果点A 的坐uuu .向量AB例1下列各量中不是向量的是A. 浮力B. 风速 例2下列说法中错误的是(A. 零向量是没有方向的 C.零向量与任一向量平行( D )C. 位移D. 密度 A )B. 零向量的长度为0D. 零向量的方向是任意的A.一条线段uuu uuuu UULT r uuu r r 标为(x, y),它在x轴和y轴上的投影分别为M,N,则OA O M O N , a OA xi y j.③ 向量的正交分解uur r r在②中,向量OA 能表示成两个相互垂直的向量 i 、j 分别 乘上实数x,y 后组成的和式,该和式称为I 、[的线性组合,这 种向量的表示方法叫做向量的正交分解, 把有序的实数对(x, y ) 叫做向量a 的坐标,记为a =(x,y ).uuun般地,对于以点 R (x i ,如)为起点,点 P 2(X 2,y 2)为终点的向量 P 1P 2,容易推得uuur的坐标,记作 RP 2=(X 2 x 1, y 2 y 1).3)向量的坐标运算:a (x-,, y 1),b (x 2, y 2), R则a b(为X 2,y ,y 2);a b (x , x ?,%y ?); a ( x ,, x ?).4)向量的模:设a (x, y ),由两点间距离公式,可求得向量注:① 向量的大小可以用向量的模来表示,即用向量的起点与终点间的距离来表示;②向量的模是个标量,并且是一个非负实数•uuu. I uuu例4已知点A 的坐标为(2,0),点B 的坐标为(3,0),且AP] 4, BP 3,求点P 的 坐标.6 12 612 解:点P 的坐标为(6,生)或(6, 12).5 5 5 5r r r r r r例 5 已知 2a b ( 4,3), a 2b (3,4),求 a 、b 的坐标.rr解:a ( 1,2),b( 2, 1)例6设向量a,b,c,,R ,化简:rr r r r r r r(1)( a b c)( a b c) ( )(b c);(2) 2( a b c) (2 a 2b) 2 c .uuur r PP 2区N )i 仏%)〔,于是相应地就可以把有序实数对uuur(X 2 32 y i )叫做 PP ?a 的模(norm).解:都为0 .2. 向量平行的充要条件平行向量:方向相同或相反的非零向量叫平行向量(我们规定0与任一向量平行)•已知a与b为非零向量,若a (x-!, y1),b (x2,y2),则a//b的充要条件是x-i y2x2y1,所以,向量平行的充要条件可以表示为:a//b a b(其中为非零实数)x.)y2 x2y1.r uuu r uuu —例7已知向量a ( 2,3),点A(2, 1),若向量AB与a平行,且AB 2J13,求向量uuuOB的坐标•uuu解:OB的坐标为(6, 7)或(2,5).3. 定比分点公式1)定比分点公式和中点公式①P i,F2是直线I上的两点,P是I上不同于R,F2的任一点,存在实数,——umr ——使F i F = FF2 ,叫做点F分RP2所成的比,有三种情况V.■■Pl—------ 徉---------0巧-- —P*卫】(内分)>0 (外分)<-1 (外分)-1< <0uiur②已知P(X1,yJ、F2(X2,y2)是直线I上任一点,且RP= PF2 ( R, 1).P是直x线PF2上的一点,令P(x, y),则y线段PP2的定比分点公式,特别地就是说,当1时,定比分点不存在•x1x2x 点,此时y X1X22y1 y2,叫做线段PP?的中点公式UU UT RPuuur uuuPP2可得RPuurPR;1时,定比分点的坐标公式x1辿——壮显然都无意义,也2)三角形重心坐标公式设 ABC 的三个点的坐标分别为 A(x 「yj, B(X 2,y 2),C(X 3, y 3), G 为 ABC 的重心,则X G解:当P 在P 1P 2上时,P(0,3);当P 在PF 2延长线上,P( 8,15).例9已知A(3, 1), B( 4, 2),P 是直线AB 上一点,若2AP*方法提炼*几个重要结论r r rrrr rr1. 若a,b 为不共线向量,则a b , a b 为以a,b 为邻边的平行四边形的对角线的向量;r 22( a[A(X 1, yJ,B(X 2, y 2)C(X 3”3)]例8在直角坐标系内y G% y 2 y 33R(4, 3),P 2( 2,6),点 P 在直线 RF 2 上,且uuu3AB ,求点P 的坐标.解:注意定比分点的定点,可得P(152. a3. G 为ABC 的重心WGAMB uuGMX3y3y23y1,求出P【基础夯实】1.判断下列命题是否正确,若不正确,请简述理由①向量AB与CD是共线向量,则A B C D四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD是平行四边形的充要条件是AB = DC⑤模为0是一个向量方向不确定的充要条件;⑥共线的向量,若起点不同,则终点一定不同解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB、AC在同一直线上.②不正确.单位向量模均相等且为1,但方向并不确定.③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的④、⑤正确.⑥不正确.如图AC与BC共线,虽起点 , -同,但其终点却相同.评述:本题考查基本概念,对于零向量、单位向量、平行向量、共线向量的概念特征及相互关系必须把握好.2. 下列命题正确的是( C )A. a与b共线,b与c共线,则a与c也共线B. 任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C. 向量a与b不共线,则a与b都是非零向量D. 有相同起点的两个非零向量不平行3. 在下列结论中,正确的结论为( D )(1) a // b且| a|=| b|是a=b的必要不充分条件(2) a // b且| a|=| b|是a=b的既不充分也不必要条件(3) a与b方向相同且| a|=| b|是a=b的充要条件(4) a与b方向相反或| a|丰| b|是a丰b的充分不必要条件A. (1) (3)B.⑵(4)C.⑶(4)D. (1) (3)(4)4. 已知点A分有向线段BC的比为2,则在下列结论中错误的是( D )1A.点C分AB的比是-1B. 点C分BA的比是-33—2 —C点C分AC的比是- D •点A分CB的比是235.已知两点R( 1, 6)、P2(3,0),点P( 7,y)分有向线段丽所成的比为,则、y3的值为(C )11 c 11A —, 8 B. ,—8C——8 D . 4,-44486. △ ABC的两个顶点A(3 , 7)和B(-2 , 5),若AC的中点在x轴上,BC的中点在y轴上,则顶点C的坐标是(A )A (2 , -7)B (-7 , 2)C . (-3,-5)D (-5 , -3)7. “两个向量共线”是“这两个向量方向相反”的条件.答案:必要非充分8. 已知a、b是两非零向量,且a与b不共线,若非零向量c与a共线,则c与b必定___________答案:不共线9. 已知点A(x,2),B(5,1),C(-4,2x) 在同一条直线上,那么x= ______ •答案:2或-210. △ ABC的顶点A(2,3),B(-4,-2)和重心G(2, -1),贝U C 点坐标为___________.答案:(8,-4)1 —11. 已知ABC边AB上的一点,且S AMC -S ABC,贝y M分AB所成的比为______________ •81答案:丄7【巩固提高】12.已知点A (1,4) > B(5,2),线段AB 上的三等分点依次为 P 、P 2,求R 、P 2点的 坐标以及代B 分P P 2所成的比.1 解:P 1(1,-2),P 2(3,0),A 、B 分pm ?所成的比入1、入2分别为- — ,-2 213. 过R(1,3)、P 2(7, 2)的直线与一次函数 成的比值.5解:一1214. 已知平行四边形ABCD 一个顶点坐标为 0)、N(-1 , -2),求平行四边形的各个顶点坐标解:E(8,—l),C(4,—3) ,D2 8 —— y x 的图象交于点P ,求P 分RF 2所5 5A(-2,1), 一组对边 AB 、CD 的中点分别为 M(3 ,■*(—6,-1)16.若平面向量a,b 满足a b 1,a b 平行于x 轴,17.在厶 ABC 中,点 P 在 BC 上,且2PC ,点 Q 是 AC 的中点.若R A = (4,3), PQ = (1,5), 则B C 等于()A . (-6,21)B . (-2,7) C. (6, - 21)D . (2, - 7)解析:选 A.A C = 2AQ = 2(PQ — R A)= (-6,4), PC = R A + AC = (— 2,7), BC = 3PC = (- 6,21).uuu uuu uur18.已知O 为坐标原点,向量 OA ( 2,m),OB (n,1),OC (5, 1).若A,B,C 三点共线, 且m 2n ,求实数m, n 的值15.设 P 是 ABC uuu uuu (A). PA PB ' ' uuu uuu(C). PB PC所在平面内的一点,Or o uuu uur uuuBC BA 2BP^( B )uuu uja r(B). PC PA 0' ' uun uur uuur r (D). PA PB+PC 0(2, 1),则 a ( 1,1 )或( 3,1).uuu19.已知点A(3, 0),B(-1 , -6), P 是直线AB 上一点,且| AP |20.已知向量m (cos ,sin )和n 2 sin ,cos ),求cos(—-)的值。

计算向量AB的模长。

计算向量AB的模长。

计算向量AB的模长。

原题目:计算向量AB的模长
向量AB的模长可以通过计算AB的欧氏距离来求得。

欧氏距离是指两点之间的直线距离,可以使用已知的坐标点来计算。

假设向量A的坐标为 (x1, y1) ,向量B的坐标为 (x2, y2) ,我们可以使用以下公式计算向量AB的模长:
AB = sqrt((x2 - x1)^2 + (y2 - y1)^2)
其中,sqrt表示求平方根。

根据这个公式,我们可以按照以下步骤计算向量AB的模长:
1. 确定向量A和向量B的坐标,即 (x1, y1) 和 (x2, y2) 。

2. 计算 (x2 - x1)^2 和 (y2 - y1)^2 。

3. 将步骤2的结果相加,并计算其平方根。

4. 得到向量AB的模长。

举个例子,假设向量A的坐标为 (2, 3) ,向量B的坐标为 (5, 7) ,我们可以按照以下步骤计算向量AB的模长:
1. 确定向量A和向量B的坐标:(x1, y1) = (2, 3) ,(x2, y2) = (5, 7) 。

2. 计算 (x2 - x1)^2 和 (y2 - y1)^2 :(5 - 2)^2 = 9 ,(7 - 3)^2 = 16 。

3. 将步骤2的结果相加,并计算其平方根:9 + 16 = 25 ,
sqrt(25) = 5 。

4. 得到向量AB的模长为5。

因此,向量AB的模长为5。

注意:在计算过程中,需要确保使用正确的坐标,并按照公式
严格计算,以得到准确的结果。

如何求解与向量的模有关的问题

如何求解与向量的模有关的问题

解题宝典平面向量是联系几何与代数的“纽带”.在求解与向量的模有关的问题时,往往可以从几何、代数两个角度入手,来寻找解题的思路.与向量的模有关的问题侧重于考查向量的模的公式、向量的运算法则、基本定理、共线定理的应用.本文主要介绍一下与向量的模有关的问题的三种方法:平方法、坐标法、几何性质法.一、平方法由于||a 2=a 2,所以在求解与向量的模有关的问题时,通常可采用平方法.首先根据题意求得所求向量的表达式;然后将其平方,并根据向量的数量积公式、模的公式、数乘运算法则,将目标式化简、变形,从而求得问题的答案.例1.若||a =||b =||a -2b =1,求向量2a +b的模.解:∵||a=||b =||a -2b =1,∴||a 2=1,||b 2=1,||a -2b 2=1,即||a 2-4a ⋅b +4||b 2=1,得4a ⋅b =4,∵4||a 2+4a ⋅b+||b 2=4+4+1=9,∴()2a +b2=9,即||2a +b =9=3,∴向量2a +b的模为3.先将||a -2b =1平方,求得4a ⋅b=4;然后将目标式平方,并根据向量的运算法则展开该平方式;再将||a 2=1、||b 2=1、4a ⋅b =4代入,即可快速求得向量2a +b 的模.例2.已知b =x -2y,c =2x +y ,||b =||c =3,若b 与c的夹角为π3,求向量x 、y 的模.解:∵b =x -2y,c =2x +y ,∴x =b +2c 5,y =c -2b5,∵||b=||c =3,b与c 的夹角为π3,∴||x 2=()b+2c 225=||b 2+4||c 2+4b ⋅c 25=2125,可得||x ||y2=()c -2b225=4||b 2+||c 2-4b ⋅c25=925,可得||y=35.由于已知b 与c 的模和夹角,所以可以联想到向量的数量积公式,于是将b 与c 平方,采用平方法求解.将b =x -2y ,c =2x +y 平方后展开,再将相关的值代入求值,即可解题.运用平方法解题,要注意在求得向量的平方值后对其进行开方.二、几何性质法平面向量往往可以运用平面几何图形表示出来,因而在求解与向量的模有关的问题时,可以采用几何性质法.首先根据向量的几何意义,如加法的三角形法则、平行四边形法则、向量的模即为向量所表示的线段的长,构造出平面几何图形;然后将所求的向量的模视为平面几何图形的一条边长,根据图形的特点,运用三角形、平行四边形、圆等性质来求得向量的模.运用几何性质法,可使题目中的数量关系以直观的形式呈现出来,这有利于提升解题的效率.例3.已知||a =||b =1,且a ⋅b=0,若||c +a +b =1,则||c的最大值为_____.解:∵a ⋅b =0,∴a ⊥b,∵||a=||b =1,||c +a +b =||a +b -()-c =1,设a 、b 、c 的起点为O ,则向量-c 的终点A 在以半径为1的圆上,如图1所示.∵||-c =|| OA =()a+b 2=||a 2+||b 2+2a ⋅b =2,∴||c的最大值为2+1.图144首先根据已知条件||c +a +b =1构造单位圆,并根据题意画出如图1所示的图形,便可将问题转化为求圆上的点A 与O 的距离的最值;然后根据圆的性质:圆的弦中直径最长,求得问题的答案.例4.已知∠AOB =120°,|| OA =|| OB =2,点M 是线段OA 上异于点O 、A 的一个动点,若 BM 在MA 上的投影不小于2,求|| OM 的取值范围.解:如图2,过扇形AOB 的顶点B 作BC ⊥OA ,交AO 的延长线于点C .图2则 BM 在MA 上的投影长为|| CM ,在直角三角形OBC 中,∠BOC =180°-∠BOA =60°,所以|| CO =|| OB cos60°=1,当|| CM =2时,|| OM =|| CM -|| CO =2-1=1,所以当|| CM ≥2时,1≤||OM ≤2,故||OM 的取值范围为[]1,2.我们先根据已知条件构造扇形AOB ,并添加辅助线,根据两个向量的数量积的几何意义:一个向量与其在另一个向量上的投影的乘积,将问题转化为求||CM -||CO 的取值范围.利用勾股定理和扇形的性质,即可运用几何性质法求出|| CM -|| CO 的最值.三、坐标法坐标法是指在平面直角坐标系中,求各个点、向量的坐标,通过向量的坐标运算解题.若a =(x ,y ),则向量a的模为||a =x 2+y 2.在解答与向量的模有关的问题时,需先寻找或构造垂直关系,建立平面直角坐标系;然后根据向量的坐标运算法则,利用向量的模的坐标公式||a=x 2+y 2求解.例5.已知a=()cos 32x ,sin 32x ,b =()cos 12x ,-sin 12x ,x ∈éëêùûú0,π2,求||a+b .解:∵a =(cos 32x ,sin 32x ),b=(cos 12x,-sin 12x ),∴a +b=(cos 32x +cos 12x ,sin 32x -sin 12x ),∴||a +b 2=(a +b)2=(cos32x +cos 12x )2+(sin 32x -sin 12x )2=2+2cos2x =4cos 2x ,∵x ∈éëêùûú0,π2,∴||a +b=2||cos x =2cos x ∈[]0,2.由于已知两个向量的坐标,所以可以直接运用坐标法,根据向量坐标的加法法则,求得a +b 的表达式.然后将该式平方,利用向量的模的坐标公式,以及余弦函数的有界性求得问题的答案.例6.已知向量a ,b,c 满足|a |=|b |=a ·b =2,(a -c )·(b -2c )=0,则||b-c 的最小值为_______.解:由|a |=|b |=a ⋅b=2,知a ,b 的夹角为π4,可设a =(2,0),b =(1,3),c =(x,y ),∵(a -c )⋅(b -2c )=0,∴(2-x ,-y )·(1-2x ,-2y )=0,即2x 2+2y 2-5x -y +2=0.方程2x 2+2y 2-5x -3y +2=0表示圆心为(54,||b-c =(x -1)2+(y -3)2表示圆2x 2+2y 2-5x -3y +2=0,3)所以||b-c -=7-32.我们根据题意设出a 、b的坐标,便可通过向量坐标的减法运算法则以及数量积公式求得(a -c )⋅(b -2c )的表达式;然后将该式视为圆的方程,将求||b-c 的最小值转化为求圆2x 2+2y 2-5x -3y +2=0上的点到点(1,3)的最小距离.求解与向量的模有关的问题的方法很多,无论运用哪种方法求解,都需运用向量的模的公式、数量积公式、向量的运算法则等向量知识.这就要求我们要熟练掌握并灵活运用向量知识,将问题与向量的模的公式、向量的模的坐标公式、向量的模的几何意义等关联起来,利用平方法、坐标法、几何性质法等求解.(作者单位:广东省珠海市实验中学)解题宝典45。

向量的模的计算公式大全

向量的模的计算公式大全

向量的模的计算公式大全向量的模是描述向量长度的概念,对于二维和三维空间中的向量,可以通过勾股定理来计算。

下面将介绍向量的模的计算公式。

1.二维向量的模:设向量A=(a1,a2),则向量A的模表示为,A,计算公式为:A,=√(a1²+a2²)2.三维向量的模:设向量A=(a1,a2,a3),则向量A的模表示为,A,计算公式为:A,=√(a1²+a2²+a3²)3.零向量的模:零向量的模永远为0,即,0,=0。

4.一维向量的模:一维向量只有一个分量,设向量A=(a1),则向量A的模表示为,A,计算公式为:A,=,a15.向量模的性质:-向量模永远是一个非负的实数,即,A,≥0。

-当且仅当向量A为零向量时,向量A的模为0,即,A,=0。

-两个向量的模之和的平方不大于两个向量模之和的平方,即,A+B,²≤,A,²+2,A,B,+,B,²(三角不等式)。

-当且仅当两个向量的夹角为0时,它们的模的乘积等于它们的模的和的平方,即,A+B,²=,A,²+2,A,B,+,B,²。

6.分解法求模:如果已知一个向量A=(a1,a2),可以将其分解为平行于x轴和y轴的两个分量,记为A=A1+A2,其中A1=(a1,0)和A2=(0,a2)。

则向量A的模表示为,A,可以通过向量A1和A2的模来求得,计算公式为:A,=√(,A1,²+,A2,²)7.向量在坐标轴上的投影:向量A在x轴上的投影记为Ax,则有:Ax = ,A,cosθ其中,A,表示向量A的模,θ表示向量A与正方向x轴的夹角。

8.标准单位向量:标准单位向量是指模等于1的向量,分为二维和三维标准单位向量。

二维标准单位向量分别为i=(1,0)和j=(0,1)。

三维标准单位向量分别为i=(1,0,0),j=(0,1,0)和k=(0,0,1)。

5_2_1 向量运算

5_2_1 向量运算
§5.2 向量代数
§5.2.1 向量运算
0011 0010 1010 1101 0001 0100 1011
一、向量的概念 二、向量的线性运算
1
一、向量的概念
向量: 既有大小, 又有方向的量称为向量 (又称矢量).
表示法: 有向线段 M1 M2 , 或 a , 或a .
向量的模 : 向量的大小, 记作 M1M2 , 或 a , 或 a . 向径 (矢径): 起点为原点的向量.
a
.
总之:
a
a
运算律 : 结合律 分配律
(
a)
(
a)
a
( (a
)a
b)
a a
a b
11可aa见a;a ;

a
0,
则有单位向量
a
1
a.
因此
a
a
a
a
Page 7
定理1. 设 a 为非零向量 , 则
a∥b
b a ( 为唯一实数)
证: “ ”. 设 a∥b , 取 =± b a , a , b 同向时 取正号, 反向时取负号, 则 b 与 a 同向, 且
例1. 设 M 为 ABCD 对角线的交点, AB a , AD b ,
试用 a 与 b 表示 MA, MB , MC , MD .
解: a b AC 2 MC 2 MA
D
C
b a BD 2 MD 2 MB
b
MA
1 2
(
a
b)
MB
1 2
(
b
a
)
A
MC
1 2
(
a
b
)
MD
1 2
(

6.3.5平面向量数量积的坐标表示讲义- 高一下学期数学人教A版(2019)必修第二册

6.3.5平面向量数量积的坐标表示讲义- 高一下学期数学人教A版(2019)必修第二册

6.3.5 平面向量数量积的坐标表示(教师独具内容)课程标准:1.能用坐标表示平面向量的数量积,会表示两个平面向量的夹角.2.能用坐标表示平面向量垂直的条件.教学重点:平面向量数量积的坐标表示以及模、角度、垂直关系的坐标表示.教学难点:用坐标法处理模、角度、垂直问题.核心素养:1.通过平面向量数量积的坐标表示的推导过程培养逻辑推理和数学运算素养.2.通过运用平面向量数量积的坐标表示来解决模、角度、垂直等问题进一步提升数学运算素养.1.平面向量数量积的坐标表示主要解决的问题向量的坐标表示和向量的坐标运算实现了向量运算的完全代数化,并将数与形紧密结合起来.本节主要应用有:(1)求两点间的距离(求向量的模).(2)求两向量的夹角.(3)证明两向量垂直.2.解决向量夹角问题的方法及注意事项(1)先利用平面向量的坐标表示求出这两个向量的数量积a·b以及|a||b|,再由cosθ=a·b|a||b|求出cosθ,也可由坐标表示cosθ=x1x2+y1y2x21+y21x22+y22直接求出cosθ.由三角函数值cosθ求角θ时,应注意角θ的取值范围是0≤θ≤π.(2)由于0≤θ≤π,利用cosθ=a·b|a||b|来判断角θ时,要注意cosθ<0有两种情况:一是θ是钝角,二是θ=π;cosθ>0也有两种情况:一是θ是锐角,二是θ=0.1.判一判(正确的打“√”,错误的打“×”)(1)向量的模等于向量坐标的平方和.( )(2)若a=(x1,y1),b=(x2,y2),则a⊥b⇔x1x2+y1y2=0.( )(3)若两个非零向量的夹角θ满足cosθ<0,则两向量的夹角θ一定是钝角.( )2.做一做(1)已知a,b为平面向量,a=(4,3),2a+b=(3,18),则a,b的夹角θ的余弦值等于( )A.865B.-865C.1665D.-1665(2)若向量a=(3,m),b=(2,1),a·b=0,则实数m的值为____.(3)已知a=(1,3),b=(-2,0),则|a+b|=____.题型一平面向量数量积的坐标表示例1 已知向量a与b同向,b=(1,2),a·b=10,求:(1)向量a的坐标;(2)若c=(2,-1),求(a·c)b.[条件探究] 若将本例改为a与b反向,b=(1,2),a·b=-10,求:(1)向量a的坐标;(2)若c=(2,-1),求(a·c)b.[跟踪训练1] 向量a=(1,-1),b=(-1,2),则(2a+b)·a=( ) A.-1 B.0C.1 D.2题型二向量的模的问题例2 (1)若向量a=(2x-1,3-x),b=(1-x,2x-1),则|a-b|的最小值为____.(2)若向量a的始点为A(-2,4),终点为B(2,1),求:①向量a的模;②与a 平行的单位向量的坐标; ③与a 垂直的单位向量的坐标.[跟踪训练2] 设x ∈R ,向量a =(x,1),b =(1,-2),且a ⊥b ,则|a +b |=( )A. 5 B .10 C .2 5D .10题型三 向量垂直的坐标表示例3 设OA →=(2,-1), OB →=(3,1), OC →=(m,3).(1)当m =2时,用OA →和OB →表示OC →; (2)若AB →⊥BC →,求实数m 的值.[跟踪训练3] 已知在△ABC 中,A (2,-1),B (3,2),C (-3,-1),AD 为BC 边上的高,求|AD →|与点D 的坐标.题型四 平面向量的夹角问题例4 已知△ABC 顶点的坐标分别为A (3,4),B (0,0),C (c,0), (1)若c =5,求sin A 的值; (2)若∠A 是钝角,求c 的取值范围.[跟踪训练4] 已知平面向量a =(3,4),b =(9,x ),c =(4,y ),且a ∥b ,a ⊥c .(1)求b 与c ;(2)若m =2a -b ,n =a +c ,求向量m ,n 的夹角的大小. 题型五 向量数量积的综合应用例5 已知三点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标并求矩形ABCD 的对角线的长度. [跟踪训练5] 已知a ,b ,m ,n ∈R ,设(a 2+b 2)(m 2+n 2)=(am +bn )2,其中mn ≠0,用向量方法求证:a m =b n.1.若a =(2,-3),b =(x,2x ),且3a ·b =4,则x 等于( ) A .3 B .13 C .-13D .-32.已知向量a =(1,2),b =(2,-3),若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( )A.⎝ ⎛⎭⎪⎫79,73 B .⎝ ⎛⎭⎪⎫-73,-79C.⎝ ⎛⎭⎪⎫73,79 D .⎝ ⎛⎭⎪⎫-79,-733.已知a =(1,2),b =(x,4),且a ·b =10,则|a -b |=____.4.设向量a 与b 的夹角为θ,且a =(3,3),2b -a =(-1,1),则cos θ=____.5.已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R . (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.一、选择题1.已知|a |=1,b =(0,2),且a ·b =1,则向量a 与b 夹角的大小为( ) A.π6 B .π4 C .π3D .π22.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |等于( ) A .4 2 B .2 5 C .8D .8 23.已知向量a =(3,1),b 是不平行于x 轴的单位向量,且a ·b =3,则b =( )A.⎝ ⎛⎭⎪⎫32,12 B .⎝ ⎛⎭⎪⎫12,32 C.⎝ ⎛⎭⎪⎫14,334 D .(1,0)4.(多选)在△ABC 中,AB →=(2,3),AC →=(1,k ),若△ABC 是直角三角形,则k 的值可能为( )A .-23B .113C.3±132D .235.若函数f (x )=2sin ⎝ ⎛⎭⎪⎫π6x +π3(-2<x <10)的图象与x 轴交于点A ,过点A的直线l 与函数的图象交于B ,C 两点(除点A 外),则(OB →+OC →)·OA →=( )A .-32B .-16C .16D .32二、填空题6.已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a与c 的夹角为____.7.已知向量a =(2,-1),b =(x ,-2),c =(3,y ),若a ∥b ,(a +b )⊥(b -c ),M (x ,y ),N (y ,x ),则向量MN →的模为____.8.已知a =(1,3),b =(2+λ,1),且a 与b 的夹角为锐角,则实数λ的取值范围是____.三、解答题9.设平面向量a =(cos α,sin α)(0≤α<2π),b =⎝ ⎛⎭⎪⎫-12,32,且a 与b不共线.(1)求证:向量a +b 与a -b 垂直;(2)若两个向量3a +b 与a -3b 的模相等,求角α.1.已知点A (-2,0),B (1,9),C (m ,n ),O 是原点. (1)若A ,B ,C 三点共线,求m 与n 满足的关系式; (2)若△AOC 的面积等于3,且AC →⊥B C →,求OC →.2.已知OA →=(4,0),OB →=(2,23),OC →=(1-λ)OA →+λOB →(λ2≠λ). (1)证明:A ,B ,C 三点共线,并在AB →=BC →时,求λ的值; (2)求|OC →|的最小值.6.3.5 平面向量数量积的坐标表示(教师独具内容)课程标准:1.能用坐标表示平面向量的数量积,会表示两个平面向量的夹角.2.能用坐标表示平面向量垂直的条件.教学重点:平面向量数量积的坐标表示以及模、角度、垂直关系的坐标表示. 教学难点:用坐标法处理模、角度、垂直问题.核心素养:1.通过平面向量数量积的坐标表示的推导过程培养逻辑推理和数学运算素养.2.通过运用平面向量数量积的坐标表示来解决模、角度、垂直等问题进一步提升数学运算素养.1.平面向量数量积的坐标表示主要解决的问题向量的坐标表示和向量的坐标运算实现了向量运算的完全代数化,并将数与形紧密结合起来.本节主要应用有:(1)求两点间的距离(求向量的模). (2)求两向量的夹角. (3)证明两向量垂直.2.解决向量夹角问题的方法及注意事项(1)先利用平面向量的坐标表示求出这两个向量的数量积a ·b 以及|a ||b |,再由cosθ=a·b|a||b|求出cosθ,也可由坐标表示cosθ=x1x2+y1y2x21+y21x22+y22直接求出cosθ.由三角函数值cosθ求角θ时,应注意角θ的取值范围是0≤θ≤π.(2)由于0≤θ≤π,利用cosθ=a·b|a||b|来判断角θ时,要注意cosθ<0有两种情况:一是θ是钝角,二是θ=π;cosθ>0也有两种情况:一是θ是锐角,二是θ=0.1.判一判(正确的打“√”,错误的打“×”)(1)向量的模等于向量坐标的平方和.( )(2)若a=(x1,y1),b=(x2,y2),则a⊥b⇔x1x2+y1y2=0.( )(3)若两个非零向量的夹角θ满足cosθ<0,则两向量的夹角θ一定是钝角.( )答案(1)×(2)√(3)×2.做一做(1)已知a,b为平面向量,a=(4,3),2a+b=(3,18),则a,b的夹角θ的余弦值等于( )A.865B.-865C.1665D.-1665(2)若向量a=(3,m),b=(2,1),a·b=0,则实数m的值为____.(3)已知a=(1,3),b=(-2,0),则|a+b|=____.答案(1)C (2)-6 (3)2题型一平面向量数量积的坐标表示例1 已知向量a与b同向,b=(1,2),a·b=10,求:(1)向量a的坐标;(2)若c=(2,-1),求(a·c)b.[解](1)∵a与b同向,且b=(1,2),∴a=λb=(λ,2λ)(λ>0).又a·b=10,∴λ+4λ=10,∴λ=2,∴a=(2,4).(2)∵a·c=2×2+4×(-1)=0,∴(a·c)b=0.[条件探究] 若将本例改为a与b反向,b=(1,2),a·b=-10,求:(1)向量a的坐标;(2)若c=(2,-1),求(a·c)b.解(1)∵a与b反向,且b=(1,2),∴设a=λb(λ<0),∴a=(λ,2λ),又a·b=-10,∴λ+4λ=-10,∴λ=-2,∴a=(-2,-4).(2)∵a·c=(-2)×2+(-4)×(-1)=-4+4=0,∴(a·c)b=0.数量积坐标运算的两条途径进行向量的数量积运算,前提是牢记有关的运算法则和运算性质.解题时通常有两条途径:一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再依据已知计算.[跟踪训练1] 向量a=(1,-1),b=(-1,2),则(2a+b)·a=( ) A.-1 B.0C.1 D.2答案 C解析a=(1,-1),b=(-1,2),∴(2a+b)·a=(1,0)·(1,-1)=1.题型二向量的模的问题例2 (1)若向量a=(2x-1,3-x),b=(1-x,2x-1),则|a-b|的最小值为____.(2)若向量a的始点为A(-2,4),终点为B(2,1),求:①向量a的模;②与a 平行的单位向量的坐标; ③与a 垂直的单位向量的坐标.[解析] (1)∵a =(2x -1,3-x ),b =(1-x,2x -1), ∴a -b =(2x -1,3-x )-(1-x,2x -1)=(3x -2,4-3x ), ∴|a -b |=3x -22+4-3x2=18x 2-36x +20=18x -12+2,∴当x =1时,|a -b |取最小值为 2. (2)①∵a =AB →=(2,1)-(-2,4)=(4,-3), ∴|a |=42+-32=5.②与a 平行的单位向量是±a |a |=±15(4,-3),即坐标为⎝ ⎛⎭⎪⎫45,-35或⎝ ⎛⎭⎪⎫-45,35.③设与a 垂直的单位向量为e =(m ,n ),则a ·e =4m -3n =0,∴m n =34.又|e |=1,∴m 2+n 2=1. 解得⎩⎪⎨⎪⎧m =35,n =45或⎩⎪⎨⎪⎧m =-35,n =-45,∴e =⎝ ⎛⎭⎪⎫35,45或⎝ ⎛⎭⎪⎫-35,-45.[答案] (1) 2 (2)见解析求向量的模的两种基本策略 (1)字母表示下的运算利用|a |2=a 2,将向量模的运算转化为向量与向量的数量积的问题. (2)坐标表示下的运算若a =(x ,y ),则a ·a =a 2=|a |2=x 2+y 2,于是有|a |=x 2+y 2.[跟踪训练2] 设x ∈R ,向量a =(x,1),b =(1,-2),且a ⊥b ,则|a +b |=( )A. 5 B .10C .25D .10答案 B解析 由a ⊥b ,可得a ·b =0,即x -2=0,解得x =2,所以a +b =(3,-1),故|a +b |=32+-12=10.故选B.题型三 向量垂直的坐标表示例3 设OA →=(2,-1), OB →=(3,1), OC →=(m,3).(1)当m =2时,用OA →和OB →表示OC →; (2)若AB →⊥BC →,求实数m 的值.[解] (1)当m =2时,设OC →=xOA→+yOB →, 则有⎩⎨⎧2x +3y =2,-x +y =3,解得⎩⎪⎨⎪⎧x =-75,y =85,即OC →=-75 OA →+85OB →.(2) AB →=OB →-OA →=(1,2), BC →=OC →-OB →=(m -3,2). 因为AB →⊥BC →,所以AB →·BC →=0, 即1×(m -3)+2×2=0,解得m =-1.用向量数量积的坐标表示解决垂直问题利用坐标表示是把垂直条件代数化.因此判定方法更简捷、运算更直接,体现了向量问题代数化的思想.[跟踪训练3] 已知在△ABC 中,A (2,-1),B (3,2),C (-3,-1),AD 为BC 边上的高,求|AD →|与点D 的坐标.解 设D 点坐标为(x ,y ),则AD →=(x -2,y +1),BC →=(-6,-3),BD →=(x -3,y -2).∵D 在直线BC 上,即BD →与BC →共线, ∴存在实数λ,使BD →=λBC →,即(x -3,y -2)=λ(-6,-3).∴⎩⎨⎧x -3=-6λ,y -2=-3λ,∴x -3=2(y -2),即x -2y +1=0.① 又AD ⊥BC ,∴AD →·BC →=0, 即(x -2,y +1)·(-6,-3)=0. ∴-6(x -2)-3(y +1)=0. 即2x +y -3=0.② 由①②可得⎩⎨⎧x =1,y =1.∴D (1,1). ∴|AD →|=1-22+1+12=5,故|AD →|=5,点D 的坐标为(1,1). 题型四 平面向量的夹角问题例4 已知△ABC 顶点的坐标分别为A (3,4),B (0,0),C (c,0), (1)若c =5,求sin A 的值; (2)若∠A 是钝角,求c 的取值范围. [解] AB →=(-3,-4),AC →=(c -3,-4). (1)若c =5,则AC →=(2,-4).∴cos A =cos 〈AC →,AB →〉=AC →·AB →|AC →||AB →|=55.∵∠A 是△ABC 的内角,∴sin A =1-cos 2A =255. (2)若∠A 为钝角,则AC →·AB →<0且AC →,AB →不反向共线.由AC→·AB→<0,得-3(c-3)+16<0,即c>25 3.显然此时AC→,AB→不共线,故当∠A为钝角时,c>25 3.求平面向量夹角的步骤若a=(x1,y1),b=(x2,y2),(1)求出a·b=x1x2+y1y2;(2)求出|a|=x21+y21,|b|=x22+y22;(3)代入公式:cosθ=a·b|a||b|(θ是a与b的夹角).[跟踪训练4] 已知平面向量a=(3,4),b=(9,x),c=(4,y),且a∥b,a⊥c.(1)求b与c;(2)若m=2a-b,n=a+c,求向量m,n的夹角的大小.解(1)∵a∥b,∴3x=4×9,∴x=12.∵a⊥c,∴3×4+4y=0,∴y=-3,∴b=(9,12),c=(4,-3).(2)m=2a-b=(6,8)-(9,12)=(-3,-4),n=a+c=(3,4)+(4,-3)=(7,1).设m,n的夹角为θ,则cosθ=m·n|m||n|=-3×7+-4×1-32+-42×72+12=-25252=-22.∵θ∈[0,π],∴θ=3π4,即向量m,n的夹角为3π4.题型五向量数量积的综合应用例5 已知三点A(2,1),B(3,2),D(-1,4).(1)求证:AB⊥AD;(2)要使四边形ABCD为矩形,求点C的坐标并求矩形ABCD的对角线的长度.[解] (1)证明:∵A (2,1),B (3,2),D (-1,4), ∴AB →=(1,1),AD →=(-3,3). 则AB →·AD →=1×(-3)+1×3=0, ∴AB →⊥AD →,即AB ⊥AD .(2)∵AB →⊥AD →,四边形ABCD 为矩形,∴AB →=DC →. 设点C 的坐标为(x ,y ),则DC →=(x +1,y -4), 又AB →=(1,1). 从而有⎩⎨⎧x +1=1,y -4=1,解得⎩⎨⎧x =0,y =5,∴点C 的坐标为(0,5). ∴AC →=(-2,4),|AC →|=-22+42=25,故矩形ABCD 的对角线的长度为2 5.利用向量的坐标运算解决平面图形问题,常见的题型有:(1)求点的坐标:设出所求点的坐标,利用终点坐标与始点坐标的差得到向量的坐标,根据向量间的关系求解.(2)证明两线段垂直:证明两线段所对应的向量的数量积为零即可. (3)求线段的长度:求出线段所对应的向量的模即可.[跟踪训练5] 已知a ,b ,m ,n ∈R ,设(a 2+b 2)(m 2+n 2)=(am +bn )2,其中mn ≠0,用向量方法求证:a m =b n.证明 设向量c =(a ,b ),d =(m ,n ), 且它们的夹角为θ(0°≤θ≤180°), 则c ·d =am +bn ,|c |2=a 2+b 2,|d |2=m 2+n 2. ∵(a 2+b 2)(m 2+n 2)=(am +bn )2, ∴|c |2|d |2=(c ·d )2.又c ·d =|c ||d |cos θ,∴cos 2θ=c ·d 2|c |2|d |2=1,∴cos 2θ=1.又0°≤θ≤180°,∴θ=0°或180°,即c ∥d ,∴an -bm =0. 又mn ≠0,∴a m =b n.1.若a =(2,-3),b =(x,2x ),且3a ·b =4,则x 等于( ) A .3 B .13 C .-13D .-3答案 C解析 3a ·b =3(2x -6x )=-12x =4,∴x =-13.故选C.2.已知向量a =(1,2),b =(2,-3),若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( )A.⎝ ⎛⎭⎪⎫79,73 B .⎝ ⎛⎭⎪⎫-73,-79C.⎝ ⎛⎭⎪⎫73,79 D .⎝ ⎛⎭⎪⎫-79,-73答案 D解析 设c =(x ,y ),则c +a =(1+x,2+y ),a +b =(3,-1),由已知可得⎩⎨⎧22+y +3x +1=0,3x -y =0,解得⎩⎪⎨⎪⎧x =-79,y =-73,即c =⎝ ⎛⎭⎪⎫-79,-73.3.已知a =(1,2),b =(x,4),且a ·b =10,则|a -b |=____. 答案5解析由题意,得a·b=x+8=10,∴x=2,∴a-b=(-1,-2),∴|a -b|= 5.4.设向量a与b的夹角为θ,且a=(3,3),2b-a=(-1,1),则cosθ=____.答案310 10解析2b-a=2b-(3,3)=(-1,1),∴2b=(-1,1)+(3,3)=(2,4),∴b=(1,2).cosθ=a·b|a||b|=3,3·1,232+32×12+22=9310=31010.5.已知平面向量a=(1,x),b=(2x+3,-x),x∈R.(1)若a⊥b,求x的值;(2)若a∥b,求|a-b|.解(1)若a⊥b,则a·b=(1,x)·(2x+3,-x)=1×(2x+3)+x(-x)=0,即x2-2x-3=0,解得x=-1或x=3.(2)若a∥b,则1×(-x)-x(2x+3)=0,即x(2x+4)=0,解得x=0或x=-2.当x=0时,a=(1,0),b=(3,0),a-b=(-2,0),|a-b|=2.当x=-2时,a=(1,-2),b=(-1,2),a-b=(2,-4),|a-b|=4+16=2 5.综上,|a-b|=2或2 5.一、选择题1.已知|a|=1,b=(0,2),且a·b=1,则向量a与b夹角的大小为( )A.π6B.π4C .π3D .π2答案 C解析 ∵|a |=1,b =(0,2),且a ·b =1,∴cos 〈a ,b 〉=a ·b |a ||b |=11×0+22=12.∴向量a 与b 夹角的大小为π3.故选C. 2.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |等于( ) A .4 2 B .2 5 C .8 D .8 2答案 D解析 易得a ·b =2×(-1)+4×2=6,所以c =(2,4)-6(-1,2)=(8,-8),所以|c |=82+-82=8 2.3.已知向量a =(3,1),b 是不平行于x 轴的单位向量,且a ·b =3,则b =( )A.⎝ ⎛⎭⎪⎫32,12 B .⎝ ⎛⎭⎪⎫12,32 C.⎝ ⎛⎭⎪⎫14,334 D .(1,0)答案 B解析 设b =(x ,y ),其中y ≠0,则a ·b =3x +y = 3.由⎩⎨⎧x 2+y 2=1,3x +y =3,y ≠0,解得⎩⎪⎨⎪⎧x =12,y =32,即b =⎝ ⎛⎭⎪⎫12,32.故选B.4.(多选)在△ABC 中,AB →=(2,3),AC →=(1,k ),若△ABC 是直角三角形,则k 的值可能为( )A .-23B .113C.3±132D .23答案 ABC解析 ∵AB →=(2,3),AC →=(1,k ),∴BC →=AC →-AB →=(-1,k -3).若∠A =90°,则AB →·AC →=2×1+3×k =0,∴k =-23;若∠B =90°,则AB →·BC →=2×(-1)+3(k-3)=0,∴k =113;若∠C =90°,则AC →·BC →=1×(-1)+k (k -3)=0,∴k =3±132.故所求k 的值为-23或113或3±132. 5.若函数f (x )=2sin ⎝ ⎛⎭⎪⎫π6x +π3(-2<x <10)的图象与x 轴交于点A ,过点A的直线l 与函数的图象交于B ,C 两点(除点A 外),则(OB →+OC →)·OA →=( )A .-32B .-16C .16D .32答案 D解析 由函数f (x )=2sin ⎝ ⎛⎭⎪⎫π6x +π3=0可得πx 6+π3=k π,k ∈Z ,即x =6k-2,k ∈Z .因为-2<x <10,所以x =4,即A (4,0).设B (x 1,y 1),C (x 2,y 2).由题意知B ,C 两点关于点A 对称,所以x 1+x 2=8,y 1+y 2=0.又OA →=(4,0),OB →=(x 1,y 1),OC →=(x 2,y 2),所以(OB →+OC →)·OA →=(x 1+x 2,y 1+y 2)·(4,0)=4(x 1+x 2)=32.二、填空题6.已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a与c 的夹角为____.答案2π3解析 设c =(x ,y ),∵a +b =(-1,-2), 且|a |=5,|c |=5,(a +b )·c =52,∴(-1,-2)·(x ,y )=52.∴-x -2y =52,∴x +2y =-52.设a 与c 的夹角为θ,∴cos θ=a ·c |a ||c |=x +2y 5·5=-12.∵0≤θ≤π,∴θ=2π3. 7.已知向量a =(2,-1),b =(x ,-2),c =(3,y ),若a ∥b ,(a +b )⊥(b -c ),M (x ,y ),N (y ,x ),则向量MN →的模为____.答案 8 2解析 ∵a ∥b ,∴2×(-2)-(-1)x =0,解得x =4,∴b =(4,-2),∴a +b =(6,-3),b -c =(1,-2-y ).∵(a +b )⊥(b -c ),∴(a +b )·(b -c )=0,即6-3(-2-y )=0,解得y =-4,∴MN →=(y -x ,x -y )=(-8,8),∴|MN →|=8 2.8.已知a =(1,3),b =(2+λ,1),且a 与b 的夹角为锐角,则实数λ的取值范围是____.答案 λ>-5且λ≠-53解析 因为a 与b 的夹角为锐角,则cos 〈a ,b 〉>0,且cos 〈a ,b 〉≠1,即a ·b =2+λ+3>0,且b ≠k a ,则λ>-5且λ≠-53.三、解答题9.设平面向量a =(cos α,sin α)(0≤α<2π),b =⎝ ⎛⎭⎪⎫-12,32,且a 与b不共线.(1)求证:向量a +b 与a -b 垂直;(2)若两个向量3a +b 与a -3b 的模相等,求角α. 解 (1)证明:由题意,知a +b =⎝⎛⎭⎪⎫cos α-12,sin α+32,a -b =⎝⎛⎭⎪⎫cos α+12,sin α-32,∵(a +b )·(a -b )=cos 2α-14+sin 2α-34=0,∴(a +b )⊥(a -b ).(2)|a |=1,|b |=1,由题意知(3a +b )2=(a -3b )2, 化简得a ·b =0,∴-12cos α+32sin α=0,∴tan α=33.又0≤α<2π,∴α=π6或α=7π6.1.已知点A (-2,0),B (1,9),C (m ,n ),O 是原点. (1)若A ,B ,C 三点共线,求m 与n 满足的关系式; (2)若△AOC 的面积等于3,且AC →⊥B C →,求OC →. 解 (1)由已知,得AB →=(3,9),AC →=(m +2,n ). 由A ,B ,C 三点共线,知AB →∥AC →, ∴3n -9(m +2)=0,即n -3m -6=0.(2)由△AOC 的面积是3,得12·2·|n |=3,∴n =±3.∵BC →=(m -1,n -9),且AC →⊥BC →, ∴(m +2)(m -1)+n (n -9)=0, 即m 2+n 2+m -9n -2=0,∴当n =3时,m 2+m -20=0,解得m =4或m =-5. 当n =-3时,m 2+m +34=0,方程没有实数根, ∴OC →=(4,3)或OC →=(-5,3).2.已知OA →=(4,0),OB →=(2,23),OC →=(1-λ)OA →+λOB →(λ2≠λ). (1)证明:A ,B ,C 三点共线,并在AB →=BC →时,求λ的值; (2)求|OC →|的最小值.解 (1)证明:AB →=OB →-OA →=(-2,23),BC →=OC →-OB →=(1-λ)OA →-(1-λ)OB →=(λ-1)AB →,因为AB →与BC →有公共点B ,所以A ,B ,C 三点共线. 当AB →=BC →时,λ-1=1,所以λ=2.(2)|OC →|2=(1-λ)2OA →2+2λ(1-λ)OA →·OB →+λ2OB →2 =16λ2-16λ+16=16⎝ ⎛⎭⎪⎫λ-122+12. 所以当λ=12时,|OC →|取到最小值2 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档