2016-2017学年福建省龙岩市高一上学期期末数学试卷和解析

合集下载

2016-2017学年度福建省高一第一学期期末复习考试数学(

2016-2017学年度福建省高一第一学期期末复习考试数学(

2016-2014学年度第一学期考试高一年级数学科(A 卷)考试时间:120分钟 试卷满分:150分第Ⅰ部分 选择题(共50分)一、选择题:(本大题共8个题,每小题5分,共计40分,在每小题给出的四个选项中,只有一项是正确的,请将正确的选项选出,将其代码填涂到答题卡上)1、设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,则图中的阴影部分表示的集合为( B )A .{}2B .{}4,6C .{}1,3,5D .{}4,6,7,8 2、下列函数中哪个与函数x y =相等 ( D )A.2)(x y = B. xx y 2= C.2x y =D. 33x y =3、过两点(1,1)-和(3,9)的直线在x 轴上的截距为 (A ). A.32- B.23- C.25D.24、已知2()22x f x x =-,则在下列区间中,()0f x =有实数解的是( B ).A.(-3,-2)B.(-1,0)C.(2,3)D. (4,5)5、已知0.6 1.220.5,0.8,log 0.125a b c -===,则它们从小到大为 ( A )A .c b a << B. a b c << C. a c b << D. c a b << 6、设α表示平面,b a ,表示直线,给定下列四个命题: ①αα⊥⇒⊥b b a a ,//; ②αα⊥⇒⊥b a b a ,//;③αα//,b b a a ⇒⊥⊥; ④b a b a //,⇒⊥⊥αα.其中正确命题的个数有(B )A.1个B.2个C.3个D.4个7、某四棱台的三视图如图所示,则该四棱台的体积是( C )A .4B .163C .143D .68、设min{, }p q 表示p ,q 两者中的较小者,若函数2()min{3, log }f x x x =-,则满足1()2f x <的x 的集合为(A ) A.)+∞⋃,25()2,0( B.)0∞+,( C.)+∞⋃,25()2,0( D.),2+∞(二、填空题:本大题6小题,每小题5分,共30分,把答案填在题中的横线上。

福建省2016-2017学年高一上学期期末数学联考试卷Word版含解析

福建省2016-2017学年高一上学期期末数学联考试卷Word版含解析

福建省2016-2017学年高一上学期期末数学联考试卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)2.满足A∪{﹣1,1}={﹣1,0,1}的集合A共有()A.2个B.4个C.8个D.16个3.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有2个子集,则a的取值是()A.1 B.﹣1 C.0,1 D.﹣1,0,14.下列图形中,不能表示以x为自变量的函数图象的是()A.B.C.D.5.下列各组函数表示相同函数的是()A.f(x)=,g(x)=()2B.f(x)=1,g(x)=x2C.f(x)= g(t)=|t| D.f(x)=x+1,g(x)=6.若f(x)满足关系式f(x)+2f()=3x,则f(2)的值为()A.1 B.﹣1 C.﹣D.7.已知函数f(x)的定义域为(﹣1,0),则函数f(2x﹣1)的定义域为()A.(﹣1,1)B.(0,)C.(﹣1,0)D.(,1)8.函数f(x)=,(x≠﹣)满足f[f(x)]=x,则常数c等于()A.3 B.﹣3 C.3或﹣3 D.5或﹣39.若f(x)=﹣x2+2ax与g(x)=在区间(1,+∞)上都是减函数,则a的取值范围是()A.(﹣1,0)∪(0,1)B.(﹣1,0)∪(0,1] C.(0,1)D.(0,1]10.f(x)是定义在(0,+∞)上的增函数,则不等式f(x)>f[8(x﹣2)]的解集是()A.(0,+∞)B.(0,2)C.(2,+∞)D.(2,)11.已知函数f(x)=的定义域是R,则实数a的取值范围是()A.a>B.﹣12<a≤0 C.﹣12<a<0 D.a≤12.已知函数f(x)=是R上的增函数,则a的取值范围是()A.﹣3≤a<0 B.﹣3≤a≤﹣2 C.a≤﹣2 D.a<0二.填空题:本大题共4小题,每小题5分,共20分.13.已知f(x)=x2﹣2x+3,在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是.14.已知y=f(x)是定义在(﹣2,2)上的增函数,若f(m﹣1)<f(1﹣2m),则m的取值范围是.15.已知函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=﹣x2﹣3x,则不等式f(x ﹣1)>﹣x+4的解集是.16.在整数集Z中,被4除所得余数为k的所有整数组成一个“类”,记为[k]={4n+k|n∈Z},k=0,1,2,3,则下列结论正确的为①2014∈[2];②﹣1∈[3];③Z=[0]∪[1]∪[2]∪[3];④命题“整数a,b满足a∈[1],b∈[2],则a+b∈[3]”的原命题与逆命题都正确;⑤“整数a,b属于同一类”的充要条件是“a﹣b∈[0]”三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.已知f(x)是一次函数,且满足3f(x+1)﹣2f(x﹣1)=2x+17,求f(x)的解析式.18.已知集合A={x|x2+2x﹣3>0},集合B是不等式x2+mx+1>0对于x∈R恒成立的m构成的集合.(1)求集合A与B;(2)求(∁RA)∩B.19.如图,直三棱柱ABC﹣A1B1C1中,D是AB的中点.(1)证明:BC1∥平面A1CD;(2)设AA1=AC=CB=2,,求异面直线AB1与CD所成角的大小.20.已知函数f(x)对一切x,y∈R,都有f(x+y)=f(x)+f(y).(1)判断函数f(x)的奇偶性,并给与证明;(2)若f(﹣3)=a,试用a表示f(12).21.某地西红柿从2月1日起开始上市.通过市场调查,得到西红柿种植成本Q (单位:元/102kg )与上市时间t (单位:天)的数据如下表:(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q 与上市时间t 的变化关系.Q=at+b ,Q=at 2+bt+c ,Q=a•b t ,Q=a•log b t .(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.22.已知,且f (1)=3.(1)试求a 的值,并用定义证明f (x )在[,+∞)上单调递增; (2)设关于x 的方程f (x )=x+b 的两根为x 1,x 2,问:是否存在实数m ,使得不等式m 2+m+1≥|x 1﹣x 2|对任意的恒成立?若存在,求出m 的取值范围;若不存在说明理由.福建省2016-2017学年高一上学期期末数学联考试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)【考点】交集及其运算.【分析】根据集合的基本运算即可得到结论.【解答】解:M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N={x|﹣1<x<1},故选:B2.满足A∪{﹣1,1}={﹣1,0,1}的集合A共有()A.2个B.4个C.8个D.16个【考点】并集及其运算.【分析】由A∪{﹣1,1}={﹣1,0,1},利用并集的定义得出A所有可能的情况数即可.【解答】解:∵A∪{﹣1,1}={﹣1,0,1}∴A={0}或A={0,﹣1}或A={0,1}或A={﹣1,0,1},共4个.故选B.3.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有2个子集,则a的取值是()A.1 B.﹣1 C.0,1 D.﹣1,0,1【考点】子集与真子集.【分析】若A有且仅有两个子集,则A为单元素集,所以关于x的方程ax2+2x+a=0恰有一个实数解,分类讨论能求出实数a的取值范围.【解答】解:由题意可得,集合A为单元素集,(1)当a=0时,A={x|2x=0}={0},此时集合A的两个子集是{0},∅,(2)当a≠0时则△=4﹣4a2=0解得a=±1,当a=1时,集合A的两个子集是{1},∅,当a=﹣1,此时集合A的两个子集是{﹣1},∅.综上所述,a的取值为﹣1,0,1.故选:D.4.下列图形中,不能表示以x为自变量的函数图象的是()A.B.C.D.【考点】函数的概念及其构成要素.【分析】利用函数定义,根据x取值的任意性,以及y的唯一性分别进行判断.【解答】解:B中,当x>0时,y有两个值和x对应,不满足函数y的唯一性,A,C,D满足函数的定义,故选:B5.下列各组函数表示相同函数的是()A.f(x)=,g(x)=()2B.f(x)=1,g(x)=x2C.f(x)= g(t)=|t| D.f(x)=x+1,g(x)=【考点】判断两个函数是否为同一函数.【分析】根据两个函数的定义域相同,对应关系也相同,即可判断两个函数是相等的函数.【解答】解:对于A,f(x)==|x|的定义域是R,g(x)==x的定义域是[0,+∞),定义域不同,对应关系不同,不是相同函数;对于B,f(x)=1的定义域是R,g(x)=x2的定义域是R,对应关系不同,不是相同函数;对于C,f(x)=的定义域是R,g(t)=|t|=的定义域是R,定义域相同,对应关系也相同,是相同函数;对于D,f(x)=x+1的定义域是R,g(x)==x+1的定义域是{x|x≠0},定义域不同,不是相同函数.故选:C6.若f(x)满足关系式f(x)+2f()=3x,则f(2)的值为()A.1 B.﹣1 C.﹣D.【考点】函数解析式的求解及常用方法.【分析】由已知条件得,由此能求出f(2)的值.【解答】解:∵f(x)满足关系式f(x)+2f()=3x,∴,①﹣②×2得﹣3f(2)=3,∴f(2)=﹣1,故选:B.7.已知函数f(x)的定义域为(﹣1,0),则函数f(2x﹣1)的定义域为()A.(﹣1,1)B.(0,)C.(﹣1,0)D.(,1)【考点】函数的定义域及其求法.【分析】原函数的定义域,即为2x﹣1的范围,解不等式组即可得解.【解答】解:∵原函数的定义域为(﹣1,0),∴﹣1<2x﹣1<0,即,解得0<x<.∴函数f(2x﹣1)的定义域为(0,).故选B.8.函数f(x)=,(x≠﹣)满足f[f(x)]=x,则常数c等于()A.3 B.﹣3 C.3或﹣3 D.5或﹣3【考点】函数的零点.【分析】利用已知函数满足f[f(x)]=x,可得x===,化为(2c+6)x2+(9﹣c2)x=0对于恒成立,即可得出.【解答】解:∵函数满足f[f(x)]=x,∴x===,化为(2c+6)x2+(9﹣c2)x=0对于恒成立,∴2c+6=9﹣c2=0,解得c=﹣3.故选B.9.若f(x)=﹣x2+2ax与g(x)=在区间(1,+∞)上都是减函数,则a的取值范围是()A.(﹣1,0)∪(0,1)B.(﹣1,0)∪(0,1] C.(0,1)D.(0,1]【考点】二次函数的性质.【分析】若f(x)=﹣x2+2ax与g(x)=在区间(1,+∞)上都是减函数,则,解得a的取值范围.【解答】解:∵f(x)=﹣x2+2ax的图象是开口朝下,且以直线x=a为对称轴的抛物线,故函数的单调递减区间为[a,+∞),g(x)=在a>0时的单调递减区间为(﹣∞,﹣1),(﹣1,+∞),又∵f(x)=﹣x2+2ax与g(x)=在区间(1,+∞)上都是减函数,∴,解得a∈(0,1],故选:D10.f(x)是定义在(0,+∞)上的增函数,则不等式f(x)>f[8(x﹣2)]的解集是()A.(0,+∞)B.(0,2)C.(2,+∞)D.(2,)【考点】函数单调性的性质.【分析】把函数单调性的定义和定义域相结合即可.【解答】解:由f(x)是定义在(0,+∞)上的增函数得,⇒2<x<,故选 D.11.已知函数f(x)=的定义域是R,则实数a的取值范围是()A.a>B.﹣12<a≤0 C.﹣12<a<0 D.a≤【考点】函数的定义域及其求法.【分析】由函数f(x)=的定义域是R,表示函数的分母恒不为零,即方程ax2+ax ﹣3=0无解,根据一元二次方程根的个数与判断式△的关系,我们易得数a的取值范围.【解答】解:由a=0或可得﹣12<a≤0,故选B.12.已知函数f(x)=是R上的增函数,则a的取值范围是()A.﹣3≤a<0 B.﹣3≤a≤﹣2 C.a≤﹣2 D.a<0【考点】函数单调性的性质;二次函数的性质.【分析】由函数f(x)上R上的增函数可得函数,设g(x)=﹣x2﹣ax﹣5,h(x)=,则可知函数g(x)在x≤1时单调递增,函数h(x)在(1,+∞)单调递增,且g(1)≤h(1),从而可求【解答】解:∵函数是R上的增函数设g(x)=﹣x2﹣ax﹣5(x≤1),h(x)=(x>1)由分段函数的性质可知,函数g(x)=﹣x2﹣ax﹣5在(﹣∞,1]单调递增,函数h(x)=在(1,+∞)单调递增,且g(1)≤h(1)∴∴解可得,﹣3≤a≤﹣2故选B二.填空题:本大题共4小题,每小题5分,共20分.13.已知f(x)=x2﹣2x+3,在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是[1,2] .【考点】利用导数求闭区间上函数的最值.【分析】先画出二次函数图象:观察图象,欲使得闭区间[0,m]上有最大值3,最小值2,区间[0,m]的右端点必须在一定的范围之内(否则最大值会超过3或最小值达不到2),从而解决问题.【解答】解:通过画二次函数图象观察图象,欲使得闭区间[0,m]上有最大值3,最小值2,区间[0,m]的右端点必须在抛物线顶点的右侧,且在2的左侧(否则最大值会超过3)∴知m∈[1,2].答案:[1,2]14.已知y=f(x)是定义在(﹣2,2)上的增函数,若f(m﹣1)<f(1﹣2m),则m的取值范围是.【考点】函数单调性的性质.【分析】在(﹣2,2)上的增函数,说明(﹣2,2)为定义域,且函数值小对应自变量也小,两个条件合着用即可【解答】解:依题意,原不等式等价于⇒⇒﹣.故答案为:15.已知函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=﹣x2﹣3x,则不等式f(x ﹣1)>﹣x+4的解集是(4,+∞).【考点】函数奇偶性的性质.【分析】首先,根据函数f(x)是奇函数,求解当x>0时,函数的解析式,然后,分别令x ﹣1≤0和x﹣1>0两种情形进行讨论,求解不等式的解集.【解答】解:∵函数f(x)是奇函数,令x>0,则﹣x<0,∴f(﹣x)=﹣(﹣x)2+3x=﹣x2+3x=﹣f(x),∴f(x)=x2﹣3x,∴,当x﹣1≤0,即x≤1,f(x﹣1)=﹣(x﹣1)2﹣3(x﹣1)=﹣x2﹣x+2,∵f(x﹣1)>﹣x+4,∴x2<﹣2(舍去)当x﹣1>0,即x>1,x+4,f(x﹣1)=(x﹣1)2﹣3(x﹣1)=x2﹣5∵f(x﹣1)>﹣x+4∴x2﹣4x>0∴x<0或x>4,又x>1,∴x>4.故答案为:(4,+∞).16.在整数集Z中,被4除所得余数为k的所有整数组成一个“类”,记为[k]={4n+k|n∈Z},k=0,1,2,3,则下列结论正确的为①②③⑤①2014∈[2];②﹣1∈[3];③Z=[0]∪[1]∪[2]∪[3];④命题“整数a,b满足a∈[1],b∈[2],则a+b∈[3]”的原命题与逆命题都正确;⑤“整数a,b属于同一类”的充要条件是“a﹣b∈[0]”【考点】集合的包含关系判断及应用.【分析】依据“类”的定义直接判断,即若整数除以4的余数是k,该整数就属于类[k].【解答】解:由类的定义[k]={4n+k|n∈Z},k=0,1,2,3,可知,只要整数m=4n+k,n∈Z,k=0,1,2,3,则m∈[k].对于①2014=4×503+2,∴2014∈[2],故①符合题意;对于②﹣1=4×(﹣1)+3,∴﹣1∈[3],故②符合题意;对于③所有的整数按被4除所得的余数分成四类,即余数分别是0,1,2,3的整数,即四“类”[0],[1],[2],[3],所以Z=[0]∪[1]∪[2]∪[3],故③符合题意;对于④原命题成立,但逆命题不成立,∵若a+b∈[3],不妨取a=0,b=3,则此时a∉[1]且b∉[1],∴逆命题不成立,∴④不符合题意;对于⑤∵“整数a,b属于同一类”不妨令a=4m+k,b=4n+k,m,n∈Z,且k=0,1,2,3,则a﹣b=4(m﹣n)+0,∴a﹣b∈[0];反之,不妨令a=4m+k1,b=4n+k2,则a﹣b=4(m﹣n)+(k1﹣k2),若a﹣b∈[0],则k1﹣k2=0,即k1=k2,所以整数a,b属于同一类.故整数a,b属于同一类”的充要条件是“a﹣b∈[0].故⑤符合题意.故答案为①②③⑤三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.已知f(x)是一次函数,且满足3f(x+1)﹣2f(x﹣1)=2x+17,求f(x)的解析式.【考点】函数解析式的求解及常用方法.【分析】由题意设f(x)=ax+b,利用f(x)满足3f(x+1)﹣2f(x﹣1)=2x+17,利用恒等式的对应项系数相等即可得出.【解答】解:由题意设f(x)=ax+b,(a≠0).∵f(x)满足3f(x+1)﹣2f(x﹣1)=2x+17,∴3[a(x+1)+b]﹣2[a(x﹣1)+b]=2x+17,化为ax+(5a+b)=2x+17,∴,解得.∴f(x)=2x+7.18.已知集合A={x|x2+2x﹣3>0},集合B是不等式x2+mx+1>0对于x∈R恒成立的m构成的集合.(1)求集合A与B;(2)求(∁RA)∩B.【考点】交、并、补集的混合运算;集合的表示法.【分析】(1)化简集合A,利用判别式求出集合B;(2)根据补集与交集的定义写出对应的结果即可.【解答】解:(1)集合A={x|x2+2x﹣3>0}={x|(x﹣1)(x+3)>0}={x|x<﹣3或x>1};因为不等式x2+mx+1>0对于x∈R恒成立,所以△=m2﹣4<0,则﹣2<m<2,即B={m|﹣2<m<2};(2)∵CRA={x|﹣3≤x≤1},∴(CRA)∩B={x|﹣2<x≤1}.19.如图,直三棱柱ABC﹣A1B1C1中,D是AB的中点.(1)证明:BC1∥平面A1CD;(2)设AA1=AC=CB=2,,求异面直线AB1与CD所成角的大小.【考点】异面直线及其所成的角;直线与平面平行的判定.【分析】(1)连结AC1交A1C于O,连结DO,则DO∥BC1,由此能证明BC1∥平面A1CD.(2)连结AB1,取BB1中点M,连结DM、CM,则DM∥AB1,从而∠CDM就是所求异面直线所成角(或补角),由此能求出异面直线AB1与CD所成角的大小.【解答】证明:(1)连结AC1交A1C于O,连结DO,∴DO为△ABC1的中位线,DO∥BC1,又BC1⊄面A1DC,DO⊂面A1DC,故BC1∥平面A1CD.解:(2)连结AB1,取BB1中点M,连结DM、CM,则DM是△ABB1的中位线,∴DM∥AB1,∴∠CDM就是所求异面直线所成角(或补角),∵AA=AC=CB=2,,1∴CM=,DM=,CD=,∴DM2+CD2=CM2,满足勾股定理,∴∠CDM=90°,故异面直线AB与CD所成角为90°.120.已知函数f(x)对一切x,y∈R,都有f(x+y)=f(x)+f(y).(1)判断函数f(x)的奇偶性,并给与证明;(2)若f(﹣3)=a,试用a表示f(12).【考点】抽象函数及其应用.【分析】(1)利用赋值法,即可判断、证明f(x)是奇函数;(2)令x=y,得f(2x)=f(x)+f(x)=2f(x),即可用a表示f(12).【解答】解:(1)令x=y=0,则f(0)=0,令y=﹣x,即x+y=0,则f(0)=f(x)+f(﹣x)=0,则f(x)=﹣f(﹣x)所以f(x)是奇函数.(2)∵f(x)是奇函数,∴f(3)=﹣f(﹣3)=﹣a∴令x=y,得f(2x)=f(x)+f(x)=2f(x)∴f(12)=2f(6)=4f(3)=﹣4a.21.某地西红柿从2月1日起开始上市.通过市场调查,得到西红柿种植成本Q(单位:元/102kg)与上市时间t(单位:天)的数据如下表:(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q 与上市时间t 的变化关系.Q=at+b ,Q=at 2+bt+c ,Q=a•b t ,Q=a•log b t .(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本. 【考点】根据实际问题选择函数类型.【分析】(1)由提供的数据知,描述西红柿种植成本Q 与上市时间t 的变化关系函数不可能是单调函数,故选取二次函数Q=at 2+bt+c 进行描述,将表格所提供的三组数据(50,150),,代入Q ,即得函数解析式;(2)由二次函数的图象与性质可得,函数Q 在t 取何值时,有最小值.【解答】解:(1)由提供的数据知,描述西红柿种植成本Q 与上市时间t 的变化关系函数不可能是常数函数,也不是单调函数;而函数Q=at+b ,Q=a•b t ,Q=a•log b t ,在a ≠0时,均为单调函数,这与表格提供的数据不吻合, 所以,选取二次函数Q=at 2+bt+c 进行描述. 将表格所提供的三组数据(50,150),,分别代入,通过计算得故西红柿种植成本Q 与上市时间t 的变化关系函数得到;(2)=,∴t=150(天)时,西红柿种植成本Q 最低,为100元/102kg22.已知,且f (1)=3.(1)试求a 的值,并用定义证明f (x )在[,+∞)上单调递增;(2)设关于x 的方程f (x )=x+b 的两根为x 1,x 2,问:是否存在实数m ,使得不等式m 2+m+1≥|x 1﹣x 2|对任意的恒成立?若存在,求出m 的取值范围;若不存在说明理由.【考点】利用导数研究函数的单调性.【分析】(1)求出a 的值,根据单调性的定义证明函数的单调性即可;(2)由韦达定理求出x 1+x 2=bx 1x 2=1,问题转化为只需m 2+m+1≥(|x 1﹣x 2|)max =3,根据二次函数的性质求出m 的范围即可.【解答】解:(1)∵f (1)=3,∴a=1,∴,设x 1,x 2是[,+∞)上任意两个实数且x 1<x 2,则,∵,又x 1﹣x 2<0,∴f (x 1)﹣f (x 2)<0, ∴f (x 1)<f (x 2),∴函数f (x )在[,+∞)上单调递增;(2)∵f (x )=x+b ∴x 2﹣bx+1=0 由韦达定理:x 1+x 2=bx 1x 2=1,∴,又,假设存在实数m ,使得不等式m 2+m+1≥|x 1﹣x 2|对任意的恒成立,则只需m 2+m+1≥(|x 1﹣x 2|)max =3, ∴m 2+m+1≥3,m 2+m ﹣2≥0,而m 2+m ﹣2=0的两根为m=﹣2或m=1, 结合二次函数的性质有:m ≤﹣2或m ≥1,故存在满足题意的实数m ,且m 的取值范围为:m ≤﹣2或m ≥1.。

福建省龙岩市福建中学高一数学文上学期期末试题含解析

福建省龙岩市福建中学高一数学文上学期期末试题含解析

福建省龙岩市福建中学高一数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. (多选题)下列函数既是偶函数,又在(-∞,0)上单调递减的是()A. B.C. D.参考答案:AD【分析】对选项逐一分析函数的奇偶性和在区间上的单调性,由此判断正确选项.【详解】对于A选项,为偶函数,且当时,为减函数,符合题意.对于B选项,为偶函数,根据幂函数单调性可知在上递增,不符合题意.对于C选项,为奇函数,不符合题意.对于D选项,为偶函数,根据复合函数单调性同增异减可知,在区间上单调递减,符合题意.故选:AD.2. 若∈(),且3cos2=sin(),则sin2的值为A.一 B. C.一 D.参考答案:A3. 在正方体ABCD﹣A1B1C1D1中,下列四队截面中彼此平行的一对是()A.A1BC1与ACD1 B.B1CD1与BDC1 C.B1D1D与BDA1 D.A1DC1与AD1C参考答案:A【考点】棱柱的结构特征.【分析】根据几何体中的线段特征确定平行关系,再确定线面的平行关系,AC∥面ACD1,A1B∥面ACD1,即可得出确定的平行平面.【解答】解:∵AC∥A1C1,AC?面ACD1,A1C1?面ACD1,∴AC∥面ACD1,∵A1B∥D1C,D1C?面ACD1,A1B?面ACD1,∴A1B∥面ACD1,∵A1B∩A1B1=A1,∴面ACD1∥面A1BC1故选:A【点评】本题考查了空间几何体的中的线面平行问题,确定直线的平行问题是解题关键,属于中档题.4. 已知A、B是球O的球面上两点,,C为该球面上的动点,若三棱锥O-ABC的体积的最大值为36,则球O的表面积为()A. 36πB. 64πC. 144πD. 256π参考答案:C【分析】如图所示,当平面时,三棱锥的体积最大,求出的值,再代入球的表面积公式,即可得答案.【详解】如图所示,当平面时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积.故选:C.【点睛】本题考查球的表面积和锥体的体积计算,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力.5. 函数是偶函数,且在上递减,,则满足的的取值范围是()A < -1 或>2B > 2或-1<<0C -1<<2 D < -3或>3参考答案:B6. 设f(x)是定义在R上奇函数,且当x>0时,等于()A.-1 B.C.1D.-参考答案:A略7. 为了得到函数y=sin(3x+)的图像,只需把函数y=sin3x的图像 ( )A. 向左平移B. 向左平移C. 向右平移D. 向右平移参考答案:B略8. 已知,,且,则向量与向量的夹角为()A. B. C. D.参考答案:B【分析】通过向量的垂直转化为向量的数量积的运算,利用向量夹角的余弦公式求出其余弦值,问题得解.【详解】,即:又,向量与向量的夹角的余弦为,向量与向量的夹角为:故选:B【点睛】本题考查向量夹角公式及向量运算,还考查了向量垂直的应用,考查计算能力.9. 已知A={x|3﹣3x>0},则有()A.3∈A B.1∈A C.0∈A D.﹣1?A参考答案:C【考点】元素与集合关系的判断. 【专题】常规题型.【分析】先根据一元一次不等式的解法化简集合A ,然后可判断元素与集合的关系,从而得到正确的结论.【解答】解:A={x|3﹣3x >0}={x|x <1} 则3?A ,1?A ,0∈A,﹣1∈A 故选C .【点评】本题主要考查了一元一次不等式的解法,以及元素与集合关系的判断,属于容易题.10. 已知集合,集合,则A .B .C .D .参考答案: C二、 填空题:本大题共7小题,每小题4分,共28分11. (5分)点(2,3,4)关于yoz 平面的对称点为.参考答案:(﹣2,3,4)考点: 空间中的点的坐标. 专题: 空间位置关系与距离.分析: 根据关于yOz 平面对称,x 值变为相反数,其它不变这一结论直接写结论即可. 解答: 根据关于坐标平面yOz 的对称点的坐标的特点,可得点P (2,3,4)关于坐标平面yOz 的对称点的坐标为:(﹣2,3,4). 故答案为:(﹣2,3,4).点评: 本题考查空间向量的坐标的概念,考查空间点的对称点的坐标的求法,属于基础题.12. 两个球的体积之比为,那么这两个球的表面积的比为 .参考答案:略13. 已知直线l 经过点(7,1)且在两坐标轴上的截距互为相反数,则直线l 的方程参考答案:x -7y =0或x -y -6=0. 略14. 某单位对员工编号为1到60的60名员工进行常规检查,每次采取系统抽样方法从中抽取5名员工.若某次抽取的编号分别为x ,17,y ,z ,53,则________.参考答案:75 【分析】 由,17,,,53成等差数列,利用等差数列的性质可求解.【详解】由系统抽样可得公差为,得,,,所以.【点睛】本题考查系统抽样,解题关键是掌握系统抽样的性质:系统抽样中样本数据成等差数列. 15. 若将函数y=sin (2x+)的图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动个长度单位,则所得的函数图象对应的解析式为 ___ .参考答案:16. 若幂函数在(0,+ ∞)上是减函数,则实数m 的值为 .参考答案:试题分析:由题意得:考点:幂函数定义及单调性17. 设M、N是非空集合,定义M⊙N={x|x∈M∪N且x M∩N}.已知M={x|y=},N={y|y =2x,x>0},则M⊙N等于________.参考答案:{x|0≤x≤1或x>2}∵M={x|2x-x2≥0}={x|0≤x≤2},N={y|y>1},∴M∩N={x|1<y≤2},M∪N={x|x≥0},∴M⊙N={x|0≤x≤1或x>2}.三、解答题:本大题共5小题,共72分。

福建省龙岩高一上学期数学期末考试试卷

福建省龙岩高一上学期数学期末考试试卷

福建省龙岩高一上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017高一上·乌鲁木齐期中) 幂函数的图象经过点,则满足的的值是()A .B .C .D .2. (2分)已知全集U=R,A={y|y=2x+1},B={x||x﹣1|+|x﹣2|<2},则(∁UA)∩B=()A . ∅B . {x|<x≤1}C . {x|x<1}D . {x|0<x<1}3. (2分)长方体ABCD-A1B1C1D1中,E为B1C1的中点,,,,则()A .B .C .D .4. (2分) (2016高一上·黑龙江期中) a=log 5,b=log ,c=()0.5则()A . a<b<cB . a<c<bC . b<c<aD . b<a<c5. (2分)(2017·上高模拟) 把函数的图象上每个点的横坐标扩大到原来的4倍,再向左平移,得到函数g(x)的图象,则函数g(x)的一个单调递减区间为()A .B .C .D .6. (2分)已知偶函数f(x)的定义域为R,且f(1+x)=f(1﹣x),又当x∈[0,1]时,f(x)=x,函数g (x)= ,则函数h(x)=f(x)﹣g(x)在区间[﹣4,4]上的零点个数为()A . 8B . 6C . 9D . 77. (2分)若α,β为锐角,cos(α+β)=﹣,sinβ= ,则sin(α+2β)=()A .B . ﹣C . ﹣D .8. (2分) P是△ABC所在平面上一点,满足++=2,若S△ABC=12,则△PAB的面积为()A . 4B . 6C . 8D . 169. (2分)下列函数中在区间[4,5]上是增函数的为()A . y=x2﹣9xB . y=logC . y=D . y=cosx10. (2分) (2018高一上·西宁月考) 如果奇函数f(x)在区间[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是()A . 增函数且最大值为-5B . 增函数且最小值为-5C . 减函数且最小值为-5D . 减函数且最大值为-5二、填空题 (共5题;共6分)11. (1分) (2019高一下·上海月考) 已知点在角的终边上,且,则________.12. (1分) (2016高三上·朝阳期中) 设平面向量 =(1,2), =(﹣2,y),若∥ ,则y=________.13. (1分) (2016高一上·张家港期中) 函数f(x)= +lg(3x+1)的定义域是________.14. (1分) (2016高一上·无锡期末) 已知f(x)= 是(﹣∞,+∞)上的增函数,那么实数a的取值范围是________.15. (2分) (2017高一上·海淀期中) 已知△ABC是边长为2的正三角形,O、D分别为边AB、BC的中点,则① =________;②若,则x+y=________.三、解答题 (共5题;共40分)16. (10分) (2018高一下·山西期中) 已知 .(1)若,且,求角的值;(2)若,求的值.17. (10分) (2016高一下·大连开学考) 已知全集U=R,集合,集合.(1)求A,B;(2)求(∁RA)∩B.18. (5分) (2016高三上·崇礼期中) 已知函数f(x)=2sin2x+2 sinxcosx(Ⅰ)求f(x)的最小正周期;(Ⅱ)求函数f(x)在区间上的取值范围.19. (10分) (2016高一下·昆明期中) 已知tan =2,求(1) tan(α+ )的值(2)的值.20. (5分)已知函数f(x)满足f(logax)= (x﹣x﹣1),其中a>0,a≠1.(Ⅰ)对于函数f(x),当x∈(﹣1,1)时,f(1﹣m)+f(1﹣m2)<0,求实数m的范围;(Ⅱ)当x∈(﹣∞,2)时,f(x)<4恒成立,求实数a的取值范围.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共5题;共40分) 16-1、16-2、17-1、17-2、18-1、19-1、19-2、20-1、。

福建省2016-2017学年高一数学上学期期末联考试题(有答案)

福建省2016-2017学年高一数学上学期期末联考试题(有答案)

3福建省2016-2017学年高一数学上学期期末联考试题满分 150分 考试时间 120分钟一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合2{560}A x x x =-+≤,集合{24}xB x =>,则集合A B =I ( )A .{23}x x ≤≤B .{23}x x ≤<C . {23}x x <≤D .{23}x x << 2. 直线3420x y +-=和直线6810x y ++=的距离是( ) A.35 B. 12 C. 310 D. 153. 已知直线12:220,:410l x y l ax y +-=++=, 若12⊥l l , 则a 的值为( ) A . 8 B. 2 C. 12-D. 2- 4.已知圆221:460C x y y +--+=和圆222:60C x y y +-=,则两圆的位置关系为( ) A. 外离B. 外切C. 相交D. 内切5. 幂函数223()(1)mm f x m m x +-=--在(0,)+∞上是减函数,则实数m 的值为( )A. 2或1-B. 2C. 1-D. 2-或1 6. 三个数20.60.6,ln0.6,2a b c ===之间的大小关系是( )A. c a b <<B.c b a << C . b c a << D .a c b << 7. 关于不同的直线,m n 与不同的平面,αβ,有下列四个命题:①,m n αβ⊥⊥且αβ⊥,则m n ⊥; ②,m n αβP P 且αβP ,则m n P ; ③,m α⊥n βP 且αβP ,则m n ⊥; ④,m αP n β⊥且αβ⊥,则m n P . 其中正确的命题的序号是( ). A .①②B .②③C .①③D .②④8. 方程2122xx =+的一个根位于区间( ) A. 3(1,)2B. 3(,2)2C. 1(0,)2D. 1(,1)29. 已知某几何体的三视图如图所示, 其中俯视图是腰长为2的 等腰梯形, 则该几何体的全面积为( )A . 40+B. 40+C.10. 奇函数()f x 在(,0)-∞上的解析式是()(1)f x x x =+, 则()f x 在(0,)+∞上有( )A .最大值14-B .最大值14 C .最小值14-D .最小值1411. 如图,在直三棱柱111ABC A B C -中,1,4AB BC CC ===,90ABC ∠=︒,,E F 分别为111,AA C B 的中点,沿棱柱的表面从点E 到点F 的最短路径的长度为( )AB..12. 已知函数()22(0)()22(0)kx k x f x x ax a x -≥⎧⎪=⎨+--<⎪⎩ ,其中R a ∈,若对任意的非零实数1x ,存在唯一的非零实数)(122x x x ≠,使得)()(12x f x f =成立,则k 的最小值为( ) A .1B .2C .3D .4二、填空题:本大题共4小题,每小题5分,共20分。

福建省龙岩市高一上学期教学质量检查(二)数学试卷 Wor

福建省龙岩市高一上学期教学质量检查(二)数学试卷 Wor

福建省龙岩市2016-2017学年第一学期高一教学质量检查(二) 数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线421x y +=的斜率为( ) A .-3 B .3 C .-2 D .22.若集合{}|10A x x =+>,{}2,1,0,1,3B =--,则AB 等于( )A .{}3B .{}1,3C .{}0,1,3D .{}1,0,1,3- 3.以()2,1为圆心且与直线10y +=相切的圆的方程为( ) A .()()22212x y -+-= B .()()22214x y -+-= C .()()22214x y +++= D .()()22212x y +++= 4.某四棱锥的三视图如图所示,则俯视图的面积为( )A .3B .52C.2 D .4 5.设平面//α平面β,直线a α⊂,点B β∈,则在β内经点B 的所有直线中( ) A .不存在与a 平行的直线 B .只有两条与a 平行的直线 C.存在无数条与a 平行的直线 D .存在唯一一条与a 平行的直线 6.已知()f x 是奇函数,当0x >时,()21x af x -=-,若()314f -=,则a 等于( )A .1B .-1 C.3 D .-37.设13log 2a =,121log 3b =,0.312c ⎛⎫= ⎪⎝⎭,则( )A .a c b <<B .a b c << C.b c a << D .b a c << 8.已知直线4log 0x y a +=与直线230x y --=平行,则a 的值为( ) A .2 B . C.4 D .149.已知幂函数()a f x x =的图象经过点12,2⎛⎫⎪⎝⎭,则函数()()()1g x x f x =-在区间1,22⎡⎤⎢⎥⎣⎦上的最小值是( )A .-1B .0 C.-2 D .-410.已知函数()1xf x a =-(0a >,且1a ≠)满足()11f >,若函数()()14g x f x =+-的图象不过第二象限,则a 的取值范围是( )A .()2,+∞B .(]2,5 C.()1,2 D .(]1,511.在长方体1111ABCD A B C D -中,底面ABCD 是边长为a 的正方形,E 是1CC 的中点,若该长方体的外接球的表面积为210a π,则1AA AB等于( ) AB.12.若函数()2xf x a =-(0a >,且1a ≠)有两个零点,则实数a 的取值范围是( )A .()1,2B .1,12⎛⎫⎪⎝⎭C.()()0,11,2 D .()1,12,22⎛⎫⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()51log ,121,1x x f x x x +≥⎧=⎨-<⎩,则()02f f +=⎡⎤⎣⎦. 14.已知圆22:60C x y y a ++-=的圆心到直线10x y --=的距离等于圆C 半径的12,则a = .15.某品牌汽车的月产能y (万辆)与月份x (312x <≤且x N ∈)满足关系式312x y a b -⎛⎫=∙+ ⎪⎝⎭,现已知该品牌汽车今年4月、5月的产能分别为1万辆和1.5万辆,则该品牌汽车7月的产能为 万辆.16.在四棱锥P ABCD -中,底面ABCD 是一直角梯形,BA AD ⊥,//AD BC ,1BC =,3PA =,4AD =,PA ⊥底面ABCD ,E 是PD 上一点,且//CE 平面PAB ,则点E 到平面ABCD 的距离为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知集合{}2|5610A x x x =-+=,{}|21B x x a =-<. (1)若1a =,求AB ,A B ;(2)若R A C B ⊆,求实数a 的取值范围.18.如图,在三棱锥中P ABC -,平面PAC ⊥平面ABC ,60BAC ∠=,E F 、分别是AP AC 、的中点,点D 在棱AB 上,且AD AC =.求证:(1)//EF 平面PBC ; (2)DF ⊥平面PAC .19.已知1a >,且函数()log a f x x =在区间[],2a a 上的最大值与最小值之差为1.(1)判断函数()211x g x a =-+的奇偶性; (2)解不等式()()1133log 1log x a x ->-.20. 在四棱锥P ABCD -中,90ABC ACD ∠=∠=,60BAC CAD ∠=∠=,PA ⊥平面ABCD ,E 为PD 的中点,22PA AB ==.(1)求证:PC AE ⊥;(2)求三棱锥P ACE -的体积V .21. 已知直线:10l ax y -+=与x 轴、y 轴分别交于点A B 、.(1)若0a >,点()1,1M -,点()1,4N ,且以MN 与为直径的圆过点A ,求以AN 为直径的圆的方程;(2)以线段AB 为边在第一象限作等边三角形ABC ,若3a =-,且点()1,02P m m ⎛⎫> ⎪⎝⎭满足ABC ∆与ABP ∆的面积相等,求m 的值. 22.已知函数()2f x x ax b =-++,且()43f =-.(1) 若函数()f x 在区间[)2,+∞上递减,求实数b 的取值范围;(2)若函数()f x 的图象关于直线1x =对称,且关于x 的方程()2log f x m =在区间[]3,3-上有解,求m 的最大值.试卷答案一、选择题1.C 直线的斜率为422=. 2.C 集合{}|1A x x =>-,则{}0,1,3A B =.3.B 由题意得圆的半径为1-(-1)=2,则所求圆的方程为()()2221x y --+=4. 4.A 由正视图和俯视图得俯视图的上、下底和高分别为1、2、2,其面积为()1122+⨯2=3. 5.D 直线与直线外一个点可确定一个平面,a 与B 可定平面γ,γ与αβ、的两条交线相互平行. 6.C()314f -=,()314f =-∴,即13214a--=-,即12a -=-,得3a =. 7.A 1133log 2log 10a =<=,112211log log 132b =>=,0.3110122c ⎛⎫⎛⎫<=<= ⎪⎪⎝⎭⎝⎭.故b c a >>.8.B 由题意得42log 1a =-,解得12a =. 9.A 由已知得122a=,解得1a =-,()111x g x x x -==-∴在区间1,22⎡⎤⎢⎥⎣⎦上单调递增,则()min 112g x g ⎛⎫==- ⎪⎝⎭.10. B()11f >,2a >∴,函数()g x 的图象不过第二象限,()00g ≤∴,即140a --≤,则5a ≤,25a <≤∴.11.D 设1AA h =长方体的外接球的表面积为210a π,2210a ππ=∴,解得h =,1AA hAB a==12.C 分别作出函数()g x 在1a >或01a <<情况下的图象,则当02<<且1a ≠,即0a <<且1a ≠时,函数()f x 有两个零点.二、填空题13.1 ()()50211log 11f f f +==+=⎡⎤⎣⎦. 14.-1 圆心()0,3-到直线10x y --==98a +=,得1a =-.15.1.875(或158) 由已知得1121 1.54a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩解得22a b =-⎧⎨=⎩则4122x y +⎛⎫=-+ ⎪⎝⎭,当7x =时,1.875y =.16.94过点C 作CF AD ⊥于F ,过F 作EF AD ⊥交PD 于E ,则EF ⊥平面ABCD ,易证//CE 平面PAB ,则3944EF PA ==,即点E 到平面ABCD 的距离为94.三、解答题17.解:(1)()(){}1|5110,15A x x x ⎧⎫=--==⎨⎬⎩⎭, 若1a =,则{}|1B x x =<,15A B ⎧⎫=⎨⎬⎩⎭∴,{}|1A B x x =≤.(2)1|2R a C B x x +⎧⎫=≥⎨⎬⎩⎭,R A C B ⊆,1125a +≤∴,35a ≤-∴. 18. 解:(1)在PAC ∆中,E F 、分别是AP AC 、的中点,//EF PC ∴.又EF ⊄平面PBC ,PC ⊂平面PBC ,//EF ∴平面PBC .(2)连结CD ,60BAC ∠=,AD AC =,ACD ∆∴为正三角形.F 是AC 的中点,DF AC ⊥∴.平面PAC ⊥平面ABC ,DF ⊂平面ABC ,平面PAC平面ABC AC =,DF ⊥∴平面PAC .19. 解:(1)1a >,log a y x =∴在[],2a a 上为增函数,log 2log 1a a a a -=∴,即log 21a =,2a =∴.函数()g x 的定义域为R ,且()()211221212121x x x xx x g x g x ------===-=-+++, ∴函数()g x 是奇函数.(2)依题意可知1210x xx -<-⎧⎨->⎩,解得312x <<,∴所求不等式的解集为31,2⎛⎫ ⎪⎝⎭. 20. 解:(1)在Rt ABC ∆中,1AB =,60BAC ∠=,BC =∴,2AC =.取PC 中点F ,连AF ,则2PA AC ==,PC AF ⊥∴.PA ⊥平面ABCD ,CD ⊂平面ABCD , PA CD ⊥∴,又90ACD ∠=,即CD AC ⊥,又PA AC A =,CD ∴平面PAC ,又PC ⊂平面PAC ,CD PC ⊥∴,EF 是PCD ∆的中位线,//EF CD ∴,EF PC ⊥∴,又AF EF F =,PC ⊥∴平面AEF ,AE ⊂平面AEF ,PC AE ⊥∴.(2)由(1)知2AC =,12EF CD =,且EF ⊥平面PAC . 在Rt ACD ∆中,2AC =,60CAD ∠=,CD =∴EF =则112232E PAC V V -==⨯⨯⨯=. 21. 解:(1)由已知得1,0A a ⎛⎫-⎪⎝⎭. 点()1,1M -,点()1,4N ,且以MN 为直径的圆过点A ,()14101111a a a-∙=->++∴,解得1a =,则点()1,0A -,∴以AN 为直径的圆的圆心坐标为()2,0=, ∴所求圆的方程为()2225x y -+=.(2)直线1y x =+和x 轴,y 轴分别交于点,A B ,)A∴,()0,1B ,则2AB =,等边ABC ∆的高为2=,原点1y x =+到的距离为d ==< ,C P ∴在1y x =+的同侧,而ABP ∆和ABC ∆的面积相等,则直线//CP AB . 设CP的方程为()13y x c c =-+>,2AB =⨯=3c =.333y x =-+过1,2P m ⎛⎫⎪⎝⎭,得1323m =-+,2m =∴. 22. 解:(1)函数()f x 在区间[)2,+∞上递减,242aa ≤⇒≤∴.又()43f =-,413b a =-+∴,4a ≤,3b ≥-∴.(2)121643a ab ⎧=⎪⎨⎪-++=-⎩,25a b =⎧⎨=⎩∴. ()()222516f x x x x =-++=--+∴,[]3,3x ∈-,()()min 310f x f =-=-∴,()()max 16f x f ==,()f x ∴在[]3,3-上的值域为[]10,6-,[]2log 10,6m ∈-∴,即-10622m ⎡⎤∈⎣⎦,,m ∴的最大值为62=64.。

2016-2017年福建省龙岩市高一(下)期末数学试卷(解析版)

2016-2017年福建省龙岩市高一(下)期末数学试卷(解析版)

12. (5 分)如图,△AOB 为等腰直角三角形,OA=l,OC 为斜边 AB 的髙,点 P 在射线 OC 上,则 • 的最小值为( )
第 2 页(共 16 页)
A.﹣1
B.﹣
C.﹣
D.0
二、填空题(本大題共 4 小题,毎小题 5 分,共 20 分)
13. (5 分)设 tanα=3,则


14. (5 分)已知向量 , 的夹角为 45°,| |=| |=2,且向量 与 λ ﹣ 垂直,则实数 λ = .
)及 α 的值;
第 3 页(共 16 页)
(x)的图象离原点 O 最近的对称中心.
20. (12 分)如图,某校高一(1)班全体男生的一次数学测试的茎叶图和频率分布直方图 都受到不同程度的破坏,但可见部分如图甲所示,据此解答如下问题: (1)求该班全体男生的人数及分数在[80,90)之间的男生人数; (2)根据频率分布直方图,估计该班全体男生的数学平均成绩(同一组中的数据用该组区 间的中点值代表) . (3) 从分数在[80, 100]中抽取两个男生, 求抽取的两男生分别来自[80, 90) 、[90,100]的概率.
第 1 页(共 16 页)
A.3
B.4
C.5
D.6
8. (5 分)数据 x1,x2,…,x8 平均数为 6,标准差为 2,则数据 2x1﹣6,2x2﹣6,…,2x8 ﹣6 的方差为( A.16 ) B.4 C.8 D.10 )的值为
9. (5 分)已知点 P(﹣4,﹣3m)在角 α 的终边上,且 sinα= ,则 cos(α+ ( A.﹣ ) B.﹣ C.﹣ =ad﹣bc,若 f(x)= ) B.[ D.[
2016-2017 学年福建省龙岩市高一(下)期末数学试卷

2015-2016学年(福建省)高一上学期期末考试数学试题(解析版)8

2015-2016学年(福建省)高一上学期期末考试数学试题(解析版)8

高一上学期期末考试数学试题一、选择题1.若,,,则实数()A. B. C. D. 2或【答案】D【解析】由于两个向量平行,故.点睛:本题主要考查两个向量的位置关系.两个向量,两个向量平行时,有;若两个向量垂直,则有.本题中将题目所给的两个向量的坐标代入,即可求得的值.2.下列图形中可以是某个函数的图象的是()A. B.C. D.【答案】D【解析】对于函数来说,一个只有唯一一个和其对应,故错误,选.3.函数(且)的图象经过的定点是()A. B. C. D.【答案】B【解析】当时,函数值恒为,故定点为.4.函数的图象的一条对称轴方程是()A. B. C. D.【答案】D【解析】正弦函数对称轴为,令,求得对称轴为.5.若,则一定存在一个实数,使得当时,都有()A. B.C. D.【答案】A【解析】当时,的图像在的上方,故,排除选项.当时,,而是幂函数,增长速度比对数函数要快,故当时,.故选选项.6.若,,则()A. B. C. D.【答案】C【解析】由于两个向量垂直,根据向量加法的几何性质可知,平行四边形为矩形,对角线相等,即.7.若集合,集合,则()A. B. C. D.【答案】A【解析】依题意,故.8.若,,则在方向上的投影是()A. B. C. D.【答案】C【解析】依题意有投影为.9.若一扇形的周长为4,面积为1,则该扇形的圆心角的弧度数是()A. B. C. D.【答案】B【解析】依题意,解得,所以弧度数为.10.若函数在上的最大值与最小值之和为,则实数的值是( )A.B.C.D.【答案】A【解析】依题意函数在上单调,故,解得.11.( )A. B. C. D.【答案】C【解析】由于,即.点睛:本题主要考查两角和的正切公式的变形,考查了化归与转化的数学思想方法.首先注意到题目所给的两个角度的特殊关系,即.而题目涉及到正切的公式,我们就联想到两角和的正切公式,变形为.12.已知向量与的夹角为,,,若与的夹角为锐角,则实数的取值范围是( )A. B.C.D. 【答案】D 【解析】根据夹角为锐角,有,即,也即,即,解得.点睛:本题主要考查平面向量的数量积运算与夹角公式,考查了锐角对应三角函数的取值范围,考查了两个向量的位置关系.题目一开始给定两个向量的模和夹角,那么它们的数量积可以通过公式求解出来.由于后面给定两个向量的夹角为锐角,则转化为数量积大于零,且不等于,就说明两个向量不能共线,由此得到.二、填空题13.,,,则与的夹角是__________.【答案】【解析】,所以夹角为.14.若函数是偶函数,则__________.【答案】【解析】由于函数为偶函数,故需要符合诱导公式中的奇变偶不变,故,由于,所以.15.若,则__________.【答案】【解析】,化简得.所以.16.若定义在上的函数满足,是奇函数,现给出下列4个论断:①是周期为4的周期函数;②的图象关于点对称;③是偶函数;④的图象经过点.其中正确论断的序号是__________(请填上所有正确论断的序号).【答案】①②③【解析】由可知函数周期为.由是奇函数关于原点对称,可知关于对称,即.,所以函数为偶函数,无法判断其值.综上,正确的序号是①②③.点睛:本题主要考查函数的奇偶性与周期性,考查函数平移变换等知识.在阅读题目的时候,采用逐句转化的方法,即读到“”时,将其转化为函数的周期为,这个要记住小结论,即若,,则函数为周期函数,且周期为.向左平移个单位后得到,这是函数变换的知识.三、解答题17.已知函数.(Ⅰ)求函数的定义域与零点;(Ⅱ)判断函数的奇偶性.【答案】(I)定义域为,零点为;(II)奇函数.【解析】试题分析:(I)定义域为.令,即.(II)利用奇偶性的定义,判断,所以函数为奇函数.试题解析:解:(Ⅰ)∵∴,∴的定义域为.由,得,∴,解得,∴的零点为.(Ⅱ)∵对任意的实数,都有,∴是奇函数.18.已知函数.(Ⅰ)求函数的最小正周期和递增区间;(Ⅱ)求函数的图象的对称中心的坐标.【答案】(I)最小正周期,单调递增区间是,;(II)对称中心的坐标是,.【解析】试题分析:(I)利用降次公式和二倍角公式,化简,由此得到最小正周期.令,解出的范围即是函数的增区间.(II)令,解出的值即是对称中心的横坐标,由此得到对称中心的坐标.试题解析:解:.(Ⅰ)函数的最小正周期.由,,得,.∴函数的单调递增区间是,.(Ⅱ)由,,得,,∴函数的图象的对称中心的坐标是,.19.已知某海滨浴场的海浪高度(单位:米)是时间(单位:小时,)的函数,记作.如表是某日各时的浪高数据:(时)(米)(Ⅰ)在如图的网格中描出所给的点;(Ⅱ)观察图,从,,中选择一个合适的函数模型,并求出该拟合模型的解析式;(Ⅲ)依据规定,当海浪高度高于1.25米时才对冲浪爱好者开放,请依据(Ⅱ)的结论判断一天内的8:00到20:00之间有多长时间可供冲浪爱好者进行活动.【答案】(I)详见解析;(II),(III)小时.【解析】试题分析:(I)根据题目所给数据进行描点.(II)根据图象,应该选择,利用可求得的值,利用周期可求得的值,最后代入图像上一个最高点或最低点,求得的值.(III)由(II)令,解这个三角不等式可求得的取值范围.试题解析:解:(Ⅰ)(Ⅱ)根据图,应选择.不妨设,,由图可知,,,.∴,又当时,,∴,∴,∴,.∴,∴所求的解析式为.(Ⅲ)由,即,得,即,.又,∴.答:一天内的8:00到20:00之间有4个小时可供冲浪爱好者进行活动.20.已知,,,求的值.【答案】.【解析】试题分析:由于,故可以用诱导公式,将已知的表达式转化为.利用平方差公式,可将化简为.利用对数的运算公式,可将化简为.由此求得的值.试题解析:解:∵...∴.21.已知,,,.(Ⅰ)求的值;(Ⅱ)求的值.【答案】(I);(II).【解析】试题分析:(I)依题意有,利用正切的二倍角公式可求得.(II)利用,求出,由此求得,利用求得,所以.试题解析:解:(Ⅰ)∵,,∴,即.∵,∴,∴,∴,∴.(Ⅱ)∵,∴,又∵,∴,∴,.又,∴.点睛:本题主要考查向量模的概念,考查正切函数的二倍角公式,考查三角恒等变形.第一步是利用向量的模的概念,求得,然后利用正切的二倍角公式求得的值.第二问主要通过划归与转化的思想方法,将进行转化,利用其正切值求得相应的弧度数.22.已知函数的值域为,函数,的值域为.(Ⅰ)求集合和集合;(Ⅱ)若对任意的实数,都存在,使得,求实数的取值范围.【答案】(I)详见解析;(II).【解析】试题分析:(I)利用两角和与差的正弦、余弦公式,辅助角公式,化简.所以.对分成三类,利用配方法,分类讨论的取值.(II)由于,,根据题意,有.由(I)的讨论,列出不等式组,由此求得的取值范围.试题解析:解:(Ⅰ).∴..(1)若,则,;(2)若,则.∵,∴,当时,,①若,则,∴;②若,则,(i )若,即,则;(ii )若,即,则.综上,若,则;若,则;若,则;若,则.(Ⅱ)∵,∴的值域为,∴的值域.∴对任意的实数,都存在,使得,即,或或或第 11 页共 12 页或或或或或或或.∴所求的取值范围为.点睛:本题主要考查两角和与差的正弦、余弦公式,辅助角公式.考查恒成立问题的处理方法,考查三角函数的值域等知识,还考查了分类讨论的数学思想方法.第一问主要利用三角函数公式进行三角恒等变形,化为一个角且次数为一次的三角函数,由此求得值域.第二问需要对分类讨论,情况比较多,分类要做到不重不漏.第 12 页共 12 页。

2016-2017学年福建省龙岩市高一(上)数学期末试卷 及解析

2016-2017学年福建省龙岩市高一(上)数学期末试卷 及解析

2016-2017学年福建省龙岩市高一(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分)1.(5.00分)若集合A={x|y=lg(2x﹣1)},B={﹣2,﹣1,0,1,3},则A∩B 等于()A.{3}B.{1,3}C.{0,1,3}D.{﹣1,0,1,3}2.(5.00分)已知直线l:ax+y﹣4=0过点(﹣1,2),则直线l的斜率为()A.﹣3 B.3 C.﹣2 D.23.(5.00分)以(2,1)为圆心且与直线y+1=0相切的圆的方程为()A.(x﹣2)2+(y﹣1)2=4 B.(x﹣2)2+(y﹣1)2=2 C.(x+2)2+(y+1)2=4 D.(x+2)2+(y+1)2=24.(5.00分)某四棱锥的三视图如图所示,则俯视图的面积为()A.2 B.C.3 D.45.(5.00分)已知f(x)是奇函数,当x>0时,f(x)=2x﹣a,若f(﹣1)=,则a等于()A.1 B.﹣1 C.3 D.﹣36.(5.00分)已知直线x+ylog4a=0与直线2x﹣y﹣3=0平行,则a的值为()A.B.2 C.4 D.167.(5.00分)已知幂函数f(x)=x a的图象过点(2,),则函数g(x)=(x﹣1)f(x)在区间[,2]上的最小值是()A.0 B.﹣1 C.﹣2 D.﹣48.(5.00分)已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是()A.若α⊥β,m∥α,则m⊥βB.若m⊥α,n⊥β,且m⊥n,则α⊥βC.若m⊂α,n⊂β,且α∥β,则m∥n D.若m∥α,n∥β,且m∥n,则α∥β9.(5.00分)已知函数f(x)=a x﹣1(a>0,且a≠1)满足f(1)>1,若函数g(x)=f(x+1)﹣4的图象不过第二象限,则a的取值范围是()A.(2,+∞)B.(2,5]C.(1,2) D.(1,5]10.(5.00分)已知函数f(x)=﹣x2﹣2x,设a=ln2,b=log2,c=3,则必有()A.f(b)>f(a)>f(c) B.f(c)>f(a)>f(b)C.f(a)>f(b)>f (c)D.f(b)>f(c)>f(a)11.(5.00分)在长方体ABCD﹣A1B1C1D1中,底面ABCD的边长为a的正方形,E 是CC1的中点,若该长方体的外接球的表面积为10πa2,则异面直线AE与C1D1所成的角为()A.30°B.45°C.60°D.90°12.(5.00分)设函数f(x)=x2﹣log2(2x+2).若0<b<1,则f(b)的值满足()A.f(b)>f(﹣)B.f(b)>0 C.f(b)>f(2)D.f(b)<f(2)二、填空题(本大题共4小题,每小题5分,共20分)13.(5.00分)函数f(x)=,零点的个数是.14.(5.00分)已知圆C:x2+y2+6y﹣a=0的圆心到直线x﹣y﹣1=0的距离等于圆C半径的,则a=.15.(5.00分)某品牌汽车的月产能y(万辆)与月份x(3<x≤12且x∈N)满足关系式.现已知该品牌汽车今年4月、5月的产能分别为1万辆和1.5万辆,则该品牌汽车7月的产能为万辆.16.(5.00分)在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD ∥BC,AB=2,BC=1,PA=3,AD=4,PA⊥底面ABCD,E是PD上一点,且CE∥平面PAB,则三棱锥C﹣ABE的体积为.三、解答题(本大题共6个小题,共70分)17.(10.00分)已知全集U=R,集合A={x|﹣1<x<5},B={x|2<x<8}.(1)求A∩(∁U B)和(∁U A)∩(∁U B);(2)若集合C={x|a+1≤x≤2a﹣2},且(∁U A)∩C={x|6≤x≤b},求a+b的值.18.(12.00分)如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠BAC=60°,E,F分别是AP,AC的中点,点D在棱AB上,且AD=AC.求证:(1)EF∥平面PBC;(2)DF⊥平面PAC.19.(12.00分)已知a>0,a≠1且log a3>log a2,若函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为1.(1)求a的值;(2)解不等式;(3)求函数g(x)=|log a x﹣1|的单调区间.20.(12.00分)已知直线l:ax﹣y+1=0与x轴,y轴分别交于点A,B.(1)若a>0,点M(1,﹣1),点N(1,4),且以MN为直径的圆过点A,求以AN为直径的圆的方程;(2)以线段AB为边在第一象限作等边三角形ABC,若a=﹣,且点P(m,)(m>0)满足△ABC与△ABP的面积相等,求m的值.21.(12.00分)如图所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,FD⊥底面ABCD,M是AB的中点.(1)求证:平面CFM⊥平面BDF;(2)点N在CE上,EC=2,FD=3,当CN为何值时,MN∥平面BEF.22.(12.00分)已知函数(a>0,a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)+f(2x)>0在其定义域上恒成立.2016-2017学年福建省龙岩市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5.00分)若集合A={x|y=lg(2x﹣1)},B={﹣2,﹣1,0,1,3},则A∩B 等于()A.{3}B.{1,3}C.{0,1,3}D.{﹣1,0,1,3}【解答】解:由A中y=lg(2x﹣1),得到2x﹣1>0,解得:x>,即A={x|x>},∵B={﹣2,﹣1,0,1,3},∴A∩B={1,3},故选:B.2.(5.00分)已知直线l:ax+y﹣4=0过点(﹣1,2),则直线l的斜率为()A.﹣3 B.3 C.﹣2 D.2【解答】解:根据题意,直线l:ax+y﹣4=0过点(﹣1,2),则有a×(﹣1)+2﹣4=0,解可得a=﹣2,即直线l的方程为:﹣2x+y﹣4=0,变形可得y=2x+4,则直线l的斜率为2;故选:D.3.(5.00分)以(2,1)为圆心且与直线y+1=0相切的圆的方程为()A.(x﹣2)2+(y﹣1)2=4 B.(x﹣2)2+(y﹣1)2=2 C.(x+2)2+(y+1)2=4 D.(x+2)2+(y+1)2=2【解答】解:∵圆心到切线的距离d=r,即r=d=1+1=2,圆心C(2,1),∴圆C方程为(x﹣2)2+(y﹣1)2=4.故选:A.4.(5.00分)某四棱锥的三视图如图所示,则俯视图的面积为()A.2 B.C.3 D.4【解答】解:由题意,俯视图的上、下底、高分别为1,2,2,其面积为=3,故选:C.5.(5.00分)已知f(x)是奇函数,当x>0时,f(x)=2x﹣a,若f(﹣1)=,则a等于()A.1 B.﹣1 C.3 D.﹣3【解答】解:∵f(x)是奇函数,f(﹣1)=,∴f(1)=﹣f(﹣1)=﹣,∵当x>0时,f(x)=2x﹣a,∴,解得a=3,故选:C.6.(5.00分)已知直线x+ylog4a=0与直线2x﹣y﹣3=0平行,则a的值为()A.B.2 C.4 D.16【解答】解:∵x+ylog4a=0与直线2x﹣y﹣3=0平行,∴2log4a=﹣1,解得a=故选:A.7.(5.00分)已知幂函数f(x)=x a的图象过点(2,),则函数g(x)=(x﹣1)f(x)在区间[,2]上的最小值是()A.0 B.﹣1 C.﹣2 D.﹣4【解答】解:由幂函数f(x)=x a的图象过点(2,),可得2α=,解得α=﹣1,即有f(x)=,函数g(x)=(x﹣1)f(x)==1﹣在区间[,2]上单调递增,则g(x)的最小值为g()=1﹣2=﹣1.故选:B.8.(5.00分)已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是()A.若α⊥β,m∥α,则m⊥βB.若m⊥α,n⊥β,且m⊥n,则α⊥βC.若m⊂α,n⊂β,且α∥β,则m∥n D.若m∥α,n∥β,且m∥n,则α∥β【解答】解:对于A,若α⊥β,m∥α,则m与β可能平行;故A错误;对于B,若m⊥α,n⊥β,且m⊥n,根据面面垂直的定义α⊥β;故B正确;对于C,若m⊂α,n⊂β,且α∥β,m,n共面,则m∥n;故C不正确;对于D,若m∥α,n∥β,且m∥n,则α与β可能相交;故D错误.故选:B.9.(5.00分)已知函数f(x)=a x﹣1(a>0,且a≠1)满足f(1)>1,若函数g(x)=f(x+1)﹣4的图象不过第二象限,则a的取值范围是()A.(2,+∞)B.(2,5]C.(1,2) D.(1,5]【解答】解:∵f(1)>1,∴a﹣1>1,即a>2∵函数g(x)=f(x+1)﹣4的图象不过第二象限,∴g(0)=a1﹣1﹣4≤0,∴a≤5,∴a的取值范围是(2,5].故选:B.10.(5.00分)已知函数f(x)=﹣x2﹣2x,设a=ln2,b=log2,c=3,则必有()A.f(b)>f(a)>f(c) B.f(c)>f(a)>f(b)C.f(a)>f(b)>f (c)D.f(b)>f(c)>f(a)【解答】解:函数f(x)=﹣x2﹣2x的图象是开口朝下,且以直线x=﹣1为对称轴的抛物线,故函数f(x)在[﹣1,+∞)上为减函数,a=ln2∈(0,1),b=log2∈(﹣1,0),c=3∈(1,2),则f(b)>f(a)>f(c),故选:A.11.(5.00分)在长方体ABCD﹣A1B1C1D1中,底面ABCD的边长为a的正方形,E 是CC1的中点,若该长方体的外接球的表面积为10πa2,则异面直线AE与C1D1所成的角为()A.30°B.45°C.60°D.90°【解答】解:∵在长方体ABCD﹣A1B1C1D1中,底面ABCD的边长为a的正方形,E是CC1的中点,该长方体的外接球的表面积为10πa2,∴该长方体的外接球的半径为r==,设该长方体的高为b,则=,解得b=2,以D为原点,DA为x员,DC为y轴,DD1为z轴,建立空间直角坐标系,则A(a,0,0),E(0,a,),C1(0,a,2),D1(0,0,2),=(﹣a,a,),=(0,﹣a,0),设异面直线AE与C1D1所成的角为θ,则c osθ===.∴θ=60°.∴异面直线AE与C1D1所成的角为60°.故选:C.12.(5.00分)设函数f(x)=x2﹣log2(2x+2).若0<b<1,则f(b)的值满足()A.f(b)>f(﹣)B.f(b)>0 C.f(b)>f(2)D.f(b)<f(2)【解答】解:作出y=x2与y=log2(2x+2)的图象如图:由图象可知当0<x<1时,x2<log2(2x+2).∵0<b<1,∴f(b)=b2﹣log2(2b+2)<0,排除B;∵f(﹣)=+1=>0,排除A;f(2)=4﹣log26>0,排除C.故选:D.二、填空题(本大题共4小题,每小题5分,共20分)13.(5.00分)函数f(x)=,零点的个数是1.【解答】解:当x≥1时,1+log5x≥1,此时函数无零点;当x<1时,令2x﹣1=0,解得x=,此时函数有一个零点;综上可得函数f(x)=,零点的个数是1个,故答案为:114.(5.00分)已知圆C:x2+y2+6y﹣a=0的圆心到直线x﹣y﹣1=0的距离等于圆C半径的,则a=﹣1.【解答】解:把圆的方程化为标准方程得:x2+(y+3)2=a+9,∴圆心坐标为(0,﹣3),则圆心到直线x﹣y﹣1=0的距离d==,∴a=﹣1故答案为﹣1.15.(5.00分)某品牌汽车的月产能y(万辆)与月份x(3<x≤12且x∈N)满足关系式.现已知该品牌汽车今年4月、5月的产能分别为1万辆和1.5万辆,则该品牌汽车7月的产能为万辆.【解答】解:∵某品牌汽车的月产能y(万辆)与月份x(3<x≤12且x∈N)满足关系式.该品牌汽车今年4月、5月的产能分别为1万辆和1.5万辆,∴,解得a=﹣2,b=2,∴,∴该品牌汽车7月的产能为y=﹣2×=万辆.故答案为:.16.(5.00分)在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD ∥BC,AB=2,BC=1,PA=3,AD=4,PA⊥底面ABCD,E是PD上一点,且CE∥平面PAB,则三棱锥C﹣ABE的体积为.【解答】解:过点C作CF⊥AD于F,过F作EF⊥AD交PD于E,则EF⊥平面ABCD,∵PA⊥底面ABCD,∴EF∥PA,∵BA⊥AD,CF⊥AD,∴AB∥FC,∵PA∩AB=A,EF∩FC=F,PA,AB⊂平面PAB,EF,FC⊂平面EFC,∴平面PAB∥平面EFC,∵CE⊂平面EFC,∴CE∥平面PAB,∴EF=PA=,∴三棱锥C﹣ABE的体积V C=V E﹣ABC==.﹣ABE故答案为:.三、解答题(本大题共6个小题,共70分)17.(10.00分)已知全集U=R,集合A={x|﹣1<x<5},B={x|2<x<8}.(1)求A∩(∁U B)和(∁U A)∩(∁U B);(2)若集合C={x|a+1≤x≤2a﹣2},且(∁U A)∩C={x|6≤x≤b},求a+b的值.【解答】解:(1)全集U=R,集合A={x|﹣1<x<5},B={x|2<x<8},∴∁U B={x|x≤2或x≥8},∴A∩(∁U B)={x|﹣1<x≤2};又A∪B={x|﹣1<x<8},∴(∁U A)∩(∁U B)=∁U(A∪B)={x|x≤﹣1或x≥8};(2)∵∁U A={x|x≤﹣1或x≥5},集合C={x|a+1≤x≤2a﹣2},且(∁U A)∩C={x|6≤x≤b},∴a+1=6,且b=2a﹣2;解得a=5,b=8;∴a+b=13.18.(12.00分)如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠BAC=60°,E,F分别是AP,AC的中点,点D在棱AB上,且AD=AC.求证:(1)EF∥平面PBC;(2)DF⊥平面PAC.【解答】(本题满分为12分)证明:(1)在△PAC中,因为E,F分别是AP,AC的中点,所以EF∥PC.…(2分)又因为EF⊄平面PBC,PC⊂平面PBC,所以EF∥平面PBC.…(5分)(2)连结CD.因为∠BAC=60°,AD=AC,所以△ACD为正三角形.因为F是AC的中点,所以DF⊥AC.…(7分)因为平面PAC⊥平面ABC,DF⊂平面ABC,平面PAC∩平面ABC=AC,所以DF⊥平面PAC.…(12分)19.(12.00分)已知a>0,a≠1且log a3>log a2,若函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为1.(1)求a的值;(2)解不等式;(3)求函数g(x)=|log a x﹣1|的单调区间.【解答】解:(1)∵log a3>log a2,∴a>1,又∵y=log a x在[a,2a]上为增函数,∴log a(2a)﹣log a a=1,∴a=2.(2)依题意可知解得,∴所求不等式的解集为.(3)∵g(x)=|log2x﹣1|,∴g(x)≥0,当且仅当x=2时,g(x)=0,则∴函数在(0,2)上为减函数,在(2,+∞)上为增函数,g(x)的减函数为(0,2),增区间为(2,+∞).20.(12.00分)已知直线l:ax﹣y+1=0与x轴,y轴分别交于点A,B.(1)若a>0,点M(1,﹣1),点N(1,4),且以MN为直径的圆过点A,求以AN为直径的圆的方程;(2)以线段AB为边在第一象限作等边三角形ABC,若a=﹣,且点P(m,)(m>0)满足△ABC与△ABP的面积相等,求m的值.【解答】解:(1)由题意A(﹣,0),AM⊥AN,∴=﹣1,∵a>0,∴a=1,∴A(﹣1,0),∵N(1,4),∴AN的中点坐标为D(0,2),|AD|=,∴以AN为直径的圆的方程是x2+(y﹣2)2=5;(2)根据题意画出图形,如图所示:由直线y=﹣x+1,令x=0,解得y=1,故点B(0,1),令y=0,解得x=,故点A(,0),∵△ABC为等边三角形,且OA=,OB=1,根据勾股定理得:AB=2,即等边三角形的边长为2,故过C作AB边上的高为,即点C到直线AB的距离为,由题意△ABP和△ABC的面积相等,则P到直线AB的距离d=|﹣m+|=,∵m>0,∴m=.21.(12.00分)如图所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,FD⊥底面ABCD,M是AB的中点.(1)求证:平面CFM⊥平面BDF;(2)点N在CE上,EC=2,FD=3,当CN为何值时,MN∥平面BEF.【解答】证明:(1)∵FD⊥底面ABCD,∴FD⊥AD,FD⊥BD∵AF=BF,∴△ADF≌△BDF,∴AD=BD,连接DM,则DM⊥AB,∵AB∥CD,∠BCD=90°,∴四边形BCDM是正方形,∴BD⊥CM,∵DF⊥CM,∴CM⊥平面BDF.解:(2)当CN=1,即N是CE的中点时,MN∥平面BEF.证明如下:过N作NO∥EF,交ED于O,连结MO,∵EC∥FD,∴四边形EFON是平行四边形,∵EC=2,FD=3,∴OF=1,∴OD=2,连结OE,则OE∥DC∥MB,且OE=DC=MB,∴四边形BMOE是平行四边形,则OM∥BE,又OM∩ON=O,∴平面OMN∥平面BEF,∵MN⊂平面OMN,∴MN∥平面BEF.22.(12.00分)已知函数(a>0,a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)+f(2x)>0在其定义域上恒成立.【解答】解:(1)定义域为(﹣∞,0)∪(0,+∞).(2)==,∴f(x)是偶函数.(3)∵函数f(x)在定义域上是偶函数,∴函数y=f(2x)在定义域上也是偶函数,∴当x∈(0,+∞)时,f(x)+f(2x)>0可满足题意,∵当x∈(0,+∞)时,x3>0,∴只需,即,∵a2x+a x+1>0,∴(a x)2﹣1>0,解得a>1,∴当a>1时,f(x)+f(2x)>0在定义域上恒成立.。

福建省龙岩高一上学期数学期末考试试卷

福建省龙岩高一上学期数学期末考试试卷

福建省龙岩高一上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017高一上·鞍山期中) 下列函数为幂函数的是()A . y=x2B . y=﹣x2C . y=2xD . y=2x22. (2分)已知集合,则()A . {-1,0,1}B . {-2}C . {-2,-1}D . {0,1}3. (2分)已知D为△ABC的边BC的中点,△ABC所在平面内有一个点P,满足=+,则的值为()A . 1B .C .D . 24. (2分)已知a=3 ,b=() 3 , c=log3 ,它们间的大小关系为()A . a>b>cB . a>c>bC . b>c>aD . b>a>c5. (2分)将函数y=cos2x的图象向左平移个单位长度,所得图象的函数解析式为()A . y=cos(2x-)B . y=cos(2x+)C . y=cos(2x+)D . y=cos(2x-)6. (2分)(2016·城中模拟) 已知函数f(x)满足f(﹣x)=f(x),f(x+8)=f(x),且当x∈(0,4]时f(x)= ,关于x的不等式f2(x)+af(x)>0在[﹣2016,2016]上有且只有2016个整数解,则实数a的取值范围是()A . (﹣ ln6,ln2]B . (﹣ln2,﹣ ln6)C . (﹣ln2,﹣ ln6]D . (﹣ ln6,ln2)7. (2分)(2018·上饶模拟) 已知的最大值为A,若存在实数、,使得对任意实数x总有成立,则的最小值为A .B .C .D .8. (2分) (2016高三上·焦作期中) 在△ABC中,内角A= ,P为△ABC的外心,若=λ1 +2λ2,其中λ1与λ2为实数,则λ1+λ2的最大值为()A .B . 1﹣C .D . 1+9. (2分)在△ABC中,A>B是cosA<cosB的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件10. (2分) (2016高一上·成都期中) 已知f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,设a=f(log47),b=f(log23),c=f(0.20.6),则a,b,c的大小关系是()A . c<b<aB . b<c<aC . b<a<cD . a<b<c二、填空题 (共5题;共5分)11. (1分) (2019高一下·上海月考) 已知点在角的终边上,且,则________.12. (1分) (2018高三下·鄂伦春模拟) 若向量与向量共线,则 ________.13. (1分) (2018高二下·抚顺期末) 函数的定义域为________.14. (1分) (2016高二下·右玉期中) 若f(x)= ,则f(2016)等于________.15. (1分) (2016高三上·杭州期中) 已知△ABC中,AB=4,AC=2,|λ +(2﹣2λ) |(λ∈R)的最小值为2 ,若P为边AB上任意一点,则• 的最小值是________.三、解答题 (共5题;共50分)16. (10分) (2018高一下·沈阳期中) 已知向量,, .(1)若为直角三角形,且为直角,求实数的值;(2)若点能构成三角形,求实数应满足的条件.17. (10分) (2017高二下·中原期末) 已知命题P:函数f(x)=log2m(x+1)是增函数;命题Q:∀x∈R,x2+mx+1≥0.(1)写出命题Q的否命题¬Q;并求出实数m的取值范围,使得命题¬Q为真命题;(2)如果“P∨Q”为真命题,“P∧Q”为假命题,求实数m的取值范围18. (5分)已知函数f(x)=2cos2x+sin2x(Ⅰ)求f()的值;(Ⅱ)求f(x)的最大值和最小值.19. (10分)如图,在平面直角坐标系xOy中,以x轴为始边作两个锐角α,β,它们的终边分别与单位圆交于A,B两点.已知(1)求tan(α+β)的值;(2)求2α+β的值.20. (15分) (2019高一上·大连月考) 已知函数是定义在上的奇函数,且.(1)确定函数的解析式;(2)用定义证明函数在上是减函数;(3)若实数满足,求的取值范围.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共5题;共50分) 16-1、16-2、17-1、17-2、18-1、19-1、19-2、20-1、20-2、20-3、。

2016-2017学年高一上学期期末数学试卷 Word版含解析

2016-2017学年高一上学期期末数学试卷 Word版含解析

2016-2017学年高一上学期期末数学试卷一.选择题(本大题共12小题,每小题5分,共60分)1.如果集合A={x|ax 2﹣2x ﹣1=0}只有一个元素则a 的值是( ) A .0B .0或1C .﹣1D .0或﹣12.sin36°cos6°﹣sin54°cos84°等于( )A .B .C .D .3.若tan α=2,tan β=3,且α,β∈(0,),则α+β的值为( )A .B .C .D .4.已知sin α+cos α=(0<α<π),则tan α=( )A .B .C .D .或5.设a=sin ,b=cos,c=tan,则( )A .b <a <cB .b <c <aC .a <b <cD .a <c <b6.已知x ∈[0,1],则函数的值域是( )A .B .C .D .7.若,则=( )A .B .C .﹣D .8.若函数图象的两条相邻的对称轴之间的距离为,且该函数图象关于点(x 0,0)成中心对称,,则x 0=( )A .B .C .D .9.已知函数f (x )=的值域为R ,则实数a 的范围是( )A .[﹣1,1]B .(﹣1,1]C .(﹣1,+∞)D .(﹣∞,﹣1)10.将函数y=3sin (2x+)的图象向右平移个单位长度,所得图象对应的函数( )A .在区间(,)上单调递减 B .在区间(,)上单调递增C.在区间(﹣,)上单调递减D.在区间(﹣,)上单调递增11.函数f(x)=|sinx|+2|cosx|的值域为()A.[1,2] B.[,3] C.[2,] D.[1,]12.设f(x)是定义在R上的偶函数,对x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=()x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是()A.(2,3)B.C.D.二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题纸上)13.已知则= .14. = .15.已知,试求y=[f(x)]2+f(x2)的值域.16.设f(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤|f()|对一切x∈R 恒成立,则以下结论正确的是(写出所有正确结论的编号).①;②|≥|;③f(x)的单调递增区间是(kπ+,kπ+)(k∈Z);④f(x)既不是奇函数也不是偶函数.二、解答题17.若,,,则= .18.已知函数f(x)=ax﹣(a,b∈N*),f(1)=且f(2)<2.(Ⅰ)求a,b的值;(Ⅱ)判断并证明函数y=f (x )在区间(﹣1,+∞)上的单调性.19.已知函数f (x )=2﹣3(ω>0)(1)若是最小正周期为π的偶函数,求ω和θ的值;(2)若g (x )=f (3x )在上是增函数,求ω的最大值.20.已知函数f (x )=2x 2﹣3x+1,,(A ≠0)(1)当0≤x ≤时,求y=f (sinx )的最大值;(2)若对任意的x 1∈[0,3],总存在x 2∈[0,3],使f (x 1)=g (x 2)成立,求实数A 的取值范围;(3)问a 取何值时,方程f (sinx )=a ﹣sinx 在[0,2π)上有两解?[附加题](共1小题,满分10分)21.已知函数f (x )=(1)求函数f (x )的零点;(2)若实数t 满足f (log 2t )+f (log 2)<2f (2),求f (t )的取值范围.2016-2017学年高一上学期期末数学试卷参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分)1.如果集合A={x|ax2﹣2x﹣1=0}只有一个元素则a的值是()A.0 B.0或1 C.﹣1 D.0或﹣1【考点】元素与集合关系的判断.【分析】根据集合A={x|ax2﹣2x﹣1=0}只有一个元素,可得方程ax2﹣2x﹣1=0只有一个根,然后分a=0和a≠0两种情况讨论,求出a的值即可.【解答】解:根据集合A={x|ax2﹣2x﹣1=0}只有一个元素,可得方程ax2﹣2x﹣1=0只有一个根,①a=0,,满足题意;②a≠0时,则应满足△=0,即22﹣4a×(﹣1)=4a+4=0解得a=﹣1.所以a=0或a=﹣1.故选:D.2.sin36°cos6°﹣sin54°cos84°等于()A.B.C.D.【考点】两角和与差的正弦函数.【分析】利用诱导公式与两角差的正弦即可求得答案.【解答】解:∵36°+54°=90°,6°+84°=90°,∴sin36°cos6°﹣sin54°cos84°=sin36°cos6°﹣cos36°sin6°=sin(36°﹣6°)=sin30°=,故选A.3.若tanα=2,tanβ=3,且α,β∈(0,),则α+β的值为()A.B.C.D.【考点】两角和与差的正切函数.【分析】由条件求得α+β的范围,再结合tan(α+β)=的值,可得α+β的值.【解答】解:∵tanα=2,tanβ=3,且α,β∈(0,),则α+β∈(0,π),再根据tan(α+β)===﹣1,∴α+β=.故选:C.4.已知sinα+cosα=(0<α<π),则tanα=()A.B.C.D.或【考点】同角三角函数间的基本关系.【分析】已知等式两边平方,利用同角三角函数间的基本关系化简,求出2sinαcosα的值小于0,得到sinα>0,cosα<0,再利用完全平方公式及同角三角函数间的基本关系求出sinα与cosα的值,即可求出tanα的值.【解答】解:将已知等式sinα+cosα=①两边平方得:(sinα+cosα)2=sin2α+2sinαcosα+cos2α=1+2sinαcosα=,∴2sinαcosα=﹣<0,∵0<α<π,∴sinα>0,cosα<0,即sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,∴sinα﹣cosα=②,联立①②,解得:sinα=,cosα=﹣,则tanα=﹣.故选B5.设a=sin,b=cos,c=tan,则()A.b<a<c B.b<c<a C.a<b<c D.a<c<b【考点】三角函数线.【分析】利用三角函数的诱导公式,结合三角函数的单调性进行比较即可.【解答】解:sin=cos(﹣)=cos(﹣)=cos,而函数y=cosx在(0,π)上为减函数,则1>cos>cos>0,即0<b<a<1,tan>tan=1,即b<a<c,故选:A6.已知x∈[0,1],则函数的值域是()A.B.C.D.【考点】函数单调性的性质;函数的值域.【分析】根据幂函数和复合函数的单调性的判定方法可知该函数是增函数,根据函数的单调性可以求得函数的值域.【解答】解:∵函数y=在[0,1]单调递增(幂函数的单调性),y=﹣在[0,1]单调递增,(复合函数单调性,同增异减)∴函数y=﹣在[0,1]单调递增,∴≤y≤,函数的值域为[,].故选C.7.若,则=()A.B.C.﹣D.【考点】三角函数的化简求值.【分析】利用诱导公式、二倍角的余弦公式,求得要求式子的值.【解答】解:∵=cos(﹣α),则=2﹣1=2×﹣1=﹣,故选:C.8.若函数图象的两条相邻的对称轴之间的距离为,且该函数图象关于点(x,0)成中心对称,,则x=()A.B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象的对称性,得出结论.【解答】解:∵函数图象的两条相邻的对称轴之间的距离为==,∴ω=2,∴f(x)=sin(2x+).令2x+=kπ,k∈Z,求得x=kπ﹣,故该函数的图象的对称中心为(kπ﹣,0 ),k∈Z.根据该函数图象关于点(x,0)成中心对称,结合,则x=,故选:B.9.已知函数f(x)=的值域为R,则实数a的范围是()A.[﹣1,1] B.(﹣1,1] C.(﹣1,+∞)D.(﹣∞,﹣1)【考点】分段函数的应用.【分析】利用函数的单调性,函数的值域列出不等式组求解即可.【解答】解:函数f(x)=,当x≥3时,函数是增函数,所以x<3时,函数也是增函数,可得:,解得a>﹣1.故选:C.10.将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间(,)上单调递减B.在区间(,)上单调递增C.在区间(﹣,)上单调递减D.在区间(﹣,)上单调递增【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据左加右减上加下减的原则,即可直接求出将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数的解析式,进而利用正弦函数的单调性即可求解.【解答】解:将函数y=3sin(2x+)的图象向右平移个单位长度,所得函数的解析式:y=3sin[2(x﹣)+]=3sin(2x﹣).令2kπ﹣<2x﹣<2kπ+,k∈Z,可得:kπ+<x<kπ+,k∈Z,可得:当k=0时,对应的函数y=3sin(2x﹣)的单调递增区间为:(,).故选:B.11.函数f(x)=|sinx|+2|cosx|的值域为()A.[1,2] B.[,3] C.[2,] D.[1,]【考点】三角函数值的符号;函数的值域.【分析】先将函数y=|sinx|+2|cosx|的值域⇔当x∈[0,]时,y=sinx+2cosx的值域,利用两角和与差的正弦函数化简,由正弦函数的性质求出函数的值域.【解答】解:∵函数y=|sinx|+2|cosx|的值域⇔当x∈[0,]时,y=sinx+2cosx的值域,∴y=sinx+2cosx=(其中θ是锐角,、),由x∈[0,]得,x+θ∈[θ, +θ],所以cosθ≤sin(x+θ)≤1,即≤sin(x+θ)≤1,所以,则函数y=|sinx|+2|cosx|的值域是[1,],故选:D.12.设f(x)是定义在R上的偶函数,对x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0](x+2)=0(a>1)时,f(x)=()x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣loga恰有3个不同的实数根,则a的取值范围是()A.(2,3)B.C.D.【考点】函数奇偶性的性质;根的存在性及根的个数判断.【分析】根据题意f(x﹣2)=f(x+2),可得f(x+4)=f(x),周期T=4,且是偶函数,当x(x+2)∈[﹣2,0]时,f(x)=()x﹣1,可以做出在区间(﹣2,6]的图象,方程f(x)﹣loga(x+2)的图象恰有3个不同的=0(a>1)恰有3个不同的实数根,即f(x)的图象与y=loga交点.可得答案.【解答】解:由题意f(x﹣2)=f(x+2),可得f(x+4)=f(x),周期T=4,当x∈[﹣2,0]时,f(x)=()x﹣1,∴可得(﹣2,6]的图象如下:从图可看出,要使f(x)的图象与y=log(x+2)的图象恰有3个不同的交点,a则需满足,解得:.故选C.二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题纸上)13.已知则= 0 .【考点】分段函数的解析式求法及其图象的作法;函数的值.【分析】因为,所以可以直接求出:,对于,用表达式的定义得,从而得出要求的答案.【解答】解:∵∴而=∴故答案为:014. = ﹣4.【考点】三角函数的化简求值.【分析】切化弦后通分,利用二倍角的正弦与两角差的正弦即可化简求值.【解答】解:原式====﹣4.故答案为:﹣4.15.已知,试求y=[f(x)]2+f(x2)的值域[1,13] .【考点】函数的值域.【分析】根据,求出y=[f(x)]2+f(x2)的定义域,利用换元法求解值域.【解答】解:由题意,,则f(x2)的定义域为[,2],故得函数y=[f(x)]2+f(x2)的定义域为[,2].∴y=(2+log2x)2+2+2log2x.令log2x=t,(﹣1≤t≤1).则y=(2+t)2+2t+2=t2+6t+6.开口向上,对称轴t=﹣3.∴当t=﹣1时,y取得最小值为1.当t=1时,y取得最大值为13,故得函数y的值域为[1,13].故答案为[1,13].16.设f(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤|f()|对一切x∈R 恒成立,则以下结论正确的是①②④(写出所有正确结论的编号).①;②|≥|;③f(x)的单调递增区间是(kπ+,kπ+)(k∈Z);④f(x)既不是奇函数也不是偶函数.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】利用辅助角公式化简f(x),根据f(x)≤|f()|可得,a,b的值.然后对个结论依次判断即可.【解答】解:由f(x)=asin 2x+bcos 2x=sin(2x+φ).∵f(x)≤|f()|对一切x∈R恒成立∴当x=时,函数取得最大值,即2×+φ=,解得:φ=.故得f(x)=sin(2x+).则f()=sin(2×+)=0,∴①对.②f()=sin(2×+)=f()=sin(2×+)=,∴|≥|,∴②对.由2x+,(k∈Z)解得: +kπ≤x≤+kπ,(k∈Z)∴f(x)的单调递增区间是(kπ,kπ+)(k∈Z);∴③不对f(x)的对称轴2x+=+kπ,(k∈Z);∴③解得:x=kπ+,不是偶函数,当x=0时,f(0)=,不关于(0,0)对称,∴f(x)既不是奇函数也不是偶函数.故答案为①②④.二、解答题17.若,,,则=.【考点】角的变换、收缩变换;同角三角函数间的基本关系;两角和与差的余弦函数.【分析】根据条件确定角的范围,利用平方关系求出相应角的正弦,根据=,可求的值.【解答】解:∵∴∵,∴,∴===故答案为:18.已知函数f(x)=ax﹣(a,b∈N*),f(1)=且f(2)<2.(Ⅰ)求a,b的值;(Ⅱ)判断并证明函数y=f(x)在区间(﹣1,+∞)上的单调性.【考点】利用导数研究函数的单调性.【分析】(Ⅰ)由,,,从而求出b=1,a=1;(Ⅱ)由(1)得,得函数在(﹣1,+∞)单调递增.从而有f(x1)﹣f(x2)=,进而,故函数在(﹣1,+∞)上单调递增.【解答】解:(Ⅰ)∵,,由,∴,又∵a,b∈N*,∴b=1,a=1;(Ⅱ)由(1)得,函数在(﹣1,+∞)单调递增.证明:任取x1,x2且﹣1<x1<x2,=,∵﹣1<x1<x2,∴,∴,即f(x1)<f(x2),故函数在(﹣1,+∞)上单调递增.19.已知函数f(x)=2﹣3(ω>0)(1)若是最小正周期为π的偶函数,求ω和θ的值;(2)若g(x)=f(3x)在上是增函数,求ω的最大值.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用二倍角和辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,利用周期公式ω,根据偶函数的性质,求θ的值.(2)根据g(x)=f(3x)求出g(x)的解析式,g(x)在上是增函数,可得,即可求解ω的最大值.【解答】解:(1)由=2(ω>0)∵又∵y=f(x+θ)是最小正周期为π的偶函数,∴,即ω=2,且,解得:∵,∴当l=0时,.故得为所求;(2)g(x)=f(3x),即g(x)=2(ω>0)∵g(x)在上是增函数,∴,∵ω>0,∴,故得,于是k=0,∴,即ω的最大值为,此时.故得ω的最大值为.20.已知函数f(x)=2x2﹣3x+1,,(A≠0)(1)当0≤x≤时,求y=f(sinx)的最大值;(2)若对任意的x1∈[0,3],总存在x2∈[0,3],使f(x1)=g(x2)成立,求实数A的取值范围;(3)问a取何值时,方程f(sinx)=a﹣sinx在[0,2π)上有两解?【考点】三角函数的最值;二次函数的性质;正弦函数的图象.【分析】(1)由已知可得,y=f(sinx)=2sin2x﹣3sinx+1设t=sinx,由x可得0≤t≤1,从而可得关于 t的函数,结合二次函数的性质可求(2)依据题意有f(x1)的值域是g(x2)值域的子集,要求 A的取值范围,可先求f(x1)值域,然后分①当A>0时,g(x2)值域②当A<0时,g(x2)值域,建立关于 A的不等式可求A的范围.(3)2sin2x﹣3sinx+1=a﹣sinx化为2sin2x﹣2sinx+1=a在[0,2π]上有两解令t=sinx则2t2﹣2t+1=a在[﹣1,1]上解的情况可结合两函数图象的交点情况讨论.【解答】解:(1)y=f(sinx)=2sin2x﹣3sinx+1设t=sinx,x,则0≤t≤1∴∴当t=0时,y max =1(2)当x 1∈[0,3]∴f (x 1)值域为当x 2∈[0,3]时,则有①当A >0时,g (x 2)值域为②当A <0时,g (x 2)值域为而依据题意有f (x 1)的值域是g (x 2)值域的子集则或∴A ≥10或A ≤﹣20(3)2sin 2x ﹣3sinx+1=a ﹣sinx 化为2sin 2x ﹣2sinx+1=a 在[0,2π]上有两解 换t=sinx 则2t 2﹣2t+1=a 在[﹣1,1]上解的情况如下:①当在(﹣1,1)上只有一个解或相等解,x 有两解(5﹣a )(1﹣a )≤0或△=0∴a ∈[1,5]或②当t=﹣1时,x 有惟一解③当t=1时,x 有惟一解故a ∈(1,5)∪{}.[附加题](共1小题,满分10分)21.已知函数f (x )=(1)求函数f (x )的零点;(2)若实数t 满足f (log 2t )+f (log 2)<2f (2),求f (t )的取值范围.【考点】分段函数的应用;函数零点的判定定理.【分析】(1)分类讨论,函数对应方程根的个数,综合讨论结果,可得答案.(2)分析函数的奇偶性和单调性,进而可将不等式化为|log 2t|<2,解得f (t )的取值范围.【解答】解:(1)当x <0时,解得:x=ln =﹣ln3,当x ≥0时,解得:x=ln3,故函数f (x )的零点为±ln3; (2)当x >0时,﹣x <0,此时f (﹣x )﹣f (x )===0,故函数f (x )为偶函数,又∵x ≥0时,f (x )=为增函数,∴f (log 2t )+f (log 2)<2f (2)时,2f (log 2t )<2f (2), 即|log 2t|<2, ﹣2<log 2t <2,∴t ∈(,4)故f (t )∈(,)。

福建省福州市2016-2017学年高一数学上学期期末考试试题(1)

福建省福州市2016-2017学年高一数学上学期期末考试试题(1)

福建省福州市2016-2017学年高一数学上学期期末考试试题(满分:150分,完卷时间:120分钟)一、选择题(本大题为单选题,共12个小题,每小题5分,共60分)1.直线 y + 3 = 0的倾斜角是( )(A )0° (B )45° (C )90° (D )不存在2.过点(3,1)且与直线x ﹣2y ﹣3=0垂直的直线方程是( )A .2x+y ﹣7=0B .x+2y ﹣5=0C .x ﹣2y ﹣1=0D .2x ﹣y ﹣5=03.水平放置的ABC ∆的斜二测直观图A B C ∆'''如图所示,已知2,3=''=''C B C A 则ABC ∆的面积为( )A. 6B. 3C.4.若点N 在直线a 上,直线a 又在平面α内,则点N ,直线a 与平面α之间的关系可记作( )A .N ∈a ∈αB .N ∈a ⊆αC .N ⊆a ⊆αD .N ⊆a ∈α5.若m n ,表示两条不同直线,α表示平面,下列说法正确的是( )A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥6.几何体三视图如图所示,则该几何体的体积为( )A 7.在正方体ABCD -1111D CB A 中,求直线B A 1和平面CD B A 11所成的角为( )A 8.在直线2x -3y +5=0上求点P ,使P 点到A(2,3)的距离为,则P 点坐标是( ) A.(5,5) B.(-1,1)C.(5,5)或(-1,1)D.(5,5)或(1,-1)9.方程)0(02222≠=-++a ay ax y x 表示的圆( )A .关于x 轴对称B .关于y 轴对称C .关于直线0=-y x 对称D .关于直线0=+y x 对称10.圆122=+y x 和05622=+-+y y x 的位置关系为( )A . 外切B .内切C .外离D .内含11.圆2250x y +=与圆22126400x y x y +--+=的公共弦长为( )A ..12.一直三棱柱的每条棱长都是3,且每个顶点都在球O 的表面上,则球O 的半径为( )A .3 二、填空题(本大题共4小题,每小题5分,共20分) .13.在x 轴上的截距为2且斜率为1的直线方程为 .14.经过()3,4,且与圆2225x y +=相切的直线的方程为 .15.已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 的值是_______.16.在正方体1111ABCD A B C D -中,点P 在面对角线AC 上运动,给出下列四个命题:①1D P ∥平面11A BC ; ② 1D P BD ⊥; ③平面1PDB ⊥平面11A BC ;④三棱锥11A BPC -的体积不变.则其中所有正确的命题的序号是 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) .17.(本小题满分10分)已知三角形ABC 的顶点坐标为A (﹣1,5)、B (﹣2,﹣1)、C (4,3),M 是BC 边上的中点.(1)求AB 边所在的直线方程;(2)求中线AM 的长.18..(本题满分12分) 已知直线l 过直线10x y +-=和240x y -+=的交点,(1)若l 与直线210x y +-=平行,求直线l 的方程;(2)若l 与圆224210x x y -+-=相交弦长为,求直线l 的方程.19.(本小题满分12分)正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点.(Ⅰ) 求证:11B D AE ⊥(Ⅱ) 求证://AC 平面1B DE ;(Ⅲ)求三棱锥A-BDE 的体积.20.(本小题满分12分)已知圆C :0322=++++Ey Dx y x 关于直线01=-+y x 对称,圆心C(Ⅰ)求圆C 的方程; (Ⅱ)是否存在直线l 与圆C 相切,且在x 轴上的截距是y 轴上的截距的2倍?若存在,求直线l 的方程;若不存在,说明理由.21.(本小题满分12分)如图所示,在四棱锥P —ABCD 中,底面ABCD 是边长为2的正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,过E 点作EF ⊥PB 交PB 于点F .求证:(1)PA ∥平面EDB ;(2)PB ⊥平面EFD ; (3)求三棱锥E-BCD 的体积.22(本小题满分12分).已知圆22:(3)(4)4C x y -+-=,直线1l 过定点A(1,0).(1)若1l 与圆相切,求1l 的方程;(2)若1l 与圆相交于P ,Q 两点,线段PQ 的中点为M ,又1l 与2:220l x y ++=的交点为N ,判断AM AN ⋅是否为定值,若是,则求出定值;若不是,请说明理由.参考答案1.A【解析】因为直线与y+3=0平行,所以倾斜角为0.2.A【解析】解:由两直线垂直的性质可知,所求的直线的斜率k=﹣2所求直线的方程为y ﹣1=﹣2(x ﹣3)即2x+y ﹣7=0故选:A .【点评】本题主要考查了直线方程的求解,解题的关键是利用垂直关系求解出直线的斜率.3.A【解析】 '2:1:S S =考点:斜二测画法4.B【解析】试题分析:点N 在直线a 上,记作N ∈a ;直线a 又在平面α内,记作a ⊆α.解:∵点N 在直线a 上,直线a 又在平面α内, ∴点N ,直线a 与平面α之间的关系可记作:N ∈a ⊆α.故选:B .考点:平面的基本性质及推论.5.B【解析】试题分析:本题以数学符号语言为载体,判断命题的真假.若//,//,m n αα则//m n 或,m n 相交或,m n 异面,故A 错;若m α⊥,n α⊂,由直线和平面垂直的定义知,m n ⊥,故B 正确;若m α⊥,m n ⊥,则//n α或n α⊂,故C 错;若//m α,m n ⊥,则n 与α位置关系不确定,故D 错.故选B .考点:命题的判断.6.C .【解析】C .考点:空间几何体体积计算.7.B【解析】 试题分析:直接求B A 1在平面CD B A 11的投影比较困难,但是可利用等体积法,求得点B 到平面CD B A 11的距离,再利用三角函数求角.在正方体ABCD -1111D C B A 中,设棱长为1,则正方体1=V ,,,假设点B 到平面CD B A 11的距离为h ,则,则直线B A 1和平面CD B A 11所,所以直线B A 1和平面CD B A 11所成的角为,所以本题的正确选项为B .考点:等体积法求线面角.8.C【解析】设P (x ,y ),则. 由得, 即(x -2)2=9.解得x =-1或x =5.当x =-1时,y =1,当x =5时,y =5,∴P (-1,1)或P (5,5).9.D【解析】试题分析:由题意得:222()()2x a y a a ++-=,圆心在直线0=+y x 上,因此圆关于直线0=+y x 对称,选D.考点:圆的对称性10.A试题分析:05622=+-+y y x 即22(3)4x y +-=,圆心距等于两半径之和,所以圆122=+y x 和05622=+-+y y x 的位置关系为外切,选A 。

福建省龙岩高一上学期期末数学试卷

福建省龙岩高一上学期期末数学试卷

福建省龙岩高一上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016高一上·河北期中) 集合A={x||x|≥2},B={x|x2﹣2x﹣3>0},则(∁RA)∩B=()A . (﹣2,﹣1)B . [2,3)C . (3,+∞)D . (﹣∞,﹣2]∪(3,+∞)3. (2分) f(x)=sin(ωx+φ)+cos (ωx+φ) (ω>0,<)的最小正周期为π,且f(-x)=f (x),则下列关于g(x)= sin(ωx+φ)的图象说法正确的是()A . 函数在x∈上单调递增B . 关于直线x=对称C . 在x∈[0,]上,函数值域为[0,1]D . 关于点对称4. (2分)在映射,,且,则A中的元素(-1,2)对应集合B中的元素为()A . (-1,-3)B . (1,3)C . (3,1)D . (-3,1)5. (2分) f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,把f(x)的图象向右平移个单位长度得到g(x)的图象,则g(x)的单调递增区间为()A . [﹣+kπ,+kπ](k∈Z)B . [﹣+kπ,+kπ](k∈Z)C . [﹣+kπ,+kπ](k∈Z)D . [﹣+kπ,+kπ](k∈Z)6. (2分)函数对任意都有的图象关于点对称,则()A . -16B . -8C . -4D . 07. (2分)设平面上有四个互异的点A、B、C、D,已知(+﹣2)•(﹣)=0,则△ABC的形状是()A . 直角三角形B . 等腰三角形C . 等腰直角三角形D . 等边三角形8. (2分) (2019高一上·辽宁月考) 手机屏幕面积与整机面积的比值叫手机的“屏占比”,它是手机外观设计中一个重要参数,其值通常在(0,1)间,设计师将某手机的屏幕面积和整机面积同时增加相同的数量,升级为一款新手机的外观,则该手机“屏占比”和升级前比有什么变化?()A . “屏占比”不变B . “屏占比”变小C . “屏占比”变大D . 变化不确定9. (2分)函数y=﹣lnx(1≤x≤e2)的值域是()A . [0,2]B . [﹣2,0]C . [﹣, 0]D . [0,]10. (2分)设是定义在R上的奇函数,且当时,,若对任意的,不等式恒成立,则实数的取值范围是()A .B .C .D .11. (2分)函数图象的大致形状是()A .B .C .D .12. (2分) (2019高一上·长春月考) 已知函数的定义域是一切实数,则的取值范围是()A .B .C .D .二、填空题 (共4题;共4分)(m>0),且cosα= ,则m=________.13. (1分) (2016高一上·扬州期末) 已知角α的终边经过点P(2,m)14. (1分)已知f(x)=x2+2(a﹣1)x+2在(﹣∞,4]上单调递减,则a的取值范围是________15. (1分) (2015高一下·正定开学考) 化简 =________.16. (1分)(2018·石嘴山模拟) 下列4个命题①已知随机变量服从正态分布,若,则等于0.3;②设,则;③二项式的展开式中的常数项是45;④已知,则满足的概率为0.5.其中真命题的序号是________.三、解答题 (共6题;共65分)17. (10分) (2016高一上·会宁期中) 已知全集U=R,A={x|x2﹣6x+5<0},B={x| }.(1)求A,B;(2)求∁U(A∩B).18. (10分) (2016高一下·天津期中) 在ABC中,内角A,B,C的对边分别为a,b,c,已知(1)求的值;(2)若,b=2,求△ABC的面积S.19. (15分)(2020·华安模拟) 已知函数在区间上的最小值为3,(1)求常数的值;(2)求的单调增区间;(3)将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的倍,再把所得图象向右平移个单位,得到函数,求函数的解析式.20. (5分)已知函数f(x)=(log2x)2+4log2x+m,x∈[ ,4],m为常数.(Ⅰ)设函数f(x)存在大于1的零点,求实数m的取值范围;(Ⅱ)设函数f(x)有两个互异的零点α,β,求m的取值范围,并求α•β的值.21. (15分)已知f(x)是定义在[﹣1,1]上的奇函数,f(1)=1,且若∀a、b∈[﹣1,1],a+b≠0,恒有>0,(1)证明:函数f(x)在[﹣1,1]上是增函数;(2)解不等式;(3)若对∀x∈[﹣1,1]及∀a∈[﹣1,1],不等式f(x)≤m2﹣2am+1恒成立,求实数m的取值范围.22. (10分) (2019高一上·浙江期中) 已知函数f(x)=x2+ax+a+1.(1)若函数f(x)存在两个零点x1,x2,满足x1<1<x2<3,求实数a的取值范围;(2)若关于x的方程f(2x)=0有实数根,求实数a的取值范围.参考答案一、选择题 (共12题;共24分)1-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共65分) 17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、21-1、21-2、21-3、22-1、22-2、第11 页共11 页。

福州一中2016—2017学年第一学期高一年级期末质量检测数学试题(有答案)

福州一中2016—2017学年第一学期高一年级期末质量检测数学试题(有答案)

福州一中2016—2017学年第一学期高一年级期末质量检测 数 学 试 题说明:1.本卷共两卷,考试时间120分钟,满分150分.2.答案一律填写在答卷上,在试题上作答无效.3.考试范围:高中数学必修1、必修3. 第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求.)1.执行如图所示的程序框图.若输出S=15,则框图中①处可以填入( ) A. k <2 B. k <3 C. k <4 D. k <52. 某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A. 11B. 12C. 13D. 143.我市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45)岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是( )A. 31.6岁B. 32.6岁C. 33.6岁D. 36.6岁4.定义在R 上的偶函数)(x f 满足(2)(2)f x f x -=+,且在[]2,0x ∈-时,1()12xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()log (2)0(1)a f x x a -+=>在(]2,6x ∈-上恰有3个不同的实数解,则实数a 的取值范围为( ) A .()1,2B .()2,+∞ C.( D.)25.设函数,,则的值域是( )A .B .C .D . 6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A. 31B.21C. 32D.437.执行如图所示的程序框图,如果输入的]2,2[-∈x ,那么输出的y 属于( ) A. [5,9] B. [3,9] C. (1,9] D. (3,5]8.设奇函数)(x f 在[−1,1]上是增函数,且1)1(-=-f ,若对所有的∈x [−1,1]及任意的∈a [−1,1]]都满足)(x f ≤122+-at t ,则t 的取值范围是( ) A. [−2,2] B. {t t |≤−12或t ≥12或=0} C. [−12,12] D. {t |t ≤−2或t ≥2或t =0} 9.a >0时,函数x e ac x x f )2()(2-=的图象大致是( )A. B. C. D.2()2g x x =-()4,()()(),()g x x x g x f x g x x x g x ++<⎧=⎨-≥⎩()f x 9[,0](1,)4-+∞[0,)+∞9[,)4-+∞9[,0](2,)4-+∞10.已知函数⎪⎩⎪⎨⎧-≤-=2)2(2,2)(2>,x x x x x f ,函数)2()(x f b x g --=,其中R b ∈,若函数)()(x g x f y -=恰有4个零点,则b 的取值范围是( ) A. (47,+∞) B. (−∞,47) C. (0,47) D. (47,2) 11.已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当∈x [2,3]时,1)2()(2+--=x x f .若函数)1211()(--=x a x f y 在(0,+∞)上恰有三个零点,则实数a 的取值范围是( ) A. (31,3) B. (31,34) C. (3,12) D. (34,12) 12.定义在R 上的奇函数)(x f ,当x ≥0时,⎪⎩⎪⎨⎧+∞∈--∈+=),1[,31)1,0[),1(log )(21x x x x x f则关于x 的函数)<<10()()(a a x f x F -=的所有零点之和为( )A. a21- B. 12-aC. a--21 D.12--a第Ⅱ卷(非选择题 共90分) 二、填空题(本大题共4小题,每小题5分,共20分.)13.若下列算法的程序运行的结果为S=132,那么判断框中应填入的关于k 的判断条件是 ________.14.已知函数⎪⎩⎪⎨⎧≥+-=3,83103130,log )(23x x x x x x f <<,若存在实数d c b a ,,,,满足)()()()(d f c f b f a f ===,其中0>>>>a b c d ,则abcd 的取值范围是________.15.已知函数))((R x x f ∈满足)4()()(x f x f x f -=-=-,当)2,0(∈x 时,)ln()(2b x x x f +-=.若函数)(x f 在区间[−2,2][−2,2]上有5个零点,则实数b 的取值范围是________.16.)(x f )是定义在R 上的偶函数,对任意R x ∈,都有)()4(x f x f =+,且当]0,2[-∈x 时,6)31()(-=x x f .若在区间(−2,6]内关于x 的方程)1(0)2(log (>)a x x f a =+-恰有3个不同的实数根,则实数a 的取值范围是________.三、解答题(本大题共6小题,每小题分数见旁注,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分8分)已知集合{}|36A x x =-≤≤,{}|211B x a x a =-≤≤+; (Ⅰ)若2a =-,求B A ⋃;(Ⅱ)若A B B ⋂=,求实数a 的取值范围.18. (本小题满分12分)某校高一(1)班的一次数学考试成绩(满分100分)的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如下.解答如下问题.(Ⅰ)求分数在[80,90)的频率;(Ⅱ)若用分层抽样的方法从分数在[50,70)的试卷中任取9份分析无谓失分情况,求在[50,60)中应抽取多少份?(Ⅲ)从分数在[90,100]的学生中选2名同学做经验介绍,请列出所有基本事件,并求成绩为99分的同学被选中的概率.19. (本小题满分8分)如图所示,有一块半径为2的半圆形钢板,设计剪裁成矩形ABCD 的形状,它的边AB 在圆O 的直径上,边CD 的端点在圆周上,若设矩形的边AD 为x ; (Ⅰ)将矩形的面积S 表示为关于x 的函数,并求其定义域; (Ⅱ)求矩形面积的最大值及此时边AD 的长度.20.(本小题满分10分)设为实数,函数.(Ⅰ)当时,求在区间上的值域;(Ⅱ)设函数,为在区间上的最大值,求的最小值.a 2()2f x x ax =-1a =()f x [0,2]()()g x f x =()t a ()g x [0,2]()t a21.(本小题满分17分)若函数()f x 在[],x a b ∈时,函数值y 的取值区间恰为]1,1[ab ,就称区间[],a b 为()f x 的一个“倒域区间”.定义在[]2,2-上的奇函数()g x ,当[]0,2x ∈时,2()2g x x x =-+.(Ⅰ)求()g x 的解析式;(Ⅱ)求函数()g x 在[]1,2内的“倒域区间”;(Ⅲ)若函数()g x 在定义域内所有“倒域区间”上的图像作为函数)(x h y =的图像,是否存在实数,使集合()()()2{,}{,}x y y h x x y y x m ==+恰含有2个元素.22.(本小题满分15分) 已知定义在R 上的函数2()1x nf x x +=+为奇函数. (Ⅰ)求实数n 的值;(Ⅱ)设函数2()22,g x x x λλ=--若对任意[]10,1x ∈,总存在[]20,1x ∈,使得21()()g x f x >成立,求实数λ的取值范围;(Ⅲ)请指出方程12()log f x x =有几个实数解,并说明理由.m2016-2017学年福州一中第一学期高一年级期末质量检测Ⅱ 数学参考答案与评分标准13.k ≤10或k <11 14.(21,24) 15.41<b ≤1或b =4516.)2,4(3 14-16题函数以及解析依次如下: 14.15.16.17.(本小题满分8分)(Ⅰ)2a =- []5,1B ∴=-- []5,6A B ∴⋃=- ………………3分 (Ⅱ)A B B ⋂= ∴B A ⊆ ………………4分当B =∅时,211a a ->+ 2a ∴> ………………5分当B ≠∅时,21121316a a a a -≤+⎧⎪-≥-⎨⎪+≤⎩12a ∴-≤≤ ………………7分综上所述:1a ≥- ………………8分 18.(本小题满分12分)(Ⅰ)分数在[50,60)的频率为0.008100.08⨯=, ………………1分由茎叶图知:分数在[50,60)之间的频数为4,所以全班人数为4500.08=(人),则分数落在[80,90)的学生共有50(414204)8-+++=(人),----------------------3分所以分数落在[80,90)的频率为80.1650= 答:分数落在[80,90)的频率为0.16. ----------------------------------------4分 (Ⅱ)分数在[50,70) 的试卷共有18份,其中[)50,60 的有4份, ……5分现需抽取容量为9的样本,根据分层抽样原理,在[)50,60中应抽取的份数为49218⨯= 答:在[)50,60中,应抽取2份; ………………7分(Ⅲ)分数分布在[]90,100的学生一共有4人,现从中抽取2人,可能的分数的组合为{}{}{}{}{}{}95,96,95,97,95,99,96,97,96,99,97,99故基本事件总数为6n = ………………8分 设事件A 表示“成绩99分的同学被选中”,则事件A 包含的基本事件为{}{}{}95,99,96,99,97,99 ,3A n =………………10分根据古典概型概率公式有:31()62A n P A n ===. 答:成绩为99分的同学被选中的概率为12-………………12分19.(本小题满分8分)(Ⅰ)2OD = A D x =O A ∴………………2分()2,0,2S x x ∴=∈ ………………4分(Ⅱ)2S x ====6分∴当x =max 4S = ………………7分答:当边AD 4 ………………8分 20.(本小题满分10分)(Ⅰ)当时,. 二次函数图象的对称轴为,开口向上.所以在区间上,当时,的最小值为-1.………………1分 当或时,的最大值为. ………………2分 所以在区间上的值域为. ………………3分(Ⅱ)注意到的零点是和,且抛物线开口向上. 当时,在区间上,的最大值. ………………4分当时,需比较与的大小, ,所以,当时,;1a =2()2f x x x =-1x =[0,2]1x =()f x 0x =2x =()f x 0()f x [0,2][1,0]-2()2f x x ax =-02a 0a ≤[0,2]2()()2g x f x x ax==-()g x ()(2)44t a g a ==-01a <<(2)g ()g a 22()(2)(44)44g a g a a a a -=--=+-02a <<()(2)0g a g -<当时,.所以,当时,的最大值. ………5分当时,的最大值. ………………6分 当时,的最大值. ………………7分当时,的最大值. ………………8分所以,的最大值 ………………9分所以,当时,的最小值为………………10分 21.(Ⅰ)当[)2,0x ∈-时,()()()()2222g x g x x x x x ⎡⎤=--=---+-=+⎣⎦()[][)222,0,2;2,2,0.x x xg x x x x ⎧-+∈⎪=⎨+∈-⎪⎩ ……………3分 (Ⅱ)设1≤<≤2,∵在[]1,2x ∈上递减,∴ ………………5分整理得,解得 . ………………7分 ∴()g x 在[]1,2内的“倒域区间”为⎡⎢⎣⎦. ……………8分(Ⅲ)∵()g x 在[],x a b ∈时,函数值y 的取值区间恰为[],其中≠,、21a ≤<()(2)0g a g ->02a <<()g x ()(2)44t a g a ==-21a ≤<()g x 2()()t a g a a ==12a ≤≤()g x 2()()t a g a a ==2a >()g x ()(2)44t a g a ==-()g x 244,2,(),22,44, 2.a a t a a a a a ⎧-<⎪⎪=≤≤⎨⎪->⎪⎩2a =()t a 12-a b )(x g ⎪⎩⎪⎨⎧+-==+-==aa a g ab b b g b 2)(12)(122⎩⎨⎧=---=---0)1)(1(0)1)(1(22b b b a a a ⎪⎩⎪⎨⎧+==251 1b a a b 1,1a b a b≠0,∴,∴、同号.只考虑0<<≤2或-2≤<<0当0<<≤2时,根据()g x 的图像知,()g x 最大值为1,[)11,1,2a a ≤∈,∴1≤<≤2,由知()g x 在[]1,2内的“倒域区间”为⎡⎢⎣⎦ ………10分当-2≤<<0时,()g x 最小值为-1,(]11,2,1b b≥-∈--,∴21a b -≤<≤-,同理知()g x 在[]2,1--内的“倒域区间”为1⎡⎤-⎢⎥⎣⎦.………………11分 ()222,;2,,1.x x x h x x x x ⎧⎡-+∈⎪⎢⎪⎣⎦=⎨⎡⎤⎪+∈-⎢⎥⎪⎣⎦⎩……………12分依题意:抛物线与函数()h x 的图象有两个交点时,一个交点在第一象限,一个交点在第三象限.因此,应当使方程,在[1,]内恰有一个实数根,并且使方程,在[]内恰有一个实数根………………14分由方程在内恰有一根知;………………15分由方程在[]内恰有一根知,…16分综上:=-2. ……………17分 22.(本小题满分15分)(Ⅰ)函数2()1x nf x x +=+为定义在R 上的奇函数,(0)0f n ∴==--------------2分⎪⎩⎪⎨⎧<<a b b a 11a b a b a b a b a b a b m x x m x 222+-=+251+x x m x 222+=+1,251---m x x =-222]251,1[+02≤≤-m x x m x 222+=+1,251---251-≤≤--m m2(),1x f x x ∴=+22(),11x x f x x x --==-++满足()()0,f x f x +-= 故当且仅当0.n =时2()1xf x x =+为奇函数 ………………3分(Ⅱ)依题意,即满足对任意]1,0[1∈x ,“21()()g x f x >在]1,0[2∈x 上有解” 即满足2max 1()()g x f x >在]1,0[1∈x 上恒成立即满足2max 1max ()()g x f x > ………………5分 对于函数2()1xf x x =+, 不妨设1201x x ≤<≤1212211222221212(1)()()()11(1)(1)x x x x x x f x f x x x x x ---=-=++++ ∵1201x x ≤<,210x x ->, ∴12()()0f x f x -<,∴2()1xf x x =+在[0,1]x ∈上单调递增,1max 1()(1)2f x f ==…7分 对于二次函数2()22g x x x λλ=--,对称轴为x λ= ⑴当12λ≥时,2max ()(0)2g x g λ==- 令122λ->得14λ<-,与12λ≥不合,舍去; ⑵当12λ<时,2max ()(1)14g x g λ==-令1142λ->得18λ<.综上所述,符合要求的λ范围是18λ< --------------------------------9分(Ⅲ)方程12|()|log ||f x x = 只有1个实数解.∵函数11222||()|()|log ||log ||1x h x f x x x x =-=-+是定义在(,0)(0,)-∞+∞上,且 ()()h x h x -=,即函数()h x 是偶函数, ………………10分先讨论()h x 在(0,)+∞上的零点个数. 此时122()log 1xh x x x ==-+ 当1x ≥时,201xx >+,12log 0x ≤,122()log 01x h x x x =->+恒成立,不存在零点;11分当01x <<时,分析函数122()log 1xh x x x ==-+的单调性, 由(Ⅱ)知,2()1xf x x =+在(0,1)上单调递增,而对数函数12log y x =在(0,1)上单调递减, ∴函数122()log 1xh x x x =-+在(0,1)上单调递增,且连续不断, 123()10255h =-=-<,1(1)02h =>, ………………12分 ∴函数()h x 在(0,1)上有唯一零点,综合⑴⑵知函数()h x 在(0,)+∞上有唯一零点, -------------------------------13分 所以函数()h x 在(,0)(0,)-∞+∞上只有两个零点,∴方程12|()|log ||f x x = 有2个实数解. -------------------------------15分。

2016—2017学年第一学期高一级数学期末考试答案

2016—2017学年第一学期高一级数学期末考试答案

2016-2017学年度第一学期高一级数学科期末试题答案二、填空题:(本大题共4小题,每小题5分,共20分。

)13. 2 14. 15.或 16.三、解答题:(本大题共6小题,共70分。

)17.(本题满分10分)【解答】解:(1)∵点O(0,0),点C(1,3),∴OC所在直线的斜率为.(2)在平行四边形OABC中,AB∥OC,∵CD⊥AB,∴CD⊥OC.∴CD所在直线的斜率为.∴CD所在直线方程为,即x+3y﹣10=0.18.(本题满分12分)【解答】证明:(Ⅰ)∵AE⊥平面CDE,CD⊂平面CDE,∴AE⊥CD,又在正方形ABCD中,CD⊥AD,AE∩AD=A,∴CD⊥平面ADE,又在正方形ABCD中,AB∥CD,∴AB⊥平面ADE.…(6分)解:(Ⅱ)连接BD,设B到平面CDE的距离为h,∵AB∥CD,CD⊂平面CDE,∴AB∥平面CDE,又AE⊥平面CDE,∴h=AE=1,又=,∴=,又==,∴凸多面体ABCDE的体积V=VB﹣CDE +VB﹣ADE=.…(12分)19.(本题满分12分)解:1)、……………….3分2)、,……………….5分……………….7分……………….8分(3)在上单调递减,…………….9分…………….10分…………….11分(1)当时,不等式的解集是 (2)当时,不等式的解集是(3)当时,不等式的解集是…………….14分 20. 解:(1)由题意,又由图知f (1.8)=0.45 ,g(4)=2.5;解得 ………….2分 ∴ ……….3分 (不写定义域扣1分)(2)设对股票等风险型产品B 投资x 万元,则对债券等稳键型产品A 投资(10-x )万元, 记家庭进行理财投资获取的收益为y 万元, ……….4分 则 ……….6分 设,则, ……….8分∴ ……….10分当也即时,y 取最大值 ……….11分答:对股票等风险型产品B 投资万元,对债券等稳键型产品A 投资万元时, 可获最大收益万元. ……….12分 21. 解:(1)连接CN .因为ABC A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC , 所以AC ⊥CC 1. 因为AC ⊥BC , 所以AC ⊥平面BCC 1B 1.因为MC =1,CN =CC 21+C 1N 2=5, 所以MN = 6.(2)证明:取AB 中点D ,连接DM ,DB 1.在△ABC 中,因为M 为AC 中点,所以DM ∥BC ,DM =12BC .在矩形B 1BCC 1中,因为N 为B 1C 1中点,所以B 1N ∥BC ,B 1N =12BC .所以DM ∥B 1N ,DM =B 1N .所以四边形MDB1N为平行四边形,所以MN∥DB1.因为MN⊄平面ABB1A1,DB1⊂平面ABB1A1,所以MN∥平面ABB1A1.(3)线段CC1上存在点Q,且Q为CC1中点时,有A1B⊥平面MNQ.证明如下:连接BC1.在正方形BB1C1C中易证QN⊥BC1.又A1C1⊥平面BB1C1C,所以A1C1⊥QN,从而NQ⊥平面A1BC1.所以A1B⊥QN.同理可得A1B⊥MQ,所以A1B⊥平面MNQ.故线段CC1上存在点Q,使得A1B⊥平面MNQ.22.解:(I)抛物线的对称轴为,①当时,即时,当时,,,∴,∴.②当时,即时,在上为增函数,与矛盾,无解,综合得:.(II)对任意恒成立,即对任意恒成立,即对任意恒成立,令,则,∵,∴,(ⅰ),即时,在单调递减,此时,即,得,此时,∴∴.(ⅱ),即时,在单调递减,在单调递增,此时,,只要,当时,,当时,,.综上得:①时,;②时,;③时,.。

数学---福建师大附中2016-2017学年高一(上)期末试卷(解析版)

数学---福建师大附中2016-2017学年高一(上)期末试卷(解析版)

福建师大附中2016-2017学年高一(上)期末数学试卷一、选择题:每小题5分,共65分.在给出的A,B,C,D四个选项中,只有一项符合题目要求.1.直线的倾斜角为()A.30o B.150o C.60o D.120o2.若方程x2+y2﹣x+y+m=0表示圆,则实数m的取值范围是()A.m<B.m>C.m<0 D.m≤3.下列说法正确的是()A.截距相等的直线都可以用方程表示B.方程x+my﹣2=0(m∈R)不能表示平行y轴的直线C.经过点P(1,1),倾斜角为θ的直线方程为y﹣1=tanθ(x﹣1)D.经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线方程为4.已知两直线l1:x+my+4=0,l2:(m﹣1)x+3my+3m=0.若l1∥l2,则m的值为()A.0 B.0或4 C.﹣1或D.5.已知m,n是两条直线,α,β是两个平面,则下列命题中正确的是()A.m⊥α,α⊥β,m∥n⇒n∥βB.m∥α,α∩β=n⇒n∥mC.α∥β,m∥α,m⊥n,⇒n⊥βD.m⊥α,n⊥β,m∥n⇒α∥β6.如图:在正方体ABCD﹣A1B1C1D1中,设直线A1B与平面A1DCB1所成角为θ1,二面角A1﹣DC﹣A的大小为θ2,则θ1,θ2为()A.45o,30o B.30o,45o C.30o,60o D.60o,45o7.圆(x﹣1)2+(y﹣2)2=1关于直线x﹣y﹣2=0对称的圆的方程为()A.(x﹣4)2+(y+1)2=1 B.(x+4)2+(y+1)2=1C.(x+2)2+(y+4)2=1 D.(x﹣2)2+(y+1)2=18.如图,一个直三棱柱形容器中盛有水,且侧棱AA1=8.若侧面AA1B1B水平放置时,液面恰好过AC,BC,A1C1,B1C1的中点,当底面ABC水平放置时,液面高为()A.7 B.6 C.4 D.29.若直线y=x+m与曲线有两个不同的交点,则实数m的取值范围为()A.B.C.D.10.在梯形ABCD中,∠ABC=90°,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在直线旋转一周而形成的曲面所围成的几何体的体积为()A. B. C. D.2π11.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36 B.54+18 C.90 D.8112.如图是一几何体的平面展开图,其中四边形ABCD为正方形,△PDC,△PBC,△P AB,△PDA为全等的等边三角形,E、F分别为P A、PD的中点,在此几何体中,下列结论中错误的为()A.直线BE与直线CF共面B.直线BE与直线AF是异面直线C.平面BCE⊥平面P ADD.面P AD与面PBC的交线与BC平行13.如图,在等腰梯形ABCD中,CD=2AB=2EF=2a,E,F分别是底边AB,CD的中点,把四边形BEFC沿直线EF折起,使得平面BEFC⊥平面ADFE.若动点P∈平面ADFE,设PB,PC与平面ADFE所成的角分别为θ1,θ2(θ1,θ2均不为0).若θ1=θ2,则动点P的轨迹围成的图形的面积为()A.B.C.D.二、填空题:每小题5分,共25分.14.已知球O有个内接正方体,且球O的表面积为36π,则正方体的边长为.15.已知圆锥的侧面展开图是一个半径为2的半圆,则这个圆锥的高是.16.无论λ取何值,直线(λ+2)x﹣(λ﹣1)y+6λ+3=0必过定点.17.已知圆心为C(0,﹣2),且被直线2x﹣y+3=0截得的弦长为,则圆C的方程为.18.如图所示,正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且,则下列结论中正确的是.①EF∥平面ABCD;②平面ACF⊥平面BEF;③三棱锥E﹣ABF的体积为定值;④存在某个位置使得异面直线AE与BF成角30o.三、解答题:要求写出过程,共60分.19.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x﹣3y ﹣6=0,点T(﹣1,1)在AD边所在直线上.求:(1)AD边所在直线的方程;(2)DC边所在的直线方程.20.如图,△ABC为等边三角形,EA⊥平面ABC,EA∥DC,EA=2DC,F为EB的中点.(Ⅰ)求证:DF∥平面ABC;(Ⅱ)求证:平面BDE⊥平面AEB.21.已知线段PQ的端点Q的坐标为(﹣2,3),端点P在圆C:(x﹣8)2+(y﹣1)2=4上运动.(Ⅰ)求线段PQ中点M的轨迹E的方程;(Ⅱ)若一光线从点Q射出,经x轴反射后,与轨迹E相切,求反射光线所在的直线方程.22.如图,在直三棱柱ABC﹣A1B1C1中,底面ABC为等边三角形,CC1=2AC=2.(Ⅰ)求三棱锥C1﹣CB1A的体积;(Ⅱ)在线段BB1上寻找一点F,使得CF⊥AC1,请说明作法和理由.23.已知圆M(M为圆心)的方程为x2+(y﹣2)2=1,直线l的方程为x﹣2y=0,点P在直线l上,过P点作圆M的切线P A、PB,切点为A、B.(1)若∠APB=60°,试求点P的坐标;(2)求证:经过A、P、M三点的圆必过定点,并求出所有定点的坐标.参考答案一、选择题:每小题5分,共65分.在给出的A,B,C,D四个选项中,只有一项符合题目要求.1.D【解析】设直线的倾斜角为θ,θ∈[0°,180°).则tanθ=﹣,∴θ=120°.故选:D.2.A【解析】方程x2+y2﹣x+y+m=0即=﹣m,此方程表示圆时,应有﹣m>0,解得m<,故选A.3.D【解析】对于A,截距相等为0的直线都不可以用方程表示,故错;对于B,当m=0时,方程x+my﹣2=0(m∈R)表示平行y轴的直线x=2,故错;对于C,经过点P(1,1),倾斜角为θ=900的直线方程不能写成y﹣1=tanθ(x﹣1),故错;对于D,∵x1≠x2,∴直线的斜率存在,可写成,故正确;故选:D.4.A【解析】①当m=0时,两条直线分别化为:x+4=0,﹣x=0,此时两条直线相互平行,因此m=0.②当m≠0时,两条直线分别化为:y=﹣x﹣,y=﹣x﹣1,由于两条直线相互平行可得:﹣=﹣,且﹣≠﹣1,此时无解,综上可得:m=0.5.D【解析】对于A,m⊥α,α⊥β,m∥n⇒n∥β或n⊂β,不正确;对于B,m∥α,m⊂β,α∩β=n⇒n∥m,不正确;对于C,α∥β,m∥α,m⊥n⇒n、β位置关系不确定,不正确;对于D,m⊥α,m∥n,∴n⊥α,∵n⊥β,∴α∥β,正确,故选D.6.B【解析】连结BC1,交B1C于O,连结A1O,∵在正方体ABCD﹣A1B1C1D1中,BC1⊥B1C,BC1⊥DC,∴BO⊥平面A1DCB1,∴∠BA1O是直线A1B与平面A1DCB1所成角θ1,∵BO=A1B,∴θ1=30°;∵BC⊥DC,B1C⊥DC,∴∠BCB1是二面角A1﹣DC﹣A的大小θ2,∵BB1=BC,且BB1⊥BC,∴θ2=45°.故选:B.7.A【解析】由于圆心(1,2)关于直线x﹣y﹣2=0对称的点的坐标为(4,﹣1),半径为1,故圆(x﹣1)2+(y﹣2)2=1关于直线x﹣y﹣2=0对称的圆的方程为(x﹣4)2+(y+1)2=1,故选:A.8.B【解析】底面ABC的面积设为S,则侧面AA1B1B水平放置时,液面恰好过AC,BC,A1C1,B1C1的中点,水的体积为:,当底面ABC水平放置时,液面高为h,水的体积为:Sh=,可得h=6.9.D【解析】表示的曲线为圆心在原点,半径是1的圆在x轴以及x轴上方的部分.作出曲线的图象,在同一坐标系中,再作出斜率是1的直线,由左向右移动,可发现,直线先与圆相切,再与圆有两个交点,直线与曲线相切时的m值为,直线与曲线有两个交点时的m值为1,则1.故选D.10.C【解析】由题意可知旋转后的几何体如图:将梯形ABCD绕AD所在直线旋转一周而形成的曲面所围成的几何体的体积为圆柱的体积减去圆锥的体积:=.故选:C.11.B【解析】由已知中的三视图可得:该几何体是一个以俯视图为底面的斜四棱柱,其底面面积为:3×6=18,前后侧面的面积为:3×6×2=36,左右侧面的面积为:3××2=18,故棱柱的表面积为:18+36+9=54+18.故选:B.12.C【解析】画出几何体的图形,如图,由题意可知,A,直线BE与直线CF共面,正确,因为E,F是P A与PD的中点,可知EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线;B,直线BE与直线AF异面;满足异面直线的定义,正确.C,因为△P AB是等腰三角形,BE与P A的关系不能确定,所以平面BCE⊥平面P AD,不正确.D,∵AD∥BC,∴AD∥平面PBC,∴面P AD与面PBC的交线与BC平行,正确.故选C.13.D【解析】由题意,PE=BE cotθ1,PF=CF cotθ2,∵BE=CF,θ1=θ2,∴PE=PF.以EF所在直线为x轴,EF的垂直平分线为y轴建立坐标系,设E(﹣,0),F(,0),P(x,y),则(x+)2+y2=[(x﹣)2+y2],∴3x2+3y2+5ax+a2=0,即(x+a)2+y2=a2,轨迹为圆,面积为.故选:D.二、填空题:每小题5分,共25分.14.【解析】设正方体的棱长为x,则=36π,解得x=.故答案为.15.【解析】∵圆锥的侧面展开图是一个半径为2的半圆,∴圆锥的轴截面为边长为2的正三角形,则圆锥的高h=2×sin60°=.16.(﹣3,3)【解析】直线(λ+2)x﹣(λ﹣1)y+6λ+3=0,即(2x+y+3)+λ(x﹣y+6)=0,由,求得x=﹣3,y=3,可得直线经过定点(﹣3,3).故答案为(﹣3,3).17.x2+(y+2)2=25【解析】由题意可得弦心距d==,故半径r==5,故圆C的方程为x2+(y+2)2=25,故答案为:x2+(y+2)2=25.18.①②③④【解析】如图:对于①,∵面ABCD∥面A1B1C1D1,EF⊂面A1B1C1D1,∴EF∥平面ABCD,故正确;对于②,动点E、F运动过程中,AC始终垂直面BEF,∴平面ACF⊥平面BEF,故正确;对于③,三棱锥E﹣ABF的底△BEF的面积为定值,A到面BEF的距离为定值,故其体积为定值,故正确;对于④,令上底面中心为O,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,可求解∠OBC1=300,故正确.故答案为:①②③④三、解答题:要求写出过程,共60分.19.解(1)因为AB边所在直线的方程为x﹣3y﹣6=0,且AD与AB垂直,所以直线AD 的斜率为﹣3又因为点T(﹣1,1)在直线AD上,所以AD边所在直线的方程为y﹣1=﹣3(x+1).3x+y+2=0.(2)∵M为矩形ABCD两对角线的交点,则点M到直线AB和直线DC的距离相等∵DC∥AB∴可令DC的直线方程为:x﹣3y+m=0(m≠﹣6)M到直线AB的距离d==∴M到直线BC的距离即:=∴m=2或﹣6,又∵m≠﹣6∴m=2∴DC边所在的直线方程为:x﹣3y+2=020.(1)证明:取AB的中点G,连结FG,GC,∵在△EAB中,FG∥AE,,∵DC∥AE,,∴DC∥FG,FG=DC,∴四边形DCGF为平行四边形,则FD∥GC,又∵FD⊄平面ABC,GC⊂平面ABC,∴FD∥平面ABC;(2)证明:∵EA⊥面ABC,CG⊂平面ABC,∴EA⊥GC,∵△ABC为等边三角形,∴CG⊥AB,又EA∩AB=A,∴CG⊥平面EAB,∵CG∥FD,∴FD⊥面EAB,又∵FD⊂面BDE,∴面BDE⊥面EAB.21.解(Ⅰ)设M(x,y),P(x0,y0),则代入轨迹E的方程为(x﹣3)2+(y﹣2)2=1;(Ⅱ)设Q(﹣2,3)关于x轴对称点Q'(﹣2,﹣3)设过Q'(﹣2,﹣3)的直线ℓ:y+3=k(x+2),即kx﹣y+2k﹣3=0 ∵,(5k﹣5)2=k2+125(k2﹣2k+1)=k2+124k2﹣50k+24=0,(3k﹣4)(4k﹣3)=0,∴或,∴反射光线所在,即4x﹣3y﹣1=0,即3x﹣4y﹣6=0.22.解(Ⅰ)取BC中点E连结AE,在等边三角形ABC中,AE⊥BC,又∵在直三棱柱ABC﹣A1B1C1中,侧面BB1CC1⊥面ABC,面BB1CC1∩面ABC=BC,∴AE⊥面BB1CC1,∴AE为三棱锥B1﹣ACC1的高,又∵AB=AC=BC=1,∴,又∵底面CC1B1为直角三角形,∴===1,∴三棱锥C1﹣CB1A的体积=.(Ⅱ)作法:在BB1上取F,使得,连结CF,CF即为所求直线.证明:如图,在矩形BB1C1C中,连结EC1,∵,,∴,∴Rt△C1CE∽Rt△CBF,∴∠CC1E=∠BCF,又∵∠BCF+∠FCC1=90°,∴∠CC1E+∠FCC1=90°,∴CF⊥EC1,又∵AE⊥面BB1C1C,而CF⊂面BB1C1C,∴AE⊥CF,又∵AE∩EC1=E,∴CF⊥面AEC1,又∵AC1⊂面AEC1,∴CF⊥AC1.23.解(1)设P(2m,m),由题可知,即(2m)2+(m﹣2)2=4,…解得:故所求点P的坐标为P(0,0)或.…(2)设P(2m,m),MP的中点,因为P A是圆M的切线所以经过A,P,M三点的圆是以Q为圆心,以MQ为半径的圆,故其方程为:…化简得:x2+y2﹣2y﹣m(2x+y﹣2)=0,此式是关于m的恒等式,故解得或即(0,2)和().…。

XXX2016-2017高一上学期期末数学试卷( word版含答案)

XXX2016-2017高一上学期期末数学试卷( word版含答案)

XXX2016-2017高一上学期期末数学试卷( word版含答案)2016-2017学年XXX高一(上)期末数学试卷一、填空题:本大题共14个小题,每小题5分,共70分。

请将答案填入答题纸填空题的相应答题纸上。

1.函数y=____。

2.函数____。

3.已知函数____的定义域为____。

函数____的最小正周期为____,f(1)+f(-1)=____。

4.已知幂函数y=f(x)的图象过点(0,8),则f(2)=____。

5.把函数y=sin(x)的图象向左平移π/2个单位长度,所得到的图象的函数表达式为____。

6.9=____。

7.函数y=sin(x)+cos(x)的单调递增区间为____。

8.若函数y=sin(πx+φ)过点(1,0),则φ=____。

9.若tan(x)和cot(y)的夹角为60°,且sin(x)+cos(y)=1,则sin(y-x)=____。

10.在△ABC中,D为边BC上一点,且AD⊥BC,若AD=1,BD=2,CD=3,则∠BAC的度数为____。

11.若sin(θ)=2/3,则si n(2θ)=____,cos(2θ)=____。

12.若锐角α,β满足cos(2α)+cos(2β)=1,则sin(α+β)=____。

13.若方程| |x|-a^2| -a=0有四个不同的实根,则实数a的取值范围为____。

14.已知函数f(x)=x^3+x+1,若对任意的x,都有f(x^2+a)+f(ax)>2,则实数a的取值范围是____。

二、解答题(本大题共6小题,共90分。

解答应写出文字说明、证明过程或演算步骤。

)15.已知集合A={x|2x≥16},B={x|log2x≥a}。

1) 当a=1时,求A∩B;2) 若A是B的子集,求实数a的取值范围。

16.已知向量a=2i+j,b=i+k,c=xi-yj+2k。

1) 若a·c=0,b·c=0,求x的值;2) 当x∈[0,2]时,求|c|的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年福建省龙岩市高一(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分)1.(5.00分)若集合A={x|y=lg(2x﹣1)},B={﹣2,﹣1,0,1,3},则A∩B 等于()A.{3}B.{1,3}C.{0,1,3}D.{﹣1,0,1,3}2.(5.00分)已知直线l:ax+y﹣4=0过点(﹣1,2),则直线l的斜率为()A.﹣3 B.3 C.﹣2 D.23.(5.00分)以(2,1)为圆心且与直线y+1=0相切的圆的方程为()A.(x﹣2)2+(y﹣1)2=4 B.(x﹣2)2+(y﹣1)2=2 C.(x+2)2+(y+1)2=4 D.(x+2)2+(y+1)2=24.(5.00分)某四棱锥的三视图如图所示,则俯视图的面积为()A.2 B.C.3 D.45.(5.00分)已知f(x)是奇函数,当x>0时,f(x)=2x﹣a,若f(﹣1)=,则a等于()A.1 B.﹣1 C.3 D.﹣36.(5.00分)已知直线x+ylog4a=0与直线2x﹣y﹣3=0平行,则a的值为()A.B.2 C.4 D.167.(5.00分)已知幂函数f(x)=x a的图象过点(2,),则函数g(x)=(x﹣1)f(x)在区间[,2]上的最小值是()A.0 B.﹣1 C.﹣2 D.﹣48.(5.00分)已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是()A.若α⊥β,m∥α,则m⊥βB.若m⊥α,n⊥β,且m⊥n,则α⊥βC.若m⊂α,n⊂β,且α∥β,则m∥n D.若m∥α,n∥β,且m∥n,则α∥β9.(5.00分)已知函数f(x)=a x﹣1(a>0,且a≠1)满足f(1)>1,若函数g(x)=f(x+1)﹣4的图象不过第二象限,则a的取值范围是()A.(2,+∞)B.(2,5]C.(1,2) D.(1,5]10.(5.00分)已知函数f(x)=﹣x2﹣2x,设a=ln2,b=log2,c=3,则必有()A.f(b)>f(a)>f(c) B.f(c)>f(a)>f(b)C.f(a)>f(b)>f (c)D.f(b)>f(c)>f(a)11.(5.00分)在长方体ABCD﹣A1B1C1D1中,底面ABCD的边长为a的正方形,E 是CC1的中点,若该长方体的外接球的表面积为10πa2,则异面直线AE与C1D1所成的角为()A.30°B.45°C.60°D.90°12.(5.00分)设函数f(x)=x2﹣log2(2x+2).若0<b<1,则f(b)的值满足()A.f(b)>f(﹣)B.f(b)>0 C.f(b)>f(2)D.f(b)<f(2)二、填空题(本大题共4小题,每小题5分,共20分)13.(5.00分)函数f(x)=,零点的个数是.14.(5.00分)已知圆C:x2+y2+6y﹣a=0的圆心到直线x﹣y﹣1=0的距离等于圆C半径的,则a=.15.(5.00分)某品牌汽车的月产能y(万辆)与月份x(3<x≤12且x∈N)满足关系式.现已知该品牌汽车今年4月、5月的产能分别为1万辆和1.5万辆,则该品牌汽车7月的产能为万辆.16.(5.00分)在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD ∥BC,AB=2,BC=1,PA=3,AD=4,PA⊥底面ABCD,E是PD上一点,且CE∥平面PAB,则三棱锥C﹣ABE的体积为.三、解答题(本大题共6个小题,共70分)17.(10.00分)已知全集U=R,集合A={x|﹣1<x<5},B={x|2<x<8}.(1)求A∩(∁U B)和(∁U A)∩(∁U B);(2)若集合C={x|a+1≤x≤2a﹣2},且(∁U A)∩C={x|6≤x≤b},求a+b的值.18.(12.00分)如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠BAC=60°,E,F分别是AP,AC的中点,点D在棱AB上,且AD=AC.求证:(1)EF∥平面PBC;(2)DF⊥平面PAC.19.(12.00分)已知a>0,a≠1且log a3>log a2,若函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为1.(1)求a的值;(2)解不等式;(3)求函数g(x)=|log a x﹣1|的单调区间.20.(12.00分)已知直线l:ax﹣y+1=0与x轴,y轴分别交于点A,B.(1)若a>0,点M(1,﹣1),点N(1,4),且以MN为直径的圆过点A,求以AN为直径的圆的方程;(2)以线段AB为边在第一象限作等边三角形ABC,若a=﹣,且点P(m,)(m>0)满足△ABC与△ABP的面积相等,求m的值.21.(12.00分)如图所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,FD⊥底面ABCD,M是AB的中点.(1)求证:平面CFM⊥平面BDF;(2)点N在CE上,EC=2,FD=3,当CN为何值时,MN∥平面BEF.22.(12.00分)已知函数(a>0,a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)+f(2x)>0在其定义域上恒成立.2016-2017学年福建省龙岩市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5.00分)若集合A={x|y=lg(2x﹣1)},B={﹣2,﹣1,0,1,3},则A∩B 等于()A.{3}B.{1,3}C.{0,1,3}D.{﹣1,0,1,3}【解答】解:由A中y=lg(2x﹣1),得到2x﹣1>0,解得:x>,即A={x|x>},∵B={﹣2,﹣1,0,1,3},∴A∩B={1,3},故选:B.2.(5.00分)已知直线l:ax+y﹣4=0过点(﹣1,2),则直线l的斜率为()A.﹣3 B.3 C.﹣2 D.2【解答】解:根据题意,直线l:ax+y﹣4=0过点(﹣1,2),则有a×(﹣1)+2﹣4=0,解可得a=﹣2,即直线l的方程为:﹣2x+y﹣4=0,变形可得y=2x+4,则直线l的斜率为2;故选:D.3.(5.00分)以(2,1)为圆心且与直线y+1=0相切的圆的方程为()A.(x﹣2)2+(y﹣1)2=4 B.(x﹣2)2+(y﹣1)2=2 C.(x+2)2+(y+1)2=4 D.(x+2)2+(y+1)2=2【解答】解:∵圆心到切线的距离d=r,即r=d=1+1=2,圆心C(2,1),∴圆C方程为(x﹣2)2+(y﹣1)2=4.故选:A.4.(5.00分)某四棱锥的三视图如图所示,则俯视图的面积为()A.2 B.C.3 D.4【解答】解:由题意,俯视图的上、下底、高分别为1,2,2,其面积为=3,故选:C.5.(5.00分)已知f(x)是奇函数,当x>0时,f(x)=2x﹣a,若f(﹣1)=,则a等于()A.1 B.﹣1 C.3 D.﹣3【解答】解:∵f(x)是奇函数,f(﹣1)=,∴f(1)=﹣f(﹣1)=﹣,∵当x>0时,f(x)=2x﹣a,∴,解得a=3,故选:C.6.(5.00分)已知直线x+ylog4a=0与直线2x﹣y﹣3=0平行,则a的值为()A.B.2 C.4 D.16【解答】解:∵x+ylog4a=0与直线2x﹣y﹣3=0平行,∴2log4a=﹣1,解得a=故选:A.7.(5.00分)已知幂函数f(x)=x a的图象过点(2,),则函数g(x)=(x﹣1)f(x)在区间[,2]上的最小值是()A.0 B.﹣1 C.﹣2 D.﹣4【解答】解:由幂函数f(x)=x a的图象过点(2,),可得2α=,解得α=﹣1,即有f(x)=,函数g(x)=(x﹣1)f(x)==1﹣在区间[,2]上单调递增,则g(x)的最小值为g()=1﹣2=﹣1.故选:B.8.(5.00分)已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是()A.若α⊥β,m∥α,则m⊥βB.若m⊥α,n⊥β,且m⊥n,则α⊥βC.若m⊂α,n⊂β,且α∥β,则m∥n D.若m∥α,n∥β,且m∥n,则α∥β【解答】解:对于A,若α⊥β,m∥α,则m与β可能平行;故A错误;对于B,若m⊥α,n⊥β,且m⊥n,根据面面垂直的定义α⊥β;故B正确;对于C,若m⊂α,n⊂β,且α∥β,m,n共面,则m∥n;故C不正确;对于D,若m∥α,n∥β,且m∥n,则α与β可能相交;故D错误.故选:B.9.(5.00分)已知函数f(x)=a x﹣1(a>0,且a≠1)满足f(1)>1,若函数g(x)=f(x+1)﹣4的图象不过第二象限,则a的取值范围是()A.(2,+∞)B.(2,5]C.(1,2) D.(1,5]【解答】解:∵f(1)>1,∴a﹣1>1,即a>2∵函数g(x)=f(x+1)﹣4的图象不过第二象限,∴g(0)=a1﹣1﹣4≤0,∴a≤5,∴a的取值范围是(2,5].故选:B.10.(5.00分)已知函数f(x)=﹣x2﹣2x,设a=ln2,b=log2,c=3,则必有()A.f(b)>f(a)>f(c) B.f(c)>f(a)>f(b)C.f(a)>f(b)>f (c)D.f(b)>f(c)>f(a)【解答】解:函数f(x)=﹣x2﹣2x的图象是开口朝下,且以直线x=﹣1为对称轴的抛物线,故函数f(x)在[﹣1,+∞)上为减函数,a=ln2∈(0,1),b=log2∈(﹣1,0),c=3∈(1,2),则f(b)>f(a)>f(c),故选:A.11.(5.00分)在长方体ABCD﹣A1B1C1D1中,底面ABCD的边长为a的正方形,E 是CC1的中点,若该长方体的外接球的表面积为10πa2,则异面直线AE与C1D1所成的角为()A.30°B.45°C.60°D.90°【解答】解:∵在长方体ABCD﹣A1B1C1D1中,底面ABCD的边长为a的正方形,E是CC1的中点,该长方体的外接球的表面积为10πa2,∴该长方体的外接球的半径为r==,设该长方体的高为b,则=,解得b=2,以D为原点,DA为x员,DC为y轴,DD1为z轴,建立空间直角坐标系,则A(a,0,0),E(0,a,),C1(0,a,2),D1(0,0,2),=(﹣a,a,),=(0,﹣a,0),设异面直线AE与C1D1所成的角为θ,则cosθ===.∴θ=60°.∴异面直线AE与C1D1所成的角为60°.故选:C.12.(5.00分)设函数f(x)=x2﹣log2(2x+2).若0<b<1,则f(b)的值满足()A.f(b)>f(﹣)B.f(b)>0 C.f(b)>f(2)D.f(b)<f(2)【解答】解:作出y=x2与y=log2(2x+2)的图象如图:由图象可知当0<x<1时,x2<log2(2x+2).∵0<b<1,∴f(b)=b2﹣log2(2b+2)<0,排除B;∵f(﹣)=+1=>0,排除A;f(2)=4﹣log26>0,排除C.故选:D.二、填空题(本大题共4小题,每小题5分,共20分)13.(5.00分)函数f(x)=,零点的个数是1.【解答】解:当x≥1时,1+log5x≥1,此时函数无零点;当x<1时,令2x﹣1=0,解得x=,此时函数有一个零点;综上可得函数f(x)=,零点的个数是1个,故答案为:114.(5.00分)已知圆C:x2+y2+6y﹣a=0的圆心到直线x﹣y﹣1=0的距离等于圆C半径的,则a=﹣1.【解答】解:把圆的方程化为标准方程得:x2+(y+3)2=a+9,∴圆心坐标为(0,﹣3),则圆心到直线x﹣y﹣1=0的距离d==,∴a=﹣1故答案为﹣1.15.(5.00分)某品牌汽车的月产能y(万辆)与月份x(3<x≤12且x∈N)满足关系式.现已知该品牌汽车今年4月、5月的产能分别为1万辆和1.5万辆,则该品牌汽车7月的产能为万辆.【解答】解:∵某品牌汽车的月产能y(万辆)与月份x(3<x≤12且x∈N)满足关系式.该品牌汽车今年4月、5月的产能分别为1万辆和1.5万辆,∴,解得a=﹣2,b=2,∴,∴该品牌汽车7月的产能为y=﹣2×=万辆.故答案为:.16.(5.00分)在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD ∥BC,AB=2,BC=1,PA=3,AD=4,PA⊥底面ABCD,E是PD上一点,且CE∥平面PAB,则三棱锥C﹣ABE的体积为.【解答】解:过点C作CF⊥AD于F,过F作EF⊥AD交PD于E,则EF⊥平面ABCD,∵PA⊥底面ABCD,∴EF∥PA,∵BA⊥AD,CF⊥AD,∴AB∥FC,∵PA∩AB=A,EF∩FC=F,PA,AB⊂平面PAB,EF,FC⊂平面EFC,∴平面PAB∥平面EFC,∵CE⊂平面EFC,∴CE∥平面PAB,∴EF=PA=,=V E﹣ABC==.∴三棱锥C﹣ABE的体积V C﹣ABE故答案为:.三、解答题(本大题共6个小题,共70分)17.(10.00分)已知全集U=R,集合A={x|﹣1<x<5},B={x|2<x<8}.(1)求A∩(∁U B)和(∁U A)∩(∁U B);(2)若集合C={x|a+1≤x≤2a﹣2},且(∁U A)∩C={x|6≤x≤b},求a+b的值.【解答】解:(1)全集U=R,集合A={x|﹣1<x<5},B={x|2<x<8},∴∁U B={x|x≤2或x≥8},∴A∩(∁U B)={x|﹣1<x≤2};又A∪B={x|﹣1<x<8},∴(∁U A)∩(∁U B)=∁U(A∪B)={x|x≤﹣1或x≥8};(2)∵∁U A={x|x≤﹣1或x≥5},集合C={x|a+1≤x≤2a﹣2},且(∁U A)∩C={x|6≤x≤b},∴a+1=6,且b=2a﹣2;解得a=5,b=8;∴a+b=13.18.(12.00分)如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠BAC=60°,E,F分别是AP,AC的中点,点D在棱AB上,且AD=AC.求证:(1)EF∥平面PBC;(2)DF⊥平面PAC.【解答】(本题满分为12分)证明:(1)在△PAC中,因为E,F分别是AP,AC的中点,所以EF∥PC.…(2分)又因为EF⊄平面PBC,PC⊂平面PBC,所以EF∥平面PBC.…(5分)(2)连结CD.因为∠BAC=60°,AD=AC,所以△ACD为正三角形.因为F是AC的中点,所以DF⊥AC.…(7分)因为平面PAC⊥平面ABC,DF⊂平面ABC,平面PAC∩平面ABC=AC,所以DF⊥平面PAC.…(12分)19.(12.00分)已知a>0,a≠1且log a3>log a2,若函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为1.(1)求a的值;(2)解不等式;(3)求函数g(x)=|log a x﹣1|的单调区间.【解答】解:(1)∵log a3>log a2,∴a>1,又∵y=log a x在[a,2a]上为增函数,∴log a(2a)﹣log a a=1,∴a=2.(2)依题意可知解得,∴所求不等式的解集为.(3)∵g(x)=|log2x﹣1|,∴g(x)≥0,当且仅当x=2时,g(x)=0,则∴函数在(0,2)上为减函数,在(2,+∞)上为增函数,g(x)的减函数为(0,2),增区间为(2,+∞).20.(12.00分)已知直线l:ax﹣y+1=0与x轴,y轴分别交于点A,B.(1)若a>0,点M(1,﹣1),点N(1,4),且以MN为直径的圆过点A,求以AN为直径的圆的方程;(2)以线段AB为边在第一象限作等边三角形ABC,若a=﹣,且点P(m,)(m>0)满足△ABC与△ABP的面积相等,求m的值.【解答】解:(1)由题意A(﹣,0),AM⊥AN,∴=﹣1,∵a>0,∴a=1,∴A(﹣1,0),∵N(1,4),∴AN的中点坐标为D(0,2),|AD|=,∴以AN为直径的圆的方程是x2+(y﹣2)2=5;(2)根据题意画出图形,如图所示:由直线y=﹣x+1,令x=0,解得y=1,故点B(0,1),令y=0,解得x=,故点A(,0),∵△ABC为等边三角形,且OA=,OB=1,根据勾股定理得:AB=2,即等边三角形的边长为2,故过C作AB边上的高为,即点C到直线AB的距离为,由题意△ABP和△ABC的面积相等,则P到直线AB的距离d=|﹣m+|=,∵m>0,∴m=.21.(12.00分)如图所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,FD⊥底面ABCD,M是AB的中点.(1)求证:平面CFM⊥平面BDF;(2)点N在CE上,EC=2,FD=3,当CN为何值时,MN∥平面BEF.【解答】证明:(1)∵FD⊥底面ABCD,∴FD⊥AD,FD⊥BD∵AF=BF,∴△ADF≌△BDF,∴AD=BD,连接DM,则DM⊥AB,∵AB∥CD,∠BCD=90°,∴四边形BCDM是正方形,∴BD⊥CM,∵DF⊥CM,∴CM⊥平面BDF.解:(2)当CN=1,即N是CE的中点时,MN∥平面BEF.证明如下:过N作NO∥EF,交ED于O,连结MO,∵EC∥FD,∴四边形EFON是平行四边形,∵EC=2,FD=3,∴OF=1,∴OD=2,连结OE,则OE∥DC∥MB,且OE=DC=MB,∴四边形BMOE是平行四边形,则OM∥BE,又OM∩ON=O,∴平面OMN∥平面BEF,∵MN⊂平面OMN,∴MN∥平面BEF.22.(12.00分)已知函数(a>0,a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)+f(2x)>0在其定义域上恒成立.【解答】解:(1)定义域为(﹣∞,0)∪(0,+∞).(2)==,∴f(x)是偶函数.(3)∵函数f(x)在定义域上是偶函数,∴函数y=f(2x)在定义域上也是偶函数,∴当x∈(0,+∞)时,f(x)+f(2x)>0可满足题意,∵当x∈(0,+∞)时,x3>0,∴只需,即,∵a2x+a x+1>0,∴(a x)2﹣1>0,解得a>1,∴当a>1时,f(x)+f(2x)>0在定义域上恒成立.。

相关文档
最新文档