等比数列知识点总结和典型例题(精华word版)
2022年高考数学(文)一轮复习文档:第五章 数列 第3讲等比数列及其前n项和 Word版含答案
第3讲 等比数列及其前n 项和 ,)1.等比数列的有关概念 (1)定义假如一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (q ≠0,n ∈N *). (2)等比中项假如a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇒G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.3.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和.(m ,n ,p ,q ,r ,k ∈N *) (1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r ; (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列;(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1).1.辨明三个易误点(1)由于等比数列的每一项都可能作分母,故每一项均不为0,因此q 也不能为0,但q 可为正数,也可为负数.(2)由a n +1=qa n ,q ≠0,并不能马上断言{a n }为等比数列,还要验证a 1≠0.(3)在运用等比数列的前n 项和公式时,必需留意对q =1与q ≠1分类争辩,防止因忽视q =1这一特殊情形而导致解题失误.2.等比数列的三种判定方法(1)定义法:a n +1a n=q (q 是不为零的常数,n ∈N *)⇔{a n }是等比数列.(2)通项公式法:a n =cqn -1(c 、q 均是不为零的常数,n ∈N *)⇔{a n }是等比数列.(3)等比中项法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列.3.求解等比数列的基本量常用的思想方法(1)方程的思想:等比数列的通项公式、前n 项和公式中联系着五个量:a 1,q ,n ,a n ,S n ,已知其中三个量,可以通过解方程(组)求出另外两个量;其中基本量是a 1与q ,在解题中依据已知条件建立关于a 1与q 的方程或者方程组,是解题的关键.(2)分类争辩思想:在应用等比数列前n 项和公式时,必需分类求和,当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q;在推断等比数列单调性时,也必需对a 1与q 分类争辩.1.教材习题改编 等比数列{a n }中,a 3=12,a 4=18,则a 6等于( ) A .27 B .36 C .812D .54C 法一:由a 3=12,a 4=18,得⎩⎪⎨⎪⎧a 1q 2=12,a 1q 3=18,解得a 1=163,q =32,所以a 6=a 1q 5=163×⎝ ⎛⎭⎪⎫325=812.故选C.法二:由等比数列性质知,a 23=a 2a 4,所以a 2=a 23a 4=12218=8,又a 24=a 2a 6,所以a 6=a 24a 2=1828=812.故选C.2.教材习题改编 设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( ) A .31 B .32 C .63D .64C 由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.故选C. 3.教材习题改编 在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________. 设该数列的公比为q ,由题意知, 243=9×q 3,得q 3=27,所以q =3.所以插入的两个数分别为9×3=27,27×3=81. 27,814.教材习题改编 由正数组成的等比数列{a n }满足a 3a 8=32,则log 2a 1+log 2a 2+…+log 2a 10=________. log 2a 1+log 2a 2+…+log 2a 10 =log 2=log 2(a 3a 8)5=log 2225=25.255.教材习题改编 在等比数列{a n }中,a n >0,a 5-a 1=15,a 4-a 2=6,则a 3=________. 由于a 5-a 1=15,a 4-a 2=6.所以a 1q 4-a 1=15,① a 1q 3-a 1q =6,②且q ≠1. ①②得(q 2+1)(q 2-1)q ·(q 2-1)=156,即2q 2-5q +2=0, 所以q =2或q =12,当q =2时,a 1=1;当q =12时,a 1=-16(舍去).所以a 3=1×22=4. 4等比数列的基本运算(高频考点)等比数列的基本运算是高考的常考内容,题型既有选择题、填空题,也有解答题,属中、低档题. 高考对等比数列基本运算的考查主要有以下三个命题角度: (1)求首项a 1、公比q 或项数n ; (2)求通项或特定项; (3)求前n 项和.(2021·兰州模拟)设数列{a n }的前n 项和S n 满足6S n +1=9a n (n ∈N *). (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =1a n,求数列{b n }的前n 项和T n .【解】 (1)当n =1时,由6a 1+1=9a 1,得a 1=13.当n ≥2时,由6S n +1=9a n ,得6S n -1+1=9a n -1, 两式相减得6(S n -S n -1)=9(a n -a n -1), 即6a n =9(a n -a n -1),所以a n =3a n -1.所以数列{a n }是首项为13,公比为3的等比数列,其通项公式为a n =13×3n -1=3n -2.(2)由于b n =1a n =⎝ ⎛⎭⎪⎫13n -2,所以{b n }是首项为3,公比为13的等比数列,所以T n =b 1+b 2+…+b n =3⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13=92⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n .等比数列基本运算的解题技巧(1)求等比数列的基本量问题,其核心思想是解方程(组),一般步骤是:①由已知条件列出以首项和公比为未知数的方程(组);②求出首项和公比;③求出项数或前n 项和等其余量.(2)设元的技巧,可削减运算量,如三个数成等比数列,可设为a q,a ,aq (公比为q );四个数成等比数列且q >0时,设为a q 3,a q,aq ,aq 3.角度一 求首项a 1、公比q 或项数n1.(2021·高考全国卷Ⅰ)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.由于a 1=2,a n +1=2a n ,所以数列{a n }是首项为2,公比为2的等比数列. 又由于S n =126,所以2(1-2n)1-2=126,所以n =6.6角度二 求通项或特定项2.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 由于3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(a 1+a 2)=3a 1+a 1+a 2+a 3.化简,得a 3a 2=3,即等比数列{a n }的公比q =3,故a n =1×3n -1=3n -1.3n -1角度三 求前n 项和3.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-310) B .19(1-3-10) C .3(1-3-10) D .3(1+3-10)C 由题意知数列{a n }为等比数列,设其公比为q ,则q =a n +1a n =-13,a 1=a 2q =4,因此其前10项和等于4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13101-⎝ ⎛⎭⎪⎫-13=3(1-3-10).等比数列的判定与证明(2022·高考全国卷丙)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.【解】 (1)由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0且λ≠1得a n ≠0, 所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列, 于是a n =11-λ(λλ-1)n -1.(2)由(1)得,S n =1-(λλ-1)n. 由S 5=3132得,1-(λλ-1)5=3132,即(λλ-1)5=132. 解得λ=-1.证明数列{a n }是等比数列常用的方法 一是定义法,证明a n a n -1=q (n ≥2,q 为常数);二是等比中项法,证明a 2n =a n -1·a n +1.若推断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.已知数列{a n }是等差数列,a 3=10,a 6=22,数列{b n }的前n 项和是T n ,且T n +13b n =1.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列.(1)设等差数列{a n }的公差为d ,则由已知得⎩⎪⎨⎪⎧a 1+2d =10,a 1+5d =22,解得a 1=2,d =4.所以a n =2+(n -1)×4=4n -2. (2)证明:由T n =1-13b n ,①令n =1,得T 1=b 1=1-13b 1.解得b 1=34,当n ≥2时,T n -1=1-13b n -1,②①-②得b n =13b n -1-13b n ,所以b n =14b n -1,所以b n b n -1=14.又由于b 1=34≠0, 所以数列{b n }是以34为首项,14为公比的等比数列.等比数列的性质(1)(2021·高考全国卷Ⅱ)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1C .12D .18(2)等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=( ) A .31 B .36 C .42D .48(3)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________. 【解析】 (1)法一:由于a 3a 5=a 24,a 3a 5=4(a 4-1), 所以a 24=4(a 4-1), 所以a 24-4a 4+4=0,所以a 4=2.又由于q 3=a 4a 1=214=8,所以q =2,所以a 2=a 1q =14×2=12,故选C.法二:由于a 3a 5=4(a 4-1), 所以a 1q 2·a 1q 4=4(a 1q 3-1).将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,所以a 2=a 1q =12,故选C.(2)由等比数列的性质,得a 3a 5=a 2a 6=64,于是由⎩⎪⎨⎪⎧a 3+a 5=20,a 3a 5=64,且a n >0,q >1,得a 3=4,a 5=16,所以⎩⎪⎨⎪⎧a 1q 2=4,a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1,q =2.所以S 5=1×(1-25)1-2=31,故选A.(3)由S 10S 5=3132,a 1=-1知公比q ≠1,S 10-S 5S 5=-132. 由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.【答案】 (1)C (2)A (3)-12等比数列常见性质的应用(1)在解决等比数列的有关问题时,要留意挖掘隐含条件,利用性质,特殊是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以削减运算量,提高解题速度.(2)等比数列性质的应用可以分为三类:①通项公式的变形;②等比中项的变形;③前n 项和公式的变形.依据题目条件,认真分析,发觉具体的变化特征即可找出解决问题的突破口.(3)在应用相应性质解题时,要留意性质成立的前提条件,有时需要进行适当变形.此外,解题时留意设而不求思想的运用.1.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A .18 B .-18C .578D .558A 由于a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.2.(2021·沈阳质量监测)数列{a n }是等比数列,若a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=________.设等比数列{a n }的公比为q ,由等比数列的性质知a 5=a 2q 3,求得q =12,所以a 1=4.a 2a 3=⎝ ⎛⎭⎪⎫12a 1⎝ ⎛⎭⎪⎫12a 2=14a 1a 2,a n a n +1=⎝ ⎛⎭⎪⎫12a n -1⎝ ⎛⎭⎪⎫12a n =14a n -1a n (n ≥2).设b n =a n a n +1,可以得出数列{b n }是以8为首项,以14为公比的等比数列,所以a 1a 2+a 2a 3+…+a n a n +1为数列{b n }的前n 项和,由等比数列前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n 1-14=323(1-4-n).323(1-4-n) ,)——分类争辩思想在等比数列中的应用已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为________.【解析】 设公比为q ,若q =1,则S 2m S m =2,与题中条件冲突,故q ≠1.由于S 2m S m =a 1(1-q 2m )1-q a 1(1-q m)1-q =q m+1=9,所以q m=8.所以a 2m a m =a 1q 2m -1a 1q m -1=q m =8=5m +1m -1,所以m =3,所以q 3=8,所以q =2. 【答案】 2(1)本题在利用等比数列的前n 项和公式表示S 2m 和S m 时,对公比q =1和q ≠1进行了分类争辩.(2)分类争辩思想在等比数列中应用较多,常见的分类争辩有: ①已知S n 与a n 的关系,要分n =1,n ≥2两种状况. ②等比数列中遇到求和问题要分公比q =1,q ≠1争辩.③项数的奇、偶数争辩.④等比数列的单调性的推断留意与a 1,q 的取值的争辩.在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =a n (n +1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .(1)由题意知(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6), 解得a 1=2,所以数列{a n }的通项公式为a n =2n . (2)由题意知b n =a n (n +1)2=n (n +1),所以T n =-1×2+2×3-3×4+…+(-1)nn ·(n +1). 由于b n +1-b n =2(n +1), 可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+…+2n =n 2(4+2n )2=n (n +2)2,当n 为奇数时,T n =T n -1+(-b n )=(n -1)(n +1)2-n (n +1)=-(n +1)22.所以T n=⎩⎪⎨⎪⎧-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.,)1.(2021·太原一模)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4C . 2D .2 2B 在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q2=a 4a 2=14, 所以q =12,a 1=a 2q=4.2.已知等比数列{a n }的前n 项和为S n =a ·2n -1+16,则a 的值为( ) A .-13B .13C .-12D .12A 当n ≥2时,a n =S n -S n -1=a ·2n -1-a ·2n -2=a ·2n -2,当n =1时,a 1=S 1=a +16,所以a +16=a2,所以a =-13.3.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A .n (n +1) B .n (n -1) C .n (n +1)2D .n (n -1)2A 由于a 2,a 4,a 8成等比数列,所以a 24=a 2·a 8,所以(a 1+6)2=(a 1+2)·(a 1+14),解得a 1=2.所以S n =na 1+n (n -1)2×2=n (n +1).故选A.4.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4D .3C 设数列{a n }的首项为a 1,公比为q ,依据题意可得,⎩⎪⎨⎪⎧a 1q 3=2,a 1q 4=5,解得⎩⎪⎨⎪⎧a 1=16125,q =52.所以a n =a 1qn -1=16125×⎝ ⎛⎭⎪⎫52n -1=2×⎝ ⎛⎭⎪⎫52n -4,所以lg a n =lg 2+(n -4)lg 52,所以前8项的和为8lg 2+(-3-2-1+0+1+2+3+4)lg 52=8lg 2+4lg 52=4lg ⎝ ⎛⎭⎪⎫4×52=4.5.(2021·莱芜模拟)已知数列{a n },{b n }满足a 1=b 1=3,a n +1-a n =b n +1b n=3,n ∈N *,若数列{c n }满足c n =ba n ,则c 2 017=( )A .92 016B .272 016C .92 017D .272 017D 由已知条件知{a n }是首项为3,公差为3的等差数列,数列{b n }是首项为3,公比为3的等比数列,所以a n =3n ,b n =3n. 又c n =ba n =33n, 所以c 2 017=33×2 017=272 017.6.(2021·唐山一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n =( )A .4n -1B .4n-1 C .2n -1D .2n-1D 设{a n}的公比为q ,由于⎩⎪⎨⎪⎧a 1+a 3=52,a 2+a 4=54,所以⎩⎪⎨⎪⎧a 1+a 1q 2=52,①a 1q +a 1q 3=54,②由①②可得1+q2q +q 3=2,所以q =12,代入①得a 1=2,所以a n =2×⎝ ⎛⎭⎪⎫12n -1=42n , 所以S n =2×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=4⎝ ⎛⎭⎪⎫1-12n , 所以S n a n =4⎝ ⎛⎭⎪⎫1-12n 42n =2n-1,选D.7.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________. 设等比数列的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q 3=9,a 21·q 3=8,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=8,q =12.又{a n }为递增数列,所以⎩⎪⎨⎪⎧a 1=1,q =2,所以S n =1-2n1-2=2n-1.2n-18.(2021·郑州其次次质量猜测)设等比数列{a n }的前n 项和为S n ,若27a 3-a 6=0,则S 6S 3=________.由题可知{a n }为等比数列,设首项为a 1,公比为q ,所以a 3=a 1q 2,a 6=a 1q 5,所以27a 1q 2=a 1q 5,所以q =3,由S n =a 1(1-q n )1-q,得S 6=a 1(1-36)1-3,S 3=a 1(1-33)1-3,所以S 6S 3=a 1(1-36)1-3·1-3a 1(1-33)=28.289.若{a n }是正项递增等比数列,T n 表示其前n 项之积,且T 10=T 20,则当T n 取最小值时,n 的值为________. T 10=T 20⇒a 11…a 20=1⇒(a 15a 16)5=1⇒a 15a 16=1,又{a n }是正项递增等比数列,所以0<a 1<a 2<…<a 14<a 15<1<a 16<a 17<…,因此当T n 取最小值时,n 的值为15.1510.在各项均为正数的等比数列{a n }中,已知a 2a 4=16,a 6=32,记b n =a n +a n +1,则数列{b n }的前5项和S 5为________.设数列{a n }的公比为q ,由a 23=a 2a 4=16得,a 3=4,即a 1q 2=4,又a 6=a 1q 5=32,解得a 1=1,q =2,所以a n =a 1qn -1=2n -1,b n =a n +a n +1=2n -1+2n =3·2n -1,所以数列{b n }是首项为3,公比为2的等比数列,所以S 5=3(1-25)1-2=93.9311.已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N *). (1)证明:数列{a n }是等比数列;(2)若数列{b n }满足b n +1=a n +b n (n ∈N *),且b 1=2,求数列{b n }的通项公式. (1)证明:依题意S n =4a n -3(n ∈N *), 当n =1时,a 1=4a 1-3,解得a 1=1. 由于S n =4a n -3,则S n -1=4a n -1-3(n ≥2), 所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1.又a 1=1≠0,所以{a n }是首项为1, 公比为43的等比数列.(2)由于a n =⎝ ⎛⎭⎪⎫43n -1,由b n +1=a n +b n (n ∈N *),得b n +1-b n =⎝ ⎛⎭⎪⎫43n -1.可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-⎝ ⎛⎭⎪⎫43n -11-43=3·⎝ ⎛⎭⎪⎫43n -1-1(n ≥2),当n =1时也满足,所以数列{b n }的通项公式为b n =3·⎝ ⎛⎭⎪⎫43n -1-1.12.(2021·衡阳模拟)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n=( )A .2n +1-2 B .3n C .2nD .3n-1C 由于数列{a n }为等比数列,a 1=2,设其公比为q ,则a n =2qn -1,由于数列{a n +1}也是等比数列,所以(a n +1+1)2=(a n +1)(a n +2+1)⇒a 2n +1+2a n +1=a n a n +2+a n +a n +2⇒a n +a n +2=2a n +1⇒a n (1+q 2-2q )=0⇒q =1,即a n =2,所以S n =2n ,故选C.13.设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n-1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.(1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝ ⎛⎭⎪⎫1+32+54+a 4+5⎝ ⎛⎭⎪⎫1+32=8⎝ ⎛⎭⎪⎫1+32+54+1,解得a 4=78.(2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2). 由于4a 3+a 1=4×54+1=6=4a 2,所以4a n +2+a n =4a n +1,所以a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 2(2a n +1-a n )=12,所以数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.14.(2021·南昌模拟)已知公比不为1的等比数列{a n }的首项a 1=12,前n 项和为S n ,且a 4+S 4,a 5+S 5,a 6+S 6成等差数列.(1)求等比数列{a n }的通项公式;(2)对n ∈N *,在a n 与a n +1之间插入3n 个数,使这3n +2个数成等差数列,记插入的这3n个数的和为b n ,求数列{b n }的前n 项和T n .(1)由于a 4+S 4,a 5+S 5,a 6+S 6成等差数列, 所以a 5+S 5-a 4-S 4=a 6+S 6-a 5-S 5, 即2a 6-3a 5+a 4=0, 所以2q 2-3q +1=0, 由于q ≠1,所以q =12,所以等比数列{a n }的通项公式为a n =12n .(2)b n =a n +a n +12·3n=34⎝ ⎛⎭⎪⎫32n, T n =34×32-⎝ ⎛⎭⎪⎫32n +11-32=94⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1.。
等比数列知识点总结与典型例题+答案
等比数列知识点总结与典型例题2、通项公式:4、等比数列的前n 项和S n 公式:(1)当 q 1 时,S n na in⑵当q 1时,5罟5、等比数列的判定方法:等比数列等比中项:a n 2a n 1a n 1 (a n 1a n 1 0){a n }为等比数列通项公式:a nA B n A B 0{a n }为等比数列1、等比数列的定义:a n 1a n 2,且n N * , q 称为公比n 1a naga iB n a i0,A B0,首项:a 1;公比:q推广:a na m qa nama n m — \ a m3、等比中项:(1)如果a, A, b 成等比数那么A 叫做a 与b 的等差中项,即: A 2 ab 或A ab注意:同号的两个数才有等比中并且它们的等比中项有两个((2)数列a n 是等比数列2 a n a n 1aq qA'B nA' ( A, B,A',B'为常数)(1) 用定义:对任意的都有a n 1qa n 或旦口 q (q 为常数,a n 0){a n }为a n6、等比数列的证明方法:依据定义:若-a^ q q 0 n 2,且n N*或i qa“ {a“}为等比数列a n 17、等比数列的性质:(2) 对任何m,n N*,在等比数列{a n}中,有a. a m q n m。
(3) 若m n s t(m,n,s,t N*),则a. a m a s a t。
特别的,当m n 2k 时,得2a n a m a k注:3] a n a2 a n 1 a3a n 2等差和等比数列比较:经典例题透析类型一:等比数列的通项公式例1.等比数列{a n}中,a1 a9 64, a3 a7 20, 求a11.思路点拨:由等比数列的通项公式,通过已知条件可列出关于a1和q的二元方程组,解出a i和q,可得an ;或注意到下标1 9 3 7,可以利用性质可求出a3、a y,再求a ii.总结升华:①列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量;②解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变形要用除法(除式不为零).举一反三:【变式1 ] {an}为等比数列,a仁3,a9=768,求a6。
等比数列典型例题及详细解答
等比数列典型例题及详细解答(总11页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母__q __表示(q ≠0).2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·qn -1. 3.等比中项若G 2=a ·b _(ab ≠0),那么G 叫做a 与b 的等比中项.4.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列. 5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n ,当q =1时,S n =na 1;当q ≠1时,S n =a 11-q n 1-q =a 1-a n q 1-q. 6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为__q n __.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( × )(2)G 为a ,b 的等比中项G 2=ab .( × )(3)如果数列{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( × )(4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( × )(5)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a 1-a n1-a .( × ) (6)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( × )1.(2015·课标全国Ⅱ)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7等于( )A .21B .42C .63D .84答案 B解析 设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21得3(1+q 2+q 4)=21,解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42,故选B.2.设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6等于( )A .31B .32C .63D .64答案 C解析 根据题意知,等比数列{a n }的公比不是-1.由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.故选C.3.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )A .6B .5C .4D .3答案 C解析 数列{lg a n }的前8项和S 8=lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 1·a 8)4=lg(a 4·a 5)4=lg(2×5)4=4.4.(2015·安徽)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________. 答案 2n -1解析 由等比数列性质知a 2a 3=a 1a 4,又a 2a 3=8,a 1+a 4=9,所以联立方程⎩⎪⎨⎪⎧ a 1a 4=8,a 1+a 4=9,解得⎩⎪⎨⎪⎧ a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1,又∵数列{a n }为递增数列, ∴a 1=1,a 4=8,从而a 1q 3=8,∴q =2.∴数列{a n }的前n 项和为S n =1-2n1-2=2n -1. 5.(教材改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________. 答案 27,81解析 设该数列的公比为q ,由题意知,243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81. 题型一 等比数列基本量的运算例1 (1)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( )A.152B.314C.334D.172(2)在等比数列{a n }中,若a 4-a 2=6,a 5-a 1=15,则a 3=________.答案 (1)B (2)4或-4解析 (1)显然公比q ≠1,由题意得⎩⎪⎨⎪⎧ a 1q ·a 1q 3=1,a 11-q 31-q =7,解得⎩⎪⎨⎪⎧ a 1=4,q =12,或⎩⎪⎨⎪⎧ a 1=9q =-13(舍去), ∴S 5=a 11-q 51-q =41-1251-12=314. (2)设等比数列{a n }的公比为q (q ≠0), 则⎩⎪⎨⎪⎧a 1q 3-a 1q =6,a 1q 4-a 1=15,两式相除,得q 1+q 2=25, 即2q 2-5q +2=0,解得q =2或q =12. 所以⎩⎪⎨⎪⎧ a 1=1,q =2,或⎩⎪⎨⎪⎧a 1=-16,q =12.故a 3=4或a 3=-4. 思维升华 等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.(1)在正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 5a 7等于( ) A.56B.65C.23D.32(2)(2015·湖南)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 答案 (1)D (2)3n -1解析 (1)设公比为q ,则由题意知0<q <1, 由⎩⎪⎨⎪⎧a 2·a 8=a 4·a 6=6,a 4+a 6=5,得a 4=3,a 6=2, 所以a 5a 7=a 4a 6=32. (2)由3S 1,2S 2,S 3成等差数列知,4S 2=3S 1+S 3,可得a 3=3a 2,所以公比q =3,故等比数列通项a n =a 1q n -1=3n -1. 题型二 等比数列的判定与证明例2 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2.(1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列;(2)求数列{a n }的通项公式.(1)证明 由a 1=1及S n +1=4a n +2,有a 1+a 2=S 2=4a 1+2.∴a 2=5,∴b 1=a 2-2a 1=3.又⎩⎪⎨⎪⎧S n +1=4a n +2, ①S n =4a n -1+2 n ≥2, ② ①-②,得a n +1=4a n -4a n -1 (n ≥2),∴a n +1-2a n =2(a n -2a n -1) (n ≥2).∵b n =a n +1-2a n ,∴b n =2b n -1 (n ≥2),故{b n }是首项b 1=3,公比为2的等比数列.(2)解 由(1)知b n =a n +1-2a n =3·2n -1,∴a n +12n +1-a n 2n =34, 故{a n 2n }是首项为12,公差为34的等差数列. ∴a n 2n =12+(n -1)·34=3n -14, 故a n =(3n -1)·2n -2.引申探究例2中“S n +1=4a n +2”改为“S n +1=2S n +(n +1)”,其他不变探求数列{a n }的通项公式.解 由已知得n ≥2时,S n =2S n -1+n .∴S n +1-S n =2S n -2S n -1+1,∴a n +1=2a n +1,∴a n +1+1=2(a n +1),又a 1=1,当n =1时上式也成立,故{a n +1}是以2为首项,以2为公比的等比数列,∴a n +1=2·2n -1=2n ,∴a n =2n -1.思维升华 (1)证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.(2)利用递推关系时要注意对n =1时的情况进行验证.设数列{a n }的前n 项和为S n ,已知a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *).(1)求a 2,a 3的值;(2)求证:数列{S n +2}是等比数列.(1)解 ∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),∴当n =1时,a 1=2×1=2;当n =2时,a 1+2a 2=(a 1+a 2)+4,∴a 2=4;当n =3时,a 1+2a 2+3a 3=2(a 1+a 2+a 3)+6,∴a 3=8.综上,a 2=4,a 3=8.(2)证明 a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),①∴当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=(n -2)S n -1+2(n -1).②①-②得na n =(n -1)S n -(n -2)S n -1+2=n (S n -S n -1)-S n +2S n -1+2=na n -S n +2S n -1+2.∴-S n +2S n -1+2=0,即S n =2S n -1+2,∴S n +2=2(S n -1+2).∵S 1+2=4≠0,∴S n -1+2≠0,∴S n +2S n -1+2=2,故{S n +2}是以4为首项,2为公比的等比数列.题型三 等比数列的性质及应用例3 (1)在等比数列{a n }中,各项均为正值,且a 6a 10+a 3a 5=41,a 4a 8=5,则a 4+a 8=________.(2)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________. 答案 (1)51 (2)-12解析 (1)由a 6a 10+a 3a 5=41及a 6a 10=a 28,a 3a 5=a 24, 得a 24+a 28=41.因为a 4a 8=5,所以(a 4+a 8)2=a 24+2a 4a 8+a 28=41+2×5=51.又a n >0,所以a 4+a 8=51.(2)由S 10S 5=3132,a 1=-1知公比q ≠±1, 则可得S 10-S 5S 5=-132. 由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12. 思维升华 (1)在等比数列的基本运算问题中,一般利用通项公式与前n 项和公式,建立方程组求解,但如果能灵活运用等比数列的性质“若m +n =p +q ,则有a m a n =a p a q ”,可以减少运算量.(2)等比数列的项经过适当的组合后构成的新数列也具有某种性质,例如等比数列S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,公比为q k (q ≠-1).已知等比数列{a n }的公比为正数,且a 3a 9=2a 25,a 2=2,则a 1等于( )A.12B.22C. 2 D .2(2)等比数列{a n }共有奇数项,所有奇数项和S 奇=255,所有偶数项和S 偶=-126,末项是192,则首项a 1等于( )A .1B .2C .3D .4答案 (1)C (2)C 解析 (1)由等比数列的性质得a 3a 9=a 26=2a 25, ∵q >0,∴a 6=2a 5,q =a 6a 5=2,a 1=a 2q =2,故选C. (2)设等比数列{a n }共有2k +1(k ∈N *)项,则a 2k +1=192,则S 奇=a 1+a 3+…+a 2k -1+a 2k +1=1q(a 2+a 4+…+a 2k )+a 2k +1=1q S 偶+a 2k +1=-126q +192=255,解得q =-2,而S 奇=a 1-a 2k +1q 21-q 2=a 1-192×-221--22=255,解得a 1=3,故选C.12.分类讨论思想在等比数列中的应用典例 (12分)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列. (1)求数列{a n }的通项公式;(2)证明:S n +1S n ≤136(n ∈N *). 思维点拨 (1)利用等差数列的性质求出等比数列的公比,写出通项公式;(2)求出前n 项和,根据函数的单调性证明.规范解答(1)解 设等比数列{a n }的公比为q ,因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4,可得2a 4=-a 3,于是q =a 4a 3=-12.[2分] 又a 1=32,所以等比数列{a n }的通项公式为 a n =32×⎝⎛⎭⎫-12n -1=(-1)n -1·32n .[3分] (2)证明 由(1)知,S n =1-⎝⎛⎭⎫-12n , S n +1S n =1-⎝⎛⎭⎫-12n+11-⎝⎛⎭⎫-12n=⎩⎪⎨⎪⎧ 2+12n 2n +1,n 为奇数,2+12n 2n -1,n 为偶数.[6分]当n 为奇数时,S n +1S n随n 的增大而减小, 所以S n +1S n ≤S 1+1S 1=136.[8分] 当n 为偶数时,S n +1S n随n 的增大而减小, 所以S n +1S n ≤S 2+1S 2=2512.[10分] 故对于n ∈N *,有S n +1S n ≤136.[12分] 温馨提醒 (1)分类讨论思想在等比数列中应用较多,常见的分类讨论有①已知S n 与a n 的关系,要分n =1,n ≥2两种情况.②等比数列中遇到求和问题要分公比q =1,q ≠1讨论.③项数的奇、偶数讨论.④等比数列的单调性的判断注意与a 1,q 的取值的讨论.(2)数列与函数有密切的联系,证明与数列有关的不等式,一般是求数列中的最大项或最小项,可以利用图象或者数列的增减性求解,同时注意数列的增减性与函数单调性的区别.[方法与技巧]1.已知等比数列{a n }(1)数列{c ·a n }(c ≠0),{|a n |},{a 2n },{1a n}也是等比数列. (2)a 1a n =a 2a n -1=…=a m a n -m +1.2.判断数列为等比数列的方法(1)定义法:a n +1a n =q (q 是不等于0的常数,n ∈N *)数列{a n }是等比数列;也可用a n a n -1=q (q 是不等于0的常数,n ∈N *,n ≥2)数列{a n }是等比数列.二者的本质是相同的,其区别只是n 的初始值不同.(2)等比中项法:a 2n +1=a n a n +2(a n a n +1a n +2≠0,n ∈N *)数列{a n }是等比数列.[失误与防范]1.特别注意q =1时,S n =na 1这一特殊情况.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.4.等比数列性质中:S n ,S 2n -S n ,S 3n -S 2n 也成等比数列,不能忽略条件q ≠-1.A 组 专项基础训练(时间:35分钟)1.已知等比数列{a n }中,a 2+a 3=1,a 4+a 5=2,则a 6+a 7等于( )A .2B .2 2C .4D .4 2 答案 C解析 因为a 2+a 3,a 4+a 5,a 6+a 7成等比数列,a 2+a 3=1,a 4+a 5=2,所以(a 4+a 5)2=(a 2+a 3)(a 6+a 7),解得a 6+a 7=4.2.等比数列{a n }满足a n >0,n ∈N *,且a 3·a 2n -3=22n (n ≥2),则当n ≥1时,log 2a 1+log 2a 2+…+log 2a 2n -1等于( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2答案 A解析 由等比数列的性质,得a 3·a 2n -3=a 2n =22n ,从而得a n =2n . 方法一 log 2a 1+log 2a 2+…+log 2a 2n -1=log 2[(a 1a 2n -1)·(a 2a 2n -2)·…·(a n -1a n +1)a n ]=log 22n (2n -1)=n (2n -1). 方法二 取n =1,log 2a 1=log 22=1,而(1+1)2=4,(1-1)2=0,排除B ,D ;取n =2,log 2a 1+log 2a 2+log 2a 3=log 22+log 24+log 28=6,而22=4,排除C ,选A.3.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( )A .12B .13C .14D .15答案 C解析 设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12,可得q 9=3,a n -1a n a n +1=a 31q 3n -3=324, 因此q 3n -6=81=34=q 36,所以n =14,故选C.4.若正项数列{a n }满足lg a n +1=1+lg a n ,且a 2 001+a 2 002+…+a 2 010=2 016,则a 2 011+a 2 012+…+a 2 020的值为( )A .2 015·1010B .2 015·1011C .2 016·1010D .2 016·1011 答案 C解析 ∵lg a n +1=1+lg a n ,∴lg a n +1a n=1, ∴a n +1a n=10,∴数列{a n }是等比数列, ∵a 2 001+a 2 002+…+a 2 010=2 016,∴a 2 011+a 2 012+…+a 2 020=1010(a 2 001+a 2 002+…+a 2 010)=2 016×1010.5.已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为( ) A .-2 B .2 C .-3 D .3答案 B解析 设公比为q ,若q =1,则S 2m S m=2, 与题中条件矛盾,故q ≠1.∵S 2m S m =a 11-q 2m1-q a 11-qm 1-q=q m +1=9,∴q m =8. ∴a 2m a m =a 1q 2m -1a 1q m -1=q m =8=5m +1m -1, ∴m =3,∴q 3=8,∴q =2.6.等比数列{a n }中,S n 表示前n 项和,a 3=2S 2+1,a 4=2S 3+1,则公比q 为________. 答案 3解析 由a 3=2S 2+1,a 4=2S 3+1得a 4-a 3=2(S 3-S 2)=2a 3,∴a 4=3a 3,∴q =a 4a 3=3. 7.等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,则对任意的n ∈N *,都有a n +2+a n +1-2a n =0,则S 5=________.答案 11解析 由题意知a 3+a 2-2a 1=0,设公比为q ,则a 1(q 2+q -2)=0.由q 2+q -2=0解得q =-2或q =1(舍去),则S 5=a 11-q 51-q=1--253=11. 8.已知数列{a n }的首项为1,数列{b n }为等比数列且b n =a n +1a n,若b 10·b 11=2,则a 21=________. 答案 1 024解析 ∵b 1=a 2a 1=a 2,b 2=a 3a 2, ∴a 3=b 2a 2=b 1b 2,∵b 3=a 4a 3, ∴a 4=b 1b 2b 3,…,a n =b 1b 2b 3·…·b n -1,∴a 21=b 1b 2b 3·…·b 20=(b 10b 11)10=210=1 024.9.数列{b n }满足:b n +1=2b n +2,b n =a n +1-a n ,且a 1=2,a 2=4.(1)求数列{b n }的通项公式;(2)求数列{a n }的前n 项和S n .解 (1)由b n +1=2b n +2,得b n +1+2=2(b n +2),∴b n +1+2b n +2=2,又b 1+2=a 2-a 1+2=4,∴数列{b n +2}是首项为4,公比为2的等比数列.∴b n +2=4·2n -1=2n +1,∴b n =2n +1-2.(2)由(1)知,a n -a n -1=b n -1=2n -2 (n ≥2),∴a n -1-a n -2=2n -1-2 (n >2),…,a 2-a 1=22-2,∴a n -2=(22+23+…+2n )-2(n -1),∴a n =(2+22+23+…+2n )-2n +2=22n -12-1-2n +2=2n +1-2n . ∴S n =41-2n 1-2-n 2+2n 2=2n +2-(n 2+n +4). 10.已知数列{a n }和{b n }满足a 1=λ,a n +1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数. (1)证明:对任意实数λ,数列{a n }不是等比数列;(2)证明:当λ≠-18时,数列{b n }是等比数列.证明 (1)假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即⎝⎛⎭⎫23λ-32=λ⎝⎛⎭⎫49λ-449λ2-4λ+9=49λ2-4λ9=0,矛盾. 所以{a n }不是等比数列.(2)b n +1=(-1)n +1[a n +1-3(n +1)+21]=(-1)n +1⎝⎛⎭⎫23a n -2n +14=-23(-1)n ·(a n -3n +21)=-23b n . 又λ≠-18,所以b 1=-(λ+18)≠0.由上式知b n ≠0,所以b n +1b n =-23(n ∈N *). 故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-23为公比的等比数列. B 组 专项能力提升(时间:20分钟)11.设{a n }是各项为正数的无穷数列,A i 是边长为a i ,a i +1的矩形的面积(i =1,2,…),则{A n }为等比数列的充要条件是( )A .{a n }是等比数列B .a 1,a 3,…,a 2n -1,…或a 2,a 4,…,a 2n ,…是等比数列C .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列D .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列,且公比相同答案 D解析 ∵A i =a i a i +1,若{A n }为等比数列,则A n +1A n =a n +1a n +2a n a n +1=a n +2a n 为常数,即A 2A 1=a 3a 1,A 3A 2=a 4a 2,….∴a 1,a 3,a 5,…,a 2n -1,…和a 2,a 4,…,a 2n ,…成等比数列,且公比相等.反之,若奇数项和偶数项分别成等比数列,且公比相等,设为q ,则A n +1A n =a n +2a n=q ,从而{A n }为等比数列. 12.若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________. 答案 50解析 因为a 10a 11+a 9a 12=2a 10a 11=2e 5,所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln [(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50.13.数列{a n }满足a 1=2且对任意的m ,n ∈N *,都有a n +m a m=a n ,则a 3=________;{a n }的前n 项和S n =________.答案 8 2n +1-2解析 ∵a n +m a m=a n , ∴a n +m =a n ·a m ,∴a 3=a 1+2=a 1·a 2=a 1·a 1·a 1=23=8;令m =1,则有a n +1=a n ·a 1=2a n ,∴数列{a n }是首项为a 1=2,公比为q =2的等比数列,∴S n =21-2n1-2=2n +1-2. 14.定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2;②f (x )=2x ;③f (x )=|x |;④f (x )=ln |x |.则其中是“保等比数列函数”的f (x )的序号为________.答案 ①③解析 设{a n }的公比为q ,验证①fa n +1fa n =a 2n +1a 2n =q 2,③fa n +1fa n =|a n +1||a n |=|q |,故①③为“保等比数列函数”. 15.已知数列{a n }中,a 1=1,a n ·a n +1=⎝⎛⎭⎫12n ,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并求出b n ;(2)求T 2n .解 (1)∵a n ·a n +1=⎝⎛⎭⎫12n ,∴a n +1·a n +2=⎝⎛⎭⎫12n +1,∴a n +2a n =12,即a n +2=12a n . ∵b n =a 2n +a 2n -1,∴b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12, ∵a 1=1,a 1·a 2=12, ∴a 2=12b 1=a 1+a 2=32. ∴{b n }是首项为32,公比为12的等比数列. ∴b n =32×⎝⎛⎭⎫12n -1=32n . (2)由(1)可知,a n +2=12a n , ∴a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列,∴T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝⎛⎭⎫12n 1-12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=3-32n .。
等比数列性质归纳总结
等比数列 (一) 主要知识:等比数列的充要条件:()1{}n a 是等比数列1n na q a +⇔=(q 为非零常数); ()2{}n a 是等比数列n n a cq ⇔=(0,0c q ≠≠)()3{}n a 是等比数列212n n n a a a ++⇔=⋅()4{}n a 是等比数列n n S kq k ⇔=-(11a k q =-,0k ≠,1q ≠) (二)主要方法:1.涉及等比数列的基本概念的问题,常用基本量1,a q 来处理;2.已知三个数成等比数列时,可设这三个数依次为2,,a aq aq 或,,a a aq q ;四个数时设为3a q、aq、aq 、3aq3.等比数列的相关性质:()1若{}n a 是等比数列,则m n m n a a q -=⋅;()2若{}n a 是等比数列,,,,*m n p t N ∈,当m n p t +=+时,m n p t a a a a ⋅=⋅特别地,当2m n p +=时,2m n p a a a ⋅=()3若{}n a 是等比数列,则下标成等差数列的子列构成等比数列;()4若{}n a 是等比数列,n S 是{}n a 的前n 项和,则m S ,2m m S S - , 32m m S S -…成等比数列.()5两个等比数列{}n a 与{}n b 的积、商、倒数的数列{}n na b ⋅、⎭⎬⎫⎩⎨⎧n n b a 、⎭⎬⎫⎩⎨⎧n b 1仍为等比数列. 【典型例题】例1、已知{}n a 为等比数列,32a =,24203a a +=,求{}n a 的通项公式;例2、在等比数列{}n a 中,318a a -=,64216a a -=,40n S =,求公比q 、1a 及n问题2.1.已知数列{}n a 是等比数列,且>0n a ,n N ∈*,354657281a a a a a a ++=,则46a a +=2.在等比数列{}n a 中,32a =,5a m =,78a =,则m =.A 4±.B 5 .C 4- .D 43.在等比数列{}n a 中,11a =,103a =,则23456789a a a a a a a a =.A 81 .B .C .D 2434.在83和272之间插入三个数,使五个数成等比数列,则插入的三个数的乘积是 5.在等比数列{}n a 中,已知1231a a a ++=,4562a a a ++=-,则该数列前15项的和15S =6.在等比数列{an}中,a1=2,前n 项和为Sn ,若数列{an +1}也是等比数列,则Sn 等于 ( ) A.2n +1-2 B.3n C.2n D.3n -17.在等比数列{an}中,a3=7,前3项之和S3=21,则公比q 的值为 ( )A.1B.-12C.1或-12D.-1或128.若等比数列{an}满足anan +1=16n ,则公比为 ( ) A.2 B.4 C.8 D.169.记等比数列{an}的前n 项和为Sn ,若S3=2,S6=18,则S10S5等于( )A .-3B .5C .-31D .3310.在各项都为正数的等比数列{an}中,a1=3,前三项的和S3=21,则a3+a4+a5等于( ) A .33 B .72 C .84 D .18911.已知正项等比数列{an}中,a1a5+2a2a6+a3a7=100,a2a4-2a3a5+a4a6=36,求数列{an}的通项an 和前n 项和Sn.例3数列{}n a 的前n 项和记为n S ,已知11a =,12n n n a S n++=(1,2,3,n =⋅⋅⋅) 证明: 数列n S n ⎧⎫⎨⎬⎩⎭是等比数列,例4.已知数列{}n a 中,n S 是它的前n 项和,且142n n S a +=+()1,2,n =⋅⋅⋅,11a =.()1设12n n n b a a +=-()1,2,n =⋅⋅⋅,求证:数列{}n b 是等比数列;()2设2nn n a c =()1,2,n =⋅⋅⋅, 求证:{}n c 是等差数列;()3求{}n a 的通项公式n a 及前n 项和公式n S变式训练(1)已知数列{an}的前n 项和为Sn ,数列{bn}中,b1=a1,bn =an -an -1 (n ≥2),且an +Sn =n. ①设cn =an -1,求证:{cn}是等比数列; ②求数列{bn}的通项公式.(2)已知数列{an}的首项a1=5,前n 项和为Sn ,且Sn +1=2Sn +n +5,n ∈N*. ①证明数列{an +1}是等比数列; ②求{an}的通项公式以及Sn.(3)设数列{an}的前n 项和为Sn ,已知a1+2a2+3a3+…+nan =(n -1)Sn +2n(n ∈N*). ①求a2,a3的值;②求证:数列{Sn +2}是等比数列.(四)巩固练习:1.在等比数列{}n a (*n N ∈)中,若11a =,418a =,则该数列的前10项和为 .A 4122- .B 9122-.C 10122-.D 11122-2.已知a 、b 、c 、d 成等比数列,且曲线223y x x =-+的顶点是(),b c , 则ad 等于 .A 3 .B 2 .C 1 .D 2-3.(07重庆)设{}n a 为公比1q >的等比数列,若2004a 和2005a 是方程24830x x -+=的两根,则20062007a a+=______.4.若数列{}n a 满足212n na p a +=(p 为正常数,*n N ∈),则称{}n a 为“等方比数列”.甲:数列{}n a 是等方比数列; 乙:数列{}n a 是等比数列,则.A 甲是乙的充分条件但不是必要条件.B 甲是乙的必要条件但不是充分条件 .C 甲是乙的充要条件 .D 甲既不是乙的充分条件也不是乙的必要条件5.(07陕西)各项均为正数的等比数列{}n a 的前n 项和为n S 为,若2n S =,314n S =,则4n S 等于 .A 80 .B 30 .C 26 .D 166.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于 .A 122n +- .B 3n .C 2n .D 31n -7.设等比数列}{n a 的公比为q ,前n 项和为n S ,若1n S +,n S ,2n S +成等差数列,则q 的值为8.(07全国文Ⅱ)设等比数列{}n a 的公比1q <,前n 项和为n S .已知34225a S S ==,, 求{}n a 的通项公式.9.(07北京)数列{}n a 中,12a =1n n a a cn +=+(c 是常数,123n = ,,,),且123,,a a a 成公比不为1的等比数列.(Ⅰ)求c 的值;(Ⅱ)求{}n a 的通项公式.10.(山东)设数列{}n a 满足211233333n n n a a a a -++++=…,a N ∈*. (Ⅰ)求数列{}n a 的通项;(Ⅱ)设n nnb a =,求数列{}n b 的前n 项和n S .11.(06福建文)已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈(Ⅰ)证明:数列{}1n n a a +-是等比数列; (Ⅱ)求数列{}n a 的通项公式; (Ⅲ)若数列{}n b 满足12111*44...4(1)(),n n b b b b n a n N ---=+∈证明{}n b 是等差数列。
等比数列典型例题
高二数学等比数列典型例题【例1】 已知S n 是数列{a n }的前n 项和,S n = P n (p € R , n € N*),那么数列{a n }.[] A •是等比数列 B .当p z 0时是等比数列 C .当p z 0, p 丰1时是等比数列 D .不是等比数列分析 由S n = p n (n € N*),有ai=Si = p ,并且当n 》2时, a n =S n _ S n-1 = p n - p n-1 = (p - 1)P n-1p z 0故a 2 = (p — 1)p ,因此数列{a n }成等比数列p - 1Z 0(p 1)p n1 p(p 1)(p n 22)p p但满足此条件的实数 p 是不存在的,故本题应选D .解 1, x 〔, X 2, , X 2n , 2成等比数列,公比 q2 = 1 • q 2n+12n( 1+2 n)n(2 n 1)q1【例3】等比数列{a n }中,⑴已知a 2=4,a 5 一 2,求通项公式;(2)已知 a 3 • a 4 • a 5= 8,求 *2*3*4*506 的值.解(1)a 5 = a 2q 5 2.q =— 12・ n 21n 21、n 4…a n = a ?q = 4(-2)=( 2)23c⑵••• a 3 • a 5 = a 4 a 3 a 4 • a 5 =a 4 = 8--a 4 = 2又 3236 — 8335 — a 4【例4】 已知a >0, b >0且a z b ,在a , b 之间插入n 个正数,x?,…,x n ,使得a , ,x?,…,【例2】 已知等比数列 1, x 1 , X 2,…,x 2n , 2,求 X 1 • X 2 • X 3X 1X 2X3 …x 2 n = qq 2 • q 3...q 2n =q 1+2+3+ (2)--a 2a 3a 4a 5a 6 =a 4 = 32x n , b 成等比数列,求证 nX 1X 2 (x)n <a b 2 .证明设这n + 2个数所成数列的公比为q ,则 b=aq n+1n 1b•-q—an 1•-n X 1X 2 …X nnaqaq 2…aq n aq 2— a b•、ab < -2【例5】设a 、b 、c 、d 成等比数列,求证:(b — e)2 + (e — a)2 + (d — b)2 = (a —d)2证法一 • •' a 、b 、c 、d 成等比数列a b c bed••• b 2= ae , e 2 = bd , ad = be左边=b 2 — 2bc + e 2 + C 2 — 2ac + a 2 + d 2— 2bd + b 2 =2(b 2— ae) + 2(e 2 — bd) + (a 2 — 2bc + d 2) =a 2 — 2ad + d 2 =(a — d)2 =右边 证毕.证法二 ■/ a 、b 、c 、d 成等比数列,设其公比为 q ,则:b = aq , e = aq 2, d=aq 3•左边=(aq — aq 2)2 + (aq 2— a)2 + (aq 3 — aq)2 =a 2 — 2a 2q 3 + a 2q 6 =(a — aq 3)2 =(a—d)2=右边证毕.【例6】 求数列的通项公式: (1) {a n}中,ai = 2, a n+1= 3a n + 2(2) {a n}中,ai=2, a? = 5,且 a n+2 — 3a n+1 + 2a n = 0 思路:转化为等比数列.解⑴a n+1 = 3a n + 2 a n+1 + 1 = 3(a n + 1)••• {a n + 1}是等比数列 ••• a n + 仁3 • 3n-1a n =3n - 1•-{a n+1 — a n }是等比数列,即 a n+1—an =(a 2 — a 1) • 2n-1=3 • 2n-1再注意到a?— a 〔=3, a3 — *2=3 • 21, a@ — 83=3 • 22,…,玄门—玄门_1=3 • 2n-2,这些等式相加,即可以 得到n 1丄2n-22 1n 1a n = 3[1 + 2 + 2 +…+ 2]= 3 • 2 1 = 3(2— 1)【例7】 若实数a 1> a 2、a 3、a 4都不为零,且满足(a f + a ;)a ; — 2a 2⑻+ a 3)a 4 + a ; + a : = 0求证:a 1、a ?、a 3成等比数列,且公比为a °.证 T a 〔、a2、83、84均为不为零的实数•- (a f + a ;)x 2 — 2& (a 1 +a 3)x +a ; + a f = 0为实系数一兀—次方程 等式(a l +a 2 )a 4 —2a 2 (a 1+a 3)a 4 + a 2 + a : = 0说明上述方程有实数根a 4.•上述方程的判别式0,即2 2 2 2 2[—2a 2(a 1 +a 3)] — 4(a 1 + a 2)(a 2 + a 3)=—4(a ; — ae s )2》0 • (a ; - a^)2 < 0又• • • a 〔、 a2、a3为实数•(a ; — a£3)2 > 0必有 a 2 — a 1a 3 = 0 即 a 2 = a 1a 3因而a 〔、a2、a3成等比数列• a4即为等比数列a 「a2、ag 的公比.【例8】 若a 、b 、c 成等差数列,且 a + 1、b 、c 与a 、b 、c + 2都成等比数列,求 b 的值.解 设a 、b 、c 分别为b — d 、b 、b + d ,由已知b — d +1、b 、b + d 与b — d 、b 、b + d + 2都成等比数 列,有b 2 = (b — d + 1)(b + d) ① b 2 = (b — d)(b + d + 2)②整理,得(2)a n +2 - 3a n +! + 2a n = 0an+2 an+1=2(a n+1— an)2a 2 (a 1 a 3) 2(a f a ;)a 2 (a 1 a 3) a 2a 〔 a 1 a 3 ab 2 = b 2 — d 2 + b + d b 2 = b 2 — d 2 + 2b — 2d••• b + d=2b — 2d 即 b=3d 代入①,得 9d 2=(3d — d + 1)(3d + d) 9d 2=(2d + 1) • 4d 解之,得d=4或d=0(舍) • b=12【例9】 已知等差数列{a n }的公差和等比数列{b n }的公比都是d ,又知1,且a 4=b 4, a 10=b 10: (1)求a 1与d 的值; (2)bi6是不是{an }中的项?思路:运用通项公式列方程a i (1— d 3) = — 3d a 1(1— d 9)= — 9d d 6 + d 3— 2 = 0 d i 1(舍)或d 2 32•a id 3 2 d 3 2(2) •/ b 16=b 1 • d 15= — 32b 1且 a 4=a + 3d = 23.2 = b 4 b 4 = b 1 • d 3 = — 2b 1 = — 23 2 • b 1 = a 1 = 3 2•-b 16= — 32b 1 = — 32a 1,如果 b 16 是{a n }中的第 k 项,则 —32a 〔=a 〔+(k — 1)d --(k — 1)d= — 33a 〔=33d • k=34即b 16是{a n }中的第34项.1 21【例10】 设{a n }是等差数列,b n = (―)an ,已知b 1 + b 2 + b 3 = § , 1b 1b 2b 3 = 2,求等差数列的通项.8解 设等差数列{a n }的公差为d ,则a n =a 1 + (n — 1)d解⑴由a 4 =b 4a iob io3 a 1 + 3d = a 1d9a 1 + 9d = a 1d11 1由b 1b 2 b 3 =,解得b 2 =,解得b 288解这个方程组,得1 、 1bi =2,b3 = 8或bi =8,b3 = 2二 a 〔 = — i , d=2 或 ai=3, d= — 2•••当 a 〔=——i , d=2 时,a n =ai + (n — i)d=2n — 3当 a i =3, d=2 时,an=ai + (n — i)d =5 — 2n 【例11】 三个数成等比数列,若第二个数加 成等比数列,求这三个数.解法一 按等比数列设三个数,设原数列为 a ,aq , aq 2由已知:a , aq + 4, aq 2成等差数列 即:2(aq + 4)=a + aq 2a , aq + 4, aq 2 + 32成等比数列 即:(aq + 4)2=a(aq 2 + 32)aq + 2 = 4a①,②两式联立解得:•这三数为:2, 6, 18或 - ,10, 50. 99 9由已知:三个数成等比数列 即:(b — 4)2=(b — d)(b + d)飞=(2)a i(n 1)db i b 3 = (》ai,1、a i +2d (2) =(1)2(a i +d) =(2)2a =2亠 a ■c 或 '9 q =3q =—5解法二按等差数列设三个数,设原数列为 b — d , b — 4, b +d1―,代入已知条件 21b i b 2b 3 = 8 b i b 3b i b 2b 3整理得 21 8 17b 1 + b 3 =-1 8 4就成等差数列,再把这个等差数列的第3项加32又18b—d2 = 16b—d, b, b+ d + 32成等比数列解法 设前三个数为a — d , a , a + d ,则第四个数为(a d)2 a(a d)依题意,有 a — d +a =16a + (a + d) =12a 〔= 4a 2 = 9解方程组得:一或d 1 = 4d 2 =— 6所求四个数为:0, 4, 8, 16或 15, 9, 3, 1依题意有:22b — bq + bq 2 = 16 b + bq = 12b 1 = 4b 2 =9 解万程组得:或1 q 1 =2 q 2 =3所求四个数为:0, 4, 8, 16或 15, 9, 3, 1 .解法三 设四个数依次为 x , y , 12 — y , 16 — xx + (12 — y) = 2y y • (16 — x) = (12 — y)即 b 2=(b — d)(b + d + 32)32b — d 2 — 32d = 0【例12】 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.分析本题有三种设未知数的方法方法一 设前三个数为a — d , a , a + d ,则第四个数由已知条方法二 设后三个数为b , bq , bq 2,则第一个数由已知条件推得为 2b — bq .方法三 设第一个数与第二个数分别为x , y ,则第三、第四个数依次为12 — y , 16 — x .由这三种设法可利用余下的条件列方程组解出相关的未知数,从而解出所求的四个数,①、②两式联立,解得:26b9 或 b =108 d = 8 d =2 •••三数为9, 10 9, 50 或 2, 6 , 18• 9 件可推得:(a d)2 a解法二 设后三个数为:b , bq , bq 2,则第一个数为:2b — bq依题意有2解方程组得:x^i = 0x 2 = 15 或y 1 = 4y 2 = 9这四个数为0, 4, 8, 16或15, 9, 3, 1.【例13】 已知三个数成等差数列,其和为 126;另外三个数成等比数列,把两个数列的对应项依次相加,分别得到 85,76,84.求这两个数列.解 设成等差数列的三个数为 b — d , b , b + d ,由已知,b — d + b + b + d=126••• b=42这三个数可写成 42 — d , 42, 42 + d . 再设另三个数为a , aq, aq 2.由题设,得a + 42 — d = 85 ap + 42 = 762aq + 42 + d = 84a — d = 43① 整理,得 aq = 34② 2aq + d = 42③解这个方程组,得a 〔=17 或玄2=68当 a=17 时,q=2, d= — 261当a= 68时,q 二,d = 252从而得到:成等比数列的三个数为三个数为68, 34, 17,此时成等差的三个数为17, 42, 67.数成等差数列,证明:a 〔、a3、a5成等比数列.证明由已知,有 2a2=a 〔 + a 3217, 34, 68,此时成等差的三个数为68, 42, 16;或者成等比的【例14】 已知在数列{a n }中,a 「a 2> a 3成等差数列,a2、电、成等比数列,玄3、玄厶、的倒a 4 1= 322 1a4 a3 a5由③,2a3 •a5a4 =a3 + a5由①,a1 + a3a?= 2代入②,得整理,2a3a1 + a3 2a3 • a52 a3 a5a3a5(a1+a2)a3 + a5即a3(a 3+a5)=a 5(a 1+a3)= a 1a 5+a 3a 5所以 a 1、 a 3、a 5 成等比数列.【例15】 已知 (b - c )logm x + (c - a )log m y + (a - b )log m z=0 .(1)设 a ,b ,c 依次成等差数列,且公差不为零,求证: x , y ,(2)设正数 x , y ,z 依次成等比数列,且公比不为 1,求证: a , 证明 (1)T a , b , c 成等差数列,且公差 d 丰0 ••• b — c=a — b=— d , c — a=2d代入已知条件,得:-d (logm x -2log m y + log m z )=0•logm x +log m z=2log m y2• y 2=xz••• x , y , z 均为正数 • x , y , z 成等比数列⑵■/ x , y , z 成等比数列且公比 q z 1 • y=xq , z=xq 2 代入已知条件得:(b — c)log m x +(c — a)log m xq +(a — b)log m xq 2=0 变形、整理得: (c +a — 2b)log m q=0 •••q z 1•log m q z 0• c + a — 2b=0 即 2b=a +c即 a , b , c 成等差数列z 成等比数列. b , c 成等差数列. a 3 +a 3a 5。
中职数学的等比数列单元复习题
中职数学的等比数列单元复习题一、知识点回顾等比数列是数列的一种特殊形式,也是考试中常考的重要知识点。
它具有确定的通项公式和求和公式,可以解决各种实际问题。
在复习等比数列时,我们需要明确以下几点:1等比数列的定义:一个数列如果每一项(从第二项开始)都是前一项乘以一个常数,则这个数列称为等比数列。
这个常数称为公比。
2等比数列的通项公式:在等比数列中,第n项可以表示为 a_n = a_1 * q^(n-1),其中a_1是首项,q是公比。
3等比数列的求和公式:对于一个等比数列,其前n项和S_n可以表示为 S_n = a_1 * (1 - q^n) / (1 - q)。
二、典型例题解析例1:求等比数列的公比和首项。
已知一个等比数列的首项为2,公比为-3,且前n项和为S_n = 2 * (1 - (-3)^n) / (1 - (-3)),求该数列的公比和首项。
解析:根据等比数列的定义,该数列的公比为-3,首项为2。
例2:求等比数列的前n项和。
已知一个等比数列的首项为2,公比为-3,求该数列的前10项和S_10。
解析:根据等比数列的求和公式,可得 S_10 = 2 * (1 - (-3)^10) /(1 - (-3))。
三、易错点提醒1、不要忘记公比的符号。
在等比数列的定义中,公比q是一个负数,因此要注意符号问题。
2、使用求和公式时需要注意公比的符号。
在求和公式中,分母中的括号内不能有负号,因此需要注意公比的符号。
3、注意使用正确的公式。
在解决等比数列问题时,需要根据具体的问题选择合适的公式进行求解。
四、练习题1、求等比数列的第n项。
已知一个等比数列的首项为2,公比为-3,求该数列的第5项a_5。
解析:根据等比数列的通项公式,可得 a_5 = 2 * (-3)^4 = 72。
2、求等比数列的前n项和。
已知一个等比数列的首项为2,公比为-3,求该数列的前5项和S_5。
解析:根据等比数列的求和公式,可得 S_5 = 2 * (1 - (-3)^5) / (1 - (-3)) = -94。
等比数列典型例题及详细解答
1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母__q __表示(q ≠0). 2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1. 3.等比中项若G 2=a ·b _(ab ≠0),那么G 叫做a 与b 的等比中项. 4.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列.5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n , 当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q .6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为__q n __. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( × )(2)G 为a ,b 的等比中项⇔G 2=ab .( × )(3)如果数列{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( × ) (4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( × ) (5)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( × )(6)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( × )1.(2015·课标全国Ⅱ)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7等于( ) A .21 B .42 C .63 D .84 答案 B解析 设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21得3(1+q 2+q 4)=21,解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42,故选B. 2.设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6等于( ) A .31 B .32 C .63 D .64 答案 C解析 根据题意知,等比数列{a n }的公比不是-1.由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.故选C.3.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4 D .3 答案 C解析 数列{lg a n }的前8项和S 8=lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 1·a 8)4 =lg(a 4·a 5)4=lg(2×5)4=4.4.(2015·安徽)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________. 答案 2n -1解析 由等比数列性质知a 2a 3=a 1a 4,又a 2a 3=8,a 1+a 4=9,所以联立方程⎩⎪⎨⎪⎧a 1a 4=8,a 1+a 4=9,解得⎩⎪⎨⎪⎧ a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1,又∵数列{a n }为递增数列,∴a 1=1,a 4=8,从而a 1q 3=8,∴q =2. ∴数列{a n }的前n 项和为S n =1-2n 1-2=2n-1.5.(教材改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________.答案 27,81解析 设该数列的公比为q ,由题意知, 243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81.题型一 等比数列基本量的运算例1 (1)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( )A.152B.314C.334D.172(2)在等比数列{a n }中,若a 4-a 2=6,a 5-a 1=15,则a 3=________. 答案 (1)B (2)4或-4解析 (1)显然公比q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 1(1-q 3)1-q =7,解得⎩⎪⎨⎪⎧ a 1=4,q =12,或⎩⎪⎨⎪⎧a 1=9q =-13(舍去),∴S 5=a 1(1-q 5)1-q=4(1-125)1-12=314.(2)设等比数列{a n }的公比为q (q ≠0),则⎩⎪⎨⎪⎧a 1q 3-a 1q =6,a 1q 4-a 1=15,两式相除,得q 1+q 2=25,即2q 2-5q +2=0,解得q =2或q =12.所以⎩⎪⎨⎪⎧a 1=1,q =2,或⎩⎪⎨⎪⎧a 1=-16,q =12.故a 3=4或a 3=-4.思维升华 等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.(1)在正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 5a 7等于( )A.56B.65C.23D.32(2)(2015·湖南)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 答案 (1)D (2)3n -1解析 (1)设公比为q ,则由题意知0<q <1,由⎩⎪⎨⎪⎧a 2·a 8=a 4·a 6=6,a 4+a 6=5,得a 4=3,a 6=2, 所以a 5a 7=a 4a 6=32.(2)由3S 1,2S 2,S 3成等差数列知,4S 2=3S 1+S 3,可得a 3=3a 2,所以公比q =3,故等比数列通项a n =a 1q n -1=3n -1.题型二 等比数列的判定与证明例2 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式. (1)证明 由a 1=1及S n +1=4a n +2, 有a 1+a 2=S 2=4a 1+2. ∴a 2=5,∴b 1=a 2-2a 1=3.又⎩⎪⎨⎪⎧S n +1=4a n +2, ①S n =4a n -1+2 (n ≥2), ② ①-②,得a n +1=4a n -4a n -1 (n ≥2), ∴a n +1-2a n =2(a n -2a n -1) (n ≥2). ∵b n =a n +1-2a n ,∴b n =2b n -1 (n ≥2), 故{b n }是首项b 1=3,公比为2的等比数列. (2)解 由(1)知b n =a n +1-2a n =3·2n -1, ∴a n +12n +1-a n 2n =34, 故{a n 2n }是首项为12,公差为34的等差数列. ∴a n 2n =12+(n -1)·34=3n -14, 故a n =(3n -1)·2n -2. 引申探究例2中“S n +1=4a n +2”改为“S n +1=2S n +(n +1)”,其他不变探求数列{a n }的通项公式. 解 由已知得n ≥2时,S n =2S n -1+n . ∴S n +1-S n =2S n -2S n -1+1, ∴a n +1=2a n +1,∴a n +1+1=2(a n +1),又a 1=1,当n =1时上式也成立,故{a n +1}是以2为首项,以2为公比的等比数列, ∴a n +1=2·2n -1=2n ,∴a n =2n -1.思维升华 (1)证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.(2)利用递推关系时要注意对n =1时的情况进行验证.设数列{a n }的前n 项和为S n ,已知a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *).(1)求a 2,a 3的值;(2)求证:数列{S n +2}是等比数列.(1)解 ∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *), ∴当n =1时,a 1=2×1=2; 当n =2时,a 1+2a 2=(a 1+a 2)+4, ∴a 2=4;当n =3时,a 1+2a 2+3a 3=2(a 1+a 2+a 3)+6, ∴a 3=8.综上,a 2=4,a 3=8.(2)证明 a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),① ∴当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1 =(n -2)S n -1+2(n -1).②①-②得na n =(n -1)S n -(n -2)S n -1+2=n (S n -S n -1)-S n +2S n -1+2=na n -S n +2S n -1+2. ∴-S n +2S n -1+2=0,即S n =2S n -1+2, ∴S n +2=2(S n -1+2).∵S 1+2=4≠0,∴S n -1+2≠0, ∴S n +2S n -1+2=2,故{S n +2}是以4为首项,2为公比的等比数列.题型三 等比数列的性质及应用例3 (1)在等比数列{a n }中,各项均为正值,且a 6a 10+a 3a 5=41,a 4a 8=5,则a 4+a 8=________. (2)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________.答案 (1)51 (2)-12解析 (1)由a 6a 10+a 3a 5=41及a 6a 10=a 28,a 3a 5=a 24, 得a 24+a 28=41.因为a 4a 8=5,所以(a 4+a 8)2=a 24+2a 4a 8+a 28=41+2×5=51.又a n >0,所以a 4+a 8=51.(2)由S 10S 5=3132,a 1=-1知公比q ≠±1,则可得S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5, 故q 5=-132,q =-12.思维升华 (1)在等比数列的基本运算问题中,一般利用通项公式与前n 项和公式,建立方程组求解,但如果能灵活运用等比数列的性质“若m +n =p +q ,则有a m a n =a p a q ”,可以减少运算量.(2)等比数列的项经过适当的组合后构成的新数列也具有某种性质,例如等比数列S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,公比为q k (q ≠-1).已知等比数列{a n }的公比为正数,且a 3a 9=2a 25,a 2=2,则a 1等于( )A.12 B.22C. 2D .2(2)等比数列{a n }共有奇数项,所有奇数项和S 奇=255,所有偶数项和S 偶=-126,末项是192,则首项a 1等于( ) A .1 B .2 C .3D .4答案 (1)C (2)C解析 (1)由等比数列的性质得a 3a 9=a 26=2a 25,∵q >0,∴a 6=2a 5,q =a 6a 5=2,a 1=a 2q=2,故选C.(2)设等比数列{a n }共有2k +1(k ∈N *)项,则a 2k +1=192,则S 奇=a 1+a 3+…+a 2k -1+a 2k +1=1q (a 2+a 4+…+a 2k )+a 2k +1=1q S 偶+a 2k +1=-126q +192=255,解得q =-2,而S 奇=a 1-a 2k +1q 21-q 2=a 1-192×(-2)21-(-2)2=255,解得a 1=3,故选C.12.分类讨论思想在等比数列中的应用典例 (12分)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式; (2)证明:S n +1S n ≤136(n ∈N *).思维点拨 (1)利用等差数列的性质求出等比数列的公比,写出通项公式; (2)求出前n 项和,根据函数的单调性证明. 规范解答(1)解 设等比数列{a n }的公比为q , 因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4, 可得2a 4=-a 3,于是q =a 4a 3=-12.[2分]又a 1=32,所以等比数列{a n }的通项公式为a n =32×⎝⎛⎭⎫-12n -1=(-1)n -1·32n .[3分] (2)证明 由(1)知,S n =1-⎝⎛⎭⎫-12n , S n+1S n=1-⎝⎛⎭⎫-12n+11-⎝⎛⎭⎫-12n=⎩⎨⎧2+12n(2n+1),n 为奇数,2+12n(2n-1),n 为偶数.[6分]当n 为奇数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 1+1S 1=136.[8分]当n 为偶数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 2+1S 2=2512.[10分]故对于n ∈N *,有S n +1S n ≤136.[12分]温馨提醒 (1)分类讨论思想在等比数列中应用较多,常见的分类讨论有 ①已知S n 与a n 的关系,要分n =1,n ≥2两种情况.②等比数列中遇到求和问题要分公比q =1,q ≠1讨论. ③项数的奇、偶数讨论.④等比数列的单调性的判断注意与a 1,q 的取值的讨论.(2)数列与函数有密切的联系,证明与数列有关的不等式,一般是求数列中的最大项或最小项,可以利用图象或者数列的增减性求解,同时注意数列的增减性与函数单调性的区别.[方法与技巧] 1.已知等比数列{a n }(1)数列{c ·a n }(c ≠0),{|a n |},{a 2n },{1a n }也是等比数列. (2)a 1a n =a 2a n -1=…=a m a n -m +1. 2.判断数列为等比数列的方法(1)定义法:a n +1a n =q (q 是不等于0的常数,n ∈N *)⇔数列{a n }是等比数列;也可用a n a n -1=q (q是不等于0的常数,n ∈N *,n ≥2)⇔数列{a n }是等比数列.二者的本质是相同的,其区别只是n 的初始值不同.(2)等比中项法:a 2n +1=a n a n +2(a n a n +1a n +2≠0,n ∈N *)⇔数列{a n }是等比数列.[失误与防范]1.特别注意q =1时,S n =na 1这一特殊情况.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.4.等比数列性质中:S n ,S 2n -S n ,S 3n -S 2n 也成等比数列,不能忽略条件q ≠-1.A 组 专项基础训练 (时间:35分钟)1.已知等比数列{a n }中,a 2+a 3=1,a 4+a 5=2,则a 6+a 7等于( ) A .2 B .2 2 C .4 D .4 2答案 C解析 因为a 2+a 3,a 4+a 5,a 6+a 7成等比数列,a 2+a 3=1,a 4+a 5=2,所以(a 4+a 5)2=(a 2+a 3)(a 6+a 7),解得a 6+a 7=4.2.等比数列{a n }满足a n >0,n ∈N *,且a 3·a 2n -3=22n (n ≥2),则当n ≥1时,log 2a 1+log 2a 2+…+log 2a 2n -1等于( ) A .n (2n -1) B .(n +1)2 C .n 2 D .(n -1)2答案 A解析 由等比数列的性质,得a 3·a 2n -3=a 2n =22n ,从而得a n =2n .方法一 log 2a 1+log 2a 2+…+log 2a 2n -1=log 2[(a 1a 2n -1)·(a 2a 2n -2)·…·(a n -1a n +1)a n ]=log 22n (2n -1)=n (2n -1).方法二 取n =1,log 2a 1=log 22=1,而(1+1)2=4,(1-1)2=0,排除B ,D ;取n =2,log 2a 1+log 2a 2+log 2a 3=log 22+log 24+log 28=6,而22=4,排除C ,选A.3.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( ) A .12 B .13 C .14 D .15答案 C解析 设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12, 可得q 9=3,a n -1a n a n +1=a 31q3n -3=324, 因此q 3n -6=81=34=q 36,所以n =14,故选C.4.若正项数列{a n }满足lg a n +1=1+lg a n ,且a 2 001+a 2 002+…+a 2 010=2 016,则a 2 011+a 2 012+…+a 2 020的值为( ) A .2 015·1010 B .2 015·1011 C .2 016·1010 D .2 016·1011答案 C解析 ∵lg a n +1=1+lg a n ,∴lg a n +1a n=1, ∴a n +1a n=10,∴数列{a n }是等比数列, ∵a 2 001+a 2 002+…+a 2 010=2 016,∴a 2 011+a 2 012+…+a 2 020=1010(a 2 001+a 2 002+…+a 2 010)=2 016×1010.5.已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为( )A .-2B .2C .-3D .3 答案 B解析 设公比为q ,若q =1,则S 2mS m =2,与题中条件矛盾,故q ≠1.∵S 2mS m =a 1(1-q 2m )1-q a 1(1-q m )1-q =q m +1=9,∴q m =8. ∴a 2m a m =a 1q 2m -1a 1q m -1=q m =8=5m +1m -1, ∴m =3,∴q 3=8,∴q =2.6.等比数列{a n }中,S n 表示前n 项和,a 3=2S 2+1,a 4=2S 3+1,则公比q 为________. 答案 3解析 由a 3=2S 2+1,a 4=2S 3+1得 a 4-a 3=2(S 3-S 2)=2a 3, ∴a 4=3a 3,∴q =a 4a 3=3.7.等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,则对任意的n ∈N *,都有a n +2+a n +1-2a n =0,则S 5=________.答案 11解析 由题意知a 3+a 2-2a 1=0,设公比为q , 则a 1(q 2+q -2)=0.由q 2+q -2=0解得q =-2或q =1(舍去), 则S 5=a 1(1-q 5)1-q=1-(-2)53=11.8.已知数列{a n }的首项为1,数列{b n }为等比数列且b n =a n +1a n,若b 10·b 11=2,则a 21=________. 答案 1 024解析 ∵b 1=a 2a 1=a 2,b 2=a 3a 2,∴a 3=b 2a 2=b 1b 2,∵b 3=a 4a 3,∴a 4=b 1b 2b 3,…,a n =b 1b 2b 3·…·b n -1, ∴a 21=b 1b 2b 3·…·b 20=(b 10b 11)10=210=1 024.9.数列{b n }满足:b n +1=2b n +2,b n =a n +1-a n ,且a 1=2,a 2=4. (1)求数列{b n }的通项公式; (2)求数列{a n }的前n 项和S n .解 (1)由b n +1=2b n +2,得b n +1+2=2(b n +2),∴b n +1+2b n +2=2,又b 1+2=a 2-a 1+2=4, ∴数列{b n +2}是首项为4,公比为2的等比数列.∴b n +2=4·2n -1=2n +1,∴b n =2n +1-2.(2)由(1)知,a n -a n -1=b n -1=2n -2 (n ≥2),∴a n -1-a n -2=2n -1-2 (n >2),…,a 2-a 1=22-2,∴a n -2=(22+23+…+2n )-2(n -1),∴a n =(2+22+23+…+2n )-2n +2=2(2n -1)2-1-2n +2=2n +1-2n . ∴S n =4(1-2n )1-2-n (2+2n )2=2n +2-(n 2+n +4). 10.已知数列{a n }和{b n }满足a 1=λ,a n +1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数.(1)证明:对任意实数λ,数列{a n }不是等比数列;(2)证明:当λ≠-18时,数列{b n }是等比数列.证明 (1)假设存在一个实数λ,使{a n }是等比数列, 则有a 22=a 1a 3,即⎝⎛⎭⎫23λ-32=λ⎝⎛⎭⎫49λ-4 ⇔49λ2-4λ+9=49λ2-4λ⇔9=0,矛盾. 所以{a n }不是等比数列.(2)b n +1=(-1)n +1[a n +1-3(n +1)+21]=(-1)n +1⎝⎛⎭⎫23a n -2n +14 =-23(-1)n ·(a n -3n +21)=-23b n . 又λ≠-18,所以b 1=-(λ+18)≠0.由上式知b n ≠0,所以b n +1b n =-23(n ∈N *). 故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-23为公比的等比数列. B 组 专项能力提升(时间:20分钟)11.设{a n }是各项为正数的无穷数列,A i 是边长为a i ,a i +1的矩形的面积(i =1,2,…),则{A n }为等比数列的充要条件是( )A .{a n }是等比数列B .a 1,a 3,…,a 2n -1,…或a 2,a 4,…,a 2n ,…是等比数列C .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列D .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列,且公比相同答案 D解析 ∵A i =a i a i +1,若{A n }为等比数列,则A n +1A n =a n +1a n +2a n a n +1=a n +2a n 为常数,即A 2A 1=a 3a 1,A 3A 2=a 4a 2,….∴a 1,a 3,a 5,…,a 2n -1,…和a 2,a 4,…,a 2n ,…成等比数列,且公比相等.反之,若奇数项和偶数项分别成等比数列,且公比相等,设为q ,则A n +1A n =a n +2a n=q ,从而{A n }为等比数列.12.若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.答案 50解析 因为a 10a 11+a 9a 12=2a 10a 11=2e 5,所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50.13.数列{a n }满足a 1=2且对任意的m ,n ∈N *,都有a n +m a m=a n ,则a 3=________;{a n }的前n 项和S n =________.答案 8 2n +1-2解析 ∵a n +m a m=a n , ∴a n +m =a n ·a m ,∴a 3=a 1+2=a 1·a 2=a 1·a 1·a 1=23=8;令m =1,则有a n +1=a n ·a 1=2a n ,∴数列{a n }是首项为a 1=2,公比为q =2的等比数列,∴S n =2(1-2n )1-2=2n +1-2. 14.定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2;②f (x )=2x ;③f (x )=|x |;④f (x )=ln |x |.则其中是“保等比数列函数”的f (x )的序号为________.答案 ①③解析 设{a n }的公比为q ,验证①f (a n +1)f (a n )=a 2n +1a 2n =q 2,③f (a n +1)f (a n )=|a n +1||a n |=|q |,故①③为“保等比数列函数”. 15.已知数列{a n }中,a 1=1,a n ·a n +1=⎝⎛⎭⎫12n ,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *. (1)判断数列{b n }是否为等比数列,并求出b n ;(2)求T 2n .解 (1)∵a n ·a n +1=⎝⎛⎭⎫12n ,∴a n +1·a n +2=⎝⎛⎭⎫12n +1,∴a n +2a n =12,即a n +2=12a n . ∵b n =a 2n +a 2n -1,∴b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12, ∵a 1=1,a 1·a 2=12, ∴a 2=12⇒b 1=a 1+a 2=32. ∴{b n }是首项为32,公比为12的等比数列. ∴b n =32×⎝⎛⎭⎫12n -1=32n . (2)由(1)可知,a n +2=12a n , ∴a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列, ∴T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝⎛⎭⎫12n 1-12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=3-32n .。
数列(3)Microsoft Office Word 文档
23、数列(3)——等比数列一、基础知识(必记)1.等比数列的定义一般地,如果一个数列从 ,每一项与它的 的比都等于 常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的 ,公比通常用字母 表示(q ≠0). 2.等比数列的基本公式(1)通项公式(2)前n项和的公式Sn= = = .(3)等比中项: .3.等比数列的性质(1)对任意的正整数m 、n 、p 、q ,若m +n =p +q ,则 . 特别地m +n =2p 则 .(2)若等比数列前n 项和为S n ,则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列,即(S 2m -S m )2= (m ∈N *,公比q ≠-1)(3)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列,公比为 .二、基础自测:1、你能发现下列两题的解法错在哪吗?(1)在等比数列{a n }中,它的前n 项和是S n ,当S 3=3a 3时,求公比q 的值.解∵ S 3=3a 3,∴ a 1(1-q 3)1-q =3a 1·q 2,∴ a 1(q 2+q +1)=3a 1q 2,∴ 2q 2-q -1=0,解得q =1或q =-12.(2)ac =b 2是a ,b ,c 成等比数列的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:若a ,b ,c 成等比数列,∴ b 2=ac ;若ac =b 2,∴ a ,b ,c 成等比数列,选C. 答案:C 2.(2010·全国)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( )3.在等比数列{a n }中,前n 项和为S n ,若S 3=7,S 6=63,则公比q 的值是( )A .2B .-2C .3D .-3 4. (2010·辽宁)设S n 为等比数列{a n }的前n 项和. 已知3S 3=a 4-2,3S 2=a 3-2,则公比q =( )A .3B .4C .5D .65. 4.若等比数列的公比为2,且前4项和为1,则这个等比数列的前8项和为________.6.设数列1,(1+2),…,(1+2+22+…+2n -1),…的前n 项和为S n ,则S n =________.三、基本题型1、设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明数列{b n }是等比数列; (2)求数列{a n }的通项公式.2、已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的正整数n 的最小值.3、(1)已知等比数列{a n }中,a 1+a 2+a 3=7,a 1a 2a 3=8,求a n ;(2)有四个正数,前三个数成等差数列,其和为48,后三个数成等比数列,其最后一个数为25,求此四个数.**4.(2010·全国Ⅱ)已知{a n }是各项均为正数的等比数列,且a 1+a 2=2⎝⎛1a 1+1a 2,a 3+a 4+a 5=64⎝⎛⎭⎫1a 3+1a 4+1a 5. (1)求{a n }的通项公式; (2)设b n =⎝⎛⎭⎫a n +1a n 2,求数列{b n }的前n 项和T n .**5.(2010·北京海淀二模)若数列{a n }满足a 1=1,a n +1=pS n +r (n ∈N *),p ,r ∈R ,S n 为数列{a n }的前n 项和. (1)当p =2,r =0时,求a 2,a 3,a 4的值;(2)是否存在实数p ,r ,使得数列{a n }为等比数列?若存在,求出p ,r 满足的条件;若不存在,说明理由.***6.(2010·安徽)设C 1,C 2,…,C n ,…是坐标平面上的一列圆,它们的圆心都在x 轴的正半轴上,且都与直线y =33x 相切. 对每一个正整数n ,圆C n 都与圆C n +1相互外切. 以r n 表示C n 的半径,已知{r n }为递增数列.(1)证明:{r n }为等比数列;(2)设r 1=1,求数列⎩⎨⎧⎭⎬⎫n r n 的前n 项和.四、基础训练: (一)、选择题1.已知{a n }是等比数列,a 2=2,a 5=14,则公比q =( )A .-12B .-2C .2D.122.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=( )A .64B .81C .128D .2433.在正项等比数列{a n }中,a 1和a 19为方程x 2-10x +16=0的两根,则a 8a 10a 12=( )A .32B .±64C .64D .256 (二)、填空题4.已知各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 2n =14,则S 3n 等于________.5.在所示的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a +b +c 的值为________.(三)、解答题6.设数列{a n }的前n 项和为S n ,已知a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N +). (1)求a 2,a 3的值;(2)求证:数列{S n +2}是等比数列.五.课后作业:一、选择题1.在等比数列{a n }中,已知a 1a 3a 11=8,则a 2a 8等于( )A .16B .6C .12D .42.(2010·浙江)设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=( )A .-11B .-8C .5D .113.一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( )A .13项B .12项C .11项D .10项4.(2010·菱湖模拟)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于( )A .2nB .3nC .3n-1D .2n +1-25.已知x >0,y >0,x 、a 、b 、y 成等差数列,x 、c 、d 、y 成等比数列,则(a +b )2cd的最小值是( )A .0B .1C .2D .46.(2010·哈尔滨模拟)已知等比数列{a n }满足a n >0,n ∈N *,且a 3·a 2n -3=4n(n >1),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=( )A .n 2B .(n +1)2C .n (2n -1)D .(n -1)2二、填空题7.(2010·株洲模拟)等比数列{a n }中,a n >0且a 5·a 6=9,则log 3a 2+log 3a 9=________.8.在正项数列{a n }中,a 1=2,点(a n ,a n -1)(n ≥2)在直线x -2y =0上,则数列{a n }的前n 项和S n =________. 9.在数列{a n },{b n }中,b n 是a n 与a n +1的等差中项,a 1=2,且对任意n ∈N +,都有3a n +1-a n =0,则{b n }的通项公式b n =________.10.已知函数f (x )=2x +3,数列{a n }满足:a 1=1且a n +1=f (a n )(n ∈N *),则该数列的通项公式a n =________. (三)、解答题11.(2010·陕西)已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列.(1)求数列{a n }的通项; (2)求数列{2a n }的前n 项和S n .12.(2010·上海)已知数列{a n }的前n 项和为S n ,且S n =n -5a n -85,n ∈N *.(1)证明:{a n -1}是等比数列;(2)求数列{S n }的通项公式. 请指出n 为何值时,S n 取得最小值,并说明理由.。
(复习指导)第6章第3节 等比数列Word版含解析(1)
第三节 等比数列一、教材概念·结论·性质重现 1.等比数列的有关概念(1)定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(显然q ≠0).定义的递推公式为a n +1a n=q (常数).(2)等比中项:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.此时,G 2=ab .(1)注意:①等比数列的每一项都不可能为0.②公比是每一项与其前一项的比,前后次序不能颠倒,且公比是一个与n 无关的常数.(2)“G 2=ab ”是“a ,G ,b 成等比数列”的必要不充分条件. 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *). (3)前n 项和公式:S n =⎩⎨⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q1-q ,q ≠1.(1)等比数列通项公式与指数函数的关系等比数列{a n }的通项公式a n =a 1q n -1还可以改写为a n =a 1q ·q n,当q ≠1且a 1≠0时,y =q x 是指数函数,y =a 1q ·q x 是指数型函数,因此数列{a n }的图象是函数y =a 1q ·qx(1)若m +n =p +q ,则a m a n =a p a q ,其中m ,n ,p ,q ∈N *.特别地,若2w =m+n ,则a m a n =a 2w ,其中m ,n ,w ∈N *.对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的积,即a 1·a n =a 2·a n -1=…=a k ·a n -k +1=….(2)若数列{a n },{b n }(项数相同)是等比数列,则{ba n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n},⎩⎨⎧⎭⎬⎫a n bn ,{pa n ·qb n }和⎩⎨⎧⎭⎬⎫pa n qb n 仍然是等比数列(其中b ,p ,q 是非零常数).(3)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m (k ,m ∈N *).(4)当q ≠-1或q =-1且k 为奇数时,S k ,S 2k -S k ,S 3k -S 2k ,…是等比数列,其公比为q k .(5)若a 1·a 2·…·a n =T n ,则T n ,T 2n T n,T 3nT 2n,…成等比数列.4.等比数列{a n }的单调性5.(1)项的个数的“奇偶”性质,在等比数列{a n }中,公比为q . ①若共有2n 项,则S 偶∶S 奇=q ; ②若共有2n +1项,则S 奇-a 1S 偶=q .(2)分段求和:S n +m =S n +q n S m ⇔q n =S n +m -S nS m(q 为公比).二、基本技能·思想·活动体验1.判断下列说法的正误,对的打“√”,错的打“×”. (1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列. (×) (2)任意两个实数都有等比中项.(×) (3)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.(×) (4)数列{a n }的通项公式是a n =a n ,则其前n 项和为S n =a (1-a n)1-a.(×)2.公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18.若a 1a m =9,则m 的值为(C) A .8 B .9 C .10 D .113.设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6等于( ) A .31 B .32 C .63D .64C 解析:根据题意知,等比数列{a n }的公比不是-1.由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.故选C .4.在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________.27,81 解析:设该数列的公比为q ,由题意知, 243=9×q 3,q 3=27,所以q =3.所以插入的两个数分别为9×3=27,27×3=81.5.一种专门占据内存的计算机病毒开机时占据内存1 MB ,然后每3秒自身复制一次,复制后所占内存是原来的2倍,那么开机________秒,该病毒占据内存8 GB .(1 GB =210 MB)39 解析:由题意可知,病毒每复制一次所占内存的大小构成等比数列{a n },且a 1=2,q =2,所以a n =2n ,则2n =8×210=213,所以n =13. 即病毒共复制了13次.所以所需时间为13×3=39(秒).考点1 等比数列基本量的运算——基础性1.已知公比大于0的等比数列{a n }满足a 1=3,前三项和S 3=21,则a 2+a 3+a 4=( )A .21B .42C .63D .84B 解析:S 3=21=a 1(1-q 3)1-q =3(1+q +q 2),即q 2+q -6=0,解得q =2或q=-3(舍),所以a 2+a 3+a 4=qS 3=2×21=42.2.在等比数列{a n }中,若a 4-a 2=6,a 5-a 1=15,则a 3=________. 4或-4 解析:设等比数列{a n }的公比为q (q ≠0),则⎩⎪⎨⎪⎧a 1q 3-a 1q =6,a 1q 4-a 1=15,两式相除,得q 1+q 2=25, 即2q 2-5q +2=0,解得q =2或q =12.所以⎩⎪⎨⎪⎧a 1=1,q =2,或⎩⎨⎧a 1=-16,q =12.故a 3=4或a 3=-4.3.(2019·全国卷Ⅰ)设S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________.1213解析:由a 24=a 6,得(a 1q 3)2=a 1q 5,整理得q =1a 1=3,所以S 5=13(1-35)1-3=1213.4.(2020·芜湖模拟)18世纪德国数学家提丢斯给出一串数列:0,3,6,12,24,48,96,192,…,容易发现,从第3项开始,每一项是前一项的2倍.将每一项加上4得到一个数列:4,7,10,16,28,52,100,196,….再每一项除以10得到:0.4,0.7,1.0,1.6,2.8,5.2,10.0,…,这个数列称为提丢斯数列,则提丢斯数列的通项公式a n =________.a n =⎩⎪⎨⎪⎧0.4,n =1,3×2n -2+410,n ≥2,n ∈N * 解析:由题意可得:n ≥3时,{10a n -4}为数列0,3,6,12,24,48,96,192,…,所以10a n -4=6×2n -3=3×2n -2,解得a n =3×2n -2+410.n =2时,a 2=0.7,也满足条件.n =1时,a 1=0.4,不满足条件.故提丢斯数列的通项公式a n =⎩⎪⎨⎪⎧0.4,n =1,3×2n -2+410,n ≥2,n ∈N *.等比数列基本量的运算的解题策略(1)等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.(2)解方程组时常常利用“作商”消元法.(3)运用等比数列的前n 项和公式时,一定要讨论公比q =1的情形,否则会漏解或增解.考点2等比数列的性质及应用——应用性(1)(2020·宝鸡二模)等比数列{a n},a n>0且a5a6+a3a8=54,则log3a1+log3a2+…+log3a10=()A.12 B.15C.8 D.2+log35B解析:因为等比数列{a n},a n>0且a5a6+a3a8=54,所以a5a6=a3a8=27,所以log3a1+log3a2+…+log3a10=log3(a1×a2×a3×…×a10)=log3(a5a6)5=5log327=15.(2)等比数列{a n}的首项a1=-1,前n项和为S n.若S10S5=3132,则公比q=________.-12解析:由S10S5=3132,a1=-1知公比q≠±1,则可得S10-S5S5=-132.由等比数列前n项和的性质知S5,S10-S5,S15-S10成等比数列,且公比为q5,故q5=-132,q=-12.1.本例(1)条件不变,则log3a1+log3a2+…+log3a10=________.30解析:因为等比数列{a n},a n>0且a5a6+a3a8=54,所以a5a6=a3a8=27, 所以log3a1+log3a2+…+log3a10=log3(a1a2…a10)=log3(a1a10)5=log3(a5a6)5=log3315=2log3315=30.2.本例(1)把条件变为“在各项不为零的等差数列{a n}中,2a2 017-a22 018+2a2 019=0,数列{b n}是等比数列,且b2 018=a2 018”,试求log2(b2 017·b2 019)的值.解:因为等差数列{a n}中a2 017+a2 019=2a2 018,所以2a2 017-a22 018+2a2 019=4a2-a22 018=0.018因为各项不为零,所以a2 018=4.因为数列{b n}是等比数列,所以b2 017·b2 019=a22 018=16,所以log2(b2 017·b2 019)=log216=4.等比数列性质应用的要点(1)在等比数列的基本运算问题中,一般利用通项公式与前n项和公式,建立方程组求解,但如果能灵活运用等比数列的性质“若m+n=p+q,则有a m a n=a p a q”,可以减少运算量.(2)等比数列的项经过适当的组合后构成的新数列也具有某种性质,例如等比数列S k,S2k-S k,S3k-S2k,…成等比数列,公比为q k(q≠-1).设等比数列{a n}中,前n项和为S n,已知S5=8,S10=7,求a11+a12+a13+a14+a15的值.解:因为a11+a12+a13+a14+a15=S15-S10,且S5,S10-S5,S15-S10也成等,比数列,即8,-1,S15-S10成等比数列,所以8(S15-S10)=1,即S15-S10=18所以a11+a12+a13+a14+a15=18.考点3等比数列的判定和证明——综合性考向1用等比数列的定义证明已知数列{a n}满足a1=1,a n+1=4a n+3n-1,b n=a n+n.(1)证明:数列{b n}为等比数列;(2)求数列{a n}的前n项和.(1)证明:因为b n=a n+n,所以b n+1=a n+1+n+1.又因为a n+1=4a n+3n-1,所以b n+1b n=a n+1+n+1a n+n=(4a n+3n-1)+n+1a n+n=4(a n+n)a n+n=4.又因为b1=a1+1=1+1=2,所以数列{b n}是首项为2,公比为4的等比数列.(2)解:由(1)求解知,b n=2×4n-1,所以a n=b n-n=2×4n-1-n,所以S n=a1+a2+…+a n=2(1+4+42+…+4n-1)-(1+2+3+…+n)=2(1-4n)1-4-n(n+1)2=23(4n-1)-12n2-12n.判断或证明一个数列为等比数列时应注意的问题(1)判断或者证明数列为等比数列最基本的方法是用定义判断,其他方法最后都要回到定义.(2)判断一个数列是等比数列,有通项公式法及前n项和公式法,但在解答题中不作为证明方法.(3)若要判断一个数列不是等比数列,只需判断存在连续三项不成等比数列.考向2用等比中项法证明等比数列在数列{a n}中,a2n+1+2a n+1=a n a n+2+a n+a n+2,且a1=2,a2=5.(1)证明:数列{a n +1}是等比数列; (2)求数列{a n }的前n 项和S n .(1)证明:因为a 2n +1+2a n +1=a n a n +2+a n +a n +2, 所以(a n +1+1)2=(a n +1)(a n +2+1), 即a n +1+1a n +1=a n +2+1a n +1+1. 因为a 1=2,a 2=5,所以a 1+1=3,a 2+1=6, 所以a 2+1a 1+1=2,所以数列{a n +1}是以3为首项,2为公比的等比数列. (2)解:由(1)知,a n +1=3·2n -1,所以a n =3·2n -1-1, 所以S n =3(1-2n )1-2-n =3·2n -n -3.证明等比数列问题的注意点(1)a 2n =a n -1a n +1(n ≥2,n ∈N *)是{a n }为等比数列的必要而不充分条件,也就是判断一个数列是等比数列时,要注意各项不为0.(2)证明数列{a n }为等比数列时,不能仅仅证明a n +1=qa n ,还要说明q ≠0,才能递推得出数列中的各项均不为零,最后断定数列{a n }为等比数列.1.设{a n }为等比数列,给出四个数列:①{2a n };②{a 2n };③{2a n };④{log 2|a n |},其中一定为等比数列的是( )A .①②B .①③C .②③D .②④A 解析:{a n }为等比数列,设其公比为q ,则通项公式为a 1q n -1,所以对于①,数列{2a n }是以2a 1为首项,以q 为公比的等比数列; 对于②,a 2n a 2n -1=q 2为常数,又因为a 21≠0,故②为等比数列;对于③,2a n 2a n -1=2a n -(a n -1),不一定为常数;对于④,log 2|a n |log 2|a n -1|=log 2|a 1q n -1|log 2|a 1q n -2|,不一定为常数. 2.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式. (1)证明:由a 1=1及S n +1=4a n +2, 有a 1+a 2=S 2=4a 1+2.所以a 2=5,所以b 1=a 2-2a 1=3. 又⎩⎪⎨⎪⎧S n +1=4a n +2, ①S n =4a n -1+2(n ≥2), ② ①-②,得a n +1=4a n -4a n -1(n ≥2), 所以a n +1-2a n =2(a n -2a n -1)(n ≥2). 因为b n =a n +1-2a n ,所以b n =2b n -1(n ≥2), 故数列{b n }是首项b 1=3,公比为2的等比数列. (2)解:由(1)知b n =a n +1-2a n =3·2n -1, 所以a n +12n +1-a n 2n =34,故⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列. 所以a n 2n =12+(n -1)·34=3n -14,故a n =(3n -1)·2n -2.3.在数列{a n }中,已知a n +1a n =2a n -a n +1,且a 1=2(n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1a n-1是等比数列;(2)设b n =a 2n -a n ,且S n 为{b n }的前n 项和,试证:2≤S n <3. 证明:(1)由a n +1a n =2a n -a n +1,得2a n +1-1a n =1,即1a n +1-12a n =12,所以1a n +1-1=12⎝ ⎛⎭⎪⎫1a n -1.因为a 1=2,所以1a 1-1=12-1=-12≠0,所以1a n +1-11a n -1=12,即数列⎩⎨⎧⎭⎬⎫1a n -1是等比数列. (2)因为⎩⎨⎧⎭⎬⎫1a n-1是等比数列,且首项为-12,公比为12,所以1a n -1=-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n,则a n =2n 2n -1. 所以b n =a 2n -a n =a n (a n -1)=2n 2n -1·⎝ ⎛⎭⎪⎫2n2n -1-1=2n (2n -1)2. 因为b 1=2,b n =2n(2n -1)2>0,所以S n =b 1+b 2+…+b n ≥2.又b n =2n (2n -1)2=2n 22n -2·2n +1<2n 22n -2·2n =12n -2≤12n -1(n ≥2), 所以S n =b 1+b 2+…+b n <2+12+122+…+12n -1=2+12⎝ ⎛⎭⎪⎫1-12n -11-12=3-12n -1<3.所以2≤S n <3.已知等比数列{a n }的前n 项和为S n .若S 10=20,S 20=60,则S 30=________. [四字程序]读想算思求S 301.求和公式;2.如何确定首项与公比等比数列的基本运算转化与化归等比数列, S 10=20, S 20=601.基本量法;2.性质法1.列方程组求基本量;2.利用性质直接求解1.求和公式;2.通项公式;3.和的性质思路参考:用a 1,q 表示S 10,S 20,求q 10.140 解析:设数列{a n }的公比为q .因为S 20≠2S 10,所以q ≠1. 又S 10=20,S 20=60,所以⎩⎪⎨⎪⎧a 1(1-q 10)1-q=20,a 1(1-q20)1-q=60.两式相比得q 10=2,所以S 30=S 10+q 10S 20=20+2×60=140.思路参考:利用性质S 2n S n =1-q2n1-qn . 140 解析:由S 10=20,S 20=60,易得公比q ≠±1,根据等比数列前n 项和的性质,可得S 20S 10=1-q 201-q 10,即6020=1-q201-q10=1+q 10,解得q 10=2.又S 30S 10=1-q 301-q 10,所以S 3020=1-231-2=7,S 30=140.思路参考:利用性质S n +m =S n +q n S m .140 解析:根据等比数列前n 项和的性质,可得S 20=S 10+q 10S 10,即60=20+20q 10,解得q 10=2,所以S 30=S 10+q 10S 20=20+2×60=140.思路参考:利用性质S n ,S 2n -S n ,S 3n -S 2n 成等比.140 解析:根据等比数列前n 项和的性质,可知S 10,S 20-S 10,S 30-S 20成等比数列,则(S 20-S 10)2=S 10(S 30-S 20),即(60-20)2=20(S 30-60),解得S 30=140.1.本题考查等比数列的求和问题,解法灵活多变,基本解题策略是借助于等比数列的基本量计算,或转化为等比数列和的性质求解,对于此类问题要注意认真计算或转化.2.基于课程标准,解答本题一般需要学生熟练掌握运算求解能力、推理能力和转化能力,体现了逻辑推理、数学运算的核心素养,试题的解答过程展现了数学方法多样化的魅力.3.基于高考数学评价体系,本题条件明确简单,通过知识之间的联系和转化,将数列求和转化熟悉的数学模型.本题可以从不同的角度解答,体现了基础性;同时,解题的过程需要知识之间的转化,体现了综合性.等比数列{a n}中,S n表示前n项和,a3=2S2+1,a4=2S3+1,则公比q为________.3解析:由a3=2S2+1,a4=2S3+1,得a4-a3=2(S3-S2)=2a3,=3.所以a4=3a3,所以q=a4a3。
等差等比数列知识点梳理及经典例题,推荐文档
n ⎨S - SA 、等差数列知识点及经典例题一、数列由a n 与S n 的关系求a n由 S n 求 a n 时,要分 n=1 和n≥2 两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的形式表示为 a = ⎧S 1⎩ n n -1(n = 1) (n ≥ 2) 。
〖例〗根据下列条件,确定数列{a n }的通项公式。
分析:(1)可用构造等比数列法求解;(2) 可转化后利用累乘法求解;(3) 将无理问题有理化,而后利用 a n 与 S n 的关系求解。
解答:(1)(2)……累乘可得,故(3)二、等差数列及其前 n 项和(一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,a n-a n-1=d (常数)(n ≥ 2) ,第二种是利用等差中项,即2a n=a n+1+a n-1 (n ≥ 2) 。
2、解选择题、填空题时,亦可用通项或前 n 项和直接判断。
(1)通项法:若数列{ a n}的通项公式为 n 的一次函数,即a n=An+B,则{a n}是等差数列;(2)前n 项和法:若数列{ a n}的前 n 项和S 是n S =n An2 +Bn 的形式(A,B 是常数),则{ a }是n 等差数列。
注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。
1〖例〗已知数列{ a n}的前 n 项和为S n,且满足S n -S n-1 + 2S n S n-1 = 0(n ≥ 2), a1 =21(1)求证:{Sn}是等差数列;(2)求a n的表达式。
分析:(1)S1 -Sn-1+2SnSn-1= 0 →1Sn1与Sn-1的关系→结论;(2)由Sn的关系式→S n的关系式→a n1 1 1 1 1解答:(1)等式两边同除以S n S n-1得S-n-1 n +2=0,即Sn-Sn-1=2(n≥2).∴{Sn}是以nSS 1 1= =2 为首项,以 2 为公差的等差数列。
等比数列的有关概念公式与性质
等比数列的有关概念公式与性质一、知识要点:1.等比数列的概念(1)一个数列{}n a :若满足1(n na q q a +=为常数),则数列{}n a 叫做等比数列 (2)等比数列的证明方法:定义法1(n na q q a +=为常数),其中 0,0nq a ≠≠ 或 11n n n n a a a a +-= (2)n ≥。
(3)等比中项:若,,a A b 成等比数列,那么A 叫做a 与b 的等比中项。
提醒:不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个 由此得非零实数,,a A b 成等比数列⇔ab A =22.等比数列主要公式(1)等比数列的通项公式:1*11()n n n a a a q q n N q-==⋅∈;(2)两项之间的关系式:mn m n q a a -= (3)前n 项的和公式为:11(1),11,1n n a q q S q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a q q q S na q -⎧≠⎪-=⎨⎪=⎩3.等比数列的性质: (1)当m n p q +=+时,则有q p n m a a a a ..=,特别地当2m n p +=时,则有2.p n m a a a =(2)若{}n a 是等比数列,且公比1q ≠-,则数列232,,n n n n n S S S S S -- ,…也是等比数列,公比n q Q=;当1q =-,且n 为偶数时,数列232,,n n n n n S S S S S --,…是常数数列各项均为0,它不是等比数列.(3)若10,1a q >>,则{}n a 为递增数列;若10,1a q <>, 则{}n a 为递减数列;若10,01a q ><< ,则{}n a 为递减数列;若10,01a q <<<, 则{}n a 为递增数列;若0q <,则{}n a 为摆动数列;若1q =,则{}n a 为常数列.(4)当1q≠时,b aq qa q qa S n n n +=-+--=1111,这里0a b +=,但0,0a b ≠≠,这是等比数列前n 项和公式特征. (5) 在等比数列{}n a 中,当项数为偶数2n 时,S qS =偶奇;项数为奇数21n -时,1S a qS =+奇偶.1212321--=⋅⋅⋅n n n a a a a a(6)数列{}n a 既成等差数列又成等比数列,那么数列{}n a 是非零常数数列,故常数数列{}n a 仅是此数列既成等差数列又成等比数列的必要非充分条件。
等比数列知识点并附例题及解析
等比数列知识点并附例题及解析1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式:(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数)5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法:依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。
(3)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。
专题19等比数列及性质
1专题19等比数列及性质知识必备1等比数列的有关概念 (1)定义:一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示. (2)等比中项:若x ,G ,y 成等比数列,则G 称作x ,y 的等比中项,且G 2=xy. 2等比数列的有关公式(1)通项公式:已知等比数列{a n },首项为a 1,公比为q ,第n 项为a n ,通项公式:a n =a 1q n 1.(2)前n 项和公式:S n ={na 1,q =1a 1(1q n )1q =a 1a n q 1q,q ≠1.3等比数列的性质(1)通项公式的推广:a n =a m ⋅q nm (n ,m ∈N ∗).(2)在等比数列{a n }中,m ,n ,p ,t ∈N ∗,当m n =p t 时,a m ⋅a n =a p ⋅a t . 特别地:当m n =2p 时,a m ⋅a n =a p 2.(3)在等比数列{a n }中,等距离取出若干项也构成等比数列a n ,a n m ,a n 2m ,…为等比数列,公比为q m .(4)①若{a n }是等比数列,则{λa n k }(λ,k 为非零常数)仍然是等比数列,公比为q k ;②若{a n }是正项的等比数列,则{log a a n }是等差数列,公差为log a q ; ③若{a n }与{b n }均为等比数列,则{a n b n }也为等比数列.(5)当S m ,S 2m S m ,S 3m S 2m ,⋯都非零时,它们构成等比数列,公比为q m .特别地,等比数列相邻两项的和构成等比数列,即a 1a 2,a 3a 4,a 5a 6,…构成公比为q 2的等比数列.4等比数列的通项公式及前n 项和公式与函数的关系 a n =a 1q n1;S n =a 1(1q n )1q=a 11qa 11q⋅q n ,(q ≠1).数列{a n }是等比数列,则:a n =kq n ;S n =A Aq n .典型例题考点一等比数列基本量的运算【例题1】在等比数列{a n }中,a 2a 3=2,a 5a 6=16,数列{a n }的公比为________ 【例题2】等比数列{a n }共有10项,其中奇数项之积为2,偶数项之积为64,则其公比是________【例题3】记S n为等比数列{a n}的前n项和,若a1=1,S3=34,则S5=__________考点二等比数列的性质及应用下标和性质【例题4】若等比数列{a n}的各项均为正数,且a10a11a9a12=2e5,则a 3a 18=⋯,lna1lna2…lna 20=__________【例题5】等比数列{a n }中,a n >0且a 2a 42a3a 5a 4a 6=25,则a 3a 5=__________【例题6】在等比数列{a n}中,若a3,a9是方程3x211x9=0的两根,则a6=__________和S n相关【例题7】设等比数列{a n}的前n项和为S n若S2=3,S4=15,则S6=( )A31B32C63D64【例题8】设等比数列{a n}的前n项和为S n,若S10S5=12,则S15S5=( )A13B12C23D34【例题9】在等比数列{a n}中,已知对n∈N⋆有a1a2…a n=2n1,那么a12a22…a n2等于()A4n1B13(4n1)C13(2n1)2D(2n1)2其他【例题10】数列{a n}是是等差数列,若a11,a33,a55是构成公比为q是的等比数列,则q=__________【例题11】已知等比数列{a n}的公比的平方不为1,b n∈N∗,则“{a bn}是等比数列”是“{b n}是等差数列”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件考点三等比数列的判定【例题12】已知数列{a n}满足a1=1,a n1=3a n1证明{a n12}是等比数列.【例题13】已知数列{a n}的前n项和为S n,且S n=n a n33,n∈N∗(1)证明:{a n1}是等比数列;是(2)求数列{S n}的通项公式,并求出使得S n1>S n成立的最小正整数n.23。
等比数列性质及其应用知识点总结及典型例题
等比数列知识点总结与典型例题1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式: (1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数) 5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列 (2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法: 依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。
(3)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。
等比数列的前n项和典型例题含解答
倒序相加法
总结词
将等比数列倒序写,然后正序和倒序分别求和,最后取两者和的一半。
详细描述
首先将等比数列倒序写,然后正序和倒序分别求和,最后取两者和的一半。这种方法适 用于公比q满足q≠1的情况。
错位相减法
总结词
将等比数列的一项乘以公比的负一次方 后错位相减,得到一个等差数列,再求 和。
VS
详细描述
$frac{a_5}{a_4} = frac{32}{-16} = 2$
由于相邻两项之比相等, 所以这个数列是等比数列。04CHAPTER
等比数列前n项和的实际应 用
在金融中的应用
贷款还款
等比数列前n项和公式常用于计算 贷款的分期还款额,例如房屋贷 款、汽车贷款等。
投资回报
在投资领域,等比数列前n项和公 式可用于计算复利,即投资的利 息或收益会逐年增长。
化。
元素周期表
元素周期表中的元素按照原 子序数排列,形成等差数列 ,而元素的某些性质则可能 呈现等比数列的变化趋势。
05
CHAPTER
等比数列前n项和的练习题 及答案
练习题一及答案
题目:求等比数列 1, 2, 4, 8, ... 的前n项和。
等比数列的前n项和公式为
将 $a_1 = 1$ 和 $r = 2$ 代入公式,得到
在此添加您的文本16字
等比数列的前n项和公式为
在此添加您的文本16字
$S_n = frac{a_1(1 - r^n)}{1 - r}$
在此添加您的文本16字
将 $a_1 = frac{1}{2}$ 和 $r = frac{1}{2}$ 代入公式,得 到
在此添加您的文本16字
$S_n = frac{frac{1}{2}(1 - (frac{1}{2})^n)}{1 frac{1}{2}} = 1 - (frac{1}{2})^n$
高二数学等比数列知识点总结与经典习题
参考答案例题1、 9n-1 练习1、1、42、B [解析] 98·(23)n-1=13,∴(23)n-1=827=(23)3∴n=4.3、A [解析] ∵{a n}是等比数列,a1+a2=3,a2+a3=6,∴设等比数列的公比为q,则a2+a3=(a1+a2)q=3q=6,∴q=2. ∴a1+a2=a1+a1q=3a1=3,∴a1=1,∴a7=a1q6=26=64.4、A [解析] a4=a1q3=q3=8,∴q=2,∴a5=a4q=16.5、C [解析] m-k=(a5+a6)-(a4+a7)=(a5-a4)-(a7-a6)=a 4(q -1)-a 6(q -1)=(q -1)(a 4-a 6) =(q -1)·a 4·(1-q 2)=-a 4(1+q )(1-q )2<0(∵a n >0,q ≠1). 6、B [解析] 设公比为q ,由已知得a 1q 2·a 1q 8=2(a 1q 4)2,即q 2=2,因为等比数列{a n }的公比为正数,所以q =2,故a 1=a 2q =12=22,故选B.7、B [解析]由条件知⎩⎪⎨⎪⎧a 2=-bb 2=ac =9c 2=-9b,∵⎩⎪⎨⎪⎧a 2≥0,a ≠0,∴a 2>0,∴b <0,∴b =-38、 a n=S n-S n-1=2n-1-[2n-1-1]=2n-2n-1=2n-1,a n 2是以a 12=1为首项,4为公比的等比数列;S=4n-1/39、(1)a+b+c,b+c-a,c+a-b,a+b-c 组成公比为q 的等比数列,所以q 3=(a+b-c)/(a+b+c) ,q 2=(c+a-b)/(a+b+c) q=(b+c-a)/(a+b+c),q 3+q 2+q=(a+b-c)/(a+b+c)+(c+a-b)/(a+b+c)+(b+c-a)/(a+b+c)=(a+b+c)/(a+b+c)=1(2)因为a+b+c ,b+c-a ,c+a-b ,a+b-c 成等比数列,公比为q 所以(c+a-b)/(b+c-a)=q, (a+b-c)/(c+a-b)=q ∴q=[(c+a -b)+ (a+b-c)]/[(b+c-a) +(c+a-b)]=2a/(2c)=a/c.例题2、 解a n-an-1=3n-1 将n=2,3,4,5代入得:a ₂-a ₁=3¹a ₃-a ₂=3² a ₃-a ₄=3³............... a n -a n-1=3n-1将上面的式子相加得:a n -a 1 = 3¹+3²+3³+.......+3n-1a n = 1+3¹+3²+3³+.......+3n-1=(1/2)(3ⁿ-1)练习1、C [解析] ∵a 2,12a 3,a 1成等差数列,∴a 3=a 2+a 1,∵{a n }是公比为q 的等比数列,∴a 1q 2=a 1q +a 1, ∴q 2-q -1=0,∵q >0,∴q =5+12. ∴a 3+a 4a 4+a 5=a 3+a 4a 3+a 4q =1q =5-12.2、C [解析] ∵a ,b ,c 成等比数列, ∴b 2=ac >0. 又∵Δ=b 2-4ac =-3ac <0,∴方程无实数根.3、(a n +2)/2=√(2S n ) S n =(a n +2)2/8 S n+1=(a n+1+2)2/8 a n+1=S n+1-S n =a n+12/8+a (n+1)/2-a n 2/8-a n /2a n+12/8-a (n+1)/2-a n 2/8-a n /2=0 a n+12-4a n+1-a n 2-4a n =0 a (n+1)=a n +4 a n =-2+4n例题3、 xS n =x+3x 2+5x 3+7x 4+...+(2n-3)x(n-1)+(2n-1)xn①因为 S n =1+3x+5x 2+7x 3+9x 4+...+(2n-1)x(n-1) ②②-①得,(1-x)S n =1+2[x+x 2+x 3+x 4+.....+x n-1]-(2n-1)x n(1-x)S n =1+2[(x-x n)/(1-x)]-(2n-1)x n(1-x)S n =1+(2x-2x n)/(1-x)-2nx n+x n(1-x)S n =1+2x/(1-x)-2x n/(1-x)-2nx n+x n(1-x)S n =1+2x/(1-x)+{1-2n-2/(1-x)}x nS n ={1+(2x)/(1-x)+[1-2n-2/(1-x)]x n}/(1-x)练习1、在等比数列中,依次每k 项之和仍成等比数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等比数列知识点总结与典型例题1、等比数列的定义:()()*12,n n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n n n n a a a q q A B a q A B q -===⋅⋅≠⋅≠,首项:1a ;公比:q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项: (1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个((2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅4、等比数列的前n 项和n S 公式:(1)当1q =时,1n S na =(2)当1q ≠时,()11111n n n a q a a q S q q --==-- 11''11n n n a a q A A B A B A q q=-=-⋅=---(,,','A B A B 为常数) 5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列 (2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列(3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列6、等比数列的证明方法: 依据定义:若()()*12,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。
(3)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。
特别的,当2m n k +=时,得2n m k a a a ⋅= 注:12132n n n a a a a a a --⋅=⋅=⋅⋅⋅等差和等比数列比较:经典例题透析类型一:等比数列的通项公式例1.等比数列{}n a 中,1964a a ⋅=, 3720a a +=,求11a .思路点拨:由等比数列的通项公式,通过已知条件可列出关于1a 和q 的二元方程组,解出1a 和q ,可得11a ;或注意到下标1937+=+,可以利用性质可求出3a 、7a ,再求11a .解析:法一:设此数列公比为q ,则8191126371164(1)20(2)a a a a q a a a q a q ⎧⋅=⋅=⎪⎨+=+=⎪⎩由(2)得:241(1)20a q q += (3)∴10a >.由(1)得:421()64a q = , ∴418a q = (4)(3)÷(4)得:42120582q q +==, ∴422520q q -+=,解得22q =或212q = 当22q =时,12a =,1011164a a q =⋅=;当212q =时,132a =,101111a a q =⋅=. 法二:∵193764a a a a ⋅=⋅=,又3720a a +=,∴3a 、7a 为方程220640x x -+=的两实数根,∴⎩⎨⎧==41673a a 或 ⎩⎨⎧==16473a a ∵23117a a a ⋅=, ∴271131a a a ==或1164a =. 总结升华:①列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量;②解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变形要用除法(除式不为零).举一反三:【变式1】{a n }为等比数列,a 1=3,a 9=768,求a 6。
【答案】±96法一:设公比为q ,则768=a 1q 8,q 8=256,∴q=±2,∴a 6=±96;法二:a 52=a 1a 9⇒a 5=±48⇒q=±2,∴a 6=±96。
【变式2】{a n }为等比数列,a n >0,且a 1a 89=16,求a 44a 45a 46的值。
【答案】64;∵21894516a a a ==,又a n >0,∴a 45=4 ∴34445464564a a a a ==。
【变式3】已知等比数列{}n a ,若1237a a a ++=,1238a a a =,求n a 。
【答案】12n n a -=或32n n a -=;法一:∵2132a a a =,∴312328a a a a ==,∴22a = 从而13135,4a a a a +=⎧⎨=⎩解之得11a =,34a =或14a =,31a = 当11a =时,2q =;当14a =时,12q =。
故12n n a -=或32n n a -=。
法二:由等比数列的定义知21a a q =,231a a q =代入已知得2111211178a a q a q a a q a q ⎧++=⎪⎨⋅⋅=⎪⎩ 21331(1)7,8a q q a q ⎧++=⎪⇒⎨=⎪⎩211(1)7,(1)2(2)a q q a q ⎧++=⇒⎨=⎩ 将12a q=代入(1)得22520q q -+=,解得2q =或12q = 由(2)得112a q =⎧⎨=⎩或1412a q =⎧⎪⎨=⎪⎩ ,以下同方法一。
类型二:等比数列的前n 项和公式例2.设等比数列{a n }的前n 项和为S n ,若S 3+S 6=2S 9,求数列的公比q.解析:若q=1,则有S 3=3a 1,S 6=6a 1,S 9=9a 1.因a 1≠0,得S 3+S 6≠2S 9,显然q=1与题设矛盾,故q≠1.由3692S S S +=得,369111(1)(1)2(1)111a q a q a q q q q---+=---, 整理得q 3(2q 6-q 3-1)=0,由q≠0,得2q 6-q 3-1=0,从而(2q 3+1)(q 3-1)=0,因q 3≠1,故312q =-,所以q = 举一反三:【变式1】求等比数列111,,,39L 的前6项和。
【答案】364243; ∵11a =,13q =,6n = ∴666111331364112324313S ⎡⎤⎛⎫⨯-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==⨯-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-。
【变式2】已知:{a n }为等比数列,a 1a 2a 3=27,S 3=13,求S 5. 【答案】1211219或; ∵322273a a =⇒=,31(1)113313a q q q q -=⇒==-或,则a 1=1或a 1=9 ∴5555191131213121S 113913S ⎛⎫⨯ ⎪-⎝⎭==--或==-. 【变式3】在等比数列{}n a 中,166n a a +=,21128n a a -⋅=,126n S =,求n 和q 。
【答案】12q =或2,6n =;∵211n n a a a a -⋅=⋅,∴1128n a a =解方程组1112866n n a a a a =⎧⎨+=⎩,得1642n a a =⎧⎨=⎩ 或1264n a a =⎧⎨=⎩ ①将1642n a a =⎧⎨=⎩代入11n n a a q S q -=-,得12q =, 由11n n a a q -=,解得6n =;②将1264n a a =⎧⎨=⎩代入11n n a a q S q -=-,得2q =, 由11n n a a q -=,解得6n =。
∴12q =或2,6n =。
类型三:等比数列的性质例3. 等比数列{}n a 中,若569a a ⋅=,求3132310log log ...log a a a +++.解析:∵{}n a 是等比数列,∴110293847569a a a a a a a a a a ⋅=⋅=⋅=⋅=⋅=∴1032313log log log a a a +++Λ553123103563log ()log ()log 910a a a a a a =⋅⋅=⋅==L举一反三:【变式1】正项等比数列{}n a 中,若a 1·a 100=100; 则lga 1+lga 2+……+lga 100=_____________.【答案】100;∵lga 1+lga 2+lga 3+……+lga 100=lg(a 1·a 2·a 3·……·a 100)而a 1·a 100=a 2·a 99=a 3·a 98=……=a 50·a 51∴原式=lg(a 1·a 100)50=50lg(a 1·a 100)=50×lg100=100。
【变式2】在83和272之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为________。
【答案】216;法一:设这个等比数列为{}n a ,其公比为q , ∵183a =,445127823a a q q ===⋅,∴48116q =,294q = ∴23362341111a a a a q a q a q a q ⋅⋅=⋅⋅=⋅33389621634⎛⎫⎛⎫=⋅== ⎪ ⎪⎝⎭⎝⎭。
法二:设这个等比数列为{}n a ,公比为q ,则183a =,5272a =, 加入的三项分别为2a ,3a ,4a ,由题意1a ,3a ,5a 也成等比数列,∴238273632a =⨯=,故36a =, ∴23234333216a a a a a a ⋅⋅=⋅==。
类型四:等比数列前n 项和公式的性质例4.在等比数列{}n a 中,已知48n S =,260n S =,求3n S 。
思路点拨:等差数列中也有类似的题目,我们仍然采用等差数列的解决办法,即等比数列中前k 项和,第2个k 项和,第3个k 项和,……,第n 个k 项和仍然成等比数列。
解析:法一:令b 1=S n =48, b 2=S 2n -S n =60-48=12,b 3=S 3n -S 2n观察b 1=a 1+a 2+……+a n ,b 2=a n+1+a n+2+……+a 2n =q n (a 1+a 2+……+a n ),b 3=a 2n+1+a 2n+2+……+a 3n =q 2n (a 1+a 2+……+a n )易知b 1,b 2,b 3成等比数列,∴2223112348b b b ===, ∴S 3n =b 3+S 2n =3+60=63.法二:∵22n n S S ≠,∴1q ≠, 由已知得121(1)481(1)601n n a q q a q q⎧-=⎪-⎪⎨-⎪=⎪-⎩①② ②÷①得514n q +=,即14n q = ③ ③代入①得1641a q=-, ∴3133(1)164(1)6314n n a q S q -==-=-。