2020高考湖北(襄阳)首轮复习备考会数学资料 (1)
湖北省襄阳市第四中学人教版高中数学复习素材:高考复习策略
高考数学复习策略二轮复习要求“综合考点,把握重点,关注热点,查找漏点”,整体上把握各部分考点的内在联系,梳理考点,归纳解题思路,整合知识要点,提升思想方法,逐一分析考点,把握重点、热点,科学预测命题趋势等等,下面从这些方面为大家一、串联考点,掌握通法问题是数学的心脏,参加高考,就是要解答试卷中提出的各种问题.按照高考 “在知识的交汇处命题” 一,在知识上强调考点的串联,强调知识的整合与综合,即对一些基本题型进行变化:变已知条件、所求结论或把几个基本题组合成一个综合题,或把几个知识组求函数f(x)=4x 3-3x 2-6x+2在区间[-1,1]上的值域?我们可改为:求函数f(x)=4cos 3x -3cos 2x -6cosx+2的值域?这样就把区间[-1,1]隐含了.二,在解题方法上注意通性通法,基本知识和基本方法的综合运用就是能力,所以只有掌握好了通法,才能更好地理解和掌握其他的一些技巧.例1 已知函数322()9cos 48cos 18sin f x x x x αβα=-++,()()g x f x '=,且对任意的实数t 均有g (1+e -| t | )≥0,g (3+sint )≤0.则函数()f x 的解析式是 . 本题是以三次函数与二次函数为背景材料的函数题,而1+e-| t |、3+sint 又是关于t 的函数,通过对这两个函数的值域分析:(1+e -| t | )∈(1,2],(3+sin t )∈[2,4],得g (x )≥0在x ∈(1,2]成立,g (x )≤0在x ∈[2,4]成立, 即可找到本题的切入点:g (2)=0,且g (4)≤0, 即有:(2)1236cos 48cos 0(4)4872cos 48cos 0g g αβαβ=-+=⎧⇒⎨=-+≤⎩36-36cos α≤0, 得出本题的关键点:cos α≥1,即cos α=1,从而解得cos β=12,即得解析式. 本题讨论函数在某区间上的有关性质,新颖之处在于所给区间是隐含的,即利用指数函数和三角函数的值域讨论函数中的定义域区间问题,考点上综合了三次函数、二次函数、指数函数、三角函数及不等式等知识,体现了函数综合性强的特点.解题过程通过一系列的转化:求导法、求函数的值域法、解不等式与方程等得出结论.解完一个题后,我们还可以多进行思考,如:这道题是从哪个角度切入,为什么要从这个角度切入,解决此题的关键点在哪里,如上述例1中,切入点是:g(2)=0,且g(4)≤0;关键点:cosα≥1,即cosα=1.另外还要注意题中的限制条件和隐含条件.同时还要注意样例中的点评,点评一般从以下几个方面对本类型的题作出总结:主要运用了二、瞄准目标,有的放矢在对考点及知识点的串联综合基础上,我们还需要有针对性地进行强化训练,检测自已解综合题的能力,同时关注各重点、热点等常规题型及各种形式的创新题、探索题、开放题等.通过覆盖考点的预测题来检测我们对考点的掌握,力求做到有的放失.在进行专项训练时,要像做高考题那样,全面检查自已的解题能力,特别注例2已知抛物线x2=4y的焦点为F,经过F的直线交抛物线于A、B两点,过A、B两点分别作抛物线的切线,设其交点为M.(1)FM·AB是定值吗?如果是,请求出来,如果不是,请说明理由;(2) 设△ABM的面积为S,求S的最小值.本题是解析几何中最常见的一种题型,探索定值及参数取值范围问题,由抛物线方程已知,可得焦点F的坐标;若直线的斜率不存在,可知此时直线与抛物线只有一个交点,故斜率存在;再考虑斜率为零的情况,可得此时FM·AB的值为0,可由此特殊情况猜想结论,用直线AB的斜率k作参变量,然后根据直线与圆锥曲线的相交问题进行处理即可解决第一问.由第一问的结果可得出第问的面积可表示成参数k的函数关系式,由此关系式求得面积的最小值.综上知:1.④思考所求解的题目与以前曾经做过的哪个题目相类似.2.做完一个题后,我们可再进行发散性思考,想想如果把这一题的题目、条件改变一下能演变出什么题,有什么额外收获?对同类型题,如果已经掌握得非常熟练了,就应把注意力转移到其他类型的题目上.这样做题才是高效率的,如本题我变式一若将条件“经过F的直线交抛物线于A、B两点”改为“A、B是抛物线上两 (λ>0)”,此时解答过程可引用参数λ,其结果不变.动点,且AF=BF变式二若将问题一改为“点M是在一条定是直线上吗?”,由上述解答过程可知,点M在定直线y=-1上.或将问题一改为“OA·OB(O是坐标原点)是定值吗”.事实上OA·OB=-3.变式三若将问题二改为“设△ABM的面积为S,若≤S≤16,求直线AB斜率k 的取值范围?”考生可以思考其求解的方法,注意归纳其求解特点.“求人之鱼,莫若取人之渔”,方法的掌握,思想的形成,才能使我们的学习受益终生.☆把握重点,才能胜券在握二轮复习实质上是知识专题和方法专题的综合复习,两个专题应紧密结合进行同步复习,总结提炼数学思想方法,使解题策略与方法明确化、系统化.其中,知识专题要抓住主干知识及综合专题的复习,加强各板块知识的综合.特别要注意最值问题、开放性和探索性问题、应用问题等.这个时期的复习,希望大家再做好以下一、明确“主体”,突出重点第二轮复习,我们必须要明确重点,对高考“考什么”“怎样考”了若指掌.以下列举出六大主干知识,以供参考.1.函数与不等式板块.函数是代数的主干,不等式与函数的结合是命题“热点”,在解题过程中导数的工具性作用也不容忽视.(1)关于函数性质.单调性、奇偶性、周期性(常以三角函数为载体)、对称性及反函数等处处可考.常以具体函数,结合其图像的几何直观性展开,有时可作适当抽象.(2)一元二次函数,是高考命题的重点.函数值域(最值)的求解,常以二次函数或转化为二次函数进行求解,而含参变量的二次函数值域是高考的研究重点;其解题过程中涉及的主要思想方法有配方法、换元法和基本不等式法.一元二次方程根的分布与讨论,一元二次不等式解的讨论,二次曲线交点问题,都与一元二次函数紧密相关,在训练中应占较大比重.(3)不等式证明,包括与函数结合的不等式证明题,与数列结合的以数学归纳法的应用为重点的题型也是高考的命题重点.求解这类题目的主要方法是比较法和利用基本不等式的公式法.放缩法虽不是高考重点,但历年考题中都或多或少的用到它,故掌握几种简单地放缩技巧是很必要的.(4)解不等式.以熟练掌握一元二次不等式及可化为一元二次不等式的综合题型为目标,对含参数不等式的解法,突出灵活转化和合理地分类讨论.函数、方程、不等式的关系突出体现了函数与方程思想的应用,当函数值等于、大于或小于一常数时,联想函数图像可得出有关方程,同时也应深入理解不等式的解2.数列板块.以等差数列、等比数列为载体考查数列的通项、求和、极限.关于抽象数列(用递推关系给出的),讲练界限要分明,只限定在“归纳—证明”之类.3.三角函数与向量板块.考题难度不降,训练中要掌握基本公式的熟练运用,突出正用、逆用和变形用.要特别注意解三角形与平面向量的结合.4.概率与统计板块.这是近几年高考中的主要应用题型,常以生活和社会实践及时事热点为命题背景,考查对数学知识的应用,排列组合的计算和运用是突破概5.立体几何板块.突出对“空间”、“立体”这两个概念的深入理解,即把对线线、线面、面面的位置关系的考查置于某几何体的情境中,其中几何体以棱柱、棱锥为高考考查重点,兼顾翻折和组合体等.棱柱中又以三棱柱、正方体为重点,棱锥以一条侧棱或一个侧面垂直于底面为重点,棱柱和棱锥的结合体也要重视.各几何元素的位置关系以判断或证明垂直、平行为考查重点,突出三垂线定理及逆定理的灵活运用.同时考生也应该关注高考立体几何中的“一题两法”的灵活运用.空间角以二面角为考查重点,强化利用三垂线定理确定角的方法.空间距离以点面距离、线面距离为重点,二者的结合尤为重要.等积转化、等距转化是最常用的方法.6.解析几何板块.以基本性质、基本运算为目标.客观题侧重于基本概念的考查,解答题侧重于综合应用,突出直线和圆锥曲线的交点、弦长、轨迹、定值、最在复习过程中,很多考生都会暴露出基础较差,动手能力不强的问题,出现老师“一讲就会”,学生“一做就错”的现象.其根源在于知识不能纵横联系,特别是“代数推理题”、“三角函数变形题”等,对于解析几何问题不能从宏观上把握题目的考查特点,概率题不能突破“排列与组合”瓶颈,同时解选择题、填空题的速度与准确度都还存在问题等等这些都必须进行突击解决.二轮复习承上启下,是知识系统化、条理化,促进灵活运用的关键时期,是促进我们的素质、能力发展的关键时期,因而对讲练、检测等要求较高,故有“二轮看水平”之说.“二轮看水平”概括了这个时期复习的思路、目标和要求.具体地说,一是要看我们对《考试大纲》、历年高考真题理解是否深入,把握是否到位,是否明确“考什么”、“怎么考”.二是看教师讲解、学生练习是否体现阶段性、层次性和渐进性,做到减少重复,重点突出,让大部分学生学有所获.三是看知识讲解、练习检测等内容的科学性、针对性是否强.回归课本、查漏补缺,使模糊的基本概念、定理、公式清晰起来,缺漏的数学方法和思想填补起来,孤立的知识联系起来,让学生形成系统化、条理化的知识框架.四是看我们的练习检测与高考是否对路,不拔高,不降低,难度适宜,重在加强对基础的灵活运用和掌握分析解决问题的思维方法.二、查漏补缺,注意细节1.查漏补缺,以“错”第二轮复习也是一个查漏补缺,以“错”纠错的关键阶段.这里只是起了一个抛砖引玉的作用,对一些常见的易错易混的知识、方法,一些应该注意的问题进行了简单的讲解,同学们可以对照这个栏目,根据个人的习惯和特点再一次“查漏补缺,在“以‘错’纠错”上更好的进行总结和反思.如果平时做题出错较多,可在试卷上把错题做上标记,在旁边写上评析,然后把试卷保存好,每过一段时间,就把“错题笔记”或标记错题的试卷有侧重的看一下.查漏补缺的过程也就是反思的过程①给出数列的前n项的和Sn ,求它的通项公式时,忽略了n=1②求等比数列的前n项和S n,,忽略对公比q=1及q≠1进行分类讨论;证明等比数列时,忽略证明a n≠0;③用斜截式或点斜式直线方程解题时,忽略斜率不存在的情况;④研究直线与圆锥曲线的位置关系时,忽略对有关参数的范围进行讨论;⑤如已知函数()223a bx ax x x f +++=,在1=x 时有极值10,求b a ,的值.在解题时,利用导数可以很快求出⎩⎨⎧-==.11,4b a 或⎩⎨⎧=-=.3,3b a 但是很多同学忽略了检验,即忽略了导数为0只是函数有极值的必要条件,而不是充分条件,经检验,第二组解带入()x f 中, 1=x 就不是函数的极值点,应舍掉.套用《孙子兵法》的一句话:“细节,成败之大事,死生之地,存亡之道,不可不察也”.不管是历史还是现实生活,太多的例子可以印证细节的重要性.我们在解①解题时,大方向正确,但是忽略了一些定理成立的条件,这就是基础知识理解和掌握得不够扎实的表现.如等比数列的初始项不能为零,二次方程中的二次项系数不能为零,在求反函数时或判断函数的奇偶性时,忽略了定义域;②书写规范方面的细节,如题目中没有出现的字母在使用前应该设出,写出函数的解析式时应该写出定义域,在细节上出现的问题会因人而异,因此,要根据自己的具体情况加以分析和解决,高考中“对而不全”的现象频频出现,我们可以通过关注细节,重视细节,使答题获总之,复习阶段是各种思维和能力全面提高的阶段,从基本知识到基本方法,再到基本数学思想,而数学思想又是数学知识高层次的体现.函数与方程、数形结合、分类讨论、转化与化归等数学思想是走出思维困境的武器与指南.对习题灵活变通,引申推广,培养思维的深刻性,抽象性;组织引导对解法的简捷性的反思评估,不断优化思维品质,培养思维的严谨性,批判性.对同一数学问题多角度的审视引发出的不同联想,是一题多解的思维本源.丰富的、合理的联想,是对知识的深刻理解,及类比、转化、数形结合、函数与方程最后希望本书能为你加油导航,衷心祝福每一位忠实的读者在二轮复习中,把握规律,找到捷径,走向成功,大学在向你招手,希望在向你召唤!带上你所有的青春梦想,成就高考的辉煌!。
2024年新高考版数学专题1_3.5 函数与方程及函数的综合应用(分层集训)
B.3
答案 B
C.4
D.5
)
3.(2022南京师范大学附中期中,7)用二分法研究函数f(x)=x3+2x-1的零点
时,第一次计算,得f(0)<0,f(0.5)>0,第二次应计算f(x1),则x1等于 (
A.1
B.-1
答案 C
C.0.25
D.0.75
)
4.(多选)(2022湖南师大附中三模,11)已知函数f(x)的定义域为R,且f(x)=f(x
1.(2023届长春六中月考,7)若函数f(x)=ln x+x2+a-1在区间(1,e)内有零点,则
实数a的取值范围是 (
A.(-e2,0)
C.(1,e)
答案 A
B.(-e2,1)
D.(1,e2)
)
2.(2017课标Ⅲ,文12,理11,5分)已知函数f(x)=x2-2x+a(ex-1+e-x+1)有唯一零点,
A型
0.4
3
B型
0.3
4
C型
0.5
3
D型
0.4
4
则保温效果最好的双层玻璃的型号是 (
A.A型
答案 D
B.B型
C.C型
D.D型
)
3.(2020课标Ⅲ理,4,5分)Logistic模型是常用数学模型之一,可应用于流行
病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数
I(t)(t的单位:天)的Logistic模型:I(t)=
1 e
K
0.23( t 53)
,其中K为最大确诊病例数.
当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为(ln 19≈3) (
【附20套高考模拟试题】2020届湖北省襄阳市四校(襄州一中、枣阳一中、宜城一中、曾都一中)高考数学模拟试
2020届湖北省襄阳市四校(襄州一中、枣阳一中、宜城一中、曾都一中)高考数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知O 为ABC V 内一点且满足0OA OB OC ++=u u u r u u u r u u u r r,若AOC △的面积为3且2AB BC ⋅=-u u uv u u u v ,则ABC ∠=( )A .3πB .4πC .6πD .12π2.执行如图所示的程序框图,若输出4s =,则判断框内应填入的条件是( )A .14k ≤B .15k ≤C .16k ≤D .17k ≤3.已知底面边长为12 )A .323πB .4πC .2πD .43π4.如下图,梯形ABCD 中,AD ∥BC ,1AD AB ==,AD AB ⊥,45BCD ∠=o ,将ABD ∆沿对角线BD 折起.设折起后点A 的位置为A ',并且平面A BD '⊥平面BCD .给出下面四个命题: ①A D BC '⊥;②三棱锥A BCD '-2;③CD ⊥平面A BD '; ④平面A BC '⊥平面A DC '.其中正确命题的序号是( )A .①②B .③④C .①③D .②④ 5.已知,为正实数,直线与曲线相切,则的最小值为( )A .1B .2C .4D .86.若sin sin 0αβ>>,则下列不等式中一定成立的( ) A .sin2sin2αβ>B .sin2sin2αβ<C .cos2cos2αβ>D .cos2cos2αβ<7.已知在(-∞,1]上递减的函数f(x)=x 2-2tx +1,且对任意的x 1,x 2∈[0,t +1],总有|f(x 1)-f(x 2)|≤2,则实数t 的取值范围为( ) A .[-2,2] B .[1,2] C .[2,3] D .[1,2]8.已知双曲线()2222:10,0x y C a b a b-=>>的左,右焦点分别为12,F F ,O 为坐标原点,P 为双曲线在第一象限上的点,直线PO ,2PF 分别交双曲线C 的左,右支于另一点12,,3M N PF PF =若,且260MF N ∠=o ,则双曲线的离心率为( )A .5B .3C .2D .729.执行右面的程序框图,若输入的分别为1,2,3,则输出的( )A .B .C .D .10.已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩,若()3f a =-,则(7)f a -=( )A .73-B .32-C .35D .4511.已知三棱锥D ABC -四个顶点均在半径为R 的球面上,且2,2AB BC AC ===,若该三棱锥体积的最大值为1,则这个球的表面积为A .50081πB .4πC .259πD .1009π12.已知函数()为奇函数,则( )A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
2019-2020学年湖北省襄阳市高中高三(下)第一次月考数学(文科)试题Word版含解析
2019-2020学年湖北省襄阳市高中高三(下)第一次月考数学(文科)试题一、选择题:(共12小题,每小题5分,共60分)1.已知直线m,n和平面α,β,若α⊥β,α∩β=m,n⊂α,要使n⊥β,则应增加的条件是()A.m∥n B.n∥αC.n⊥m D.n⊥α2.已知正项数列{an }中,a1=l,a2=2,(n≥2),则a6=()A.16 B.4 C.2D.453.对于实数a、b,“b<a<0”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.某四棱锥的三视图如图所示(单位:cm),则该几何体的体积是()A.18cm3B.6cm3C.D.5.已知向量,的夹角为120°,且||=2,||=3,则向量2+3在向量2+方向上的投影为()A.B.C.D.6.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A.B.C.D.7.已知a>0,b>0,,则的最小值为()A.4 B.C.8 D.168.两个单位向量,的夹角为60°,点C在以O圆心的圆弧AB上移动,=x+y,则x+y的最大值为()A.1 B.C.D.9.一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.110.在△ABC中,角A、B、C的对边分别为a、b、c,则以下结论错误的为()A.若,则A=90°B.C.若sinA>sinB,则A>B;反之,若A>B,则sinA>sinBD.若sin2A=sin2B,则a=b11.已知函数f(x+1)=,则曲线y=f(x)在点(1,f(1))处切线的斜率为()A.1 B.﹣1 C.2 D.﹣212.若存在两个正实数x,y,使得等式3x+a(2y﹣4ex)(lny﹣lnx)=0成立,其中e为自然对数的底数,则实数a的取值范围是()A.(﹣∞,0) B.C. D.二、填空题:(本大题共4小题,每小题5分,共20分)13.已知a>1,b>1,且成等比数列,则ab的最小值为.14.已知正方体的棱长为2,则它的内切球的表面积是.15.如图,在直角梯形ABCD中,AB∥CD,AB=2,AD=DC=1,P是线段BC上一动点,Q是线段DC上一动点,=λ,=(1﹣λ),则•的取值范围是.16.在正四棱锥V﹣ABCD内有一半球,其底面与正四棱锥的底面重合,且与正四棱锥的四个侧面相切,若半球的半径为2,则当正四棱锥的体积最小时,其高等于.三、解答题:(本题共6小题,共70分,解答过程应写出文字说明,证明过程或演算步骤)17.(10分)已知点O为△ABC的外心,角A,B,C的对边分别满足a,b,c,(I)若3+4+5=,求cos∠BOC的值;(II)若•=•,求的值.18.(12分)设数列{an }的前n项和为Sn,已知a1=1,(n∈N*).(1)证明:数列是等比数列;(2)求数列{Sn }的前n项和Tn.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.(1)证明:BC1∥平面A1CD;(2)求异面直线BC1和A1D所成角的大小.20.(12分)如图所示,正三棱柱ABC﹣A1B1C1中,E,F分别是BC,CC1的中点.(Ⅰ)证明:平面AEF⊥平面B1BCC1;(Ⅱ)若该三棱柱所有的棱长均为2,求三棱锥B1﹣AEF的体积.21.(12分)已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.22.(12分)已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).(1)判断f(x)=3x+2是否属于集合M,并说明理由;(2)若属于集合M,求实数a的取值范围;(3)若f(x)=2x+bx2,求证:对任意实数b,都有f(x)∈M.2019-2020学年湖北省襄阳市高中高三(下)第一次月考数学(文科)试题参考答案一、选择题:(共12小题,每小题5分,共60分)1.已知直线m,n和平面α,β,若α⊥β,α∩β=m,n⊂α,要使n⊥β,则应增加的条件是()A.m∥n B.n∥αC.n⊥m D.n⊥α【分析】利用直线与平面垂直的性质定理,直接得到选项即可.【解答】解:由直线与平面垂直的性质定理可知,要使n⊥β,只需在已知直线m、n和平面α、β,若α⊥β,α∩β=m,n⊂α,则应增加的条件n⊥m,故选:C.【点评】本题考查直线与平面垂直的性质定理的条件,考查基本知识的掌握程度,属于基本知识的考查.2.已知正项数列{an }中,a1=l,a2=2,(n≥2),则a6=()A.16 B.4 C.2D.45【分析】由题设知an+12﹣an2=an2﹣an﹣12,且数列{an2}为等差数列,首项为1,公差d=a22﹣a12=3,故an 2=1+3(n﹣1)=3n﹣2,由此能求出a6.【解答】解:∵正项数列{an }中,a1=1,a2=2,2an2=an+12+an﹣12(n≥2),∴an+12﹣an2=an2﹣an﹣12,∴数列{an 2}为等差数列,首项为1,公差d=a22﹣a12=3,∴an2=1+3(n﹣1)=3n﹣2,∴an=∴a6==4,故选:B【点评】本题考查了等差数列的通项公式、递推关系,考查了推理能力与计算能力,属于中档题.3.对于实数a、b,“b<a<0”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】由不等式取倒数法则知“b<a<0”⇒“”,举反例知“”推不出“b<a <0”,由此能求出结果.【解答】解:由不等式取倒数法则知:“b<a<0”⇒“”,反之,由“”推不出“b<a<0”,例如b>0,a<0时,,但b<a<0不成立.∴对于实数a、b,“b<a<0”是“”的充分不必要条件.故选A.【点评】本题考查充分条件、必要条件、充要条件的判断和应用,是基础题.解题时要认真审题,注意取倒数法则的合理运用.4.某四棱锥的三视图如图所示(单位:cm),则该几何体的体积是()A.18cm3B.6cm3C.D.【分析】由三视图可知,该几何体是底面为直角梯形,高为3的四棱锥.由棱锥体积公式直接求解.【解答】解:由三视图可知,该几何体是四棱锥,底面为直角梯形,梯形的上下边长为分别为3,1,梯形的高为3,棱锥高为3,根据棱锥体积公式,得=6故选B.【点评】本题考查了对三视图的识图能力,能够准确判断出该几何体的形状,根据公式求解体积.属于基础题.5.已知向量,的夹角为120°,且||=2,||=3,则向量2+3在向量2+方向上的投影为()A.B.C.D.【分析】利用求模运算得到|2+3|,向量|2+|进而得到向量向量2+3与向量2+的夹角余弦,根据投影定义可得答案.【解答】解:向量,的夹角为120°,且||=2,||=3,所以|2+3|2=42+12•+92=16+12||||cos120°+81=61,|2+3|=.又|2+|2=4+4+=16+4×3×2cos120°+9=13,所以|2+|=,则cos<2+3,2+>===,所以向量2+3在向量2+方向上的投影为|2+3|cos<2+3,2+>==,故选:A.【点评】本题考查平面向量数量积的含义及其物理意义,考查向量模的求解投影等概念,是中档题.6.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A.B.C.D.【分析】根据近似公式V≈L2h,建立方程,即可求得结论.【解答】解:设圆锥底面圆的半径为r,高为h,则L=2πr,∴=(2πr)2h,∴π=.故选:B.【点评】本题考查圆锥体积公式,考查学生的阅读理解能力,属于基础题.7.已知a>0,b>0,,则的最小值为()A.4 B.C.8 D.16【分析】先求出ab=1,从而求出的最小值即可.【解答】解:由,有ab=1,则,故选:B.【点评】本题考查了基本不等式的性质,是一道基础题.8.两个单位向量,的夹角为60°,点C在以O圆心的圆弧AB上移动,=x+y,则x+y的最大值为()A.1 B.C.D.【分析】本题是向量的坐标表示的应用,结合图形,利用三角函数的性质,即可求出结果.【解答】解:∵两个单位向量,的夹角为60°,点C在以O圆心的圆弧AB上移动,=x+y,建立如图所示的坐标系,则B(1,0),A(cos60°,sin60°),即A(,).设∠BOC=α,则=x+y=(cosα,sinα)=(x+y,x),∴∴x=sinα,y=cosα﹣sinα,∴x+y=cosα+sinα=sin(α+60°).∵0°≤α≤60°,∴60°≤α+60°≤120°,∴≤sin(α+60°)≤1,故当α+60°=90°时,x+y取得最大值为,故选:D.【点评】本题考查向量知识的运用,考查三角函数的性质,确定x,y的关系式是关键,属于中档题.9.一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.1【分析】由已知中的三视图可得该几何体是一个以俯视图为底面的三棱锥,并能分析出底面两直角边的长和棱锥的高,代入棱锥体积公式,可得答案.【解答】解:由已知中的三视图可得该几何体是一个以俯视图为底面的三棱锥底面是一个两直角边分别为1和1的直角三角形故底面S=×1×1=棱锥的高为h=2,故棱锥的体积V=Sh=××2=,故选B.【点评】本题考查的知识点是由三视图求体积,其中由已知中的三视图判断出几何体的形状,及棱长,高等几何量是解答的关键.10.在△ABC中,角A、B、C的对边分别为a、b、c,则以下结论错误的为()A.若,则A=90°B.C.若sinA>sinB,则A>B;反之,若A>B,则sinA>sinBD.若sin2A=sin2B,则a=b【分析】A、由题设中的条件可以得出B,C两角的正弦与余弦都对应相等,由此关系即可得出正确答案B、利用正弦定理及等比性质,即可求得结论.C、在△ABC中,设外接圆的半径为R,运用正弦定理和三角形的边角关系,即可得到结论.D、利用题设等式,根据和差化积公式整理求得cos(A+B)=0或sin(A﹣B)=0,推断出A+B=或A=B,则根据三角形形状可判断出.【解答】解:A,∵,∴由正弦定理sinB=cosB,sinC=cosC,又∵B,C为△ABC的内角,∴B=C=45°,故A=90°,A正确;B,∵由正弦定理可得=2R,∴==2R=,故B正确;C,在△ABC中,设外接圆的半径为R,若sinA>sinB,则2RsinA>2RsinB,由正弦定理可得a>b,即A>B;若A>B,即有a>b,即2RsinA>2RsinB,即a>b.则在△ABC中,sinA>sinB⇔A>B,故C正确;D,∵sin2A=sin2B∴sin2A﹣sin2B=cos(A+B)sin(A﹣B)=0∴cos(A+B)=0或sin(A﹣B)=0∴A+B=或A=B∴三角形为直角三角形或等腰三角形.故D错误.故选:D.【点评】本题考查三角形中的正弦定理的应用,以及三角形的边角关系,考查了三角函数恒等变换的应用,正弦函数、余弦函数的图象和性质,属于中档题.11.已知函数f(x+1)=,则曲线y=f(x)在点(1,f(1))处切线的斜率为()A.1 B.﹣1 C.2 D.﹣2【分析】化简函数的解析式,求出函数的导数,然后求解切线的斜率.【解答】解:由已知得,则,所以f'(1)=1.故选:A.【点评】本题考查函数的导数的应用,切线的斜率的求法,考查计算能力.12.若存在两个正实数x,y,使得等式3x+a(2y﹣4ex)(lny﹣lnx)=0成立,其中e为自然对数的底数,则实数a的取值范围是()A.(﹣∞,0) B.C. D.【分析】根据函数与方程的关系将方程进行转化,利用换元法转化为方程有解,构造函数求函数的导数,利用函数极值和单调性的关系进行求解即可.【解答】解:由3x+a(2y﹣4ex)(lny﹣lnx)=0得3x+2a(y﹣2ex)ln=0,即3+2a(﹣2e)ln=0,即设t=,则t>0,则条件等价为3+2a(t﹣2e)lnt=0,即(t﹣2e)lnt=﹣有解,设g(t)=(t﹣2e)lnt,g′(t)=lnt+1﹣为增函数,∵g′(e)=lne+1﹣=1+1﹣2=0,∴当t>e时,g′(t)>0,当0<t<e时,g′(t)<0,即当t=e时,函数g(t)取得极小值为:g(e)=(e﹣2e)lne=﹣e,即g(t)≥g(e)=﹣e,若(t﹣2e)lnt=﹣有解,则﹣≥﹣e,即≤e,则a<0或a≥,故选:D.【点评】本题主要考查不等式恒成立问题,根据函数与方程的关系,转化为两个函数相交问题,利用构造法和导数法求出函数的极值和最值是解决本题的关键.综合性较强.二、填空题:(本大题共4小题,每小题5分,共20分)13.已知a>1,b>1,且成等比数列,则ab的最小值为 e .【分析】由题意和等比中项的性质列出方程,由条件和基本不等式列出不等式,由对数的运算性质化简后求ab的最小值.【解答】解:∵成等比数列,∴,则,∵a>1,b>1,∴lna>0,lnb>0,∴=1,当且仅当lna=lnb时取等号,则ln(ab)≥1=lne,即ab≥e,∴ab的最小值最小值是e,故答案为:e.【点评】本题考查基本不等式在求最值中的应用,对数的运算性质,以及等比中项的性质,考查化简、变形能力.14.已知正方体的棱长为2,则它的内切球的表面积是4π.【分析】根据正方体内切球和正方体的棱长关系,确定球的半径即可求出球的表面积.【解答】解:∵正方体的内切球的球心O到正方体各面的距离等于半径,∴2R=2,即球半径R=1,∴内切球的表面积是4π.故答案为:4π;【点评】本题主要考查球的表面积的计算,根据球与正方体的内切关系确定球的半径是解决本题的关键,比较基础.15.如图,在直角梯形ABCD中,AB∥CD,AB=2,AD=DC=1,P是线段BC上一动点,Q是线段DC上一动点,=λ,=(1﹣λ),则•的取值范围是[0,2] .【分析】通过向量的坐标运算转化为二次函数的单调性即可得出.【解答】解:如图所示,A(0,0),B(2,0),C(1,1),D(0,1).=(1,1)+(1﹣λ),λ∈[0,1].=(1,1)+(1﹣λ)(1,﹣1)=(2﹣λ,λ).==(0,1)+=(0,1)+λ(1,0)=(λ,1).∴f(λ)==(2﹣λ,λ)•(λ,1)=λ(2﹣λ)+λ=﹣λ2+3λ=,∵λ∈[0,1],∴f(0)≤f(λ)≤f(1),∴0≤f(λ)≤2.∴•的取值范围是[0,2].故答案为:[0,2].【点评】本题考查了向量的坐标运算、二次函数的单调性,属于基础题.16.在正四棱锥V﹣ABCD内有一半球,其底面与正四棱锥的底面重合,且与正四棱锥的四个侧面相切,若半球的半径为2,则当正四棱锥的体积最小时,其高等于2.【分析】设球心为O,设底边OD=x和体高OP=y,推导出正四棱锥的体积V=,则V′=,由此利用导数性质能求出正四棱锥的体积取最小值时,其高等于2.【解答】解:设球心为O,设底边OD=x和体高OP=y,如图,则PD2=x2+y2,(PD为斜高),△ABC的底边AB的高为3y,△ABC的边长为AB=2,∴=3y2,∵V=V O ﹣VAB +V O ﹣VAC ==[3×()]=2y,又V=V V ﹣ABC ==,∴V=,∴V ′=, 令V ′=0,得x=2,由该体积函数的几何意义得:当x=2时,正四棱锥的体积最小.∴当正四棱锥的体积取最小值时,其高等于2.故答案为:2.【点评】本题考察了导数在最大值、最小值问题中的应用、棱锥的结构特征、棱柱、棱锥、棱台的体积、球内接多面体,是中档题.三、解答题:(本题共6小题,共70分,解答过程应写出文字说明,证明过程或演算步骤) 17.(10分)已知点O 为△ABC 的外心,角A ,B ,C 的对边分别满足a ,b ,c , (I )若3+4+5=,求cos ∠BOC 的值; (II )若•=•,求的值.【分析】(I)设三角形ABC的外接圆半径为R,将已知的等式变形后,左右两边平方,由O为三角形的外心,得到||=||=||=R,再利用平面向量的数量积运算法则计算,可得出cos ∠BOC的值;(II)将已知的等式左右两边利用平面向量的减法法则计算,再利用平面向量的数量积运算法则变形,整理后利用二倍角的余弦函数公式化简,再利用正弦定理变形后,整理可得出所求式子的值.【解答】解:(Ⅰ)设外接圆半径为R,由3+4+5=得:4+5=﹣3,平方得:16R2+40•+25R2=9R2,即•=﹣R2,则cos∠BOC=﹣;(Ⅱ)∵=,∴=,即:=,可得:﹣R2cos2A+R2cos2B=﹣R2cos2C+R2cos2A,∴2cos2A=cos2C+cos2B,即:2(1﹣2sin2A)=2﹣(2sin2B+2sin2C),∴2sin2A=sin2B+sin2C,∴利用正弦定理变形得:2a2=b2+c2,∴=2.【点评】此题考查了平面向量的数量积运算法则,二倍角的余弦函数公式,正弦定理,以及向量在几何中的运用,熟练掌握平面向量的数量积运算法则是解本题的关键.18.(12分)设数列{an }的前n项和为Sn,已知a1=1,(n∈N*).(1)证明:数列是等比数列;(2)求数列{Sn }的前n项和Tn.【分析】(1)运用数列的递推式:an+1=Sn+1﹣Sn,代入整理,结合等比数列的定义即可得证;(2)运用等比数列的通项公式,可得(n∈N*).再由数列的求和方法:错位相减法,结合等比数列的求和公式,计算即可得到所求和.【解答】解:(1)证明:由,及an+1=Sn+1﹣Sn,得,整理,得nSn+1=2(n+1)Sn,∴,又,∴是以1为首项,2为公比的等比列;(2)由(1),得,∴(n∈N*).∴,①,②由②﹣①,得.【点评】本题考查等比数列的定义和通项公式及求和公式的运用,考查数列的求和方法:错位相减法,考查化简整理的运算能力,属于中档题.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.(1)证明:BC1∥平面A1CD;(2)求异面直线BC1和A1D所成角的大小.【分析】(1)连接AC1与A1C相交于点F,连接DF,推导出BC1∥DF,由此能证明BC1∥平面A1CD.(2)法一(几何法):由(1)得∠A1DF或其补角为异面直线BC1和A1D所在角,由此能求出异面直线BC1和A1D所成角的大小.法二(向量法):以C为坐标原点,的方向为x轴正方向,的方向为y轴正方向,的方向为z轴正方向,建立空间直角坐标系C﹣xyz.利用向量法能求出异面直线BC1与A1D所成角.【解答】证明:(1)连接AC1与A1C相交于点F,连接DF.由矩形ACC1A1可得点F是AC1的中点,又D是AB的中点,∴BC1∥DF,∵BC1⊄平面A1CD,DF⊂平面A1CD,∴BC1∥平面A1CD.解:(2)解法一(几何法):由(1)得∠A1DF或其补角为异面直线BC1和A1D所在角,设AB=2,则,,.在△A1DF中,由余弦定理得:,且∠A1DF∈(0,π),∴,∴异面直线BC1和A1D所成角的大小为.解法二(向量法):∵,令AA1=AC=CB=2,,∴AC⊥BC.以C为坐标原点,的方向为x轴正方向,的方向为y轴正方向,的方向为z轴正方向,建立空间直角坐标系C﹣xyz.则D(1,1,0),C1(0,0,2),A1(2,0,2),B(0,2,0),,.设异面直线BC1与A1D所成角为θ,则,∴,∴异面直线BC1与A1D所成角为.【点评】本题考查线面平行的证明,考查异面直线所成角的求法,考查空间中线线、线面、面面间的关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,考查创新意识、应用意识,是中档题.20.(12分)如图所示,正三棱柱ABC ﹣A 1B 1C 1中,E ,F 分别是BC ,CC 1的中点. (Ⅰ)证明:平面AEF ⊥平面B 1BCC 1;(Ⅱ)若该三棱柱所有的棱长均为2,求三棱锥B 1﹣AEF 的体积.【分析】(I )由BB 1⊥平面ABC 可知BB 1⊥AE ,又AE ⊥BC 可得AE ⊥平面BCC 1B 1,从而平面AEF ⊥平面B 1BCC 1;(II )由(1)知AE 为棱锥A ﹣B 1EF 的高.于是V =V=.【解答】解:(I )∵BB 1⊥面ABC ,AE ⊂平面ABC , ∴AE ⊥BB 1,∵E 是正三角形ABC 的边BC 的中点, ∴AE ⊥BC ,又∵BC ⊂平面B 1BCC 1,B 1B ⊂平面B 1BCC 1,BC ∩BB 1=B , ∴AE ⊥平面B 1BCC 1,∵AE ⊂平面AEF , ∴平面AEF ⊥平面B 1BCC 1.(II )∵三棱柱所有的棱长均为2, ∴AE=, ∴S=2×2﹣﹣=,由(I )知AE ⊥平面B 1BCC 1 ∴.【点评】本题考查了面面垂直的判定,棱锥的体积计算,属于基础题.21.(12分)已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【分析】(Ⅰ)由题知:a2+b2=2,曲线C2的离心率为,利用曲线C1的离心率是曲线C2的离心率的倍,求出a,b,即可求曲线C1的方程;(Ⅱ)由于研究直线恒过定点,求出AC的方程,令y=0,求出x可得(x与直线AB斜率k无关),可证直线AC恒过定点就可解决.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y=(x﹣)…(9分)2令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)【点评】本题考查双曲线的方程与性质,考查直线恒过定点,考查学生分析解决问题的能力,属于中档题.22.(12分)已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).(1)判断f(x)=3x+2是否属于集合M,并说明理由;(2)若属于集合M,求实数a的取值范围;(3)若f(x)=2x+bx2,求证:对任意实数b,都有f(x)∈M.【分析】(1)利用f(x)=3x+2,通过f(t+2)=f(t)+f(2)推出方程无解,说明f(x)=3x+2不属于集合M.(2)由属于集合M,推出有实解,即(a﹣6)x2+4ax+6(a﹣2)=0有实解,若a=6时,若a≠6时,利用判断式求解即可.(3)当f(x)=2x+bx2时,方程f(x+2)=f(x)+f(2)⇔3×2x+4bx﹣4=0,令g(x)=3×2x+4bx﹣4,则g(x)在R上的图象是连续的,当b≥0时,当b<0时,判断函数是否有零点,证明对任意实数b,都有f(x)∈M.【解答】解:(1)当f(x)=3x+2时,方程f(t+2)=f(t)+f(2)⇔3t+8=3t+10…(2分)此方程无解,所以不存在实数t,使得f(t+2)=f(t)+f(2),故f(x)=3x+2不属于集合M.…(4分)(2)由属于集合M,可得方程有实解⇔a[(x+2)2+2]=6(x2+2)有实解⇔(a﹣6)x2+4ax+6(a﹣2)=0有实解,…(7分)若a=6时,上述方程有实解;若a≠6时,有△=16a2﹣24(a﹣6)(a﹣2)≥0,解得,故所求a的取值范围是.…(10分)(3)当f(x)=2x+bx2时,方程f(x+2)=f(x)+f(2)⇔2x+2+b(x+2)2=2x+bx2+4+4b⇔3×2x+4bx﹣4=0,…(12分)令g(x)=3×2x+4bx﹣4,则g(x)在R上的图象是连续的,当b≥0时,g(0)=﹣1<0,g(1)=2+4b>0,故g(x)在(0,1)内至少有一个零点;当b<0时,g(0)=﹣1<0,,故g(x)在内至少有一个零点;故对任意的实数b,g(x)在R上都有零点,即方程f(x+2)=f(x)+f(2)总有解,所以对任意实数b,都有f(x)∈M.…(16分)【点评】本题考查抽象函数的应用,函数的零点以及方程根的关系,考查转化思想以及计算能力.。
湖北省襄阳市第四中学2020年高考理科数学模拟考试(一)含参考答案及评分标准
湖北省襄阳市第四中学2020年高考模拟考试(一)数学(理)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考试结束后,将试卷和答题卡一并交回。
第I 卷(选择题)一、 单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集{|06}U x N x =∈≤≤,集合{4,5,6}A =,则U C A =( )A .{1,2,3}B .{0,1,2,3}C .{|03}x x ≤≤D .{|03}U x N x =∈<≤ 2.已知复数z =,则复数z 的共轭复数z =( )A 12i -B .12-C 12i + D .12+ 3.设向量a r ,b r 满足(3,1)a b +=r r ,1a b ⋅=r r,则||a b -=r r ( )A .2BC .D 4.已知数列{}n a 中, ()*111,21,n n n a a a n N S +==+∈为其前n 项和, 5S 的值为( ) A .63 B .61 C .62 D .575.2sin18m =o ,若24m n +==( ) A .1B .2C .4D .86.已知函数()x x g x e e -=-,()()f x xg x =,若53,,(3)22⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭a f b f c f ,则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a7.某校高二(1)班甲、乙两同学进行投篮比赛,他们进球的概率分别是34和45,现甲、乙各投篮一次,恰有一人进球的概率是( )A .120B .320C .15D .7208.函数2ln 8x y x =-的图象大致为( ) A . B .C .D .9.某三棱锥的三视图如图所示,则该几何体的体积为( )A .43B .83 C .4 D .810.我国古代数学名著《孙子算经》中有鸡兔同笼问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”据此绘制如图所示的程序框图,其中鸡x 只,兔y 只,则输出,x y 的分别是( )A .12,23B .23,12C .13,22D .22,1311.已知双曲线C :22221(0,0)x y a b a b-=>>的左右焦点分别为1F 、2F ,过原点的直线与双曲线C 交于A ,B 两点,若260AF B ∠=︒,2ABF ∆2,则双曲线的渐近线方程为( )A .12y x =±B .2y x =±C .3y x =±D .y =12.已知函数211()(0)42f x x x a x =++<,()ln (0)g x x x =>,其中R a ∈.若()f x 的图象在点()()11,A x f x 处的切线与g x ()的图象在点()()22,B x f x 处的切线重合,则a 的取值范围为()A .(1ln 2,)-++∞B .(1ln 2,)--+∞C .3,4⎛⎫-+∞ ⎪⎝⎭D .(ln 2ln3,)-+∞ 第II 卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。
2024年高考数学压轴题专项训练:立体几何压轴题十大题型汇总(解析版)(共65页)(1)
立体几何压轴题十大题型汇总命题预测本专题考查类型主要涉及点立体几何的内容,主要涉及了立体几何中的动点问题,外接球内切球问题,以及不规则图形的夹角问题,新定义问题等。
预计2024年后命题会继续在以上几个方面进行。
高频考法题型01几何图形内切球、外接球问题题型02立体几何中的计数原理排列组合问题题型03立体几何动点最值问题题型04不规则图形中的面面夹角问题题型05不规则图形中的线面夹角问题题型06几何中的旋转问题题型07立体几何中的折叠问题题型08不规则图形表面积、体积问题题型09立体几何新定义问题题型10立体几何新考点题型01几何图形内切球、外接球问题解决与球相关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程如下:(1)定球心:如果是内切球,球心到切点的距离相等且为球的半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.1(多选)(23-24高三下·浙江·开学考试)如图,八面体的每个面都是正三角形,并且4个顶点A ,B ,C ,D 在同一个平面内,如果四边形ABCD 是边长为2的正方形,则()A.异面直线AE 与DF 所成角大小为π3B.二面角A -EB -C 的平面角的余弦值为13C.此八面体一定存在外接球D.此八面体的内切球表面积为8π3【答案】ACD=|OA |=|OB |=|OC |=|OD |可判断C 项,运用等体积法求得内切球的半径,进而可求得内切球的表面积即可判断D 项.【详解】连接AC 、BD 交于点O ,连接OE 、OF ,因为四边形ABCD 为正方形,则AC ⊥BD ,又因为八面体的每个面都是正三角形,所以E 、O 、F 三点共线,且EF ⊥面ABCD ,所以以O 为原点,分别以OB 、OC 、OE 为x 轴、y 轴、z 轴建立空间直角坐标系O -xyz ,如图所示,则O (0,0,0),A (0,-2,0),B (2,0,0),C (0,2,0),D (-2,0,0),E (0,0,2),F (0,0,-2),对于A 项,AE =(0,2,2),DF=(2,0,2),设异面直线AE 与DF 所成角为θ,则cos θ=|cos AE ,DF |=|AE ⋅DF||AE ||DF |=22×2=12,所以θ=π3,即异面直线AE 与DF 所成角大小为π3,故A 项正确;对于B 项,BE =(-2,0,2),BA =(-2,-2,0),BC=(-2,2,0),设面ABE 的一个法向量为n=(x 1,y 1,z 1),则n ⋅BE=0n ⋅BA =0 ⇒-2x 1+2z 1=0-2x 1-2y 1=0,取x 1=1,则y 1=-1,z 1=1,则n=(1,-1,1),设面BEC 的一个法向量为m=(x 2,y 2,z 2),则n ⋅BE=0n ⋅BC =0⇒-2x 2+2z 2=0-2x 2+2y 2=0,取x 2=1,则y 2=1,z 2=1,则m=(1,1,1),所以cos n ,m =n ⋅m |n ||m |=1-1+13×3=13,又因为面ABE 与BEC 所成的二面角的平面角为钝角,所以二面角A -EB -C 的平面角的余弦值为-13,故B 项错误;对于C 项,因为|OE |=|OF |=|OA |=|OB |=|OC |=|OD |=2,所以O 为此八面体外接球的球心,即此八面体一定存在外接球,故C 项正确;对于D 项,设内切球的半径为r ,则八面体的体积为V =2V E -ABCD =2×13S ABCD ⋅EO =2×13×2×2×2=823,又八面体的体积为V =8V E -ABO =8V O -ABE =8×13S EAB ⋅r =8×13×12×22×sin π3×r =833r ,所以833r =823,解得r =63,所以内切球的表面积为4πr 2=4π×632=8π3,故D 项正确.故选:ACD .2(2024·浙江宁波·二模)在正四棱台ABCD -A 1B 1C 1D 1中,AB =4,A 1B 1=2,AA 1=3,若球O 与上底面A 1B 1C 1D 1以及棱AB ,BC ,CD ,DA 均相切,则球O 的表面积为()A.9πB.16πC.25πD.36π【答案】C【分析】根据勾股定理求解棱台的高MN =1,进而根据相切,由勾股定理求解球半径R =52,即可由表面积公式求解.【详解】设棱台上下底面的中心为N ,M ,连接D 1B 1,DB ,则D 1B 1=22,DB =42,所以棱台的高MN =B 1B 2-MB -NB 1 2=3 2-22-2 2=1,设球半径为R ,根据正四棱台的结构特征可知:球O 与上底面A 1B 1C 1D 1相切于N ,与棱AB ,BC ,CD ,DA 均相切于各边中点处,设BC 中点为E ,连接OE ,OM ,ME ,所以OE 2=OM 2+ME 2⇒R 2=R -1 2+22,解得R =52,所以球O 的表面积为4πR 2=25π,故选:C3(2024·河北石家庄·二模)已知正方体的棱长为22,连接正方体各个面的中心得到一个八面体,以正方体的中心O 为球心作一个半径为233的球,则该球O 的球面与八面体各面的交线的总长为()A.26πB.463π C.863π D.46π【答案】B【分析】画出图形,求解正方体的中心与正八面体面的距离,然后求解求与正八面体的截面圆半径,求解各个平面与球面的交线、推出结果.【详解】如图所示,M 为EF 的中点,O 为正方体的中心,过O 作PM 的垂线交于点N ,正八面体的棱长为2,即EF =2,故OM =1,OP =2,PM =3,则ON =63,设球与正八面体的截面圆半径为r ,如图所示,则r =2332-ON 2=2332-632=63,由于MN =ZN =33,NJ =NI =63,所以IJ =233,则∠INJ =π2,平面PEF 与球O 的交线所对应的圆心角恰为π2,则该球O 的球面与八面体各面的交线的总长为8×14×2π×63 =463π故选:B 4(多选)(2022·山东聊城·二模)用与母线不垂直的两个平行平面截一个圆柱,若两个截面都是椭圆形状,则称夹在这两个平行平面之间的几何体为斜圆柱.这两个截面称为斜圆柱的底面,两底面之间的距离称为斜圆柱的高,斜圆柱的体积等于底面积乘以高.椭圆的面积等于长半轴与短半轴长之积的π倍,已知某圆柱的底面半径为2,用与母线成45°角的两个平行平面去截该圆柱,得到一个高为6的斜圆柱,对于这个斜圆柱,下列选项正确的是()A.底面椭圆的离心率为22B.侧面积为242πC.在该斜圆柱内半径最大的球的表面积为36πD.底面积为42π【答案】ABD【分析】不妨过斜圆柱的最高点D 和最低点B 作平行于圆柱底面的截面圆,夹在它们之间的是圆柱,作出过斜圆柱底面椭圆长轴的截面,截斜圆柱得平行四边形,截圆柱得矩形,如图,由此截面可得椭圆面与圆柱底面间所成的二面角的平面角,从而求得椭圆长短轴之间的关系,得离心率,并求得椭圆的长短轴长,得椭圆面积,利用椭圆的侧面积公式可求得斜椭圆的侧面积,由斜圆柱的高比圆柱的底面直径大,可知斜圆柱内半径最大的球的直径与圆柱底面直径相等,从而得其表面积,从而可关键各选项.【详解】不妨过斜圆柱的最高点D 和最低点B 作平行于圆柱底面的截面圆,夹在它们之间的是圆柱,如图,矩形ABCD 是圆柱的轴截面,平行四边形BFDE 是斜圆柱的过底面椭圆的长轴的截面,由圆柱的性质知∠ABF =45°,则BF =2AB ,设椭圆的长轴长为2a ,短轴长为2b ,则2a =2⋅2b ,a =2b ,c =a 2-b 2=a 2-22a 2=22a ,所以离心率为e =c a =22,A 正确;EG ⊥BF ,垂足为G ,则EG =6,易知∠EBG =45°,BE =62,又CE =AF =AB =4,所以斜圆柱侧面积为S =2π×2×(4+62)-2π×2×4=242π,B 正确;2b =4,b =2,2a =42,a =22,椭圆面积为πab =42π,D 正确;由于斜圆锥的两个底面的距离为6,而圆柱的底面直径为4,所以斜圆柱内半径最大的球的半径为2,球表面积为4π×22=16π,C 错.故选:ABD .5(21-22高三上·湖北襄阳·期中)在正方体ABCD -A 1B 1C 1D 1中,球O 1同时与以A 为公共顶点的三个面相切,球O 2同时与以C 1为公共顶点的三个面相切,且两球相切于点F .若以F 为焦点,AB 1为准线的抛物线经过O 1,O 2,设球O 1,O 2的半径分别为r 1,r 2,则r1r 2=.【答案】2-3/-3+2【分析】首先根据抛物线的定义结合已知条件得到球O 2内切于正方体,设r 2=1,得到r 1=2-3,即可得到答案.【详解】如图所示:根据抛物线的定义,点O 2到点F 的距离与到直线AB 1的距离相等,其中点O 2到点F 的距离即半径r 2,也即点O 2到面CDD 1C 1的距离,点O 2到直线AB 1的距离即点O 2到面ABB 1A 1的距离,因此球O 2内切于正方体.不妨设r 2=1,两个球心O 1,O 2和两球的切点F 均在体对角线AC 1上,两个球在平面AB 1C 1D 处的截面如图所示,则O 2F =r 2=1,AO 2=AC 12=22+22+222=3,所以AF =AO 2-O 2F =3-1.因为r 1AO 1=223,所以AO 1=3r 1,所以AF =AO 1+O 1F =3r 1+r 1,因此(3+1)r 1=3-1,得r 1=2-3,所以r1r 2=2- 3.故答案为:2-3题型02立体几何中的计数原理排列组合问题1(2024·浙江台州·二模)房屋建造时经常需要把长方体砖头进行不同角度的切割,以契合实际需要.已知长方体的规格为24cm ×11cm ×5cm ,现从长方体的某一棱的中点处作垂直于该棱的截面,截取1次后共可以得到12cm ×11cm ×5cm ,24cm ×112cm ×5cm ,24cm ×11cm ×52cm 三种不同规格的长方体.按照上述方式对第1次所截得的长方体进行第2次截取,再对第2次所截得的长方体进行第3次截取,则共可得到体积为165cm 3的不同规格长方体的个数为()A.8B.10C.12D.16【答案】B【分析】根据原长方体体积与得到的体积为165cm 3长方体的关系,分别对长宽高进行减半,利用分类加法计数原理求解即可.【详解】由题意,V 长方体=24×11×5=8×165,为得到体积为165cm 3的长方体,需将原来长方体体积缩小为原来的18,可分三类完成:第一类,长减半3次,宽减半3次、高减半3次,共3种;第二类,长宽高各减半1次,共1种;第三类,长宽高减半0,1,2 次的全排列A 33=6种,根据分类加法计数原理,共3+1+6=10种. 故选:B2(2023·江苏南通·模拟预测)在空间直角坐标系O -xyz 中,A 10,0,0 ,B 0,10,0 ,C 0,0,10 ,则三棱锥O -ABC 内部整点(所有坐标均为整数的点,不包括边界上的点)的个数为()A.C 310B.C 39C.C 210D.C 29【答案】B【分析】先利用空间向量法求得面ABC 的一个法向量为n =1,1,1 ,从而求得面ABC 上的点P a ,b ,c 满足a +b +c =10,进而得到棱锥O -ABC 内部整点为Q s ,t ,r 满足3≤s +t +r ≤9,再利用隔板法与组合数的性质即可得解.【详解】根据题意,作出图形如下,因为A 10,0,0 ,B 0,10,0 ,C 0,0,10 ,所以AB =-10,10,0 ,AC=-10,0,10 ,设面ABC 的一个法向量为n=x ,y ,z ,则AB ⋅n=-10x +10y =0AC ⋅n=-10x +10z =0,令x =1,则y =1,z =1,故n=1,1,1 ,设P a ,b ,c 是面ABC 上的点,则AP=a -10,b ,c ,故AP ⋅n=a -10+b +c =0,则a +b +c =10,不妨设三棱锥O -ABC 内部整点为Q s ,t ,r ,则s ,t ,r ∈N *,故s ≥1,t ≥1,r ≥1,则s +t +r ≥3,易知若s +t +r =10,则Q 在面ABC 上,若s +t +r >10,则Q 在三棱锥O -ABC 外部,所以3≤s +t +r ≤9,当s +t +r =n ,n ∈N *且3≤n ≤9时,将n 写成n 个1排成一列,利用隔板法将其隔成三部分,则结果的个数为s ,t ,r 的取值的方法个数,显然有C 2n -1个方法,所有整点Q s ,t ,r 的个数为C 22+C 23+⋯+C 28,因为C r n +C r -1n =n !r !n -r !+n !r -1 !n +1-r !=n +1-r n !+rn !r !n +1-r !=n +1 !r !n +1-r!=C rn +1,所以C 22+C 23+⋯+C 28=C 33+C 23+⋯+C 28=C 34+C 24+⋯+C 28=⋯=C 38+C 28=C 39.故选:B .【点睛】关键点睛:本题解决的关键是求得面ABC 上的点P a ,b ,c 满足a +b +c =10,从而确定三棱锥O -ABC 内部整点为Q s ,t ,r 满足3≤s +t +r ≤9,由此得解.3(2024·重庆·模拟预测)从长方体的8个顶点中任选4个,则这4个点能构成三棱锥的顶点的概率为()A.2736B.2935C.67D.3235【答案】B【分析】首先求出基本事件总数,再计算出这4个点在同一个平面的概率,最后利用对立事件的概率公式计算可得.【详解】根据题意,从长方体的8个顶点中任选4个,有C 48=70种取法,“这4个点构成三棱锥的顶点”的反面为“这4个点在同一个平面”,而长方体有2个底面和4个侧面、6个对角面,一共有12种情况,则这4个点在同一个平面的概率P =1270=635,所以这4个点构成三棱锥的概率为1-635=2935.故选:B .4(多选)(2024·重庆·模拟预测)如图,16枚钉子钉成4×4的正方形板,现用橡皮筋去套钉子,则下列说法正确的有(不同的图形指两个图形中至少有一个顶点不同)()A.可以围成20个不同的正方形B.可以围成24个不同的长方形(邻边不相等)C.可以围成516个不同的三角形D.可以围成16个不同的等边三角形【答案】ABC【分析】利用分类计算原理及组合,结合图形,对各个选项逐一分析判断即可得出结果.【详解】不妨设两个钉子间的距离为1,对于选项A ,由图知,边长为1的正方形有3×3=9个,边长为2的正方形有2×2=4个,边长为3的正方形有1个,边长为2的正方形有2×2=4个,边长为5的有2个,共有20个,所以选项A 正确,对于选项B ,由图知,宽为1的长方形有3×3=9个,宽为2的长方形有4×2=8个,宽为3的长方形有5个,宽为2的有2个,共有24个,所以选项B 正确,对于选项C ,由图知,可以围成C 316-10C 34-4C 33=516个不同的三角形,所以选项C 正确,对于选项D ,由图可知,不存在等边三角形,所以选项D 错误,故选:ABC .5(2024·上海浦东新·模拟预测)如图ABCDEF -A B C D E F 为正六棱柱,若从该正六棱柱的6个侧面的12条面对角线中,随机选取两条,则它们共面的概率是.【答案】611【分析】根据题意,相交时分为:在侧面内相交,两个相邻面相交于一个点,相隔一个面中相交于对角线延长线上,分别分析几种情况下对角线共面的个数,再利用古典概型的概率计算公式,计算结果即可.【详解】由题意知,若两个对角线在同一个侧面,因为有6个侧面,所以共有6组,若相交且交点在正六棱柱的顶点上,因为有12个顶点,所以共有12组,若相交且交点在对角线延长线上时,如图所示,连接AD ,C D ,E D ,AB ,AF ,先考虑下底面,根据正六边形性质可知EF ⎳AD ⎳BC ,所以E F ⎳AD ⎳B C ,且B C =E F ≠AD ,故ADC B 共面,且ADE F 共面,故AF ,DE 相交,且C D ,AB 相交,故共面有2组,则正六边形对角线AD 所对应的有2组共面的面对角线,同理可知正六边形对角线BE ,CF 所对的分别有两组,共6组,故对于上底面对角线A D ,B E ,C F 同样各对两组,共6组,若对面平行,一组对面中有2组对角线平行,三组对面共有6组,所以共面的概率是6+12+12+6C 212=611.故答案为:611.题型03立体几何动点最值问题空间几何体中线段和差最值以及几何体中的轨迹问题,以及线线角和线面角的求解,综合性较强,难度较大,解答时要发挥空间想象,明确空间的位置关系,结合空间距离,确定动点的轨迹形状;结合等体积法求得点到平面的距离,结合线面角的定义求解.1(多选)(2024·浙江台州·二模)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为平面ABCD 内一动点,且直线D 1P 与平面ABCD 所成角为π3,E 为正方形A 1ADD 1的中心,则下列结论正确的是()A.点P 的轨迹为抛物线B.正方体ABCD -A 1B 1C 1D 1的内切球被平面A 1BC 1所截得的截面面积为π6C.直线CP 与平面CDD 1C 1所成角的正弦值的最大值为33D.点M 为直线D 1B 上一动点,则MP +ME 的最小值为11-266【答案】BCD【分析】对于A ,根据到D 点长度为定值,确定动点轨迹为圆;对于B ,理解内切球的特点,计算出球心到平面的距离,再计算出截面半径求面积;对于C ,找到线面所成角的位置,再根据动点的运动特点(相切时)找到正弦的最大值;对于D ,需要先找到P 点位置,再将立体问题平面化,根据三点共线距离最短求解.【详解】对于A ,因为直线D 1P 与平面ABCD 所成角为π3,所以DP =1tan π3=33.P 点在以D 为圆心,33为半径的圆周上运动,因此运动轨迹为圆.故A 错误.对于B ,在面BB 1D 1D 内研究,如图所示O 为内切球球心,O 1为上底面中心,O 2为下底面中心,G 为内切球与面A 1BC 1的切点.已知OG ⊥O 1B ,OG 为球心到面A 1BC 1的距离.在正方体中,O 1B =62,O 2B =22,O 1O 2=1.利用相似三角形的性质有OG O 2B =OO 1O 1B,即OG 22=1262,OG =36.因此可求切面圆的r 2=122-362=16,面积为π6.故B 正确.对于C ,直线CP 与平面CDD 1C 1所成角即为∠PCD ,当CP 与P 点的轨迹圆相切时,sin ∠PCD 最大.此时sin ∠PCD =13=33.故C 正确.对于D ,分析可知,P 点为BD 和圆周的交点时,MP 最小.此时可将面D 1AB 沿着D 1B 翻折到面BB 1D 1D 所在平面.根据长度关系,翻折后的图形如图所示.当E ,M ,P 三点共线时,MP +ME 最小.因为O 2P =33-22,O 1O 2=1,所以最小值为12+33-222=11-266,故D 正确.故选:BCD2(多选)(2024·江苏扬州·模拟预测)如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为平面ABCD 内一动点,则()A.若M 在线段AB 上,则D 1M +MC 的最小值为4+22B.平面ACD 1被正方体内切球所截,则截面面积为π6C.若C 1M 与AB 所成的角为π4,则点M 的轨迹为椭圆D.对于给定的点M ,过M 有且仅有3条直线与直线D 1A ,D 1C 所成角为60°【答案】ABD迹方程判断C ,合理转化后判断D 即可.【详解】对于A ,延长DA 到E 使得AE =2,则D 1M +MC =EM +MC ≥EC =4+22,等号在E ,M ,C 共线时取到;故A 正确,对于B ,由于球的半径为12,球心到平面ACD 1的距离为36,故被截得的圆的半径为14-112 =66,故面积为π66 2=π6,故B 正确,对于C ,C 1M 与AB 所成的角即为C 1M 和C 1D 1所成角,记CM =xCD +yCB ,则x 2+y 2+1=2(y 2+1),即x 2-y 2=1,所以M 的轨迹是双曲线;故C 错误,对于D ,显然过M 的满足条件的直线数目等于过D 1的满足条件的直线l 的数目,在直线l 上任取一点P ,使得D 1P =D 1A =D 1C ,不妨设∠PD 1A =π3,若∠PD 1C =π3,则AD 1CP 是正四面体,所以P 有两种可能,直线l 也有两种可能,若∠PD 1C =2π3,则l 只有一种可能,就是与∠AD 1C 的角平分线垂直的直线,所以直线l 有三种可能.故选:ABD3(多选)(2023·安徽芜湖·模拟预测)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,棱AB 的中点为M ,过点M 作正方体的截面α,且B 1D ⊥α,若点N 在截面α内运动(包含边界),则()A.当MN 最大时,MN 与BC 所成的角为π3B.三棱锥A 1-BNC 1的体积为定值23C.若DN =2,则点N 的轨迹长度为2πD.若N ∈平面A 1BCD 1,则BN +NC 1 的最小值为6+23【答案】BCD【分析】记BC ,CC 1,C 1D ,D 1A 1,A 1A 的中点分别为F ,H ,G ,F ,E ,构建空间直角坐标系,证明M ,F ,H ,G ,F ,E 共面,且DB 1⊥平面MEFGHI ,由此确定平面α,找到MN 最大时N 的位置,确定MN 与BC 所成角的平面角即可判断A ,证明A 1BC 1与平面α平行,应用向量法求M 到面A 1BC 1的距离,结合体积公式,求三棱锥A 1-BNC 1的体积,判断B ;根据球的截面性质确定N 的轨迹,进而求周长判断C ,由N ∈平面A 1BCD 1确定N 的位置,通过翻折为平面图形,利用平面几何结论求解判断D .【详解】记BC ,CC 1,C 1D ,D 1A 1,A 1A 的中点分别为F ,H ,G ,F ,E ,连接EF ,FG ,GH ,HI ,IM ,ME ,连接GM ,FI ,因为FG ∥A 1C 1,A 1C 1∥AC ,AC ∥MI ,又FG =12A 1C 1 =12AC =MI 所以FG ∥MI ,FG =MI ,所以四边形FGIM 为平行四边形,连接FI ,MG ,记其交点为S ,根据正方体性质,可构建如下图示的空间直角坐标系,则A (2,0,0),A 1(2,0,2),B (2,2,0),C 1(0,2,2),B 12,2,2 ,M (2,1,0),E (2,0,1),F (1,0,2),G (0,1,2),H (0,2,1),I (1,2,0),S 1,1,1 ,因为DB 1 =2,2,2 ,SM =1,0,-1 ,SI =0,1,-1 ,SH =-1,1,0 ,SG =-1,0,1 ,SF =0,-1,1 ,SE =1,-1,0 ,所以DB 1 ⋅SM =0,DB 1 ⋅SI =0,DB 1 ⋅SH =0,DB1 ⋅SG =0,DB 1 ⋅SF =0,DB 1 ⋅SE =0所以M ,E ,F ,G ,H ,I 六点共面,因为DB 1 =2,2,2 ,MI =-1,1,0 ,ME =0,-1,1 ,所以DB 1 ⋅MI =-2+2+0=0,DB 1 ⋅ME =0-2+2=0,所以DB 1 ⊥MI ,DB 1 ⊥ME ,所以DB 1⊥MI ,DB 1⊥ME ,又MI ,ME ⊂平面MEFGHI ,所以DB 1⊥平面MEFGHI ,故平面MEFGHI 即为平面α,对于A ,N 与G 重合时,MN 最大,且MN ⎳BC 1,所以MN 与BC 所成的角的平面角为∠C 1BC ,又BC =CC 1 ,∠BCC 1=90°,所以∠C 1BC =π4,故MN 与BC 所成的角为π4,所以A 错误;对于B ,因为所以DB 1 =2,2,2 ,A 1C 1 =-2,2,0 ,BC 1=-2,0,2 ,所以DB 1 ⋅A 1C 1 =-4+4+0=0,DB 1 ⋅BC 1 =-4+0+4=0,所以DB 1 ⊥A 1C 1 ,DB 1 ⊥BC 1 ,所以DB 1⊥A 1C 1,DB 1⊥BC 1,又A 1C 1,BC 1⊂平面A 1BC 1,所以DB 1⊥平面A 1BC 1,又DB 1⊥平面MEFGHI ,所以平面A 1BC 1∥平面MEFGHI ,所以点N 到平面A 1BC 1的距离与点M 到平面A 1BC 1的距离相等,所以V A 1-BNC 1=V N -A 1BC 1=V M -A 1BC 1,向量DB 1 =2,2,2 为平面A 1BC 1的一个法向量,又MB =(0,1,0),所以M 到面A 1BC 1的距离d =DB 1 ⋅MB DB 1=33,又△A 1BC 1为等边三角形,则S △A 1BC 1=12×(22)2×32=23,所以三棱锥A 1-BNC 1的体积为定值13×d ×S △A 1BC 1=23,B 正确;对于C :若DN =2,点N 在截面MEFGHI 内,所以点N 的轨迹是以D 为球心,半径为2的球体被面MEFGHI 所截的圆(或其一部分),因为DS =1,1,1 ,DB 1 =2,2,2 ,所以DB 1 ∥DS ,所以DS ⊥平面MEFGHI ,所以截面圆的圆心为S ,因为DB 1 =2,2,2 是面MEFGHI 的法向量,而DF =(1,0,2),所以D 到面MEFGHI 的距离为d =m ⋅DFm=3,故轨迹圆的半径r =22-(3)2=1,又SM =2,故点N 的轨迹长度为2πr =2π,C 正确.对于D ,N ∈平面A 1BCD 1,N ∈平面MEFGHI ,又平面A 1BCD 1与平面MEFGHI 的交线为FI ,所以点N 的轨迹为线段FI ,翻折△C 1FI ,使得其与矩形A 1BIF 共面,如图,所以当B ,N ,C 1三点共线时,BN +NC 1 取最小值,最小值为BC 1 ,由已知C 1I =C 1F =5,BI =1,FI =22,过C 1作C 1T ⊥BI ,垂足为T ,则C 1T =2,所以IT=C 1I2-C 1T 2=3=BT 2+C T 2=3+12+2=6+23,所以BN +NC 1 的最小值为6+23,D 正确;故选:BCD【点睛】关键点点睛:本题解决的关键在于根据截面的性质确定满足条件的过点M 的截面位置,再结合异面直线夹角定义,锥体体积公式,球的截面性质,空间图形的翻折判断各选项.4(多选)(2024·福建厦门·一模)如图所示,在五面体ABCDEF 中,四边形ABCD 是矩形,△ABF 和△DCE 均是等边三角形,且AB =23,EF =x (x >0),则()A.EF ⎳平面ABCDB.二面角A -EF -B 随着x 的减小而减小C.当BC =2时,五面体ABCDEF 的体积V (x )最大值为272D.当BC =32时,存在x 使得半径为32的球能内含于五面体ABCDEF 【答案】ACD【分析】A 由线面平行的判定证明;B 设二面角A -EF -B 的大小为2α,点F 到面ABCD 的距离为h ,则tan α=3h,分析取最小值的对应情况即可判断;C 把五面体ABCDEF 补成直三棱柱FGI -EKJ ,取AB ,GI 的中点M ,H ,设∠FMH =θ0<θ≤π2,则MH =3cos θ,FH =3sin θ,结合V (x )=V FGI -EKJ -2V F -ABIG 并应用导数研究最值;D 先分析特殊情况:△ABF 和△DCE 所在平面均垂直于面ABCD 时构成正三棱柱ABF -DCE ,再借助左视图、正视图研究内切圆半径分析一般情况判断.【详解】A :由题设BC ⎳AD ,AD ⊂面ADEF ,BC ⊄面ADEF ,则BC ⎳面ADEF ,由面BCEF ∩面ADEF =EF ,BC ⊂面BCEF ,则BC ⎳EF ,BC ⊂面ABCD ,EF ⊄面ABCD ,则EF ⎳平面ABCD ,对;B :设二面角A -EF -B 的大小为2α,点F 到面ABCD 的距离为h ,则tan α=3h,点F 到面ABCD 的距离,仅在面FAB ⊥面ABCD 时取得最大值,当EF =x =BC 时tan α取最小值,即α取最小值,即二面角A -EF -B 取最小值,所以EF =x ∈(0,+∞),二面角先变小后变大,错;C :当BC =2,如图,把五面体ABCDEF 补成直三棱柱FGI -EKJ ,分别取AB ,GI 的中点M ,H ,易得FH ⊥面ABCD ,FM =3,设∠FMH =θ0<θ≤π2,则MH =3cos θ,FH =3sin θ,V (x )=V ABCDEF =V FGI -EKJ -2V F -ABIG =12×23×3sin θ×(2+6cos θ)-2×13×3sin θ×23×3cos θ=63sin θ+63sin θcos θ,令f (θ)=0⇒2cos 2θ+cos θ-1=0,可得cos θ=12或cos θ=-1(舍),即θ=π3,0<θ<π3,f (θ)>0,f (θ)递增,π3<θ≤π2,f(θ)<0,f (θ)递减,显然θ=π3是f (θ)的极大值点,故f (θ)max =63×32+63×32×12=272.所以五面体ABCDEF 的体积V (x )最大值为272,C 对;D :当BC =32时,△ABF 和△DCE 所在平面均垂直于面ABCD 时构成正三棱柱ABF -DCE ,此时正三棱柱内最大的求半径r =34<32,故半径为32的球不能内含于五面体ABCDEF ,对于一般情形,如下图示,左图为左视图,右图为正视图,由C 分析结果,当五面体ABCDEF 体积最大时,其可内含的球的半径较大,易知,当∠FMH =π3时,FH =332,IH =3,IF =392,设△FIG 的内切圆半径为r 1,则12×332×23=12r 1×23+2×392 ,可得r 1=332+13>32,另外,设等腰梯形EFMN 中圆的半径为r 2,则r 2=34tan π3=334>r 1=332+13,所以,存在x 使半径为32的球都能内含于五面体ABCDEF ,对.故选:ACD【点睛】关键点点睛:对于C 通过补全几何体为棱柱,设∠FMH =θ0<θ≤π2得到五面体ABCDEF 的体积关于θ的函数;对于D 从特殊到一般,结合几何体视图研究内切圆判断最大半径是否大于32为关键.5(多选)(2024·广西南宁·一模)在边长为2的正方体ABCD -A 1B 1C 1D 1中,动点M 满足AM =xAB+yAD +zAA 1 ,(x ,y ,z ∈R 且x ≥0,y ≥0,z ≥0),下列说法正确的是()A.当x =14,z =0,y ∈0,1 时,B 1M +MD 的最小值为13B.当x =y =1,z =12时,异面直线BM 与CD 1所成角的余弦值为105C.当x +y +z =1,且AM =253时,则M 的轨迹长度为42π3D.当x +y =1,z =0时,AM 与平面AB 1D 1所成角的正弦值的最大值为63【答案】AD【分析】对于A ,确定M 的位置,利用侧面展开的方法,求线段的长,即可判断;对于B ,利用平移法,作出异面直线所成角,解三角形,即可判断;对于C ,结合线面垂直以及距离确定点M 的轨迹形状,即可确定轨迹长度;对于D ,利用等体积法求得M 点到平面AB 1D 1的距离,结合线面角的定义求得AM 与平面AB 1D 1所成角的正弦值,即可判断.【详解】对于A ,在AB 上取点H ,使AH =14AB ,在DC 上取点K ,使DK =14DC ,因为x =14,z =0,y ∈0,1 ,即AM =14AB +yAD ,故M 点在HK 上,将平面B 1HKC 1与平面AHKD 沿着HK 展开到同一平面内,如图:连接B 1D 交HK 于P ,此时B ,P ,D 三点共线,B 1M +MD 取到最小值即B 1D 的长,由于AH =14AB =12,∴BH =32,则B 1H =22+32 2=52,故AB 1=52+12=3,∴B 1D =(B 1A )2+AD 2=32+22=13,即此时B 1M +MD 的最小值为13,A 正确;对于B ,由于x =y =1,z =12时,则AM =AB +AD +12AA 1 =AC +12CC 1 ,此时M 为CC 1的中点,取C 1D 1的中点为N ,连接BM ,MN ,BN ,则MN ∥CD 1,故∠BMN 即为异面直线BM 与CD 1所成角或其补角,又MN =12CD 1=2,BM =22+12=5,BN =(BC 1)2+(C 1N )2=8+1=3,故cos ∠BMN =BM 2+MN 2-BN 22BM ⋅MN =5 2+2 2-3225⋅2=-1010,而异面直线所成角的范围为0,π2,故异面直线BM 与CD 1所成角的余弦值为1010,B 错误;对于C ,当x +y +z =1时,可得点M 的轨迹在△A 1BD 内(包括边界),由于CC 1⊥平面ABCD ,BD ⊂平面ABCD ,故CC 1⊥BD ,又BD ⊥AC ,AC ∩CC 1=C ,AC ,CC 1⊂平面ACC 1,故BD ⊥平面ACC 1,AC 1⊂平面ACC 1,故BD ⊥AC 1,同理可证A 1B ⊥AC 1,A 1B ∩BD =B ,A 1B ,BD ⊂平面A 1BD ,故AC 1⊥平面A 1BD ,设AC 1与平面A 1BD 交于点P ,由于V A -A 1BD =V A 1-ABD =13×12×2×2×2=43,△A 1BD 为边长为22的正三角形,则点A 到平面A 1BD 的距离为AP =4313×34×22 2=233,若AM =253,则MP =AM 2-AP 2=223,即M 点落在以P 为圆心,223为半径的圆上,P 点到△A 1BD 三遍的距离为13×32×22=63<223,即M 点轨迹是以P 为圆心,223为半径的圆的一部分,其轨迹长度小于圆的周长42π3,C 错误;因为当x +y =1,z =0时,AM =AB +AD,即M 在BD 上,点M 到平面AB 1D 1的距离等于点B 到平面AB 1D 1的距离,设点B 到平面AB 1D 1的距离为d ,则V B -AB 1D 1=V D 1-ABB 1=13S △ABB 1⋅A 1D 1=13×12×2×2×2=43,△AB 1D 1为边长为22的正三角形,即13S △A 1BD ⋅d =13×34×22 2×d =43,解得d =233,又M 在BD 上,当M 为BD 的中点时,AM 取最小值2,设直线AM 与平面AB 1D 1所成角为θ,θ∈0,π2,则sin θ=d AM =233AM≤2332=63,即AM 与平面AB 1D 1所成角的正弦值的最大值为63,D 正确,故选:AD【点睛】难点点睛:本题考查了空间几何体中线段和差最值以及几何体中的轨迹问题,以及线线角和线面角的求解,综合性较强,难度较大,解答时要发挥空间想象,明确空间的位置关系,难点在于C ,D 选项的判断,对于C ,要结合空间距离,确定动点的轨迹形状;对于D ,要结合等体积法求得点到平面的距离,结合线面角的定义求解.题型04不规则图形中的面面夹角问题利用向量法解决立体几何中的空间角问题,关键在于依托图形建立合适的空间直角坐标系,将相关向量用坐标表示,通过向量的坐标运算求空间角,其中建系的关键在于找到两两垂直的三条直线.1(2024·浙江台州·二模)如图,已知四棱台ABCD -A 1B 1C 1D 1中,AB =3A 1B 1,AB ∥CD ,AD ⊥AB ,AB =6,CD =9,AD =6,且AA 1=BB 1=4,Q 为线段CC 1中点,(1)求证:BQ ∥平面ADD 1A 1;(2)若四棱锥Q -ABB 1A 1的体积为3233,求平面ABB 1A 1与平面CDD 1C 1夹角的余弦值.【答案】(1)证明见解析(2)217【分析】(1)分别延长线段AA 1,BB 1,CC 1,DD 1交于点P ,将四棱台补成四棱锥P -ABCD ,取DD 1的中点E ,连接QE ,AE ,由四边形ABQE 为平行四边形,得到BQ ∥AE ,然后利用线面平行的判定定理证明;(2)先证明AD ⊥平面ABB 1A 1,再以A 为坐标原点,以直线AB 为x 轴,以直线AD 为y 轴,建立空间直角坐标系,求得平面CDD 1C 1的法向量为m =x ,y ,z ,易得平面ABB 1A 1的一个法向量为n=0,1,0 ,然后由cos m ,n=m ⋅n m n 求解.【详解】(1)证明:如图所示:分别延长线段AA 1,BB 1,CC 1,DD 1交于点P ,将四棱台补成四棱锥P -ABCD .∵A 1B 1=13AB ,∴PC 1=13PC ,∴CQ =QC 1=C 1P ,取DD 1的中点E ,连接QE ,AE ,∵QE ⎳CD ⎳AB ,且QE =123+9 =6=AB ,∴四边形ABQE 为平行四边形.∴BQ ∥AE ,又AE ⊂平面ADD 1A 1,BQ ⊄平面ADD 1A 1,∴BQ ∥平面ADD 1A 1;(2)由于V Q -ABB 1A 1=23V C -ABB 1A 1,所以V C -ABB 1A 1=163,又梯形ABB 1A 1面积为83,设C 到平面ABB 1A 1距离为h ,则V C -ABB 1A 1=13S 梯形ABB 1A 1⋅h =163,得h =6.而CD ∥AB ,AB ⊂平面ABB 1A 1,CD ⊄平面ABB 1A 1,所以CD ∥平面ABB 1A 1,所以点C 到平面ABB 1A 1的距离与点D 到平面ABB 1A 1的距离相等,而h =6=AD ,所以AD ⊥平面ABB 1A 1.以A 为坐标原点,以直线AB 为x 轴,以直线AD 为y 轴,建立空间直角坐标系,易得△PAB 为等边三角形,所以A 0,0,0 ,B 6,0,0 ,C 9,6,0 ,D 0,6,0 ,P 3,0,33设平面CDD 1C 1的法向量为m=x ,y ,z ,则m ⋅DP=x ,y ,z ⋅3,-6,33 =3x -6y +33z =0m ⋅DC=x ,y ,z ⋅9,0,0 =9x =0,得x =0,y =32z ,不妨取m =0,3,2 ,又平面ABB 1A 1的一个法向量为n=0,1,0 .则,平面ABB 1A 1与平面CDD 1C 1夹角的余弦值为217.2(2024·浙江杭州·二模)如图,在多面体ABCDPQ 中,底面ABCD 是平行四边形,∠DAB =60°,BC=2PQ =4AB =4,M 为BC 的中点,PQ ∥BC ,PD ⊥DC ,QB ⊥MD .(1)证明:∠ABQ =90°;(2)若多面体ABCDPQ 的体积为152,求平面PCD 与平面QAB 夹角的余弦值.【答案】(1)证明见解析;(2)31010.【分析】(1)根据余弦定理求解DM =3,即可求证DM ⊥DC ,进而根据线线垂直可证明线面垂直,即可得线线垂直,(2)根据体积公式,结合棱柱与棱锥的体积关系,结合等体积法可得PM =h =33,即可建立空间直角坐标系,求解法向量求解.【详解】(1)在△DCM 中,由余弦定理可得DM =DC 2+MC 2-2DC ⋅MC cos60°=3,所以DM 2+DC 2=CM 2,所以∠MDC =90°,所以DM ⊥DC .又因为DC ⊥PD ,DM ∩PD =D ,DM ,DP ⊂平面PDM ,所以DC ⊥平面PDM ,PM ⊂平面PDM .所以DC ⊥PM .由于PQ ⎳BM ,PQ =BM =2,所以四边形PQBM 为平行四边形,所以PM ∥QB .又AB ∥DC ,所以AB ⊥BQ ,所以∠ABQ =90°.(2)因为QB ⊥MD ,所以PM ⊥MD ,又PM ⊥CD ,DC ∩MD =D ,DC ,MD ⊂平面ABCD ,所以PM ⊥平面ABCD .取AD 中点E ,连接PE ,设PM =h .设多面体ABCDPQ 的体积为V ,则V =V 三棱柱ABQ -PEM +V 四棱锥P -CDEM =3V A -PEM +V 四棱锥P -CDEM =3V P -AEM +V 四棱锥P -CDEM=S △AEM ×h +13S 四边形CDEM ×h =S △AEM ×h +132S △AEM ×h =53S △AEM ×h =53×12×2×1×sin 2π3h =152.解得PM =h =33.建立如图所示的空间直角坐标系,则A -3,2,0 ,B -3,1,0 ,C 3,-1,0 ,D 3,0,0 ,P 0,0,33 ,Q -3,1,33 ,M 0,0,0 .则平面QAB 的一个法向量n=1,0,0 .所以CD =0,1,0 ,PD=3,0,-33 ,设平面PCD 的一个法向量m=x ,y ,z ,则m ⋅CD=0,n ⋅PD =0,即y =0,3x -33z =0, 取m=3,0,1 .所以cos θ=m ⋅n m ⋅n=31010.。
湖北省襄樊市2019-2020学年高考数学模拟试题含解析
湖北省襄樊市2019-2020学年高考数学模拟试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设函数22sin ()1x xf x x =+,则()y f x =,[],x ππ∈-的大致图象大致是的( )A .B .C .D .【答案】B 【解析】 【分析】采用排除法:通过判断函数的奇偶性排除选项A ;通过判断特殊点(),2f f ππ⎛⎫⎪⎝⎭的函数值符号排除选项D 和选项C 即可求解. 【详解】对于选项A:由题意知,函数()f x 的定义域为R ,其关于原点对称,因为()()()()()2222sin sin 11x x x xf x f x x x ---==-=-+-+, 所以函数()f x 为奇函数,其图象关于原点对称,故选A 排除;对于选项D:因为2222sin 2202412f ππππππ⎛⎫⎛⎫ ⎪ ⎪⎛⎫⎝⎭⎝⎭==> ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,故选项D 排除; 对于选项C:因为()()22sin 01f ππππ==+,故选项C 排除;故选:B 【点睛】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型. 2.双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( )A .B .2C .3D .6【答案】A 【解析】 【分析】由圆心到渐近线的距离等于半径列方程求解即可. 【详解】双曲线的渐近线方程为y =±x ,圆心坐标为(3,0).由题意知,圆心到渐近线的距离等于圆的半径r ,即r=.答案:A 【点睛】本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题. 3.在ABC ∆中,“tan tan 1B C >”是“ABC ∆为钝角三角形”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件【答案】C 【解析】分析:从两个方向去判断,先看tan tan 1A B >能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出tan tan 1A B >成立,从而必要性也不满足,从而选出正确的结果.详解:由题意可得,在ABC ∆中,因为tan tan 1A B >, 所以sin sin 1cos cos A BA B>,因为0,0A B ππ<<<<,所以sin sin 0A B >,cos cos 0A B >,结合三角形内角的条件,故A,B 同为锐角,因为sin sin cos cos A B A B >, 所以cos cos sin sin 0A B A B -<,即cos()0A B +<,所以2A B ππ<+<,因此02C <<π,所以ABC ∆是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若ABC ∆是钝角三角形,也推不出“tan tan 1B C >,故必要性不成立, 所以为既不充分也不必要条件,故选D.点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征. 4.已知某批零件的长度误差(单位:毫米)服从正态分布()20,3N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布()2,N μσ,则()68.26%P μσξμσ-<<+=,()2295.44%P μσξμσ-<<+=.)A .4.56%B .13.59%C .27.18%D .31.74%【答案】B 【解析】 试题分析:由题意13368.26%6695.44%3695.44%68.26%13.59%2P P P (<<),(<<),(<<)().ξξξ-=-=∴=-=故选B . 考点:正态分布5.设全集()(){}130U x Z x x =∈+-≤,集合{}0,1,2A =,则U C A =( ) A .{}1,3- B .{}1,0-C .{}0,3D .{}1,0,3-【答案】A 【解析】 【分析】先求得全集包含的元素,由此求得集合A 的补集. 【详解】由()()130x x +-≤解得13x -≤≤,故{}1,0,1,2,3U =-,所以{}1,3U C A =-,故选A. 【点睛】本小题主要考查补集的概念及运算,考查一元二次不等式的解法,属于基础题.6.在ABC V 中,3AB =,2AC =,60BAC ∠=︒,点D ,E 分别在线段AB ,CD 上,且2BD AD =,2CE ED =,则BE AB ⋅=u u u r u u u r( ). A .3- B .6-C .4D .9【答案】B 【解析】 【分析】根据题意,分析可得1AD =,由余弦定理求得DC 的值,由()BE AB BD DE AB BD AB DE AB BD AB ⋅=+⋅=⋅+⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r可得结果.【详解】根据题意,3,2AB BD AD ==,则1AD = 在ADC V 中,又2AC =,60BAC ∠=︒则2222cos 3DC AD AC AD DC BAC =+⋅∠=- 则3DC = 则CD AB ⊥则()32cos1806BE AB BD DE AB BD AB DE AB BD AB ⋅=+⋅=⋅+⋅=⋅=⨯⨯=-o u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r故选:B 【点睛】此题考查余弦定理和向量的数量积运算,掌握基本概念和公式即可解决,属于简单题目. 7.若2332a b a b +=+,则下列关系式正确的个数是( ) ①0b a << ②a b = ③01a b <<< ④1b a << A .1 B .2 C .3 D .4【答案】D 【解析】 【分析】a ,b 可看成是y t =与()23=+x f x x 和()32x g x x =+交点的横坐标,画出图象,数形结合处理. 【详解】令()23=+xf x x ,()32xg x x =+, 作出图象如图,由()23=+x f x x ,()32xg x x =+的图象可知,()()001f g ==,()()115f g ==,②正确;(,0)x ∈-∞,()()f x g x <,有0b a <<,①正确;(0,1)x ∈,())(f x g x >,有01a b <<<,③正确; (1,)x ∈+∞,()()f x g x <,有1b a <<,④正确.故选:D. 【点睛】本题考查利用函数图象比较大小,考查学生数形结合的思想,是一道中档题. 8.已知复数()11z ai a R =+∈,212z i =+(i 为虚数单位),若12z z 为纯虚数,则a =( ) A .2- B .2C .12-D .12【答案】C 【解析】 【分析】把()12112z ai a R z i =+∈=+,代入12z z ,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可. 【详解】∵()12112z ai a R z i =+∈=+,,∴121(1)(12)12212(12)(12)55z ai ai i a a i z i i i ++-+-===+++-, ∵12z z 为纯虚数, ∴12020a a +=⎧⎨-≠⎩,解得12a =-.故选C . 【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题.9.已知,m n 表示两条不同的直线,αβ,表示两个不同的平面,且,m n αβ⊥⊂,则“αβ⊥”是“//m n ”的( )条件. A .充分不必要 B .必要不充分C .充要D .既不充分也不必要【答案】B根据充分必要条件的概念进行判断. 【详解】对于充分性:若αβ⊥,则,m n 可以平行,相交,异面,故充分性不成立; 若//m n ,则,n n αβ⊥⊂,可得αβ⊥,必要性成立. 故选:B 【点睛】本题主要考查空间中线线,线面,面面的位置关系,以及充要条件的判断,考查学生综合运用知识的能力.解决充要条件判断问题,关键是要弄清楚谁是条件,谁是结论.10.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m 名同学每人随机写下一个都小于1的正实数对(),x y ;再统计两数能与1构成钝角三角形三边的数对(),x y 的个数a ;最后再根据统计数a 估计π的值,那么可以估计π的值约为( ) A .4amB .2a m+ C .2a mm+ D .42a mm+ 【答案】D 【解析】 【分析】由试验结果知m 对0~1之间的均匀随机数,x y ,满足0101x y <<⎧⎨<<⎩,面积为1,再计算构成钝角三角形三边的数对(,)x y ,满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计π的值. 【详解】解:根据题意知,m 名同学取m 对都小于1的正实数对(),x y ,即0101x y <<⎧⎨<<⎩,对应区域为边长为1的正方形,其面积为1,若两个正实数,x y 能与1构成钝角三角形三边,则有22110101x y x y x y ⎧+<⎪+>⎪⎨<<⎪⎪<<⎩, 其面积142S π=-;则有142a m π=-,解得42a mmπ+=本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解. 11.记M 的最大值和最小值分别为max M 和min M .若平面向量a r 、b r 、c r,满足()22a b a b c a b c ==⋅=⋅+-=r r r r r r r r,则( )A .max372a c+-=r r B .max372a c-+=r r C .min37a c+-=r rD .min37a c-+=r r【答案】A 【解析】 【分析】设θ为a r 、b r 的夹角,根据题意求得3πθ=,然后建立平面直角坐标系,设()2,0a OA ==r u u u r ,()1,3b OB ==r u u u r ,(),c OC x y ==r u u u r,根据平面向量数量积的坐标运算得出点C 的轨迹方程,将a c -r r 和a c +r r转化为圆上的点到定点距离,利用数形结合思想可得出结果.【详解】由已知可得cos 2a b a b θ⋅=⋅=r r r r ,则1cos =2θ,0θπ≤≤Q ,3πθ∴=,建立平面直角坐标系,设()2,0a OA ==r u u u r ,()1,3b OB ==r u u u r ,(),c OC x y ==r u u u r,由()22c a b c ⋅+-=r r r r,可得()(),42322x y x y ⋅-=,即2242322x x y -+-=,化简得点C 的轨迹方程为()223314x y ⎛⎫-+-= ⎪ ⎪⎝⎭,则()222a c x y -=-+r r ,则a c -r r 转化为圆()2233124x y ⎛⎫-+-= ⎪ ⎪⎝⎭上的点与点()2,0的距离,22max33371222a c ⎛⎫+=++= ⎪ ⎪⎝⎭∴-r r,22min 33731222a c ⎛⎫-=+-= ⎪ ⎪⎝-⎭r r , ()222a c x y +=++r r ,a c +r r 转化为圆()2233124x y ⎛⎫-+-= ⎪ ⎪⎝⎭上的点与点()2,0-的距离, 22max333222393a c⎛⎫+=++= ⎪ ⎪⎝⎭∴+r r ,22m 333922233im a c ⎛⎫-=+-= ⎪⎪⎝⎭+ r r . 故选:A. 【点睛】本题考查和向量与差向量模最值的求解,将向量坐标化,将问题转化为圆上的点到定点距离的最值问题是解答的关键,考查化归与转化思想与数形结合思想的应用,属于中等题.12.运行如图所示的程序框图,若输出的i 的值为99,则判断框中可以填( )A .1S ≥B .2S >C .lg99S >D .lg98S ≥【答案】C 【解析】 【分析】模拟执行程序框图,即可容易求得结果. 【详解】 运行该程序:第一次,1i =,lg 2S =;第二次,2i =,3lg 2lg lg32S =+=; 第三次,3i =,4lg3lg lg 43S =+=,…;第九十八次,98i =,99lg98lg lg9998S =+=; 第九十九次,99i =,100lg99lg lg100299S =+==, 此时要输出i 的值为99. 此时299S lg =>. 故选:C. 【点睛】本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断条件的选择,属基础题. 二、填空题:本题共4小题,每小题5分,共20分。
2020版高考数学人教版理科一轮复习课时作业:14导数与函数的单调性Word版含解析
课时作业14导数与函数的单调性一、选择题础巩1.下列函数中,在(0,+*)上为增函数的是(B )A . f(x) = sin2x B. f(x) = xe xC. f(x) = x3—xD. f(x)=- x+lnx解析:对于A, f(x) = sin2x的单调递增区间是Ik T— k n+ f(k € Z);对于B, f f (x) = e x(x + 1),当x€ (0,+乂)时,f f (x)>0,二函数f(x) = xe x 在(0,+乂)上为增函数;对于C, f‘ (x) = 3x1 2- 1,令F (x)>0,得x>¥或x<-¥,二函数f(x) = x3—x 在:-x,—¥和囂^+乂”单调递增;对于Df (x) = —1+〒,令f f (x)>0, 得0<x<1,「.函数f(x) = —x+lnx在区间(0,1)上单调递增.综上所述,故选B.1解析:因为函数f(x)的定义域为(0,+*),且F (x)= lnx+ x^ =zve .3. (2019河南新乡二模)若函数y =芸在(1,+工)上单调递减, 则称f(x)为P函数.下列函数中为P函数的为(B )1① f(x)= 1;② f(x) =X ;③ f(x) =-:④ f(x)= x.zvA .①②④B .①③C .①③④D .②③1 1解析:x €(1,+X )时,inx>o , x 增大时,磁,后都减小,二y1 1 1=磁,y =x^在(1,+^)上都是减函数,f(x) = 1和f(x)=-都是P函数;二耐,二x € (1, e)时,<°,x € (e , + X )时, 孟)>0,即y =击在(1, e)上单调递减,在(e ,+^)上单调递增, /f(x) = x 不是P 函数;紺=翥存* (1,自时,爲’<0, x € @,+切时,啓)>0,即y = ^在(1, e 2)上单调递减,在(e 2, + x )上单调递增,.f(x)= ,x 不是P 函数.故选B.4. 已知函数y =xf ‘ (x)的图象如图所示(其中f ‘(x)是函数f(x)的2 .函数f(x) =3 + xlnx 的单调递减区间是(B )-汽e ) (nBA 0, e 丿C.D. 1 lnx +1,令f f (x)<0,解得0<x<e ,故f(x)的单调递减区间是0, D解析:由题图知当0<x<1时,xf‘ (x)<0,此时f‘ (x)<0,函数f(x)递减.当 x>1 时,xf ‘(x)>0,此时 f ‘(x)>0,函数 f(x)递增.所以当x = 1时,函数f(x)取得极小值.当 x< - 1 时,xf ‘ (x)<0,此时 f ‘ (x)>0,函数 f(x)递增,当一1<x<0 时,xf ‘ (x)>0,此时f ‘ (x)<0,函数f(x)递减,所以当x =- 1时,函 数取得极大值.符合条件的只有C 项. 15. 已知函数f(x) = qx 2-tcosx ,若其导函数f ‘ (x)在R 上单调递 增,则实数t 的取值范围为(C )A. - 1,-C . [- 1,1]D. - 1, 3 解析:因为 f(x) = 2,x 2- tcosx ,所以 f ‘ (x)= x + tsinx.令 g(x) = f ‘ (x),因为f ‘(x)在R 上单调递增,所以g ‘ (x)= 1 + tcosx > 0恒成立,所以1<t < 1,即实数t 的取值范围为[-1,1].6. 定义在 R 上的函数 f(x)满足:f(x)>1 - f ‘ (x), f(0) = 0, f ‘ (x) 是f(x)的导函数,贝S 不等式 gf(x)>e x —1(其中e 为自然对数的底数)的 解集为(A )A . (0,+乂 )B . (— = ,— 1)U (0,+乂)C . ( — = , 0)U (1,+乂 )D . (- 1,+乂 )tcosx > — 1 恒成立,因为 cosx € [ — 1,1],所以 lt >- 1,所以一解析:设g(x) = e x f(x)-e,则g‘ (x) = e x f(x) + e x f' (x)-e x.由已知f(x)>1 -f‘(x),可得g‘ (x)>0在R上恒成立,即g(x)是R上的增函+ x )数.因为f(0) = 0,所以g(0) = - 1,则不等式e x f(x)>e x - 1可化为 g(x)>g(0),所以原不等式的解集为(0,+^).■ n n n7 .已知函数 y = f(x)对于任意 x € — 2,2丿满足f (x)cosx +f(x)sinx>0(其中f ‘(x)是函数f(x)的导函数),则下列不等式不成立的是(A )解析:构造F(x) = CO,形式,Tf ‘ (x)cosx +f(x)sinx>0,贝U F ‘ (x)>0, F(x)在「2,2增.把选项转化后可知选A.、填空题8.函数f(x) = lnx -2x 2-x + 5的单调递增区间为0, 丿.1解析:函数f(x)的定义域为(0,+x ),再由f (x) = ■■ — x — 1>0ZV可解得0<x< 2 —.9. (2019湖北襄阳调研)已知定义在R 上的可导函数f(x)的导函 数 y =f ‘ (x),满足 f (x)<f(x), f(0) = 1,则不等式 f(x)<e x 的解集为{0, 解析:令 F(x)=g ,则 F(0) = 1,f ‘(xJe T — f(xb x f (x )—f(x) F ‘ (x) = e 2^ = e <0,f ‘ x cosx +f x sinx则L (x) = ------------ 昴故F(x)为R上的减函数,有f(x)ve x等价于F(x)<1,即F(x)<F(O).故不等式f(x)ve x的解集为(0,+ 乂).10. (2019陕西渭南质检)已知函数f(x)= ax3+ bx2的图象经过点M(1,4),曲线在点M处的切线恰好与直线x+ 9y= 0垂直.若函数f(x) 在区间[m, m+ 1]上单调递增,则m的取值范围是( — = 31 U [0,解析:,-f(x) = ax3+ bx2的图象经过点M(1,4),•••a+ b= 4①,f‘ (x) = 3ax2+ 2bx,则f‘ (1)= 3a + 2b.(n由题意可得f‘ (i) —9 = —i,即3a + 2b = 9②.联立①②两式解得a= 1, b= 3,/.f(x) =x3+ 3x2, f‘ (x) = 3x2+ 6x.令f‘ (x) = 3x2+ 6x>0,得x>0 或x< —2. v函数f(x)在区间[m, m+ 1]上单调递增,• [m, m+ 1]? (—^,—2] U [0,+乂),二m》0 或m+ 1 < —2,即m》0 或m W—3.三、解答题11. (2019云南玉溪模拟)已知函数f(x) = xlnx.(1)设函数g(x) = f(x)—a(x—1),其中a € R,讨论函数g(x)的单调性;⑵若直线I过点(0,—1),并且与曲线y=f(x)相切,求直线I的方程.解:(1) *.f(x) = xlnx, -*g(x) = f(x) —a(x—1) = xlnx—a(x—1),则g‘ (x) =lnx+ 1 —a.由g‘ (x)<0,得lnx+1 —a<0,解得0<x<e a—1;由g‘ (x)>0,得lnx+ 1 —a>0,解得x>e a_ 3. -g(x)在(0, e a-1)上单调递减,在(e a_ 1, + g) 3②当o<a<e时,lna< —1,由f‘ (x)>o,得x<lna 或x> —1;由f‘ (x)<o,得lna<x< —1,所以单调递增区间为(一g, lna), (—1,+ g),单调递减区间为(lna, —1).1③当a>e时,lna> —1,由f‘ (x)>o,得x< —1 或x>lna;由f‘ (x)<o, 得一1<x<lna,所以单调递增区间为(一g , —1), (lna,+g),单调递减区间为(一1, lna).1 1综上所述,当a = e时,f(x)在R上单调递增;当o<a<e时,单调13. 设函数f(x)在R上存在导函数f‘(x),对任意的实数x都有f(x) = 4X2—f( —x),当x€ (—o, 0)时,f,(x)+2<4x,若f(m+ 1)<f(—m) + 4m+2,则实数m的取值范围是(A );1 、— 3 、A. —2,+oB. —2,+oC. [—1,+o)D. [ —2,+o )解析:令F(x) = f(x) —2x2,因为F(—x)+ F(x) = f( —x) + f(x) —4x2 =0,所以F( —x) = —F(x),故F(x) = f(x) —2x2是奇函数.则当x€ (—1o,0)时,F‘ (x) = f‘ (x) —4x< —2<0,故函数F(x) = f(x) —2x2在(一o,0)上单调递减,故函数F(x)在R上单调递减.不等式f(m+ 1)<f(—m) + 4m + 2 等价于f(m + 1) —2(m+ 1)2<f( —m) —2m2,即F(m +1上单调递增.⑵设切点坐标为(x o, y o),则y o= x o lnx o,切线的斜率为lnx°+ 1. 切线l 的方程为y—X o lnx o = (lnx o + 1)(x —x o).又切线l 过点(o, —1),二一1 —X o lnx o = (lnx o+ 1)(o—x o),即一1 —x o lnx o = —x o lnx o—x o,解得x o = 1, y o = o.二直线l 的方程为y= x—1.12. (2019 山东枣庄调研)已知函数f(x) = xe x—a~x2+ xj(a€ R).(1) 若a = o,求曲线y= f(x)在点(1, e)处的切线方程;(2) 当a>o时,求函数f(x)的单调区间.解:(1)a = o 时,f‘ (x) = (x+ 1)e x,所以切线的斜率k= f‘ (1)= 2e 又f(1) = e,所以y=f(x)在点(1, e)处的切线方程为y—e= 2e(x—1), 即2ex—y—e= o.(2)f‘ (x) = (x+ 1)(e x—a),令f‘ (x) = o,得x=—1 或x= lna.1①当a= e时,F (x)>o恒成立,所以f(x)在R上单调递增.递增区间为(一00 , lna), (—1,+x),单调递减区间为(Ina, —1);11)< F( —m),由函数的单调性可得m+ 1 > —m,即卩m》一2.故选A.14. (2019西安八校联考)函数f(x)在定义域R内可导,若f(x) = f(2 —x),且(x—1f (x)<0,若a= f(0), b= f? , c= f(3),则a, b, c 的大小关系是b>a>c.解析:解法1:因为f(x) = f(2 —x),所以函数f(x)的图象关于直线x= 1对称.因为(x—1)f‘ (x)<0.所以当x>1时,f‘ (x)<0,所以函数f(x)在(1,+o)上单调递减;当x<1时,f (x)>0,所以函数f(x)在(一o,当a>e时,单调递增区间为(一O,—1), (lna,+o),单调递减区间为(—1, Ina).力提升练1)上单调递增.据此,可画出一个符合题意的函数f(x)的大致图象,如图所示.c= f(3)是图中点C的纵坐标,故由图可得b>a>c.解法2:因为f(x) = f(2-x),所以函数f(x)的图象关于直线x= 1 对称.因为(x- 1)f‘ (x)<0,所以当x>1时,f‘ (x)<0,所以函数f(x) 在(1,+乂)上单调递减;当x<1时,f (x)>0,所以函数f(x)在(一乂,1)上单调递增.取符合题意的函数f(x)=- (x-1)4 5,贝y a = f(0)=- 1, b= f(2)=1 皿—4, c= f(3) = - 4,故b>a>c.尖子生小题库一一供重点班学生使用,普通班学生慎用15. (2019益阳、湘潭调研考试)n是圆周率,e是自然对数的底数,在3e,e3,e n, n,3n, n六个数中,最小的数与最大的数分别是(A )4 —lnx=—h,当f‘ (x)>0,即0<x<e 时,函数f(x)单调递增;当f‘ (x)<0,A . 3e,3n B. 3e, e nC. e3, nD. £3”lnx解析:构造函数f(x) = ~x,f(x)的定义域为(0, +x),求导得f (x)即x>e 时,函数f(x)单调递减.故函数f(x)的单调递增区间为(0, e), 单调递减区间为 (e , + g). v e<3< n-eln3<eln , n lne< n 即3In3e <ln n Ine n<ln3 ".又函数y = Inx , y = e x , y = n 在定义域上单调递增, 故3e < T t < n 3,e 3ve”<3n,故这六个数中的最大数为n t 或3”,由e<3< n In ,口 “In 兀 In3 Ine 「In n In3及函数f(x) = 2的单调性,得f( n f3)vf(e),即二,由=<~T ,得In 3<In3 ;二3",在3e ,e 3,e n ,n 3,3n ,n 六个数中的最大的数 是3n,同理得最小的数为3e .故选A. 116. (2019重庆六校联考)已知函数f(x) = qx 2— ax + (a — 1)Inx.(1) 讨论函数f(x)的单调性;(2) 若对任意的 X 1, X 2 € (0,+^),洛>乂2,恒有 f(xj — f(X 2)>X 2 — x ,求实数a 的取值范围.=x (x - 1)[x — (a — 1)],① 若 a>2,由 f ‘ (x)>0,得 0<x<1 或 x>a — 1,由 f ‘ (x)<0,得 1<x<a —1,则f(x)在(0,1), (a — 1,+工)上单调递增,在(1, a — 1)上单调递 减;② 若a =2,则f ‘ (x)>0, f(x)在(0,+工)上单调递增;③ 若 1<a<2,由 f ‘ (x)>0,得 0<x<a — 1 或 x>1,由 f ‘ (x)<0,得 a — 1<x<1,则 f(x)在(0, a — 1), (1,+工)上单调递增,在(a —1,1)上 单调递减;④ 若 a < 1,由 f ‘ (x)>0,得 x>1,由 f ‘ (x)<0,得 0<x<1,则 f(x) 在(1,+x )上单调递增,在(0,1)上单调递减.解: (1)f‘ (x x 2 — ax + a —1综上,若a>2,则f(x)在(0,1), (a—1,+乂)上单调递增,在(1, a—1)上单调递减;若a= 2,则f(x)在(0,+乂)上单调递增;若1<a<2,则f(x)在(0, a—1), (1, +乂)上单调递增,在(a—1,1) 上单调递减;若a< 1,则f(x)在(1,+乂)上单调递增,在(0,1)上单调递减.(2)f(x” —f(X2)>x —X1 ? f(x” + X1>f(X2)+ x,1 2令F(x) = f(x) + x= 2x —ax+ (a —1)lnx + x,对任意的X1, (0,+X), xQX2,恒有f(xd —f(X2)>X2 —X1 等价于函数F(x)在(0 ,+x)上是增函数.a —1 1f‘ (x) = x—a+1 + = Jx2-(a—1)x + a—1],令g(x) = x2—(a—1)x + a —1,a—1当a—1<0,即a<1 时,x=—厂<0,故要使f‘ (x)>0在(0, +=) 上恒成立,需g(0)>0,即a— 1 >0, a> 1,无解.a —1当a—1>0, 即卩a> 1 时,>0,故要使f‘ (x)>0 在(0,a —1 a —1 2 a —1+ x)上恒成立,需g( 2 )》0,即(2 )—(a —1)、2+ a —1》0, 化简得(a —1)(a —5)w 0,解得1 w a w 5.综上,实数a的取值范围是[1,5].。
湖北省襄阳市第四中学2020年元月高三考试数试题与详细解析版
B. 16 32 3
C. 8 16 3
D. 8 32 3
10.已知函数
f
(
x)
x2 x,
{ x
x
2
,
x x
0 0
,若
f (a)
f (2 a) ,则 a 的取值范围是(
)
A. a 1 或 a 1
B. a 1
C. a 1
D. a 1
11.已知双曲线 C :
x2 a2
y2 b2
1(a
0,b 0) 的左焦点为 F
,第二象限的点 M
在双曲线 C 的渐近线上,且
OM a ,若直线 MF 的斜率为 b ,则双曲线 C 的渐近线方程为( ) a
A. y x
B. y 2x
C. y 3x
D. y 4x
12.若数列an ,bn 的通项公式分别为 an
min x 3 , x 5 ,
x (0, 2] x (2, 4] ,若关于 x 的方程 f (x k) f (x)(k 0) 有且只有 x (4, )
3 个不同的实根,则 k 的取值范围是__________.
三、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)
17.在
ABC
中,内角
A,
B, C
的对边分别为 a, b, c
,且满足 cos 2C
cos 2 A
2 sin(
C) sin(
C)
.
3
3
(1)求角 A 的大小;
(2)若 a 3 且 b a ,求 2bc 的取值范围. 18.如图所示,在等腰梯形 ABCD 中, AD / /BC , AD CD AB 2 , ABC 60 ,将三角形 ABD 沿 BD 折起,使点 A 在平面 BCD 上的投影 G 落在 BD 上.
湖北省襄樊市2019-2020学年高考数学仿真第一次备考试题含解析
湖北省襄樊市2019-2020学年高考数学仿真第一次备考试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数cos ()cos x xf x x x+=-在[2,2]ππ-的图象大致为A .B .C .D .【答案】A 【解析】 【分析】 【详解】因为(0)1f =,所以排除C 、D .当x 从负方向趋近于0时,0cos cos x x x x <+<-,可得0()1<<f x .故选A .2.如图所示,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为( )A 5B .3C .8D .83【答案】B 【解析】 【分析】根据三视图可以得到原几何体为三棱锥,且是有三条棱互相垂直的三棱锥,根据几何体的各面面积可得最大面的面积. 【详解】解:分析题意可知,如下图所示,该几何体为一个正方体中的三棱锥A BCD -, 最大面的表面边长为22ABC , 23(22)23=, 故选B . 【点睛】本题考查了几何体的三视图问题,解题的关键是要能由三视图解析出原几何体,从而解决问题.3.已知函数()2943,02log 9,0x x x f x x x ⎧+≤=⎨+->⎩,则函数()()y f f x =的零点所在区间为( ) A .73,2⎛⎫ ⎪⎝⎭B .()1,0-C .7,42⎛⎫ ⎪⎝⎭D .()4,5【答案】A 【解析】 【分析】首先求得0x ≤时,()f x 的取值范围.然后求得0x >时,()f x 的单调性和零点,令()()0ff x =,根据“0x ≤时,()f x 的取值范围”得到()32log 93xf x x =+-=,利用零点存在性定理,求得函数()()y f f x =的零点所在区间.【详解】当0x ≤时,()34f x <≤.当0x ≥时,()2932log 92log 9xxx f x x =+-=+-为增函数,且()30f =,则3x =是()f x 唯一零点.由于“当0x ≤时,()34f x <≤.”,所以令()()0ff x =,得()32log 93xf x x =+-=,因为()303f =<,3377log 98 1.414log 39 3.312322f ⎛⎫=->⨯+-=> ⎪⎝⎭,所以函数()()y f f x =的零点所在区间为73,2⎛⎫ ⎪⎝⎭.故选:A 【点睛】本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.4.2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为 A .96 B .84C .120D .360【答案】B 【解析】 【分析】 【详解】2,0,1,9,10按照任意次序排成一行,得所有不以0开头的排列数共444A 96=个,其中含有2个10的排列数共24A 12=个,所以产生的不同的6位数的个数为961284-=.故选B . 5.下列与函数y =定义域和单调性都相同的函数是( ) A .2log 2xy =B .21log 2xy ⎛⎫= ⎪⎝⎭C .21log y x=D .14y x =【答案】C 【解析】 【分析】分析函数y =的定义域和单调性,然后对选项逐一分析函数的定义域、单调性,由此确定正确选项. 【详解】函数y =的定义域为()0,∞+,在()0,∞+上为减函数. A 选项,2log 2xy =的定义域为()0,∞+,在()0,∞+上为增函数,不符合.B 选项,21log 2xy ⎛⎫= ⎪⎝⎭的定义域为R ,不符合. C 选项,21log y x=的定义域为()0,∞+,在()0,∞+上为减函数,符合. D 选项,14y x =的定义域为[)0,+∞,不符合. 故选:C 【点睛】本小题主要考查函数的定义域和单调性,属于基础题.6.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( )A .向右平移5π6个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向左平移5π12个长度单位【答案】D 【解析】55cos(2)sin(2)sin(2)sin 2()332612y x x x x πππππ=+=++=+=+,所以要的函数cos(2)3y x π=+的图象,只需将函数sin 2y x =的图象向左平移512π个长度单位得到,故选D7.正三棱锥底面边长为3,侧棱与底面成60︒角,则正三棱锥的外接球的体积为( ) A .4π B .16πC .163πD .323π【答案】D 【解析】 【分析】由侧棱与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积. 【详解】如图,正三棱锥A BCD -中,M 是底面BCD ∆的中心,则AM 是正棱锥的高,ABM ∠是侧棱与底面所成的角,即ABM ∠=60°,由底面边长为3得23BM ==,∴tan 603AM BM =︒==.正三棱锥A BCD -外接球球心O 必在AM 上,设球半径为R , 则由222BO OM BM =+得222(3)R R =-+,解得2R =, ∴3344322333V R πππ==⨯=. 故选:D .【点睛】本题考查球体积,考查正三棱锥与外接球的关系.掌握正棱锥性质是解题关键. 8.集合{}2,A x x x R =>∈,{}2230B x x x =-->,则A B =I ( ) A .(3,)+∞ B .(,1)(3,)-∞-+∞UC .(2,)+∞D .(2,3)【答案】A 【解析】 【分析】计算()(),13,B =-∞-+∞U ,再计算交集得到答案. 【详解】{}()()2230,13,B x x x =-->=-∞-⋃+∞,{}2,A x x x R =>∈,故(3,)A B =+∞I .故选:A . 【点睛】本题考查了交集运算,属于简单题.9.在5678(1)(1)(1)(1)x x x x -+-+-+-的展开式中,含3x 的项的系数是( ) A .74 B .121 C .74- D .121-【答案】D 【解析】 【分析】根据5678(1)(1)(1)(1)x x x x -+-+-+-,利用通项公式得到含3x 的项为:()+++-333335678()C C C C x ,进而得到其系数,【详解】因为在5678(1)(1)(1)(1)x x x x -+-+-+-,所以含3x 的项为:()+++-333335678()C C C C x ,所以含3x 的项的系数是的系数是33335678()C C C C -+++,()10203556121=-+++=-,故选:D 【点睛】本题主要考查二项展开式及通项公式和项的系数,还考查了运算求解的能力,属于基础题, 10.在空间直角坐标系O xyz -中,四面体OABC 各顶点坐标分别为:22(0,0,0),(0,0,2),3,0,0,0,3,033O A B C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.假设蚂蚁窝在O 点,一只蚂蚁从O 点出发,需要在AB ,AC 上分别任意选择一点留下信息,然后再返回O 点.那么完成这个工作所需要走的最短路径长度是( ) A .22 B .1121-C .521+D .23【答案】C 【解析】 【分析】将四面体OABC 沿着OA 劈开,展开后最短路径就是AOO '△的边OO ',在AOO '△中,利用余弦定理即可求解. 【详解】将四面体OABC 沿着OA 劈开,展开后如下图所示:最短路径就是AOO '△的边OO '. 易求得30OAB O AC '∠=∠=︒, 由2AO =,233OB =433AB = 433AC =,22263BC OB OC =+=222cos 2AB AC BC BAC AB AC+-⇒∠=⋅1616833334442+-==由余弦定理知2222cosOO AO AO AO AO OAO''''=+-⋅⋅∠其中2AO AO'==,()cos cos60OAO BAC'∠=︒+∠=∴25OO OO''=⇒=故选:C【点睛】本题考查了余弦定理解三角形,需熟记定理的内容,考查了学生的空间想象能力,属于中档题.11.过双曲线22221x ya b-=(0,0)a b>>的左焦点F作直线交双曲线的两天渐近线于A,B两点,若B为线段FA的中点,且OB FA⊥(O为坐标原点),则双曲线的离心率为()ABC.2D【答案】C【解析】由题意可得双曲线的渐近线的方程为by xa=±.∵B为线段FA的中点,OB FA⊥∴OA OF c==,则AOF∆为等腰三角形.∴BOF BOA∠=∠由双曲线的的渐近线的性质可得BOF xOA∠=∠∴60BOF BOA xOA∠=∠=∠=︒∴tan60ba=︒=223b a=.∴双曲线的离心率为22c aea a a====故选C.点睛:本题考查了椭圆和双曲线的定义和性质,考查了离心率的求解,同时涉及到椭圆的定义和双曲线的定义及三角形的三边的关系应用,对于求解曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c,代入公式cea=;②只需要根据一个条件得到关于,,a b c的齐次式,转化为,a c的齐次式,然后转化为关于e的方程(不等式),解方程(不等式),即可得e(e的取值范围).12.已知15455,log log2a b c===,则,,a b c的大小关系为()A .a b c >>B .a c b >>C .b a c >>D .c b a >>【答案】A 【解析】 【分析】根据指数函数的单调性,可得1551a =>,再利用对数函数的单调性,将,b c 与11,2对比,即可求出结论.【详解】由题知105441551,1log log 22a b =>=>=>=,51log 2log 2c =<=,则a b c >>. 故选:A. 【点睛】本题考查利用函数性质比较大小,注意与特殊数的对比,属于基础题.. 二、填空题:本题共4小题,每小题5分,共20分。
湖北省襄樊市2019-2020学年高考数学第一次押题试卷含解析
湖北省襄樊市2019-2020学年高考数学第一次押题试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.二项式52xx⎫-⎪⎝⎭的展开式中,常数项为()A.80-B.80 C.160-D.160【答案】A【解析】【分析】求出二项式52xx⎫-⎪⎝⎭的展开式的通式,再令x的次数为零,可得结果.【详解】解:二项式52xx⎫-⎪⎝⎭展开式的通式为()()55225215512r rrr rr r rrT C x C xx---+-+=-=-⎪⎝⎭,令5202rr--+=,解得1r=,则常数项为()11451280C-=-.故选:A.【点睛】本题考查二项式定理指定项的求解,关键是熟练应用二项展开式的通式,是基础题.2.学业水平测试成绩按照考生原始成绩从高到低分为A、B、C、D、E五个等级.某班共有36名学生且全部选考物理、化学两科,这两科的学业水平测试成绩如图所示.该班学生中,这两科等级均为A的学生有5人,这两科中仅有一科等级为A的学生,其另外一科等级为B,则该班()A.物理化学等级都是B的学生至多有12人B.物理化学等级都是B的学生至少有5人C.这两科只有一科等级为B且最高等级为B的学生至多有18人D.这两科只有一科等级为B且最高等级为B的学生至少有1人【答案】D 【解析】 【分析】根据题意分别计算出物理等级为A ,化学等级为B 的学生人数以及物理等级为B ,化学等级为A 的学生人数,结合表格中的数据进行分析,可得出合适的选项. 【详解】根据题意可知,36名学生减去5名全A 和一科为A 另一科为B 的学生105858-+-=人(其中物理A 化学B 的有5人,物理B 化学A 的有3人), 表格变为:对于A 选项,物理化学等级都是B 的学生至多有13人,A 选项错误;对于B 选项,当物理C 和D ,化学都是B 时,或化学C 和D ,物理都是B 时,物理、化学都是B 的人数最少,至少为13724--=(人),B 选项错误;对于C 选项,在表格中,除去物理化学都是B 的学生,剩下的都是一科为B 且最高等级为B 的学生, 因为都是B 的学生最少4人,所以一科为B 且最高等级为B 的学生最多为1391419++-=(人), C 选项错误;对于D 选项,物理化学都是B 的最多13人,所以两科只有一科等级为B 且最高等级为B 的学生最少14131-=(人),D 选项正确. 故选:D. 【点睛】本题考查合情推理,考查推理能力,属于中等题.3.若不等式210x ax ++≥对于一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则a 的最小值是 ( )A .0B .2-C .52-D .3-【答案】C 【解析】 【分析】 【详解】试题分析:将参数a 与变量x 分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论.解:不等式x 2+ax+1≥0对一切x ∈(0,12]成立,等价于a≥-x-1x 对于一切10,2x ⎛⎤∈ ⎥⎝⎦成立, ∵y=-x-1x 在区间10,2⎛⎤⎥⎝⎦上是增函数 ∴115222x x--≤--=-∴a≥-52∴a 的最小值为-52故答案为C . 考点:不等式的应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题4.已知函数2(0x y a a -=>且1a ≠的图象恒过定点P ,则函数1mx y x n+=+图象以点P 为对称中心的充要条件是( ) A .1,2m n ==- B .1,2m n =-= C .1,2m n == D .1,2m n =-=-【答案】A 【解析】 【分析】由题可得出P 的坐标为(2,1),再利用点对称的性质,即可求出m 和n . 【详解】 根据题意,201x y -=⎧⎨=⎩,所以点P 的坐标为(2,1),又1()1mx m x n mn y m x n x n +++-===+++ 1mn x n-+, 所以1,2m n ==-. 故选:A. 【点睛】本题考查指数函数过定点问题和函数对称性的应用,属于基础题.5.将3个黑球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有( ) A .14种B .15种C .16种D .18种【分析】采取分类计数和分步计数相结合的方法,分两种情况具体讨论,一种是黑白依次相间,一种是开始仅有两个相同颜色的排在一起 【详解】首先将黑球和白球排列好,再插入红球.情况1:黑球和白球按照黑白相间排列(“黑白黑白黑白”或“白黑白黑白黑”),此时将红球插入6个球组成的7个空中即可,因此共有2×7=14种; 情况2:黑球或白球中仅有两个相同颜色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此时红球只能插入两个相同颜色的球之中,共4种. 综上所述,共有14+4=18种. 故选:D 【点睛】本题考查排列组合公式的具体应用,插空法的应用,属于基础题 6.设i 是虚数单位,若复数103m i++(m R ∈)是纯虚数,则m 的值为( ) A .3- B .1-C .1D .3【答案】A 【解析】 【分析】根据复数除法运算化简,结合纯虚数定义即可求得m 的值. 【详解】由复数的除法运算化简可得1033m m i i+=+-+, 因为是纯虚数,所以30m +=, ∴3m =-, 故选:A. 【点睛】本题考查了复数的概念和除法运算,属于基础题.7.已知复数z 满足()125z i ⋅+=(i 为虚数单位),则在复平面内复数z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D根据复数运算,求得z ,再求其对应点即可判断. 【详解】51212z i i==-+Q ,故其对应点的坐标为()1,2-. 其位于第四象限. 故选:D. 【点睛】本题考查复数的运算,以及复数对应点的坐标,属综合基础题.8.如图所示点F 是抛物线28y x =的焦点,点A 、B 分别在抛物线28y x =及圆224120x y x +--=的实线部分上运动, 且AB 总是平行于x 轴, 则FAB ∆的周长的取值范围是( )A .(6,10)B .(8,12)C .[6,8]D .[8,12]【答案】B 【解析】 【分析】根据抛物线方程求得焦点坐标和准线方程,结合定义表示出AF ;根据抛物线与圆的位置关系和特点,求得B 点横坐标的取值范围,即可由FAB ∆的周长求得其范围. 【详解】抛物线28y x =,则焦点()2,0F ,准线方程为2x =-,根据抛物线定义可得2A AF x =+,圆()22216x y -+=,圆心为()2,0,半径为4,点A 、B 分别在抛物线28y x =及圆224120x y x +--=的实线部分上运动,解得交点横坐标为2. 点A 、B 分别在两个曲线上,AB 总是平行于x 轴,因而两点不能重合,不能在x 轴上,则由圆心和半径可知()2,6B x ∈,则FAB ∆的周长为246A B A B AF AB BF x x x x ++=++-+=+, 所以()68,12B x +∈, 故选:B. 【点睛】本题考查了抛物线定义、方程及几何性质的简单应用,圆的几何性质应用,属于中档题. 9.复数z 满足()11z z i -=+ (i 为虚数单位),则z 的值是( ) A .1i + B .1i -C .iD .i -【答案】C 【解析】 【分析】直接利用复数的除法的运算法则化简求解即可. 【详解】由()11z z i -=+得:()()()211111i i z i i i i ++===-+- 本题正确选项:C 【点睛】本题考查复数的除法的运算法则的应用,考查计算能力.10.如图所示的茎叶图为高三某班50名学生的化学考试成绩,算法框图中输入的1a ,2a ,3a ,L ,50a 为茎叶图中的学生成绩,则输出的m ,n 分别是( )A .38m =,12n =B .26m =,12n =C .12m =,12n =D .24m =,10n =【答案】B 【解析】 【分析】 【详解】试题分析:由程序框图可知,框图统计的是成绩不小于80和成绩不小于60且小于80的人数,由茎叶图可知,成绩不小于80的有12个,成绩不小于60且小于80的有26个,故26m =,12n =. 考点:程序框图、茎叶图.11.已知数列{}n a 为等差数列,n S 为其前n 项和,56104a a a +=+,则21S =( ) A .7 B .14C .28D .84【答案】D 【解析】 【分析】利用等差数列的通项公式,可求解得到114a =,利用求和公式和等差中项的性质,即得解 【详解】56104a a a +=+Q ,111111465a d a d a d ∴+-=-+-解得114a =.121211121()21842a a S a +∴===.故选:D 【点睛】本题考查了等差数列的通项公式、求和公式和等差中项,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.12.一个正三棱柱的正(主)视图如图,则该正三棱柱的侧面积是( )A .16B .12C .8D .6【答案】B 【解析】 【分析】根据正三棱柱的主视图,以及长度,可知该几何体的底面正三角形的边长,然后根据矩形的面积公式,可得结果. 【详解】由题可知:该几何体的底面正三角形的边长为2 所以该正三棱柱的三个侧面均为边长为2的正方形, 所以该正三棱柱的侧面积为32212⨯⨯= 故选:B 【点睛】本题考查正三棱柱侧面积的计算以及三视图的认识,关键在于求得底面正三角形的边长,掌握一些常见的几何体的三视图,比如:三棱锥,圆锥,圆柱等,属基础题. 二、填空题:本题共4小题,每小题5分,共20分。
湖北省襄阳市2019-2020年度高三上学期期末数学试卷(理科)(I)卷
湖北省襄阳市2019-2020年度高三上学期期末数学试卷(理科)(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2020·邵阳模拟) 已知集合,则()A .B .C .D .2. (2分) (2015高三上·大庆期末) 设i是虚数单位,若复数为纯虚数,则实数m的值为()A . 2B . ﹣2C .D .3. (2分) (2019高二上·砀山月考) 当曲线与直线有两个相异的交点时,实数的取值范围是()A .B .C .D .4. (2分)已知长方体,下列向量的数量积一定不为0的是()A .B .C .D .5. (2分)已知一个算法的程序框图如图所示,当输出的结果为0时,输入的x的值为()A . ﹣2B . ﹣2或﹣1C . 1或﹣3D . ﹣2或6. (2分) (2018高三上·张家口期末) 将函数的图象向左平移个周期后,所得图象对应的函数关系式为()A .B .C .D .7. (2分)(2017·龙岩模拟) 数列{an}中,若存在ak ,使得“ak>ak﹣1且ak>ak+1”成立(其中k≥2,k∈N*),则称ak为{an}的一个H值.现有如下数列:①an=1﹣2n;②an=sinn;③an= ④an=lnn﹣n,则存在H值的数列有()个.A . 1B . 2C . 3D . 48. (2分)(2016·中山模拟) 过点P(4,﹣3)作抛物线y= x2的两切线,切点分别为A,B,则直线AB 的方程为()A . 2x﹣y+3=0B . 2x+y+3=0C . 2x﹣y﹣3=0D . 2x+y﹣3=09. (2分) (2018高二下·沈阳期中) 在等差数列中,已知,则该数列的前项和等于().A .B .C .D .10. (2分) (2017·乌鲁木齐模拟) 已知向量满足| |=2,| |=1,且()⊥(2 ﹣),则的夹角为()A .B .C .D .11. (2分) (2015高三上·承德期末) 已知函数f(x)=ex﹣1﹣ax(a>1)在[0,a]上的最小值为f(x0),且x0<2,则实数a的取值范围是()A . (1,2)B . (1,e)C . (2,e)D . (,+∞)12. (2分) (2018高一上·大石桥期末) 根据表格中的数据,可以判定方程的一个根所在的区间为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)如图是由大小相同的长方体木块堆成的几何体的三视图,则此几何体共由________ 块木块堆成.14. (1分)已知(2x+)4=a0+a1x+a2x2+a3x3+a4x4 ,若a=(a0+a2+a4)2﹣(a1+a3)2 ,则dx=________15. (1分) (2016高一下·钦州期末) 设变量x,y满足约束条件则z=3x﹣2y的最大值为________.16. (1分)若函数y=f(x﹣1)的图象与函数的图象关于直线y=x对称,则f(x)=________.三、解答题 (共6题;共50分)17. (10分)(2020·天津模拟) 在△ABC中,角A、B、C的对边分别为a、b、c,已知(1)求的值(2)若(i)求的值(ii)求的值.18. (10分)(2020·汨罗模拟) 已知等差数列的前n项和为,公差d为整数,,且,,成等比数列.(1)求数列的通项公式;(2)设数列满足,求数列的前n项和 .19. (10分)(2016·河北模拟) 雾霾影响人们的身体健康,越来越多的人开始关心如何少产生雾霾,春节前夕,某市健康协会为了了解公众对“适当甚至不燃放烟花爆竹”的态度,随机采访了50人,将凋查情况进行整理后制成下表:年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]频数510151055赞成人数4612733(1)以赞同人数的频率为概率,若再随机采访3人,求至少有1人持赞同态度的概率;(2)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞同“适当甚至不燃放烟花爆竹”的人数为X,求随机变量X的分布列和数学期望.20. (5分)(2017·广元模拟) 如图,在四棱锥E﹣ABCD中,△ABD是正三角形,△BCD是等腰三角形,∠BCD=120°,EC⊥BD.(Ⅰ)求证:BE=DE;(Ⅱ)若AB=2 ,AE=3 ,平面EBD⊥平面ABCD,直线AE与平面ABD所成的角为45°,求二面角B﹣AE ﹣D的余弦值.21. (5分)(2017·天水模拟) 已知椭圆M: + =1(a>0)的一个焦点为F(﹣1,0),左右顶点分别为A,B,经过点F的直线l与椭圆M交于C,D两点.(Ⅰ)求椭圆方程;(Ⅱ)记△ABD与△ABC的面积分别为S1和S2 ,求|S1﹣S2|的最大值.22. (10分) (2018高二下·济宁期中) 某人用一网箱饲养中华鲟,研究表明:一个饲养周期,该网箱中华鲟的产量(单位:百千克)与购买饲料费用()(单位:百元)满足: .另外,饲养过程中还需投入其它费用 .若中华鲟的市场价格为元/千克,全部售完后,获得利润元.(1)求关于的函数关系式;(2)当为何值时,利润最大,最大利润是多少元?参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共50分) 17-1、17-2、18-1、18-2、19-1、19-2、第11 页共12 页20-1、21-1、22-1、22-2、第12 页共12 页。
湖北省襄樊市2024高三冲刺(高考数学)人教版真题(备考卷)完整试卷
湖北省襄樊市2024高三冲刺(高考数学)人教版真题(备考卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数为的零点,为图象的对称轴,且在单调,则的最大值为A.11B.9C.7D.5第(2)题市场占有率指在一定时期内,企业所生产的产品在其市场的销售量(或销售额)占同类产品销售量(或销售额)的比重.一般来说,市场占有率会随着市场的顾客流动而发生变化,如果市场的顾客流动趋向长期稳定,那么经过一段时期以后的市场占有率将会出现稳定的平衡状态(即顾客的流动,不会影响市场占有率),此时的市场占有率称为“稳定市场占有率”.有A,B,C三个企业都生产某产品,2022年第一季度它们的市场占有率分别为:40%,40%,20%.经调查,2022年第二季度A,B,C三个企业之间的市场占有率转移情况如图所示,若该产品以后每个季度的市场占有率转移情况均与2022年第二季度相同,则当市场出现稳定的平衡状态,最终达到“稳定市场占有率”时,A企业该产品的“稳定市场占有率”为()A.45%B.48%C.50%D.52%第(3)题已知集合,那么()A.B.C.D.第(4)题已知,都是正实数,若向量,,且满足,则的最小值是()A.50B.C.D.第(5)题已知集合,,则()A.B.C.D.第(6)题有人进行定点投篮游戏,每人投篮次.这人投中的次数形成一组数据,中位数,唯一众数,极差,则该组数据的第百分位数是()A.B.C.D.第(7)题已知,函数,,,则的最小值为()A.B.C.D.第(8)题已知命题p:,;命题q:,,则下列命题中为真命题的是()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知,且,则()A.B.C.D.第(2)题已知抛物线的方程为,为焦点,为坐标原点,S表示面积,直线:与抛物线交于A,两点,且A在第一象限,则下列说法正确的是()A.B.C.D.第(3)题已知正方体的棱长为为空间中任一点,则下列结论中正确的是()A.若为线段上任一点,则与所成角的余弦值范围为B.若为正方形的中心,则三棱锥外接球的体积为C.若在正方形内部,且,则点轨迹的长度为D .若三棱锥的体积为恒成立,点轨迹的为圆的一部分三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题图3中的三个直角三角形是一个体积为20的几何体的三视图,则.第(2)题设且集合若则______.第(3)题已知集合{或,,对于,表示和中相对应的元素不同的个数,若给定,则所有的和为__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数,.(l)设,讨论函数的单调性;(2)若函数的图象在上恒在轴的上方,求实数的取值范围.第(2)题已知由n(n∈N*)个正整数构成的集合A={a1,a2,…,a n}(a1<a2<…<a n,n≥3),记S A=a1+a2+…+a n,对于任意不大于S A的正整数m,均存在集合A的一个子集,使得该子集的所有元素之和等于m.(1)求a1,a2的值;(2)求证:“a1,a2,…,a n成等差数列”的充要条件是“”;(3)若S A=2020,求n的最小值,并指出n取最小值时a n的最大值.第(3)题设数列的前项和为,且.(1)求数列的通项公式;(2)若,数列的前项和为恒成立,求实数的最小值.第(4)题设数列满足:,.(1)求数列的通项公式;(2)求数列的前n项和.第(5)题已知函数在处的切线与y轴垂直.(其中是自然对数的底数)(1)求实数的值;(2)设,,当时,求证:函数在的图象恒在函数的图象的上方.。
湖北省襄樊市2024高三冲刺(高考数学)人教版真题(评估卷)完整试卷
湖北省襄樊市2024高三冲刺(高考数学)人教版真题(评估卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数,则()A.的图象关于点对称B.的图象关于直线对称C .为偶函数D.的最小正周期为第(2)题已知3个数据的平均数为3,方差为4,现再加入一个数据7,则这4个数据的方差为()A.6B.8C.10D.12第(3)题已知函数,若函数的部分图象如图所示,则关于函数,下列结论错误的是()A.函数的图象关于直线对称B.函数的图象关于点对称C.函数在区间上的减区间为D.函数的图象可由函数的图象向左平移个单位长度得到第(4)题已知抛物线的焦点为,点在抛物线上,且,若的面积为,则()A.2B.4C.D.第(5)题已知向量,,满足,,且,则()A.-1B.0C.1D.2第(6)题定义在上的函数满足,,为奇函数,有下列结论:①直线为曲线的对称轴;②点为曲线的对称中心;③函数是周期函数;④;⑤函数是偶函数.其中,正确结论的个数是()A.1B.2C.3D.4第(7)题甲、乙、丙、丁、戊5名志愿者参加新冠疫情防控志愿者活动,现有三个小区可供选择,每个志愿者只能选其中一个小区.则每个小区至少有一名志愿者,且甲不在小区的概率为()A.B.C.D.第(8)题把函数的图象向左平移个单位后,得到一个偶函数的图像,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数,则()A.函数的图像关于直线对称B.有三个零点C.点是曲线的对称中心D.曲线与关于直线对称第(2)题已知为定义在R上的偶函数,当时,有,且当时,,下列命题正确的是()A.B.函数在定义域上是周期为2的函数C.函数的值域为D.直线与函数的图象有2个交点第(3)题如图,正方形中,为中点,为线段上的动点,,则下列结论正确的是()A.当为线段上的中点时,B.的最大值为C.的取值范围为D.的取值范围为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知函数,若存在,满足,则的取值范围为______.第(2)题所谓正多面体,是指多面体的各个面都是全等的正多边形,并且各个多面角都是全等的多面角.例如:正四面体(即正棱锥体)的四个面都是全等的三角形,每个顶点有一个三面角,共有四个三面角,可以完全重合,也就是说它们是全等的.由棱长为1的正方体的六个表面的中心可构成一正八面体,则该正八面体的内切球的表面积为___________.第(3)题有下列各式:,……则按此规律可猜想此类不等式的一般形式为: _______________________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题某汽车公司为调查店个数对该公司汽车销量的影响,对同等规模的四座城市的店一季度汽车销量进行了统计,结果如下:城市店个数2365销量 (台数)24303733(1)根据统计的数据进行分析,求关于的线性回归方程;(2)该公司为扩大销售拟定在同等规模的城市开设4个店,预计市的店一季度汽车销量是多少台?附:回归方程中的斜率和截距的最小二乘法估计公式分别为:;.第(2)题已知函数.(1)当时,求不等式的解集;(2)设关于的不等式的解集为,且,求实数的取值范围.第(3)题已知四棱锥的底面是菱形,,底面,是上的任意一点.(1)求证:平面平面;(2)设,求点到平面的距离.第(4)题已知函数.(1)当时,求的极值;(2)若是函数的两个极值点,求的取值范围.第(5)题如图,在平面四边形中,对角线平分,的内角A,B,C的对边分别为a,b,c,已知(1)求B;(2)若,的面积为2,求。
湖北省襄樊市2024高三冲刺(高考数学)人教版真题(综合卷)完整试卷
湖北省襄樊市2024高三冲刺(高考数学)人教版真题(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题在正项数列中,,记.整数满足,则数列的前项和为()A.B.C.D.第(2)题在中,点是边上靠近点的三等分点,若,则()A.B.C.D.第(3)题运行如图所示程序后,输出的结果为()A.15B.17C.19D.21第(4)题若,则复数可能为()A.B.C.D.第(5)题某校举行文艺汇演,甲、乙、丙等6名同学站成一排演唱歌曲,若甲、乙不相邻,丙不在两端,则不同的排列方式共有()A.72种B.144种C.336种D.432种第(6)题若集合,则()A.B.C.D.第(7)题四名同学参加社会实践,他们中的每个人都可以从三个项目中随机选择一个参加,且每人的选择相互独立.这三个项目中恰有一个项目没有被任何人选择的概率为()A.B.C.D.第(8)题设,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数,则下列结论正确的是()A.的值域为B.当且仅当时,函数取得最大值C.的最小正周期是D.在上恰有3个零点第(2)题已知F为椭圆的一个焦点,A,B为该椭圆的两个顶点,若,则满足条件的椭圆方程为()A .B .C .D .第(3)题已知,下列选项中是“”的充分条件的是( )A .B .C.D .三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题计算:______.第(2)题已知正项等比数列的公比为,其前项和为,若对一切,都有,则的取值范围是______.第(3)题若实数,使得恒成立,则实数a 的取值范围是______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)求函数的单调递增区间;(2)在中,角A ,B ,C 所对的边分别为a ,b ,c ,若,求的面积.第(2)题机器人一般是指自动控制机器(Robot )的俗称,自动控制机器包括一切模拟人类行为或思想与模拟其他生物的机械,用以取代或协助人类工作.机器人一般由执行机构、驱动装置检测装置、控制系统和复杂机械等组成.某大学机器人研究小组研发了型、型两款火场救人的机器人,为检验其效能做下列试验:如图,一正方形复杂房间有三个同样形状、大小的出口,其中只有一个是打开的,另外两个是关闭的,房间的中心为机器人的出发点,型、型两个机器人别从出发点出发沿路线任选一条寻找打开的出口,找到后沿打开的出口离开房间;如果找到的出口是关闭的,则按原路线返回到出发点,继续重新寻找. 型机器人是没有记忆的,它在出发点选择各个出口是等可能的;型机器人是有记忆的,它在出发点选择各个出口的尝试不多于一次,且每次选哪个出口是等可能的.以表示型机器人为了离开房间尝试的次数,以表示型机器人为了离开房间尝试的次数.(1)试求离散型随机变量的分布列和期望;(2)求的概率.第(3)题在四棱锥中,侧面底面,底面为直角梯形,∥,,,,,为的中点,为的中点.(1)求证:∥平面;(2)求二面角的余弦值.第(4)题的内角,,的对边分别为,,,已知.(1)求;(2)若,的周长为9,求的面积.第(5)题设函数.(1)作出函数的图象,并求的值域;(2)若存在,使得不等式成立,求实数的取值范围.。
湖北省襄樊市2024高三冲刺(高考数学)部编版测试(冲刺卷)完整试卷
湖北省襄樊市2024高三冲刺(高考数学)部编版测试(冲刺卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题祖暅是我国古代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是:如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等,此即祖暅原理.这个原理经过研究推广,有着许多的推论,其中有一个推论为夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积比总为,那么这两个几何体的体积之比也为.现已知几何体与几何体是两个等高的几何体,且在同高处被平行于底面的平面截得的截面面积之比都为,若几何体是一个母线长为,上底面半径为1,下底面半径为2的圆台,则几何体的体积为()A.B.C.D.第(2)题某单位设置了a,b,c三档工资,已知甲、乙、丙三人工资各不相同,且甲的工资比c档高,乙的工资比b档高,丙领取的不是b档工资,则甲、乙、丙领取的工资档次依次为()A.a,b,c B.b,a,c C.a,c,b D.b,c,a第(3)题已知在平面内,圆,点P为圆外一点,满足,过点P作圆O的两条切线,切点分别为A,B.若圆O上存在异于A,B的点M,使得,则的值是()A.B.C.D.第(4)题若,则()A.1B.C.2D.第(5)题若函数在上为增函数,则的取值范围为()A.B.C.D.第(6)题已知曲线与直线y=x+b有两个不同的交点,则b的取值范围为A.B.C.D.第(7)题由于我国与以美国为首的西方国家在科技领域内的竞争日益激烈,美国加大了对我国一些高科技公司的打压,为突破西方的技术封锁和打压,我国的一些科技企业积极实施了独立自主、自力更生的策略,在一些领域取得了骄人的成绩.我国某科技公司为突破“芯片卡脖子”问题,实现芯片制造的国产化,加大了对相关产业的研发投入.若该公司2020年全年投入芯片制造方面的研发资金为120亿元,在此基础上,计划以后每年投入的研发资金比上一年增长9%,则该公司全年投入芯片制造方面的研发资金开始超过200亿元的年份是()参考数据:.A.2024年B.2025年C.2026年D.2027年第(8)题已知,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知椭圆的左、右焦点分别为、,上顶点为,直线与椭圆交于,两点,的角平分线与轴相交于点,与轴相交于点,则()A.四边形的周长为16B.直线,的斜率之积为C.的最小值为D.当时,点的纵坐标为第(2)题已知为上的奇函数,且在上单调递增,,则下列命题中一定正确的是()A.B.有3个零点C.D.第(3)题已知函数f(x)=x ln(),则以下结论正确的是()A.为奇函数B.在区间(0,+∞)上单调递增C.曲线在(0,f(0))处的切线的斜率为ln2D.函数有三个零点三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题函数的最大值为__________.第(2)题如图,在矩形ABCD中,,AC与BD的交点为M,N为边AB上任意点(包含端点),则的最大值为________.第(3)题已知函数在上的最大值为,在上的最大值为,若,则实数的取值范围是______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题某学校为了研究不同性别的学生对“村BA”赛事的了解情况,进行了一次抽样调查,分别随机抽取男生和女生各80名作为样本,设事件“了解村BA”,“学生为女生”,据统计,.(1)根据已知条件,补全列联表,并根据小概率值的独立性检验,判断该校学生对“村BA”的了解情况与性别是否有关?了解不了解总计男生女生总计(2)现从该校不了解“村BA”的学生中,采用分层随机抽样的方法抽取10名学生,再从这10名学生随机抽取4人,设抽取的4人中男生的人数为,求的分布列和数学期望.附:,.0.0500.0100.0050.0013.8416.6357.87910.828第(2)题已知椭圆的右焦点为,且点在椭圆上.(1)求椭圆的标准方程;(2)当点在椭圆的图像上运动时,点在曲线上运动,求曲线的轨迹方程,并指出该曲线是什么图形;(3)过椭圆上异于其顶点的任意一点作曲线的两条切线,切点分别为不在坐标轴上),若直线在轴,轴上的截距分别为试问:是否为定值?若是,求出该定值;若不是,请说明理由.第(3)题已知函数.(1)讨论的单调性;(2)若恒成立,求实数a的值.第(4)题已知0<m<2,动点M到两定点F1(﹣m,0),F2(m,0)的距离之和为4,设点M的轨迹为曲线C,若曲线C过点.(1)求m的值以及曲线C的方程;(2)过定点且斜率不为零的直线l与曲线C交于A,B两点.证明:以AB为直径的圆过曲线C的右顶点.第(5)题已知椭圆的右顶点为A(2,0),右焦点F到右准线l的距离为3.(1)求椭圆C的标准方程;(2)经过点F和T(7,0)的圆与直线l交于P,Q,AP,AQ分别与椭圆C交于M,N.证明:直线MN经过定点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
间为a2,0.
挑战提升
5.定义在区间(0,+∞)上的函数y=f(x)使不等式2f(x)<xf′(x)<3f(x)恒成立,其 中y=f′(x)为y=f(x)的导函数,则
f2 A.8<f1<16
√ f2
B.4<f1<8
f2 C.3<f1<4
f2 D.2<f1<3
4.已知函数f(x)=x2e-ax-1(a是常数),求函数y=f(x)的单调区间.
解 根据题意可得,当a=0时,f(x)=x2-1, 函数在(0,+∞)上单调递增,在(-∞,0)上单调递减. 当a≠0时,f′(x)=2xe-ax+x2(-a)e-ax=e-ax(-ax2+2x). 因为e-ax>0, 所以令 g(x)=-ax2+2x=0,解得 x=0 或 x=2a. ①当 a>0 时,函数 g(x)=-ax2+2x 在(-∞,0)和2a,+∞上有 g(x)<0, 即f′(x)<0,函数y=f(x)单调递减;
若21a>1,即 0<a<21, 由 g′(x)>0,得 x>21a或 0<x<1, 由 g′(x)<0,得 1<x<21a, 若21a=1,即 a=12,在(0,+∞)上恒有 g′(x)≥0. 综上可得:当a=0时,函数g(x)在(0,1)上单调递增, 在(1,+∞)上单调递减; 当 0<a<12时,函数 g(x)在(0,1)上单调递增, 在1,21a上单调递减,在21a,+∞上单调递增;
∴fxx3′=f′x·x3x-6 3x2fx=xf′xx-4 3fx<0, 令 h(x)=fxx3, ∴h(x)=fxx3在(0,+∞)上单调递减, ∴f223<f113,即ff21<8. 综上,4<ff21<8.
题型二 构造函数解决不等关系
2.已知定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)<0,其中f′(x)是函数f(x)
的导函数.若2f(m-2 019)>(m-2 019)f(2),则实数m的取值范围为
A.(0,2 019)
B.(2 019,+∞)
C.(2 021,+∞)
√D.(2 019,2 021)
解析 令 h(x)=fxx,x∈(0,+∞),
xf′x-fx
则 h′(x)=
x20,∴h′(x)<0,
∴函数h(x)在(0,+∞)上单调递减,
∵2f(m-2 019)>(m-2 019)f(2),m-2 019>0,
fm-2 ∴
m-2
001199>f22,即
解析 ∵xf′(x)-2f(x)>0,x>0, ∴fxx2′=f′x·xx24-2xfx=xf′xx-3 2fx>0, 令 g(x)=fxx2, ∴g(x)=fxx2在(0,+∞)上单调递增,∴f222>f112, 又由 2f(x)<3f(x),得 f(x)>0,即ff21>4. ∵xf′(x)-3f(x)<0,x>0,
x2
,
又当x<0时,xf′(x)-f(x)<0,
所以g′(x)<0,即函数g(x)在区间(-∞,0)内单调递减.因为f(x)为R上的偶函数,
所以g(x)为(-∞,0)∪(0,+∞)上的奇函数,所以函数g(x)在区间(0,+∞)内
单调递减.由0<ln 2<e<3,可得g(3)<g(e)<g(ln 2),即c<a<b,故选D.
(2).已知函数f(x)=ln x,g(x)= 12ax2+2x(a≠0). 若h(x)在[1,4]上存在单调递减区间,求a的取值范围. 解 h(x)在[1,4]上存在单调递减区间, 则h′(x)<0在[1,4]上有解, 所以当 x∈[1,4]时,a>x12-2x有解,
又当 x∈[1,4]时,x12-2xmin=-1(此时 x=1), 所以a>-1,又因为a≠0, 所以a的取值范围是(-1,0)∪(0,+∞).
2020届高三一轮复习 导数及其应用
§3.2导数的应用(第一课时)
导数与函数的单调性
1
PART ONE
考情回顾
近5年高考(全国卷I)涉及“导数与函数单调性” 分值
年份 19
18
17
16
15
题号 T20
T16 T16(立几) T7(图像) T12 T21 T21 T21 T21
分值 约12’ 约17’ 约17’ 约17’ 约17’
4
PART FOUR
自学自测
书写规范 注意版面
4
PART FOUR
小组讨论
1、搜集易错点
2、梳理解题思路
4
PART FOUR
展示交流
1、提高音量
2、面向同学
题型一 不含参函数的单调性
1.函数 y=4x2+1x的单调增区间为
A.(0,+∞)
√B.12,+∞
C.(-∞,-1)
D.-∞,-21
当 a=12时,函数 g(x)在(0,+∞)上单调递增; 当 a>21时,函数 g(x)在0,21a上单调递增, 在21a,1上单调递减,在(1,+∞)上单调递增.
思维升华 (1)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的 点和函数的间断点. (2)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类 讨论. 常见的分类讨论标准有以下几种可能: ①方程f′(x)=0是否有根; ②若f′(x)=0有根,求出根后判断其是否在定义域内; ③若根在定义域内且有两个,比较根的大小是常见的分类方法.
2.“f(x)在区间(a,b)上是增函数,则f′(x)>0在(a,b)上恒成立”,这种说法 是否正确?
提示 不正确,正确的说法是: 可导函数f(x)在(a,b)上是增函数的充要条件是对∀x∈(a,b), 都有f′(x)≥0 且f′(x)在(a,b)上的任何子区间内都不恒为零.
① f(x)在区间D上单调递增,则f′(x)≥0在区间D上恒成立 ② f(x)在区间D上单调递减,则f′(x)≤0在区间D上恒成立 ③ f(x)在区间D上存在增区间,则f′(x)>0在区间D上有解 ④ f(x)在区间D上存在减区间,则f′(x)<0在区间D上有解
当堂检测 1.已知函数f(x)=ln x,g(x)= 1 ax2+2x(a≠0).
2 (1)若函数h(x)=f(x)-g(x)在[1,4]上单调递增,求a的取值范围.
解 因为h(x)在[1,4]上单调递增, 所以当x∈[1,4]时,h′(x)≥0恒成立, 所以当 x∈[1,4]时,a≤x12-2x恒成立, 又当 x∈[1,4]时,x12-2xmin=-1(此时 x=1), 所以 a≤-1,即 a 的取值范围是(-∞,-1].
解 g′(x)=
x
=
x
.
∵函数g(x)的定义域为(0,+∞),
x-1 ∴当 a=0 时,g′(x)=- x .
由g′(x)>0,得0<x<1,由g′(x)<0,得x>1.
当 a>0 时,令 g′(x)=0,得 x=1 或 x=21a, 若21a<1,即 a>12, 由 g′(x)>0,得 x>1 或 0<x<21a, 由 g′(x)<0,得21a<x<1;
所以a>-1. 又因为a≠0,所以a的取值范围为(-1,0)∪(0,+∞).
(2)若函数h(x)=f(x)-g(x)在[1,4]上单调递减,求a的取值范围.
解 因为h(x)在[1,4]上单调递减, 所以当 x∈[1,4]时,h′(x)=1x-ax-2≤0 恒成立, 即 a≥x12-2x恒成立. 由(1)知 G(x)=x12-2x, 所以 a≥G(x)max,而 G(x)=1x-12-1, 因为 x∈[1,4],所以1x∈14,1, 所以 G(x)max=-176(此时 x=4), 所以 a≥-176,又因为 a≠0, 所以 a 的取值范围是-176,0∪(0,+∞).
h(m-2
019)>h(2).
∴m-2 019<2且m-2 019>0,解得2 019<m<2 021. ∴实数m的取值范围为(2 019,2 021).
题型三 含参函数的单调性
3. 已知函数g(x)=ln x+ax2-(2a+1)x,若a≥0,试讨论函数g(x)的单调性.
2ax2-2a+1x+1 2ax-1x-1
3 知识与技能
PART THREE
基本初等函数
f(x)=c(c 为常数)
f(x)=xα(α∈Q*)
f(x)=sin x
f(x)=cos x
f(x)=ex
f(x)=ax(a>0,a≠1)
f(x)=ln x
f(x)=logax(a>0,a≠1)
导函数 f′(x)=0 f′(x)=αxα-1 f′(x)=cos x f′(x)=-sin x f′(x)=ex f′(x)=axln a f′(x)=1x f′(x)=xln1 a
即f′(x)≤0,函数y=f(x)单调递减.
综上所述,当a=0时,函数y=f(x)的单调递增区间为(0,+∞),单调递减区
间为(-∞,0);
当 a>0 时,函数 y=f(x)的单调递减区间为(-∞,0),2a,+∞,单调递增区
间为0,a2; 当 a<0 时,函数
y=f(x)的单调递增区间为-∞,2a,(0,+∞),单调递减区
3 知识与技能
PART THREE
函数的单调性 在某个区间(a,b)内,如果f′(x) > 0,那么函数y=f(x)在这个区间内单调递增; 如果f′(x) < 0,那么函数y=f(x)在这个区间内单调递减.